
Studies in Computational Intelligence 782

Saad Subair
Christopher Thron Editors

Implementations
and Applications
of Machine
Learning

Studies in Computational Intelligence

Volume 782

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly
and with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineer-
ing, computer science, physics and life sciences, as well as the methodologies
behind them. The series contains monographs, lecture notes and edited volumes
in computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence, cel-
lular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid
intelligent systems. Of particular value to both the contributors and the readership
are the short publication timeframe and the world-wide distribution, which enable
both wide and rapid dissemination of research output.

The books of this series are submitted to indexing to Web of Science,
EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Saad Subair • Christopher Thron
Editors

Implementations and
Applications of Machine
Learning

Editors
Saad Subair
College of Computer Studies,
International University of Africa (IUA)
Khartoum, Sudan

Christopher Thron
Department of Science and Mathematics
Texas A&M University-Central Texas
Killeen, TX, USA

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-030-37829-5 ISBN 978-3-030-37830-1 (eBook)
https://doi.org/10.1007/978-3-030-37830-1

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-37830-1

Preface

Since people first started to construct computational machines that magically
accept input, process it, and produce output, they have been inventing ways (a.k.a.
“algorithms”) to make these machines do the challenging jobs that they wished
and dreamed of. Mathematicians who considered computational processes from a
theoretical point of view invented and developed the concept of Turing machines, an
abstract mathematical model of computation that helped scientists to understand and
characterize algorithms that solve various problems. Researchers continued to push
back the boundaries of what machines were capable of and envisioned machines
that could actually think. The field of artificial intelligence (AI) has encompassed
these efforts to make the machine capable of acting natural intelligence of human
beings.

Within AI, machine learning is a prominent field. Machine learning refers to
algorithms that construct mathematical models that can be used to make data-
based decisions on optimization, clustering, classification, or prediction, where the
decision process itself depends on the data. So machine learning resembles (and
indeed overlaps with) statistics, which deals with the problem of finding predictive
and/or fitting functions based on a sample data. Regression is one example of a topic
within classical statistics that is also sometimes grouped under machine learning.
However, machine learning goes farther than statistics by making use of supervised
learning, in which pre-classified training data can be used to tune the algorithm for
analyzing subsequent data [1].

Machine learning has become a fundamental tool in applied science. Many if not
most state-of-the-art technological innovations now involve machine learning to a
greater or lesser extent. Fields of its application are extremely diverse. In this book,
we see the following applications: wireless networks, power systems design, image
recognition, computer vision, biological learning, bioinformatics, data mining, and
data verification.

This book provides clear, step-by-step explanations of successful practical
applications of machine learning, at a level such that beginning practitioners in the
field of machine learning (or advanced undergraduates in science and technology-

v

vi Preface

related fields) can use these as prototypes for their own applications. Instructors may
use these as examples in courses on machine learning.

This volume has several characteristics that set it apart from other books and
articles in this area. First, the chapters have a dual focus: they give elementary
explanations of established concepts and techniques, while also giving detailed
presentations of contemporary applied research. Consequently the book provides
a resource for machine learning students and other newcomers to the area, as well
as for experienced practitioners who are interested in potential applications. Second,
for many chapters documented code is available on the book’s GitHub page:

https://github.com/chuks-ojiugwo/Implementations-and-Applications-of-Machine-
Learning

Finally, many of the contributions represent work done in countries not ordinarily
associated with high-tech research: Cameroon, Nigeria, and Sudan, along with
South Africa, India, and the USA. This reflects how machine learning has leveled
the playing field and enabled worldwide participation in the unfolding development
of this exciting new area.

Machine learning is a vast area and includes a number of powerful techniques.
Some of the techniques that are utilized in this volume are briefly presented as
follows:

Genetic algorithms and swarm intelligence are biologically inspired approaches
to optimization. Genetic algorithms loosely mimic the evolution of species via
mutation and natural selection, while swarm intelligence involves a collection of
“agents” that search out possible solutions and communicate their findings to each
other. Chapters “Parallel 3-Parent Genetic Algorithm with Application to Routing
in Wireless Mesh Networks” and “Application of Evolutionary Algorithms to
Power System Stabilizer Design” in the current volume fall under this category,
with applications to optimization in communications networks and power systems,
respectively. Genetic algorithms, differential evolution, and population-based incre-
mental learning (which is also discussed in chapter “Application of Evolutionary
Algorithms to Power System Stabilizer Design”) all fall under the category of
evolutionary algorithms, in which populations of candidate solutions undergo
successive modifications leading to better candidate solutions. These modifications
can be considered as learned adaptations to the “environment” of possible solutions.

Gaussian mixture modeling is a clustering algorithm that produces a continuous
probability distribution. Given a set of vector data, Gaussian mixture modeling
approximates the empirical probability distribution with a sum of Gaussian dis-
tributions with specified means and covariances. Each Gaussian corresponds to a
different cluster. When applied to time-dependent data, the means and variances of
the Gaussian distributions are updated as the data changes. This technique is used
for motion detection in the automatic sign language recognition system described
in chapters “Automatic Sign Language Manual Parameter Recognition (I): Survey”
and “Automatic Sign Language Manual Parameter Recognition (II): Comprehensive
System Design” and is explained in chapter “Computer Vision Algorithms for Image
Segmentation, Motion Detection, and Classification”.

https://github.com/chuks-ojiugwo/Implementations-and-Applications-of-Machine-Learning
https://github.com/chuks-ojiugwo/Implementations-and-Applications-of-Machine-Learning

Preface vii

Support vector machines were originally designed for binary classification
tasks. Beginning with the idea of linear separation using hyperplanes, support
vector machines employ a “kernel trick” to enable separation using nonlinear
hypersurfaces. Various techniques can be used to enable support vector machines
to accomplish multi-way classification. Support vector machines are explained in
chapter “Computer Vision Algorithms for Image Segmentation, Motion Detection,
and Classification”, and they are used for classification of hand shapes in the
automatic sign language recognition system described in chapters “Automatic
Sign Language Manual Parameter Recognition (I): Survey” and “Automatic Sign
Language Manual Parameter Recognition (II): Comprehensive System Design”.

Neural networks are computational structures inspired by brain function that can
be trained to recognize patterns in inputs and produce desired outputs. They are
composed of computational units called “neurons” that are arranged in layers, such
that outputs of neurons in each layer are combined to form the inputs for successive
layers. “Deep learning” makes use of neural networks with many layers. Most
often, the neural networks used in deep learning are convolutional neural networks,
whose structure reflects strong local correlations and translation invariance that
is a property of many types of inputs (including images). Convolutional neural
networks are used in the facial recognition system discussed in chapters “Overview
of Deep Learning in Facial Recognition” and “Improving Deep Unconstrained
Facial Recognition by Data Augmentation”, as well as the plant image classification
system presented in chapter “Improved Plant Species Identification Using Convo-
lutional Neural Networks with Transfer Learning and Test Time Augmentation”.
A fairly recent development in the field of neural networks is the invention of
spiking neural networks, which employ pulsed signals between neurons such that
the pulse timing conveys information between the neurons. The functioning of these
networks is much closer to the way the brain actually works than conventional neural
networks, and they have the additional advantage of using much less power. Spiking
neural networks are overviewed in chapter “Simulation of Biological Learning with
Spiking Neural Networks”, and specific examples are given for clarity.

Data mining involves the identification of patterns in large data sets. Important
techniques within data mining include association rules and clustering. Association
rules are used for instance in genetics, such that partial knowledge of a genome
can be used to estimate the chances of the occurrence of other genes. A number
of algorithms for finding association rules exist: a new binary-based algorithm is
introduced in chapter “An Efficient Algorithm for Mining Frequent Itemsets and
Association Rules” which has superior performance.

Statistical techniques are frequently used in machine learning. Indeed, machine
learning is closely allied with statistics, and there is not a clear boundary between
the two fields [1]. Classification is one of the key problems addressed by machine
learning, and statistical techniques can be used to assess the quality of classification
schemes. One such statistical technique (receiver operating characteristic curves)
is discussed and applied in chapter “Receiver Operating Characteristic Curves in
Binary Classification of Protein Secondary Structure Data”.

viii Preface

Reinforcement learning/dynamic programming is an optimization technique
from operations research that searches through the set of all possible solutions
and makes use of information gained during the search to guide subsequent search
progress. This method can be used when the possible solutions can be structured into
a trellis-like format. Dynamic programming is introduced with a simple example in
chapter “Budget Reconciliation Through Dynamic Programming”, and a practical
application is also given.

For completeness, we list some prominent topics in machine learning that are not
discussed in this volume:

• Bayes classifiers and decision trees
• Clustering algorithms (including k-means and variants)
• Markov chain Monte Carlo
• Statistical learning

Brief summaries of the chapters are given as follows:
“Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless

Mesh Networks” by Singh, Kumar, Singh, and Walia, proposes a new multi-
population global optimization algorithm: the parallel 3-parent genetic algorithm
(P3PGA). The performance of the new algorithm was compared with 16 other
algorithms based on 30 benchmarks. P3PGA was found as the best-performing
algorithm on 14 out of the 30 benchmark functions.

“Application of Differential Evolution to Power System Stabilizer Design” by
Mulumba and Folly, focuses on optimization of power systems stabilizers (PSS).
The chapter examines when there are power exchanges between large areas of
interconnected power systems or when power is transferred over long distances
under medium to heavy conditions. Conventional Power Systems Stabilizers (CPSS)
performance deteriorates as the operating conditions change and hence requires
re-tuning. This chapter describes the application of two evolutionary algorithms
(differential evolution and population-based incremental learning) to optimize
PSS parameters to provide adequate performance for a wide range of operating
conditions.

“Automatic Sign Language Manual Parameter Recognition (I): Survey” by
Ghaziasgar, Bagula, Thron, and Ajayi, surveys past work on the automatic recog-
nition and transcription of sign language semantic information from monocular
video. This complicated task involves a number of specific subtasks: The prior art
presented in this chapter is improved upon in Chapter “Automatic Sign Language
Manual Parameter Recognition (II): Comprehensive System Design” by Ghaziasgar,
Bagula, and Thron, which describes key components of the design of a new video-
based system for translation from sign language to English. Several of the key
machine learning algorithms used in this new system are described in Chapter
“Computer Vision Algorithms for Image Segmentation, Motion Detection, and
Classification” by Ghaziasgar, Bagula, and Thron. Algorithms discussed include
adaptive Gaussian thresholding and image thresholding for edge detection; the Viola
Jones model for face detection; Gaussian mixture modeling for motion detection;

Preface ix

and histogram of oriented gradients descriptor and support vector machines for
image classification.

“Overview of Deep Learning in Facial Recognition” by Ngezha, Fendji, and
Thron, presents an overview of currently available deep neural network models
in facial recognition. The chapter outlines the architectures and methods used
by the best current models, and discusses performance issues related to the loss
function, the optimization method, and the choice of training dataset. The discussion
of facial recognition is continued in Chapter “Improving Deep Unconstrained
Facial Recognition by Data Augmentation,” which applies a powerful and versatile
technique (data augmentation) to improve facial recognition for images obtained
under uncontrolled lighting conditions.

“Plant Species Identification with Transfer Learning and Test Time Augmenta-
tion” by Igbineweka, Sawyerr, and Fasina, addresses the difficult task of identifying
plant species, which is hard enough for botanists and virtually impossible for non-
botanists. Many traditional machine learning techniques for plant identification
rely on handcrafted features such as the shape, area, and perimeter of the plant,
which tend to be error-prone and tedious to program. This chapter proposes a deep
learning method for recognizing plant species. Three deep convolutional neural net
architectures are trained using the concept of transfer learning, and their predictions
averaged using ensemble learning. Further improvement in classification accuracy
was obtained by applying test time augmentation.

“Simulation of Biological Learning with Spiking Neural Networks” by Ojiugwo,
Abdallah, and Thron, gives an overview of spiking neural networks (SNN). SNNs
are versions of artificial neural networks that are more biologically realistic and
much less power-consuming than commonly used static models. As in actual
brains, neurons signal each other by means of spikes (rather than constant inputs
in conventional ANNs), and spike timing plays a key role in SNN functioning. This
chapter describes the training of SNNs using the spike-dependent timing plasticity
(STDP) algorithm and discusses an experiment that shows the ability of SNNs
to learn to distinguish handwritten digits. An overview of current software and
hardware simulators is also provided.

“Finding Association Rules for Large Datasets: An Efficient Binary-Based
Approach” by Fageeri. Association rule mining (ARM) is an increasingly popular
approach in data mining. This popularity is motivated by the fact that traditional sta-
tistical techniques, data management tools, and decision support systems are unable
to handle enormous amounts of data. The key to effective application of association
rules is finding a representation of database items that enable rapid identification and
reduced memory. This chapter makes use of a binary representation of data, which
makes it possible to employ very fast bitwise operations to speed up processing.
This approach is verified on several benchmark datasets and shows that this binary-
based approach outperforms other algorithms in terms of reduced execution time
and memory usage.

“Receiver Operating Characteristic Curves (ROC) in Binary Classification of
Protein Secondary Structure Data” by Subair and Thron. Protein secondary structure
prediction is a fundamental step in determining the final structure and functions

x Preface

of a protein. Three states of secondary structures are identified, namely helices,
strands, and coils, where coils typically comprise about 50% of the data. A binary
classifier has been developed to group amino acids into two groups: coil and non-
coil. This chapter applies receiver operating characteristic (ROC) analysis to analyze
and interpret the results of the protein secondary structure classifier.

“Budget Reconciliation Through Dynamic Programming” by Laver, Brandt, and
Thron, takes on a practical budgeting problem encountered by the US military.
Because of complicated, interlocking financial systems, daily commits (orders) and
obligations (account withdrawals) are not reconciled in detail. This chapter derives
and implements an algorithm that takes a record of daily commits and obligations
over a period of time and utilizes dynamic programming to identify the most
likely matching between the two. The algorithm can also estimate the probability
distribution of commit-to-obligation delays, thus making it a useful prediction tool.
The algorithm can be adapted to a wide range of scenarios, and the performance has
been verified via simulation as well as application to actual data.

Effective implementation of machine learning methods and algorithms has
become an essential skill for students as well as researchers in both academia and
industry. Great benefits may be reaped by learning from the research and advances
of others within this field. This book provides an exceptional collection of the
latest practical research and state-of-the-art algorithms associated with machine
learning. We hope that this volume will inspire and equip readers to make further
contributions to the machine learning revolution, which holds great promise for the
betterment of our lives.

Killeen, TX Saad Subair
Killeen, TX Christopher Thron

Reference

1. D. Bzdok, N. Altman, M. Krzywinski, Statistics versus machine learning. Nat.
Methods. (2018). https://doi.org/10.1038/nmeth.4642. Accessed 30 Oct 2019

http://dx.doi.org/10.1038/nmeth.4642

Contents

Parallel 3-Parent Genetic Algorithm with Application to Routing
in Wireless Mesh Networks . 1
Amar Singh, Shakti Kumar, Ajay Singh, and Sukhbir S. Walia

Application of Evolutionary Algorithms to Power System Stabilizer
Design . 29
Tshina Fa Mulumba and Komla Agbenyo Folly

Automatic Sign Language Manual Parameter Recognition (I): Survey . . . 63
Mehrdad Ghaziasgar, Antoine Bagula, Christopher Thron,
and Olasupo Ajayi

Automatic Sign Language Manual Parameter Recognition (II):
Comprehensive System Design . 93
Mehrdad Ghaziasgar, Antoine Bagula, and Christopher Thron

Computer Vision Algorithms for Image Segmentation, Motion
Detection, and Classification . 119
Mehrdad Ghaziasgar, Antoine Bagula, and Christopher Thron

Overview of Deep Learning in Facial Recognition . 139
Arnauld Fountsop Nzegha, Jean Louis Ebongue Fendji,
Christopher Thron, and Clementin Djameni Tayou

Improving Deep Unconstrained Facial Recognition by Data Augmentation 179
Arnauld Fountsop Nzegha, Jean Louis Ebongue Fendji,
Christopher Thron, and Clementin Djameni Tayou

Improved Plant Species Identification Using Convolutional Neural
Networks with Transfer Learning and Test Time Augmentation 197
Kelvin Igbineweka, Babatunde Sawyerr, and Ebun Fasina

Simulation of Biological Learning with Spiking Neural Networks 207
Chukwuka N. Ojiugwo, Abderazek B. Abdallah, and Christopher Thron

xi

xii Contents

An Efficient Algorithm for Mining Frequent Itemsets
and Association Rules . 229
Sallam Fageeri, Rohiza Ahmad, and Hitham Alhussian

Receiver Operating Characteristic Curves in Binary Classification
of Protein Secondary Structure Data . 245
Saad Subair and Christopher Thron

Budget Reconciliation Through Dynamic Programming . 255
Tad Laver, Lucas Brandt, and Christopher Thron

Index . 271

Parallel 3-Parent Genetic Algorithm
with Application to Routing in Wireless
Mesh Networks

Amar Singh, Shakti Kumar, Ajay Singh, and Sukhbir S. Walia

1 Introduction

Genetic algorithms (GAs) are widely used computer-based search and optimization
algorithms based on the mechanics of natural genetics and natural selection [1–5].
In the decade between 1950 and 1960 many researchers worked on evolutionary
systems with the idea that evolution could be used as optimization approach for
many engineering problems [4]. J. Holland introduced the concept of genetic
algorithm in 1960 [5]. Usually genetic algorithms are based on two-parent genetic
processes; however, some literature on multi-parent recombination can also be
found in [6–9]. Mühlenbein and Voigt [6] presented the concept of gene pool
recombination (GPR), and applied it to find solutions in a discrete domain. Eiben
and Van Kemenade [7] proposed the concept of diagonal crossover as generalization
of uniform crossover in GA and applied it to numerical optimization problems. Wu
et al. [8] proposed multi-parent orthogonal recombination and applied it to find out
the identity of an unknown image contour. The crossover operators used in those
areas enabled significant improvements in search ability, although improvements
were found to be highly problem dependent. Eiben et al. [9] proposed two multi-

A. Singh
Lovely Professional University, Phagwara, Punjab, India

S. Kumar (�)
Panipat Institute of Engineering & Technology, Panipat, Haryana, India

A. Singh
Hochschule Wismar, University of Applied Sciences, Technology, Business and Design, Wismar,
Germany

S. S. Walia
IK Gujral Punjab Technical University, Jalandhar, Punjab, India

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-37830-1_1

2 A. Singh et al.

parent recombination mechanisms, namely gene scanning and diagonal crossover.
They extensively tested their multi-parent algorithm on a variety of problems in
numerical optimization, constrained optimization (traveling salesman problem) and
constraint satisfaction (graph coloring). Compared to two-parent recombination,
their algorithm achieved superior performance in optimizing the first four test
functions of De Jong. For other problems the results were mixed; multi-parent
crossover sometimes performed better and at times worse than classical two-parent
recombination.

The parallel three-parent genetic algorithm presented in this chapter is based
upon three-parent genetic processes in medical science and is very different from the
approaches available in the literature. In medical science, a three-parent process has
been used to prevent mitochondrial diseases in children of mothers with defective
mitochondria [10–13]. In 2015, Dr. John Zhang and his team at the New Hope
Fertility Center in New York City replaced the nucleus of a donor’s egg cell
with the nucleus of original mother, which was then fertilized with the father’s
sperm and implanted in the mother. The child that was subsequently born inherited
mitochondrial DNA from the donor, besides nuclear DNA from the father and
mother [13]. The concept of this three-parent genetic process is shown in Fig. 1.
The P3PGA algorithm is in some respects a mathematical analogy of this practical
process.

This chapter includes two different but related research investigations. The first
is an evaluation of the performance of P3PGA on functions from an established
test suite and comparison with other well-known recent algorithms. The second
investigation concerns the application of P3PGA to an important and challenging
practical problem, namely routing in wireless mesh networks (WMNs) [14].

This chapter is organized into six sections. Section 1 presents the motivation for
this work; Section 2 discusses the working of P3PGA algorithm; Section 3 describes

Fig. 1 3-Parent Process adapted from Zhang et al. [13]

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 3

the simulation and performance of P3PGA on the 2014 Congress on Evolutionary
Computation (CEC-2014) test bench suite compared to 16 other algorithms; Section
4 proposes a P3PGA-based minimal cost route evaluation approach for WMNs;
Section 5 presents its implementation and performance on WMNs as well as a
performance comparison with eight other algorithms found in the literature; and
Sect. 6 summarizes conclusions.

2 P3PGA Algorithm

The Parallel 3-Parent Genetic Algorithm (P3PGA) is a multi-population algorithm
in which evolution process takes place on several populations in parallel. It is based
upon the single-population three-parent genetic algorithm (3PGA) [15, 16].

A pseudocode for the proposed P3PGA approach is as given in the listing below
in Algorithm 1. In this algorithm we initially create several populations of equal
size: these are called 2-parent populations. To generate a 3-parent population from
a 2-parent population we applied the “mitochondrial change” to each individual by
adding a small random number to each gene of each individual in the population.
The fittest individual (best solution) within a population is called the local elite of
that specific population. The best of all local elites is called the global elite. All
genes for all individuals in all the populations are moved towards the corresponding
gene of the global best candidate solution with low probability. This guides every
candidate solution towards the global best solution.

For the better understanding of the algorithm, we describe its operation on a
very simple example where we wish to search a 4-digit quantity such that the sum
of 4 digits is maximal, given that each digit is an integer between 0 and 9 (the
obvious answer is 9999). We proceed in such a way that the reader will be able
to track progress towards this solution as the algorithm progresses. The algorithm
parameters are chosen as shown in Table 1.

Step 1 Randomly create 3 two-parent populations, where each population consists
of three candidate solutions and each candidate solution is an array of four digits
(genes) having the form (d1, d2, d3, d4):

TwoParentPop(1): [(3,6,1,7), (5,2,6,3), (4,6,5,3)]
TwoParentPop(2): [(5,3,6,2), (5,6,7,8), (8,2,7,6)]
TwoParentPop(3): [(7,4,5,1), (5,6,1,3), (3,8,4,9)]

We may rewrite these three populations in matrix format, for example:

TwoParentPop(1) =
⎡
⎣

3 6 1 7
5 2 6 3
4 6 5 3

⎤
⎦

TwoParentPop(2) and TwoParentPop(3) may be expressed similarly as

4 A. Singh et al.

Algorithm 1: P3PGA algorithm
begin
Generate NP populations each of size N candidates randomly, every candidate consisting of
NG genes;
for gen = 1:Number of generations do

for i = 1:NP do
Effect Mitochondrial Change to ith 2-parent (2-P) population to Generate an ith 3-Parent

(3-P) population
Combine the 2-P and 3-P populations and select the N best individuals.
Find and record the globally best solution.
Generate a new 2-P population using general genetic process (using GA)

(a) Select fit individuals for recombining/breeding.
(b) With high probability recombine parents/perform cross-over.
(c) With low probability mutate offspring.
(d) Select the N best individuals from among parents and offspring...

Check bounds violation and correct if needed.
end for (i)
Check the fitness of all the individuals of all the populations and select/update the globally best
gbest candidate and its fitness;
for i = 1: NP do

for j = 1: N do
for k = 1: NG do

With a fixed small probability replace gene k of individual j in population i with
(individual(j,k) + gbest(j,k))/2;

end for (k)
end for (j)

end for (i)
end for (gen)
end

Table 1 Parameter values for illustrative example of P3PGA

Parameter description Symbol Value

Number of populations NP 3
Population size N 3
Number of genes in each individual NG 4
Gene values dj (j = 1 . . . 4) 0 thru 9
Crossover probability 0.9
Mutation probability 0.1

TwoParentPop(2) =
⎡
⎣

5 3 6 2
5 6 7 8
8 2 7 6

⎤
⎦

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 5

and

TwoParentPop(3) =
⎡
⎣

7 4 5 1
5 6 1 3
3 8 4 9

⎤
⎦

Step 2 For each gene of every individual in each of the populations, effect a
mitochondrial change by adding a random number to each gene. In our case, each
gene change is generated as a uniformly distributed random integer between −2 and
2. This may be implemented by generating a change matrix for each population,
adding the change matrix to the population matrix, and truncating so that the gene
values remain within the range from 0 to 9. For example, suppose the change matrix
for the first population is given by:

Change(1) =
⎡
⎣

2 0 −2 1
1 −1 2 1
0 2 2 2

⎤
⎦

Let us further assume that the randomly generated mitochondrial changes for the
second and third populations are as given below:

Change(2) =
⎡
⎣

−2 0 −1 1
1 2 2 −1
0 2 2 2

⎤
⎦ ; Change(3) =

⎡
⎣

−2 0 −1 2
1 2 2 −1
0 1 −2 2

⎤
⎦

Using 2-parent population and Change matrices for each population we compute
the 3-parent populations as follows:

3_Parent_Population(n) = 2_Parent_Population(n) + Change(n)

Whenever this formula produces an entry in 3_Parent_Population(n) that is less
than 0 or greater than 9, it is replaced with 0 or 9, respectively.

Step 3 The three-parent populations are then combined with their corresponding
two-parent populations to form populations that are twice as large. In our example,
these combined populations are given by three 6 × 3 matrices (matrix rows are
separated by semicolons)

Population 1: [3 6 1 7; 5 2 6 3; 4 6 5 3; 5 6 0 8; 6 1 8 4; 4 8 7 5]
Population 2: [5 3 6 2; 5 6 7 8; 8 2 7 6; 3 3 5 3; 6 8 9 7; 8 4 9 8]
Population 3: [7 4 5 1; 5 6 1 3; 3 8 4 9; 5 4 4 3; 6 8 3 2; 3 9 2 9]

We choose the three individuals for each population with highest fitness, which
are then sorted in decreasing order of fitness. Table 2 shows the results of this
operation.

6 A. Singh et al.

Table 2 Populations, individuals, and their Fitness

Pop. No. Individual No. Individual Fitness Pop. No. Individual No. Individual Fitness

1 1 4 8 7 5 24 3 1 3 8 4 9 24
2 5 6 0 8 19 2 3 9 2 9 23
3 6 1 8 4 19 3 6 8 3 2 19

2 1 6 8 9 7 30
2 8 4 9 8 29
3 5 6 7 8 26

Fig. 2 Single-point
crossover operation

Step 4 The conventional genetic algorithm operations of recombination (crossover)
and mutation are now performed within the resulting populations.

Step 4a. Usually fitness of an individual is used as selection criterion for crossover.
Various selection strategies may be used, including roulette wheel selection,
stochastic universal sampling, truncation selection, tournament selection, and
so on (interested reader may refer to [17–19] for details). We have used
stochastic universal sampling (SUS) for selection of parents for recombination.
In our example, we may suppose that individuals 1 and 3 in population 1 are
selected, and a crossover operation is performed on the two individuals with
high probability (usually between 0.75 and 0.9). A typical example of a crossover
operation is shown in Fig. 2.

The operation shown is a single-point crossover with crossover point after first gene.
Crossover can be single point, two point, or n-point. If crossover does not take
place, then both individuals are passed on as offspring.

Step 4b. Following crossover, mutation is performed. In the case of real-valued
genes, one way to perform mutation involves replacing the current gene with a
randomly generated value from within the universe of discourse of that gene with
a low probability. Both the probability of mutating a gene (mutation rate) and the
distribution of changes for each mutated gene must be specified. For example,
the change may be determined as a uniform random number in an interval [−a,
a]. In our example, we have taken a = 2 and the mutated genes are rounded off
to the nearest integer.

Step 4c. Following crossover and mutation, the offspring are grouped together with
their parents for each population, and the three fittest from each population are
chosen as the next generation. Note each generation of each population always
has the same number of individuals (equal to N, which is one of the algorithm’s
basic parameters). Let us assume that the individuals 4 8 7 5 and 5 6 0 8 were
selected for recombination assuming the crossover point was after first two genes.
Thus, the combination produced two offspring, i.e., 4 8 0 8 and 5 6 7 5. Let
us further assume that individual 6 1 8 4 was passed as it is as an offspring.

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 7

Table 3 Evolving new population after crossover and mutation

Current
population

Offspring (after crossover and
mutation)

New population (weak individuals
replaced with stronger offspring)

4 8 7 5 (24)
5 6 0 8 (19)
6 1 8 4 (19)

4 8 0 7 (19)
5 8 7 5 (25)
6 0 8 4 (18)

5 8 7 5 (25)
4 8 7 5 (24)
5 6 0 8 (19)

Table 4 Local best (elites)
and global best

Population number Local best (�best)/Elite Fitness

1 5 8 7 5 25
2 6 8 9 7 30
3 5 9 2 9 25

Let us further assume that the mutation operator mutated first offspring to 4 8
0 7, second offspring to 5 8 7 5, and the third offspring to 6 0 8 4. Replacing
the weaker parents with the stronger offspring produces the results as shown in
Table 3.

Step 4d. Compute elites (local best) and global best:

Global best (gbest) candidate solution after one generation is: “6 8 9 7” with
fitness values of 30 (6 + 8 + 9 + 7 = 30). The computation of elite (local best) is for
better understanding of the algorithm only. For better code efficiency we can directly
compute global best from the evolved generations. However, for algorithm 2, which
is based upon algorithm 1, computation of elites (local best of each population) is
essential (Table 4).

Step 5 After a predetermined number of generations, with a given probability we
replace ith gene of every individual with a gene whose value is the average value of
the ith gene of individual and ith gene of gbest, i.e.,

individual(i) ← (individual (i) + gbest(i)) /2

Table 5 summarizes the results of first iteration of computer implementation of
example using the P3PGA algorithm.

Continuing further execution of the program we find that our algorithm reached
the best result in about 15 iterations. Figure 3 shows number of generations
(iterations) versus fitness for our example.

3 Simulated Performance, Results, and Discussion

We implemented the proposed P3PGA algorithm in MATLAB on a Core i7 @
2.2GHz based laptop with 8GB RAM and tested its performance on 30 functions
from the CEC-2014 test bench. To evaluate the performance of P3PGA we used

8 A. Singh et al.

Ta
bl

e
5

Fi
rs

ti
te

ra
tio

n
an

d
co

rr
es

po
nd

in
g

ou
tp

ut
of

ea
ch

m
aj

or
st

ep
of

co
m

pu
te

r
im

pl
em

en
ta

tio
n

of
P3

PG
A

fo
r

th
e

ex
am

pl
e

un
de

r
co

ns
id

er
at

io
n

Po
pu

la
tio

n
no

.
#1

#2
#3

In
iti

al
2_

Pa
re

nt
(2

P)
Po

pu
la

tio
n

6
6

4
4

5
2

8
2

8
4

7
5

1
5

9
1

2
9

8
4

6
6

7
1

7
4

2
2

7
5

9
5

9
6

1
6

M
ito

ch
on

dr
ia

l
C

ha
ng

e
−1

−2
−1

0
2

1
−1

−1
0

−1
−2

−2

1
1

0
0

0
−1

0
1

−1
0

1
0

−1
−1

−1
1

−2
1

1
0

−1
0

1
−1

3-
pa

re
nt

(3
P)

Po
pu

la
tio

n
5

4
3

4
7

3
7

1
8

3
5

3

2
6

9
1

2
8

8
5

5
6

8
1

6
3

1
3

5
6

9
5

8
6

2
5

B
es

tN
in

di
vi

du
al

s
Se

le
ct

ed
fr

om
2P

&
3P

In
de

sc
en

di
ng

or
de

r

8
4

7
5

6
6

4
4

8
3

5
3

2
9

8
4

2
8

8
5

6
6

7
1

7
5

9
5

5
6

9
5

9
6

1
6

Se
le

ct
io

n
of

pa
re

nt
s

Fo
r

re
co

m
bi

na
tio

n
8

3
5

3
6

6
4

4
8

3
5

3

2
9

8
4

6
6

7
1

6
6

7
1

5
6

9
5

9
6

1
6

9
6

1
6

Po
pu

la
tio

n
A

ft
er

cr
os

so
ve

r
8

3
4

4
6

6
5

3
8

3
5

3

2
9

8
1

6
6

7
4

6
6

7
1

5
6

9
6

9
6

1
5

9
6

1
6

Po
pu

la
tio

n
A

ft
er

m
ut

at
io

n
(g

en
es

to
be

ro
un

de
d

of
f)

8.
0

3.
0

5.
0

4.
0

6.
0

5.
8

4.
1

3.
0

8.
0

3.
0

5.
0

3.
0

2.
0

9.
0

8.
0

1.
0

6.
1

6.
0

7.
0

3.
9

6.
0

6.
0

7.
0

1.
0

5.
0

6.
0

9.
0

5.
0

9.
0

6.
0

2.
1

6.
0

7.
8

6.
0

1.
0

6.
0

Po
pu

la
tio

n
af

te
r

re
pl

ac
in

g
w

ea
k

pa
re

nt
s

w
ith

st
ro

ng
O

ff
sp

ri
ng

8
4

7
5

8
3

5
4

6
6

4
4

2
9

8
4

6
6

7
4

2
8

8
5

7
5

9
5

5
6

9
5

9
6

2
6

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 9

Fig. 3 Generation number versus fitness of globally best result for simple P3PGA example

N = 10 populations and NC = 20 candidate solutions. Our P3PGA results
were compared to results obtained from CEC-2014 for 16 other algorithms: the
United Multi-Operator Evolutionary Algorithms (UMOEAS) [20], LSHADE [21],
Differential Evolution with Replacement Strategy (RSDE) [22], Memetic Differ-
ential Evolution Based on Fitness Euclidean-Distance Ratio (FERDE) [23], Partial
Opposition-Based Adaptive Differential Evolution Algorithms (POBL_ADE) [24],
Differential Evolution strategy based on the Constraint of Fitness values clas-
sification (FCDE) [25], Mean-Variance Mapping Optimization (MVMO) [26],
RMA-LSCh-CMA [27], Bee-Inspired Algorithm for Optimization (OptBees) [28],
Simultaneous Optimistic Optimization (SOO) [29], SOO+ Bound Optimization BY
Quadratic Approximation (SOO + BOBYQA) [29], Fireworks Algorithm with Dif-
ferential Mutation (FWA-DM) [30], algorithm Based on Covariance Matrix Leaning
and Searching Preference (CMLSP) [31], Gaussian Adaptation Based Parameter
Adaptation for Differential Evolution (GaAPADE) [32], Non-Uniform Mapping in
Real-Coded Genetic Algorithms (NRGA) [33], and DE_b6e6rlwithrestart [34]. The

10 A. Singh et al.

MATLAB code for the compared algorithms and the link to algorithm performance
results may be obtained from http://www.ntu.edu.sg/home/EPNSugan/index_files/
CEC2014/CEC2014.htm. For P3PGA we conducted 20 trials for each of the 30
functions, and took the mean error of all 20 trials as the performance measure.

The performance of P3PGA along with 16 other algorithms is given in Table 6
(see Appendix 1). Results of the comparison between algorithms are summarized in
Table 7. P3PGA gave the unmatched best performance for 12 functions (f5, f9, f10,
f11, f14, f15, f16, f19, f21, f24, f25, and f27) (Table 8). For f3 the performance
of P3PGA was equaled by UMOEAS, RSDE, FCDE, DE_ b6e6rlwithrestart,
LSHADE, MVMO, FWA-DM, and GaAPADE algorithm; and for f8 P3PGA’s per-
formance was matched by UMOEAS, FERDE, DE_b6e6rlwithrestart, GaAPADE,
LSHADE, MVMO, OptBees, and RMA-LSCh-CMA. Altogether, P3PGA was the
top-ranked algorithm, while UMOEAS was second.

4 P3PGA for Minimal Cost Route Evaluation

A wireless mesh network (WMN) can be mathematically represented as a set of
“nodes” or points in the two-dimensional plane. These nodes represent the positions
of clients, routers, and gateways that receive and retransmit communications signals.
Naturally, the devices represented by nodes all have limited communication range.

Table 7 Comparative performance of P3PGA on CEC-2014 benchmarks

Algorithm Best (unmatched) Best (matched) Total best Rank

P3PGA 12 2 14 1
UMOEAS 1 8 9 2
LSHADE 2 4 6 3
DE_b6e6rlwithrestart 1 5 6 3
GaAPADE 1 4 5 4
SOO + BOBYQA 0 5 5 4
MVMO 1 3 4 5
RMA-LSCh-CMA 0 4 4 5
SOO 0 4 4 5
FCDE 0 3 3 6
RSDE 0 3 3 6
CMLSP 0 3 3 6
FERDE 0 2 2 7
POBL_ADE 1 0 1 8
FWA-DM 0 1 1 8
OptBees 0 1 1 8
NRGA 0 0 0 –

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/CEC2014.htm
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/CEC2014.htm

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 11

Table 8 Number of functions for which P3PGA gave the best performance

Functions for which P3PGA was a clear winner f5, f9, f10, f11, f14, f15, f16, f19, f21, f24,
f25, f27

Function for which P3PGA was a joint winner f3, f8

In order to send a signal from a source node to a destination node, a route (or
path) consisting of intermediate nodes must be found such that the signal from
the source node can be successively received and retransmitted until it reaches the
destination node. The process of determining the end-to-end route between a source
node and a destination node is referred to as “routing.” An optimal route will be
one that minimizes cost, where cost is defined in terms of a routing metric. There
are many possible routing metrics that appear in the literature, including minimum
hop count, per hop Round Trip Time (RTT) [35], Per-Hop Packet Pair Delay
(PktPair) [36], Expected Transmission Count (ETX) [37], Expected Transmission
Time (ETT), Weighted Cumulative ETT (WCETT) [38], Expected Transmission
on a Path (ETOP) [39], Effective Number of Transmission (ENT) and Modified
Expected Number of Transmissions (mETX) [40], Metric of Interference and
Channel Switching (MIC) [41], Bottleneck Link Capacity (BLC) path metric [42],
cross layer link quality and congestion aware (LQCA) metric [43], and interference
aware low overhead routing metric [44]. In this chapter, we use an integrated link
cost function to evaluate route cost: for details see [45].

The adapted P3PGA algorithm that was used for finding optimal routes for
WMNs is outlined in Algorithm 2 below. The algorithm follows all the steps of the
general P3PGA algorithm described in Algorithm 1 in the previous section. These
steps are described in more detail in the following paragraphs.

The first step in the algorithm is to determine initial populations of possible
routes. This is done by means of an adjacency matrix, which is a (number of nodes)
by (number of nodes) square matrix of 0’s and 1’s. The (i,j)th entry of the matrix is
1 if nodes i and j have a possible connection, and 0 otherwise. Using the adjacency
matrix a set of route populations is generated, where each population has the same
number of routes. These are the initial 2-parent populations. Next, we generate a 3-
parent population from each of the current 2-parent populations and combine these
two populations as in Algorithm 1. The new population is evolved from the old
population using the crossover approach as given in [46]. Each 3-parent population
is obtained by applying the following rules to all routes in the 2-parent population:

(a) Beginning with second node, check the location of the NDth node of the local
elite in the current path, where ND is defined so that nodes 2 . . . ND-1 of the
local elite are not in the current path, but ND is in the current path.

(b) If the NDth node lies in first half of the current path, then follow the steps as
given below:

12 A. Singh et al.

I. Retain nodes of current individual up to ND and call it partial route1.
II. From the elite extract all nodes from the node after “ND” to the terminal

node and call it partial route2.
III. Combine partial route1 and partial route2 to form a new path.

(c) If the “NDth” node of the local elite lies in the second half of the current path,
then follow the steps as given below:

I. Retain the local elite up to “ND” and call it partial route1.
II. From the current path extract all nodes from the node after “ND” to the

terminal node and call it partial route2.
III. Combine partial route1 and partial route2 to form a new route.

For example, in a WMN, let node number 1 represent the source node and
node number 10 represent the terminal node. Suppose that the following two-parent
population of routes exists between source and terminal node:

2-parent population 1 : [1 4 5 8 9 10; 1 3 2 7 12 8 11 9 10; 1 6 7 4 13 12 5 9 10]

In this population the local elite (shortest path) is: 1 4 5 8 9 10
Since the local elite is the fittest route (minimal cost path as per hop count

method) we would not apply mitochondrial change to this elite route.
In the second route (2-parent route 2) we find that node 8 is the first node in the

route that is shared with the local elite. This node lies in the second half of 2-parent
route 2. Hence, we would retain the local elite up to node 8 and denote it as partial
route 1:

Partial route 1 : [1 4 5 8]

From the current route (2-parent route 2), we extract all nodes starting from the
node after 8 up to the terminal node, and denote it as partial route 2:

Partial route 2 : [11 9 10]

After combining partial route 1 and partial route 2 we get a new 3-parent route:

3-parent route 1 : [1 4 5 8 11 9 10]

Similarly, we make the mitochondrial change in 2-parent route 3 as follows. We
first identify that the first node in the route that is shared with the elite is node 4,
which lies in the first half of the current route. So we retain current route up to node
4 and denote it as partial route 1:

Partial route 1 : [1 6 7 4]

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 13

From the elite we extract all nodes after node 4 up to the terminal node, and
denote it as partial route 2.

Partial route 2 : [5 8 9 10]

After combining partial route 1 and partial route 2 we obtain a second 3-parent
route as follows:

3-parent route 2 : [1 6 7 4 5 8 9 10]

We combine the 2-parent routes with the newly evolved 3-parent routes into a
single combined population:

[1 4 5 8 9 10; 1 3 2 7 12 8 11 9 10; 1 6 7 4 13 12 5 9 10; 1 4 5 11 9 10;
1 6 7 4 5 8 9 10]

The algorithm then evaluates the fitness of all routes in this combined population,
dropping the weaker individuals and retaining the fittest N individuals, thus
maintaining a constant population size.

Once this is completed, the standard genetic processes of crossover and mutation
can be performed just as demonstrated in Algorithm 1, to obtain optimal solutions
for all populations. The optimum of these local optima gives the current global
optimum, which may then be used to update the routing table entry for the given
source and destination node, so that subsequent data transfer between these two
nodes may take place on the minimal cost routes. Being parallel in nature the
convergence time of this algorithm is expected to be quite small.

5 Implementation and Performance of the Proposed
Approach

To evaluate the comparative performance of the proposed P3PGA-based minimal
cost route evaluation approach for WMNs, we implemented all the approaches in
MATLAB and simulated for 100, 500, 1000, 2000, and 2500 node client WMNs.
Parameters for the different WMNs are shown in Table 9. For each WMN, node
locations were randomly generated within the specified area. To evaluate the
performance of all approaches on 100, 500, 1000, and 2000 node client WMNs we
conducted 10 trial sets, one set for a given timing constraint. On 2500 node client
WMNs we considered 17 trial sets. For all networks, each trial set consists of 20
trials: to test algorithm performance in a dynamic environment, the node locations
were randomly regenerated for each trial. In total, 1340 trials were conducted.

14 A. Singh et al.

Algorithm 2: P3PGA approach for dynamic optimal cost route evaluation
Begin
/* Adjacency matrix: matrix of neighbor nodes of each node */
/* Variables:

pop_mat: Populations of routes;
path_mat: Matix whose rows are the routes in a given population;
NP: Number of populations,
N: Number of routes per population
Path_nodes: Number of nodes in a route.

*/
Calculate N routes using adjacency matrix.
Evaluate fitness of all routes in all populations.
Determine the local best routes �best(i), i = 1 . . . NP for all populations i.
Record the global best (gbest) route from amongst all the local best routes;
for Gen = 1: Number of Generations do

for pop = 1: NP do
/* 3 Parent Population generation starts */
3P_path = pop_mat(pop).path_mat
local_elite = �best(pop)

for i = 1:N do
SE = number of nodes in local_elite

if 3P_path(i) ! = local_elite then
for j = 2:SE-1 do

LOE = location of local_elite(j) in 3P_Path(i).
if LOE > 0

if LOE > path_mid then /* path_mid = half of ith path*/
partial_route1 = first j nodes of local_elite
partial_route2 = nodes from LOE+1 to target node in 3P_path(i)

else
partial_route1 = first LOE nodes of 3P_path(i)
partial_route2 = nodes from j + 1 to target node in local_elite

end if
new_3P_path = concatenation of partial_route1 and partial_route2
Append new_3P_path to 3P_path
Break

end if
end for (j)

end if
end for (i) /* 3 Parent Population generation Ends */
/* Generation of 2-parent population from 3-parent population starts */
Evaluate fitness of all paths in 3P_path, sort from best to worst and select the N best paths
Select the fit paths for recombining/breeding;
With high probability recombine parents/perform cross-over.
With low probability mutate paths.
Evaluate fitness and select local_best.
Replace weak paths by stronger paths keeping the path_mat size fixed at N;
pop_mat(pop).path_mat = 3P_Path;

end for (pop) /*Generation of 2 Parent Population from 3 Parent Population Ends */
From amongst the NP local best candidates select the global best candidate gbest;

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 15

/*move all routes of all populations towards global best*/
for i = 1:NP do
for j = 1:N do

for k = 1:Path_nodes(j) do
With a given probability replace kth node of jth route with a node of gbest using

combination operation.
end for (k)

end for (j)
end for (i)
end for (gen)

Table 9 Architectural details of client WMNs used in simulations

No. of nodes Area (m2) Radio range Timing constraint (in seconds)

100 500 × 500 150 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
500 500 × 500 150 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0
1000 1000 × 1000 250 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0
2000 2000 × 2000 250 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5
2500 2000 × 2000 250 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5,

7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0

5.1 Comparative Performance of 100 Node Client WMNs

For 100 node client WMNs we evaluated the performance of nine approaches.
The unmatched performances of all the nine approaches are shown in Table 10
and Fig. 4. Table 10 shows the total performance (matched and unmatched) of
nine approaches. From the results, we observe that ACO and DSR are unreliable
protocols for the given network scenarios because most of the time these protocols
failed to discover any feasible routes between source-terminal pair. Being a
proactive approach, the BAT approach successfully discovered feasible routes but
failed to produce an unmatched optimal cost route in any of the trials.

Table 10 shows that for the timing constraint of 0.1 second, AODV produced a
minimum cost route 7 + 5 = 12 times, where the first operand (7) indicates that 7
times AODV generated an unmatched optimal cost route, and the second operand
(5) indicates that 5 times other algorithms obtained the same minimum cost (in this
case, the other algorithms are GA, BBBC, FA, and P3PGA). The second and third
place algorithms were BBBC (5 + 5 = 10 times) and P3PGA (3 + 5 = 8 times).

For the timing limit of 0.2 second, P3PGA produced minimum cost route
8 + 2 = 10 times, AODV 6 + 2 = 8 times, BBBC 3 + 2 = 5 times, and BBO
produced minimum cost route 1 + 2 = 3 times. Figure 4 shows that for 100
node networks and for timing constraints less than 0.5 s (except 0.2 s) AODV
performs better than all other algorithms. For timing constraint of 0.5 and 0.6 s
the performance of GA is best. For timing constraint of 0.7 s BBBC and P3PGA

16 A. Singh et al.

Table 10 Comparative performance of P3PGA on 100 node client WMNs

Timing constraints

Algorithm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AODV 7 + 5 6 + 2 5 + 9 5 + 5 1 + 9 2 + 10 2 + 11 2 + 10 4 + 0 3 + 9
DSR 16

FAIL
17
FAIL

7
FAIL

15
FAIL

1 + 4
FAIL

10
FAIL

FAIL 4
FAIL
+2

12
FAIL

9
FAIL

ACO 19
FAIL

12
FAIL

16
FAIL

13
FAIL

8
FAIL

2
FAIL

5
FAIL

3
FAIL

5
FAIL

11
FAIL

GA 0 + 5 0 + 2 0 + 9 2 + 5 3 + 12 4 + 10 1 + 11 1 + 10 1 + 1 2 + 9
BBO 0 + 1 1 + 2 0 + 2 0 + 5 1 + 0 0 + 10 1 + 0 0 + 10 1 + 0 0 + 9
BBBC 5 + 5 3 + 2 2 + 9 4 + 5 1 + 9 1 + 10 3 + 11 1 + 10 3 + 1 1 + 9
FA 0 + 5 0 + 1 0 + 9 1 + 1 1 + 9 1 + 10 0 + 9 0 + 10 2 + 1 0 + 9
P3PGA 3 + 5 8 + 2 4 + 9 3 + 5 2 + 12 2 + 10 3 + 11 4 + 10 7 + 1 5 + 9
BAT 0 + 1 0 + 0 0 + 2 0 + 0 1 + 0 0 + 10 0 + 5 0 + 10 0 + 3 0 + 6

0

1

2

3

4

5

6

7

8

0.80.70.60.50.40.30.20.1 0.9 1

Timing Constraints Vs Best Performance Frequency
(Total number of trials in a set = 20)

Number of Nodes : 100, Area : 500m × 500m

GA P3PGA AODV BBO BBBC FA

Fig. 4 Comparative unmatched best performance of 100 node client WMNs

both give best performance. As the timing constraint is further increased, more
computing time is allocated to the P3PGA algorithm, so that results improve
with increasing timing constraint. In terms of producing optimal cost routes, for
timing constraints of 0.2, 0.8, 0.9, and 1.0 s, P3PGA algorithm outscores all other
algorithms.

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 17

5.2 Comparative Performance of 500 Node Client WMNs

For 500 node client WMNs we evaluated the performance of all given 9 optimal
route evaluation approaches. The performance results of the all approaches are given
in Table 11 and Fig. 5. Figure 5 shows the unmatched performance of all nine
approaches and Table 11 shows the total performance of all considered approaches.
From results we observe that on the given WMN scenario up to 3.5 s timing
constraints the AODV routing protocol outperforms all its competitors. But after

Table 11 Comparative performance of P3PGA on 500 node client WMNs

Timing constraints

Algorithm 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
AODV 16 10+ 1FAIL+ 5 15 14 9 19 11 6 10 4
DSR – – – – – – – – – –
ACO – – – – – – – – – –
GA 0 0 + 5 1 + 1 0 4 + 1 0 0 1 + 2 0 2
BBO 0 0 + 5 0 0 0 0 0 1 + 2 0 1
BBBC 0 1 + 5 1 2 4 1 2 1 + 2 0 3
FA 0 1 + 5 0 1 0 0 1 0 + 2 0 0
BAT 0 0 + 5 0 0 0 0 0 0 + 2 0 0
P3PGA 4 3 + 5 2 + 1 3 2 + 1 0 6 9 + 2 10 10

“–” means failed to produce route in any of the trials

0
2
4
6
8

10
12
14
16
18
20

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Be
st

 P
er

fo
rm

an
ce

 F
re

qu
en

cy

Timing Constraints

Timing Constraints Vs Best Performance Frequency
(Total number of trials in a set = 20)

Number of Nodes : 500, Area : 500m×500m GA
P3PGA
AODV
BBO
BBBC
FA

Fig. 5 Comparative unmatched best performance of 500 node client WMNs for different timing
constraints

18 A. Singh et al.

3.5 s all other approaches also started to perform. On the timing constraint of 4.0 s
P3PGA produced minimum cost route 9 + 2 = 11 times, AODV 6 times, BBBC
1 + 2 = 3 times, Firefly 1 + 2 = 3 times, and GA produced minimum cost route
1 + 2 = 3 times only. With 5 s timing limit P3PGA generated minimum cost route
10 times, AODV 4 times, GA 2 times, BBO 1 time, and BBBC produced minimum
cost route 3 times.

5.3 Comparative Performance of 1000 Node Client WMNs

Table 12 and Fig. 6 present the simulated performance for 1000 node client WMNs.
From the performance we observe that DSR and ACO approaches failed to discover
the route for the given timing constraint in any of the trial sets. Up to 2 s timing
limits AODV also failed to discover any of the routes. As shown in Fig. 6, P3PGA
outperforms other 8 approaches for the timing constraints of 0.5, 1.0, 1.5, 2.5,
and 3.0 s. With timing constraint of 2.0 s P3PGA and BBBC gave the same best
performance. Further, we also observed that after the 3.0 s timing constraint the
performance of AODV improved considerably to the extent that it outperformed
all other 8 approaches. Hence, for the given WMN scenarios AODV is unsuitable
approach if the network size is 1000 node with allowable computing time less than
2 s. If timing constraint could be relaxed beyond 3 s, then the AODV gives the best
performance.

5.4 Comparative Performance of 2000 Node Client WMNs

We simulated the performance of all the nine approaches on the timing constraints
of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, and 5.5 s. The performance results

Table 12 Comparative performance of P3PGA on 1000 node client WMNs

Timing constraints

Algorithm 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 4.5 5
AODV – – – – 5 6 8 10 14 19
DSR – – – – – – – – – –
ACO – – – – – – – – – –
GA 3 2 3 2 2 1 2 0 1 0
BBO 0 0 0 0 0 0 0 0 0 0
BBBC 7 8 6 8 4 3 3 4 1 0
FA 1 0 4 2 1 1 0 0 1 0
BAT 0 0 0 0 0 0 0 0 0 0
P3PGA 9 10 7 8 8 9 7 6 3 1

“–” means failed to produce route in any of the trials

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 19

0

2

4

6

8

10

12

14

16

18

20

21.510.5 2.5 3 3.5 4 4.5 5

Be
st

 P
er

fo
rm

an
ce

 F
re

qu
en

cy

Timing Constraints

Timing Constraints Vs Best Performance Frequency
(Total number of trials in a set = 20)

Number of Nodes : 1000, Area : 500m × 500m

GA P3PGA AODV BBO BBBC FA

Fig. 6 Comparative performance of 1000 node client WMNs

0
2
4
6
8

10
12
14
16

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5Be
st

 P
er

fo
rm

an
ce

 F
re

qu
en

cy

Timing Constraints

Timing Constraints Vs Best Performance Frequency
(Total number of trials in a set = 20)

Number of Nodes : 2000, Area : 2000m×2000m

GA

P3PGA

AODV

BBO

BBBC

FA

Fig. 7 Comparative unmatched best performance of 2000 node client WMNs

of all approaches are shown in Fig. 7 and Table 13. The results clearly indicate
the supremacy of P3PGA approach over all other approaches for every timing
constraint.

20 A. Singh et al.

Table 13 Comparative performance of P3PGA on 2000 node client WMNs

Timing constraints

Algorithm 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
AODV – – – – – – 0 3 4 1
DSR – – – – – – – – – –
ACO – – – – – – – – – –
GA 1 3 4 3 4 3 3 2 1 3
BBO 0 0 0 0 0 0 0 0 0 0
BBBC 5 2 2 4 6 4 3 0 1 1
FA 0 0 1 1 0 0 2 1 0 0
BAT 0 0 0 0 0 0 0 0 0 0
P3PGA 14 15 13 12 10 13 12 14 14 15

“–” means failed to produce route in any of the trials

Table 14 Comparative performance of P3PGA on 2500 node client WMNs

Timing constraints

Algo 2 2.5 3 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5 10
AODV – – – – – – – – – – – – – – – – –
DSR – – – – – – – – – – – – – – – – –
ACO – – – – – – – – – – – – – – – – –
GA 3 7 6 8 3 5 6 6 2 4 3 3 4 2 3 2 2
BBO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BBBC 5 3 4 1 3 3 3 4 5 3 5 4 6 6 2 4 4
FA 0 1 2 1 0 2 0 1 1 1 1 2 2 1 0 1 2
BAT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P3PGA 12 9 8 10 14 10 11 9 12 12 11 11 8 11 15 13 12

“–” means failed to produce route in any of the trials

5.5 Comparative Performance of 2500 Node Client WMNs

We also evaluated the performance of all nine approaches on 2500 node client
WMNs. To test the performance of all approaches we considered 17 trial sets with
each set consisting of 20 trials. Here we have considered more trial sets as compared
to the previous network scenarios because the network is larger and here is the need
to evaluate the performance of the network on larger timing constraints also. The
simulation results of all approaches are shown in Table 14 and Fig. 8. From the
results we observe that the P3PGA approach outperforms all other approaches on
all the timing constraints. We also observed that AODV, DSR, and ACO approaches
fail to discover the route in any of the trial set. Table 15 shows that out of 340 trials,
P3PGA has given the best unmatched performance 188 times, BBBC 65 times, and
GA produced the best performance 69 times.

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 21

0
2
4
6
8

10
12
14
16

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Be
st

 P
er

fo
rm

an
ce

 F
re

qu
en

cy

Timing Constraints

Timing Constraints Vs Best Performance Frequency Plot
(Total number of trials in a set = 20)

Number of Nodes : 2500, Area : 2000m×2000m

GA P3PGA BBBC FA

Fig. 8 Comparative performance of 2500 node client WMNs

Table 15 Overall comparative performance of P3PGA

Timing constraints
Number of
nodes Trials P3PGA FA BBBC BAT AODV BBO GA DSR ACO ALL EQUALS

100 200 41 5 24 0 37 1 14 2 0 76
500 200 49 3 15 0 114 2 7 0 0 10
1000 200 68 10 44 0 62 0 16 0 0 0
2000 200 132 5 28 0 8 0 27 0 0 0
2500 340 188 18 65 0 0 0 69 0 0 0
Total 1140 478 41 176 0 221 3 133 2 0 86

5.6 Overall Performance Considering all Networks

In order to evaluate the performance of all 9 approaches, overall we conducted total
of 1140 trials. The overall performance of the 9 approaches are given in Fig. 9 and
Table 15. From the simulation results, we observe that out of total number of 1140
trials P3PGA provided the unmatched best optimal cost route 478 times, AODV 221
times, BBBC 176 times, GA 133 times, Firefly 41 times, BBO 3 times, and DSR
produced optimal cost routes only 2 times. 86 times multiple approaches produced
the same best performance. Also, the ACO and BAT approaches failed to produce
the optimal cost route in any of the trial sets. Figure 9 shows that as the size of the
WMN becomes 1000 node P3PGA algorithm gives best performance but the margin
is small. As the WMN size increases to 2000 nodes and above, P3PGA gives the best
performance with a very large performance lead over its counterparts.

22 A. Singh et al.

0
20
40
60
80

100
120
140
160
180
200

100 500 1000 2000 2500

B
es

t P
er

fo
rm

an
ce

 F
re

qu
en

cy
 P

lo
t

Number of Nodes

Number of Nodes Vs Best Performance Frequency Plot

P3PGA AODV BBBC GA FA BBO DSR

Fig. 9 Comparative performance of all approaches

6 Conclusions

This chapter proposes a new nature inspired, P3PGA-based multi-population global
optimization algorithm. The proposed algorithm extended the 3PGA approach by
adding the parallel evolution behavior. We implemented the proposed algorithm
in MATLAB, simulated its performance on 30 benchmark functions from CEC-
2014, and compared its performance with 16 other algorithms. P3PGA gave the
best unmatched performance for 12 functions out of the 30 benchmark functions.
On two other functions the best performance of P3PGA was equaled by some of
the other algorithms. Hence, overall out of the 30 functions of CEC-2014 test suite,
P3PGA gave the best performance on 14 functions. The performance of P3PGA was
followed by UMOEAS, which gave unmatched best performance on one function
and equaled best performance on eight functions totaling nine functions with best
performance. LSHADE algorithm followed on the third place.

This chapter also proposed a P3PGA-based new optimal cost or near shortest
route evaluation approach for WMNs. The approach was compared with eight other
approaches, namely AODV, DSR, BBBC, ACO, BBO, BAT, GA, and Firefly-based
optimal cost route evaluation approaches. From the simulation results we conclude
that the proposed approach is very suitable for large WMNs with sizes greater than
1000 nodes.

The authors further suggest that the proposed P3PGA algorithm can be used in
other applications such as for rule base extraction from numerical data for the fuzzy
logic-based systems and for identification of fuzzy and ANN models from the given
training data set.

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 23

A
pp

en
di

x
1:

A
lg

or
it

hm
P

er
fo

rm
an

ce
R

es
ul

ts

Ta
bl

e
6

C
E

C
-2

01
4

B
en

ch
m

ar
k

pe
rf

or
m

an
ce

of
va

ri
ou

s
al

go
ri

th
m

s

A
L

G
O

R
IT

H
M

f1
f2

f3
f4

f5
f6

f7
f8

f9
f1

0

N
R

G
A

2.
79

0E
+0

4
9.

14
7E

+0
2

1.
51

7E
+0

3
1.

54
4E

+0
1

1.
96

1E
+0

1
2.

45
0E

+0
0

2.
03

0E
–0

1
5.

58
5E

+0
0

8.
69

4E
+0

0
1.

19
4E

+0
2

FW
A

-D
M

5.
01

3E
+0

3
1.

34
2E

–0
4

0.
00

0E
+0

0
1.

41
3E

+0
0

2.
00

3E
+0

1
7.

06
3E

–0
1

9.
48

0E
–0

2
2.

53
6E

–0
1

6.
00

8E
+0

0
1.

59
3E

+0
0

U
M

O
E

A
S

0.
00

0E
+0

0
0.

00
0E

+0
0

0.
00

0E
+0

0
0.

00
0E

+0
0

1.
68

3E
+0

1
0.

00
0E

+0
0

0.
00

0E
+0

0
0.

00
0E

+0
0

2.
72

5E
+0

0
3.

73
9E

–0
1

SO
O

+
B

O
B

Y
Q

A
4.

57
0E

+0
3

3.
60

0E
–0

2
5.

84
3E

+0
3

0.
00

0E
+0

0
2.

00
0E

+0
1

2.
00

0E
–0

3
4.

90
0E

–0
2

1.
89

0E
+0

1
8.

95
5E

+0
0

1.
30

4E
+0

2
SO

O
8.

81
1E

+0
6

6.
64

3E
+0

0
6.

64
4E

+0
3

6.
78

0E
–0

1
2.

00
0E

+0
1

2.
00

0E
–0

3
4.

90
0E

–0
2

1.
89

0E
+0

1
8.

95
5E

+0
0

1.
30

4E
+0

2
R

SD
E

0.
00

0E
+0

0
0.

00
0E

+0
0

0.
00

0E
+0

0
2.

81
1E

+0
0

1.
92

2E
+0

1
5.

29
1E

–0
2

3.
55

0E
–0

2
6.

60
8E

–0
1

8.
52

2E
+0

0
6.

84
4E

+0
1

PO
B

L
_A

D
E

1.
62

0E
+0

4
2.

27
0E

+0
3

5.
74

0E
–0

4
2.

55
0E

+0
1

1.
91

0E
+0

1
1.

04
0E

+0
0

1.
63

0E
–0

1
7.

81
0E

+0
0

7.
63

0E
+0

0
1.

53
0E

+0
2

FE
R

D
E

2.
36

8E
+0

0
6.

28
8E

–0
5

1.
34

6E
–0

3
0.

00
0E

+0
0

1.
90

6E
+0

1
8.

89
0E

–0
1

1.
88

3E
–0

2
0.

00
0E

+0
0

5.
63

8E
+0

0
3.

67
4E

–0
2

FC
D

E
0.

00
0E

+0
0

0.
00

0E
+0

0
0.

00
0E

+0
0

1.
84

1E
+0

1
2.

03
3E

+0
1

3.
56

6E
+0

0
1.

96
1E

–0
1

1.
60

7E
+0

1
2.

09
9E

+0
1

2.
91

9E
+0

2
D

E
_b

6e
6r

lw
ith

re
st

ar
t

0.
00

0E
+0

0
0.

00
0E

+0
0

0.
00

0E
+0

0
1.

12
5E

+0
0

1.
84

5E
+0

1
0.

00
0E

+0
0

1.
68

8E
–0

2
0.

00
0E

+0
0

4.
89

5E
+0

0
1.

22
5E

–0
3

C
M

L
SP

1.
76

9E
–0

7
0.

00
0E

+0
0

1.
05

6E
–0

4
0.

00
0E

+0
0

1.
68

6E
+0

1
6.

20
1E

–0
2

0.
00

0E
+0

0
2.

07
1E

+0
0

1.
65

9E
+0

0
1.

96
1E

+0
2

G
aA

PA
D

E
0.

00
0E

+0
0

0.
00

0E
+0

0
0.

00
0E

+0
0

3.
06

9E
+0

1
1.

96
8E

+0
1

1.
48

4E
–0

1
3.

16
3E

–0
3

0.
00

0E
+0

0
3.

37
9E

+0
0

1.
51

8E
–0

1
O

pt
B

ee
s

7.
84

2E
+0

2
9.

88
3E

–0
3

9.
21

3E
–0

1
2.

69
1E

+0
0

2.
00

0E
+0

1
3.

01
7E

+0
0

1.
56

2E
–0

1
0.

00
0E

+0
0

2.
08

4E
+0

1
2.

19
2E

+0
2

L
SH

A
D

E
0.

00
0E

+0
0

0.
00

0E
+0

0
0.

00
0E

+0
0

2.
94

1E
+0

1
1.

41
5E

+0
1

1.
75

4E
–0

2
3.

04
3E

–0
3

0.
00

0E
+0

0
2.

34
5E

+0
0

8.
57

2E
–0

3
R

M
A

-L
SC

h-
C

M
A

0.
00

0E
+0

0
0.

00
0E

+0
0

1.
02

5E
–0

7
8.

50
1E

–0
2

1.
36

5E
+0

1
1.

47
9E

–0
4

0.
00

0E
+0

0
0.

00
0E

+0
0

3.
31

7E
+0

0
7.

67
8E

+0
0

M
V

M
O

4.
95

4E
–0

4
0.

00
0E

+0
0

0.
00

0E
+0

0
9.

54
6E

+0
0

1.
65

8E
+0

1
3.

44
5E

–0
3

1.
85

8E
–0

2
0.

00
0E

+0
0

3.
49

2E
+0

0
2.

13
7E

+0
0

P3
PG

A
1.

76
E

+0
1

1.
48

0E
+0

1
0.

00
0E

+0
0

5.
71

6E
–0

2
0.

00
0E

+0
0

7.
23

6E
–0

1
9.

85
5E

–0
2

0.
00

0E
+0

0
1.

16
1E

+0
0

0.
00

0E
+0

0

(c
on

tin
ue

d)

24 A. Singh et al.

Ta
bl

e
6

(c
on

tin
ue

d

A
L

G
O

R
IT

H
M

f1
1

f1
2

f1
3

f1
4

f1
5

f1
6

f1
7

f1
8

f1
9

f2
0

N
R

G
A

5.
75

9E
+0

2
1.

24
2E

–0
1

1.
57

7E
–0

1
2.

53
7E

–0
1

1.
02

2E
+0

0
2.

74
7E

+0
0

1.
60

7E
+0

4
7.

42
0E

+0
3

2.
09

3E
+0

0
1.

71
9E

+0
3

FW
A

-D
M

3.
72

2E
+0

2
4.

24
9E

–0
2

1.
20

6E
–0

1
2.

13
9E

–0
1

7.
74

8E
–0

1
1.

75
7E

+0
0

2.
54

5E
+0

2
2.

51
6E

+0
1

1.
29

9E
+0

0
1.

33
7E

+0
1

U
M

O
E

A
S

1.
44

0E
+0

2
0.

00
0E

+0
0

9.
43

6E
–0

3
1.

10
0E

–0
1

6.
66

7E
–0

1
1.

53
0E

+0
0

8.
47

7E
+0

0
7.

84
0E

–0
1

2.
00

0E
–0

1
3.

70
6E

–0
1

SO
O

+
B

O
B

Y
Q

A
3.

49
1E

+0
2

0.
00

0E
+0

0
3.

00
0E

–0
2

1.
30

0E
–0

1
4.

20
0E

–0
1

2.
52

0E
+0

0
4.

22
6E

+0
2

3.
95

2E
+0

3
5.

50
0E

–0
1

6.
92

5E
+0

3
SO

O
3.

49
1E

+0
2

0.
00

0E
+0

0
3.

00
0E

–0
2

1.
30

0E
–0

1
4.

40
0E

–0
1

2.
52

0E
+0

0
3.

12
3E

+0
6

1.
29

3E
+0

4
5.

50
0E

–0
1

9.
36

4E
+0

3
R

SD
E

2.
90

6E
+0

2
2.

20
6E

–0
1

1.
27

7E
–0

1
1.

36
0E

–0
1

9.
83

0E
–0

1
2.

23
3E

+0
0

4.
77

0E
+0

1
1.

99
6E

+0
0

1.
03

0E
+0

0
7.

21
5E

–0
1

PO
B

L
A

D
E

2.
08

0E
+0

2
2.

69
0E

–0
1

1.
31

0E
–0

1
2.

60
0E

–0
1

7.
12

0E
–0

1
1.

41
0E

+0
0

2.
57

0E
+0

2
3.

32
0E

+0
1

2.
09

0E
+0

0
1.

26
0E

+0
1

FE
R

D
E

7.
55

4E
+0

1
1.

22
7E

–0
1

1.
15

8E
–0

1
9.

35
9E

–0
2

6.
72

5E
–0

1
1.

53
0E

+0
0

8.
23

0
+

00
2.

73
0E

+0
0

5.
09

2E
–0

1
1.

70
4E

+0
0

FC
D

E
7.

55
4E

+0
1

1.
22

7E
–0

1
1.

15
8E

–0
1

9.
35

9E
–0

2
6.

72
5E

–0
1

1.
53

0E
+0

0
8.

23
0E

+0
0

2.
73

0E
+0

0
5.

09
2E

–0
1

1.
70

4E
+0

0
D

E
_b

6e
6r

lw
ith

re
st

ar
t

1.
96

5E
+0

2
2.

92
9E

–0
1

1.
28

1E
–0

1
1.

11
3E

–0
1

8.
31

7E
–0

1
1.

87
2E

+0
0

1.
39

8E
+0

0
6.

20
7E

–0
1

1.
41

8E
–0

1
5.

59
3E

–0
2

C
M

L
SP

1.
53

0E
+0

2
3.

02
7E

–0
2

2.
72

5E
–0

2
1.

89
2E

–0
1

8.
96

6E
–0

1
1.

55
5E

+0
0

3.
12

7E
+0

2
3.

08
5E

+0
1

1.
25

1E
+0

0
1.

99
4E

+0
1

G
aA

PA
D

E
1.

83
1E

+0
2

1.
40

2E
–0

1
6.

00
9E

–0
2

9.
42

4E
–0

2
6.

05
7E

–0
1

1.
97

7E
+0

0
9.

91
4E

+0
0

2.
23

0E
–0

1
2.

56
6E

–0
1

4.
31

6E
–0

1
O

pt
B

ee
s

3.
92

7E
+0

2
1.

30
4E

–0
1

4.
16

2E
–0

1
3.

68
7E

–0
1

2.
43

9E
+0

0
2.

64
0E

+0
0

6.
84

4E
+0

2
3.

35
0E

+0
1

9.
33

0–
01

8.
95

8E
+0

0
L

SH
A

D
E

3.
20

6E
+0

1
6.

81
7E

–0
2

5.
15

6E
–0

2
8.

13
6E

–0
2

3.
66

1E
–0

1
1.

24
1E

+0
0

9.
76

7E
–0

1
2.

44
1E

–0
1

7.
73

0E
–0

2
1.

84
9E

–0
1

R
M

A
-L

SC
h-

C
M

A
2.

01
3E

+0
1

1.
64

6E
–0

2
3.

29
2E

–0
2

1.
26

5E
–0

1
4.

71
5E

–0
1

1.
05

4E
+0

0
7.

83
4E

+0
1

5.
22

1E
+0

0
7.

66
1E

–0
2

8.
05

7E
+0

0
M

V
M

O
9.

62
8E

+0
1

4.
22

3E
–0

2
3.

55
3E

–0
2

8.
90

6E
–0

2
4.

34
6E

–0
1

1.
44

9E
+0

0
9.

35
7E

+0
0

7.
82

6E
–0

1
1.

58
3E

–0
1

3.
12

6E
–0

1
P3

PG
A

3.
55

5E
+0

0
1.

36
5E

–0
6

3.
87

6E
–0

2
2.

53
7E

–0
2

3.
29

4E
–0

1
1.

66
2E

–0
1

4.
82

4E
+0

1
6.

32
6E

+0
0

4.
89

2E
–0

2
7.

68
4E

–0
2

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 25

A
L

G
O

R
IT

H
M

f2
1

f2
2

f2
3

f2
4

f2
5

f2
6

f2
7

f2
8

f2
9

f3
0

N
R

G
A

48
23

.4
27

18
2

37
.5

66
58

08
2

32
9.

45
74

87
2

13
0.

76
41

47
6

18
3.

67
82

26
9

10
0.

13
66

28
0.

77
75

66
6

47
7.

14
73

82
6

41
3.

29
09

87
4

17
27

.5
37

69
5

FW
A

-D
M

9.
46

4E
+0

1
3.

40
9E

+0
1

3.
29

5E
+0

2
1.

27
4E

+0
2

1.
78

7E
+0

2
10

0.
13

84
3.

21
3E

+0
2

3.
47

2E
+0

2
2.

11
7E

+0
2

3.
94

3E
+0

2
U

M
O

E
A

S
5.

40
4E

–0
1

2.
44

8E
–0

1
3.

29
5E

+0
2

1.
08

3E
+0

2
1.

26
0E

+0
2

10
0.

01
40

2.
54

8E
+0

1
3.

12
9E

+0
2

1.
95

5E
+0

2
2.

33
9E

+0
2

SO
O

+
B

O
B

Y
Q

A
1.

94
0E

+0
3

1.
26

5E
+0

2
2.

00
E
+0

2
1.

15
7E

+0
2

1.
39

1E
+0

2
10

0.
05

00
2.

00
0E

+0
2

2.
00

0E
+0

2
2.

00
0E

+0
2

2.
00

0E
+0

2
SO

O
2.

46
9E

+0
4

1.
26

5E
+0

2
2.

00
0E

+0
2

1.
15

7E
+0

2
1.

45
2E

+0
2

10
0.

05
00

2.
00

0E
+0

2
2.

00
0E

+0
2

2.
00

0E
+0

2
2.

00
0E

+0
2

R
SD

E
1.

20
9E

+0
0

1.
16

5E
+0

1
3.

29
5E

+0
2

1.
19

1E
+0

2
1.

29
5E

+0
2

10
0.

12
91

9.
12

5E
+0

1
3.

86
9E

+0
2

2.
12

6E
+0

2
5.

05
2E

+0
2

PO
B

L
_A

D
E

1.
03

0E
+0

2
3.

00
0E

+0
1

3.
29

0E
+0

2
1.

24
0E

+0
2

1.
86

0E
+0

2
10

0.
00

00
2.

56
0E

+0
2

4.
23

0E
+0

2
3.

55
0E

+0
5

6.
38

0E
+0

2
FE

R
D

E
8.

54
3E

+0
0

3.
24

2E
+0

0
3.

29
5E

+0
2

1.
14

6E
+0

2
1.

36
3E

+0
2

10
0.

09
01

3.
66

4E
+0

2
3.

66
4E

+0
2

3.
18

2E
+0

2
5.

34
8E

+0
2

FC
D

E
1.

48
1E

+0
2

2.
75

0E
+0

1
3.

29
5E

+0
2

1.
36

9E
+0

2
1.

84
0E

+0
2

10
0.

34
61

4.
75

2E
+0

1
4.

56
9E

+0
2

3.
40

5E
+0

4
8.

66
7E

+0
2

D
E

_b
6e

6r
lw

ith
re

st
ar

t
7.

86
7E

–0
1

1.
54

1E
–0

1
3.

29
5E

+0
2

1.
12

2E
+0

2
1.

29
0E

+0
2

10
0.

11
70

6.
16

1E
+0

1
3.

63
4E

+0
2

2.
17

8E
+0

2
4.

67
3E

+0
2

C
M

L
SP

3.
63

9E
+0

1
8.

95
3E

+0
1

2.
01

8E
+0

2
1.

09
9E

+0
2

1.
27

5E
+0

2
10

0.
01

94
4.

11
3E

+0
1

2.
80

3E
+0

2
2.

00
0E

+0
2

2.
16

4E
+0

2
G

aA
PA

D
E

5.
08

6E
–0

1
3.

24
7E

+0
0

3.
29

5E
+0

2
1.

08
9E

+0
2

1.
63

6E
+0

2
10

0.
06

88
8.

96
9E

+0
1

3.
83

2E
+0

2
2.

22
3E

+0
2

4.
67

2E
+0

2
O

pt
B

ee
s

5.
70

6E
+0

1
1.

70
2E

+0
1

2.
72

4E
+0

2
1.

37
4E

+0
2

1.
46

0E
+0

2
10

0.
39

64
7.

42
3E

+0
0

3.
06

7E
+0

2
2.

20
0E

+0
2

3.
89

2E
+0

2
L

SH
A

D
E

4.
08

1E
–0

1
4.

41
0E

–0
2

3.
29

5E
+0

2
1.

07
5E

+0
2

1.
32

7E
+0

2
10

0.
05

00
5.

80
6E

+0
1

3.
80

8E
+0

2
2.

22
0E

+0
2

4.
64

9E
+0

2
R

M
A

-L
SC

h-
C

M
A

4.
92

9E
+0

1
8.

47
5E

+0
0

3.
29

5E
+0

2
1.

08
4E

+0
2

1.
75

1E
+0

2
10

0.
03

64
1.

84
8E

+0
2

3.
88

7E
+0

2
2.

27
1E

+0
2

5.
85

1E
+0

2

M
V

M
O

1.
93

5E
+0

0
2.

62
9E

–0
1

3.
29

5E
+0

2
1.

09
2E

+0
2

1.
16

1E
+0

2
10

0.
03

23
1.

72
0E

+0
1

3.
61

1E
+0

2
1.

81
4E

+0
2

4.
91

7E
+0

2
P3

PG
A

0.
21

29
59

78
3

0.
11

91
65

57
9

32
9.

45
74

74
7

10
6.

97
15

45
9

11
3.

04
68

50
7

10
0.

03
54

1.
26

86
68

55
35

6.
38

69
06

6
20

3.
27

02
66

9
49

2.
49

18
41

1

26 A. Singh et al.

References

1. D. Goldberg, Genetic Algorithms in Optimization, Search and Machine Learning (Addison-
Wesley, Reading, 1989)

2. B.S. Khera, P.A.P. Singh, Comparison of genetic algorithm, particle swarm optimization
and biogeography-based optimization for feature selection to classify clusters of micro
calcifications. J. Inst. Eng. (India): Series B 98(2), 189–202 (2017)

3. S. Suresh Optimized scheme for grid computations using genetic algorithms, Proceedings
of the International Conference on Internet Technologies & Applications, Wrexham, UK,
September 4–7, 2007

4. M. Melanie, S. Forrest, Genetic algorithms and artificial life. Artif. Life 1(3), 267–289 (1994)
5. J.H. Holland, Adaptation in Natural and Artificial Systems, Ph.D. Thesis (University of

Michigan Press, Ann Arbor, MI, 1975)
6. H. Mühlenbein and H. M. Voigt, Gene pool recombination in genetic algorithms, in Meta-

Heuristics: Theory and Applications, Springer US, pp. 53–62 (1996)
7. A. Eiben, C.H. Van Kemenade, Diagonal crossover in genetic algorithms for numerical

optimization. Control. Cybern. 26(3), 447–465 (1997)
8. A. Wu, P.W.M. Tsang, T.Y. Yuen, L.F. Yeung, Affine invariant object shape matching using

genetic algorithm with multi-parent orthogonal recombination and migrant principle. Appl.
Soft Comput. 9(1), 282–289 (2009)

9. A.E. Eiben, P.E. Raue, and Z. Ruttkay, Genetic algorithms with multi-parent recombination,
in International Conference on Evolutionary Computation The Third Conference on Parallel
Problem Solving from Nature Jerusalem, Israel, p. 78–87 (1994)

10. P. Amato, M. Tachibana, M. Sparman, S. Mitalipov, Three-parent in vitro fertilization: Gene
replacement for the prevention of inherited mitochondrial diseases. Fertil. Steril. 101(1), 31–35
(2014)

11. H. Fertilisation and E. Authority, (2014) Third scientific review of the safety and efficacy of
methods to avoid mitochondrial disease through assisted conception: 2014 update

12. J. Hamzelou, Everything you wanted to know about ‘3- parent’ babies. [Online]
(2016). Available: https://www.newscientist.com/article/2107451-everything-you-wanted-to-
know-about-3-parent-babies/

13. J. Hamzelou, Exclusive: Worlds first baby born with new 3 parent technique. [Online]
(2016). Available: https://www.newscientist.com/article/2107219-exclusive-worlds-first-baby-
born-with-new-3-parent-technique/

14. I.F. Akyildiz, X. Wang, W. Wang, Wireless mesh networks: A survey. Comput. Netw. 47(4),
445–487 (2005)

15. S. Amar, Some Nature Inspired Computing Approaches to Routing in Wireless Mesh Networks,
Ph.D. Thesis (Submitted to IKG Punjab Technical University, Jalandhar (India), 2017)

16. S. Amar, K. Shakti, S. Ajay, S.S. Walia, Three-parent GA: A global optimization algorithm. J.
Mult. Valued Log. Soft Comput. 32, 407–423 (2019)

17. T. Blickle and L. Thiele, A comparison of selection schemes used in genetic algorithms,
TIK Report No. 11, Computer Engineering and Communication Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH) Zurich, Switzerland, (1995)

18. J.E. Baker Adaptive selection methods for genetic algorithms, in Proceedings of International
Conference on Genetic Algorithms and their applications, p. 101–111 (1985)

19. J.E. Baker, Reducing bias and inefficiency in the selection algorithm. in Proceedings of the
Second International Conference on Genetic Algorithms, Vol. 206, p. 14–21 (1987)

20. S.M. Elsayed, R.A. Sarker, D.L. Essam and N.M. Hamza, Testing united multi-operator evo-
lutionary algorithms on the CEC2014 real-parameter numerical optimization, IEEE Congress
on Evolutionary Computation (CEC), IEEE, p. 1650–1657 (2014)

21. R. Tanabe and A.S. Fukunaga, (2014) Improving the search performance of SHADE using
linear population size reduction, IEEE Congress on Evolutionary Computation (CEC), p.
1658–1665

https://www.newscientist.com/article/
https://www.newscientist.com/article/2107219-exclusive-worlds-first-baby-born-with-new-3-parent-technique/

Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 27

22. C. Xu, H. Huang and S. Ye, A differential evolution with replacement strategy for real-
parameter numerical optimization. IEEE Congress on Evolutionary Computation (CEC), p.
1617–1624 (2014)

23. B.Y. Qu, J.J. Liang, J.M. Xiao and Z.G. Shang, Memetic differential evolution based on fitness
Euclidean-distance ratio, IEEE Congress on Evolutionary Computation (CEC), p. 2266–2273
(2014)

24. Z. Hu, Y. Bao and T. Xiong, Partial opposition-based adaptive differential evolution algorithms:
evaluation on the CEC 2014 benchmark set for real-parameter optimization”, IEEE Congress
on Evolutionary Computation (CEC), pp. 2259–2265 (2014)

25. Z. Li, Z. Shang, B.Y. Qu and J.J. Liang, Differential evolution strategy based on the constraint
of fitness values classification, IEEE Congress on Evolutionary Computation (CEC), p. 1454–
1460 (2014)

26. I. Erlich, J.L. Rueda, S. Wildenhues and F. Shewarega, Evaluating the mean-variance mapping
optimization on the IEEE-CEC 2014 test suite, IEEE Congress on Evolutionary Computation
(CEC), p. 1625–1632 (2014)

27. D. Molina, B. Lacroix and F. Herrera, Influence of regions on the memetic algorithm for the
CEC’2014 Special Session on real-parameter single objective optimization, IEEE Congress on
Evolutionary Computation (CEC), p. 1633–1640 (2014)

28. R.D. Maia, L.N. de Castro and W.M. Caminhas, Real-parameter optimization with OptBees,
IEEE Congress on Evolutionary Computation (CEC), p. 2649–2655 (2014)

29. P. Preux, R. Munos and M. Valko, Bandits attack function optimization, IEEE Congress on
Evolutionary Computation (CEC) (2014)

30. C. Yu, L. Kelley, S. Zheng and Y. Tan, Fireworks algorithm with differential mutation for
solving the CEC 2014 competition problems, IEEE Congress on Evolutionary Computation
(CEC), p. 3238–3245 (2014)

31. L. Chen, Z. Zheng, H.L. Liu and S. Xie An evolutionary algorithm based on covariance matrix
leaning and searching preference for solving CEC 2014 benchmark problems, IEEE Congress
on Evolutionary Computation (CEC), p. 2672–2677 (2014)

32. R. Mallipeddi, G. Wu, M. Lee and P.N. Suganthan, Gaussian adaptation based parameter
adaptation for differential evolution, IEEE Congress on Evolutionary Computation (CEC), p.
1760–1767 (2014)

33. D. Yashesh, K. Deb and S. Bandaru, Non-uniform mapping in real-coded genetic algorithms,
IEEE Congress on Evolutionary Computation (CEC), p. 2237–2244 (2014)

34. R. Poláková, J. Tvrdík and P. Bujok, Controlled restart in differential evolution applied to CEC
2014 benchmark functions. IEEE Congress on Evolutionary Computation (CEC), p. 2230–
2236 (2014)

35. A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, A multi radio communication protocol
for IEEE 802.11 wireless networks, Proceedings of International Conference on Broadcast
Networks (Broad Nets), San Jose, California, USA, October 25–29, p. 344–354 (2004)

36. R. Draves, J. Padhye, and B. Zill, Comparisons of routing metrics for static multi-hop wireless
networks, Proceedings of ACM Annual Conference of the Special Interest Group on Data
Communication (SIGCOMM), Portland, Oregon, USA, August 30–September 03, p. 133–144
(2004)

37. D.S.J. DeCouto, D. Aguayo, J. Bicket, R. Morris, A high throughput path metric for multihop
wireless routing, Proceedings of ACM Annual International Conference on Mobile Computing
and Networking (MOBICOM), San Diego, CA, USA, September 14–19, p. 134–146 (2003)

38. R. Draves, J. Padhye, and B. Zill, Routing in multi-radio, multihop wireless mesh networks,
Proceedings of ACM annual International conference on mobile computing and networking
(Mobi Con04), Philadelphia, Pennsylvania, USA, September 26–October 01, p. 114–128
(2004)

39. G. Jakllari, S. Eidenbenz, N. Hengartner, S. Krishnamurthy, and M. Faloutsos, Link positions
matter: A noncommutative routing metric for wireless mesh networks, Proceedings of IEEE
Annual Conference on Computer Communications (INFOCOM), Phoenix, Arizona, USA,
April 13–18, p. 744–752 (2008)

28 A. Singh et al.

40. C.E. Koksal, and H. Balakrishnan, Quality-aware routing metrics for time varying wireless
mesh networks, IEEE Journal on Selected Areas in Communications, 24(11), p. 1984–1994
(2006)

41. Y. Yang, J. Wang, R. Kravets, Interference-aware load balancing for multi hop wireless net-
works, Technical Report UIUCDCSR-2005-2526, University of Illinois at Urbana Champaign,
Department of Computer Science, and Web Address: http://www.ideals.uiuc.edu/handle/2142/
10974, (2005)

42. T. Liu and W. Liao, Capacity-aware routing in multi-channel multi-rate wireless mesh
networks, Proceedings of IEEE International Conference on Communications (ICC), Istanbul,
Turkey, 11–15 June, p. 1971–1976 (2006)

43. G. Karbaschi and A. Fladenmuller, A link quality and congestion-aware cross layer metric for
multi-hop wireless routing, Proceedings of IEEE International Conference on Mobile Ad hoc
and Sensor Systems Conference, Washington, DC, USA, 2005, 7 Nov. 2005, p. 7–11

44. L. Ma, Q. Zhang, Y. Xiong, and W. Zhu, Interference aware metric for dense multi-hop wireless
network, Proceedings of IEEE International Conference on Communications (ICC), Seoul,
South Korea, pp. 1261–1265 (2005)

45. S. Sharma, S. Kumar, B. Singh, Routing in wireless mesh networks: Three new nature inspired
approaches. Wirel. Pers. Commun. 83(4), 3157–3179 (2015)

46. S. Yang, H. Cheng, F. Wang, Genetic algorithms with immigrants and memory schemes for
dynamic shortest path routing problems in mobile ad hoc networks. IEEE Trans. Syst. Man
Cybern. Part C Appl. Rev. 40(1), 52–63 (2010)

http://www.ideals.uiuc.edu/handle/2142/10974

Application of Evolutionary Algorithms
to Power System Stabilizer Design

Tshina Fa Mulumba and Komla Agbenyo Folly

1 Introduction

1.1 Oscillations in Electrical Power Systems and Power
Systems Stabilizers

Low-frequency oscillations in the range of 0.2–3 Hz are inherent to power systems
designed for the supply, transfer, and utilization of electrical power [1]. They appear
when there are power exchanges between large areas of interconnected power
systems or when power is transferred over long distances under medium to heavy
conditions.

Since the development of interconnected power systems and the introduction
of deregulation of electrical power systems, these oscillations commonly known
as electromechanical modes have become apparent especially during and after
small and large disturbances [2–4]. Several factors contribute to the rise of these
oscillations. The use of high-gain fast-acting automatic voltage regulator (AVR),
necessary to increase the ability of the system to maintain the stability during faults,
has adverse effects on the system damping due to the introduction of a lagging
phase angle between the input voltage reference and the electrical output power [1,
2, 4]. Moreover, the recent exponential increase in power demand which has led
to bulk power transfer over weak transmission lines has also been found to cause
oscillations that can limit the maximum transfer capability of the system. If no
adequate damping is provided, these oscillations could grow in magnitude with time
and lead to system collapse [1, 2, 4–6].

T. F. Mulumba · K. A. Folly (�)
Department of Electrical Engineering, University of Cape Town, Cape Town, South Africa
e-mail: komla.folly@uct.ac.za

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_2&domain=pdf
mailto:komla.folly@uct.ac.za
https://doi.org/10.1007/978-3-030-37830-1_2

30 T. F. Mulumba and K. A. Folly

To mitigate these oscillations, various controllers have been developed and
implemented over the years. Power systems stabilizers (PSSs) have been extensively
used as supplementary excitation controllers that provide additional damping to
eliminate electromechanical oscillations and enhance the overall system stability. To
achieve this, the conventional PSS (CPSS) is often designed at a particular operating
condition using conventional methods such as phase compensation and root locus.
However, due to the non-linearity characteristics of power systems and the varying
operating conditions, the performance of the CPSS deteriorates as the operating
conditions change and therefore require re-tuning [7–13].

In recent years, increasing interest has been focused on the optimization of
stabilizers parameters to provide adequate performance for a wide range of operat-
ing conditions [14–20]. Consequently, many conventional optimization techniques
and computational intelligence (CI) techniques, namely, evolutionary algorithms
(EAs) such as genetic algorithms (GAs) [21], differential evolution (DE) [22–31],
population-based incremental learning (PBIL) [32–37], etc., have been used to
find an optimal set of parameters that guarantee robust performance under varying
operating conditions. However, the performances of these algorithms greatly depend
on their parameters, and therefore could suffer from the problem of being trapped
in local optima. In this chapter, we investigated the use of adaptive or self-adaptive
parameter schemes of these algorithms (mainly DE and PBIL) to achieve improved
performances.

1.2 Algorithms for Parameter Optimization: Differential
Evolution and Population-Based Incremental Learning

Evolutionary algorithms (EAs) are population-based optimizers inspired by the
mechanism of evolution and natural selection. They solve the optimization problem
by sampling the objective function at multiple random initial points in the search
space, and explore the search space by iteratively generating new points that are
perturbation of the existing ones [22]. This approach is convenient in locating the
global maximum/minimum instead of local. EAs are simple, robust, efficient, and
versatile algorithms that can be applied to a wide variety of problems, including
those involving non-linear, discontinuous, or complex functions. In the last few
years, increasing number of researchers have proposed EAs to optimally tune the
parameters of the PSS to guarantee a robust performance over a wide range of
system conditions.

A particular strain of EAs known as genetic algorithms (GAs) has received
particular attention in the last few decades. GAs are heuristic population-based
search methods inspired by the mechanism of biological genetic evolution. GAs
have been used to design PSSs for multimachines system [7–9, 38].

Despite GAs’ performance and promising results in numerous applications,
recent analyses have revealed some drawbacks [39]. The problem of genetic drift

Application of Evolutionary Algorithms to Power System Stabilizer Design 31

in GAs restricts the population diversity and the search space for solutions. As
a result, GAs may converge to suboptimal solutions [7–9, 39]. In addition, GAs
are expensive in terms of both computation time and memory when dealing with
difficult problems such as tuning PSSs in a multimachine environment [7, 8, 40].

To cope with the above drawbacks, many variants of GAs have been proposed,
which are often tailored to a particular problem. Recently, several simpler and
yet effective heuristic algorithms have received increasing attention. They have
shown their potential in global optimization problems to overcome the deficiencies
of GAs in exploring wider spaces for the global maxima [22]; this chapter
focuses on the application of two of these variants: differential evolution (DE) and
population-based incremental learning (PBIL). These two optimization algorithms
are introduced briefly below.

Differential Evolution (DE) is a powerful stochastic optimizer whose search
mechanism involves a differential mutation technique. The algorithm is both simple
and robust, with several variants exhibiting different trade-offs between convergence
speed and robustness.

DE has been the subject of intensive performance evaluation since its inception.
Many comparisons have been carried out with other optimization algorithms on
benchmark functions and several other applications. Most often DE outperforms its
counterparts in efficiency and robustness [41].

DE has been increasingly applied to a variety of problems, especially in
engineering [41]. In Wang et al. [42], DE was successfully applied in designing PSS.
The resulting PSS was then compared to the CPSS through a series of tests: the DE-
based PSS outperformed the CPSS. In Mulumba and Folly [43], DE is compared
to GAs when used to simultaneously tune PSSs. The results have proven that DE
outperformed GAs.

One problematic issue in the use of DE is the choice of algorithm parameters,
which may have a large effect on algorithm performance. To address this issue,
self-adaptive schemes have been developed whereby the mutation and crossover
parameters are changed during the DE optimization process. Some of these are
discussed in Sect. 3.3.

Population-Based Incremental Learning (PBIL): is a method that combines
genetic algorithms and competitive learning for function optimization. PBIL is an
extension to the Evolutionary Genetic Algorithm (EGA) algorithm achieved through
the re-examination of the performance of the EGA in terms of competitive learning
[32]. In Sheetekela and Folly [7–9, 44], PBIL was used to tune PSS parameters. The
results showed considerable enhancement in PSS performance compared to PSS
obtained with GAs. One disadvantage of PBIL is the slow convergence due to the
learning process involved. This disadvantage can be addressed by optimally tuning
the learning rate (α) parameter by trial and error. Even when α is tuned, PBIL still
requires a large number of generations to obtain a solution.

Other methods that have been used to design PSS are particle swarm optimization
(PSO) [45], and simulated annealing (SA) [46]. These are not discussed in this
chapter.

32 T. F. Mulumba and K. A. Folly

2 Problem Statement

2.1 Overview

Small signal stability refers to the ability of a power system to maintain stability
when subject to small disturbances [1]. The disturbances are considered small
only if linearization of the system is possible. Hence, this chapter reviews linear
techniques used to analyse small signal oscillations and extract information about
the system dynamic characteristic. Techniques such as modal analysis, eigenvectors,
eigenvalues’ sensitivity, and participation factors are touched on in subsequent
sections.

2.2 State-Space Representation

The state-space representation is often used to describe the behaviour of a dynamical
system. The state-space representation employs a set of n first-order non-linear
differential equations to model the system, which can be written in vector form as:

ẋ = f (x; u; t) (1)

where

x =
⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ , u =

⎡
⎢⎣

u1
...

ur

⎤
⎥⎦ , f =

⎡
⎢⎣

f1
...

fn

⎤
⎥⎦

x: the state vector containing the variables which describe the state of the system
(state variables);

ẋ: derivative vector of the state variables;
f: vector of non-linear functions;
u: vector of the inputs;
t: time;
n: the order of the system;
r: the number of inputs.

If the vector function f is not an explicit function of time the system is referred
to as autonomous, and (1) simplifies to:

ẋ = f (x; u) (2)

The equation relating the system outputs to the system inputs and state variables
can be written as

Application of Evolutionary Algorithms to Power System Stabilizer Design 33

y = g (x, u) (3)

where

y =
⎡
⎢⎣

y1
...

ym

⎤
⎥⎦ , g =

⎡
⎢⎣

g1
...

gm

⎤
⎥⎦

y: vector of system outputs;
g: vector of non-linear functions relating the state and input variables to the output

variables.
m: number of outputs.

2.3 Linearization

An equilibrium point of an autonomous system is a vector pair (x0, u0) which
satisfies the following equilibrium condition:

f (x0, u0) = 0 (4)

In view of (2), Eq. (4) implies that ẋ0 = 0, so that x0 is a time-independent
solution to the state equation when the system inputs are given by u0.

Following a perturbation, �x and �u, in the system state and input variables, we
get

ẋ = ẋ0 + �ẋ u = u0 + �u, (5)

and (2) may be rewritten as:

ẋ = ẋ0 + �ẋ = f (x0 + �x, u0 + �u) (6)

If the perturbations in the system are sufficiently small, the right-hand side of Eq.
(6) may be closely approximated by a first-order Taylor series expansion in �x and
�u. After algebraic simplification (and making use of Eq. (4), we obtain)

�ẋi = ∂fi

∂x1
�x1 + · · · + ∂fi

∂xn

�xn + ∂fi

∂u1
�u1 + · · · + ∂fi

∂ur

�ur (7)

where i = 1, 2, 3, . . . ,n and

�yj = ∂gj

∂x1
�x1 + · · · + ∂gj

∂xn

�xn + ∂gj

∂u1
�u1 + · · · + ∂gj

∂ur

�ur (8)

34 T. F. Mulumba and K. A. Folly

where j = 1, 2, 3, . . . ,m.
Equations (7) and (8) may be rewritten in matrix form as:

�ẋ = A�x + B�u (9)

�y = C�x + D�u (10)

where:

A =

⎡
⎢⎢⎣

∂f1
∂x1

. . .
∂f1
∂xn

...
. . .

...
∂fn

∂x1
. . .

∂fn

∂xn

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

∂f1
∂u1

. . .
∂f1
∂ur

...
. . .

...
∂fn

∂u1
. . .

∂fn

∂ur

⎤
⎥⎥⎦ (11)

C =

⎡
⎢⎢⎣

∂g1
∂x1

. . .
∂g1
∂xn

...
. . .

...
∂gm

∂x1
. . .

∂gm

∂xn

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

∂g1
∂u1

. . .
∂g1
∂ur

...
. . .

...
∂gm

∂u1
. . .

∂gm

∂ur

⎤
⎥⎥⎦

�x is the linearized state vector of dimension n;
�y is the linearized output vector of dimension m;
�u is the linearized input vector of dimension r;
A is the state matrix of size n × n;
B is the input matrix, size n × r;
C is the output matrix, size m × n;
D is the feed forward matrix, size m × r;

After linearization, the system stability can be analysed using the modal analysis
as follows.

2.4 Modal Analysis

Once the state space has been established, the stability of the system can be extracted
and analysed by means of eigenvalues, eigenvector properties, and the participation
factor. These terms are defined and explained below.

Eigenvalues
Given an n × n matrix A, the eigenvectors and eigenvalues of A may be defined in
terms of the following equation:

A� = λ�, (12)

Application of Evolutionary Algorithms to Power System Stabilizer Design 35

where � is a n × l vector of complex numbers, and λ is a complex number. Any non-
zero vector � that satisfies (12) is called an eigenvector of A: and the corresponding
value of λ is called the eigenvalue.

By rearranging Eq. (12), we may show that any eigenvalue λ of A must satisfy
the condition:

det (A − λI) = 0 (13)

where I is the identity matrix. Using linear algebra, it can also be shown that (13) is
also a sufficient condition for eigenvalues: in other words, for every λ that satisfies
(13) there exist non-zero vectors � that satisfy (12).

Equation (13) is a polynomial equation of order n, which implies there are at
most n roots which we denote as (λ1, λ2, λ3, . . . , λn). Since these eigenvalues may
be complex, we may write λk = σ k ± jωk, where σ k and ωk are real. If A has real
entries, then the complex eigenvalues occurs in conjugate pairs.

The stability of the system at an operating point (x0, u0) can be determined by
analysing the eigenvalues. Real eigenvalues correspond to non-oscillatory modes,
and eigenvalues with non-zero imaginary parts are oscillatory mode. If the real
eigenvalue is negative, the mode decays over time, and is called stable; and if
positive, the mode is said to have an aperiodic instability. For conjugate eigenvalue
pairs (σ ± jω), if the real component σ is negative, then the mode is oscillatory
stable; otherwise it is oscillatory unstable. The imaginary component, ω, gives the
oscillatory frequency in rad/s: the corresponding frequency in hertz is given by

f = ω

2π
(14)

A system is said to be stable at a particular operating point if all modes are
stable, which is equivalent to saying that all eigenvalues have negative real parts.
Otherwise, the system is unstable.

The damping ratio ζ is given by the following equation:

ζ = −σ√
σ 2 + ω2

(15)

When σ < 0, the damping ratio indicates the rate of decay of the amplitude of the
oscillations. For power systems, damping ratios of 0.05 and above are considered
adequate, but damping ratios of 0.2 and above are often preferred, especially for
electromechanical oscillations [4, 44]. The stability of the system is determined by
the eigenvalue with the smallest damping ratio.

In the current research, we are interested in optimizing the guaranteed stability
of the system under several operating conditions. Each set of operating conditions
will have its own eigenvalues and damping ratios. The overall system stability is
determined by the eigenvalue with smallest damping ratio from among all operating
conditions. It follows that the objective function to be maximized may be formulated
as follows [44]:

36 T. F. Mulumba and K. A. Folly

ObjFn = min
(
ζi,j

)
, where i = 1, 2, . . . n and j = 1, 2, . . . , m (16)

where ζ i, j is the damping ratio of the ith eigenvalue for the ‘jth’ operating condition.
In terms of ObjFn, the optimization problem may be phrased as follows:

Maximize ObjFn (17)

Subject to:

Kmin
p ≤ Kp ≤ Kmax

p where p = 1, 2, . . . , m

T min
q,p ≤ Tq,p ≤ T max

q,p where q = 1, 2, . . . , n and p = 1, . . . , m,

where K and T denote the optimized controller gain and the lead-lag time constants,
respectively, within their respective boundaries. The subscript ‘q’ indexes the lead-
lag parameter number, while ‘p’ is the machine number. In this chapter the following
values were used:

Kmax
p = 20; T max

q,p = 5 s

Kmin
p = 1; T min

q,p = 0.001 s.

The objective function was applied to various system configurations, such as
single machine infinite bus and two-area multi-machine systems. These systems are
described below.

3 The Differential Evolution Algorithm

This section provides an introduction to the differential evolution technique. A
detailed description of the searching mechanism used to find the optimum value
of functions is presented below.

3.1 Overview

Differential evolution (DE) was originally developed by Price and Storn in 1995
in an effort to overcome Genetic algorithms’ shortcomings in solving the Cheby-
shev polynomial fitting problem [22, 47]. DE is designed to efficiently solve
non-differentiable and non-linear functions while retaining a simple algorithmic
procedure and good convergence to a global optimum. DE can be characterized as a
parallel direct search method that uses a population of points to search for a global

Application of Evolutionary Algorithms to Power System Stabilizer Design 37

minimum or maximum of a function over a wide search space. Similar to most EAs,
DE simulates the Darwinian evolution theory to direct its search towards prospective
areas. However, unlike traditional genetic algorithms (GAs) which uses “bit-string”
encoding, DE encodes all parameters as floating-point regardless of their type. The
floating-point representation offers efficient memory utilization, and its one-to-one
selection strategy lowers computational complexity which subsequently increases
the speed of convergence [22].

The DE algorithm starts by sampling the search space at various randomly chosen
initial points, and then generates new points that are perturbations (or mutations)
of existing points. The perturbation is achieved by adding the scaled difference
between two randomly selected vectors to a third. The resultant mutation vector is
crossed over with the corresponding parent to generate a trial or offspring vector [22,
47–49]. Finally, the offspring competes against its parent in a one-to-one selection
process based on their fitness value. The one with the better fitness value survives
and enters the next generation. The procedure is repeated for each point (or vector)
in the search space to form the new generation in the evolutionary cycle. The
search stops when either the solution converges to the true optimum or following
a termination criterion such as when a maximum generation number is reached [8].

3.2 Detailed DE Algorithm Description

In this section a more detailed description of the algorithm is provided, following
the descriptions in Storn and Price, and Price and Storn [22, 50].

3.2.1 Population Structure

In DE, the population is composed of Np candidate solutions or points, where each
candidate is a real D-dimensional vector where D is the number of parameters to
be optimized. The population iterates through multiple generations. We may denote
the population at the gth generation as Px,g, where

Px,g = (Xi,g

)
, i = 1, . . . , Np, g = 0, 1, . . . , gmax. (18)

Here Xi,g is the ith candidate solution in the gth generation, and may be denoted
as:

Xi,g = (xj,i,g

)
, j = 0, 1, . . . ,D − 1,

so that each candidate solution is a D-dimensional vector, and each component
corresponds to a parameter that is to be optimized. Figure 1 illustrates the population
and the vector candidates.

38 T. F. Mulumba and K. A. Folly

.

.

.

X1,0 X2,0 . . . XNp,0

.

.

.
. . .X1,gmax XNp,gmax

(Initial generation) P0 =

Pgmax = (Maximum generation)

Fig. 1 Population and candidate structure

3.2.2 Initialization

DE starts the optimization process by generating an initial population Po of Np

vectors encoded with D parameters, {Xi,0 = (xj,i,0), j = 0, . . . , D − 1, i = 1, . . . ,
Np. Every vector’s parameter is initialized within the specified upper bound, xj

U ,
and lower bound, xj

L, of each parameter.

xL
j < xj,i,g < xU

j (19)

For example, the jth parameter of the ith vector may be initialized as follows:

xj,i,0 = randj (0, 1)
(
xU
j − xL

j

)
+ xL

j (20)

where randj(0,1) is a uniformly distributed random number in the interval (0,1).
It is also possible to initialize with non-uniform distributions, depending on what
is known about the optimum location. If there is no prior information, a uniform
distribution minimizes the chance of premature convergence and is preferred.

The initialized population is next subjected to mutation, as described in the
following section.

3.2.3 Mutation

In biology, mutation is defined as a change in an organism’s gene which results in an
altered effect of its expression. This gene’s alteration allows the organism to better
adapt to its environment. In the context of DE, ‘mutation’ is defined as a process of
taking a small random sample of vectors from the current population and combining
them algebraically to form a new vector, which is referred to as a mutant vector [20].
In the so-called classical version of DE, the mutant vector is formed as follows:

Application of Evolutionary Algorithms to Power System Stabilizer Design 39

x1

x0

vi,g = xr0,g + F⋅(xr1,g – xr2,g)

F⋅(xr1,g – xr2,g)

xr1,g

xr2,g

xr0,g

Fig. 2 Differential mutation

Vi,g = Xr0,g + F
(
Xr1,g − Xr2,g

)
, (21)

where i, r0, r1, and r2 are all distinct indices in the interval [1,Np]. The muta-
tion scale factor F is a positive real number between 0 and 2 that controls
the rate at which the population evolves. The vector Xr0, g is the base vector,
while Xr1, g − Xr2, g is the difference vector. The process of mutation is shown
schematically in Fig. 2.

The above process is repeated Np-times to constitute a mutant population.
In the original version (designated as DE/rand/1), each base vector is used only

once per generation, in order to preserve diversity in the population. This version is
widely used, although it has the drawback of relatively slow convergence [22, 51].
Some alternative mutation strategies to the classical version are as follows:

DE/best/1: This strategy resembles DE/rand/1, except that all mutants use the best
vector in the current generation as the base vector:

Vi,g = Xbest,g + F
(
Xr1,g − Xr2,g

)
(22)

This approach has faster convergence than DE/rand/1, but often fails to reach the
global optimum [51].

DE/best/2: This strategy uses two mutation differences to create a mutant vector:

Vi,g = Xbest,g + F
(
Xr1,g − Xr2,g

)+ F
(
Xr3,g − Xr4,g

)
(23)

where Xr1, Xr2, Xr3, Xr4 are distinct random vectors and Xbest, g is the best
individual of the current population. This approach attempts to balance between
convergence speed and robustness. However, it still may converge to a local

40 T. F. Mulumba and K. A. Folly

but non-global optimum, due to the fact that the base vector Xbest, g draws the
population towards itself [22].

DE/local-to-best/2: This strategy resembles DE/best/2 in that two mutation differ-
ences are used: but the base vector is randomly sampled and the “best” vector is
used in one of the scaled differences:

Vi,g = Xro,g + F · (Xbest,g − Xr1,g

)+ F · (Xr2,g − Xr3,g

)
. (24)

This approach has similar convergence properties to DE/best/2 [22].
DE/rand/2: This strategy samples 5 random vectors in the current generation to

form two random differences which are scaled and added to the base vector:

Vi,g = Xro,g + F
(
Xr1,g − Xr2,g

)+ F
(
Xr3,g − Xr4,g

)
(25)

where r0 �= r1 �= r2 �= r3 �= r4. This approach converges more slowly but is very
robust [22, 51].

In this chapter, DE/rand/2 is used due to the aim set to appropriately tune the PSS
with optimal time constants values for a robust performance.

Following mutation, vectors are next subject to crossover, as described in the next
section.

3.2.4 Crossover

In biology, crossover is defined as the process of forming offspring by genetically
combining two different parents [52]. In DE, ‘crossover’ refers to the process
of creating a new vector (called the trial vector) by combining a mutant vector
with a target vector. The target vector for mutant vector Vi, g is Xi, g: note that
according to the above description the mutant vector is constructed based on
vectors Xr0, g, Xr1, g, . . . which are all different from the target vector. The trial
vector Ui, g = [u1, i, g, u2, i, g, . . . , uD, i, g] is then obtained as follows:

uj,i,g =
{

vj,i,g if
(
randj (0, 1) ≤ CR or j = jrand

)
, j = 1, 2, . . . ,D

xj,i,g otherwise
(26)

where CR ∈ [0, 1] is the crossover probability, CR is the fraction of the parameter
values that are copied from the mutant vector, and 1 − CR is the fraction of
parameter values copied from the trial vector. To determine whether the parameter to
be copied is from the mutant or trial vector, a uniformly distributed random number
randj between [0,1] is generated and compared to the predefined value of CR. In
addition, a random index jrand ∈ [1, Np] is chosen and the corresponding mutant
parameter copied to ensure that the trial vector is not a duplicate of the target vector.

Application of Evolutionary Algorithms to Power System Stabilizer Design 41

The form of crossover described above is uniform crossover, and this is the form
that was utilized in our implementation. There is an alternative crossover scheme
called exponential crossover, which is described in Price et al. [22].

Once crossover is complete, selection is performed as described in the next
section.

3.2.5 Selection

The selection process consists of choosing the individuals that will enter the next
generation. In most EAs, some form of selection pressure is applied to ensure
that the subsequent generation will consist of individuals that are generally more
“fit” than the previous generation. DE employs a ‘one-to-one survivor selection’
which consists of comparing each trial vector to its corresponding target vector.
Mathematically, the vector Xi,g+1 in the g + 1th generation is obtained from the trial
vector Ui,g and target vector Xi,g as follows (in the case of a minimization problem:
for a maximization problem the ‘≤’ is replaced with ‘≥’:

Xi,g+1 =
{

Ui,g if f
(
Ui,g

) ≤ f
(
Xi,g

)
Xi,g otherwise

(27)

This process ensures that the best vector at each index is retained. Furthermore,
this also guarantees that the best-so-far solution is kept.

Once selection is performed for all target vectors in the current generation g,
the processes of mutation, crossover, and selection are repeated with the Np vectors
in the g + first generation. This process is iterated until a termination criterion is
satisfied, as described in the next section.

3.2.6 Termination

There are several ways to terminate the DE optimization process. Some alternatives
are listed below.

Objective Met

If the optimum value of the objective function is known, then the algorithm may be
terminated when the best solution is within a specified tolerance of the optimum.
In most practical cases, the optimum value is unknown, so this method cannot be
applied.

42 T. F. Mulumba and K. A. Folly

Fixed Number of Generations

The optimization process is terminated after a fixed number of generations. Upon
termination, the best known solution is reported. This was the method used in our
implementation.

Population Statistics

The process is terminated when the difference between individuals with the worst
fitness value and best fitness value is below a predetermined limit [22]. This is an
indication that population is no longer diverse.

Limited Time

This is similar to ‘fixed number of generations’ above, except that execution time
rather than number of generations is the limiting factor.

The performance of DE is affected by its control parameters: suboptimal param-
eter settings degrade the convergence of the algorithm. Optimal parameters may
be obtained by trial and error, but this approach is costly in terms of computation
time. Recently, adaptive or self-adaptive mechanisms have been introduced to
dynamically and automatically update the parameters as the algorithm progress.

3.3 Self-Adaptive DE Algorithms

Self-adaptive algorithms have shown faster and more reliable convergence perfor-
mance than the Classic DE (CDE) for many problems [26, 48, 53]. Some of these
recently developed adaptive strategies are summarized below.

Fuzzy Adaptive Differential Evolution (FADE) was introduced in Lui and
Lampinen [54]. It is a fuzzy logic-based algorithm which dynamically adapts the
mutation and crossover operations, while the population is kept fixed.

Self-Adaptive Differential Evolution (SaDE) was proposed in Quin and Sug-
anthan [55]. Two mutation strategies, ‘DE/rand/1’ (strategy 1) and ‘DE/current-
to-best/2’ (strategy 2), may be used in this algorithm. The self-adaptive strategy
consists of applying a probability pi to first determine the mutation strategy (1
or 2) to be used to generate a mutation vector. This probability is updated after
50 generations according to the results obtained. The mutation and crossover
parameters are also changed dynamically from generation to generation. Each
mutation parameter is independently generated using a fixed normal distribution,
while the crossover probabilities CRi g for the ith individual in generation g is
chosen as

Application of Evolutionary Algorithms to Power System Stabilizer Design 43

CRi = randn (CRm, 0.1) (28)

where CRm is the mean of the successful CR values in the previous 25 generations.
jDE was introduced in Brest et al. [53]. As in the previous two schemes, jDE fixes

the population size during the optimization while adapting the control parameters
Fi and CRi associated with each individual by means of an evolutionary scheme.
The algorithm is based on DE/rand/1. Initially, Fi = 0.5 and CRi = 0.9 for each
individual. jDE regenerates new values for Fi and CRi according to the following
rules:

Fi,g+1 =
{

Fl + rand1 [0, 1] ∗ Fu if rand2 [0, 1] < τ1

Fi,g otherwise
(29)

CRi,g+1 =
{

rand3 [0, 1] if rand4 [0, 1] < τ2

CRi,g otherwise
(30)

where

randj[0,1], j = 1, 2, 3, 4, are uniform random values on [0,1];
τ 1 and τ 2 represent the probabilities of adjusting the control parameters;
Fl and Fu are fixed lower and upper bounds, respectively, used for mutation.

In Brest et al. [53], the values of τ 1, τ 2, Fl, and Fu were chosen as 0.1, 0.1, 0.1,
and 0.9, respectively.

Since the mutation and crossover parameters of successful individuals are carried
over to the next generation, it is expected that ‘better’ values for F and CR will
predominate in the population.

4 Population-Based Incremental Learning (PBIL)

4.1 Overview

Like most EAs, PBIL is an optimization technique that stochastically searches for
the optimum value of a function by utilizing some aspects of GAs combined with
competitive learning to guide its search towards prospective areas of the search
space [9, 32–34, 44, 56]. Developed by Baluja in 1994 [32], PBIL uses bit strings to
encode individual solutions, and uses probability vectors (PV) to guide the random
generation of candidate bit strings and create other vectors through learning. PBIL
then uses the current probability vector to create Np individuals, which in turn
are evaluated with an objective function. Using the best individuals of the current
population, the probability vector is updated by shifting the likelihood of producing
solutions corresponding to the best. There are several variant schemes for updating
the probability vector: in this chapter we will present only one of the possibilities.

44 T. F. Mulumba and K. A. Folly

4.2 Binary Encoding, Probability Vector, and Population

PBIL requires that individual solutions be encoded as bit strings. If, for example,
the number of parameters in a solution is n and the number of bits used to encode
each parameter is l, then an individual will be encoded as a bit string of length m
where m=n · l. Probability vectors used in PBIL also have the same length:

PV = (p1, p2, . . . , pm) , where m = nl, pj ≥ 0, and
∑m

j=0
pj = 1 (31)

For example, if a solution has 4 parameters encoded and each parameter is
represented by 2 binary bits, then each probability vector PV will be constituted
of 8 probability values, PV = (p1, p2, . . . , p8).

Initially, each entry of the PV is set equal to 0.5, corresponding to equal
probabilities of 0 and 1 at each position of the bit string. Using this PV, a first-
generation population of Np random bit strings of length m is generated, where
each entry of each bit string is generated randomly, taking values 0 or 1 with equal
probability.

4.3 Mutation

Instead of applying mutation to the population, PBIL applies mutation to the
probability vector in order to prevent PV entries from converging too quickly to
an extreme value (either 0.0 or 1.0). This helps prevent premature convergence to a
local optimum [32].

There are many possible variants of the mutation operation. In this research the
following procedure was followed. First, the mutation probability pmut is fixed. For
each locus j = {1, . . . , m} of the PV, a random number randj[0,1] is generated. If
the generated value is less than the probability pmut, then entry pj is modified as
follows:

pj ← pj + pmut

(
0.5 − pj

)
. (32)

This adjustment shifts pj towards the neutral value 0.5, and away from the
extreme values 0 and 1. Using this mutated probability vector, a single bit string
is randomly generated, such that the jth entry of the bit string takes the value 1 with
probability pj and the value 0 with probability 1 − pj. After this, another mutated
PV is generated and used to generate another bit vector. This cycle is repeated until
an entire new generation of Np individuals is created.

Application of Evolutionary Algorithms to Power System Stabilizer Design 45

4.4 Learning Process

In PBIL, the fitness of the population is made to increase from generation to
generation by means of a learning process. The learning process involves a single
parameter (denoted by α) called the learning rate, where 0 < α < 1.

The learning process is implemented within PBIL as follows. After a new
population of Np individuals is created, the fitnesses of all individuals are evaluated
and the best individual is chosen. Recall that each individual is encoded as a bit
string, so we may represent the best individual as a string B1 . . . Bm where each Bj

is 0 or 1. This bit string is used to create a new PV
(
p′

1, . . . , p
′
m

)
as follows:

p′
j = (1 − α) pj + αBj , j ∈ {1, . . . , m} . (33)

A larger learning rate speeds up convergence, but it reduces the function space
to be searched, while a smaller rate slows down the convergence but enables the
exploration of a bigger search space, thereby increasing the likelihood of better
optimal solutions [32, 44].

Note that PBIL has minimal memory requirements. Only the current PV and the
current best solution for the present generation are stored. Therefore, it is a good
candidate for online applications.

4.5 Termination

PBIL can use similar termination criteria as those described for DE above. In our
implementation, we used a fixed number of generations.

5 Application of DE and PBIL to PSS Design

5.1 Overview

In this section, DE and PBIL are applied to obtain optimal PSS parameters based on
the mathematical model described above. The optimization procedure involves the
following steps for all system configurations.

Step 1. Define the range of operating conditions.
Step 2. Test them by running the load flow. Eliminate those conditions for which the

load flow does not converge.
Step 3. Linearize the system at each operating condition and store the state-space

matrices A, B, C, and D for each condition.

46 T. F. Mulumba and K. A. Folly

Step 4. Design the PSS by solving the constrained optimization problem given by
Eqs. (16) and (17) using DE and PBIL. This is applied to all combined operating
conditions.

Step 5. Once the optimum parameters are found, they are tested for robustness.
Step 6. In the case where the resulting PSS performance is not good, go to Step 1.

These steps are summarized by the flow charts in Figs. 3 and 4 representing the
application of DE and PBIL, respectively.

Following the obtainment of PSS parameters based on DE and PBIL, their
performances are evaluated by conducting a modal analysis. The results are then
validated through time domain simulations. Furthermore, a comparison analysis is
carried out for different designs and CPSS.

However, to obtain the optimum PSS parameters, both algorithms had to be
configured. DE requires user-defined parameter inputs such as the mutation factor F,
the crossover probability CR, the population size Np, and the maximum number of
generations g. These parameters greatly influence DE’s ability to find the global
minimum/maximum. F and CR values used were determined by trial and error.
In our simulations Np= 50 was found to give best results, which is half of the
recommendation of [22] to use a population of 10 times the number of parameters
to be optimized.

The user-defined inputs of PBIL are learning rate (α), forgetting factor (FF), as
well as population size Np and number of generations g as in DE. As in Sheetekela
[44], α was set to be 0.1 and FF to be 0.005. Np was set to 50 as for DE, and g
was set to 300 or 500 (for the two different systems modelled) to allow for time to
convergence [7, 8, 44, 56].

Table 1 summarizes the parameters used for both algorithms.

5.2 System Configurations

In this chapter, two electrical power system configurations were considered for
the PSS design: the single machine to infinite bus (SMIB) and the two-area
multimachine (TAM). Brief descriptions of the two systems are given below.
For complete specifications of the two configurations, and for the mathematical
formulations of the corresponding PSS optimization problems, see [57].

The SMIB system consists of a synchronous generator connected to the infinite
bus through a double transmission line, as shown in Fig. 5. The generator was
modelled using a system of six differential equations, and is equipped with a simple
exciter and turbine governor which were both modelled using differential equations.
The operating conditions of this system have been obtained by simulating variations
of generator output and transmission line reactance.

The TAM system consists of two areas, each with identical generating units and
similar ratings as shown in shown in Fig. 6. As in the SMIB system, the generators
were equipped with simple exciters and turbine governors, and were modelled using

Application of Evolutionary Algorithms to Power System Stabilizer Design 47

Start

Define the range of
operating conditions

(OC)

Max generation?

Obtain parameters
corresponding to
best min damping

ratio

Test system under
disturbances

� step response
� large disturbance

Robust?

Stop

Re-run the
program

No

No

Yes

� Population Initialization with Ki,
T1i, T2i, T3i, T4i dimensions

� Uniformly distributed points

Random selection of 4
vectors Xi, Xr0, Xr1 & Xr2

Is Ui > Xi ?
No

Yes

New Generation

Xi enters next generation

Ui enters next generation

Yes

System linearization
and store A,B,C,D
matrices for all OCs

Apply differential mutation
Xr0 + F. (Xr1-Xr2)

Mutant population
Vi

Mutant pop =
Initial pop ?

No

Yes
Uniform crossover

between
Xi & Vi =Ui

Evaluation of Ui

Fig. 3 Flowchart for the PSS design using DE

48 T. F. Mulumba and K. A. Folly

Start

Define the range of
operating conditions

(OC)

� Insert PSS parameters
� Compute Eigenvalues and

damping ratios

Max generation?

� mutation

Next
generation

Obtain parameters
corresponding to
best min damping

ratio

Test system under
disturbances

� step response
� large disturbance

Robust?

Stop

Re-run the
program

No

No

Yes

Initialize PV = 0.5

� generate uniform random bit-
strings(population)

� compare population to PV
� if PV<pop element; generate 1
� if PV>pop element; generate 0

Bit strings generated
represents initial population

of Ki, T1i, T2i, T3i, T4i

� Evaluate each bit string using
objective function

� determine the best individual

Current best >
previous best?

No

Yes

� adjust PV to favour the best
generation of bit-strings

� increment PV(i); if best (i)=1
� decrement PV(i);if best (i)=0

Generate new
population based on

modification

Set best = previous best

Set best = current best
Yes

System linearization
and store A,B,C,D
matrices for all OCs

Fig. 4 Flowchart for the PSS design using PBIL

Application of Evolutionary Algorithms to Power System Stabilizer Design 49

Table 1 DE and PBIL parameters

Parameter Value used in DE Value used in PBIL

Population 50 50
of generations 200 300 (SMIB) or 500 (TAM)
Termination Fixed # of generations Fixed # of generations
Mutation F 0.95 –
Crossover CR 0.95 –
Length of encoded solution – 15 bits
Learning rate α – 0.1
Forgetting factor FF – 0.005

Fig. 5 Single machine to infinite bus (SMIB) system diagram

Fig. 6 Two-area multimachine (TAM) system line diagram. G1-G4 are the generators. The linked
circle symbols indicate transformers

the same differential equations. The system has two loads connected to buses 6
and 8, as shown in the figure. The two areas are connected by two tie-lines. Six
different operating conditions were specified based on varying the load demand,
which subsequently varied the power transferred over the tie-lines.

50 T. F. Mulumba and K. A. Folly

5.3 Single Machine Infinite Bus System: Results
of Optimization

Figure 7 shows the fitness (minimum damping ratio) for the SMIB system as a
function of generation number when DE optimization is applied. The DE algorithm
converged to an optimum minimum damping ratio value of 0.2659. DE reached its
final value after only 100 generations of its complete run of 200 generations.

On the other hand, Fig. 8 shows the corresponding fitness curve for PBIL applied
to the same system. PBIL converged to an optimum damping ratio value of 0.2325.
PBIL starts settling after around 150 generations, over a maximum algorithm
duration of 300 generations. This difference reflects the slower convergence of PBIL
as a function of generation number.

Table 2 shows the PSS parameters for the SMIB system obtained via DE, PBIL,
and CPSS methods.

Table 3 shows the eigenvalues corresponding to the electromechanical modes
for the five different operating conditions used, and the respective damping ratio
in brackets. On average, the DE damping ratios were larger (hence better) than
corresponding PBIL and CPSS values by an average of about 18% and 51%,
respectively.

0 20 40 60 80 100 120 140 160 180 200
0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275
DE best fitness over generations

Generations

Fi
tn

es
s

Fig. 7 DE fitness curve for PSS optimization, single machine infinite bus system

Application of Evolutionary Algorithms to Power System Stabilizer Design 51

0 50 100 150 200 250 300
0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24
Fitness value for PBIL optimization

Generations

Fi
tn

es
s

Fig. 8 PBIL fitness curve for PSS optimization, single machine infinite bus system

Table 2 SMIB PSS
parameters

Algorithm Kp T1 T2 T3 T4

CPSS 13.868 3.7440 0.8778 3.7440 0.8778
DE-PSS 19.985 4.9376 0.4339 0.0103 0.1290
PBIL 16.361 1.7217 1.8110 4.9435 0.5568

5.4 Two-Area Multimachine System: Results of Optimization

Figure 9 shows the fitness (minimum damping ratio) for the TAM system as a
function of generation number when DE optimization is applied. The DE algorithm
attains its optimum minimum damping ratio value of 0.2263 after 140 generations,
out of a complete run of 180 generations.

Figure 10 shows the PBIL fitness curve for the same system. PBIL converged to
an optimum damping ratio value of 0.2094. In this case, PBIL continues to show
improvements for about 400 generations, which is somewhat longer than for the
single machine infinite bus system.

Table 4 shows the DE and PBIL-optimized PSS parameters for the TAM system,
along with the CPSS parameters.

Table 5 shows the eigenvalues corresponding to the inter-area mode for various
system operating conditions. The respective damping ratios are in parentheses. The
DE-PSS values are about 10% and 52% higher than the corresponding PBIL-PSS

52 T. F. Mulumba and K. A. Folly

Ta
bl

e
3

SM
IB

el
ec

tr
om

ec
ha

ni
ca

lm
od

es
of

th
e

sy
st

em
w

ith
di

ff
er

en
tP

SS

C
as

es
D

E
-P

SS
PB

IL
-P

SS
C

PS
S

N
o

PS
S

1
−1

.6
95

0
±

j2
.7

78
0

(0
.5

21
0)

−1
.3

29
6

±
j2

.6
27

9
(0

.4
51

5)
−1

.1
03

3
±

j2
.9

79
2

(0
.3

47
3)

−0
.1

77
0

±
j3

.7
64

0
(0

.0
47

0)
2

−1
.2

32
3

±
j2

.4
20

1
(0

.4
53

7)
−0

.9
57

0
±

j2
.2

62
1

(0
.3

89
6)

−0
.8

08
9

±
j2

.5
27

1
(0

.3
04

9)
−0

.1
51

2
±

j3
.3

95
0

(0
.0

44
5)

3
−1

.1
57

6
±

j2
.7

23
3

(0
.3

91
7)

−0
.8

93
6

±
j2

.8
26

5
(0

.3
01

4)
−0

.7
28

1
±

j3
.0

37
9

(0
.2

33
1)

−0
.1

19
0

±
j3

.2
45

0
(0

.0
37

0)
4

−0
.9

10
2

±
j2

.2
16

7
(0

.3
79

8)
−0

.7
16

0
±

j2
.0

04
8

(0
.3

36
3)

−0
.5

95
7

±
j2

.2
10

7
(0

.2
60

2)
−0

.1
08

0
±

j2
.9

40
0

(0
.0

36
0)

5
−0

.7
06

5
±

j2
.5

40
1

(0
.2

65
9)

−0
.6

52
0

±
j2

.6
04

0
(0

.2
32

5)
−0

.5
11

4
±

j2
.7

08
7

(0
.1

85
5)

−0
.0

76
0

±
j2

.7
81

0
(0

.0
27

0)

Application of Evolutionary Algorithms to Power System Stabilizer Design 53

0 20 40 60 80 100 120 140 160 180

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Generation

Fi
tn

es
s

DE best fitness over generation

Fig. 9 DE fitness curve for PSS optimization, two-area multimachine system

0 50 100 150 200 250 300 350 400 450 500
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21
Fitness value for PBIL optimization

Generations

Fi
tn

es
s

Fig. 10 PBIL fitness curve for PSS optimization, two-area multimachine system

and CPSS values, respectively. The system also has two local area modes, but these
had consistently higher damping ratios than the inter-area mode, so it was the inter-

54 T. F. Mulumba and K. A. Folly

Table 4 PSS parameters for TAM system

Kp T1 T2 T3 T4

PBIL-PSS Gen 1&2 19.191 0.238 0.012 0.049 0.014
Gen 3&4 16.633 0.119 0.083 0.055 0.010

DE-PSS Gen 1&2 19.992 0.051 0.019 0.053 0.015
Gen 3&4 19.997 0.116 0.015 0.111 0.016

CPSS Gen 1&2 9.877 0.307 0.015 0.051 0.013
Gen 3&4 13.685 0.126 0.085 0.062 0.010

area mode that determined system stability. For exact figures and additional details,
see [57].

5.5 Sensitivity of Differential Evolution to Algorithm Control
Parameters.

In the previous section, we saw that DE optimization gave the best PSS parameters,
when compared to PBIL and CPSS. We mentioned previously that the DE opti-
mization process is heavily dependent on the control parameters: mutation factor,
crossover probability, and population size. In this section we investigate the effects
of these three parameters on the algorithm’s performance by varying the parameters
independently.

5.5.1 Effects of F and CR Parameters on DE Convergence

Figure 11 shows the effect of varying F (with CR fixed at 0.9) on the optimum value
obtained for the two-area multimachine system. Results show that F in the range of
0.75–0.9 gives the best performance. In Fig. 12, F is kept constant at 0.9 and CR is
varied. Results show that F = 0.9 and CR = 0.95 produce the optimal performance.

5.5.2 Effect of Population Size

Population size has a huge influence on the convergence properties of the DE
algorithm.

If the population size is small, the algorithm may converge faster, but the
probability of premature convergence is high. Smaller populations are also more
prone to a phenomenon known as stagnation, where the population remains diverse
and unconverged, while the optimization process no longer progresses. Larger
populations are less susceptible to premature convergence or stagnation, but require
more computational effort.

Application of Evolutionary Algorithms to Power System Stabilizer Design 55

Ta
bl

e
5

In
te

r-
ar

ea
m

od
es

fo
r

TA
M

sy
st

em

C
as

e
D

E
-P

SS
PB

IL
-P

SS
C

PS
S

N
o-

PS
S

1
−1

.2
73

±
j4

.5
28

(0
.2

70
7)

−1
.1

15
±

j4
.5

89
(0

.2
36

2)
−0

.8
07

±
j4

.5
09

(0
.1

76
1)

−0
.0

06
0

±
j4

.9
62

(0
.0

01
2)

2
−1

.2
19

±
j4

.5
07

(0
.2

61
2)

−1
.0

62
±

j4
.5

66
(0

.2
26

5)
−0

.7
53

±
j4

.4
84

(0
.1

65
6)

0.
04

61
±

j4
.9

37
(−

0.
00

93
)

3
−1

.1
54

±
j4

.4
77

(0
.2

49
2)

−1
.0

44
±

j4
.5

34
(0

.2
24

5)
−0

.7
41

±
j4

.4
53

(0
.1

64
2)

0.
04

28
±

j4
.8

94
(−

0.
00

87
)

4
−1

.0
89

±
j4

.4
36

(0
.2

38
4)

−1
.0

22
±

j4
.4

91
(0

.2
21

8)
−0

.7
25

±
j4

.4
12

(0
.1

62
3)

0.
08

06
±

j4
.7

92
(−

0.
01

65
)

5
−1

.0
15

±
j4

.4
04

(0
.2

26
3)

−0
.9

50
±

j4
.4

20
(0

.2
09

8)
−0

.6
48

±
j4

.3
84

(0
.1

50
6)

0.
07

71
±

j4
.6

97
(−

0.
01

68
)

6
−0

.8
06

±
j3

.4
77

(0
.2

25
9)

−0
.7

48
±

j3
.4

96
(0

.2
09

4)
−0

.5
18

±
j4

.4
11

(0
.1

50
2)

0.
05

89
±

j3
.4

19
(−

0.
01

70
)

D
am

pi
ng

ra
tio

s
ar

e
in

pa
re

nt
he

se
s

56 T. F. Mulumba and K. A. Folly

0 5 10 15 20 25 30 35 40 45 50
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
Crossover probability variation

Generation

Fi
tn

es
s

va
lu

e

F=0.1 & CR=0.9
F=0.3 & CR=0.9
F=0.5 & CR=0.9
F=0.75 & CR=0.9
F=0.9 & CR=0.9
F=1.0 & CR=0.9

Fig. 11 Effect of the mutation parameter F on DE performance (CR = 0.9)

Table 6 Experimental
results of DE when varying
the population

Population size Best damping Mean Std. dev.

10 0.1780 0.1610 0.0163
30 0.2439 0.2268 0.0224
50 0.2694 0.2301 0.0110
70 0.2599 0.2214 0.0235
100 0.2671 0.2254 0.0322
150 0.2740 0.2458 0.0282
200 0.2603 0.2231 0.0267

The authors in Price et al. [22] recommended that a population between 7.D
and 10.D be used for a good and efficient performance, where D is the number
of parameters to be optimized. The influence of population size grows larger with
increasing number of parameters [22, 58–61].

The investigations in this research are carried out on a TAM system with
D = 10 parameters. Different population sizes from 3D to 20D were used, and each
population size was run 10 times independently for 200 generations. Experimental
results recorded in Table 6, show the best and mean damping as well as the standard
deviations obtained from the 10 runs.

Table 6 shows that a population of 150 (i.e., 15D) gave the highest best and mean
values for the damping ratio. This case also gave lower standard deviation than the
results for the population size of 100 (10D).

Application of Evolutionary Algorithms to Power System Stabilizer Design 57

0 5 10 15 20 25 30 35 40 45 50
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
Crossover probability variation

Generation

Fi
tn

es
s

va
lu

e

F=0.9 & CR=0.1
F=0.9 & CR=0.3
F=0.9 & CR=0.5
F=0.9 & CR=0.75
F=0.9 & CR=0.95
F=0.9 & CR=1.0

Fig. 12 Effect of CR probability on DE performance (F = 0.9)

5.6 Application of Adaptive DE to PSS Design

We employed an adaptive scheme similar to jDE, but based on the mutation strategy
DE/rand/2 for improved robustness. Specifically, the mutation process is carried out
according to:

Vi,g = Xro,g + F 1
i,g

(
Xr1,g − Xr2,g

)+ F 2
i,g

(
Xr3,g − Xr4,g

)
(34)

where F 1
i,g and F 2

i,g are generated independently based on Eq. (29). There are also

two corresponding crossover parameters CR1
i,g and CR2

i,g , which are generated
according to Eq. (30). The values used for τ 1, τ 2, Fl, and Fu were chosen as 0.1,
0.1, 0.1, and 0.9, respectively, as in Brest et al. [53].

This adaptive algorithm was applied to the SMIB system, and the resulting PSS
was compared to the PSS obtained using classical DE (CDE) based on the DE/rand/1
mutation strategy. The DE control parameters were configured as described in
Table 7.

The PSS were designed over four operating conditions as shown in Table 8. This
table also shows the PSS parameters obtained after the optimization using jDE and
the CDE, and Table 9 shows the eigenvalues and damping ratios obtained when the

58 T. F. Mulumba and K. A. Folly

Table 7 Control parameters for DE and jDE algorithms

Parameter description DE parameter values jDE parameter values

Population 30 30
Generation 100 100
Mutation 0.9 Adaptive
Crossover 0.9 Adaptive
Termination Max gen Max gen

Table 8 PSS parameters Kp T1 T2 T3 T4

CDE-PSS 17.2 0.0102 0.154 4.839 0.272
jDE-PSS 18.9 4.64 1.67 3.21 1.50

resulting PSSs are used for the different operating conditions. The table shows that
jDE consistently achieves higher damping ratios than CDE.

5.7 Performance Summary

The performance of the DE optimization algorithm on the PSS tuning problem
is strongly dependent on the settings of intrinsic algorithm parameters: mutation
factor, crossover probability, and population size. Low values of F cause DE to
prematurely converge to local optimum, whereas values between [0.9, 0.95] ensure
good performance of the algorithm.

The crossover probability (CR) is responsible for the diversity within a given
population. It is observed that low values of CR prevent DE from exploring the entire
search space, possibly leading to stagnation. However, when CR is set between
[0.9–0.95], the algorithm is able to both maintain population diversity and escape
stagnation, which subsequently search better for the global optimum. CR should not
be set to 1 because it may lead to a rapid loss of diversity.

The population size also influences the diversity. Small population sizes tend
to lead to premature convergence, whereas larger populations tend to give slower
convergence rates but better final results.

The jDE whereby F and CR are changing and Np is fixed was implemented
to tune the PSS in SMIB. The results are compared with those of the CDE. The
modal analysis shows that PSS designed with self-adaptive DE outperformed those
from CDE for all the cases considered. These results have been validated with time
domain simulations under small disturbances. However, these results are not shown
here.

Application of Evolutionary Algorithms to Power System Stabilizer Design 59

Ta
bl

e
9

Sy
st

em
op

en
-l

oo
p

an
d

cl
os

ed
-l

oo
p

ei
ge

nv
al

ue
s

(d
am

pi
ng

ra
tio

s
ar

e
in

pa
re

nt
he

se
s)

C
as

e
A

ct
iv

e
Po

w
er

(p
u)

L
in

e
re

ac
ta

nc
e

(p
u)

N
o

PS
S

C
D

E
-P

SS
jD

E
-P

SS

C
as

e
1

1.
0

0.
3

−0
.2

68
0

±
j4

.4
57

(0
.0

60
0)

−1
.5

21
±

j3
.4

05
(0

.4
08

)
−1

.9
20

±
j3

.9
79

(0
.4

34
)

C
as

e
2

1.
0

0.
5

−0
.1

18
0

±
j3

.7
81

(0
.0

48
3)

−1
.1

34
±

j2
.7

35
(0

.3
83

)
−1

.5
66

±
j3

.2
32

(0
.4

36
)

C
as

e
3

1.
0

0.
7

−0
.1

33
0

±
j3

.3
11

(0
.0

40
2)

−0
.8

32
±

j2
.3

19
(0

.3
30

)
−1

.3
41

±
j2

.6
89

(0
.4

46
)

C
as

e
4

1.
0

0.
9

−0
.0

99
7

±
j2

.9
47

0
(0

.0
33

8)
−0

.4
87

±
j1

.6
94

(0
.2

76
)

−1
.1

61
±

j2
.2

49
(0

.4
58

)

60 T. F. Mulumba and K. A. Folly

6 Chapter Summary

The problem of optimally tuning the power system stabilizer has been addressed
in this chapter. Optimization techniques based on computational intelligence have
been used to find a set of PSS parameters that provides superior damping for a wide
range of operating conditions. In the first part of the chapter, DE was developed
and implemented to tune the PSS. The algorithm performances were evaluated
by comparing it to PBIL and CPSS. In the second part of the chapter, empirical
rules were formulated with regard to DE intrinsic parameters that ensured optimal
performance of the algorithm. To substitute the trial-and-error tuning approach, an
adaptive scheme was applied to the DE control parameters and compared to classic
DE.

References

1. P. Kundur, Power System Stability and Control (Prentice-Hall, s.l., 1994)
2. P.M. Anderson, A.A. Fouad, Power System Control and Stability (The Iowa State University

Press, Ames, IA, 1994)
3. P. Bikash, C. Balarko, Robust Control in Power Systems (Springer Science, s.l., 2005)
4. G. Rogers, Power System Oscillations (Kluwer Academic, Boston, 1999)
5. N. Mithulananthan et al., Comparison of PSS, SVC, and STATCOM controllers for damping

power system oscillations. IEEE Trans. Power Syst. 18, 786–792 (2003)
6. G. Rogers, Demystifying power system oscillations. IEEE Comput. Appl. Power 9, 30–35

(1996)
7. K.A. Folly, Multimachine power system stabilizer design based on a simplified version of

genetic algorithm combined with learning, in International Conference on Intelligent Systems
Application to Power Systems (ISAP) (2005)

8. K.A. Folly and S. Sheetekela, Application of Simple Estimation of Distribution Algorithm
to Power System Controller Design, presented at the 45th International Universities Power
Engineering Conference (UPEC) (2010)

9. KA. Folly, Small-signal stability enhancement of power systems using PBIL based power
system stabilizer, in Artificial Intelligence in Energy Systems and Power (2006)

10. P. Kundur et al., Application of power system stabilizers for enhancement of overall system
stability. IEEE Trans. Power Syst. 4, 614–626 (1989)

11. Y.N. YU, K. Vongsuriy, L.N. Wedman, Application of optimal theory to power system. IEEE
Trans. Power Apparatus Syst. 89, 55–62 (1970)

12. T.C. Yang, Applying optimisation method to power system stabiliser design part 1: Single-
machine infinite-bus systems. Electr. Power Energy Syst. 19, 29–35 (1997)

13. E.V. Larsen, D.A. Swann, Applying power system stabilizers, part I; general concepts, part
II; performance objectives and tuning concepts, part III; practical considerations. IEEE Trans.
Power Apparatus Syst. PAS-100, 3017–3046 (1981)

14. J. Reddy, J.K. Mendiratta, H-infinity loop shaping based robust power system stabilizer for
dynamic equivalent multi-machine power system, in IEEE International Energy Conference
(2010)

15. S. Chen, O.P. Malik, H-infinity optimisation-based power system stabiliser. IEE Proc. Gener.
Transm. Distrib. 142, 179–184 (1995)

16. K.A. Folly, N. Yorino, H. Sasaki, Improving the robustness of H-infinity PSSs using the
polynomial approach. IEEE Trans. Power Syst. 13, 1359–1364 (1998)

Application of Evolutionary Algorithms to Power System Stabilizer Design 61

17. J. Nocedal, S.J. Wright, Numerical Optimization (Springer-Verlag, New York, 1999)
18. S.Y. Li, S.S. Lee, Y.T. Yoon, J.K. Park, Non-linear adaptive decentralised stabilization control

for multimachine power systems. Int. J. Control Autom. Syst. 7, 389–397 (2009)
19. K.A. Folly, On the prevention of pole-zero cancellations in H infinity power system controller

design: A comparison. SAIEE Afr. Res. J. 99 (2008)
20. K.A. Folly, Robust controller design for small-signal stability enhancement of power systems,

in IEEE AFRICON (2004), pp. 631–636
21. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-

Wesley, Reading, MA, 1989)
22. K. Price, R. Storn, J. Lampinem, Differential Evolution: A Practical Approach to Global

Optimization (Springer-Verlag, Berlin, 2005)
23. E. Mezura-Montes, J. Velazquez-Reyes C.A. Coello, A comparative study of differential

evolution variants for global optimization, in GECCO (s.n., Seattle, WA, 2006), pp. 485–492
24. J. Vesterstroem, R. Thomsen, A comparative study of differential evolution, particle swarm

optimization, and evolutionary algorithms on numerical benchmark problems, in IEEE
Congress on Evolutionary Computation (2004), pp. 1980–1987

25. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing (Springer, s.l., 2003)
26. S.M. Islam, An adaptive differential evolution algorithm with novel mutation and crossover

strategies for global numerical optimization. IEEE Trans. Syst. Man Cubernetics 42, 482–500
(2012)

27. J. Brest, B. Boskovic, V. Zumer, An improved self-adaptive differential evolution algorithm
in single objective constrained real-parameter optimization, in Congress on Evolutionary
Computation (2010), pp. 1–8

28. J. Montgomery, Crossover and the different faces of differential evolution searches, in IEEE
Congress on Evolutionary Computation (CEC) (2010)

29. J. Lampinen, I. Zelinka, On stagnation of differential evolution algorithm, in Proc. of
MENDEL, 6th Int. Mendel Conf. on Soft Computing, ed. by O. Pavel, (s.n., Brno, 2000)

30. R. Storn, On the usage of differential evolution for function optimization, in Fuzzy Information
Processing Society (1996), pp. 519–523

31. S. Rahnamayan et al., Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12,
64–79 (2008)

32. S. Baluja, Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning. Technical report CMU-CS-94-163
(Carnigie Mellon University, 1994)

33. S. Yang, X. Yao, Population-based incremental learning with associative for dynamic environ-
ments. IEEE Trans. Evol. Comput. 12, 542–561 (2008)

34. S.L. Ho, S. Yang, A population-based Incremental learning method for robust optimal solution.
IEEE Trans. Magn. 46, 3189–3192 (2010)

35. S.Y. Yang et al., A new implementation of population based incremental learning method for
optimizations in electromagnetics. IEEE Trans. Magn. 43, 1601–1604 (2007)

36. S. Baluja, R. Curuana, Removing the genetic from the standard genetic algorithm, in
Proceedings of the 12th International Conference on Machine Learning (s.n., Lake Tahoe,
1995)

37. K.A. Folly, Robust controller design based on a combination of genetic algorithms and
competitve learning, in Proceedings of International Joint Conference on Neural Networks
(s.n., Orlando, FL, 2007)

38. Y.L. Abdel-Magid, A. Abido, H. Mantaurym, Simultaneous stabilization of multimachine
power system via genetic algorithm. IEEE Trans. Power Sys 14, 1428–1438 (1999)

39. Z. Michalewicz, Genetic Algorithms+Data Structure=Evolution Programs, 3rd edn.
(Springer-Verlag, s.l., 1996)

40. P. Mitra et al., Comparative of population based techniques for power system stabilizer design,
in 15th International Conference on Intelligent System Applications to Power Systems ISAP’09
(2009)

62 T. F. Mulumba and K. A. Folly

41. A. Qing, Differential Evolution: Fundamental and Applications in Electrical Engineering
(John Wiley & Sons, s.l., 2009)

42. Z. Wang et al., Robust power system stabilizer design under multi-operating conditions using
differential evolution. IET Gener. Transm. Distrib. 2, 690–700 (2008)

43. T. Mulumba, K.A. Folly, Design and comparison of multi-machine power system stabilizer
base on evolution algorithms, in Universities’ Power Engineering Conference (UPEC),
Proceedings of 2011 46th International (s.n., Soest, 2011), pp. 1–6

44. S.P.N. Sheetekela, Design of Power System Stabilizers Using Evolutionary Algorithms, Thesis
(Electrical, University of Cape Town, Cape Town, 2010)

45. H. Shayeghi, A. Safari, H.A. Shayanfa, Multimachine power system stabilizers design using
PSO algorithm. Int. J. Electr. Electron. Eng. 4, 226–233 (2009)

46. M.A. Abido, Robust design of multimachine power system stabilizers using simulated
annealing. IEEE Trans. Energy Convers. 15, 297–304 (2000)

47. R. Storn, K. Price, Differential evolution: A simple and efficient heuristic for global optimiza-
tion over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

48. S. Zhang, F.L. Luo, An improved simple adaptive control applied to power system stabilizer.
IEEE Trans. Power Electron. 24, 369–375 (2009a)

49. J. Zhang, A.C. Sanderson, Adaptive Differential Evolution: A Robust Approach to Multimodal
Problem Optimization (Springer, Berlin, 2009)

50. R. Storn, K. Price, Differential Evolution—A Simple and Efficient Adaptive Scheme for Global
Optimization over Continuous Space (International Computer Science Institute, Berkeley,
1995)

51. Y. Ao, H. Chi, Experimental study on differential evolution strategies, in Global Congress on
Intelligent Systems (2009)

52. Science daily. Chromosomal crossover. Science Daily (8 June 2012). [Online] http://
www.sciencedaily.com/articles/c/chromosomal_crossover.htm

53. J. Brest et al., Self-adapting control parameters in differential evolution: A comparative study
on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)

54. J. Lui, J. Lampinen, A fuzzy adaptive differential evolution algorithm, in Soft Computation:
Fusion Found Method Appl. (s.n., Brno, 2005), pp. 448–462

55. A.K. Quin, P.N. Suganthan, Self-adaptive differential evolution algorithm for numerical
optimization, in Congress on Evolutionary Computation (2005), pp. 1785–1791

56. K.A. Folly, G.K. Venayagamoorthy, Optimal tuning of system stabilizer parameters using PBIL
with adaptive learning rate, in Power and Energy Society General Meeting (IEEE, s.l., 2010),
pp. 1–6

57. T. Mulumba, Application of Differential Evolution to Power System Stabilizer Design, MSc.
Dissertation (University of Cape Town, 2012)

58. U.K. Chakraborty, Advances in Differential Evolution (Springer-Verlag, s.l., 2008)
59. R. Mallipeddi, P.N. Suganthan, Empirical study on the effect of population size on differential,

in IEEE Congress on Evolutionary Computation (2008), pp. 3663–3670
60. J. Teo, Exploring Dynamic Self-Adaptive Populations in Differential Evolution (Springer-

Verlag, s.l., Soft Comput, 2005), pp. 673–686
61. J. Brest, M.S. Maucec, Population size reduction for the differential evolution algorithm. Appl.

Intell. 29, 228–247 (2008)

http://www.sciencedaily.com/articles/c/chromosomal_crossover.htm

Automatic Sign Language Manual
Parameter Recognition (I): Survey

Mehrdad Ghaziasgar, Antoine Bagula, Christopher Thron,
and Olasupo Ajayi

1 Background and Motivation

The South African Constitution recognises South African Sign Language (SASL)
as the official language of the South African Deaf [1]. It has been estimated that as
many as 235,000 people in South Africa are profoundly deaf in both ears and use
SASL as their first and only language [2]. While this is the case, public infrastructure
and resources in South Africa still remain largely out of reach for the South African
Deaf. Very few resources, if any, have been adapted to the needs of this group of
people. It may not be immediately apparent that the South African Deaf are mostly
unable to communicate in spoken languages of any form, attributed to a number of
realities that are mostly unknown to the hearing due to limited contact with the Deaf
community.

The first sign language transcription system was published by William Stokoe
in 1960 [3]. His system uses Latin alpha-numeric characters to symbolise gesture
sequences. Other notations were later invented, including the Hamburg Notation
System [4], which is an extension of Stokoe, and Sutton SignWriting (or SignWrit-
ing for short) which is a pictographic sign language transcription notation [5].

The translation of any sign language into English involves the following pro-
cesses: capturing sign language gesture input, either visually or in other forms,
recognising the gestures within the input data in order to arrive at a transcription
of the gestures in a sign language computer-readable textual format, performing a

M. Ghaziasgar (�) · A. Bagula · O. Ajayi
Department of Computer Science, University of the Western Cape, Cape Town, South Africa
e-mail: mghaziasgar@uwc.ac.za

C. Thron
Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX,
USA

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_3

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_3&domain=pdf
mailto:mghaziasgar@uwc.ac.za
https://doi.org/10.1007/978-3-030-37830-1_3

64 M. Ghaziasgar et al.

linguistic translation of the sign language transcription into English text, and finally
using speech synthesis techniques to render English audio.

Referring to the capturing of sign language gestures, two main approaches have
been used in the literature: auxiliary approaches and contactless approaches [6–
8]. Auxiliary approaches make use of specialised wearable hardware such as data
gloves, data suits, and/or coloured markers to simplify input capture. This makes
it possible to obtain very accurate input such as the location and rotation of each
joint in the hands. This comes at the expense of hardware cost, simplicity, user
convenience, and naturalness of use [7]. On the other hand, contactless approaches
do not require the user to wear any specialised equipment, preferring to use one
or more cameras to capture video input. In particular, monocular-view approaches
capture input from only a single monocular camera. This provides a simple, low-
cost, and natural interface to users, but places exceptional demands on software. For
this reason, gesture recognition from a monocular view is still a largely unsolved
problem [6, 9].

This paper is concerned specifically with processing of SASL video captured
from a monocular view to produce transcriptions of the SASL gestures in a
computer-readable sign language transcription notation. This requires for an analy-
sis of SASL input video to accurately extract SASL semantic information.

Stokoe showed that five parameters fully characterise any sign language ges-
ture [3]. They are: hand location, hand motion, hand shape, hand orientation,
and facial expression. The five parameters pertaining to the hands are collectively
referred to as sign language manual parameters. These parameters are the basis
of any gesture as they are used to convey meaning, similar to words in spoken
languages. Facial expressions are used to enhance manual gestures by conveying
the tone and mood of words, similar to the tone, pitch, emphasis, etc., of the voice
in spoken languages.

Given a description of each of these parameters as they change in a sign language
video sequence, it is possible to fully infer the sign language gestures performed
in the video. This research focuses on accurately recognising and transcribing the
sign language manual parameters in a sign language video. The recognition and
transcription of facial expressions is left to future work.

A relatively large body of research exists on the recognition of sign language
manual parameters from a monocular view, such as [10–19]. The ultimate goal is to
simultaneously recognise and represent all four sign language manual parameters
from a monocular view with a high accuracy and in real-time in a combined
framework. This goal can be broken down into two main components: hand
retrieval and manual parameter representation and recognition. The hand retrieval
component aims to find and track the hands in a video sequence. Once located
and tracked, the hands are then used by the manual parameter representation and
recognition component to accurately isolate the hands, represent the hands in terms
of relevant salient features, recognise the relevant manual parameters and represent
them in a computer-readable sign language transcription notation.

Hand retrieval is comprised of the following sub-problems that need to be
addressed: finding a means of accurately and interactively locating the hands;

Automatic Sign Language Manual Parameter Recognition (I): Survey 65

devising an enhanced method of adaptive skin detection that more comprehensively
and accurately highlights the hands regardless of shape and orientation; and
finding a suitable means of accurately tracking both hands regardless of shape and
orientation, which is robust to occlusions of the face and hands.

Manual parameter representation and recognition is comprised of the following
sub-problems that need to be addressed: devising a suitable method of accurately
recognising the orientation of the hands; devising a suitable method of accurately
recognising the shape of the hands in a variety of orientations; and finding a non-
limiting means of representing hand motions.

It should be noted that in all these cases, the strategies devised must operate in
real-time; must be interactive and automatic, requiring minimal user input, if any;
and must be robust to a range of skin tones, body types, gender, etc., to accommodate
the wide ethnic diversity in South Africa.

In addressing the problem of sign language recognition the following assump-
tions are made:

• The camera is fixed and the signer is generally stationary. Also, the signer sits
(or stands) at a relatively consistent distance from the camera.

• The entire upper body and head of the signer are visible in the video. Only the
upper body is required to convey meaning in sign languages [20] and, as such,
the input will mostly consist of the user’s upper body.

• The signer faces the camera. Profile views or rotations of the body or head are
not considered.

• When performing gestures, the signer does not move extra-ordinarily slow or
fast.

The remainder of this paper provides a detailed discussion of related work in each
of the sub-problems mentioned earlier in this paper, namely, skin detection (Sect. 2),
hand tracking (Sect. 3), hand shape recognition (Sect. 4), and hand motion/gesture
recognition (Sect. 5). The paper is summarised in Sect. 6. Altogether, this paper
demonstrates the shortcomings in the literature, and highlights key techniques that
can be used to improve future frameworks.

2 Skin Detection

Skin detection is a very well-established field of research in image processing.
It has various applications in the field of human–computer interaction and has
been applied extensively in sign language recognition research [21]. Applied to a
monocular view, the aim of skin detection is to arrive at a binary adaptation of the
input image in which pixels corresponding to skin-coloured objects are highlighted
and pixels corresponding to any other objects are dimmed.

Despite the wide variations in skin colour across different ethnicities, the
chromaticity of skin under fixed lighting conditions is limited to a relatively small
region in the range of representative colours in any colour space [22, 23]. The

66 M. Ghaziasgar et al.

implication of this is that there is a relatively small likelihood that non-skin objects
in a given scene with fixed lighting will chromatically resemble skin. Therefore,
many applications that attempt to automatically track humans or body parts use skin
detection as a means of isolating objects of interest and of eliminating unwanted
noise before applying tracking [24–29].

Several skin detection strategies have been proposed. Generally speaking, these
strategies can be sub-divided into static, parametric, and non-parametric approaches
[21]. The following subsections describe each of these approaches and provide
prominent related work pertaining to each approach.

2.1 Static Skin Detection

The assumption made by static skin detection models is that the skin colour of any
ethnicity can be constrained to a fixed region in a colour space. Various colour
spaces have been used with static skin models including RGB, HSV, normalised
RGB, and YCrCb. The most prominent static skin model in the RGB colour space
is that of Kovac et al. [30] given by a binarisation function S that takes in the red,
green, and blue components of a pixel denoted R, G, and B as input as follows:

S(R,G,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Skin

if R > 95,G > 40, B > 20, |R − G| > 15,

max (R,G,B) − min (R,G,B) > 15

and R > B and R > G

Not Skin Otherwise

(1)

This function is specific to daylight conditions. Under different lighting condi-
tions, different functions are used, since the skin region occupies different locations
in any colour space under different lighting conditions.

One significant limitation of static skin detection is the lack of a method to infer
a set of optimal skin detection rules given a training set. The means of inferring a
static skin model is arbitrary. Training can therefore be very complex.

In order to address this limitation, Gomez and Morales [31] proposed a con-
structive induction algorithm to infer various possible skin detection rules in the
normalised RGB colour space. Starting with the normalised RGB components

R
R+B+G

, G
R+B+G

, and B
R+B+G

(where R,G,B are the RBG components of

the pixel) and 1
3 (corresponding to equal R,G,B components), the algorithm

progressively constructs increasingly complex combinations of these expressions
using the basic arithmetic operations +,−, ∗, /. Using this approach, they generated
a large number of different possible static skin detection functions and selected the
most effective. This approach partially addresses the lack of a definite method to

Automatic Sign Language Manual Parameter Recognition (I): Survey 67

infer static skin detection rules, but the method is computationally complex and
there is no means to determine the optimality of the solution obtained.

All static skin detection models have one common feature: they are tailor-made
for a specific set of images on which they are trained. Generally speaking, aside from
the illumination of the scene, the nature and quality of skin in an image is dependent
on a number of factors [32], including the characteristics of the camera with which
the image is captured, ethnicity of the test subject(s), and test subject individuality
such as gender, size, facial hair, etc. Assuming fixed lighting conditions, it is clear
that a very large and comprehensive training set that is well-representative of these
factors is required to be able to obtain a static skin model that generalises well.

It is challenging to obtain such a training set, and even when one is available,
training can be time-consuming and complex. It is also very likely that the eventual
model will fail under conditions that are unrepresented or under-represented in the
training set. As such, static skin detection holds limited promise in a dynamic skin
detection context.

The main advantage of static skin detection is its simplicity and fast processing
speed in run-time [31, 32].

2.2 Parametric Skin Detection

Parametric skin detection is based on the assumption that the colour of skin pixels
follows a fixed probability distribution. Most commonly, the underlying probability
density is chosen as Gaussian:

p(c|skin) = 1

(2π)
n
2 |�| 1

2

· exp

(
− 1

2
(c − μ)T�−1(c − μ)

)
, (2)

where c is a colour vector c = 〈c1, . . . , cn〉 from a set of n different channels of
one or more colour spaces and p is parametrised by a mean vector μ and covariance
matrix � computed on a training set of skin pixels in the same channels and colour
spaces as c. A pixel is identified as skin if the probability density for the pixel’s
colour vector surpasses a given threshold. This identification rule corresponds to the
thresholding function S(c) given below:

S(c) =
{

Skin if p(c) ≥ ts

Not Skin if p(c) < ts
(3)

The use of a colour vector c rather than a single colour channel provides greater
flexibility in modelling the skin region and almost invariably results in better skin
detection results [33–36]. Several studies have been carried out to compare the use
of various colour spaces and channels for multivariate parametric skin detection
[34, 35, 37]. While it is clear that the use of more than one component more often
than not provides better results than the use of only a single component, the exact

68 M. Ghaziasgar et al.

number of colour spaces and components appears to be arbitrary and specific to the
data set used.

The use of a Gaussian distribution leads to a very compact model of the skin
colour distribution in terms of only a small number of parameters. Very importantly,
the method of training, though potentially computationally intensive, is explicit and
defined and can be used to determine an optimal skin detection model. It can be used
to accurately represent a complex skin region in multiple colour spaces in a single
model. However, as in static skin detection, lighting variations remain a significant
challenge. A single parametric model can only realistically incorporate very small
variations in lighting before the skin region overlaps with non-skin regions in
the colour space(s) used. Aside from lighting, a large training set that is well-
representative of scene and subject variations is required to achieve a model that
generalises well. As mentioned in the previous subsection, acquiring a training set
that is representative of a comprehensive set of variations in images is challenging.
It is likely that the skin model developed will fail under any varied conditions.

2.3 Non-parametric Skin Detection

Similar to parametric skin detection methods, non-parametric skin detection meth-
ods attempt to assign to a pixel a probability that specifies the likelihood of the
pixel being skin. A mapping of the pixel onto the colours of skin and non-skin in
a training set is used to determine the probability. Rather than modelling skin as
a region in a colour space, non-parametric skin detection models skin as a set of
colours. An unknown pixel is assigned a probability depending on how well its
colour is represented in the training set.

This makes for a very flexible and dynamic representation of skin that does not
necessarily have fixed boundaries, resulting in more accurate skin detection results
than the previous two methods [38]. The probability can then be binarised as being
skin or non-skin using a thresholding function S similar to that in Eq. (3).

Non-parametric skin detection is of two types. The first type makes use of
a Bayes’ classifier as a skin colour probability model. The model is trained on
positive and negative samples of skin colour to obtain two probabilities p(c|skin)

and p(c|¬skin), the probabilities of observing a specific colour c, given that the
colour is either skin or non-skin, respectively. These are then used in the following
probability function p, which is an application of Bayes’ rule, to determine the
probability of observing skin given a specific colour c:

p(skin|c) = p(c|skin)p(skin)

p(c|skin)p(skin) + p(c|¬skin)p(¬skin)
(4)

This approach has been used for skin detection in a variety of contexts [24, 39–
41]. A range of colour spaces have been used, including the YCrCb colour space
[39], a log-transformed RGB colour space [41], the YUV colour space [24], and
others.

Automatic Sign Language Manual Parameter Recognition (I): Survey 69

The second non-parametric skin detection approach makes use of a multidi-
mensional histogram to represent the skin colour distribution. The colour space is
quantised into bins, where each bin corresponds to a limited range of values in each
colour component. Given a colour c that is located in a bin with histogram count
h(c), the conditional probability density p(c|skin) is computed as:

p(c|skin) = h(c)

htotal
, (5)

where htotal is the sum total of all bin counts. This is a computationally efficient
procedure that can yield accurate results given an appropriate training set. For this
reason, this method has been used extensively for skin detection using a variety of
colour spaces [29, 40, 42–46].

Generally speaking, non-parametric skin detection is also illumination-specific,
like the previous two methods. It also, potentially, requires a large representative
training set to generalise well. It is very important to limit the amount of noise in the
training set used to compute the skin model, since even relatively small amounts of
noise can significantly degrade the accuracy. Like parametric skin detection, training
can be achieved to convergence, given a method of training is explicitly defined.

One adaptation that has been applied to histogram-based skin detection is to
incorporate an online training procedure, made possible by the computational
efficiency of the method. Specifically, many studies [29, 44, 47–49] incorporate
a face detection component—commonly the Viola–Jones face detector [50]—and
use a portion of the face region to compute a dynamic skin histogram of a specific
user that adaptively represents the scene illumination, test subject individuality and
ethnicity, and the characteristics of the camera used. If the region of the face used
to compute the dynamic skin histogram is accurately segmented, any drawbacks
relating to illumination sensitivity and noise sensitivity are circumvented and the
skin model obtained is seamlessly adapted to any conditions observed. This method
is henceforth referred to as adaptive histogram-based skin detection.

Using this specific approach, and assuming that the face of the intended user of
the system is mostly visible, it is possible to achieve skin detection results similar
or superior to those of other methods without the need for any prior training set at
all, as in [29, 44, 47–49]. Figure 1 provides an example of skin detection using this
approach.

This approach holds significant promise towards dynamic skin detection but
currently has a number of limitations that need to be addressed. The skin colour of
various parts of the hands of many users is chromatically different from that of their
face. Also, even in cases when the user’s face is chromatically close to the hands,
the final skin image typically has a large number of holes. Finally, in some cases,
skin and non-skin probabilities may be in close proximity, making it challenging to
dynamically select a threshold that accurately and consistently separates the two.

70 M. Ghaziasgar et al.

Fig. 1 Non-parametric skin detection using adaptive histogram-based detection: (left) Original
image; (right) binary skin detected result [44]

3 Hand Tracking

Hand tracking has been investigated in some research studies and advances have
been made in the field, but it remains a largely unsolved problem [6, 9, 51]. It has
wide-ranging applications in human–computer interaction such as in virtual reality,
robotics, games, and sign language recognition, among others [51].

General object tracking involves detecting/locating a specified object across an
image sequence. The distinction between object detection and object tracking is that
the former searches for the object in the entire frame in every frame in the sequence,
whereas the latter makes use of contextual information from one or more previous
frames in the sequence to limit the search space, resulting in greater computational
efficiency [51].

Hand tracking is a specialised field of object tracking in which the object to be
tracked is a hand: it is articulated and has many degrees of freedom and is therefore
highly deformable. While rigid objects can be tracked by means of a continuous
contextual search for their shape/contours, the hands cannot be tracked using this
strategy if they are assumed to continuously move and change shape. Hand tracking
is therefore notoriously challenging [6, 9, 51].

Hand tracking strategies can broadly be divided into two groups: those that track
a single hand and those that track both hands simultaneously. Tracking both hands
is a significantly more challenging tracking problem when the hands overlap with
each other or the face, causing occlusions of the hand(s) or face [8]. In such cases,
a strategy is required to resolve occlusions and distinguish the hands and face from
each other. For this reason, studies that attempt to track both hands are very limited.

The following subsections describe studies within each of these hand tracking
groups.

Automatic Sign Language Manual Parameter Recognition (I): Survey 71

3.1 Approaches to Tracking a Single Hand

Rautaray and Agrawal [26] tracked the hands by means of skin detection and a
statistical means of locating the hand in each frame. At the core of the method is
the assumption that the hand is the largest object in the input. In each frame, a static
skin detection model in the L*a*b* colour space is first used to detect objects of
skin colour. Thereafter, connected components labelling [52] is used to find clusters
of skin. Finally, the median of the skin clusters is used to infer the position of the
hand.

Figure 2 demonstrates the tracking system in action. This approach can track the
hand regardless of shape and orientation, but it is highly sensitive to skin-coloured
noise regions in the frame and limits the freedom of the user by making stringent
assumptions on the nature of the input.

A number of other similar studies [27, 53, 54] have made use of a similarly simple
tracking strategy with the same limitations and comparable effectiveness.

Kölsch and Turk [25] introduced a new method of pruning the LK optical flow
tracking approach [55] for hand tracking that they called the “flocks-of-features”
method. The pruning method is derived from the flocking organisation of birds in
flight. While each bird moves individually, it maintains proximity with other birds in
the flock and the median of the flock. In terms of hand tracking, the hand is assumed
to be a flock of skin-coloured KLT features [56]—also known as “good features to
track”—which move individually while maintaining proximity with other features
in the flock and the median of the hand as it moves.

A large number of features—100 or more—are computed on skin-coloured
regions of the hand in the first frame. As the hand moves and changes shape in
every subsequent frame, the positions of the feature points are updated using LK
optical flow tracking, subject to the proximity constraints. Tracking is achieved by
computing the centroid of the hand which is assumed to be the median of the feature
points in each frame. Figure 3 demonstrates the system in action.

Fig. 2 The hand tracking system of Rautaray and Agrawal [26]

72 M. Ghaziasgar et al.

Fig. 3 The hand tracking system of Kölsch and Turk [25]

At the core of this approach is the assumption that the only skin-coloured object
in the input is a single hand. It is very sensitive to any competing skin-coloured
noise and strong edges in the background, the presence of which can cause incorrect
relocations of feature points in their proximity and, ultimately, tracking failure.

A modification to this approach by Fogelton [28] proposed the application of this
approach to a skin probability image rather than to an original grayscale equivalent
of the input. This eliminates edges in the background that could otherwise interfere
with tracking. The skin probability image is obtained by means of histogram back-
projection of a sample of the hand in the HSV colour space onto an input image
in the image sequence. A set of morphological operations is used to reduce noise
regions in the probability image.

Visual results indicate that this modification significantly improves tracking
performance. Figure 4 illustrates the modified algorithm in action. In the figure,
the hand is passed over the face without causing a loss of tracking. This is mainly
achieved by ensuring that the hand occupies the majority and centre of the input in
the period over which the occlusion takes place, without which the face is likely to
“steal” the tracking features.

The hand tracking strategies discussed up to this point have used a single cue,
i.e., skin colour, to track the hand, making these strategies highly susceptible to
skin-coloured noise in the background. A number of studies have investigated the
use of additional cues to eliminate skin regions that are not part of the hand(s).

Li et al. [14] proposed a hand tracking system which provides significantly
more freedom to the user than previous systems. The system combines a skin cue
with a motion cue to limit skin-coloured background noise that could interfere
with tracking. Assuming a stationary camera and a generally stationary user, a
combination of the skin and motion cues effectively eliminates many stationary
skin regions including the face and neck and any background skin-coloured noise.

Automatic Sign Language Manual Parameter Recognition (I): Survey 73

Fig. 4 The hand tracking system of Fogelton [28]

Depending on the motion highlighting method used, this can be an efficient and
useful combination for tracking.

Skin detection is carried out by means of adaptive histogram-based skin detection
in the HSV colour space. Motion detection is achieved with background subtraction
using Gaussian mixture models (GMMs) to model the motion of each pixel in time.
The CAMShift tracking algorithm is then used to track the hand which is assumed to
be the most prominent moving skin region in the frame. Making use of a multi-cue
tracking approach provides significantly more freedom to the user than single-cue
approaches.

Asaari and Suandi [57] also combined motion features with colour features to
more robustly highlight skin objects to track. A static skin detection model in the
YCrCb colour space was used to highlight skin. As with others, the luminance
channel was omitted to obtain greater robustness to illumination changes. Frame
differencing, which is a simpler motion highlighting method, was used to highlight
motion between subsequent frames. Finally, a Kalman filter was used to predict the
location of the hand in every frame based on the skin and motion observations. The
results indicate that the multi-cue system is capable of tracking a single hand in a
relatively less constrained environment than systems that use only a single (skin)
cue.

Liu and Zhang [58] combined texture features with colour features and used a
particle filter to track a single hand. The local binary patterns (LBPs) operator [59]
was used to model texture features, while a histogram-based skin detection strategy
was used to highlight skin in the HSV colour space. The visual results indicate

74 M. Ghaziasgar et al.

that the strategy provides relatively greater robustness to skin-coloured background
regions. In the figure, the hand is passed over a small region of the neck without a
tracking loss.

Other studies similarly combine cues and use a tracking strategy such as
MeanShift, CAMShift, Kalman filters, or particle filters [8, 10, 60, 61] with similar
results.

A manual sign language parameter recognition necessarily requires input from
both hands simultaneously. Tracking systems that track a single hand at a time
therefore have limited promise in this context, but it is clear that a multi-cue strategy
is a key to providing greater user freedom.

3.2 Approaches to Tracking Both Hands

A smaller number of studies have attempted to track both hands simultaneously.
Prominent examples are described.

Spruyt et al. [9] proposed a system in which motion, texture, and colour features
were combined, and a particle filter was used to track the two hands. Edge detection
was used to highlight texture features, and the skin detection method used was
a parametric model in both the RGB and HSV colour spaces. The motion cue
used was the GMM implementation by Zivkovic [62]. Visual results demonstrate
accurate tracking of both hands on a complex background. The strategy does not
address, and is sensitive to, occlusions of the hands with each other and with the
face. Furthermore, the system operates at a processing speed of 8 frames per second
(fps) which is below real-time.

Coogan et al. [63] also proposed a multi-cue approach that uses motion, colour,
and location features to limit sources of noise. A static skin detection method was
used, although details of this are unclear. Frame differencing was used to obtain
motion information. An additional cue was obtained by analysing the optical flow
of gray-level pixels in subsequent images, making the assumption that pixels move
by relatively small distances from frame to frame. A Kalman filter was used to
convert the motion, colour, and location observations into predictions of the hand
locations in every frame.

The management of self-occlusions was limited to detecting them and keeping
track of which skin blobs, i.e., hands and/or face, have occluded in any given
frame. No strategy was proposed to resolve such occlusions when the respective
blobs separate and emerge. Visual results of the system are provided in Fig. 5 and
demonstrate effective tracking within the limits of the system. The system operates
at a processing speed of 10 fps which is significantly less than real-time.

Wen and Zhan [46] proposed a system that uses a colour cue combined with
a position forecasting model and the CAMShift tracking algorithm to track both
hands. Skin detection was achieved by histogram back-projection using the Cr
channel of the YCrCb colour space. A position forecasting model based on a recent
location history of each hand was used to improve tracking and keep track of

Automatic Sign Language Manual Parameter Recognition (I): Survey 75

Fig. 5 The hand tracking system of Coogan et al. [63]

Fig. 6 The hand tracking system of Wen and Zhan [46]

occlusions as they took place. With this approach, occlusions that take place with
one or both hands in continuous motion can be resolved. Figure 6 demonstrates the
system in action. If the hands stop at the moment of occlusion, they can no longer
be resolved. The system operates at a real-time speed of 25 fps on frames of size
320 × 240 pixels.

Argyros and Lourakis [24] proposed a system that uses data association to track
objects. A non-parametric skin detection procedure was used in the form of a Bayes’
classifier trained on a large training set of images. The YUV colour space was used,
with the luminance (Y) component discarded. Thereafter, data association was used
to track skin-coloured objects.

76 M. Ghaziasgar et al.

With this method, it is assumed that ellipses can approximate the shape, size, and
location of highly deformable objects to be tracked very well. Therefore, objects are
modelled as ellipse hypotheses, the parameters of which are continuously updated as
new observations are obtained in the image sequence. Assuming that relatively small
changes in the location and shape of objects take place between any two consecutive
frames, it is possible to associate observations with existing hypotheses very well.
A simple motion forecasting method is also used to predict the location of each blob
based on its two most recent locations to avoid losing track.

Given a processing frame rate that is close enough to real-time and assuming
that a user moves his/her hands in a natural way, this method can work very well.
Very importantly, contrary to other methods, the method can keep track of objects
during occlusions, even if the objects stop during the occlusion, with a reasonable
assumption that at least a small part of each occluding object will always be visible,
i.e., if one hand moves in front of the other hand, at least a small part of the occluded
hand will still be visible.

Holden et al. [64] proposed and used a very similar hand tracking approach.
The exact implementation of this strategy by Argyros and Lourakis is not

described, but is visually demonstrated to be accurate and able to track objects
in frames of size 320 × 240 pixels at a real-time frame rate of 28 fps. Figure 7
demonstrates the system in action. This is therefore a very promising approach
for the proposed sign language manual parameter recognition system. However,
with only a high-level description of the system provided and no algorithmic and
implementation-level details presented, it may be possible to replicate the tracking
accuracy of the system to some extent, but it will be very challenging—if at all
possible—to replicate the high processing speed obtained.

It is well-known that any given system can be implemented in many ways,
each with an inherent computational complexity and efficiency [65]. A problem
as simple as sorting a list can be achieved in several ways, each with an inherent
computational efficiency and cost, towards achieving the same end result. The
problem is, therefore, to devise a custom implementation of this tracking strategy
that is efficient and accurate.

Fig. 7 The hand tracking system of Argyros and Lourakis [24]

Automatic Sign Language Manual Parameter Recognition (I): Survey 77

4 Hand Shape and Finger-spelling Recognition

A large body of research exists on the recognition of hand shapes for a variety of
sign languages from a monocular view. All of these studies assume that the hand is
orientated frontal-upright in the plane of the camera view, i.e., a single orientation.
Any rotations of the hand in any axis are treated as a misalignment of the hand.
They are either excluded from consideration, or are corrected for by means of a
normalisation procedure.

Also, the majority of these studies aim to recognise finger-spelling hand shapes
specific to a sign language of choice. The majority of the studies focus on
American Sign Language (ASL) finger-spelling recognition due to the relatively
wider availability of ASL finger-spelling data sets. Finger-spelling gestures are
generally not part of sign languages [66] and their use in these sign languages is very
limited [67–69]. Regardless of this, it should be considered that the actual shapes
being recognised in any specific study can be considered as arbitrary. To a great
extent, if a given set of hand shapes can be accurately recognised, the recognition
strategy can be extended to other sign language-specific shapes, although with a
potentially different recognition success rate. For this reason, studies that perform
hand shape recognition in a non-sign language context are not excluded from
consideration and thus discussed in this section.

In each study, a fixed set of hand shapes are pre-selected and recognised. The
pre-selection of a fixed number of shapes is well justified by the fact that each sign
language has a fixed and finite number of distinct hand shapes. However finite, the
potentially large number of possible shapes makes the collection of a completely
comprehensive training data set very challenging. For this reason, every study limits
the scope of recognition to a reasonable subset of hand shapes, with the promise of
extension in the future.

Hand shape and finger-spelling recognition strategies have broadly been sub-
divided into two categories in the literature [70, 71] according to the approach used
to classify specific hand features into hand shape classes. The first approach, called
the “rule-based” approach (also sometimes referred to as the “template-matching”
approach), makes use of a set of pre-defined rules to achieve classification. The
second approach, called the “machine learning” approach, uses machine learning
techniques to achieve classification.

The following subsections describe studies that use the rule-based and machine
learning approaches. In each case, a selection of prominent studies is described
along with their relevant pre-processing steps, to provide a basis of understanding,
with further references provided to the interested reader.

78 M. Ghaziasgar et al.

Fig. 8 Contours of hand shapes recognised by Liu and Kehtarnavaz’s system [10]

4.1 Rule-Based Approaches

Liu and Kehtarnavaz [10] proposed a system for the recognition of six arbitrary
finger-spelling hand shapes that were specifically categorised on the number of
extended fingers presented. Although the main focus of the study was the use of
stereo images for this task, they compared the use of a monocular view with a stereo
view. This discussion focuses on the results obtained from a monocular view. The
hand was tracked using the CAMShift tracking algorithm based on a skin detected
image obtained by means of a multi-variate Gaussian distribution in the YCrCb
colour space. A region growing approach [72] was applied to the centre of the
CAMShift tracking window in order to segment the hand region more accurately.
This was followed by the use of an unspecified set of morphological operations to
highlight the outer-most contour of the hand. Figure 8 illustrates example contours
of the six hand shapes considered. It is seen that the shapes are all in a frontal-upright
orientation in the plane of the camera view.

To recognise the hand shapes, a convex hull was fitted onto the hand contour
[73] and a set of pre-defined rules were applied to the size and defects of the convex
hull to infer the hand shape. Fifty images per hand shape were used to test the
system, although the number of, and diversity in, test subjects is not clear. Despite
the simplicity of the setup, the accuracies obtained were relatively low, the lowest
being 55% for hand shape “five,” and the highest being 67% for hand shape “zero.”

Kang et al. [11] proposed a system for the recognition of 12 arbitrary hand
shapes very similar to those used by Liu and Kehtarnavaz. It was assumed that
the input would consist of only an upright hand on a simple background. A static
skin detection model in the chrominance components of the YUV colour space was
applied to each hand image. Thereafter, connected components labelling was used
to locate the largest contour in the skin image, which is the hand. The opening
morphological operation was used to isolate the extended fingers in the resulting
image. Finally, a second round of connected components labelling was used to
identify and count the number of contours, i.e., fingers, that remained in the resulting
image. Classification into one of the 12 hand shape classes was achieved by simply
counting the number of fingers in the image. An unclear number of images from
five subjects that are not described were used to test the system, but the system is
claimed to correctly classify in “99% of the cases”[11].

Automatic Sign Language Manual Parameter Recognition (I): Survey 79

Schreer and Ngongang [12] proposed a strategy to recognise 13 ASL hand
shapes. The strategy assumes the use of binary images consisting of the hand to
be recognised. Using the contour image, a template distance map is produced. This
is done by computing the distance of the tangent at each point on the contour to the
corresponding contour on the opposite side of the hand. Plotting the distances of all
these points produces a template distance map that characterises each hand shape
uniquely. Classification is achieved by computing the distances between peaks in
the distance map and using a set of rules to assign the observed distances to one
of the 13 ASL hand shapes. A “satisfactory” classification accuracy is claimed, and
only a small sample of visual results are provided.

Shimada et al. [74] used a similar rule-based approach with a similar outcome.
In [75], the authors proposed a slightly different model for recognising American

Sign Language (ASL) finger spelling in online videos. Sourcing data from this
unconventional source (online videos) presented numerous challenges such as
varied lighting conditions, background noise, camera angle, low pixel resolutions.
The authors had to perform a number of pre-processing on the data. Test were
conducted using local encode–decode and CTC and the results showed that accuracy
increased with number of frames per second in the video, though the overall
accuracy for both methods was less than 45%, with CTC scoring higher in most
of the tests.

4.2 Machine Learning Approaches

Shi et al. [76] presented a benchmarking dataset for Arabic Sign Language (ArSL)
alongside a sign language recognition algorithm which incorporates segmentation
(using depth and position), hand shape sequencing based on histogram of oriented
gradients (HOG) and principal components analysis, as well as body motion
description and classification. Finally, the authors used both canonical correlation
and random forests to test the approach and obtained a classification accuracy
of 55%.

In a similar work, Alzohairi et al. [77] also worked on ArSL. Due to the similarity
between signs in ArSL, most imaged-based recognition software have low accuracy.
The authors compared a number of classifiers and reported that the HOG gave the
highest accuracy for 27 of the 30 ArSL signs, while for the last 3 signs, the edge
histogram descriptor (EHD) was better.

In the work of Kang et al. [78], a method for distinguishing between hands and
objects using a two-stage random decision forest (RDF) was proposed. Compared to
the traditional RDF and fully convolutional network (FCN), the proposed approach
showed comparable results with shorter processing time.

Aryanie and Heryadi [13] proposed a strategy to recognise 10 ASL finger-
spelling hand shapes. The strategy makes use of pre-segmented images of the hand
and, as such, no skin detection or hand tracking strategy is required or used. The
hand shapes are characterised by means of 16-bin histograms on each channel of

80 M. Ghaziasgar et al.

the RGB colour space, resulting in a combined histogram of 48-bins which is taken
to be a 48-dimensional feature vector.

A k-nearest neighbours (kNNs) classifier is used to classify an image into one of
the 10 ASL hand shape classes. The classifier was trained on a data set consisting
of between 517 and 555 samples per hand shape captured by 5 Caucasian signers.
The best model was shown to achieve a near-perfect accuracy of 99.6% across all
shapes and signers. The use of RGB histograms to characterise hand shapes implies
very strong colour-dependency of the classifier. The same hand shapes performed
by signers of a different skin colour would have very different feature vectors and
would have to be modelled as separate hand shape classes altogether. The strategy
is, therefore, very signer-dependent.

Saremi et al. [79] proposed a hybrid of multi-objective particle swamp optimi-
sation (MOPSO) and evolutionary population dynamics (EPD), which was applied
to determine the Pareto optimal front of hand postures. Tests were done using data
from different datasets and the results showed that the hybrid model proposed was
better than the classical MOPSO.

Cai et al. [80] proposed a weakly supervised model which relies on the
depth information available in images taken using RGB-D cameras. This helps
to overcome the challenges of scarce annotated 3D hand-pose datasets and long
training times. Using the depth information, the authors created a synthesised 3D
dataset and used a depth regulariser to compensate for the absence of a true ground-
truth. Results of experiments performed on both synthesised and real hand-image
datasets show that the proposed approach was at par in most tests and even out-
performed the compared state-of-the-art methods in some instances.

Li et al. [14] proposed a hand shape recognition system to recognise 10 SASL
hand shapes. As with other studies, these hand shapes are orientated in a frontal-
upright position in the plane of the camera view. Li et al.’s skin detection and hand
tracking strategy was described in Sect. 3.1. Once the hand is tracked and isolated,
connected components labelling (CCL) [52] is used to locate the largest contour in
the CAMShift tracking window, which represents the hand. The contour image is
resized to a constant size of 20×30 pixels. The resulting image is flattened to obtain
a 600-dimensional feature vector. Classification is achieved by means of support
vector machines (SVMs).

Training was carried out using 40 examples captured from each of two test
subjects, and testing, using 15 examples captured from five different test subjects.
The test subjects were of different gender and skin tone. The system achieved a high
overall recognition rate of 81%.

de Paula Neto et al. [15] proposed a recognition strategy for 18 Brazilian Sign
Language finger-spelling hand shapes. The strategy operates on binary images of
the hand shapes orientated in a frontal-upright position facing the camera. Each of
the images is of a fixed size of 150 × 100 pixels. Features are extracted from each
binary hand image by applying a custom-defined zoning statistical operation to the
image. This involves dividing the image into a pre-defined set of blocks and taking
the ratio of the white and black pixels in each block as the feature value for that
block. In effect, these features mainly represent the outer contours of each hand,

Automatic Sign Language Manual Parameter Recognition (I): Survey 81

and the inner texture of the hand to a smaller extent whenever such contours are
available.

The features are used as input to a multi-layer perceptron (MLP) that classifies
the features into a hand shape class. Having been trained on 15 images of each hand
shape, and tested on 40 images of each hand shape, the system achieved a high
average accuracy of 95%.

Hu [81] proposed a similar system for ASL 24 finger-spelling letters. Several fea-
ture descriptors were compared with SVMs used for classification. High accuracies
of 85% and above were achieved for every letter.

While the feature description method used differs slightly from study to study, the
majority of machine learning-based hand shape recognition studies [16–19] make
use of features pertaining to the outer contours of the hand to characterise hand
shapes, similar to Li et al. and de Paula Neto et al. In all of these cases, a relatively
larger vocabulary can be recognised at a higher accuracy compared to rule-based
approaches; this is due to the use of machine learning techniques to automatically
infer a model. However, the use of only the outer contour to characterise the hand
shapes limits the possible visual variations that can be recognised.

In contrast, Maqueda et al. [71] and Bastos et al. [82] recently used texture-based
feature descriptors to recognise much larger vocabulary sizes of 24 and 40 hand
shapes, respectively, at very high accuracies.

Maqueda et al. proposed a new LBP feature descriptor that they refer to as the
“local binary sub-patterns” (LBsP) feature descriptor. Like the original LBP, the
LBsP is a representation of the local and global texture of objects in an image.
Using the LBPs and images of segmented hands, they were able to achieve very high
accuracy classification—97.9%—of 24 hand shapes using the SVM classification
technique. Bastos et al. used two different texture descriptors—the HOG and the
Zernike Invariant Moments (ZIM). Using MLPs, they achieved 96.77% accuracy
with the HOG and 86.62% with the ZIM on a significantly larger set of 40 hand
shapes—almost twice as many as Maqueda et al.

A static hand gesture recognition for low-powered mobile devices, which
combines HOG with LBPs was developed in [83]. The model is vision-based and
uses the camera of the mobile device to capture input. Texture extraction was
done using LBPs, contour information using HOG, and AdaBoost was used for the
training process. AdaBoost is particularly suitable for a low-powered mobile device
context since it has a low energy footprint. The model resulted in a recognition
accuracy of 92% at a distance of 0.75 m or less from the camera.

5 Hand Motion/Gesture Recognition

Hand motion recognition has generally been referred to as gesture recognition in
the literature [51]. All of the studies that attempt hand motion recognition do so
for a fixed set of pre-defined hand motions, with almost all studies disregarding the
hand shape. A specific hand motion is then taken as representing a specific word or

82 M. Ghaziasgar et al.

phrase in a specific sign language. In all of these cases, words or phrases that have
distinct hand motions are selected and recognised. Many of these studies obviously
fail to discriminate between two or more words or phrases that have the same hand
motion, but different hand shape and/or orientation.

Selected studies are described below, with additional references provided for the
interested reader.

Yang et al. [84] proposed a system to recognise 18 hand motions including finger-
drawings of shapes, namely, circle, triangle, and square, the letters “a”–“e” and
numbers 1–5, as well as the motions of grasping, throwing, and waving. Static skin
detection on the hue component of the HSV colour space was used to highlight
skin, and tracking was achieved by simply assuming that the hand is the only skin-
coloured object in the frame at any time. Several features of the hand, including its
position relative to the centre of mass of the gesture, its velocity, and its size are
collated across the gesture sequence into a time-dependent feature vector. Hidden
Markov models (HMMs) are trained and used to recognise 18 unique hand motions
with a very high average accuracy of 96%.

Matsuo et al. [85] proposed a similar but improved system. The improvement that
they proposed pertains to the method of generating HMM models. They proposed a
method of generating multiple HMM models for each recognised hand motion and
selecting the simplest and most accurate model in each case. Improved accuracies
are claimed on a set of 20 unique hand motions.

Holden et al. [64] proposed a similar system to recognise a set of 21 Australian
Sign Language words. Parametric skin detection in the RGB colour space was used
to highlight skin in the image. A tracking approach based on data association was
used to locate and track the hands and face across the image sequence. In each
frame, a set of features that were thought to characterise the words to be recognised
were computed and accumulated. These included: the position of the hands and face
relative to each other, the size of each of the hands and face in the frame, and the
angle of the hands and face relative to each other. HMMs were trained to recognise
the 21 words based on these features. A very high accuracy of 99% was claimed,
although the exact testing procedure is not clear.

Many other similar studies exist [61, 86–88], with the majority of these studies
making use of a custom set of features as input to HMMs or other classifiers to
recognise a fixed set of hand motions.

The distinct hand motions that can be performed in sign languages are numerous.
Words/phrases are performed in specific locations around the signer, and the hand
motion trajectories taken towards those locations are also varied. The unique hand
motion possibilities are therefore very numerous. As stated by Vogler and Metaxas
[89], there is a “combinatorial explosion” when representing and recognising
gestures holistically.

Therefore, whereas the use of a fixed classifier to recognise a finite set of classes
is justified in the case of hand shapes and hand orientations, its use leaves a lot to
be desired when applied to hand motions. It is highly unlikely that every, or even
many, possible unique hand motions can be effectively represented, modelled, and
recognised in any single classifier or system. This severely limits the vocabulary

Automatic Sign Language Manual Parameter Recognition (I): Survey 83

Table 1 Taxonomy of related literature

Category Reference Strengths Weaknesses

Static Skin
detection

[21–23, 30–32] Simple and fast processing
speed (run-time)

1. Affected by
lighting conditions

2. Authors used
arbitrary skin
detection rules

3. Optimal solution
difficult to find

Parametric skin
detection

[33–37] The use of multiple
components produced better
results than when single
component(s) were used

1. Variations in
lighting conditions
remain a significant
challenge

2. Requires large
data set in order to
generalise well

Non-parametric
skin detection

[24, 29, 38–50] 1. Computationally efficient
and yields accurate results if
given appropriate training
set(s)

Similar to those of
the Parametric
approach

2. Dynamic skin histogram
provides immunity to the
effects of illumination
changes

3. Skin detection can be
done without the need for
prior training

Hand tracking

Single hand,
single hand
tracking with
multi-cue

[8, 10, 14, 25–28, 51,
53, 54, 57, 58, 60, 61]

1. The use of motion cues
provides significantly more
freedom to the users when
compared with other systems

1. Very sensitive to
any competing noise
from
skin-colouration or
background

2. A motion cue also
minimises interference from
stationary skin regions such
as face and neck

2. The hand must be
centred as well as
occupy a large
portion of the image
frame

3. Approaches that use
multi-cue are more robust
than those with single cue

3. Systems that
utilise manual sign
language parameters
for recognition
usually require input
from both hands
simultaneously; thus
tracking only a single
hand at a time is not
ideal in such contexts

(continued)

84 M. Ghaziasgar et al.

Table 1 (continued)

Category Reference Strengths Weaknesses

Track both
hands simulta-
neously

[8, 9, 24, 46, 62,
63]

1. Can achieve high accuracy if
there is no occlusion of hands

1. Most do not cater for
hand occlusions, with
the exception of [24]

2. Tracking both hands has
more realistic applications as
most sign languages require
both hands for communication

2. Most of these
techniques require the
hands to be in an
upright position and on
a simple background

3. Most of these
approaches are slow
(running at 8–10 fps),
hence not suitable for
use in real-time
applications

Hand shape recognition

Finger-
spelling
recognition

[10–12, 70, 74, 81] Due to the relative simplicity
of proposed solutions, the
computational resources
required for implementation
are usually low

1. The proposed
approaches require the
hand to be perfectly
aligned and in a
frontal-upright
orientation

2. In many environs,
finger-spelling gestures
are generally not
considered a part of
sign languages

3. Most of these
approaches focused on
recognising specific
finger-spelling shapes
for specific sign
languages, the majority
being ASL

Rule-based or
template-
matching

[10, 13, 67–
69, 72, 73, 75]

1. Most applied a relatively
simple setup

1. Highly dependent on
skin colour

2. High prediction accuracy
was reported for certain hand
shapes

2. They are
skin-specific in that
they require different
models to be built when
trying to recognise the
same signs done by
signers with varied skin
types or colour

(continued)

Automatic Sign Language Manual Parameter Recognition (I): Survey 85

Table 1 (continued)

Category Reference Strengths Weaknesses

Machine learning [14, 15, 71, 76–80, 82–
85]

Relatively high recognition
accuracy (average 92%) in
most cases

1. A few of the
methods require
frontal orientation of
the hands

2. They are mostly
sign language
specific, i.e., they can
only recognise the
language used in the
training sets, e.g.,
Brazilian sign
language or SASL or
Australian sign
language only, and
not all or a mix of
languages

Hand motion or
gesture
recognition

[61, 64, 86–88, 90–92] 1. High accuracy (99%)
was reported

1. Only small (niche)
data sets were
considered

2. Most employed a
compact model to represent
hand motions

2. A few had a
cumbersome
pre-processing step,
requiring a re-
representation/mapping
of gestures as blocks
of frames prior to
usage

size, and hence the effectiveness and usability, of such strategies. A method of
representing hand motions in terms of more fundamental features of these motions
is required.

To this end, rather than viewing a hand motion as a single unit, Nel [90]
proposed that hand motion be decomposed into, and represented as, a sequence
of hand locations in time. This representation may be considered an indirect
representation of any given motion, but it is completely flexible and can be used to
represent virtually any hand motion, provided the hands can be accurately tracked.
It may also be considered as a very cumbersome and verbose representation of
any given motion, but this can be reduced to a very compact representation using
a key-framing approach similar to that used in [91, 92] for human movement
representation.

A summary of all of the surveyed literature is provided in Table 1.

86 M. Ghaziasgar et al.

6 Summary and Conclusions

This paper provided a literature review in the fields of skin detection, hand tracking,
hand shape recognition, and hand motion recognition.

Skin detection was observed to be sub-divided into three main categories,
namely, static, parametric, and non-parametric methods. The strengths and weak-
nesses of each method were detailed. The discussion showed that non-parametric
methods show the most promise in terms of skin detection accuracy, providing both
model flexibility like static methods and training simplicity like parametric methods.
They also do not appear to be sensitive to the specific colour space used, although
many studies indicate a beneficial effect from the use of chrominance information
without luminance information.

Of the non-parametric methods, the use of histogram back-projection of a sample
of the user’s face onto the image was shown to provide the ability to dynamically
adapt to environmental conditions such as user skin tone, lighting, etc. However,
this method, in its current form, has shortcomings which limit its ability to highlight
the hand(s) in a variety of orientations, as is required in this research. Therefore, this
method will be adopted and modified in this regard in this research.

It was also shown that skin detection is almost always used as an initial object
highlighting step before hand tracking is carried out. Once skin detection is applied,
tracking is carried out on skin-coloured objects. This justifies the use of skin
detection as the initial step in this research.

Hand tracking studies were divided into those that track only a single hand—the
majority—and those that track both hands simultaneously—a smaller number of
studies. Approaches to tracking only a single hand do not apply to this research.
Of the approaches to tracking both hands, the data association approach is the
only one that addresses the resolution of occlusions between the hands and face.
Therefore, this approach is selected as the tracking approach in this research.
A custom implementation of this approach will be devised and evaluated.

It was also seen that the use of only a skin cue in tracking causes the hand tracker
to be susceptible to sources of skin-coloured noise in the background. It is crucial
to include one or more additional cues to isolate objects to be tracked from noise.
In this regard, the use of a motion cue was a popular choice due to its accuracy and
computational efficiency. The motion detection method proposed by Zivkovic [62]
was used by Spruyt et al. [9] with success. Based on this, this research makes use
of a combination of skin and motion cues, with the motion detection method used
being that of Zivkovic.

In terms of hand shape recognition, it was shown that all existing studies only
consider hand shapes in a single orientation of the hand—frontal-upright and in the
plane of the camera view. This strongly justifies the objective of this research to
recognise hand shapes in a variety of orientations.

Hand shape recognition approaches were divided into rule-based and machine
learning approaches, with machine learning approaches being more advantageous
than rule-based approaches. The majority of studies that use machine learning

Automatic Sign Language Manual Parameter Recognition (I): Survey 87

approaches use features pertaining to the outer contour of the hand for classification.
A smaller number of studies use texture features of the hand with significantly more
success. The HOG feature descriptor showed special promise in this regard. Given
the challenging nature of the two classification tasks undertaken in this research, i.e.,
recognising hand shapes in a variety of orientations and recognising the orientation
of the hands, it was resolved to make use of texture features, specifically the HOG
feature descriptor, in this research.

In terms of hand motion recognition, it was shown that the majority of studies
devise and use a custom set of features pertaining to the location and motion of
the hands in a video sequence, and mostly use HMMs to recognise a relatively
small set of pre-defined hand motions. A discussion came to the conclusion that this
approach is very limited, given the large range of possibilities for hand motions and
the limited size and accuracy of any HMM classifier that can possibly be created.
A more feasible and flexible method is to represent hand motions as a series of hand
locations in time. This approach could be considered for future research work. It
was also stated that hand orientation recognition has never been attempted in the
literature. This can also form the basis for future work with particular focus on
building a framework for manual parameter recognition and transcription of sign
language.

Acknowledgment This research is supported in part by the National Research Foundation of
South Africa (UNIQUE GRANT NO: 105670).

References

1. Deaf Federation of South Africa (2016). Available at http://www.deafsa.co.za/index-1.html
2. Statistics South Africa, Profile of persons with disabilities in South Africa, in Census 2011

(2011)
3. W. Stokoe, Sign language structure, an outline of the visual communication systems of the

American Deaf. J. Deaf. Stud. Deaf. Educ. 10(1), 3–37 (2005)
4. S. Prillwitz, Hamburg Zentrum für Deutsche Gebärdensprache und Kommunikation Gehör-

loser, HamNoSys: Version 2.0; Hamburg Notation System for Sign Languages; An Introductory
Guide (Signum-Verlag, Hamburg, 1989)

5. V. Sutton, Lessons in Sign Writing (SignWriting, La Jolla, 1995)
6. R. Wang, S. Paris, J. Popović, 6D hands: markerless hand-tracking for computer aided design,

in Proceedings 24th Annual ACM Symposium on User Interface Software and Technology
(ACM, New York, 2011), pp. 549–558

7. F. Jiang, J. Ren, C. Lee, W. Shi, S. Liu, D. Zhao, Spatial and temporal pyramid-based real-time
gesture recognition. J. Real-Time Image Process., 13, 1–13 (2016)

8. H.-S. Yeo, B.-G. Lee, H. Lim, Hand tracking and gesture recognition system for human-
computer interaction using low-cost hardware. Multimed. Tools Appl. 74(8), 2687–2715
(2015)

9. V. Spruyt, A. Ledda, S. Geerts, Real-time multi-colourspace hand segmentation, in Proceed-
ings 17th IEEE International Conference on Image processing (IEEE, Piscataway, 2010), pp.
3117–3120

10. K. Liu, N. Kehtarnavaz, Real-time robust vision-based hand gesture recognition using stereo
images. J. Real-Time Image Process. 11(1), 201–209 (2016)

http://www.deafsa.co.za/index-1.html

88 M. Ghaziasgar et al.

11. S.K. Kang, M.Y. Nam, P.K. Rhee, Color based hand and finger detection technology for
user interaction, in Proceedings 2008 International Conference on Convergence and Hybrid
Information Technology (IEEE, Piscataway, 2008), pp. 229–236

12. O. Schreer, S. Ngongang, Real-time gesture recognition in advanced video communication
services, in Proceedings 14th International Conference on Image Analysis and Processing
(IEEE, Piscataway, 2007), pp. 253–258

13. D. Aryanie, Y. Heryadi, American sign language-based finger-spelling recognition using
k-nearest neighbors classifier, in 3rd International Conference on Information and Commu-
nication Technology (IEEE, Piscataway, 2015), pp. 533–536

14. P. Li, M. Ghaziasgar, J. Connan, Hand shape recognition and estimation for South African
sign language, in Proceedings South African Telecommunication Networks and Applications
Conference (2011), pp. 344–349

15. F.M. de Paula Neto, L.F. Cambuim, R.M. Macieira, T.B. Ludermir, C. Zanchettin, E.N. Barros,
Extreme learning machine for real time recognition of Brazilian sign language, in Proceedings
2015 IEEE International Conference on Systems, Man, and Cybernetics (IEEE, Piscataway,
2015), pp. 1464–1469

16. Y. Sato, M. Saito, H. Koike, Real-time input of 3D pose and gestures of a user’s hand and its
applications for HCI, in Proceedings Virtual Reality (IEEE, Piscataway, 2001), pp. 79–86

17. S. Singh, P. Bharti, D. Kumar, Sign language to number by neural network. Int. J. Comput.
Appl. 40(10), 38–45 (2012)

18. V.S. Kulkarni, S. Lokhande, Appearance based recognition of American sign language using
gesture segmentation. Int. J. Comput. Sci. Eng. 2(03), 560–565 (2010)

19. J.J. Phu, Y.H. Tay, Computer vision based hand gesture recognition using artificial neural
network. Technical report, Faculty of Information and Communication Technology, University
Tunku Abdul Rahman, Malaysia (2006)

20. M. Filhol, Zebedee: a lexical description model for sign language synthesis. Technical report,
LIMSI, National Centre for Scientific Research, Orsay, Paris (2009)

21. P. Kakumanu, S. Makrogiannis, N. Bourbakis, A survey of skin-color modeling and detection
methods. Pattern Recogn. 40(3), 1106–1122 (2007)

22. J.M. Chaves-González, M.A. Vega-Rodríguez, J.A. Gómez-Pulido, J.M. Sánchez-Pérez,
Detecting skin in face recognition systems: a colour spaces study. Digital Signal Process. 20(3),
806–823 (2010)

23. M.-H. Yang, D.J. Kriegman, N.Ahuja, Detecting faces in images: a survey. IEEE Trans. Pattern
Anal. Mach. Intell. 24(1), 34–58 (2002)

24. A.A. Argyros, M.I. Lourakis, Real-time tracking of multiple skin-colored objects with a
possibly moving camera, in Computer Vision-ECCV 2004 (Springer, Berlin, 2004), pp. 368–
379

25. M. Kölsch, M. Turk, Flocks of features for tracking articulated objects, in Real-Time Vision for
Human-Computer Interaction (Springer, Boston, 2005), pp. 67–83

26. S.S. Rautaray, A. Agrawal, A real time hand tracking system for interactive applications. Int.
J. Comput. Appl. 18(6), 28–33 (2011)

27. M. Elmezain, A. Al-Hamadi, J. Appenrodt, B. Michaelis, A hidden Markov model-based
continuous gesture recognition system for hand motion trajectory, in Proceedings 19th
International Conference on Pattern Recognition (IEEE, Piscataway, 2008), pp. 1–4

28. A. Fogelton, Real-time hand tracking using modificated flocks of features algorithm. Inf.
Technol. Bull. ACM Slov. 3(2), 37–41 (2011). Special Section on Student Research in
Informatics and Information Technologies

29. I. Achmed, I.M. Venter, P. Eisert, A framework for independent hand tracking in unconstrained
environments, in Proceedings Southern African Telecommunication Networks and Applica-
tions Conference, George (2012), pp. 159–164

30. J. Kovac, P. Peer, F. Solina, Human skin color clustering for face detection, in Proceedings
2003 EUROCON, Ljubljana, vol. 2 (IEEE, Piscataway, 2003)

31. G. Gomez, E. Morales, Automatic feature construction and a simple rule induction algorithm
for skin detection, in Proceedings of the ICML Workshop on Machine Learning in Computer
Vision (2002), pp. 31–38

Automatic Sign Language Manual Parameter Recognition (I): Survey 89

32. M.R. Mahmoodi, S.M. Sayedi, A comprehensive survey on human skin detection. Int. J. Image
Graph. Signal Process. 5, 1–35 (2016)

33. D. Chen, G. Li, Y. Sun, J. Kong, G. Jiang, H. Tang, Z. Ju, H. Yu, H. Liu, An interactive image
segmentation method in hand gesture recognition. Sensors 17(2), 253 (2017)

34. T.S. Caetano, S.D. Olabarriaga, D.A.C. Barone, Performance evaluation of single and multiple-
Gaussian models for skin color modeling, in Proceedings XV Brazilian Symposium on
Computer Graphics and Image Processing (IEEE, Piscataway, 2002), pp. 275–282

35. J.-C. Terrillon, M.N. Shirazi, H. Fukamachi, S. Akamatsu, Comparative performance of
different skin chrominance models and chrominance spaces for the automatic detection of
human faces in color images, in Fourth IEEE International Conference on Automatic Face
and Gesture Recognition, 2000. Proceedings (IEEE, Piscataway, 2000), pp. 54–61

36. J.Y. Lee, S.I. Yoo, An elliptical boundary model for skin color detection, in Proceedings 2002
International Conference on Imaging Science, Systems, and Technology, Las Vegas, Nevada
(CSREA Press, Athens, 2002)

37. S. Ketenci, B. Gencturk, Performance analysis in common color spaces of 2D Gaussian color
model for skin segmentation, in Proceedings 2013 EUROCON (IEEE, Piscataway, 2013), pp.
1653–1657

38. V. Vezhnevets, V. Sazonov, A. Andreeva, A survey on pixel-based skin color detection
techniques, in Proceedings of the GraphiCon, Moscow, vol. 3 (2003), pp. 85–92

39. D. Chai, S.L. Phung, A. Bouzerdoum, Skin color detection for face localization in human-
machine communications, in Sixth International Symposium on Signal Processing and its
Applications, vol. 1 (IEEE, Piscataway, 2001), pp. 343–346

40. J. Brand, J.S. Mason, A comparative assessment of three approaches to pixel-level human
skin-detection, in Proceedings of 15th International Conference on Pattern Recognition, vol. 1
(IEEE, Piscataway, 2000), pp. 1056–1059

41. D.A. Forsyth, M. Fleck, C. Bregler, Finding naked people, in Proceedings European Confer-
ence on Computer Vision (1996), pp. 593–602

42. M.J. Jones, J.M. Rehg, Statistical color models with application to skin detection. Int. J.
Comput. Vis. 46(1), 81–96 (2002)

43. B.D. Zarit, B.J. Super, F.K. Quek, Comparison of five color models in skin pixel classification,
in Proceedings International Workshop on Recognition, Analysis, and Tracking of Faces and
Gestures in Real-Time Systems (IEEE, Piscataway, 1999), pp. 58–63

44. M.J. Taylor, T. Morris, Adaptive skin segmentation via feature-based face detection, in Pro-
ceedings SPIE Photonics Europe (International Society for Optics and Photonics, Bellingham,
2014), pp. 91390P–1–12

45. A. Albiol, L. Torres, E. J. Delp, Optimum color spaces for skin detection, in ICIP, vol. 1 (2001),
pp. 122–124

46. J. Wen, Y. Zhan, Vision-based two hand detection and tracking, in Proceedings 2nd Inter-
national Conference on Interaction Sciences: Information Technology, Culture and Human
(ACM, New York, 2009), pp. 1253–1258

47. Q. Liu, G.-Z. Peng, A robust skin color based face detection algorithm, in Proceedings 2010
2nd International Asia Conference on Informatics in Control, Automation and Robotics, vol. 2
(IEEE, Piscataway, 2010), pp. 525–528

48. L. Nanni, A. Lumini, F. Dominio, P. Zanuttigh, Effective and precise face detection based on
color and depth data. Appl. Comput. Inform. 10(1), 1–13 (2014)

49. T.-W. Yoo, I.-S. Oh, A fast algorithm for tracking human faces based on chromatic histograms.
Pattern Recogn. Lett. 20(10), 967–978 (1999)

50. P. Viola, M.J. Jones, Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154
(2004)

51. S.S. Rautaray, A. Agrawal, Vision based hand gesture recognition for human computer
interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015)

52. H. Freeman, Computer processing of line-drawing images. ACM Comput. Surv. 6(1), 57–97
(1974)

90 M. Ghaziasgar et al.

53. E. Koh, J. Won, C. Bae, On-premise skin color modeling method for vision-based hand
tracking, in Proceedings 2009 IEEE 13th International Symposium on Consumer Electronics
(IEEE, Piscataway, 2009), pp. 908–909

54. Y. Zhao, W. Wang, Y. Wang, A real-time hand gesture recognition method, in Proceedings 2011
International Conference on Electronics, Communications and Control (IEEE, Piscataway,
2011), pp. 2475–2478

55. N. Bauer, P. Pathirana, P. Hodgson, Robust optical flow with combined Lucas-Kanade/Horn-
Schunck and automatic neighborhood selection, in 2006 International Conference on Informa-
tion and Automation (IEEE, Piscataway, 2006), pp. 378–383

56. J. Shi, C. Tomasi, Good features to track, in Proceedings 1994 Conference on Computer Vision
and Pattern Recognition (IEEE, Piscataway, 1994), pp. 593–600

57. M.S.M. Asaari, B.A. Rosdi, S.A. Suandi, Adaptive Kalman filter incorporated Eigenhand
(AKFIE) for real-time hand tracking system. Multimed. Tools Appl. 74(21), 9231–9257 (2015)

58. Y. Liu, P. Zhang, Hand gesture tracking using particle filter with multiple features, in
Proceedings International Symposium on Intelligent Information Systems and Applications
(2009), pp. 28–30

59. T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–
987 (2002)

60. N.D. Binh, E. Shuichi, T. Ejima, Real-time hand tracking and gesture recognition system, in
Proceedings of the GVIP (2005), pp. 19–21

61. R. Shrivastava, A hidden Markov model based dynamic hand gesture recognition system
using OpenCV, in Proceedings 3rd International Advance Computing Conference (IEEE,
Piscataway, 2013), pp. 947–950

62. Z. Zivkovic, Improved adaptive Gaussian mixture model for background subtraction, in
Proceedings 17th International Conference on Pattern Recognition, vol. 2 (IEEE, Piscataway,
2004), pp. 28–31

63. T. Coogan, G. Awad, J. Han, A. Sutherland, Real-time hand gesture recognition including hand
segmentation and tracking, in Proceedings Second International Conference on Advances in
Visual Computing—Part I (Springer, Berlin, 2006), pp. 495–504

64. E.-J. Holden, G. Lee, R. Owens, Automatic recognition of colloquial Australian sign language,
in Seventh IEEE Workshops on Application of Computer Vision, 2005. WACV/MOTIONS’05
Volume 1, vol. 2 (IEEE, Piscataway, 2005), pp. 183–188

65. L. Goldschlager, A. Lister, Computer Science: A Modern Introduction (Prentice Hall, London,
1988)

66. S. Howard, T. Chowles, L. Reynolds, Finger Talk: South African Sign Language (SASL)
Dictionary (Fulton School for the Deaf, Gillitts, 2011)

67. R. McKee, G. Kennedy, New Zealand sign language, in Languages of New Zealand (Victoria
University Press, Wellington, 2005), pp. 271–297

68. W. Forman, The ABCs of New Zealand sign language: aerial spelling. J. Deaf Stud. Deaf Educ.
8(1), 92–96 (2003)

69. J.A. Bickford, The Signed Languages of Eastern Europe (SIL International, Dallas, 2005)
70. Z. Ren, J. Yuan, J. Meng, Z. Zhang, Robust part-based hand gesture recognition using Kinect

sensor. IEEE Trans. Multimed. 15(5), 1110–1120 (2013)
71. A.I. Maqueda, C.R. del Blanco, F. Jaureguizar, N. García, Temporal pyramid matching of local

binary subpatterns for hand-gesture recognition. IEEE Signal Process. Lett. 23(8), 1037–1041
(2016)

72. P.S. Heckbert, A seed fill algorithm, in Graphics Gems (Academic Press Professional, New
York, 1990), pp. 275–277

73. J. Sklansky, Finding the convex hull of a simple polygon. Pattern Recogn. Lett. 1(2), 79–83
(1982)

74. N. Shimada, K. Kimura, Y. Shirai, Real-time 3D hand posture estimation based on 2D
appearance retrieval using monocular camera, in IEEE ICCV Workshop on Recognition,
Analysis, and Tracking of Faces and Gestures in Real-Time Systems, 2001. Proceedings (IEEE,
Piscataway, 2001), pp. 23–30

Automatic Sign Language Manual Parameter Recognition (I): Survey 91

75. B. Shi, A.M. Del Rio, J. Keane, J. Michaux, D. Brentari, G. Shakhnarovich, K. Livescu,
American sign language fingerspelling recognition in the wild, in 2018 IEEE Spoken Language
Technology Workshop (SLT) (IEEE, Piscataway, 2018), pp. 145–152

76. M. Elpeltagy, M. Abdelwahab, M.E. Hussein, A. Shoukry, A. Shoala, M. Galal, Multi-
modality-based Arabic sign language recognition. IET Comput. Vis. 12(7), 1031–1039 (2018)

77. R. Alzohairi, R. Alghonaim, W. Alshehri, S. Aloqeely, M. Alzaidan, O. Bchir, Image
based Arabic sign language recognition system. Int. J. Adv. Comput. Sci. Appl. (IJACSA)
9(3), 185–194 (2018)

78. B. Kang, K.-H. Tan, N. Jiang, H.-S. Tai, D. Tretter, T. Nguyen, Hand segmentation for hand-
object interaction from depth map, in 2017 IEEE Global Conference on Signal and Information
Processing (GlobalSIP) (IEEE, Piscataway, 2017), pp. 259–263

79. S. Saremi, S. Mirjalili, A. Lewis, A.W.C. Liew, J.S. Dong, Enhanced multi-objective particle
swarm optimisation for estimating hand postures. Knowl. Based Syst. 158, 175–195 (2018)

80. Y. Cai, L. Ge, J. Cai, J. Yuan, Weakly-supervised 3d hand pose estimation from monocular
RGB images, in Proceedings of the European Conference on Computer Vision (ECCV) (2018),
pp. 666–682

81. Y. Hu, Finger spelling recognition using depth information and support vector machine.
Multimed. Tools Appl. 77(21), 29043–29057 (2018)

82. I.L. Bastos, M.F. Angelo, A.C. Loula, Recognition of static gestures applied to Brazilian sign
language (Libras), in 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images
(IEEE, Piscataway, 2015), pp. 305–312

83. H. Lahiani, M. Neji, Hand gesture recognition method based on HOG-LBP features for mobile
devices. Procedia Comput. Sci. 126, 254–263 (2018)

84. Z. Yang, Y. Li, W. Chen, Y. Zheng, Dynamic hand gesture recognition using hidden Markov
models, in Proceedings 7th International Conference on Computer Science and Education
(IEEE, Piscataway, 2012), pp. 360–365

85. T. Matsuo, Y. Shirai, N. Shimada, Construction of general HMMs from a few hand motions
for sign language word recognition, in MVA2013 IAPR International Conference on Machine
Vision Applications (2013), pp. 69–72

86. J. Hua, Z. Ju, D. Chen, D. Zhou, H. Zhao, D. Jiang, G. Li, Multiple features fusion system
for motion recognition, in International Conference on Intelligent Robotics and Applications
(Springer, Cham, 2019), pp. 445–455

87. P.V. Barros, N. Junior, J.M. Bisneto, B.J. Fernandes, B.L. Bezerra, S.M. Fernandes, Convexity
local contour sequences for gesture recognition, in Proceedings 28th Annual ACM Symposium
on Applied Computing (ACM, New York, 2013), pp. 34–39

88. W.-L. Lu, J.J. Little, Simultaneous tracking and action recognition using the PCA-HOG
descriptor, in Proceedings 3rd Canadian Conference on Computer and Robot Vision (IEEE,
Piscataway, 2006), pp. 1–8

89. C. Vogler, D. Metaxas, Handshapes and movements: multiple-channel American sign language
recognition, in International Gesture Workshop (Springer, Berlin, 2003), pp. 247–258

90. W. Nel, An integrated sign language recognition system. Master’s thesis, University of the
Western Cape, Computer Science, 2014

91. M. Raptis, L. Sigal, Poselet key-framing: a model for human activity recognition, in Proceed-
ings IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 2650–2657

92. J. Tilmanne, S. Hidot, T. Ravet, Mockey: motion capture as a tool for keyframing animation,
QPSR Numediart Res. Program 2(4) (2009) 119–124

Automatic Sign Language Manual
Parameter Recognition (II):
Comprehensive System Design

Mehrdad Ghaziasgar, Antoine Bagula, and Christopher Thron

1 Introduction

The automatic sign language recognition system described in this chapter is
an overview of the design that is extensively delineated in [1]. Reference [1]
provides more in-depth details concerning the design, parameter optimisation, and
experimental verification of the system.

The system consists of two main components: hand retrieval and manual
parameter representation and recognition. These two components are described
separately in the two following sections of this chapter.

2 Hand Retrieval

This section describes the hand retrieval component of the proposed framework.
The hand retrieval component aims to find and track the hands in a video sequence.
Figure 1 provides an overview of the hand retrieval component. The “Start” sub-
component in the figure specifies the starting point of processing the first time that
the system runs. Subsequent steps in the process are:

M. Ghaziasgar (�) · A. Bagula
Department of Computer Science, University of the Western Cape, Cape Town, South Africa
e-mail: mghaziasgar@uwc.ac.za

C. Thron
Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX,
USA

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_4

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_4&domain=pdf
mailto:mghaziasgar@uwc.ac.za
https://doi.org/10.1007/978-3-030-37830-1_4

94 M. Ghaziasgar et al.

• A sequence of frames is captured by a monocular view.
• Before tracking is initiated, the user holds up both hands with open palms at the

top-right of the figure. The hand detection sub-component locates the open palms
of the user. These locations are used to enhance skin detection and initialise the
hand tracking sub-component.

• The skin detection and motion detection sub-components are invoked on the
input frame in parallel separate threads. Once both threads have completed
processing, the skin and motion images that result from these sub-components are
combined using a logical AND operation in order to limit sources of stationary
skin-coloured noise.

• The resulting image—henceforth referred to as the “moving skin” image—is
used as input to the hand tracking sub-component, which tracks both hands.

With the positions and sizes of the hands determined, processing continues to the
manual parameter representation and recognition component explained in the next
section.

The sub-components in Fig. 1 are very high-level abstractions that represent
a workflow of tasks. The following subsections expand on each of these sub-
components, following the progression through Fig. 1. In each case, the workflow
pertaining to the relevant sub-component is set out and explained in detail.

2.1 Input Capture

Capturing frames in real-time from a camera is computationally costly and is
typically the biggest impediment to processing in real-time for many computer
vision applications [2], as the rate of input capture by the camera is typically very
different from the processing speed of the application. Because of this, a general lack
of synchronisation develops between the camera and the processing procedure of the
application. Figure 2 shows a proposed solution to this problem, which is to create a
separate thread (the camera reading thread) that continuously reads a frame from the
camera as soon as one is available and stores it into a shared buffer that is available
to the main processing thread. If the application is occupied with processing and
a new frame is acquired, the frame is placed in the buffer for processing. When
processing returns to the beginning of the cycle, the new frame is retrieved from the
buffer and processing continues with virtually no delay. If multiple frames are made
available by the camera while the application is engaged in processing, the most
recent frame overwrites the currently available frame in the buffer: only one frame
is available in the buffer at any time. This prevents the application from having to
handle backlogs that may accumulate.

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 95

Fig. 1 Overview of the hand retrieval component of the proposed sign language manual parameter
recognition and transcription framework

2.2 Hand Detection

Figure 3 provides a graphical summary of the steps involved in detected the hands.
Referring to the figure, before hand tracking has been initialised, the user is asked
to hold up his/her hands with open palms similar to those shown in the input frame
at the top-right of Fig. 1. The input image is converted to its greyscale equivalent,
followed by the use of adaptive Gaussian thresholding and an image inversion to
produce a binary variant of the greyscale image in which prominent contours have
been highlighted [3]. Cross-correlation template matching [4] is then used to find the

96 M. Ghaziasgar et al.

Fig. 2 Modified input
capture component: a camera
reading thread continuously
reads a frame from the
camera as soon as one is
acquired and places it in a
buffer that is shared with the
main thread. The main thread
is able to retrieve this frame
and commence processing

Fig. 3 Overview of the hand
detection procedure

position of maximum correlation between this binary contour image and silhouette
templates of the left and right hands with open palms. The contour templates
are depicted in Fig. 4. Cross-correlation template matching is known to be scale-
sensitive [4], so the user is required to sit at a specific distance from the camera. In
addition, a hierarchical approach [5] is used to provide a measure of scale invariance.
This involves making two smaller-resolution copies of each original template and
applying these to the search image, in addition to the original template. The final
correlation for each hand is taken as the maximum of the correlations of the three
relevant templates. An empirically determined correlation threshold is then used

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 97

Fig. 4 Contour hand
templates: (a) right hand; (b)
left hand

(a) (b)

(a) (b)

Fig. 5 Comparison between the original adaptive histogram-based skin detection and the proposed
enhanced skin detection: (a) adaptive histogram-based skin detection result; (b) result obtained
from the enhanced skin detection procedure

to determine whether the correlation maximum represents a true or false positive
detection.

This procedure results in two boxes, one enclosing the left hand and one
enclosing the right hand, in the input image. The boxes are characterised by the
(x, y) coordinates of their top left and bottom right corners. These boxes are used
in the enhanced skin detection sub-component before hand tracking has been
initialised. They are also used to initialise hand tracking.

2.3 Skin Detection

With the two hand boxes obtained, skin detection is applied. For this purpose, an
enhanced skin detection (ESD) approach was developed, which gave significant
improvements over adaptive histogram-based skin detection (see Fig. 5). ESD uses
the face histogram as a starting point for detecting the skin of the hands and
incorporates additional skin colour information from the hands themselves into the
skin histogram. This is achieved by employing contextual information—the sizes
and locations of the hands—from a hand detection or hand tracking procedure
in the skin detection procedure. The resulting skin model is significantly more
representative of the specific skin colour of the hands, in addition to the face.

Figure 6a provides an overview of the proposed ESD approach. The inputs to
ESD are the original RGB input frame from the camera and the hand boxes as input.
Using these inputs the face is detected and located, and a histogram of a portion of
the face is computed. Using the face histogram as an initial skin model, coupled

98 M. Ghaziasgar et al.

Fig. 6 Overview of the proposed skin detection sub-component: (a) overview of the proposed
enhanced skin detection procedure; (b) overview of the enhanced skin highlighting procedure
which is a crucial part of the overall enhanced skin detection procedure

with the hand boxes, an enhanced skin highlighting (ESH) procedure is called up
to obtain more accurate images of the skin in the hand regions than would have
been possible using adaptive histogram-based skin detection. Steps within the ESH
submodule are shown in Fig. 6b: these steps will be explained in more detail in
Sect. 2.6.

The enhanced skin images of the hands obtained from the ESH procedure are
used to obtain additional skin-coloured regions of the hands in the input frame that
were not represented in the face histogram. Computing histograms of these hand
regions yields colour models that are specific to, and more representative of, each
hand. These histograms are incorporated into the face histogram by means of a
summing operation. The resulting combined histogram is an enhanced model of the
hands’ skin colour. Using this enhanced histogram, the ESH procedure is called up
again, now to obtain a final enhanced skin image on the entire original input frame.

The different steps shown in Fig. 6 are described in further detail in the
subsections below.

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 99

Fig. 7 Face detected box
(red) and face sub-region
used to compute a histogram
(green)

2.4 Face Detection

The Viola–Jones face detection framework [6] is used to detect and locate the user’s
face. Viola–Jones is a very efficient and accurate face detection approach and is
perhaps the most prominent face detection approach in the literature [7]. Figure 7
depicts a red box representing a detected face by the algorithm. The face is thus
located in the overall proposed skin detection sub-component.

2.5 Face Histogram Computation

Once the position and size of the face have been determined, a histogram of a portion
of the face is computed, which serves as the initial skin model. The region on which
the histogram is computed is in the centre of the facial box, and half its width
and height. This is visually illustrated by the green box in Fig. 7. The histogram
computed is a 2-dimensional histogram computed on the hue (H) and saturation (S)
channels of the HSV colour space. The conversion of the default RGB input frame
to the HSV colour space is achieved by means of a nonlinear transformation [8].
It was experimentally determined that 12 hue bins and 12 saturation bins provided
the best tradeoff between precision and recall rate out of a large range of possible
combinations.

2.6 Enhanced Skin Highlighting Principle and Its Application
to the Left and Right Hands

After the face histogram is obtained, the ESH procedure is applied twice, once for
each hand, to obtain more accurate skin images of the hands. The ESH procedure
is an enhanced form of the original adaptive histogram-based skin highlighting.

100 M. Ghaziasgar et al.

(a) (b) (c) (d)

Fig. 8 Figures (a)–(d) show respectively: face histogram back-projected onto the hand; de-
emphasised probability image; thresholded image; holes filled in

Fig. 9 Overview of the
proposed novel hole-filling
procedure

Figure 8a–d illustrates the steps of the ESH procedure, which are listed in Fig. 6b
and described as follows.

First, given the input image, the initial face histogram of the user’s face and the
boxes enclosing the left and right hands, ESH back-projects the face histogram onto
the hand region resulting in the skin probability images; Fig. 8a shows an example
result for a right hand image. Nonlinear rescaling is applied to the probabilities
so that all but the most probable skin pixels are de-emphasised. Figure 8b shows
how this step effectively reduces background noise. Next, Otsu thresholding [9] is
applied. Otsu thresholding calculates a dynamic threshold value that divides two
desired pixel classes—skin and non-skin in this case—such that the weighted intra-
class variance is minimised. As shown in Fig. 8c, this eliminates almost all non-
skin pixels, but also a large proportion of skin pixels. Finally, a novel hole-filling
(NHF) procedure is applied to fill in the holes in hand-coloured regions that are
not represented in the face histogram, but can help more effectively highlight the
hands. The NHF procedure is a multi-step procedure depicted in Fig. 9 that takes in
a binary input image and closes up holes without any loss of information. A hole, in
this case, is a black background cluster that is completely surrounded by skin pixels,

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 101

(a) (b) (c) (d) (e) (f)

Fig. 10 The novel hole-filling procedure: Figures (a)–(f) are as follows (left to right): hand
image padded with a 10-pixel-thick border; application of the gradient morphological operation;
conversion of white pixels to grey; application of a flood fill operation at (0, 0) of the image;
conversion of grey pixels to black; inversion of the image for final filled skin

or one that has a very tight opening of 3 pixels or less. The application of each step
of the NHF is visually illustrated in Fig. 10. The holes filled in by NHF represent
crucial skin-coloured regions that are unrepresented in the face histogram. Further
details of the steps shown in the figure may be found in [1].

2.7 Computation of Enhanced Histograms for the Hands and
Integration into the Face Histogram

Given the skin images of each hand, which have a greater proportion of skin-
coloured regions highlighted, histograms of the hands in the regions of the
input frame corresponding to skin in the hand skin images are computed. These
histograms provide representation of hand-coloured regions that were not present
in the face histogram and can help highlight a greater portion of the hands in a
subsequent histogram back-projection.

At this point, the face, left hand and right hand histograms are combined by a
summing operation to obtain a final enhanced skin histogram.

2.8 Enhanced Skin Highlighting for the Final Skin Image

Given the final enhanced skin histogram, the final step in the proposed skin detection
procedure is to re-apply the ESH procedure to the entire input frame with the
enhanced histogram. Figure 11 shows an example of the results obtained by the
proposed skin detection, compared to adaptive histogram-based skin detection.
The proposed procedure yields vastly improved performance.

Experimental verification of the accuracy of the ESD method is provided in [1].

102 M. Ghaziasgar et al.

(a) (b)

Fig. 11 Comparison between the proposed enhanced skin detection and adaptive histogram-based
skin detection: (a) skin image of the original adaptive histogram-based skin detection; (b) skin
image of the enhanced skin detection method

2.9 Motion Detection

In parallel with the computation of the skin image, a motion detection procedure is
used to highlight motion in the input frame.

The motion detection method used was originally proposed by Stuaffer and
Grimson [10] and was later modified by Zivkovic [11]. The method models the
appearance history of each pixel as a mixture of Gaussians in the current frame and
uses an online approximation to update the model of each pixel in each frame over
a specific history length. This includes the number of Gaussians and their respective
parameters that most effectively model the pixel in the frame. Each pixel is then
assigned to either the stationary background or moving foreground, depending on
whether or not the Gaussian distribution that most effectively models the pixel is
deemed to be part of the background.

A formal description of this algorithm is provided in [1].

2.10 Combination of Skin and Motion Images

With the enhanced skin image and the motion image obtained, a logical AND
operation is carried out to combine the images. For convenience and comparison, the
skin and motion images are provided in Fig. 12a and b and are combined in Fig. 12c.

A large section of skin-coloured noise can be observed on the right side of
the skin image in Fig. 12a. Similarly, the motion image in Fig. 12b contains many
highlighted regions that are not skin, such as the clothing areas on the arms and
chest of the user.

Many sources of noise such as these are effectively eliminated in the combined
image in Fig. 12c, which highlights moving skin. A final application of the NHF
procedure on this image closes up holes as seen in Fig. 12d. The combined image

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 103

(a) (b)

(c) (d)

Fig. 12 Combining the skin and motion image: (a) the skin image; (b) the motion image; (c) the
combined image; (d) the combined image with holes filled in—“moving skin image”

with holes filled in is henceforth referred to as the “moving skin image”. This image
is used in the hand tracking sub-component in the next section.

2.11 Hand Tracking

Figure 13 is an overview of the hand tracking sub-component. The procedure takes
as inputs the moving skin image, the skin image, and the face and hand boxes,
all of which have been obtained in previous steps. If hand tracking has not yet
been initiated, a tracking initialisation procedure is invoked to locate the hands
and face using the hand and face boxes from previous steps, as well as to locate
all other skin-coloured objects. If tracking was initiated in a previous processing
cycle, then a tracking update (the core of the tracking sub-component) is invoked
to associate the currently observed skin clusters in the moving skin image with the
known tracked objects in previous frames, thereby adapting the tracking state to the
current observations, as will be explained in detail.

Section 2.11.1 below first describes the data association concept towards object
tracking. The implementation of the concept is then proposed and described in detail
in Sects. 2.11.2 and 2.11.3 which describe, respectively, the tracking initialisation

104 M. Ghaziasgar et al.

Fig. 13 Overview of the
hand tracking sub-component

(a) (b)

Fig. 14 Resolution of hypotheses on a set of observed blobs: (a) the blobs observed and the
current state of hypotheses in the current frame before resolving and updating them; (b) updated
hypotheses after the association and resolution rules have been applied

and tracking update steps of the sub-component. A worked example of the tracking
update step is given in [1].

2.11.1 Data Association for Object Tracking

In general terms, data association [12] applied to object tracking is applied to
a binary image in which objects to be tracked are represented by highlighted
clusters/blobs, and everything else in the scene is represented as black background.
Figure 14 illustrates the data association process. The images show “blobs”
(b0, b1, b2) and hypotheses (h0, h1, h2, h3): each hypothesis hj is parametrically
described by an ellipse with a centroid Cj (cxj

, cyj
), respective major and minor

axes αj and βj , and an angle of inclination in the 2D plane of the image θj . hj

is therefore fully described as hj (Cj , αj , βj , θj). It is apparent that the hypotheses

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 105

in Fig. 14 do not accurately represent the blobs observed in the current image, due
to changes in location, shape, and/or orientation of the blobs from the previous to
the current frame. Thus, a tracking update amounts to arriving at the hypotheses
in Fig. 14b from Fig. 14a, which in turn amounts to determining the associations
between the current hypotheses and observed blobs.

Observing Fig. 14a in more detail, it is observed that: blob b0 does not have
a hypothesis representing it, since it has possibly just entered the frame; blob b1
is represented by one hypothesis h0 which also represents a portion of blob b2,
possibly attributed to an overlapping between blobs b1 and b2 in the previous frame;
and b2 has two additional hypotheses h2 and h3 assigned to specific portions of the
blob. Hypothesis h1 does not represent any blobs, possibly because the blob that it
represented in one or more previous frames has moved out of the camera view and
is no longer visible in the frame.

The association between a hypothesis hj and blob bi , and the extent of this
association, is established by means of a distance function D which provides the
distance of each pixel p(px, py) in bi from hj given by:

D(hj , p) = √
z̄ · z̄ (1)

where

z̄ =
[

cos(θj) − sin(θj)

sin(θj) cos(θj)

]
⎡
⎢⎢⎣

px−cxj

αj

py−cyj

βj

⎤
⎥⎥⎦ (2)

Depending on whether point p is inside, on the boundary of, or outside ellipse
hj , D provides a value that is less than, equal to, or greater than 1. Therefore,
if D(hj , p) ≤ 1, the following deductions can be made: (1) point p is in or on
hypothesis hj ; (2) hj predicts and tracks at least a portion of blob bi ; and (3) the
hypothesis hj should still exist, i.e., its existence is still supported. Therefore, blobs
b1 and b2 in Fig. 14a support the existence of hypothesis h0 which predicts b1 and
a smaller portion of b2. On the other hand, no points of any of the blobs support the
existence of h1, which does not predict or track any part of any of the blobs. This
hypothesis should therefore be eliminated.

On the other hand, if D(hj , p) > 1 for all hypotheses {hj |(H − 1) ≥
j ≥ 0} and all points p in a specific bi , it can be deduced that blob bi is
completely unrepresented and not predicted or tracked by any of the currently
existing hypotheses. b0 in Fig. 14a is an example of this case. Blobs of this type
are each assigned a new hypothesis by fitting an ellipse onto the points of the blob.
The fitted ellipse is taken as the covariance ellipse of the convex hull of the blob.
Figure 15a illustrates the points of the convex hull of the blob represented by a
series of red dots. Figures (b) and (c) demonstrate the superiority of using the blob’s

106 M. Ghaziasgar et al.

Fig. 15 Improved ellipse-fitting: (a) Convex hull of the blob represented by points in red; (b)
covariance ellipse of blob; (c) covariance ellipse of convex hull (proposed ellipse-fitting method)

convex hull for the ellipse calculation, rather than the entire blob. Obtaining an
ellipse that effectively covers the entire blob is crucial to segmenting the entire
hand without omission in the hand segmentation step ahead of hand shape and hand
orientation recognition described in Sect. 3.

It is in this way that any new or “lost” blobs observed in any current frame
are detected and assigned a new tracking hypothesis. Given the set of blobs and
hypotheses determined as above, an algorithm has been developed to assign each
pixel in all blobs to a unique hypothesis (for a detailed description of the algorithm,
see [1]). The application of this algorithm to Fig. 14a results in the hypothesis
arrangement of Fig. 14b. In this case, hypotheses h0, h2, and h3 have been
repositioned, a new hypothesis h4 has been created, and h1 has been eliminated.
Finally, to enable identification of hypotheses in the next frame, a prediction of the
position of the centroid of each hypothesis is obtained by linear extrapolation.

2.11.2 Tracking Initialisation

The tracking initialisation procedure ensures that hypotheses are assigned to the
three principal regions: left hand, right hand, and face. Several steps are carried out
during initialization to ensure that all three principal regions are captured, and stray
blobs are not misidentified. The two hands and face are considered to be correctly
identified if blobs are found whose centroids lie in each of the three bounding boxes
described in Sects. 2.2 and 2.3. If initialisation happens to fail during the first frame,
the initialisation procedure is applied to subsequent frames until a successful result
is obtained. A detailed description of the initialisation procedure may be found
in [1].

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 107

2.11.3 Tracking Update

Once initialisation has successfully identified and assigned hypotheses to the face
and hands, and other skin-coloured objects in the moving skin image, a tracking
update is carried out on every subsequent frame to track these objects.

The moving skin image, henceforth referred to as “the image” for convenience,
is computed on the input frame as before. During the process, the face box is
also retrieved. Given a list of hypotheses that represented objects in the previous
frame, an extended algorithm is applied that is capable of resolving any number of
hypotheses and blobs in any configuration. The steps of this procedure, as well as a
specific worked-out example of tracking update, may be found in [1].

Once the hands have been located and tracked successfully, processing can
proceed to isolate the hands, extract relevant salient features from the hands, and
recognise and represent the manual sign language parameters. All this is described
in the next section.

3 Manual Parameter Representation and Recognition

This section describes the second component of the proposed framework—the
manual parameter representation and recognition (MPRR) component. Given that
there are now ellipses around each hand from the hand retrieval component, the aim
of this component is to accurately isolate the hands, represent the hands in terms
of relevant salient features, recognise the relevant manual parameters, and represent
them in SignWriting Markup Language (SWML).

Figure 16 shows the MPRR component within the context of the entire proposed
framework. The initial sub-component within MPRR is labelled “hold detection”.
This sub-component detects movements and pauses, referred to as “holds”, of
each hand. More precisely, a hand is assumed to be in a “hold” state—or simply
hold for short—if it stops moving or changes direction. If neither hand is in a
hold, processing returns to the input capture sub-component of the hand retrieval
component. Only when a hold is detected on either hand does processing proceed to
accurately segment the relevant hand, represent it in terms of normalised salient
features to obtain a feature vector, carry out hand orientation and hand shape
recognition on that hand, and finally produce an SWML transcription thereof. If
both hands are in a hold, this procedure is carried out for both hands.

It is observed in the figure that recognition is a two-stage process. First, a
hand orientation classifier predicts the orientation of each hand that is in a hold,
regardless of hand shape. Thereafter, depending on the predicted hand orientation
of the relevant hand, one of a set of hand shape classifiers that is specifically trained
to recognise hand shapes in the hand orientation predicted is invoked to determine
the hand shape of the relevant hand. Once again, note that this two-stage procedure
is invoked separately for each hand if both hands are in a hold.

108 M. Ghaziasgar et al.

Fig. 16 Overview of the combined sign language manual parameter recognition and transcription
framework: (a) the hand retrieval component; (b) the manual parameter representation and
recognition component

At this stage, all four sign language manual parameters have been obtained. They
are then represented using the corresponding SWML notation using a relatively

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 109

simple symbol lookup and representation. Once this representation is complete,
processing returns to retrieving a new frame in the hand retrieval component.

The following subsections describe the following sub-components of the MPRR
component in greater detail: hold detection; hand segmentation; feature represen-
tation; hand orientation and hand shape recognition; and SignWriting lookup and
transcription in SWML format.

3.1 Hold Detection for Motion Representation

The hold detection methodology is based on the observation that sign language
gestures may be taken as fully formed when the relevant hand stops or changes
direction [13]. A key-framing approach is used to select time steps where holds
occur, thus providing a highly compact representation that can fully convey changes
in any sequence [14, 15]. The use of key-framing leads to large savings in processing
time, as well as increased accuracy since hands that are in motion are usually
transitioning between gestures and cannot be definitively classified.

This research proposes the use of two finite state machines (FSM) depicted in
Fig. 17 to model movements and holds for the two hands. Referring to the figure,
the FSM defaults to a hold state. If the relevant hand remains within a specific radius
of the current hold location, a transition to the holding state is invoked. The FSM
remains in this state as long as the relevant hand remains within a specific radius of
the current hold location. If the relevant hand moves more than a specific distance
away from the current hold location, a transition to the movement state is invoked.
The FSM remains in this state as long as the hand continues moving and the hand

Fig. 17 The finite state machine used to model movements and holds of the hands

110 M. Ghaziasgar et al.

does not change its direction of motion. If the hand stops or changes its direction,
a transition to the hold state is invoked, and the cycle is repeated. It is observed
that the hold state is an accept state since further processing is invoked every time
the FSM transitions to this state. Also, the reason for maintaining two similar states
hold and holding, rather than only a single hold state, is to ensure that processing on
any one hold takes place only once, on the hold state. Any subsequent frames that
maintain the same hold are absorbed by the holding state, without invoking further
processing.

3.1.1 Determining When the Hand Starts Moving

While in the hold or holding state, a check is carried out on every frame to determine
if the hand has started to move. This is achieved by determining if the current ellipse
centroid for the hand has moved more than a specific distance away from the hold
location. Assuming that the hand has a centroid C = (Cx, Cy) and the current hold
location is H = (Hx,Hy), a thresholding function SM(C,H) determines if the hand
has started to move as follows:

SM(C,H) =
⎧⎨
⎩

Moving if
√

(Hx − Cx)2 + (Hy − Cy)2 ≥ tm

Stationary if
√

(Hx − Cx)2 + (Hy − Cy)2 < tm

(3)

where tm is an empirically determined threshold that determines how far the hand
can be displaced before it is considered to be moving.

3.1.2 Determining Stops or Changes in Direction of the Hand

While in the movement state, a check is carried out on every frame to determine if the
hand has stopped or changed direction. A dynamic method of achieving both checks
simultaneously is to use estimates of hand velocities in both x- and y-directions.
Changes in hand velocities can be estimated by using hand centroid locations from
several consecutive frames, as shown in Fig. 18. In Fig. 18c, e we see plots of the
x and y components of the right hand’s centroid for seven consecutive frames,
for the hand-raising gesture shown in Fig. 18a. In each pane, two lines are fitted:
one line uses the first four points, and the other uses the last four points. The two
slope estimates in each pane agree, indicating that no hold has occurred within the
recording period. On the other hand, in panes Fig. 18d, f we see the corresponding
x and y component plots for the raise-and-hold gesture shown in pane Fig. 18b,
together with line fits for the first four and last four points as in Fig. 18c, e. In this
case, the two x slopes in Fig. 18d agree, but the two y slopes in Fig. 18f do not:
there is an “elbow” in the y-slope plot, which indicates that a hold has occurred at
the fourth point. The hold detection sub-component performs this calculation for

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 111

Fig. 18 Tracking and plots of the last seven x and y locations of the right hand versus time t in
two example hand manoeuvres: (left column) a steady upward motion of the hand at time t =
197 × 10−2 s; (right column) the hand slowing down to a stop at time t = 224 × 10−2 s: (top row)
illustration of tracking showing the hand centroids (yellow points) of the last seven time steps;
(middle row) plot of x location of the right hand versus t for the last seven time steps; (bottom
row) plot of y location of the right hand versus t for the same time steps. (a) Manoeuvre A. (b)
Manoeuvre B. (c) x vs. t . (d) x vs. t . (e) y vs. t . (f) y vs. t

every frame, and if the difference in angles between the two lines for either x or y

component exceeds an (empirically determined) threshold, then a hold is indicated.
The reader is referred to [1] for further details on this procedure.

112 M. Ghaziasgar et al.

4 Hand Segmentation

Given a hand that has entered the hold state, the goal of hand segmentation is
to isolate only relevant portions of the input frame pertaining to that hand. The
result of hand segmentation is, ideally, a tightly fit image containing only pixels
of the relevant hand. An overview of the proposed hand segmentation procedure is
provided in Fig. 19.

The procedure uses the greyscale equivalent of the original input frame, the skin
image and the ellipse hypothesis of the hand to be segmented, all obtained/produced
in previous sub-components of the framework. An overall explanation of this
procedure following the progression through Fig. 19 follows.

A non-oriented bounding box, i.e., aligned with the x- and y-axes, of the hand
hypothesis is computed and isolated from the greyscale image. Regions of the
resulting image that are skin regions falling inside the hand hypothesis are isolated,
and non-skin or outside regions eliminated, by means of a logical AND operation
between this image and the corresponding sub-region of the skin image, using an
image of the hand hypothesis as a mask. The moving skin image cannot be used
here since the hands “disappear” in the image when the hands are stationary. Given
hand tracking and skin detection sub-components that are sufficiently accurate
and comprehensive, the resulting image should contain a single connected object
representing the hand, with some small clusters of isolated skin-coloured noise. It
is generally sufficient at this stage to simply eliminate the small noise clusters by
eliminating all but the largest connected object.

However, to provide assurance for borderline cases in which the skin detection
sub-component produces the hand as two or more disjoint connected skin clusters

Fig. 19 Overview of the
proposed hand segmentation
sub-component

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 113

Fig. 20 Three images (top row) with the corresponding segmented hands of each image displayed
beneath it

in the skin image, a selection procedure is included to strategically identify and
include possibly relevant connected skin objects. This is described and illustrated in
greater detail in [1]. Finally, any empty regions above, below, and to the sides of the
resulting image are removed. This results in an image containing only the isolated
hand. Figure 20 provides three examples of the proposed hand segmentation applied
to images of three users.

5 Feature Representation

Feature representation involves normalising the final image resulting from the
segmentation procedure described in the previous step by resizing it to a pre-defined
width and height, followed by the application of a chosen feature descriptor to obtain
a classification feature vector. The feature descriptor selected in this research is
the histogram of oriented gradients (HOG) descriptor. This feature descriptor was
originally proposed by Dalal and Triggs [16] and applied to pedestrian detection,
with excellent results. In this, and many other applications [17–24], the feature
descriptor is used to achieve very robust and high accuracy recognition.

Conceptually, the HOG feature descriptor is based on the idea that objects can be
represented in terms of the distribution of the gradient contrasts in an image, such
as an intensity image, containing the object. The HOG descriptor has a number of
parameters that can be optimised, including: the width and height (w, h) of the input
image; the number of orientations used co; the number of pixels cw and ch in each
cell in the x and y dimension; and the number of cells bw and bh in each block in
the x and y dimension. The result of the operation is a feature vector �F which is
passed to the recognition sub-component explained in the next section.

114 M. Ghaziasgar et al.

Fig. 21 The 72 combinations
of the 6 hand shapes in 12
hand orientations adopted in,
and recognised by, the
proposed framework:
columns (left to right) are
hand shapes 1–6; rows
(top-to-bottom) are hand
orientations 1–12

6 Hand Orientation and Shape Recognition

With the feature vector �F obtained, the hand orientation and hand shape recognition
sub-component is invoked. A total of 6 hand shapes in 12 hand orientations were
adopted from the Fulton School for the Deaf SASL dictionary [13] for inclusion
in the proposed framework (see Fig. 21). A two-stage procedure is invoked to

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 115

recognise the hand orientation followed by the hand shape. This is done to reduce
the complexity of the classification task, which is proportional to the number of
classes to be recognised.

�F is first passed to a classifier that is trained to recognise the hand orientation
of the hand image. In addition, a total of 12 classifiers are trained to recognise the
hand shape of a hand image, each specific to a given hand orientation. The classifiers
used were support vector machines (SVM). The SVM supervised machine learning
algorithm was originally introduced by Vapnik [25] as a binary classification
technique. However, adaptations and configurations were later proposed to cater
for multi-class classification problems. It has been argued that the SVM is among
the best machine learning techniques [26–28]. This is attributed to its ability to
always obtain a converged model that provides superior accuracy [26] in a variety
of contexts. SVMs are also a regular choice in systems that use the HOG feature
descriptor such as several recent systems [22–24]. The current implementation
makes use of the directed acyclic graph SVM multi-class classification technique.
This technique combines the training efficiency of the one-versus-one technique
with a classification efficiency that is better than the one-versus-all technique.

To arrive at trained models for these 13 SVMs, a labelled training data set of the
hand orientations and hand shapes performed by several users was used as input to
an SVM training and optimisation procedure. Because of the unavailability of pre-
existing data sets with a suitable variety of hand shapes and orientations, a new data
set was constructed using 11 test subjects representing both genders and a range of
skin tones, body dimensions, and ethnicities. Using the data set, the SVMs and the
HOG feature descriptor were jointly optimised. A detailed description of the data
set and its construction, as well as the optimisation procedure, may be found in [1].

7 SignWriting Lookup and Transcription

At this stage in the processing workflow, the parameters that have been obtained are
encoded in SWML notation [29]. This is a simple lookup and encoding process. In
this research, version 1.1 of the SWML was used, but the use of newer versions can
be investigated in future. A complete description of SWML is available in [29]. All
references to SWML will henceforth refer to SWML 1.1.

Although it has been stated clearly that this research limits itself to producing
the SWML transcription of sign language manual gestures—which has thus been
achieved—it is worth mentioning that an SWML transcription can be visualised in
SignWriting using the SignText Editor [30] or rendered as an actual sign language
animation using a SignWriting rendering system such as the ones proposed in
[31–33]. These additional functions can be incorporated directly into the proposed
framework in future.

116 M. Ghaziasgar et al.

8 Summary

This chapter described the two components—the hand retrieval and the manual
parameter representation and recognition components—of the proposed sign lan-
guage manual parameter recognition and transcription framework. The task of the
hand retrieval component is to find and track the hands in a video sequence. A
complete description of the procedure and methods used to achieve tracking from
video input was provided. The task of the MPRR component is to represent the
motions of the hands, to recognise their orientations and shapes and represent them
as SWML notation transcriptions.

The chapter described the proposed method of representing hand motions in
terms of key hand locations in time. To reduce redundancy and to achieve a compact
representation of the hand motions, it was devised to only retain the hand locations
in key frames—frames in which the hands stopped or changed direction. It was
shown that doing so provided a compact, yet fully descriptive, representation of the
hand motions in time. It was also resolved to only recognise the orientation and
shape of the hands in key frames. To this end, a detailed description of a model to
detect holds and movements of the hands was provided.

At each key frame, hand segmentation is carried out to obtain isolated images
of the hands for feature representation and recognition. A detailed description of
the proposed hand segmentation procedure was provided. This was followed by an
in-depth justification of, and discussion on, the HOG feature descriptor which is
subsequently applied to the segmented hand images for recognition purposes.

Finally, SVMs are used to recognise the orientation and shape of the hands. This
is a two-stage procedure in which the orientation of each hand is first recognised,
followed by the use of one of 12 hand shape classifiers, each trained to recognise
hand shapes in one of the 12 hand orientations considered. A description of the
MOSH data set used to train and test these classifiers was provided. This was
followed by an in-depth description of the classification mechanism of SVMs, and
the procedure used to optimise them, along with a chosen feature descriptor.

At the end of this component, all four manual parameters of each hand in a hold
state are known: the hand location, the hand motion, the hand orientation, and the
hand shape. These are mapped onto, and represented in, SWML notation to produce
transcriptions of the hand gestures in the input video sequence.

Acknowledgment This research is supported in part by the National Research Foundation of
South Africa (UNIQUE GRANT NO: 105670).

References

1. M. Ghaziasgar, Automatic sign language manual parameter recognition. Ph.D. thesis, Univer-
sity of the Western Cape, Computer Science, 2017

Automatic Sign Language Manual Parameter Recognition (II): Comprehensive. . . 117

2. A.A. Argyros, M.I. Lourakis, Real-time tracking of multiple skin-colored objects with a
possibly moving camera, in Computer Vision-ECCV 2004 (Springer, Berlin, 2004), pp. 368–
379

3. A.K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Upper Saddle River,
1989)

4. J.P. Lewis, Fast template matching, in Vision Interface, vol. 95 (1995), pp. 15–19
5. G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library

(O’Reilly Media, Sebastopol, 2008)
6. P. Viola, M.J. Jones, Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154

(2004)
7. M.J. Taylor, T. Morris, Adaptive skin segmentation via feature-based face detection, in Pro-

ceedings SPIE Photonics Europe (International Society for Optics and Photonics, Bellingham,
2014), pp. 91390P–1–12

8. J.R. Smith, S.-F. Chang, Tools and techniques for color image retrieval, in Electronic Imaging:
Science & Technology (International Society for Optics and Photonics, Bellingham, 1996), pp.
426–437

9. N. Otsu, A threshold selection method from gray-level histograms. Automatica 11(285–296),
23–27 (1975)

10. C. Stauffer, W. Grimson, Adaptive background mixture models for real-time tracking, in
Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 2 (IEEE, Piscataway, 1999), pp. 246–252

11. Z. Zivkovic, Improved adaptive Gaussian mixture model for background subtraction, in
Proceedings 17th International Conference on Pattern Recognition, vol. 2 (IEEE, Piscataway,
2004), pp. 28–31

12. I. Achmed, I.M. Venter, P. Eisert, Improved hand-tracking framework with a recovery
mechanism, in Proceedings South African Telecommunication Networks and Applications
Conference, Spier (2013), pp. 344–349

13. S. Howard, T. Chowles, L. Reynolds, Finger Talk: South African Sign Language (SASL)
Dictionary (Fulton School for the Deaf, Gillitts, 2011)

14. M. Raptis, L. Sigal, Poselet key-framing: a model for human activity recognition, in Proceed-
ings IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 2650–2657

15. J. Tilmanne, S. Hidot, T. Ravet, MocKey: motion capture as a tool for keyframing animation.
QPSR Numediart Res. Program 2(4), 119–124 (2009)

16. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (IEEE,
Piscataway, 2005), pp. 886–893

17. O. Lanihun, B. Tiddeman, E. Tuci, P. Shaw, Improving active vision system categorization
capability through histogram of oriented gradients, in Conference Towards Autonomous
Robotic Systems (Springer, Cham, 2015), pp. 143–148

18. S. Tian, U. Bhattacharya, S. Lu, B. Su, Q. Wang, X. Wei, Y. Lu, C.L. Tan, Multilingual scene
character recognition with co-occurrence of histogram of oriented gradients. Pattern Recogn.
51, 125–134 (2016)

19. I.L. Bastos, M.F. Angelo, A.C. Loula, Recognition of static gestures applied to Brazilian sign
language (Libras), in 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images
(IEEE, Piscataway, 2015), pp. 305–312

20. O. Déniz, G. Bueno, J. Salido, F. De la Torre, Face recognition using histograms of oriented
gradients. Pattern Recogn. Lett. 32(12), 1598–1603 (2011)

21. P.E. Rybski, D. Huber, D.D. Morris, R. Hoffman, Visual classification of coarse vehicle
orientation using histogram of oriented gradients features, in Intelligent Vehicles Symposium
(IV), 2010 IEEE (IEEE, Piscataway, 2010), pp. 921–928

22. Y. Yang, L. Lin, Automatic pedestrians segmentation based on machine learning in surveillance
video, in 2019 IEEE International Conference on Computational Electromagnetics (ICCEM)
(IEEE, Piscataway, 2019), pp. 1–3

118 M. Ghaziasgar et al.

23. C. Wang, Z. Li, N. Dey, Z. Li, A.S. Ashour, S.J. Fong, R.S. Sherratt, L. Wu, F. Shi, Histogram of
oriented gradient based plantar pressure image feature extraction and classification employing
fuzzy support vector machine. J. Med. Imaging Health Informatics 8(4), 842–854 (2018)

24. R. Kapoor, R. Gupta, S. Jha, R. Kumar et al., Detection of power quality event using histogram
of oriented gradients and support vector machine. Measurement 120, 52–75 (2018)

25. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
26. S.S. Rautaray, A. Agrawal, Vision based hand gesture recognition for human computer

interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015)
27. S. Sharma, C.R. Krishna, S.K. Sahay, Detection of advanced malware by machine learning

techniques, in Soft Computing: Theories and Applications (Springer, Singapore, 2019), pp.
333–342

28. H. Faris, M.A. Hassonah, A.-Z. Ala’M, S. Mirjalili, I. Aljarah, A multi-verse optimizer
approach for feature selection and optimizing SVM parameters based on a robust system
architecture. Neural Comput. Appl. 30(8), 2355–2369 (2018)

29. A.C. da Rocha Costa, G.P. Dimuro, Signwriting and SWML: paving the way to sign language
processing, in TALN 2003 (2003), pp. 193–202

30. S. Slevinski, SignText editor. Available at http://www.signbank.org/signpuddle/signtext/
signtext.html

31. K. Abrahams, M. Ghaziasgar, J. Connan, R. Dodds, Rendering South African sign language
sentences from SignWriting notation, in Proceedings South African Telecommunication
Networks and Applications Conference, Port Elizabeth (2014), pp. 87–92

32. D. Bragg, R. Kushalnagar, R. Ladner, Designing an animated character system for American
sign language, in Proceedings of the 20th International ACM SIGACCESS Conference on
Computers and Accessibility (ACM, New York, 2018), pp. 282–294

33. A. Balayn, H. Brock, K. Nakadai, Data-driven development of virtual sign language commu-
nication agents, in 2018 27th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN) (IEEE, Piscataway, 2018), pp. 370–377

http://www.signbank.org/signpuddle/signtext/signtext.html
http://www.signbank.org/signpuddle/signtext/signtext.html

Computer Vision Algorithms for Image
Segmentation, Motion Detection, and
Classification

Mehrdad Ghaziasgar, Antoine Bagula, and Christopher Thron

1 Introduction

This chapter describes a number of widely used techniques in computer vision,
which are also used in the automatic sign language recognition system described
in [1]. These techniques are categorised as follows:

• Image segmentation

– Edge detection via adaptive Gaussian thresholding and image inversion;
– Cross correlation template matching for shape recognition.
– Viola–Jones face detection;

• Motion detection and tracking:

– Gaussian mixture modeling.

• Classification:

– Histogram of oriented gradients (HOG) descriptor
– Support vector machine (SVM) classification;
– Directed acyclic graph multi-class SVM.

M. Ghaziasgar (�) · A. Bagula
Department of Computer Science, University of the Western Cape, Cape Town, South Africa
e-mail: mghaziasgar@uwc.ac.za

C. Thron
Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX,
USA

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_5

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_5&domain=pdf
mailto:mghaziasgar@uwc.ac.za
https://doi.org/10.1007/978-3-030-37830-1_5

120 M. Ghaziasgar et al.

2 Image Segmentation

“Image segmentation” refers to the identification of image regions of particular
interest. Such regions may be identified by means of particular characteristics
such as edges, shapes, contrasts, and so on [2]. In this section we present three
techniques that may be used in such identifications: adaptive Gaussian thresholding
and image inversion are used to locate edges that may bound regions of interest;
cross correlation template matching is used to pick out certain shapes in the image;
and Viola–Jones face detection is a specialised module that looks specifically for
image portions that are likely to be faces. These three techniques are described in
the following subsections.

2.1 Adaptive Gaussian Thresholding and Image Inversion

A thresholding function S converts a grayscale image L into a binary image by
applying a threshold ε to the image. The value of the pixel L(x, y) at (x, y) in the
grayscale image is compared to ε and set to white, i.e., 255, if it exceeds or equals
ε, or black, i.e., 0, otherwise. This is formally given by

S(x, y) =
{

White ifL(x, y) ≥ ε

Black ifL(x, y) < ε
(1)

Note that, due to the (x, y) indexing, S can be viewed as the resulting thresholded
image. The value of ε can be fixed or adaptive [3]. If it is adaptive, it takes the
form of a function ε(x, y) which is specific to each pixel. With adaptive Gaussian
thresholding [2], ε(x, y) is computed as the difference between the weighted sum
of a b × b neighbourhood around each pixel (x, y) and a constant K . The weights
in the neighbourhood are assigned by a Gaussian window G of size b × b pixels
given by

G(i, j) = 1

2πσ 2 e
i2+j2

2σ2 ; −(b − 2) ≤ i ≤ (b − 2);−(b − 2) ≤ j ≤ (b − 2) (2)

where i and j are indices in the window G and σ is the standard deviation of
the Gaussian distribution typically taken as 1. Therefore, assuming that the b × b

neighbourhood around the pixel at (x, y) in L is B(x, y), ε(x, y) is given by

ε(x, y) = B(x, y) � G − K (3)

Applying this function to a grayscale image such as the one in Fig. 1a results
in a binary image in which regions of the input image with little or no change in
intensity are highlighted and regions with strong changes in intensity are darkened,

Computer Vision Algorithms for Image Segmentation, Motion Detection, and. . . 121

Fig. 1 Adaptive Gaussian thresholding and image inversion: (a) the grayscale image of the input;
(b) the corresponding thresholded image with strong intensity changes darkened using adaptive
Gaussian thresholding; (c) the inverted image in which strong intensity changes, i.e., edges, are
highlighted

Fig. 2 Contour hand
templates: (a) right hand; (b)
left hand

(a) (b)

as illustrated in Fig. 1b. A simple inversion of this image results in an image in which
strong intensity changes, i.e., edges, are highlighted, as illustrated in Fig. 1c.

The size of the neighbourhood used must be small enough to maintain the pixel-
level adaptive quality of the technique, but large enough to incorporate information
from a local neighbourhood. Set too small, the contours produced are very dense
and represent very small-scale edges. Set too large, the approach loses its adaptive
quality and becomes a variant of global thresholding. Practically speaking, any
value of 9 ≤ b ≤ 21 provides relatively good contour detection results. In this
implementation, a neighbourhood size of b = 11 was used to obtain contours.

2.2 Cross Correlation Template Matching

Cross correlation template matching is used to find the most likely position of a
shape with known outline within an image, which is specified by a contour template.
Examples of contour templates for hand shapes are shown in Fig. 2. The matching
algorithm for a given shape involves computing statistical correlations between the
shape’s fixed template T and the search image S. A search window of the same
width w and height h as T is passed over S. At each position (x, y), the correlation
C is computed as follows. Given that (i, j) and (a, b) are coordinate index counters
in T such that i, a ∈ {1, . . . , w} and j, b ∈ {1, . . . , h}, C(x, y) is given by

C(x, y) =
∑
i,j

[T ′(i, j) · S′(x + i, y + j)]2 (4)

122 M. Ghaziasgar et al.

where

T ′(i, j) = T (i, j) − 1

(w · h)
∑
a,b

T (a, b)
(5)

S′(x + i, y + j) = S(x + i, y + j) − 1

(w · h)
∑
a,b

I (x + a, y + b)
(6)

The position (x, y) corresponding to the maximum value of C(x, y) is the most
likely position of the shape represented by T . It may also be a false positive.
Therefore, an empirically determined correlation threshold tc determines whether
Cmax(x, y) represents a true or false positive detection. Note that this procedure is
carried out independently for each template used.

2.3 Viola–Jones Face Detection

The Viola–Jones face detection framework [4] is used to detect and locate the user’s
face. It is a very efficient and accurate face detection approach. For this reason, it is
perhaps the most prominent face detection approach in the literature [5].

Generally speaking, the Viola–Jones face detection framework uses fundamental
Haar-like wavelet features (or Haar-like features in short) in a grayscale image to
locate one or more faces. The Haar-like features are of specific types but can take on
a variety of sizes. Computing these features in an image can be a costly procedure.
Viola and Jones proposed an image representation—the Integral image—that can
be used to efficiently compute these features at any scale in an image. Finally, a
modified AdaBoost classifier is used to arrange a series of weak classifiers, each
trained on a single Haar-like wavelet feature, into a face detection rejection cascade.
The rejection cascade determines whether or not a given input is a face. The location
of the face in the input image is thus determined. These steps are explained in greater
detail in the subsections below.

2.3.1 Haar-Like Wavelet Features and Their Computation

Haar-like features are characterised by various unique arrangements of alternating
light and dark rectangles, either vertically or horizontally adjacent. Five example
Haar-like features are provided in Fig. 3. Note that other possibilities also exist such
as those resulting from inter-changing the light and dark regions of each feature in
the figure.

Each of the features is computed at every feasible location and scale in a
grayscale image: starting at the largest or smallest scale, the feature is scanned over

Computer Vision Algorithms for Image Segmentation, Motion Detection, and. . . 123

Fig. 3 Example Haar-like wavelet features

(a) (b)

Fig. 4 Example of a Haar-like feature on an image: (a) grayscale image showing that the eyes are
generally darker than the bridge of the nose; (b) the Haar-like feature placed over the eyes

the image and computed at each location. Once all possibilities at this scale are
exhausted, this process is repeated for the next scale.

Computing the value of a specific feature at a given location and scale amounts
to computing the sum of the image pixel values corresponding to the dark region(s)
of the feature and subtracting this sum from the sum of the image pixel values
corresponding to the light region(s) of the feature. The feature is then said to be
present at that scale and location if its value exceeds a pre-determined threshold.

Figure 4 provides an example of a feature placed over the eyes of the user. The
feature used is a horizontal feature with three blocks; two dark blocks on the sides
and one light block in the middle. Computing the value of this feature at this location
and scale amounts to subtracting the sum of the pixels in the eye regions from the
sum of the pixels on the bridge of the nose. It is clear from Fig. 4a that the eyes are
darker than the bridge of the nose. Therefore, it is very likely that the value of this
feature at this location and scale will exceed the detection threshold, and thereby be
determined to be present.

2.3.2 Integral Image Representation for Haar-Like Wavelet Computation

Computing the sum of pixels of various features at a variety of scales and
locations can be very computationally costly. Viola and Jones proposed an image
representation—the Integral image—which provides a very efficient means of
computing pixel sums at every scale and location.

Letting the original grayscale image be L, the value at each location (x, y) in the
Integral image L′ is the sum of the pixel itself i.e., L(x, y), and all pixels above and

124 M. Ghaziasgar et al.

(a) (b)

Fig. 5 Example of Integral image computation, adapted from [3]: (a) the values in an original
grayscale image; (b) the corresponding Integral image

to the left of that pixel location. This can be efficiently represented and computed
using the following recurrence relation [4]:

L′(x, y) = L(x, y) + L′(x − 1, y) + L′(x, y − 1) − L′(x − 1, y − 1) (7)

Computing the Integral image L′ requires one pass through the image L. Using
L′, it is possible to compute the sum inside any rectangle in L with only a small
number of lookups in L′. For example, the sum of pixels in the highlighted rectangle
in Fig. 5a can be computed from the values in the corresponding Integral image
in Fig. 5b as follows. Referring to the values in Fig. 5b, the values in the red and
blue cells—9 and 10—are subtracted from the value in the yellow cell—398—and
the value in the green cell—1—is added to the result. The sum of pixels in the
highlighted box in Fig. 5a—380—is thus efficiently obtained.

Using a similar approach, the value of any feature at any scale and location can
be determined using a small number of lookups.

2.3.3 Selection of Features Using AdaBoost and Arrangement into a
Rejection Cascade

Given the variety of features that can be used, an important element of the Viola–
Jones face detector is the use of a modified AdaBoost learning algorithm to select
features which best distinguish between negative and positive face examples in a
training set.

A set of classifiers are trained on each of the features selected. Note that these
classifiers are weak classifiers since each classifier, on its own, is only able to
determine the presence of a specific feature, and not the presence of a face. The
weak classifiers are placed into a rejection cascade illustrated in Fig. 6 in descending
order of their importance towards face detection, as determined by the AdaBoost
algorithm.

Given any sub-window in an image, each classifier in the cascade is invoked
in order, starting with the first and most relevant classifier. If any classifier rejects
the sub-window, i.e., that feature is not present, processing on the sub-window
stops immediately and moves on to a different sub-window. It is determined that

Computer Vision Algorithms for Image Segmentation, Motion Detection, and. . . 125

Fig. 6 An illustration of a
rejection cascade of weak
classifiers [4]

a face is not present in this sub-window. This approach significantly reduces the
computational overhead of the algorithm and ensures that minimal time is wasted
on non-face background regions. It is only determined that a face is present if and
when every classifier in the cascade accepts the sub-window.

3 Motion Detection Using Gaussian Mixture Modeling

Motion detection is a key aspect in several computer vision applications that involve
sensing and/or surveillance. Motion detection involves examining the images in a
sequence of consecutive images of the same scene, and partitioning the pixels in
each image into background and foreground, where the foreground pixels belong
to moving objects. Identification of foreground pixels in an image involves finding
pixels that are “significantly different” from the same pixel location in previous
images. The notion of “significance” depends on the particular application: users
will want to screen out changes due to lighting variations, windblown motion,
camera jiggling, and so on.

A wide variety of motion detection algorithms exist: for a survey, see [6, 7].
In this section, we will describe one particular motion detection algorithm, as
developed and implemented in [8]. This algorithm relies on Gaussian mixture
modeling, which is a key component of many motion detection algorithms.

We consider one particular pixel (i, j) (all pixels are treated the same) and
denote the intensity vector in colour space of the pixel at time index t as �It . The
pixel’s probability distribution is modeled by a mixture of k Gaussians, so that the
probability that pixel (i, j) takes the value �v at time index t is given by

P(�It = �v) =
k∑

n=1

Wn,t · N (�v; �μn,t , �n,t) (8)

where Wn,t is the estimated weight parameter of the n-th Gaussian component, and
N is given by

126 M. Ghaziasgar et al.

N (v;μn,t , σn,t) = 1

(2π)
n
2 | �n,t | 1

2

e− 1
2 (�v−�μn,t)

T �−1
n,t (�v−�μn,t) (9)

where �μn,t and �2
n,t = σ 2

n,t I are the mean and covariance, respectively, of the n-

th Gaussian component. The expression Wn,t

σn,t
is known as the fitness value, and is

used to order the k distributions. The first B components are taken as a probabilistic
model of the background, where the parameter B is determined by

B = argminb

(b∑
n=1

Wn,t > T

)
(10)

and T is a user-defined threshold.
The pixel measurement It at time index t is deemed to be consistent with the n-th

cluster if it lies within 2.5 standard deviations of the cluster’s mean, i.e., | �It − �μn,t | ≤
2.5σn,t . If the pixel is not consistent with any of the B background components,
then the pixel is designated as foreground, and is grouped with other foreground
pixels using 2D connected component analysis to determine which moving object it
belongs to.

Based on the measured value It , the n Gaussian components are updated as
follows. If the value of It is consistent with the n-th Gaussian component, then
the n-th mean and variance are updated as shown below:

Wn,t = Wn,t−1 (11a)

μn,t = (1 − ρ)μn,t−1 + ρI (i, j, t) (11b)

σ 2
n,t = (1 − ρ)σ 2

n,t−1 + ρ(I (i, j, t) − μn,t)
2 (11c)

ρ = αN (I (i, j, t) | μk,�k) (11d)

where 1
α

is a user-chosen time constant that reflects the time scale over which back-
ground features are expected to be unchanged. This update amounts to changing the
mean and covariance of the component based on information supplied by the new
measurement. If on the other hand the n-th Gaussian component is not consistent
with It , then the expression below is used:

Wn,t = (1 − α)Wn,t−1 (12a)

μn,t = μn,t−1 (12b)

σ 2
n,t = σ 2

n,t−1 (12c)

In this case the component’s mean and covariance are not changed, because the
measurement is supposed to be due to another object coming in front which belongs
to a different component.

Computer Vision Algorithms for Image Segmentation, Motion Detection, and. . . 127

If none of the Gaussian components are consistent with the measured vector
It , then a new Gaussian component is defined with a low weight parameter, high
variance, and mean equal to It . This new component then replaces the component
with lowest fitness.

4 Feature Representation Using the Histogram of Oriented
Gradients Feature Descriptor

The histogram of oriented gradients (HOG) descriptor was invented in 1986 by
McConnell [9] and popularised by Dalal and Triggs [10]. HOG has been used
in conjunction with support vector machines in a variety of research studies very
recently [11–13]. In [1], HOG is used in the classification of hand gestures. In this
section we give a step-by-step of the construction of the HOG feature vector.

HOG begins with a preprocessed grayscale image of the object of interest.
Preprocessing usually involves segmentation to isolate the object, as well as resizing
to a pre-defined width and height (w × h), resulting in an input image Î .

The x and y components gx(x, y) and gy(x, y) of the image intensity gradient
g(x, y) at each pixel (x, y) in Î are computed by means of a 1D-centred masking
operation [−1, 0, 1] in the respective x and y directions, given by:

gx(x, y) = Î (x + 1, y) − Î (x − 1, y) (13a)

gy(x, y) = Î (x, y + 1) − Î (x, y − 1) (13b)

where x ∈ {1, . . . , w} and y ∈ {1, . . . , h}. For the bordering pixels of Î for which
x = 1, x = w, y = 1, or y = h, the undefined values of Î in Eq. 13 are assumed
to be zero. The gradient components gx and gy are used to compute the gradient
magnitude m(x, y) and gradient orientation φ(x, y) at each pixel (x, y) as follows:

m(x, y) =
√

gx(x, y)2 + gy(x, y)2 (14a)

φ(x, y) = tan−1
(

gy(x, y)

gx(x, y)

)
(14b)

The unsigned equivalent of φ limits contrast gradients to the range [0, π] as
follows:

φU(x, y) =
{

φ(x, y) if φ(x, y) ≥ 0

φ(x, y) + π if Otherwise
(15)

128 M. Ghaziasgar et al.

Î is then partitioned into cells by means of a grid, with the width and height of
each cell being (cw ×ch) pixels. For reference, cells in the grid are indexed as (i, j),
where i ∈ {

1, . . . , w
cw

}
and j ∈ {

1, . . . , h
ch

}
. In each cell at (i, j), the gradient

orientations are quantised into co orientation bins and a histogram H(i, j) thereof is
computed. The orientation vote φU(x, y) of each pixel in the cell is the magnitude
m(x, y) of that pixel. Formally, the value of the orientation bin o in the histogram
H(i, j) corresponding to the cell C at index (i, j) is given by H(i, j, o) as follows:

H(i, j, o) =
∑

x,y∈C

h

(
φU(x, y) = o, m(x, y)

)
(16)

for all o ∈ {1, . . . , co} and

h(A, v) =
{

v if A is True

0 if A is False
(17)

In the simple case, the final feature vector resulting from the HOG feature
descriptor can be taken as the concatenation of all histograms H(i, j) in Î . However,
Dalal and Triggs proposed to further group cells into overlapping blocks and
produce normalised versions of the histograms in the cells of each block. This
not only represents larger-scale features in the image better, but also significantly
increases robustness to variations in illumination [10].

Accordingly, cells are further grouped into overlapping blocks, with the width
and height of each block being (bw × bh) cells. The overlap of blocks depends on
bw and bh, where the overlap in the x and y directions, respectively, are bw − 1 and
bh − 1 cells. For ease of reference, new indices are introduced to index the cells in
a specific block, where the histograms of cells in a specific block b are indexed as
Hb(h, k) for h ∈ {1, . . . , bw}, k ∈ {1, . . . , bh}, b ∈ {1, . . . , B} and B is the number
of blocks.

Using the histograms Hb(h, k) within each block produced previously, a new
set of normalised histograms Ĥb(h, k) are produced and assigned to this specific
block b. The normalisation is a simple one involving dividing each histogram value
by the block sum. To avoid division-by-zero errors, a small value ε is added to the
block sum, and the square root of their squares is computed. As before, assuming
the value of the orientation bin o in the histogram Hb(h, k) corresponding to the cell
at index (h, k) is referred to as H(h, k, o), the block sum Sb of a specific block b is
given by:

Sb =
∑
h,k,o

Hb(h, k, o) (18)

for all (h, k) in block b and o ∈ {1, . . . , co}. The normalised histogram Ĥb(h, k) is
then given by:

Computer Vision Algorithms for Image Segmentation, Motion Detection, and. . . 129

Ĥb(h, k) = Hb(h, k)√
S2

b + ε2
(19)

Although the overlap between blocks appears to introduce redundancy, it is
important to note that the Ĥb(h, k) version of each cell histogram is adapted to the
specific block that it appears in and is most probably different from the original
Hb(h, k). The final HOG feature vector �F is a concatenation of all histograms
Ĥb(h, k) for all blocks b ∈ {1, . . . , B}. The size of this feature vector is the product
of the number of blocks, the number of cells per block in the x direction bw, the
number of cells per block in the y direction bh, and the number of orientations used

co:
[(

w
cw

− bw + 1
) · (h

ch
− bh + 1

)] · bw · bh · co.

Once the feature vector �F has been computed, it may be subjected to a
classification algorithm. With HOG, the most commonly used classifier is the
support vector machines classifier, which is discussed in the next section.

5 Support Vector Machine Classification

Together with artificial neural networks, support vector machines (SVM) ranks as
one of the most powerful tools for classification in the modern practice of machine
learning. In the following subsections, we will explain the SVM and the different
types of SVM in more detail.

5.1 Support Vector Machine Classification Principle

Consider the set of points shown in Fig. 7a. The figure depicts a two-class
classification problem. The red square points and blue triangular points are both
expressed in terms of features x1 and x2, and belong to two separate intended
classes. In general, the aim of classification is to obtain a hyperplane that separates
the two classes of points. Then, given a new data point expressed in terms of x1 and
x2, the point is assigned to one of the two classes depending on which side of the
hyperplane it falls.

Figure 7a makes it clear that many different separating hyperplanes can be used
to separate the two classes. The principal idea of SVM classification is to determine
the hyperplane that provides the widest separation or “maximum margin” between
the two classes. This hyperplane is referred to as the “optimal hyperplane” and is
depicted in Fig. 7b. Ensuring that the maximum margin is maintained helps provide
the optimal separation between the classes, thereby reducing misclassification of
unseen data points in run-time.

130 M. Ghaziasgar et al.

(a) (b)

Fig. 7 A two-class classification problem: (a) various (green) hyperplanes that can be used to
separate the two classes; (b) the optimal hyperplane—the hyperplane that separates the two classes
with the largest margin between the classes

A decision rule is formulated below to conform to the decision boundary which
meets the requirement of a maximum margin. Let the set of N points be X = {xi |i =
1, . . . , N}, noting that each xi is a point (x1

i , x2
i , . . . , xM

i) with M components,
where N = 10 and M = 2 in Fig. 7. The points in X can be assigned to one of two
classes, a positive class C+ and a negative class C−, each corresponding to one of
the two classes in the figure.

In the simplest terms, given an arbitrary point x that forms a vector �u from
the origin and lies at an arbitrary location in the Cartesian plane, the classification
problem of determining the class of x amounts to determining on which side of the
optimal hyperplane—or simply “hyperplane” for short—the point lies. Let �w be a
vector perpendicular to the hyperplane. Then for some constant C that depends on
the hyperplane [14]:

�u · �w < C if x ∈ C− (20a)

�u · �w ≥ C if x ∈ C+ (20b)

Carrying out a restructure of Eq. 20 and introducing b where b = −C as a matter
of convenience leads to:

�u · �w + b < 0 if x ∈ C− (21a)

and

�u · �w + b ≥ 0 if x ∈ C+ (21b)

Computer Vision Algorithms for Image Segmentation, Motion Detection, and. . . 131

Assuming that �x− and �x+ are, respectively, arbitrary negative and positive
samples in X, a rescale of �w leads to:

�x− · �w + b ≤ −1 (22a)

and

�x+ · �w + b ≥ 1 (22b)

A variable yi is introduced to unify Eqs. 22a and 22b and to obtain a combined
generic equation for the negative and positive classes. The variable yi is part of a set
of labels Y = {yi |i = 1, . . . , N, yi ∈ {1,−1}}, with each label yi assigned to each
point xi , where yi = −1 if xi ∈ C− and yi = 1 if xi ∈ C+ for all i ∈ {1, . . . , N}.
Multiplying yi into either Eq. 22a or Eq. 22b leads to the same expression as below:

yi(�xi · �w + b) ≥ 1 ∀ xi ∈ {C+, C−} (23)

The special points xi that lie on the boundaries of the margin on either side of the
decision boundary are referred to as support vectors. The boundaries of the margin
are visualised in Fig. 7b as dotted green lines and the support vectors are clearly
indicated in that figure. For these points, Eq. 23 is given by

yi(�xi · �w + b) = 1 (24)

As mentioned before, the aim of SVM classification is to separate the positive
and negative samples by the widest margin. Therefore, the size of the margin D is
formulated by devising a vector formed by taking the difference between a support
vector of the positive class �x+ and a support vector of the negative class �x− and
projecting this vector onto a unit vector perpendicular to the separating hyperplane.
This is formulated as below:

D = (�x+ − �x−) · �w
||w||

= �w · �x+ − �w · �x−

||w|| (25)

Using Eq. 24 to substitute for the expressions �w·�x+ and �w·�x− in Eq. 25 results in:

D = 1 − b + 1 + b

||w||
= 2

||w|| (26)

132 M. Ghaziasgar et al.

Therefore, maximising the margin amounts to maximising Eq. 26 which, in turn,
amounts to minimising the inverse of that equation subject to Eq. 24 as follows:

max
2

||w|| =⇒ min
||w||

2

=⇒ min||w||

=⇒ min
1

2
||w||2 (27a)

subject to :
yi(�xi · �w + b) = 1 (27b)

The maximisation in Eq. 27a can be achieved using Lagrange multipliers. Let L

be the boundary to be maximised by subtracting Eq. 27a from a summation of all
the constraints found in Eq. 24 as follows:

L = 1

2
|| �w||2 −

N∑
i

αi[yi(�w · �xi + b) − 1] (28)

Differentiating L with respect to �w yields the minimisation expression:

∂L

∂ �w = �w −
N∑
i

αiyi �xi = 0

�w =
N∑
i

αiyi �xi (29)

This expression makes it clear that �w is the linear sum of all of the samples in
X along with their corresponding class labels. Differentiating L with respect to b

yields the minimisation expression:

∂L

∂b
= −

N∑
i

αiyi = 0

N∑
i

αiyi = 0 (30)

Now substituting for �w in Eq. 28 using Eq. 29 leads to:

L = 1

2

(N∑
i

αiyi �xi

)
·
(N∑

j

αj yj �xj

)
−
(N∑

i

αiyi �xi

)
·
(N∑

j

αj yj �xj

)
−b

N∑
i

αiyi +
N∑
i

αi

(31)

Computer Vision Algorithms for Image Segmentation, Motion Detection, and. . . 133

Substituting the expression in Eq. 30 into Eq. 31 allows for the Lagrangian to be
rewritten as follows:

L =
N∑
i

αi − 1

2

N∑
i

N∑
j

αiαj yiyj �xi · �xj (32)

The formulation for the discriminant of the optimal hyperplane is therefore:

f (�x) =
∑
i∈V

αiyi �xi · �x + b (33)

where V is the set of indices of the support vectors in X and:

x ∈ C+ if f (x) ≥ 0, (34a)

x ∈ C− if f (x) < 0 (34b)

5.2 Mapping onto Higher-Dimensional Spaces

In many cases, the data points of the two classes C+ and C− are not linearly
separable. In these cases, a higher-dimensional embedding “trick” called the “kernel
trick” is used to map the data onto a higher-dimensional space in which the data is
linearly separable [14].

In this case, the vectors �xi and �x of Eq. 33 are replaced by φ(�xi) and φ(�x) where
φ is a function that maps those vectors onto a desired higher-dimensional space.
Equivalently, Eq. 33 becomes

f (�x) =
∑
i∈V

αiyiφ(�xi) · φ(�x) + b (35)

Given that the inner product φ(�a) ·φ(�b) for two vectors �a and �b can be expressed
as a function K(�a, �b), Eq. 35 becomes

f (�x) =
∑
i∈V

αiyiK(�xi, �x) + b (36)

where K is known as a kernel function. A variety of kernel functions can be used
with varied success. Four common kernel functions are as follows:

1. Linear Kernel: K(�xi, �x) = (�xi) · (�x)

2. Radial Basis Function (RBF) Kernel: K(�xi, �x) = exp(−γ (|| �xi − �x||22))
3. Polynomial Kernel: K(�xi, �x) = (γ (�x) · (�x) + z)d

4. Sigmoid Kernel: K(�xi, �x) = tanh(γ (�xi) · �x + b)

134 M. Ghaziasgar et al.

where γ , z, and d are the kernel parameters. The choice of kernel used is important
as it influences the classification mechanism of the SVM [15]. Research has shown
that if the RBF kernel is used with parameter selection, there is no need to consider
the linear kernel [16] as the former clearly out-performs the latter. It has also been
shown that the RBF kernel is generally a better choice than the sigmoid kernel [17].
The polynomial kernel may be comparable to the RBF kernel, but it is significantly
more complex, with more hyper parameters and an overall complex final model.
Therefore, the RBF is the best choice of kernel for most applications.

This choice is further confirmed by its very successful application in a variety
of classification contexts [18, 19], in addition to hand shape recognition in a
single orientation [20, 21]. Therefore, the RBF kernel will most likely provide
classification performance that is at least as good as other kernels, but likely better.

5.3 Multi-Class SVM Classification Techniques

As observed in the SVM formulation, SVMs are intrinsically binary classifiers. Sev-
eral techniques have been developed to apply SVMs to multi-class problems [22].

Most of these techniques combine several SVMs and use a decision strategy to
select a single class. The following subsections describe three prominent techniques
[22].

5.3.1 One-Versus-All

Given a K-class problem, the classification problem is to separate the points of each
class k from the points of the other (K − 1) classes, for every k ∈ {1, . . . , K}.
Therefore, for each class k, a binary SVM is trained to separate the data points of
class k from the data points of all classes other than class k. This results in a total of
K binary classifiers.

Given an unknown data point that requires placement into one of the K classes,
the pattern is presented to each of the K classifiers. The class of the pattern is
determined to be the class that receives a vote from one of the K classifiers. This
method has a relatively high training complexity given each classifier is effectively
trained on all of the data.

5.3.2 One-Versus-One

Similar to the previous technique, this technique produces a series of SVMs. In this
case, however, each SVM is trained to discern between two specific classes k and t ,
where k �= t , for every distinct pair (k, t) where k, t ∈ {1, . . . , K}. The data points
belonging to the relevant classes in each case are used to train the relevant SVM.
This results in a total of K(K−1)

2 binary classifiers.

Computer Vision Algorithms for Image Segmentation, Motion Detection, and. . . 135

As with the previous technique, an unknown test pattern is presented to all the
classifiers. In this case, the class of the pattern is determined to be the class that
receives the largest number of votes across all the classifiers. Despite using a larger
number of classifiers than the one-versus-all technique, this technique has a lower
computational complexity in training, given each individual classifier is only trained
on a small subset of the data. When classifying an unknown pattern, it may be
considered to be more complex given the larger number of classifiers to query. In
terms of classification accuracy, however, it has been shown that this technique is
comparable to the one-versus-all technique [22, 23]. It is, therefore, preferred to the
one-versus-all technique.

5.3.3 Directed Acyclic Graph Support Vector Machine

The directed acyclic graph (DAG) multi-class technique for SVMs was first
proposed by Platt et al. [24]. The training phase of the DAG multi-class classification
technique is carried out as per the one-versus-one technique, i.e., one SVM is trained
for every distinct pair of classes, resulting in a total of K(K−1)

2 SVMs.

Thereafter, a rooted binary DAG with K(K−1)
2 internal nodes and K leaves is used

to classify unknown test patterns into one of the K classes. Each node in the graph is
a one-versus-one SVM of classes k and t . At each level, one class is rejected, after
which none of the SVMs involving that class will be invoked. This significantly
reduces the number of classifiers that are invoked to make a prediction to only K−1.

An illustration of this process is provided in Fig. 8 with a 4-class problem with
classes k ∈ {1, 2, 3, 4}. Starting at the root node, classes 1 and 2 are compared. If
class 1 is determined to be the correct class, this implies that class 2 was rejected.
Therefore, it is resolved that classifiers involving class 2 will no longer be invoked.

Fig. 8 A directed acyclic
graph (DAG) of a 4-class
problem

136 M. Ghaziasgar et al.

This concept is propagated down into all the remaining nodes. At each stage one
class is rejected. At the end of the process, after only K −1 steps, only a single non-
rejected class remains at the bottom of the graph, which is taken to be the predicted
class.

This technique combines the training efficiency of the one-versus-one technique
with a classification efficiency that is better than the one-versus-all technique.

5.4 n-Fold Cross-Validation

If SVM is used for an n-class problem, then a validation technique is required that
measures the correctness of all n classes. For this purpose, cross-validation is used.
n-fold cross-validation is illustrated in Fig. 9. It involves dividing the training set
into n unique subsets or “folds”, represented by each of the vertical partitions of the
data set in the figure. Then, n unique subsets are produced as shown in the figure. In
each subset, one specific fold—shaded in the figure—is used for testing after having
trained the classifier on all other folds—unshaded in the figure. The cross-validation
accuracy for each specific parameter configuration is then the average accuracy over
all n folds.

Fig. 9 Illustration of n-fold cross-validation

Computer Vision Algorithms for Image Segmentation, Motion Detection, and. . . 137

6 Conclusion

Several key techniques in computer vision and motion detection have been discussed
in this work: Gaussian thresholding and mixture modeling for edge detection;
cross correlation template matching for shape detection; the Viola–Jones model for
face detection; and Gaussian mixture modeling for motion detection. For image
classification, the HOG descriptor and SVM have been presented. Multi-class SVM
classification techniques are elucidated, including one-versus-one, one-versus-all,
and directed acyclic graph SVM. Cross-validation for these non-binary classifiers is
also discussed.

Acknowledgment This research is supported in part by the National Research Foundation of
South Africa (UNIQUE GRANT NO: 105670).

References

1. M. Ghaziasgar, Automatic sign language manual parameter recognition, Ph.D. thesis, Univer-
sity of the Western Cape, Computer Science, 2017

2. A.K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Upper Saddle River,
1989)

3. G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library
(O’Reilly Media, Sebastopol, 2008)

4. P. Viola, M.J. Jones, Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154
(2004)

5. M.J. Taylor, T. Morris, Adaptive skin segmentation via feature-based face detection, in Pro-
ceedings SPIE Photonics Europe (International Society for Optics and Photonics, Bellingham,
2014), pp. 91390P–1–12

6. R.J. Radke, S. Andra, O. Al-Kofahi, B. Roysam, Image change detection algorithms: a
systematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005)

7. H.S. Parekh, D.G. Thakore, U.K. Jaliya, A survey on object detection and tracking methods.
Int. J. Innov. Res. Comput. Commun. Eng. 2(2), 2970–2979 (2014)

8. Z. Zivkovic, Improved adaptive Gaussian mixture model for background subtraction, in
Proceedings 17th International Conference on Pattern Recognition, vol. 2 (IEEE, Piscataway,
2004), pp. 28–31

9. R.K. McConnell, Method of and apparatus for pattern recognition, US Patent 4,567,610 (1986,
28 Jan)

10. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (IEEE,
Piscataway, 2005), pp. 886–893

11. Y. Yang, L. Lin, Automatic pedestrians segmentation based on machine learning in surveillance
video, in 2019 IEEE International Conference on Computational Electromagnetics (ICCEM)
(IEEE, Piscataway, 2019), pp. 1–3

12. C. Wang, Z. Li, N. Dey, Z. Li, A.S. Ashour, S.J. Fong, R.S. Sherratt, L. Wu, F. Shi, Histogram of
oriented gradient based plantar pressure image feature extraction and classification employing
fuzzy support vector machine. J. Med. Imaging Health Informatics 8(4), 842–854 (2018)

13. R. Kapoor, R. Gupta, S. Jha, R. Kumar et al., Detection of power quality event using histogram
of oriented gradients and support vector machine. Measurement 120, 52–75 (2018)

14. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

138 M. Ghaziasgar et al.

15. S. Gupta, Support vector machines based modelling of concrete strength. World Acad. Sci.
Eng. Technol. 36, 305–311 (2007)

16. S.S. Keerthi, C.-J. Lin, Asymptotic behaviors of support vector machines with Gaussian kernel.
Neural Comput. 15(7), 1667–1689 (2003)

17. H.-T. Lin, C.-J. Lin, A study on sigmoid kernels for SVM and the training of non-PSD kernels
by SMO-type methods. Neural Comput. 3, 1–32 (2003)

18. K.O. Rodriguez, G.C. Chavez, Finger spelling recognition from RGB-D information using
kernel descriptor, in Proceedings XXVI Conference on Graphics, Patterns and Images (IEEE,
Piscataway, 2013), pp. 1–7

19. I. Nitze, U. Schulthess, H. Asche, Comparison of machine learning algorithms random forest,
artificial neural network and support vector machine to maximum likelihood for supervised
crop type classification, in Proceedings 4th GEOBIA (2012), pp. 7–9

20. P. Li, M. Ghaziasgar, J. Connan, Hand shape recognition and estimation for South African
sign language, in Proceedings South African Telecommunication Networks and Applications
Conference (2011), pp. 344–349

21. R. Foster, M. Ghaziasgar, J. Connan, R. Dodds, A comparison of machine learning techniques
for hand shape recognition, in Proceedings South African Telecommunication Networks and
Applications Conference, Port Elizabeth (2014), pp. 173–178

22. C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support vector machines. IEEE
Trans. Neural Netw. 13(2), 415–425 (2002)

23. K.-B. Duan, S.S. Keerthi, Which is the best multiclass SVM method? An empirical study, in
International Workshop on Multiple Classifier Systems (Springer, Berlin, 2005), pp. 278–285

24. J.C. Platt, N. Cristianini, J. Shawe-Taylor, Large margin DAGs for multiclass classification, in
NIPS, vol. 12 (1999), pp. 547–553

Overview of Deep Learning in Facial
Recognition

Arnauld Fountsop Nzegha, Jean Louis Ebongue Fendji, Christopher Thron,
and Clementin Djameni Tayou

1 Introduction

Deep learning is a growing trend in general data analysis, and it is generally
considered to be a breakthrough technology in the last decade [30]. Deep learning
relies on artificial neural networks, which are computational models composed of a
number of layers of programmed “neurons.” These models allow higher abstraction
levels and better predictions from the data. They have met the need for faster and
more efficient processing techniques required for burgeoning amounts of digital
imaging data. Deep learning has enabled great progress in various applications of
computer vision, such as image classification [9], object detection [16, 26], and
facial recognition [11, 20, 33, 34, 39, 47, 53].

Facial recognition is usually divided into two subcategories: facial verification (or
1:1 face recognition), which checks whether a face corresponds to a given identity;
and facial identification (or 1:N face recognition), which finds the identity matching
a given face. Deep learning simulates the human nervous system’s process of visual
perception, which makes it possible to learn a deeper and more representative
characterization of facial data.

A. F. Nzegha (�) · C. D. Tayou
Department of Mathematics and Computer Science, University of Dschang, Dschang, Cameroon
e-mail: arnauldnzegha@gmail.com

J. L. E. Fendji
Department of Computer Engineering, Institute of Technology, University of Ngaoundere,
Ngaoundere, Cameroon

C. Thron
Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX,
USA

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_6

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_6&domain=pdf
mailto:arnauldnzegha@gmail.com
https://doi.org/10.1007/978-3-030-37830-1_6

140 A. F. Nzegha et al.

2 Neural Nets: Basic Structure and Function

2.1 History

The origins of deep learning date from 1943, with the introduction of the
McCulloch–Pitts model (MCP) [36], which became the prototype of artificial
neural models. McCulloch-Pitts et al. created a computer model based on neural
networks that functionally mimics the neocortex in the human brain. The model
used the so-called threshold logic to simulate the all-or-nothing firing behavior of
neurons. However, they did not include learning in their model. This deficiency
was addressed by Donald Hebb, who in 1949 formulated the “Hebbian theory” that
explained learning in biological organisms in terms of changes in the firing behavior
of neurons that have been repeatedly stimulated [24].

Inspired by the McCulloch–Pitts model, some researchers began to investigate
the possibility of using neural networks to perform recognition tasks. The “per-
ceptron,” a hardware device designed to perform simple image recognition tasks
using a combination of 400 inputs from a 20 × 20 array of photocells was built in
1958 by Frank Rosenblatt at the Cornell Aeronautical Laboratory [41]. In 1974 Paul
J. Werbos [56] introduced backpropagation, which makes use of a trial and error
process to tune the parameters of neural networks models so as to improve their
recognition capabilities. This opened the way to modern neural networks which can
effectively learn how to classify data by making use of a training set.

Inspired by the work of Hubel and Wiesel [23] on the visual cortex in mammals,
Kunihiko Fukushima utilized cascading architecture and concepts such as weight
sharing in his so-called neocognitron [15], developed in 1983. The neocognitron can
be considered as the ancestor of convolutional neural networks. However, it was not
until the 1990s that convolutional neural networks were popularized by Yan LeCun
and his team on the recognition of handwritten characters [29]. Due to the hardware
limitations of the time, the structure of LeCun’s system (called LeNet-5) is fairly
naive and could only work on very small-sized images of 28 by 28 black-and-white
pixels. “Deep learning” refers to more complex systems that employ convolutional
neural networks with multiple layers. Such deep learning systems set the current
performance bar for facial recognition, and are capable of accurately separating
identities based on complex facial image data.

2.2 Basic Concepts and Constructs in Deep Learning

2.2.1 Single-Layer Perceptron

In the human brain, each neuron is connected to an average of about ten thousand
others through synapses located on dendrites and axon terminals (see Fig. 1). Each
neuron receives electrical pulses of various intensities from other neurons: if the

Overview of Deep Learning in Facial Recognition 141

Fig. 1 Biological neuron, with dendrites and axons where synapses are located

Y=0 : otherwise

Y=1 : if V ≥ 0t

w1

w2

w3

V =
i=0

u

w1x1 – b

b

x1

x2

x3

Fig. 2 Perceptron (mathematical neuron)

sum of the pulse intensities exceeds a certain threshold, then the neuron is activated,
causing it to transmit an electrical pulse to connected neurons or to other cells [23].
The nerve’s activation can be modeled as 0 or 1 (respectively, no activation and
activation). The mathematical neuron model used in neural networks mimics the
functioning of these biological neurons.

In modern terminology, a single mathematical neuron is called a perceptron
(or more specifically a single-layer perceptron, or SLP). We will also refer to a
SLP as a “unit.” Figure 2 shows a schematic diagram of a perceptron. The formal
specification of a SLP is as follows:

• A vector of inputs X = [x1, x2, . . . , xN] of length N which models the inputs of
the unit;

• A vector of weights W = [w1, w2, . . . , wN], also of length N , which models
all the synaptic weights of the unit. Each component wi gives the weight of
corresponding to the ith entry of X.

142 A. F. Nzegha et al.

• A bias b that corresponds to the activation threshold of the unit.

The potential of the SLP (denoted by V) is calculated as the weighted sum of
inputs (i.e., the inner product of the input vector with the weight vector), minus the
bias:

V =
(

N∑
i=1

wixi

)
− b. (1)

The potential is passed into an activation function (or transfer function) f which
defines the response of the SLP. As discussed below, the choice of the activation
function depends on the classification problem and the network model. Different
possibilities for the activation function include:

• The Heaviside function corresponds to the 0–1 nerve response alluded to in
Sect. 2.1:

H(V) = {0 if V ≤0
1 otherwise. (2)

• The ReLU (rectified linear unit) function cuts off the negative part of the identity
function, so that the SLP is only activates if the potential is positive. We shall
write the ReLU function as (·)+, and the definition is as follows:

(V)+ =
{

0 if V ≤ 0

V if V > 0
(3)

or equivalently,

(V)+ = max(0, V). (4)

As discussed below, this function is suitable for backpropagation because both
the first derivative and second derivative have very simple expressions:

d

dV
(V)+ = H(V); d2

dV 2
(V)+ = 0 for all values of V. (5)

• The logistic (or sigmoid) function:

σ(V) = eV

(1 + eV)
. (6)

This function is not often used in propagation multilayer feed-forward neural
networks because it “saturates,” i.e., the output is nearly constant for large inputs.
Nevertheless, many probabilistic models, recurrent networks, and some self-

Overview of Deep Learning in Facial Recognition 143

encoders have restrictions on outputs that make sigmoidal units attractive despite
the disadvantages of saturation.

• The tanh function:

tanh V = eV − e−V

eV + e−V
. (7)

The tanh and sigmoid functions are closely related: the reader may verify that
tanh(x) = 2σ(2x) − 1. The tanh function has the advantage that its derivative is
1 when x = 0, which facilitates training as we shall see later.

• Radial basis functions:
In the NN literature, radial basis functions (RBF) are mentioned frequently.

Neurons that utilize RBFs have a different mathematical structure from SLP’s.
Instead of a potential that is linear in the inputs as in (1), the potential is related
to the squared distance (i.e., radius) between the N -dimensional input vector and
a point in N -dimensional space. Explicitly, the potential is given by

V = ‖X − C‖2

2σ 2 , (8)

where C is an N -dimensional vector, σ is a scaling factor, and the ‖ · · · ‖2

notation represents the squared Euclidean distance, which is the sum of squared
differences of all components:

‖X − C‖2 :=
N∑

n=1

(xn − cn)
2. (9)

From (9) it may be seen that the center vector C and the scaling factor σ substitute
for the weight vector W and bias b that are used in linear perceptrons.

Two radial basis functions that are often used in neural networks are:

– Gaussian: ϕ(V) = e−V ;
– Multiquadric: ϕ(V) = √

1 + V .

In contrast to the activation functions in SLP’s (which are increasing functions
of the potential), RBFs are unimodal functions whose maximum is attained at
0, which according to (2.2.1) occurs when X = C. This reflects their use in
identifying regions surrounding a particular point. In the following discussion
we shall not make further use of RBFs—we have mentioned them here for
completeness’ sake.

Activation functions enable the unit to distinguish between classes of possible
inputs. Consider the case where the unit has n inputs, so that the input may be
considered as a N -dimensional vector or point in R

N . Suppose there are two
classes of inputs, denoted by C1 and C2, which we want the unit to distinguish.
Mathematically, C1 and C2 may be represented as subsets of RN . We consider in

144 A. F. Nzegha et al.

(a) (b)

Fig. 3 Example of linearly and non-linearly separable classes. (a) Linearly separable classes. (b)
Non-linearly separable classes

particular the case where C1 and C2 are linearly separable, which means that there
exists a hyperplane H such that C1 and C2 both lie entirely on opposite sides of H.
An example of linearly separable classes in R

2 is shown in Fig. 3a.
The hyperplane H ⊂ R

N has a defining equation:

W · X = b, (10)

where W may be geometrically interpreted as a vector that is perpendicular to H,
and the scalar value b produces an offset so that H does not pass through the origin
if b �= 0.

If we let V = W · X − b as in (1), it follows that inputs belonging to C1 and C2
can be distinguished by the values of V which they produce

X ∈ C1 =⇒ V > 0,

X ∈ C2 =⇒ V < 0.

The activation function f (V) conveys a degree of “confidence” for membership in
C1: The larger the value of f (V) produced by X, the farther X is from H and the
more “confident” we are that the point X is in C1 and not in C2.

2.2.2 The Multilayer Perceptron

A SLP can classify linearly separated data, but the data for many important
applications is not linearly separable. For example, images can be represented
as points in very large-dimensional spaces, and there may not exist a separating
hyperplane to distinguish them. We see an example of non-linearly separable data
in Fig. 3b.

Overview of Deep Learning in Facial Recognition 145

Fig. 4 Example of multilayer perceptron (MLP) with two hidden layers

The multilayer perceptron (MLP) is a classifier with a layered neural network
structure. An MLP consists of three types of layers: the input layer, the hidden
layers, and the output layer. As shown in Fig. 4, each layer of the MLP consists of
multiple SLPs, which (unlike the perceptron in Fig. 2) may have multiple outputs.
Each perceptron in the input layer has a single input, corresponding to a single
component of the data vector: thus the number of units in the input layer is equal to
the size of the data vector. Each unit in the network has its own output bias; and each
connection between units in Fig. 4 has a different weight. The number of hidden
layers and the number of units in each hidden layer can be chosen by the user: these
numbers will typically depend on the complexity of the classification task. MLPs are
not limited to linearly separable classification: it has been proven mathematically
that an MLP can distinguish any two finite classes, no matter how complicated the
boundary is that separates them [8]. Increasing the number of hidden layers may
reduce the number of units and/or connections required for the classification.

2.2.3 Training of MLP’s

Much of the usefulness of MLP’s derives from the fact that they can be trained
to perform classification tasks. Training involves a process whereby the MLP’s
parameters (biases and weights) are tuned with the aid of a set of training data.
To explain the training process, we introduce some mathematical notation:

• Since training is an iterative process, we use t as an index to indicate the iteration
number.

• M , N , J , and P denote, respectively, the number of layers, number of inputs,
number of outputs, and number of vectors in the training set for the MLP;

• X is a P by N matrix, where each row of X is an input vector in the training set.
The p’th row of X is denoted by Xp;

146 A. F. Nzegha et al.

• Ŷt is a P by J matrix, where the p’th row of Ŷt is the actual output from the MLP
corresponding to the input vector Xp (since the MLP parameters are changing
from iteration to iteration, the output depends on t);

• f
(m)
t is the vector function consisting of all activation functions at the m’th layer,

m = 1 . . . M , at the t’th iteration. f
(1)
t acts row by row on the rows of X, f

(2)
t

acts row by row on the rows of f
(1)
t , and so on. Note that f

(m)
t has both vector

inputs (the outputs from the previous layer) as well as vector outputs (to the next
layer).

With the definitions above, we may express the MLP’s output as a function of its
input and activation functions at various layers as:

Ŷt = f
(M)
t ◦ f

(M−1)
t ◦ . . . ◦ f

(1)
t (X), (11)

where “◦” denotes the function composition and the functions f
(m)
t are applied row

by row to matrix inputs.
It is helpful to introduce the notation:

X(0) := X; X
(m)
t := f

(m)
t (X

(m−1)
t), (12)

so that (11) becomes

Ŷt = X
(M)
t = f

(M)
t (X

(M−1)
t). (13)

Before we can describe the process of MLP training, we need a few additional
definitions:

• �
(m)
t is the vector consisting of all MLP parameters at the m’th layer, including

all input weights and all output biases for all neurons at that layer. Note that the
vector function f

(m)
t depends on the parameter vector �

(m)
t for layer m, but not

on the parameter vectors for any other layers besides m. It follows that Eqs. (12)–
(13) can be expressed more accurately as:

X
(m)
t := f (m)(X

(m−1)
t , �

(m)
t); Ŷt = f (M)(X

(M−1)
t , �

(M)
t), (14)

but we will often use the notation in Eqs. (12)–(13) for short.
• Y is a J by P matrix, where the p’th row Yp is the desired output corresponding

to the input vector Xp;
• L(Y, Ŷt) is the loss function (also called cost function, or prediction error

function), which measures the difference between the desired and actual outputs.
One commonly used loss function is L2 loss (also called Euclidean loss, which
corresponds to the squared Euclidean distance between Y and Ŷt as defined in (9):

LL2(Y, Ŷt) := ‖Y − Ŷt‖2. (15)

Overview of Deep Learning in Facial Recognition 147

Since Y and Ŷt are the matrices (as we have defined them), it follows that the
loss function in (15) is the sum of squared entries of the matrix Y − Ŷt . This loss
function can be written as the sum of loss functions for each row:

LL2(Y, Ŷt) = ‖Y − Ŷt‖2 (16)

= ‖Y1 − Ŷt,1‖2 + ‖Y2 − Ŷt,2‖2 + . . . + ‖YP − Ŷt,P ‖2 (17)

= LL2(Y1, Ŷt,1) + LL2(Y2, Ŷt,2) + . . . + LL2(YP , Ŷt,P). (18)

It follows that the loss function for the entire training set can be computed as the
sum of loss functions for the individual training vectors (some references use the
term “loss function” to refer exclusively to the functions of individual vectors,
while the term “cost function” is reserved for the sum of the loss functions).

A slight modification of the L2 loss is the mean squared error loss (or MSE
loss) which is the average of the squared components of the error vector:

LMSE(Y, Ŷt) := 1

J
‖Y − Ŷt‖2. (19)

Since LMSE and LL2 differ only by the constant factor 1/J , there is no real
difference between the two (the constant factor amounts to a rescaling of the
learning rate (see below)). Other loss functions are described in Sect. 3.2.

The point of training is to adjust the parameter vectors �
(m)
t to reduce the loss

function as much as possible. This can be done using the principle of gradient
descent, which implies that the best way to reduce the loss function by adjusting
parameters is to move the parameters towards the direction of the negative gradient
(the “downhill” direction). This may be written as:

�
(m)
t+1 = �

(m)
t − μg

(m)
t , where g

(m)
t := ∇

�
(m)
t

L(Y, Ŷt), m = 1 . . . M. (20)

The parameter μ < 1 in (20) is called the learning rate, and it controls the rate
at which the parameters adjust at each iteration. Typically, μ is chosen to be rather
small so that the parameters do not “overreact.” In Sect. 3.3, we will further discuss
issues with the choice of μ.

Based on the above descriptions, the training process can be summarized as
follows:

1. Compute X
(1)
t , X

(2)
t , . . . , X

(M)
t using (12)–(13);

2. Compute g
(m)
t for m = 1, . . . , M (this computation will be described below);

3. Adjust the parameter vectors {�(m)
t }m=1...M according to (20);

4. Iterate steps (1)–(3) until no further decrease in L(Y, Ŷt) can be obtained.

The algorithm as described above is known at batch propagation. The reason for
this terminology is that the matrices X

(1)
t , . . . , X

(M)
t are computed at each iteration

148 A. F. Nzegha et al.

t , and each matrix corresponds to the whole “batch” of input vectors. There are
alternative propagation algorithms that tend to exhibit faster convergence. Perhaps
the most popular is stochastic gradient descent. In this variant, at each iteration
computations are performed for a single row Xp instead of the entire matrix X. The
algorithm is called “stochastic” because the sequence of rows used is randomized:
the rows are cycled through multiple times, and before each new cycle the row
order is randomly shuffled. Intermediate between ordinary and batch propagation is
“minibatch” propagation, where the rows are divided into groups of rows, and the
groups are cycled through and randomly shuffled following each cycle. There are
other variants of this training algorithm that share the same general outline in which
steps 1–4 are modified in different ways: see [44] for a review.

To complete our specification of the training process, we must show how to
compute the gradients g

(m)
t for m = 1, . . . , M . Without loss of generality we

may consider the case of a single input vector (i.e., P = 1), which corresponds to
stochastic gradient descent. To obtain the gradient for batch propagation, according
to (16) we simply add the gradients for all the input vectors in the batch.

The basic mathematical tool used in computing the gradients g
(m)
t in (20) is the

chain rule from calculus, which gives a formula for the derivative of the composition
of functions. Here we give several versions of the chain rule for reference. If a and
b are the scalar functions and x is a scalar variable, we have

da

dx
= da

db

db

dx
. (21)

If a is a scalar function and b and x are the vectors, then we have

∇xa = ∇ba · Jxb, (22)

where ∇xa and ∇ba are the gradient vectors (written as row vectors):

∇xa =
[

∂a

∂x1

∂a

∂x2
. . .

]
and ∇ba =

[
∂a

∂b1

∂a

∂b2
. . .

]
, (23)

and Jxb is the Jacobian matrix of partial derivatives,

Jxb =

⎡
⎢⎢⎣

∂b1
∂x1

∂b2
∂x1

· · ·
∂b1
∂x2

∂b2
∂x2

· · ·
...

...
. . .

⎤
⎥⎥⎦ (24)

(note the length of the vector ∇xa is the same as the length of x, and the number of
rows and columns of Jxb is equal to the lengths of x and b, respectively).

Overview of Deep Learning in Facial Recognition 149

Using these equations, we may compute

g
(M)
t = ∇

�
(M)
t

L(Y, Ŷt) = (∇Ŷt
L
) ·
(
J

�
(M)
t

Ŷt

)

= (∇Ŷt
L
) ·
(
J

�
(M)
t

f (M)(X
(M−1)
t , �

(M)
t)

)
, (25)

where the gradient and Jacobian on the right-hand side of (25) may be computed
directly from the functional forms of L and f (M), respectively (we will give an
example later). Continuing to the previous layer, once again using the chain rule we
have (writing f (m)(X

(m−1)
t , �

(m)
t) as f

(m)
t for short):

g
(M−1)
t = (∇Ŷt

L
) ·
(
J

�
(M−1)
t

Ŷt

)

= (∇Ŷt
L
) ·
(
J

�
(M−1)
t

f
(M)
t

)

= (∇Ŷt
L
) ·
(
J

X
(M−1)
t

f
(M)
t

)
·
(
J

�
(M−1)
t

X
(M−1)
t

)

= (∇Ŷt
L
) ·
(
J

X
(M−1)
t

f
(M)
t

)
·
(
J

�
(M−1)
t

f
(M−1)
t

)
, (26)

and once again all Jacobians may be computed directly (note that the first gradient
in (26) was already computed in (25)). For the general m’th layer, by continuing the
above process we have

g
(m)
t = (∇Ŷt

L
) ·
(
J

�
(m)
t

Ŷt

)

= (∇Ŷt
L
) ·
(
J

�
(m)
t

f
(M)
t

)

= . . .

= (∇Ŷt
L
) ·
(
J

X
(M−1)
t

f
(M)
t

)
· . . . ·

(
J

X
(m)
t

f
(m+1)
t

)
·
(
J

�
(m)
t

f
(m)
t

)
, (27)

where all but the last two Jacobians that appear in (27) are reused from the
computation for g

(m+1)
t . Once all of the gradients g

(m)
t for m = 1 . . . M have been

computed, the parameters {�(m)
t } are adjusted according to (20), and the process is

repeated.
We close this section with a particular example of the gradient calculation

summarized in (27). Suppose that the L2 loss function is used, and all activation
functions are ReLU functions. Then we may define the parameter vector at the mth
layer as:

�
(m)
t := [θ(m)

t,1 , . . . θ
(m)
t,Nm

], (28)

150 A. F. Nzegha et al.

where Nm is the number of neurons in the mth layer and

θ
(m)
t,n := [W(m)

t,n , b
(m)
t,n], (29)

where W
(m)
t,n and b

(m)
t,n are, respectively, the weight vector and bias for the nth neuron

in the mth layer at the t th iteration.
Now, the function f

(m)
t is actually a vector of Nm activation functions expressing

the outputs of the Nm neurons in the mth layer. So we may write

f
(m)
t =

[
(V

(m)
t,1)+ (V

(m)
t,2)+ . . . (V

(m)
t,Nm

)+
]
, (30)

where

V
(m)
t,n = W

(m)
t,n · X

(m−1)
t − b

(m)
n,t . (31)

Note that V
(m)
t,n depends only on �

(m)
t and not on θ

(k)
t for k �= m. It follows that

J
�

(m)
t

f
(m)
t can be written as:

J
�

(m)
t

f
(m)
t =

⎡
⎢⎢⎢⎢⎢⎢⎣

∇
θ

(m)
t,1

(V
(m)
t,1)+

∇
θ

(m)
t,2

(V
(m)
t,2)+

...

∇
θ

(m)
t,Nm

(V
(m)
t,Nm

)+

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

H(V
(m)
t,1)

H(V
(m)
t,2)

...

H(V
(m)
t,Nm

)

⎤
⎥⎥⎥⎥⎦
[
X

(m−1)
t ,−1

]
, (32)

where we have used expression (5) for the derivative of the ReLU function.
Similarly,

J
X

(m−1)
t

f
(m)
t =

⎡
⎢⎢⎢⎢⎢⎢⎣

∇
θ

(m)
t,1

(V
(m)
t,1)+

∇
θ

(m)
t,2

(V
(m)
t,2)+

...

∇
θ

(m)
t,Nm

(V
(m)
t,Nm

)+

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

H(V
(m)
t,1)

H(V
(m)
t,2)

...

H(V
(m)
t,Nm

)

⎤
⎥⎥⎥⎥⎦
[
X

(m−1)
t ,−1

]
. (33)

Finally, the gradient ∇Ŷt
L(Y, Ŷt) may be computed as

∇Ŷt
L(Y, Ŷt) = ∇Ŷt

‖Y − Ŷt‖2 = −2(Y − Ŷt). (34)

Overview of Deep Learning in Facial Recognition 151

2.3 Underlearning and Overlearning

The purpose of training a model is to learn the characteristics from the examples of
a given dataset and to generalize them into other data in the domain. If the training
is not done properly, either underlearning or overlearning may result, both of which
lead to poor model performance. In this section we discuss these two phenomena.

Underlearning occurs when a classification model is unable to correctly classify
the examples of the dataset on which it was trained. This is reflected in a high
value of the prediction error at the end of the training process. Underlearning may
be due to undertraining: the model has not been sufficiently trained to handle all the
descriptors necessary for classification. Alternatively, underlearning occurs when
the model used is too simple to describe the relationship between the input data
and the target. In the case of neural networks, the classification capability is tied to
model characteristics such number of layers, numbers of units per layer, number of
weights, and so on (these characteristics are known as hyperparameters).

Undertraining can be distinguished from model oversimplification by examining
the values of prediction error over the course of the training process. If the prediction
error plateaus before the end of the process, then this is a sign that the model is too
simple and the hyperparameters should be readjusted.

In comparison to underlearning, overlearning (or overfitting) is more difficult
to detect and correct. Overlearning refers to the case where noise or random
fluctuations in training data are perceived by the model as part of the classification.
This may occur when the training set is either too small or not representative. For
example, if a training set of cat photos includes only photos of striped or spotted
cats, then the model may perceive stripedness or spottedness as a necessary aspect
of “catness.” Later in this chapter we will address some strategies that can be used
to combat overlearning.

2.4 Convolutional Neural Networks (CNN)

One type of neural network is the convolutional neural network (CNN) is a type of
neural network that is particularly suited for image data (or more generally, any data
which can be naturally arranged in a two-dimensional grid). In CNNs, the units in
each layer are grouped as filters that respond to patches the visual field, as shown
in Fig. 5. A bank of filters may cover the same patch, such that each filter in the
bank extracts different information. This bank structure is replicated so that the set
of all banks together constitute a “sliding window” that covers the entire image
with overlapping patches (these patches are known as receptive fields). In addition,
outputs from different patches may be combined in the next layer, so that CNNs are
effectively able to scan the image at multiple resolutions in order to pick up both fine
detail and larger-scale features. More information about how this is done is given in
subsequent sections.

152 A. F. Nzegha et al.

Fig. 5 Convolutions of an input image with a bank of four filters, yielding four feature maps

2.4.1 Convolutional Layers

The CNN has a layered structure similar to the model MLP shown in Fig. 4. The
hidden layers of the CNN differ from those in Fig. 4 in that units in successive
are not fully interconnected, but only “patchwise.” Each filter shown in Fig. 5
corresponds to a matrix of weights which serves as a “window” that produces a
single output based from the inputs of a single patch (or receptive field). Sliding each
window around the entire image produces convolutions of the original image (one
convolution for each filter) to which the activation function is applied pointwise,
yielding feature maps as shown in Fig. 5.

2.4.2 Guiding Principles of Convolutional Layer Design

The description of CNNs above indicates three key principles that motivate the CNN
layer design:

• Local connectivity: Images have a grid-like structure and each pixel is more
dependent on its neighbors than on distant pixels. The disadvantage of using
fully connected layers is that such a network architecture does not take into
account the spatial structure of the data. Following the concept of receptive fields,
CNNs exploit spatially local correlation by enforcing a local connectivity pattern
between units of adjacent layers. Connections are local in space (along width and
height), and evolve to global processing in deeper layers.

• Parsimonious connectivity: Local connectivity is implemented by means of
weight matrices, which are small compared to the image size. The weight matrix
pattern is repeated as a sliding window that scans the entire region, one receptive
field at a time. This leads to a greatly reduced number of connections, compared
to the full connectivity that we saw in MLPs. For example, given an input image
of size (200 × 200), a CNN could employ a basic weight matrix of size (3 × 3),
leading to 200 × 200 × 3 × 3 = 360,000 connections if the scanning window is

Overview of Deep Learning in Facial Recognition 153

applied to every 3×3 patch in the image. This is far fewer connections than if the
layers were fully connected, which would lead to 2004 = 1.6 billion connections.

• Weight sharing: Since the same weights are used for each receptive field, it is only
necessary to store the weights for a single receptive field. This greatly reduces the
number of weights that must be adjusted in the training process, leading to faster
convergence. The fact that the weights are reused means that if a filter is capable
of detecting a particular pattern, it can be detected independently of the receptive
field where the pattern occurs: this property is known as translation invariance.

2.4.3 CNN Layer Hyperparameters: Window Size, Depth, Stride, and
Padding

Each layer in the CNN is characterized by the following four hyperparameters:

• We have explained window size (or reception field size) and its importance above.
The window size is determined by the size of characteristic features that are
expected to be found in the image.

• The depth of the layer is the number of filters that operate in parallel on each
window within the image. In the case of Fig. 5, the depth is four, and the four
filters produce four feature maps (convolution images) of the original image.

• The stride is the distance between successive windows that are implemented in
the network. Recall that the layer consists of multiple overlapping windows that
cover the entire image: the stride controls the overlap of the receptive fields. The
smaller the stride, the more overlapping there is between receptive fields and the
more outputs produced by the layer. A stride of 1 means that successive windows
are displaced by a single pixel; a stride of 2 means that there are windows
centered on every other pixel; and so on.

• Padding is a technique for managing the edges of the input matrix. Figure 6 gives
an example of padding, where a 3×3 input matrix is padded by a border of zeros.
When windows of size 3×3 with a stride of 1 are applied to the padded image, the
output matrix for each is also of size 3 × 3. Without padding, since there is only
one 3 × 3 window the matrix of outputs is restricted to size 1 × 1. Thus padding
(and zero padding in particular, which is the most common form of padding) can
be used to ensure that the output matrix size is the same as the input matrix size.
This prevents the loss of feature information near the boundary.

Fig. 6 Zero padding of a
3 × 3 image matrix

154 A. F. Nzegha et al.

2.4.4 Pooling

We have seen above that each CNN layer produces multiple feature maps from the
input to the layer, where the number of feature maps is equal to the depth of the
layer. This implies that multiple successive layers will produce a multiplier effect,
leading to larger and larger amounts of output data from the layers. In order to
counteract this tendency, between operations the feature maps’ sizes are reduced by
local sampling or averaging. These size-reducing operations are known as pooling,
and are accomplished by pooling layers inserted between the convolutional layers.
Pooling operations are accomplished by dividing the pooling layer into rectangles,
and performing the sampling or averaging on each rectangle.

There are several pooling techniques. Some of the most common are listed
below:

• Average pooling consists of taking the average of all values in each rectangle. An
example is shown in Fig. 7, where a 4 × 4 input to the pooling layer is reduced to
a 2 × 2 output by taking averages over 2 × 2 squares.

• Sum pooling takes the sum on rectangles instead of the average. It is essentially
the same as average pooling, differing only by a multiplicative factor;

• Max-pooling reduces each rectangle of pixels to the maximum pixel value. An
example is shown in Fig. 8.

Fig. 7 Illustration of
average-pooling operation

Fig. 8 Illustration of
max-pooling operation

Overview of Deep Learning in Facial Recognition 155

Fig. 9 Illustration of
classification by the k-NN
algorithm

2.4.5 Classifiers on CNN Outputs

After feature extraction by a CNN, it is possible to use another classifier such
as the support vector machine (SVM), multilayer perceptron (MLP), or k-nearest
neighbors (kNN) on the CNN outputs. These three classifiers are briefly described
as follows.

k-nearest neighbors (kNN) is a simple machine learning algorithm that catego-
rizes a data vector based on its proximity to other (preclassified) training data vectors
in the same vector space [2, 54]. The concept is illustrated in Fig. 9. The algorithm
requires that there be a “distance function” that measures the difference between
two data vectors. (Euclidean distance may be used, if the data vectors are vectors in
N -dimensional space: other distances that are sometimes used include Manhattan
distance or Hamming distance, if the data are categorical.) Using the distance
function, distances between the new vector and training vectors are computed, and
the k training vectors with the shortest distances are identified (k is a hyperparameter
chosen by the user). The new vector is then classified according to majority vote
among the k nearest neighbors.

Support vector machine (SVM) methods are a family of supervised classifiers
[6, 12]. SVM resembles the original perceptron in that if the training data is linearly
separable, it produces a hyperplane that separates the training data into appropriate
classes with the widest possible margin (see Fig. 10). This is done using standard
numerical optimization techniques, not through iterative training as with MLPs.
The optimization problem is mathematically recast in such a way that the solution
depends only on inner products between training vectors, and the classification of
a new vector depends only on the inner product between the new vector and the
training vectors. In the case where the data is not linearly separated, the inner
products in the optimization problem are replaced with a kernel function, which
introduces a nonlinear transformation into the data which enables separation [28].

156 A. F. Nzegha et al.

Fig. 10 SVM separating hyperplane for linearly separable data

If multiple classes are involved, then SVM can employ either one-against all
classification (in which hyperplanes are found that separate each class from all the
rest) or pairwise classification (in which separating hyperplanes are found for each
pair of classes).

3 Neural Net Enhancements and Optimizations

3.1 Producing Probability Outputs with Softmax

If the MLP is used for classification, it may be useful to interpret the outputs
as the probabilities of the different classes. For this to work, the outputs must
be nonnegative and must sum to one, because these are basic properties that
probabilities must satisfy. However, the outputs of MLPs we have discussed so
far will in general satisfy neither of these two properties. It is necessary therefore
to find a way to translate MLP outputs into probabilities. Hence we need a
multidimensional function that acts on J real inputs and produces J nonnegative
outputs that sum to 1. We may create a multidimensional sigmoid by turning real
numbers to positive numbers through exponentiation (which preserves order) and
multiplying by a common denominator to make the sum equal to 1:

σ(Y) = [σ1(Y), . . . , σJ (Y)], (35)

where

σi(Y) := eYi

∑J
j=1 eYj

. (36)

Overview of Deep Learning in Facial Recognition 157

If the vector Y has one component Yk that is somewhat larger than the other
components, then the k’th component of σ(Y) will be close to 1 and the other
components of σ(Y) will be close to 0 (this is due to the exponential factor in
the numerator in Eq. (35)). For this reason, the function σ(Y) is called the softmax
function. We will need later the partial derivatives of the softmax function, which
may be computed as:

∂σi(Y)

∂Yj

=
{

σi(Y)(1 − σj (Y)) if i = j

−σi(Y)σj (Y) if i �= j.
(37)

This implies that the Jacobian (i.e., the J×J matrix of partial derivatives) JY (σ (Y))

is given by

JY (σ (Y)) = diag (σ (Y)) − σ(Y)T σ (Y), (38)

where diag (σ (Y)) is the J ×J matrix whose diagonal entries are given by the vector
σ(Y) and the “T ” superscript denotes the matrix transpose.

3.2 Loss Functions

We have already explained the importance of loss functions in Sect. 2.2.3. We also
described the L2 and MSE loss functions (which yield exactly the same results, if
the learning rate is rescaled by a constant factor). In this section we overview some
other common loss functions and their properties. Many of these loss functions are
used with CNNs for tasks such as facial recognition, but in theory they could be used
with any MLP.

3.2.1 Cross-Entropy Loss

We saw in Sect. 3.1 that the softmax function can be used to convert MLP outputs
into probabilities. In this case, directly applying L2 loss to the softmax output
creates serious problems for convergence of the MLP. We may show this as follows.
In (27) we showed that the MLP parameter adjustments are all proportional to
the gradient of the loss function ∇ŶL(Y, Ŷ). We denote the target probability
distribution as the column vector T (usually T is an indicator vector that has a single
entry 1 corresponding the known class of the input, and zeros in all other entries).
Then we may evaluate the gradient of the L2 loss as follows (writing σ(Ŷ) as σ):

∇Ŷ ‖T − σ‖2 = ∇Ŷ ((T − σ) · (T − σ))

= −2(T − σ)
(
JŶ (σ)

)

= −2(T − σ)(diag(σ) − σT σ), (39)

158 A. F. Nzegha et al.

where we have used the chain rule and (38) to obtain the second line and last line,
respectively. If any of the components of σ(Ŷ) is close to 0, then the corresponding
component of the gradient is also very small, meaning that MLP is not very
responsive to errors in that component. Accordingly, it is better to find a loss
function whose gradient with respect to the MLP outputs is reasonable.

The loss function should measure the difference between probability distribu-
tions, because that is what our outputs are. One candidate for the such a loss function
is the Kullback–Leibler divergence (or relative entropy), defined as follows. If T =
[T1, . . . , TJ] is the vector of target probabilities and σ = σ(Ŷ) is the probability
distribution generated by the MLP, then the Kullback–Leibler divergence of σ with
respect to T is DKL(σ ||T), where

DKL(σ ||T) := T · log(T) − T · log(σ), (40)

where “·” denotes the vector dot product. The quantity DKL(σ ||T) is always
nonnegative, and is equal to 0 if and only if σ = T . If σ closely resembles T , it
will have small values of DKL(σ ||T), and the value increases the more σ differs
from T .

In our training process we are only interested in the derivatives of the loss
function with respect to the MLP outputs Ŷ . Since the first term on the left-hand side
of (40) does not depend on σ(Ŷ), we may remove it and use only the second term,
which is called the cross entropy. We shall use LXE to denote the cross-entropy loss
function:

LXE(T , σ) := −T · log(σ), (41)

and we compute

∇σLXE(T , σ) = −
[
T1

σ1
, . . . ,

TJ

σJ

]
= −T � σ, (42)

where � denotes the componentwise division. From this it follows (again writing
σ(Ŷ) as σ):

∇ŶLXE(T , σ) = −(T � σ)JŶ (σ)

= −(T � σ)(diag(σ) − σT σ)

= −T I + (T · 1)σ

= −T + σ, (43)

where I is the identity matrix and 1 is the vector of all 1’s (note T · 1 = 1 since
T is a probability vector). Expression (43) is identical to ∇σ

(‖T − σ‖2
)

(apart
from a factor of 2): so we conclude that using the cross entropy as loss function

Overview of Deep Learning in Facial Recognition 159

on softmaxed outputs has the same effect as if the softmaxed outputs were direct
outputs and the L2 norm was used.

In later discussions we will need a more detailed expression for the cross-entropy
loss (41) in terms of the MLP input–output pair (X, Ŷ). Let us introduce the notation
I(X) to stand for the class that input vector X belongs to. We also suppose that the
target vector T for the input vector X is the indicator vector for the index I(X):

Ti =
{

1 if i = I(X)

0 if i �= I(X).
(44)

With these notations, we may rewrite (41) in terms of X and Ŷ as

LXE(X, Ŷ) = −T · log(σ) = − log

(
eŶI(X)

∑J
j=1 eŶj

)
= −ŶI(X) + log

⎛
⎝

J∑
j=1

eŶj

⎞
⎠ .

(45)
Let us suppose in addition that the J entries of the MLP output Ŷ are obtained via
linear transformation of the output vector X(M−1) from the final hidden layer (i.e.,
there are no biases in the final layer). In this case we may write:

Ŷ = X(M−1)(W(M))T , (46)

where W(M) is the matrix of input weights for the output layer. We may write this
component-by-component as

Ŷi = W
(M)
i · X(M−1), (47)

where W
(M)
i is the i’th row of W(M). Using these notations, we may rewrite (45) as

LXE(X,X(M−1)) = −W
(M)

I(X)
· X(M−1) + log

⎛
⎝

J∑
j=1

e
W

(M)
j ·X(M−1)

⎞
⎠ . (48)

3.2.2 Contrastive Loss

So far we have described training as a process where MLP weights are adjusted so
that the MLP outputs are close to a predetermined set of desired outputs. But in
some image processing applications, this may not be the goal of the classification.
It may be that the user simply wants to classify images according to similarity, and
not assign them to predetermined classes. This means that the weights should be
adjusted so that similar points are close in output space, and dissimilar points are far
from each other.

160 A. F. Nzegha et al.

Hadsell et al. in [19] compare this situation to a mechanical system where MLP
outputs are point masses connected to each other by a series of springs. If the point
masses represent similar images, the spring joining the points should pull them
together; and if the images are dissimilar, the spring should push them apart. This
mechanical system can be modeled mathematically by using a loss function that acts
on pairs of input vectors, instead of individual input vectors as in the loss functions
that we have previously examined. The loss function should model the potential
energy of the spring, so that the negative gradient of the loss function (which guides
the weight adjustment) models the force that pushes the points in the right direction.

Based on these specifications, we may define a pairwise loss function
Lpair ((X1, Ŷ1)(X2, Ŷ2)) for the two input–output pairs (X, Ŷ), (X′, Ŷ ′) as:

Lpair (X, Ŷ , X′, Ŷ ′) =
{

‖Ŷ − Ŷ ′‖2 if X and X′ are similar(
m − ‖Ŷ − Ŷ ′‖2

)
+ if X and X′ are dissimilar

, (49)

where L2 is the L2 loss function defined in (15), the “+” subscript denotes the
ReLU function, and m is a hyperparameter called the margin. In practice, the loss
functions for P pairs (where P is a hyperparameter) are added together to form the
contrastive loss function LCP :

LCP

(
(X1, Ŷ1, X

′
1, Ŷ

′
1), . . . , (XP , ŶP ,X′

P , Ŷ ′
P)
) =

P∑
p=1

Lpair (Xp, Ŷp,X′
p, Ŷ ′

p).

(50)

3.2.3 Center Loss and Contrastive Center Loss

When softmax is used for classification, MLP outputs that lie in real J -dimensional
space are transformed into probability vectors. During training, training vectors are
inputted to the network, and the outputs are softmaxed and used to compute the
loss function, which measures the difference between the softmaxed output and
the desired probability vector. This process steers the outputs closer and closer to
the desired output. However, it does not include any mechanism to make outputs
belonging to different classes to be farther away from each other. One way to
increase the separation between different classes is to make the outputs for each
class closer to each other (and not just closer to the target). This can be done by
including a term in the loss function that draws same-class outputs closer to each
other. This is the motivation for the center loss function [55].

The center loss function is computed as follows. Initially, a center vector Ci is
computed for each class i, i = 1, . . . , I as follows. Letting Si denote the set of all
training vectors that belong to the i’th class, we compute the class center vector by
taking the average of outputs from the vectors in Si :

Overview of Deep Learning in Facial Recognition 161

Ci = 1

|Si |
∑
X∈Si

Ŷ (X). (51)

Following this initialization, the training proceeds by minibatch backpropagation.
Let M be the set of vectors in the minibatch, and let Mi be the set of training
vectors in the minibatch that belong to class i. The center loss function for the
minibatch is denoted by LC , and is defined as:

LC(M) := 1

2

I∑
i=1

∑
X∈Mi

‖Ŷ (X) − Ci‖2. (52)

LC(M) penalizes vectors in M that are far from the center of the class they belong
to. The MLP weights are then updated using (20). The center estimates are then
updated based on the updated weights as follows:

(Ci)updated = Ci +
∑

X∈Mi
(Ci − Ŷ (X))

|Mi | + 1
. (53)

In the implementation in [55], the loss function was a combination of center loss
and cross-entropy loss:

L =
I∑

i=1

∑
X∈Mi

LXE

(
Ti, σ (Ŷ (X))

)+ λLC(M), (54)

where Ti is the target vector for the i’th class, and λ is a hyperparameter that controls
the relative influence of the two loss functions.

Center loss is designed to bring output vectors in the same class closer together
(in technical language: center loss reduces the intra-class variance). On the other
hand, contrastive loss pushes output vectors in different classes farther apart (i.e.,
contrastive loss increases inter-class variance). It is possible to modify center loss
in order to also increase inter-class variance. The contrastive center loss function is
defined in [40] as follows:

LCT −C(M) := 1

2

I∑
i=1

∑
X∈Mi

‖Ŷ (X) − Ci‖2

∑
k �=i ‖Ŷ (X) − Ck‖2 + 1

. (55)

3.2.4 Triplet Loss

Contrastive loss (both without and with center loss) tries to move output points
in the same class as close together as possible. But classification does not require

162 A. F. Nzegha et al.

that same-class outputs need to be so tightly clustered—rather, classification only
requires that outputs from different classes are separated by a sufficient margin.

We may examine this requirement as it applies to three points Xa,Xp,Xn, where
the first two points are in the same class and the third point is in a different class.
If there is a margin m between the two classes, then the following inequality must
hold [43]:

‖Ŷ (Xa) − Ŷ (Xn)‖2 ≥ m + ‖Ŷ (Xa) − Ŷ (Xp)‖2, (56)

which may be rewritten as

m + ‖Ŷ (Xa) − Ŷ (Xp)‖2 − ‖Ŷ (Xa) − Ŷ (Xn)‖2 ≤ 0. (57)

To guarantee a margin m for all classes, it follows that similar inequalities must hold
for all triplets where two are in the same class, and the third is in another class. For
convenience, we introduce the notation {X} to represent the class that input vector
X belongs to. So the inequality (57) must hold for every Xp in {Xa} and for every
Xn that is not in {Xa}. The resulting inequalities will all be satisfied if and only if
the following “worst case” inequality is satisfied:

m + max
Xp∈{Xa} ‖Ŷ (Xa) − Ŷ (Xp)‖2 − min

Xn /∈{Xa} ‖Ŷ (Xa) − Ŷ (Xn)‖2 ≤ 0. (58)

This suggests defining a triplet loss function Ltrip as follows:

Ltrip(Xa) =
(

m + max
Xp∈{Xa} ‖Ŷ (Xa) − Ŷ (Xp)‖2 − min

Xn /∈{Xa} ‖Ŷ (Xa) − Ŷ (Xn)‖2
)

+
,

(59)
where the “+” subscript denotes the ReLU function. In practice, calculation of Ltrip

as defined in (59) is too costly. Various strategies may be used to circumvent this.
According to [21], good performance is obtained when minibatch propagation is
used, and the triplet loss function Ltrip is evaluated a minibatch at a time. This
leads to the following loss function, which in [21] is denoted LBH (the “BH” stands
for “batch hard”):

LBH (M) =
∑

Xa∈M

(
m + max

Xp∈{Xa}∩M
‖Ŷ (Xa) − Ŷ (Xp)‖2

− min
Xn /∈{Xa}∩M

‖Ŷ (Xa) − Ŷ (Xn)‖2
)

+
. (60)

The maxes and mins in (60) are much easier to compute than those in (59) because
the only require working with input vectors in one minibatch at a time, rather than
all the vectors in the training set.

Overview of Deep Learning in Facial Recognition 163

If triplet loss is used, Euclidean distances are sufficient for classification and no
softmaxing is necessary.

3.2.5 Loss Functions Based on Angular Distances

Recall the expression (48) for the cross-entropy loss when softmax is used (repeated
here for convenience):

LXE(X,X(M−1)) = −W
(M)

I(X)
· X(M−1) + log

⎛
⎝

J∑
j=1

e
W

(M)
j ·X(M−1)

⎞
⎠ . (61)

In general, the inner product W · X between two vectors has a geometrical
interpretation in terms of the vectors’ lengths ‖W‖, ‖V ‖ and the angle φW,X

between them:

W · X = ‖W‖‖X‖ cos(φW,X). (62)

It follows from (61) that the cross-entropy loss will be largest if the cosine of the
angle between the weight vector W

(M)

I(X)
and the hidden-layer output vector X(M−1)

is close to 1, i.e., the two vectors are pointed in nearly the same direction. From this
point of view, it appears that vectors in the same output class will all tend to align
along the same direction.

In order to build a margin into the classification, then it would appear that we
should build an algorithm that enhances the tendency of same-class output vectors
to align in the same direction. We may do this by modifying the loss function to rise
more steeply with increasing angle (i.e., decreasing cosine). Different authors have
chosen different strategies for doing this, as described below.

L-softmax loss is introduced in [32]. In accordance with the discussion above, the
loss function is modified to be a steeper function of cosine, as follows:

LLS(X,X(M−1)) = −�LS + log

⎛
⎝e�LS +

∑
j �=I(X)

e
‖W(M)

j ‖‖X(M−1)‖ cos(φWj ,X)

⎞
⎠ ,

(63)
where

• �LS := ‖W(M)

I(X)
‖‖X(M−1)‖ψ(φWI(X),X);

• ψ(φ) := cos(m(φ − floor(φ/π))) − 2m floor(φ/π),
• m is an integer hyperparameter (usually m = 2, 3 or 4).

The function ψ is a continuous decreasing function with continuous derivative,
which declines more steeply than the cosine function. The larger the value of m, the
steeper the decline, and the larger the margin between classes.

164 A. F. Nzegha et al.

A-softmax loss, introduced in [33], differs from L-softmax only in that the weight
vectors {W(M)

j } are normalized to unit length prior to the computation of the loss
function. The loss function for A-softmax is identical to (63), except all terms of
the form ‖W‖ are set equal to 1. A-softmax is used in the “SphereFace” facial
recognition system: the name “SphereFace” makes reference to the fact that the
weight vectors all have unit length, and thus lie on a hypersphere.

Large Margin Cosine Loss (LMCL) was introduced in [53]. The loss function
is identical to the formula for L-softmax loss in (63), except all weight vectors are
normalized to 1 (as in A-softmax) and �LS is replaced by �LMCL where

�LMCL = ‖X(M−1)‖ (cos(φWI(X),X) − m
) ; (64)

and m is not necessarily an integer.
Additive Angular Margin Loss (AAML) was introduced in [11]. AAML is

identical to LMCL except �LMCL is replaced by �AAML where:

�AAML = ‖X(M−1)‖ (cos(φWI(X),X + m)
)
, (65)

where once again m is not necessarily an integer. This loss also improves computing
time compared to A-softmax because cos(θ + m) is easier to calculate from cos(θ)

than cos(mθ).

3.3 Optimization of Learning Rate

Equation (20) includes the learning rate hyperparameter μ, which must be chosen
by the user. Much research has gone into optimizing μ so as to improve performance
of the algorithm. In this section we give two modifications that frequently lead to
faster convergence.

3.3.1 Adaptive Gradient Descent (AdaGrad)

The MLP is being trained to identify features within input vectors. Some of these
features may be much more frequent than others. This implies that some MLP
parameters may undergo frequent adjustments during the training process, while
others have much fewer opportunities for correction. Adaptive gradient descent
(AdaGrad) is designed to equalize the learning rate for different parameters that
experience different rates of adjustment [13]. AdaGrad’s idea is to make larger
updates for parameters that have undergone little change, and smaller updates for
parameters that have undergone greater variations. Thus the learning rate is adapted
to each of the parameters; it is greater for the least updated parameters, and lower for
the most frequently updated parameters. This is accomplished by keeping a record
of past parameter updates, as follows. Define

Overview of Deep Learning in Facial Recognition 165

G
(m)
t :=

t∑
s=1

g(m)
s � g(m)

s , (66)

where � is the element-wise multiplication. Note that G
(m)
t increases as the

index t increases, because all the terms in the summation in (66) are positive. In
AdaGrad, (20) is then replaced by

θ
(m)
t+1 = θ

(m)
t − α√

G
(m)
t + ε

� g
(m)
t , m = 1 . . . M, (67)

(the ε is included to prevent division by 0). It follows that the effective learning rates
(given by the coefficients of g

(m)
t) decrease over time (as the denominator grows

larger). Furthermore the learning rates are different for each parameter: learning
rates decrease more rapidly for parameters which have seen frequent and/or large
adjustments during the training process. The parameters α and ε are chosen by the
user.

AdaGrad has demonstrated better performance than stochastic gradient descent
[18]. The main weakness of AdaGrad is related to its strength—since the effective
learning rates always decreases, learning may slow down to the point where it
effectively stops before an optimal solution is reached.

3.3.2 Delta Adaptive Gradient Descent (AdaDelta)

AdaDelta is an enhancement to AdaGrad that addresses the problem of decreasing
learning rates. Rather than using a sum as in (66), AdaDelta relies on exponentially
decaying averages. To explain this, we recursively define an exponential averaging
operation Eγ [· · ·]t as follows:

Eγ [a]1 := a1; Eγ [a]t = (1 − γ)Eγ [a]t−1 + γ at , t = 2, 3, (68)

Exponential averaging may be thought of as a weighted sum of terms, where recent
terms have weights close to 1 and terms that are farther in the past have less and
less weight. Because of the decay constant γ , the exponential average (unlike the
summation in (66)) does not increase indefinitely. The AdaGrad update Eq. (67) is
replaced by

θ
(m)
t+1 = θ

(m)
t + �θ

(m)
t , m = 1 . . . M, (69)

where �θ
(m)
t is defined recursively as:

�θ
(m)
t := −

√
Eγ [�θ(m) � �θ(m)]t−1 + ε

Eγ [g(m) � g(m)]t + ε
� g

(m)
t . (70)

166 A. F. Nzegha et al.

This recursive calculation means that only quantities from t −1 need to be stored
to compute the quantities for t : previous quantities do not need to be stored, so
memory requirements are minimal. The inverse of this average of the previous
gradients serves as a weighting of the learning rate, as it is the case with the
adaptive gradient descent; while the numerator under the square root makes the
units consistent. For a more thorough derivation, see [59].

Algorithm 1 Adaptive gradient descent Delta (AdaDelta)
Require: γ = decay constant ; ε = small constant
1: Initialize Eγ [�θ(m) � �θ(m)]0 = 0
2: for t = 1 to T − 1 do
3: Compute g

(m)
t � g

(m)
t and update Eγ [g(m) � g(m)]t using (68)

4: Compute �θ
(m)
t using (70)

5: Compute Eγ [�θ(m) � �θ(m)]t using (68)

6: Compute θ
(m)
t+1 using (69)

7: end for

It should be noted that the sensitivity of AdaDelta to the hyperparameters (γ and
ε) is relatively low compared to other methods. We can therefore set γ to 0.99 and
ε to 10−6 as recommended in [59], and no hyperparameter optimization is required.

3.4 Enhanced Training Techniques

This section describes several techniques have been developed to improve the
training of neural networks, leading to better classification accuracy.

3.4.1 Bagging

Inaccuracies in prediction or classification can arise when the training process
causes the network to respond to features that are peculiar to the training data,
which are not shared by data in general. Naturally, one way to counteract this
is to find a larger and more representative dataset. But when more data is not
available, the effect of peculiarities can be mitigated by selecting multiple training
sets from the data at hand. Specifically, given a training set consisting of N vectors,
several different training sets of the same size may be created by taking several
random samples with the replacement of size N from the original training data
(these are called bootstrap samples). These constructed datasets will have some
duplicate vectors (because of the sampling with replacement), but they may provide
enough variation to wean the network from peculiarities in the original dataset. Each
bootstrap sample is used to independently train the network, yielding a different set

Overview of Deep Learning in Facial Recognition 167

Algorithm 2 MLP with bagging pseudocode
1. Initialize: Set of N training vectors; hyperparameter B=number of bootstrap samples (chosen

by the user)
2. Training:

(a) Draw B bootstrap samples of size N from the training set (with replacement)
(b) Train the network independently with each bootstrap sample, producing B different

parameter sets {�1, . . . , �B } that produce B different outputs {Y1(X), . . . , YB(X)} for a
given input vector X.

3. Output:

(a) To predict data vector X, generate the B outputs Y1(X), . . . YB(X) using the B different
parameters sets �1, . . . , �B

(b) If the MLP outputs a classification, take the majority vote from Y1(X), . . . , YB(X);
otherwise take an average of the outputs Y1, . . . , YB as the MLP output.

of network parameters (weights and biases) for each bootstrap sample. The training
process and application are outlined in Algorithm 2:

This method of taking bootstrap samples and then averaging (or aggregating) the
results is called “bootstrap aggregation,” or bagging [3]. Bagging is a very general
procedure and can be applied to any predictor, not just neural nets.

3.4.2 Boosting

Boosting is a way of giving a network-in-training a “second chance” on data vectors
that it does not get right the first time. Like bagging, boosting involves multiple
rounds of training, using sampling with replacement; but unlike bagging, the
multiple samplings are done in sequence and not in parallel, because the probability
weights for each sample depend on the training outcome of the previous sample.
In the first training, all vectors in the training set have equal probability weight;
but in subsequent training samples, vectors that were inaccurately predicted in the
previous training round are given a heavier weight in the resampling.

A popular version of boosting is “AdaBoost” [14], which is described in the
pseudocode in Algorithm 3.

3.4.3 Dropout

We have mentioned previously that overlearning is a serious and common pitfall
which degrades neural network performance. Overlearning occurs when the weights
on the architecture adapt to peculiar features within the training set that are
not generalizable to other data. This can happen when groups of units develop
overcomplicated responses to simple patterns. For example, suppose a net is being
trained to identify even numbers, and the training set has no numbers that end

168 A. F. Nzegha et al.

Algorithm 3 AdaBoost pseudocode
1. Initialize: Set V of N training vectors, with equal probability weights pn = 1/N, n = 1 . . . N ;

M equals number of training iterations
2. For m = 1 to M:

(a) Train the network, using training vectors that are sampled from V with replacement with
selection probabilities {pn}. The training result is a vector of MLP parameters �m, which
produces output Ym(X) for a given input vector X.

(b) Adjust the probability weights of training vectors X, according to how accurately they are
predicted using Ym(X). If the prediction is accurate, the weight is reduced; otherwise the
weight is increased.

(c) Compute a weight αm that reflects the overall accuracy of the predictor Ym when applied
to the training set V sampled with weights {pn}, n = 1, . . . , N .

(d) Normalize the adjusted probability weights so they sum to one, and replace the previous
set {pn}, n = 1, . . . N with the new set of weights

3. Output: For a given data vector input, the prediction depends on the weighted sum of the
outputs:

weighted_sum =
M∑

m=1

αmYm(X) (71)

with the digit “8.” It is possible that the net may learn to individually identify even
numbers with final digits 0, 2, 4, 6, without generalizing the rule to include the final
digit 8 as well. To avoid situations like this, we should build some “fault tolerance”
into the network, so that the network responds robustly. We may accomplish this
by randomly deactivating different units during training, which is called dropout
[46]. Training the net with dropout is almost identical to the process described in
Sect. 2.2.3, except that units within the network are deactivated with probability
p < 1, where p is a hyperparameter chosen by the user. If the original activation
function for a unit is f (V), under dropout the activation function becomes

fdropout (V) =
{

0 with probability 1 − p;
f (V) with probability p.

(72)

The result of dropout is that the layer activation vector functions f (m) in (11) are
“pruned,” and some of the vector components in each layer are replaced with zeros.
When backpropagation is performed on the MLP, the weights and biases for zeroed-
out units are not modified: essentially, these units have been temporarily removed
from the network. We emphasize that the pruning is different for each training
vector, so that all of the units are still modified by the overall training process. At
the end of the training period, all of the weights in the network are multiplied by
p. This is because each unit has only participated in a proportion p of the training
adjustments, so correspondingly the unit’s influence is reduced by a factor p.

Overview of Deep Learning in Facial Recognition 169

It is also possible to perform dropout on the connections between units instead
of (or in addition to) the units themselves. Dropout has been shown to bring large
improvements to neural network performance [46].

L2 Regularization (Weight Decay)

Overlearning can occur when the MLP uses overly complex criteria to make
predictions, rather than identifying simple common features. For example, to
identify square shapes in a database of images of shapes the MLP could possibly
use a complicated set of idiosyncratic features (size, contrast, color, shading, etc.)
that are peculiar to the training dataset, rather than basing its decision on the actual
shape itself. Just as in statistics, simpler is better: a model with fewer significant
parameters is to be preferred. It is possible to nudge the MLP model in the direction
of simplicity during the training process using a mathematical technique called
regularization. A term is added to the loss function L that is proportional to the
complexity of the weights in the MLP. Two common choices for this added term
are:

L2 regularization: the loss function L is replaced by L + λ

2

M∑
m=1

θ(m) · θ(m);

L1 regularization: the loss function L is replaced by L + λ

M∑
m=1

θ(m) · sgn(θ(m)),

where

• θ(m) is the vector of MLP parameters (introduced in Sect. 2.2.3);
• sgn(·) is the signum function: sgn(x) is −1, 1, or 0 depending on whether x is

negative, positive, or zero, respectively;
• λ is a hyperparameter chosen by the user, which controls the relative influence of

the complexity term on the loss function;

These added terms have a very simple effect on the training: the only change is
that Eq. (20) is slightly modified so that:

• L2 regularization: θ
(m)
t+1 = (1 − λ)θ

(m)
t − μg

(m)
t ;

• L1 regularization: θ
(m)
t+1 = θ

(m)
t − μg

(m)
t − λ sgn(θ

(m)
t).

In all other respects, the training proceeds exactly as described in Sect. 2.2.3. L2
regularization has the additional advantage that it penalizes larger weights more, so
that the MLP weights become more equalized among connections.

170 A. F. Nzegha et al.

4 Facial Recognition

Facial recognition is typically accomplished in three steps. First, the image is passed
into a face detector that identifies and selects the areas of the image that contain
faces. Next, the image areas containing faces are then reduced to descriptors in
a more observable dimension. Finally, a classifier is responsible for predicting
the individual according to the descriptors. Before 2014, the most powerful
facial recognition systems were based on principal component analysis (PCA)
and Bayesian models. Since 2014, however, most research has gravitated towards
deep convolutional networks. This development was inspired by the extraordinary
success of CNN architectures [16] in the ImageNet contest [9], such as AlexNet
[26], VGGNet [45], GoogLeNet [51], and ResNet [20], among others. Because
facial recognition is a special case of object recognition, good architectures for
general object recognition can be used as base models for facial recognition. For
instance, AlexNet is used in ([34, 42]), VGGNet in ([1, 7, 35, 39]), and GoogLeNet
in ([43, 57]).

4.1 Convolutional Neural Net Models for Facial Recognition

In this section we briefly describe several successful CNN models used for facial
recognition. Because of the rapid developments in the field, different models
undergo continuous revision and consequently benchmark accuracies change con-
siderably from year to year.

4.1.1 DeepFace

In March 2014, the Facebook AI research team announced the development of a
facial recognition system that achieved near-human performance [52]. The model,
named DeepFace, reached an accuracy of 97.25% on the LFW benchmark dataset
(see Sect. 4.3), reducing error by more than 27% over the best previous models. The
model was trained on a set of four million facial images belonging to over 4000
people.

One of the DeepFace’s strengths is its front-face alignment technique based on
3D models. A 3D analytical model of the face based on landmarks is used to deform
a detected face into a 3D front-end model [52]. This operation is carried out by an
affine transformation T of X2d to X3d , driven by the Delaunay triangulation derived
from 67 so-called fiducial points. The processing flow of the algorithm is shown
in Fig. 11.

Overview of Deep Learning in Facial Recognition 171

Fig. 11 Sequence of operations in DeepFace facial recognition system

4.1.2 DeepID (2015)

The work of DeepFace was extended by a series of articles describing DeepID
[48], DeepID2 [47], DeepID2+ [50], DeepID3 [49], where each successive article
improved the performance on the LFW data set. Unlike DeepFace, the DeepID
systems do not use face alignment in 3D, but rather a simpler 2D affine alignment.
Training of the DeepID series was done by combining the CelebFaces [31] and
WDRef [5] datasets.

4.1.3 FaceNet (2015)

Google Inc. researchers have developed a deep CNN model called FaceNet [43]
that makes use of the triplet loss function described in Sect. 3.2.4. The model held
the record on the LFW benchmark until 2018, when it was replaced by ArcFace.
FaceNet achieved 99.63% accuracy on the LFW dataset and 95.1% on YTF@@@
YTF should be added to the facial recognition benchmarks section @@@.

FaceNet utilized two different CNN architectures. The first built on the architec-
ture of Zeiler and Fergus [60] that was originally used for image processing. This
option has 22 layers with a total of 140 million parameters. The second option is
based on the GoogLeNet architecture originally used for image processing [51].
The model consists of 17 layers and has a total of 7.5 million parameters, almost 20
times fewer than the first model.

4.1.4 VGGFace (2015)

The Visual Geometry Group (VGG) at Oxford University developed a facial recog-
nition model simultaneously with the VGGFace database (see Sect. 4.3), which was
used to show that VGGFace (a publicly available dataset) can train a network that
can achieve comparable performance with models trained on proprietary datasets
(such as FaceNet) [39]. Like FaceNet, the triplet loss function is used. Accuracies
of 98.95% and 97.3% were achieved for lFW and YTF, respectively. Both the model
and the database are implemented in Keras (keras.io), which is an open-source
neural network library in Python.

www.keras.io

172 A. F. Nzegha et al.

4.1.5 SphereFace (2017)

SphereFace [33] uses the A-softmax loss function. In facial verification, SphereFace
achieves an accuracy of 99.42% on LFW and 95% on YTF. Like VGGFace,
SphereFace is trained on a public dataset (CASIA-WebFace—see Sect. 4.3).

4.1.6 CosFace (2018)

Like SphereFace, CosFace [53] was trained on CASIA-WebFace, but uses large
margin cosine loss instead of A-softmax loss. Performance on LFW and YTF was
99.73% and 97.6%, respectively.

4.1.7 ArcFace (2018)

ArcFace [11], developed by researchers from Imperial College (London), achieved
99.83% accuracy on the LFW benchmark. ArcFace is based on an additive angular
margin, and combines ideas from SphereFace and CosFace to generate normalized
face cuts of size (112 × 112) using five facial landmarks. ResNet [20] is used as a
template architecture.

4.2 Facial Recognition Without Constraint Using Deep
Learning

Face recognition in real-world environments has significant intra-personal varia-
tions, such as exposure, lighting, expressions, and occlusions, which remains a big
challenge for computer vision. This is the problem of facial recognition without
constraint.

4.2.1 Data Variability Issues

Although deep learning approaches have been widely used because of their powerful
representation, Ghazi et al. [37] have shown that various conditions such as poses,
illuminations, expressions, and occlusions still significantly affect recognition
performance. Two data transformation techniques that can be used to improve
performance are normalization and data augmentation. Normalization refers to
the process of taking the facial image to be recognized and using features to
standardize the lighting and pose. Augmentation takes images in the dataset and
makes modifications (for example, adding glasses, changing hairstyle, and/or pose)
so that the identification is more robust to such variations.

Overview of Deep Learning in Facial Recognition 173

4.3 Facial Recognition Datasets

There are a great many facial image datasets from multiple sources. In this section
we limit ourselves to a few that are both publicly available and often referenced in
facial recognition research for training or testing.

4.3.1 Labeled Faces in the Wild (LFW)

This dataset is a collection of JPEG images of faces of famous people collected on
the internet [22, 27], and is designed to study the problem of facial recognition with-
out constraint (i.e., no limitations are placed on lighting, expression, perspective, or
other parameters). These faces were extracted from various online websites by face
detectors based on the Viola–Jones model. LFW contains 13,233 images of 5749
tagged celebrities, where each image is centered on a single face. LFW is frequently
used in competitions to measure algorithms’ performance in facial recognition or
facial verification.

4.3.2 CASIA-WebFace

CASIA-WebFace [58] (often referred to as WebFace) is a public dataset used for
training purposes, consisting of nearly 500,000 images of about 10,000 subjects.
Although it is smaller than MS Celeb-1M [17] or MegaFace1 [25] and much smaller
than MegaFace2 [38], it is possible to train advanced models using this dataset [32,
55, 58].

4.3.3 VGGFace and VGGFace2

VGGFace [39] and its successor VGGFace2 [4] were developed by the Visual
Geometry Group at the University of Oxford. The group’s purpose was to develop a
methodology for constructing a large-scale dataset which both includes diversity
in pose and age for individual image subjects, and achieves a high degree of
identification accuracy by making use of multiple stages of automatic and manual
filtering. VGGFace (like CASIA-WebFace) is intended for training only, and
includes 2.6 million images of 2622 subjects: a curated version (with identities
manually validated) has 800,000 images. VGGFace2 includes 3.3 million images
of 9131 subjects, and can be used for both training and testing.

174 A. F. Nzegha et al.

4.3.4 Similar Looking Labeled Faces in the Wild (SLLFW)

The dataset SLLFW (formerly known as Fine-Grained Labeled Faces in the Wild,
or FGLFW) [10] is a renovation of LFW. To enable the rigorous testing of
algorithms’ ability to verify faces, SLLFW selects face pairs from LFW from
different individuals that closely resemble each other.

5 Conclusion

The application of deep learning has contributed remarkably to the current per-
formance of facial recognition; and new elaborations and innovations are being
introduced constantly, so that benchmark values rise every year. This chapter has
some of the aspects that involved in this application, including CNN architecture,
loss functions, training, and training datasets. We have also touched on the
commonalities between facial recognition and the simpler problem of image type
recognition.

References

1. W. AbdAlmageed, Y. Wu, S. Rawls, S. Harel, T. Hassner, I. Masi, J. Choi, J. Lekust, J. Kim, P.
Natarajan et al., Face recognition using deep multi-pose representations, in 2016 IEEE Winter
Conference on Applications of Computer Vision (WACV) (IEEE, Piscataway, 2016), pp. 1–9

2. M.M. Adankon, Optimisation de ressources pour la sélection de modèle des SVM. PhD thesis,
École de technologie supérieure, 2005

3. L. Breiman, Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
4. Q. Cao, L. Shen, W. Xie, O.M. Parkhi, A. Zisserman, Vggface2: a dataset for recognising

faces across pose and age, in 2018 13th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2018) (IEEE, Piscataway, 2018), pp. 67–74

5. D. Chen, X. Cao, L. Wang, F. Wen, J. Sun, Bayesian face revisited: a joint formulation, in
European Conference on Computer Vision (Springer, Berlin, 2012), pp. 566–579

6. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
7. N. Crosswhite, J. Byrne, C. Stauffer, O. Parkhi, Q. Cao, A. Zisserman, Template adaptation for

face verification and identification, in 2017 12th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2017) (IEEE, Piscataway, 2017), pp. 1–8

8. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals
Syst. 2(4), 303–314 (1989)

9. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale hierarchical
image database, in IEEE Conference on Computer Vision and Pattern Recognition, 2009.
CVPR 2009 (IEEE, Piscataway, 2009), pp. 248–255

10. W. Deng, J. Hu, N. Zhang, B. Chen, J. Guo, Fine-grained face verification: FGLFW database,
baselines, and human-DCMN partnership. Pattern Recogn. 66, 63–73 (2017)

11. J. Deng, J. Guo, S. Zafeiriou, ArcFace: additive angular margin loss for deep face recognition
(2018). Preprint. arXiv: 1801.07698

12. G. Dreyfus, Apprentissage statistique (Editions Eyrolles, Paris, 2008)

Overview of Deep Learning in Facial Recognition 175

13. J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res. 12(Jul), 2121–2159 (2011)

14. Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

15. K. Fukushima, S. Miyake, Neocognitron: a self-organizing neural network model for a
mechanism of visual pattern recognition, in Competition and Cooperation in Neural Nets
(Springer, Berlin, 1982), pp. 267–285

16. J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, L. Wang, G. Wang
et al., Recent advances in convolutional neural networks (2015). Preprint. arXiv: 1512.07108

17. Y. Guo, L. Zhang, Y. Hu, X. He, J. Gao, MS-Celeb-1M: a dataset and benchmark for large-
scale face recognition, in European Conference on Computer Vision (Springer, Cham, 2016),
pp. 87–102

18. A.T. Hadgu, A. Nigam, E. Diaz-Aviles, Large-scale learning with AdaGrad on Spark, in
2015 IEEE International Conference on Big Data (Big Data) (IEEE, Piscataway, 2015), pp.
2828–2830

19. R. Hadsell, S. Chopra, Y. LeCun, Dimensionality reduction by learning an invariant mapping,
in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’2006), vol. 2, pp. 1735–1742

20. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

21. A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person re-identification
(2017). Preprint. arXiv: 1703.07737

22. G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: a database for
studying face recognition in unconstrained environments, in Workshop on Faces in ‘Real-Life’
Images: Detection, Alignment, and Recognition (2008)

23. D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction and functional architecture in
the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

24. K.Th. Kalveram, A modified model of the Hebbian synapse and its role in motor learning.
Hum. Mov. Sci. 18(2–3), 185–199 (1999)

25. I. Kemelmacher-Shlizerman, S.M. Seitz, D. Miller, E. Brossard, The MegaFace benchmark:
1 million faces for recognition at scale, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2016), pp. 4873–4882

26. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neu-
ral networks, in Advances in Neural Information Processing Systems (2012), pp. 1097–1105

27. E. Learned-Miller, G.B. Huang, A. RoyChowdhury, H. Li, G. Hua, Labeled faces in the wild:
a survey, in Advances in Face Detection and Facial Image Analysis (Springer, Cham, 2016),
pp. 189–248

28. G. Lebrun, Sélection de modèles pour la classification supervisée avec des SVM (Séparateurs
à Vaste Marge). Application en traitement et analyse d’images. PhD thesis, Université de Caen
Basse-Normandie, 2006

29. Y. LeCun, B.E. Boser, J.S. Denker, D. Henderson, R.E. Howard, W.E. Hubbard, L.D. Jackel,
Handwritten digit recognition with a back-propagation network, in Advances in Neural
Information Processing Systems (1990), pp. 396–404

30. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436 (2015)
31. Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild, in Proceedings of

International Conference on Computer Vision (ICCV), December (2015)
32. W. Liu, Y. Wen, Z. Yu, M. Yang, Large-margin softmax loss for convolutional neural networks,

in ICML (2016), pp. 507–516
33. W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, SphereFace: deep hypersphere embedding

for face recognition, in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 1 (2017), p. 1

34. X. Liu, M. Kan, W. Wu, S. Shan, X. Chen, VIPLFaceNet: an open source deep face recognition
SDK. Front. Comput. Sci. 11(2), 208–218 (2017)

176 A. F. Nzegha et al.

35. I. Masi, A.T. Tran, T. Hassner, J.T. Leksut, G. Medioni, Do we really need to collect millions
of faces for effective face recognition? in European Conference on Computer Vision (Springer,
Cham, 2016), pp. 579–596

36. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5(4), 115–133 (1943)

37. M. Mehdipour Ghazi, H.K. Ekenel, A comprehensive analysis of deep learning based
representation for face recognition, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops (2016), pp. 34–41

38. A. Nech, I. Kemelmacher-Shlizerman, Level playing field for million scale face recognition,
in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE,
Piscataway, 2017), pp. 3406–3415

39. O.M. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition, in British Machine Vision
Conference, vol. 1 (2015), p. 6

40. C. Qi, F. Su, Contrastive-center loss for deep neural networks, in 2017 IEEE International
Conference on Image Processing (ICIP) (IEEE, Piscataway, 2017), pp. 2851–2855

41. F. Rosenblatt, The perceptron: a perceiving and recognizing automaton. Technical report,
Technical Report 85-460-1, Cornell Aeronautical Laboratory, 1957

42. S. Sankaranarayanan, A. Alavi, C. Castillo, R. Chellappa, Triplet probabilistic embedding for
face verification and clustering (2016). Preprint. arXiv: 1604.05417

43. F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: a unified embedding for face recognition
and clustering, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2015), pp. 815–823

44. A. Sidani, T. Sidani, A comprehensive study of the backpropagation algorithm and modifica-
tions, in Conference Record Southcon (IEEE, Piscataway, 1994), pp. 80–84

45. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition (2014). Preprint. arXiv: 1409.1556

46. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way
to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

47. Y. Sun, Y. Chen, X. Wang, X. Tang, Deep learning face representation by joint identification-
verification, in Advances in Neural Information Processing Systems (2014), pp. 1988–1996

48. Y. Sun, X. Wang, X. Tang, Deep learning face representation from predicting 10,000 classes,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014),
pp. 1891–1898

49. Y. Sun, D. Liang, X. Wang, X. Tang, Deepid3: face recognition with very deep neural networks
(2015). Preprint. arXiv: 1502.00873

50. Y. Sun, X. Wang, X. Tang, Deeply learned face representations are sparse, selective, and robust,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015),
pp. 2892–2900

51. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A.
Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2015), pp. 1–9

52. Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: closing the gap to human-level
performance in face verification, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2014), pp. 1701–1708

53. H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, W. Liu, CosFace: large margin
cosine loss for deep face recognition, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2018), pp. 5265–5274

54. K.Q. Weinberger, J. Blitzer, L.K. Saul, Distance metric learning for large margin nearest
neighbor classification, in Advances in Neural Information Processing Systems (2006), pp.
1473–1480

55. Y. Wen, K. Zhang, Z. Li, Y. Qiao, A discriminative feature learning approach for deep face
recognition, in European Conference on Computer Vision (Springer, Cham, 2016), pp. 499–
515

Overview of Deep Learning in Facial Recognition 177

56. P.J. Werbos, Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10),
1550–1560 (1990)

57. J. Yang, P. Ren, D. Zhang, D. Chen, F. Wen, H. Li, G. Hua, Neural aggregation network for
video face recognition, in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (IEEE, Piscataway, 2017), pp. 5216–5225

58. D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch (2014). Preprint.
arXiv: 1411.7923

59. M.D. Zeiler, ADADELTA: an adaptive learning rate method (2012). Preprint. arXiv: 1212.5701
60. M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in European

Conference on Computer Vision (Springer, Cham, 2014), pp. 818–833

Improving Deep Unconstrained Facial
Recognition by Data Augmentation

Arnauld Fountsop Nzegha, Jean Louis Ebongue Fendji, Christopher Thron,
and Clementin Djameni Tayou

1 Introduction

Facial recognition technology aims to recognize the face of a (human or animal)
subject by using biometrics to map facial features from a picture. This recognition
is usually achieved through artificial intelligence techniques, mainly deep learning.

Deep learning is a subfield of machine learning which is based on hierarchical
learning architectures for data representation [25]. It includes a set of methods that
represent data with a high level of abstraction through nonlinear transformations.
One of the strengths of deep learning lies in its ability to exploit technological
advances in computing power. Today, deep architectures based on convolutional
neural networks (CNN) form the basis of most facial biometrics technology, and are
very robust [27, 29, 34, 37, 38, 38–41].

Many CNN models can achieve close to 100% accuracy on standard benchmarks
such as Labeled Faces in the Wild (LFW), MegaFace, or YouTubeFace (YTF).
However, these models cannot guarantee the same performance in a realistic
environment which is uncontrolled. Facial recognition remains a big challenge
when it is in a non-constrained scenario or without the cooperation of the subject.
Indeed, the face of a person can be very different observed on images taken
in various poses, lighting conditions, at different ages, with makeup or different

A. F. Nzegha (�) · C. D. Tayou
Department of Mathematics and Computer Science, University of Dschang, Dschang, Cameroon

J. L. E. Fendji
Department of Computer Engineering, Institute of Technology, University of Ngaoundere,
Ngaoundere, Cameroon

C. Thron
Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX,
USA

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_7

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-37830-1_7

180 A. F. Nzegha et al.

facial expressions. These hazards lead to a great intra-personal variability which
is the major difficulty of facial recognition without constraint. In particular, lighting
variations can significantly reduce the performance of face recognition systems. The
present chapter tackles this issue by using data augmentation that makes it possible
to overcome the problem of intra-personal variability by inserting more diversity in
the facial recognition data. Lighting compensation allows facial recognition models
to better capture the dynamics of lighting and greatly improves recognition.

This chapter is organized as follows. Section 2 describes elements of the system
design, including the image processing techniques used for introducing lighting
variation as well as techniques used to train the CNN. Section 3 describes the
evaluation of the approach using a convolutional neural network model inspired by
VGGNet-16 [35], that was trained on the LFW dataset and then tested on the YaleB
and ORL databases. Section 4 presents and discusses the results of the experiments
described in Sect. 3; and Sect. 5 gives some concluding remarks.

2 Facial Recognition System Design Elements

2.1 Overview

The implementation of our improved facial recognition system can be divided into
two main tasks: data augmentation and CNN training. These two main tasks may be
subdivided as follows.

Data augmentation is accomplished by modifying images in the training set so as
to simulate the effects of different lighting situations on the appearance of the face
in the image. This simulation requires first that a 3D reconstruction of the face be
inferred from the image and then a lighting model applied to the 3D reconstruction
to perform a pixel-by-pixel alteration of the apparent brightness of the image pixels.

CNN training involves using training sets to train the CNN to make a correct
identification when presented with a facial image of one of a limited number of
subjects that are known to the CNN. This training also proceeds in two stages.
First, a large training set from a wide variety of faces is used to train the CNN
to recognize distinguishing “features,” which help to uniquely identify the image.
This dataset is augmented by the data augmentation procedures described above, to
improve the CNN’s robustness to variations in lighting. After this, a smaller dataset
containing only images of the specific subjects to be identified (in various poses
and lighting conditions) is used to familiarize the CNN so that it can make specific
identifications.

The techniques used in the steps outlined above are described in the following
subsections.

Improving Deep Unconstrained Facial Recognition by Data Augmentation 181

2.2 Data Augmentation

2.2.1 Data Augmentation Overview

Data augmentation attacks the problem of lighting variation from a different angle.
Rather than modifying the original image before attempting recognition, data
augmentation uses the unmodified image but increases the variation in the training
set. This makes the system training more rigorous, and the trained network is better
able to cope with lighting variations.

Early versions of augmentation for lighting variations used 2-D methods. The
2012 AlexNet and 2014 VGGNet systems for image recognition used principal
component analysis (PCA) on the set of RGB values for all pixels and all images in
the training set. Based on the eigenvalues and eigenvectors from PCA, a (mean-zero
multivariate Gaussian distribution) was constructed in RGB space, and additional
images were generated from a given training image by selecting a single vector
from this distribution and adding it to the RGB values for all pixels of the given
image [22, 35].

More recently, data augmentation methods for lighting compensation have been
based on 3-D reconstructions, which enable more accurate estimation of the effects
of lighting variation. Examples include Paysan et al. [30] and Jiang et al. [19]. Sixt
et al. [36] propose a new framework called RenderGAN that can generate large
datasets of realistic labeled images by combining a 3-D model and a GAN model.

2.2.2 3-D Face Reconstruction

3-D face reconstruction from a 2-D image is an important, long-standing problem
in facial recognition. Apart from lighting compensation, 3-D facial surface models
have been used in other applications such as 3-D facial expression recognition [42]
and facial animation [31].

Point Clouds

Point clouds are the simplest type of surface representation, and forms the basis for
most 3-D object representation methods. A point cloud consists of an unordered set
of 3-dimensional vectors that represent points lying on the surface. As described
below, more descriptive surface representations (e.g., mesh representations) are
typically constructed based on point cloud representations.

Polygonal Meshes

In 3-D research in general and 3-D facial recognition in particular, most researchers
represent the surfaces of 3-D objects as meshes. A mesh is essentially an unordered

182 A. F. Nzegha et al.

set of vertices (points), edges (connections between two vertices), and faces (sets of
edges with shared vertices) that together represent the surface explicitly. Generally,
the faces consist of triangles, quadrilaterals, or other simple convex polygons,
which simplifies the rendering. The task of building a mesh from a cloud of points
is commonly called the surface reconstruction problem. Several techniques exist,
many of which are based on the classic method of Delaunay triangulation [26].

Polygonal mesh surface representations provide several distinct advantages over
point clouds. They enable much clearer representations of the surface using 3-
D plotting software. Numerous ray tracing, collision detection, and rigid body
dynamics algorithms have been developed for polygonal meshes. They provide
explicit knowledge of connectivity, which can be used to calculate the geodetic
distance between points on the surface. This is particularly useful in face recogni-
tion, because geodetic distances are more invariant than Euclidean distances under
changes of expression by the subject [7]. Some researchers have exploited this by
directly comparing point to point distances, or by using isogeodesic curves [18].

Meshes do have a significant drawback in that they may have errors such as
cracks, holes, T-junctions, overlapping polygons, duplicate geometry, and auto-
intersections. These defects may impede the mesh path and affect the quality of
rendering. To correct these problems, either a local or global approach may be used,
depending on the seriousness of the defects[2]. The local approach locates each
specific defect in the mesh and tries to fix it while conserving the model unchanged,
and consequently preserves most of the mesh information unchanged. It is suitable
when meshes have rare defects and consist of operations such as triangulation for
cracks, or filling holes [15], etc. On the other hand, the global approach takes
into account both individual defects and the mutual relations between defects, and
requires some adjustment for most or all mesh elements.

In cases where lighting of the surface is being considered, the mesh must include
orientation information of the mesh faces. The orientation of a flat face is given
by a vector of unit length that is normal (i.e., perpendicular) to the face. Any face
has two unit normal vectors that point in opposite directions. In cases when the
mesh is describing a human face, one normal points “outward” and the other points
“inward.” As we shall see in Sect. 2.2.3, the brightness of a surface depends on
the angle between the surface’s outward normal and the lighting source. It follows
that in order to correctly predict brightness, the outward normal must be correctly
identified. Algorithms have been designed to consistently identify outward normals:
for example, Borodin et al. [6] propose and verify an algorithm for consistently
orienting the normals of a boundary representation, even in the presence of gaps,
T-junctions, and intersections.

3D Morphable Models

3D morphable models (3DMM) were introduced in 1999 by Blanz and Vetter [5].
They first created a database of 200 3-D face scans in standardized position using
CyberwareTM laser scan technology, which captures comprehensive 3-dimensional

Improving Deep Unconstrained Facial Recognition by Data Augmentation 183

geometric and textural data. The i’th face in the database is represented as a pair of
3n-dimensional vectors (Si , Ti), where Si and Ti capture the geometric and texture
(RGB) information, respectively. Additional faces can then be modeled as “morphs”
of the faces in this database, which represented as linear combinations of the face
vectors in the database. The mathematical expression is

(Smorph, Tmorph) = (

m∑
i=1

aiSi ,

m∑
i=1

biTi), (1)

where m is the number of faces in the database, and {ai} and {bi} are sets of
coefficients such that

∑m
i=1 ai = ∑m

i=1 bi = 1 (coefficients can be positive or
negative). The two sets of coefficients reflect the fact that geometry and texture are
modeled independently.

UV -Mapping and 3D Face

3D models must contain both 3D shape and texture information. Typically, the
shape information is given by a 3D mesh as described above. Since the texture
information describes properties of a surface, the texture information is inherently
two-dimensional and may be stored in a two-dimensional array. However, since the
surface is not flat, a mapping from R

2 to R
3 is required to associate two-dimensional

points with the actual positions in 3-dimensional space. This mapping parametrizes
the facial surface in terms of a pair of coordinates, which are generally denoted as
(U, V). The texture values (R,G,B) are then stored as functions of (U, V). Feng
et al. [12] have developed a facial recognition system that uses a CNN to regress the
(U, V) position map directly from unconstrained 2D images. Their approach attains
state-of-the-art performance, with much lower processing times than other methods.
In their system, the reconstructed 3D face is represented by:

• 43868 3D vertices, where each vertex has x, y, z coordinates.
• 43868 UV mapping coordinates corresponding to the 3D vertices.
• 86907 triangular faces, which form a triangulation of the 3D vertices.
• UV texture information of size 256 × 256 × 3 (RGB values for a 256 × 256 grid

in the UV plane).

2.2.3 Lighting Variation

In this section we describe the modification of images used to augment the dataset
in order to account for lighting variations. We assume that our face surface is a
Lambertian surface, so can reflect the light following the Lambert reflectance model
[4]. The overall process for introducing lighting variation is shown in Fig. 1.

The first step in the process shown in the figure is to calculate the normal vectors
at all vertices of the 3D triangulation, which may be used to calculate the light

184 A. F. Nzegha et al.

Fig. 1 Process of illumination variation

Fig. 2 Fusion of the mesh and the UV-texture

intensity at each vertex. Lighting values at surface points on the triangular faces
can then be interpolated based on vertex values using barycentric coordinates. In
order to be able to calculate the vertex normals, we first calculate unit normal
vectors (i.e., perpendiculars) to the triangular surfaces that meet at the vertex. For
a triangular surface F of vertices (v1, v2, v3), a normal vector to the plane of F

may be calculated as a cross product of two edge vectors, Nf = −−→v1v2 × −−→v1v3 (the
vertices in the mesh must be correctly ordered so that the outward rather than the
inward normal is produced, as discussed in Sect. 2.2.2).

Given Nf , the unit outward normal vector to a surface is found as

N̂f = Nf

|Nf | . (2)

We estimate the unit normal at the vertex vi by the normalized sum of the normals
to the surfaces containing vi as follows:

Nvi
= N(vi) =

∑
N̂f

|∑ N̂f | for allf such that vi ∈ f. (3)

To calculate the intensities at the vertices, we merge the 3D shape and the UV-
texture by using the UV-mapping. This consists in associating the vertex vi to the
corresponding pixel (Ui, Vi) in the UV plane (Fig. 2). The intensity information
I (Ui, Vi) is used as the initial intensity for vertex vi .

Compute the Intensities

In 3D space, we randomly choose a point Lx,y,z as a lighting source. The unit

direction vector from L to the vertex vi is denoted by li = −→
Lvi/|−→Lvi |. We then

Improving Deep Unconstrained Facial Recognition by Data Augmentation 185

apply the Lambert reflectance model, so that the modified intensity of vi is given
by

I (vi) = I (Ui, Vi) · Ili cos(θ), (4)

where Ili is the relative intensity of the lighting source and θ is the angle between li
and Nvi

. In our model, Ili was chosen as the constant value 1.5 independent of i.
The cosine function is a decreasing function. If the angle between θ is too large,

the intensity will vanish or even become negative. To avoid the loss of information,
we add to the new intensity 50% of the initial intensity.

I (vi) = I0(vi)Ili cos(θ) + 1

2
I0(vi) (5)

This equation was used to compute the intensity for all vertices. For each
triangle in the mesh, 13 additional points P1, . . . P13 are created within the triangle
according to the equation:

Pi =
3∑

j=1

wijvj = 1, i = 1 . . . 13, (6)

where v1, v2, v3 are the vertices of the triangle and {wi1, wi2, wi3}i=1,...13 represent
13 sets of barycentric weights where wij ≥ 0 and

∑3
j=1 wij = 1, i = 1 . . . 13. The

intensity at point Pi is then calculated as

I (Pi) =
3∑

j=1

wij I (vj). (7)

The 3D face has three coordinates (x, y, z), where z represents the depth. Given
that the 3D face is aligned, the coordinates (x, y) give a 2D plane containing the
face (Fig. 3).

2.3 CNN Training for Classification

2.3.1 Overview

Face recognition (and object classification in general) can be separated into two
steps: features extraction and classification. The two tasks can be performed
separately: using transfer learning, a pre-trained feature extractor can be used,
associated with an MLP or another classifier for classification, as described in the
following subsections.

186 A. F. Nzegha et al.

Fig. 3 Illustration of illumination variation

2.3.2 Features Extraction

Features extraction consists of finding a set of quantities calculated from a dataset
(called features) that capture the datasets’ essential characteristics. Classical meth-
ods of feature extraction include PCA [20] and linear discriminant analysis (LDA)
[3]. CNN has recently emerged as the most successful feature extractor for images
[44], etc. With CNN, an image is passed through a succession of filters arranged in
layers which successively transform and reduce the data, creating representations
of the image called feature maps. These feature maps can be concatenated or
“flattened” into a single vector, called a features vector.

Classification

The classification step assigns the image to a predefined class, based on the features
vector that is calculated by the features extractor. Classifiers in the literature include
k-nearest neighbors (KNN) [43], support vector machines (SVM) [10], decision
trees [32], and multilayer perceptron (MLP) [11]. In this work we use the MLP,
which is a classifier based on neural networks, where the neurons of one layer are
fully connected to those of the next layer.

Transfer Learning

A challenge of image classification (and classification tasks in general) is to train a
classifier for images from a particular source domain when representative training
data is scarce. Sometimes it is possible to find a related domain where sufficient
training data is available to develop an effective classifier. In such cases, it is

Improving Deep Unconstrained Facial Recognition by Data Augmentation 187

reasonable to suppose that a feature extractor that works well in a related domain
will also work well in the source domain of interest. All that remains is to replace
the classifier for the related domain with another that is particularly adapted to
the source domain. This technique of reusing feature extractors is called transfer
learning [28], and is a widely used strategy in the field of machine learning.

3 Experimental Setup

3.1 Computational Platform

For our system we used the Google Colaboratory platform [8], which is a cloud
service based on Jupyter Notebooks designed support machine learning. It provides
a fully configured runtime environment for deep learning, as well as free access
to a robust graphics processor and TPU (tensor processing units). Currently it
has NVIDIA GPUs with a preinstalled CUDA environment and several machine
learning frameworks including TensorFlow, Theano, and scikit-learn. We used
the TensorFlow framework [1] to train our model. TensorFlow is a programming
framework for numerical computation that was made open source by Google
Brain in November 2015. By 2017, TensorFlow was the most popular open source
machine learning project on GitHub, even though it had only been available for little
over a year [23]. To date it is one of the most powerful tools for Deep Learning,
largely because of the ease of manipulation of tensors and their parallelization by
tools such as CUDA.

Dlib-ml [21] is a state-of-the-art C++ toolkit containing machine-learning
algorithms and data analysis tools, intended for both engineers in industry and
researchers. We used Dlib to detect and extract the area of the face. This detector
offers two methods for face detection: histogram of oriented gradients and support
vector machine (HOG + SVM), and CNN-based detection. We used CNN-based
detection: despite the heavy computing power required, since it is more suitable
for non-frontal face detection. Results from [9] showed that the cascade algorithms
with a CNN was superior to HOG + SVM or Haar Cascade methods in terms of
both accuracy and speed criteria in unconstrained face detection problems.

PRNet (position map regression network) is an implementation of the system
of Feng et al. [12] for regression of 3DMM model parameters. Initially this
TensorFlow-based library was designed for pose estimation, facial alignment, and
texture editing on the basis of 3D representation of the face. We use PRNet for 3D
reconstruction of the different faces of the LFW dataset.

188 A. F. Nzegha et al.

3.2 Description of CNN Model

We use a CNN for features extraction, therefore a stack of convolutional layers
alternated with the pooling layers.

3.2.1 Inputs

We worked with grayscale images of size 100 × 100. All outputs from all
convolutional layers undergo linear rectification using the ReLU activation function.

3.2.2 Filters

We use 2D convolutional filters of size 3 × 3, since the inputs are not very
large. Small filters make it possible to detect highly localized patterns. The first
convolutional layer has 64 filters applied to the input image, and the number of
filters is doubled after each pooling layer. This process was inspired by the VGG16
[35] network of the group Visual Geometric Group which has a similar architecture.
Unlike VGG16, we added a batch normalization [17] before every convolutional
layer to avoid internal covariate shift which can slow down training and degrade
performance. We also used dropout for regulation and greater robustness. Since [14]
specifies that dropout has limited benefits when applied to convolutional layers, we
applied dropout only on the first fully connected layer.

3.2.3 Subsampling (Pooling)

The feature extractor is subdivided into five blocks of convolutional layers separated
by pooling layers. The first two blocks have two convolution layers followed by
a pooling layer, because these layers produce larger feature maps and require
more pooling. After this, subsequent blocks stack four convolutional layers before
pooling. We chose to use 2×2 max pooling, which decreases each dimension of the
feature maps by two (Fig. 4).

For identification, we use two fully connected layers of 1024 units each. A final
softmax layer produces outputs in the interval [0, 1]: the number of neurons in the
final layer is equal to the number of labels in the dataset. The outputs are interpreted
as posterior probabilities of each individual. After the first fully connected layer we
insert a dropout function that randomly eliminates 25% of the layer’s outputs.

System hyperparameters are summarized in Table 1.

Improving Deep Unconstrained Facial Recognition by Data Augmentation 189

Convolution(64, 3 x 3) :ReLU

Convolution(64, 3 x 3) :ReLU

Pooling(2x2)

Convolution(128, 3 x 3) :ReLU

Convolution(128, 3 x 3) :ReLU

Pooling(2x2)

Convolution(256, 3 x 3) :ReLU

Convolution(256, 3 x 3) :ReLU

Pooling(2x2)

Convolution(256, 3 x 3) :ReLU

Convolution(512, 3 x 3) :ReLU

Convolution(512, 3 x 3) :ReLU

Pooling(2x2)

Convolution(512, 3 x 3) :ReLU

Convolution(512, 3 x 3) :ReLU

Convolution(512, 3 x 3) :ReLU

Pooling(2x2)

Convolution(512, 3 x 3) :ReLU

FC(1024, ReLU)

Drop-out(0.25)

FC(1024, ReLU)

Softmax

Flatten

Features extraction

Full-connected

Classifier

Fig. 4 Proposed model of convolutional network. The number of softmax outputs is set equal to
the number of distinct individuals to be identified

190 A. F. Nzegha et al.

Table 1 Setting of CNN Hyperparameters Details

Activation ReLU

Initialization of weights Random uniform

Optimizer Adam

Number of iteration on LWF 1000

Number of iteration on YaleB and ORL 500

3.3 Datasets Used

3.3.1 Labeled Faces in the Wild (LFW)

This dataset is a collection of JPEG images of the faces of famous people collected
on the internet [16, 24]. These faces were extracted from various online websites
by face detectors based on the Viola–Jones model. LFW is commonly used to
evaluate the performance of facial recognition systems. It contains 13,233 250×250
images of 5749 tagged celebrities, where each image is centered on a single face.
In our experiments, the LFW dataset was used for pretraining the model. The
data augmentation described in Sect. 2.2 was applied to these images to improve
robustness of the feature extractor to lighting variations. The feature extractor was
retained, and the classifier was replaced with classifiers for the smaller datasets
described below. Since the smaller datasets have grayscale images, the LFW images
were converted to grayscale using the function cv2.cvtColor from openCV.

3.3.2 ORL Database

The ORL Database [33] from the University of Cambridge contains 400 112 ×
92 pixel images of 40 people, with 10 images per person. The images were taken
at different times, with differing lighting and facial expressions. All the images
were taken on a dark and homogeneous background, the subjects being in a frontal
position, with a tolerance for certain lateral movements. In our experiment, the ORL
database, like the YaleB database, was used for retraining the classifier.

3.3.3 Yale Face Database B

YaleB [13] was developed to allow systematic testing of facial recognition methods
under wide variations in lighting and pose. It contains 5760 640 × 480 pixel images
of 10 subjects viewed each in 576 viewing conditions (9 poses × 64 lighting
conditions). For each subject in a particular pose, an image with ambient lighting
(background) was also captured. In our experiment, a selection of images from
YaleB was used for retraining the classifier, according to the transfer learning
methodology described in Sect. 2.3.

Improving Deep Unconstrained Facial Recognition by Data Augmentation 191

3.4 Experimental Training and Testing Configurations

3.4.1 Experiment 1: LFW Without Data Augmentation

For the first experiment, we randomly selected 12,600 images from the LFW
database for training, corresponding to 5749 subjects. For the initial feature extractor
and classifier training, a classifier with 5749 softmax outputs was trained over 1000
iterations. Of the training set images, 10% (1260 images) were used for cross-
validation.

After this, the classifier was removed and replaced by a classifier for ORL data
and then for YaleB data. The new classifiers had the same number of layers as the
original, but fewer softmax outputs (40 outputs for ORL, 10 outputs for YaleB). For
training the ORL classifier, from the 400 images in the database 300 images were
used for training and 100 for validation over 500 iterations. For training the YaleB
classifier, 8 images per subject were used for training and 3 images per subject were
used for validation, over 500 iterations. The three images chosen for evaluation had
very uneven light distributions: one illuminated only on the left, one only on the
right, and a third image with a central lighting.

3.4.2 Experiment 2: LFW with Data Augmentation

The second experiment differed from the first only in the training set used for the
initial feature extractor + classifier training. The training set used 700 images from
LFW of 28 subjects (25 images per subject). Each of these images was subjected
to 18 different lighting conditions (representing a range of lighting directions, from
left to right), for a total of 12,600 images. Since 28 subjects were used, the classifier
in this case had 28 outputs. As in Experiment 1, after pretraining the classifier was
replaced with a classifier of 40 outputs for ORL and with a classifier of 10 outputs
for YaleB.

4 Results and Interpretation

4.1 Evaluation on ORL

Figures 5 and 6 show the training and testing accuracy curves for ORL data
in Experiment 1 (without augmentation) and Experiment 2 (with augmentation),
respectively. The figures show roughly 10% improvement in accuracy when aug-
mented data is used for pretraining.

192 A. F. Nzegha et al.

Fig. 5 Accuracy curve using
ORL data for the model
pretrained with plain LFW
data (Experiment 1)

1.0

0.8

0.6

0.4

0.2

0.0

ac
cu

ra
cy

train
test

0 100 200 300 500400
iteration

Fig. 6 Accuracy curve using
ORL data for the model
pretrained with augmented
LFW data (Experiment 2)

1.0

0.8

0.6

0.4

0.2

0.0

ac
cu

ra
cy

train
test

0 100 200 300 500400
iteration

4.2 Evaluation on YaleB

Figures 7 and 8 show the training and testing accuracy curves for YaleB data
in Experiment 1 (without augmentation) and Experiment 2 (with augmentation),
respectively. In this case, the improvement in test accuracy when augmented data is
used for pretraining is about 20%.

Table 2 summarizes the results from the two experiments. For the evaluation of
the model on test data, we observe a gain of accuracy of 9% on ORL. This finding
confirms the enhanced effectiveness of pretraining that uses more images of fewer
subjects taken under variable lighting conditions. The 18% improvement on YaleB
shows that the performance improvement is further amplified in cases where the
system is applied to images that also have variable lighting. In both experiments,
the accuracy on YaleB is lower than the corresponding accuracy on ORL: this is
probably due to the greater variability of both position and lighting for images in
YaleB, as well as the smaller size of the dataset used in our experiments.

Improving Deep Unconstrained Facial Recognition by Data Augmentation 193

Fig. 7 Accuracy curve using
YaleB for the model
pretrained with plain LFW
data (Experiment 1)

1.0

0.8

0.6

0.4

0.2
ac

cu
ra

cy

train
test

0 100 200 300 500400
iteration

Fig. 8 Accuracy curve using
YaleB for the model
pretrained with augmented
LFW data (Experiment 2)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

ac
cu

ra
cy

train
test

0 100 200 300 500400
iteration

Table 2 Summary of accuracies and average errors observed for the ORL and YaleB data sets,
with and without data augmentation

ORL YaleB

Accuracy Average error Accuracy Average error

Simple data 74% 1.78 35.56% 6.03

Augmented data 83% 0.72 53.33% 3.12

5 Conclusion

This chapter demonstrates a practical method for improving deep facial recognition
using data augmentation. Specifically, we employed 3D lighting variation as a
method of data augmentation, using the Lambert reflectance model to model the
dynamics of ambient lighting in 3D space. The improvement was verified on two
different datasets possessing different degrees of image variability. Accuracy gain
due to data augmentation ranged from 9% to 18%, with the greater gain observed in
the dataset that showed more variability. We conclude that lighting variation using
the Lambert reflectance model is well suited to data augmentation for deep facial
recognition under unconstrained lighting conditions.

194 A. F. Nzegha et al.

References

1. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard et al., TensorFlow: a system for large-scale machine learning, in 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16) (2016), pp. 265–
283

2. M. Attene, M. Campen, L. Kobbelt, Polygon mesh repairing: an application perspective. ACM
Comput. Surv. (CSUR) 45(2), 15 (2013)

3. S. Balakrishnama, A. Ganapathiraju, Linear discriminant analysis-a brief tutorial. Inst. Signal
Inf. Process. 18, 1–8 (1998)

4. R. Basri, D.W. Jacobs, Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal.
Mach. Intell. 25(2), 218–233 (2003)

5. V. Blanz, T. Vetter et al., A morphable model for the synthesis of 3d faces, in SIGGRAPH ’99
(1999), pp. 187–194

6. P. Borodin, G. Zachmann, R. Klein, Consistent normal orientation for polygonal meshes, in
Proceedings Computer Graphics International, 2004 (IEEE, Piscataway, 2004), pp. 18–25

7. A.M. Bronstein, M.M. Bronstein, R. Kimmel, Expression-invariant 3d face recognition,
in International Conference on Audio- and video-based Biometric Person Authentication
(Springer, Berlin, 2003), pp. 62–70

8. T. Carneiro, R.V.M. Da Nóbrega, T. Nepomuceno, G.-B. Bian, V.H.C. De Albuquerque, P.P.
Reboucas Filho, Performance analysis of Google Colaboratory as a tool for accelerating deep
learning applications. IEEE Access 6, 61677–61685 (2018)

9. E. Cengil, A. Çinar, Comparison of Hog (histogram of oriented gradients) and Haar Cascade
algorithms with a convolutional neural network based face detection approach. Comput. Sci.
3(5), 244–255 (2017)

10. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
11. Q.-K. Do, A. Allauzen, F. Yvon, Modèles de langue neuronaux: une comparaison de plusieurs

stratégies d’apprentissage, in Actes de la 21e conférence sur le traitement automatique des
langues naturelles (TALN) (2014), pp. 256–267

12. Y. Feng, F. Wu, X. Shao, Y. Wang, X. Zhou, Joint 3d face reconstruction and dense alignment
with position map regression network, in Proceedings of the European Conference on
Computer Vision (ECCV) (2018), pp. 534–551

13. A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: illumination cone
models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach.
Intell. 34(6), 643–660 (2001)

14. G. Ghiasi, T.-Y. Lin, Q.V. Le, DropBlock: a regularization method for convolutional networks,
in Advances in Neural Information Processing Systems (2018), pp. 10727–10737

15. X. Guo, J. Xiao, Y. Wang, A survey on algorithms of hole filling in 3d surface reconstruction.
Vis. Comput. 34(1), 93–103 (2018)

16. G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: a database for
studying face recognition in unconstrained environments, in Workshop on Faces in ‘Real-Life’
Images: Detection, Alignment, and Recognition (2008)

17. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing
internal covariate shift (2015). Preprint. arXiv: 1502.03167

18. S. Jahanbin, H. Choi, Y. Liu, A.C. Bovik, Three dimensional face recognition using iso-
geodesic and iso-depth curves, in 2008 IEEE Second International Conference on Biometrics:
Theory, Applications and Systems (IEEE, Piscataway, 2008), pp. 1–6

19. D. Jiang, Y. Hu, S. Yan, L. Zhang, H. Zhang, W. Gao, Efficient 3d reconstruction for face
recognition. Pattern Recogn. 38(6), 787–798 (2005)

20. I. Jolliffe, Principal Component Analysis (Springer, New York, 2011)
21. D.E. King, Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10(Jul), 1755–1758

(2009)

Improving Deep Unconstrained Facial Recognition by Data Augmentation 195

22. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional
neural networks, in Advances in Neural Information Processing Systems (2012), pp. 1097–
1105

23. J. Lawrence, J. Malmsten, A. Rybka, D.A. Sabol, K. Triplin, Comparing TensorFlow deep
learning performance using CPUs, GPUs, local PCs and cloud, in Proceedings of Student-
Faculty Research Day, CSIS, Pace University (2017)

24. E. Learned-Miller, G.B. Huang, A. RoyChowdhury, H. Li, G. Hua, Labeled faces in the wild:
a survey, in Advances in Face Detection and Facial Image Analysis (Springer, Cham, 2016),
pp. 189–248

25. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436 (2015)
26. S.P. Lim, H. Haron, Surface reconstruction techniques: a review. Artif. Intell. Rev. 42(1),

59–78 (2014)
27. X. Liu, M. Kan, W. Wu, S. Shan, X. Chen, VIPLFaceNet: an open source deep face recognition

SDK. Front. Comput. Sci. 11(2), 208–218 (2017)
28. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10),

1345–1359 (2009)
29. O.M. Parkhi, A. Vedaldi, A. Zisserman et al., Deep face recognition, in BMVC, vol. 1 (2015),

p. 6
30. P. Paysan, R. Knothe, B. Amberg, S. Romdhani, T. Vetter, A 3d face model for pose and

illumination invariant face recognition, in 2009 Sixth IEEE International Conference on
Advanced Video and Signal Based Surveillance (IEEE, Piscataway, 2009), pp. 296–301

31. J. Roth, Y. Tong, X. Liu, Unconstrained 3d face reconstruction, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2015), pp. 2606–2615

32. S.R. Safavian, D. Landgrebe, A survey of decision tree classifier methodology. IEEE Trans.
Syst. Man Cybern. 21(3), 660–674 (1991)

33. F.S. Samaria, Face recognition using hidden Markov models. PhD thesis, University of
Cambridge, Cambridge, UK, 1994

34. F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: a unified embedding for face recognition
and clustering, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2015), pp. 815–823

35. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition (2015). Preprint. arXiv: 1409.1556v6

36. L. Sixt, B. Wild, T. Landgraf, RenderGAN: generating realistic labeled data. Front. Robot. AI
5, 66 (2018)

37. Y. Sun, Y. Chen, X. Wang, X. Tang, Deep learning face representation by joint identification-
verification, in Advances in Neural Information Processing Systems (2014), pp. 1988–1996

38. Y. Sun, X. Wang, X. Tang, Deep learning face representation from predicting 10,000 classes,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014),
pp. 1891–1898

39. Y. Sun, D. Liang, X. Wang, X. Tang, Deepid3: face recognition with very deep neural networks
(2015). Preprint. arXiv: 1502.00873

40. Y. Sun, X. Wang, X. Tang, Deeply learned face representations are sparse, selective, and robust,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015),
pp. 2892–2900

41. Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: closing the gap to human-level
performance in face verification, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2014), pp. 1701–1708

42. J. Wang, L. Yin, X. Wei, Y. Sun, 3d facial expression recognition based on primitive surface
feature distribution, in 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), vol. 2 (IEEE, Piscataway, 2006), pp. 1399–1406

43. K.Q. Weinberger, J. Blitzer, L.K. Saul, Distance metric learning for large margin nearest
neighbor classification, in Advances in Neural Information Processing Systems (2006), pp.
1473–1480

44. M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in European
Conference on Computer Vision (Springer, Cham, 2014), pp. 818–833

Improved Plant Species Identification
Using Convolutional Neural Networks
with Transfer Learning and Test Time
Augmentation

Kelvin Igbineweka, Babatunde Sawyerr, and Ebun Fasina

1 Introduction

Machine learning is rapidly gaining popularity in several application areas, ranging
from e-commerce recommendation engines to content filtering on social media to
intelligent web searches to facial verification and identification. These advance-
ments have been made possible by a special class of techniques known as deep
learning [1]. Deep learning can learn complex features using a large training
dataset with the help of the so-called backpropagation algorithm [2]. Over the
years, these techniques have drastically enhanced the present state of the art
in object detection, image and speech recognition, self-driving cars, and several
other domains such as genomics, plant classification, and drug discovery. There
are several deep learning algorithms for solving various challenges in machine
learning. For example, recurrent neural networks (RNNs) are popularly used to
model sequential data such as speech and text, while CNNs are widely used for
image recognition, object detection, and image processing. Although CNNs have
been around since the 1980s [3], their widespread adoption for large-scale image
classification tasks began in 2012 when the AlexNet CNN won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [4]. Since then CNNs have
dominated the computer vision space, winning most competitions involving image
recognition [5].

CNNs are able to take advantage of local spatial characteristics that are found in
images, thus making them well suited for image classification tasks. Furthermore,
they provide the necessary machinery for learning the features in images, by
stacking successive computational layers that provide successive re-representations

K. Igbineweka (�) · B. Sawyerr · E. Fasina
Department of Computer Science, University of Lagos, Lagos, Nigeria

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_8

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-37830-1_8

198 K. Igbineweka et al.

of the image. The early layers learn basic features and properties like edges while
the later layers detect intricate features like the entire shape of the image. CNNs also
use the concept of local connectivity and weight sharing to manage the parameters
of the network, thus allowing them to perform well on large datasets.

In this chapter, we apply convolutional neural networks for the identification of
plant species from leaves. Plant classification is essential in the study of plants.
However, using conventional keys for the identification of plants not only is time
consuming but also poses special challenges for two reasons. First, the repertoire
of plant species classes is extensive [6]; and second, the taxonomic attributes
of plants are highly complex, so that botanists resort to technical terms that are
incomprehensible to nonexperts. These challenges pose a formidable barrier to
novices who may be interested in obtaining species knowledge.

Existing algorithms for plant species identification use queries relating to the
properties of the given plant (e.g., color, number of petals, the presence of thorns or
hairs, shape). The answers to these queries are then summed up into a feature vector
and sent to a classifier for identification [7]. This task of manually extracting features
not only is difficult but also requires specialized domain knowledge and botanical
expertise. CNNs solve this problem by being able to automatically detect the feature
representation and carry out the needed identification. In this chapter, we propose
a convolutional neural network architecture that utilizes the concept of transfer
learning for plant species identification. Furthermore, we show that the application
of different augmentation techniques can greatly improve the classification accuracy
without needing to rely on handcrafted features.

2 Convolutional Neural Networks

A convolutional neural network (ConvNet, or CNN) is a variant of the feed-forward
artificial neural network that uses convolution operations to master high-level
features in data. In humans, the visual cortex plays the vital role of receiving,
integrating, and processing the visual information received from the retinas. There
are regions in the visual cortex known as receptive fields that contain neurons
that emit different responses based on the area of the region that is triggered. In
these receptive fields, two classes of neurons can be found: those that fire when
low-level features such as edges and dots are detected while there are others that
fire when high-level features are detected. This organizational structure is a major
inspiration for convolutional neural networks. In a CNN, there are three types of
layers: convolution, pooling, and classification. These layer types are described in
more detail in the following paragraphs.

Convolutional layers act as feature extractors in the network. Their primary
role is to extract from the input relevant features by learning the representation of
these features. It achieves this using a set of convolution operation which operates
by computing the dot product between the receptive fields and weights locally
connected to them [8].

Improved Plant Species Identification Using Convolutional Neural Networks. . . 199

Pooling layers are used to shrink the dimensions of the resulting feature maps.
They also play a vital role of introducing spatial invariance where the inputs suffer
from some form of distortions and translations [9]. In the past, average pooling was
commonly used to calculate and propagate the average values within a receptive
field to the succeeding layer [3, 9, 10]. However, in recent models [4, 11–15], max
pooling is extensively used to propagate the maximum values within a receptive to
the succeeding layer.

The classification layer is the last layer in a CNN and may consist of one or
more fully connected layers. It is in this layer that functions relating to high-level
reasoning are carried out and the features from the previous layers are represented
[11, 14, 16].

3 CNN Architectures

Neural networks usually require very huge computational setup which made deep
learning very hard to use up until the late 1990s. One of the first major applications
of CNN was for the recognition of handwritten zip codes as proposed by [3]. In
this research, the famous MNIST dataset was trained to achieve a 99.7% accuracy.
Their network had only convolutional and max pooling layers. Krizhevsky et al.
[4] won the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
attaining 15.3% error rate with “AlexNet.” While the AlexNet architecture resem-
bles LeNet’s, it is bigger in all respects (more layers, more feature maps per layer,
more neurons per feature map) and includes stacked convolutional networks: before
AlexNet, it was common to have convolutional layers immediately followed by
pooling layers to reduce the number of inputs to the next layer. To train AlexNet,
a regularization technique called “dropout” was developed to reduce overfitting in
the fully connected layers. Training time was reduced through the use of graphics
processing units (GPU) to perform a parallel implementation of the convolution
operation. Zeiler & Fergus [14] improved on the AlexNet architecture by adjusting
the parameters of the network and won the 2013 ImageNet competition, achieving
an 11% classification error.

It is hard to train neural networks that are several layers deep due to slowed-down
convergence of the training process [17]. This slowing down arises because during
backpropagation the weights are adjusted in proportion to the partial derivative of
the cost function, and the size of the gradients tends to reduce as the backpropagation
reaches further back into the network. Several techniques have been developed
to facilitate training of intermediate layers in deep networks, as described in the
following paragraphs.

The 2014 ImageNet competition was won by the Google team [12, 13], with a
6% classification error. Their new architecture (code named GoogLeNet) included
a new type of layer dubbed “inception module” that uses multiple convolutions
of different sizes within a single network to give a “network within network”
type structure. This innovation leads to better performance with fewer layers (thus

200 K. Igbineweka et al.

alleviating the gradient-vanishing problem alluded to in the previous paragraph).
Since inception modules are more effective in modeling local features, GoogLeNet
did not require fully connected final layers as in previous architecture. Instead,
based on the recommendation of [18], the fully connected final layer was replaced
with max pooling, which is easier to interpret and less prone to overfitting. The
researchers found that this replacement led to a 0.6% reduction in classification
error. The second place finisher in 2014 with 7% classification error was VGGNet,
which lacked inception modules but was deeper than GoogLeNet [11].

Batch normalization (BN) was introduced by [19] as a highly effective technique
for speeding up training while enhancing performance. In virtually all neural
networks, input data is normalized by rescaling and shifting to put the data within
a standard range so that network elements can discriminate efficiently. BN extends
this idea by performing a normalization operation between inner layers as well as
the before the input layer. Training is done using minibatches, and normalization
for each unit in each layer is calculated minibatch by minibatch. Each normalized
result is then shifted and scaled using parameters that are trained during the training
process. Once training is complete, the minibatch normalization step is replaced by
a normalization calculated based on multiple minibatches. This procedure reduces
the effect of shifts of inner-layer inputs during the training (these are known as
“internal covariate shifts”), and has been found experimentally to reduce training
effort by more than an order of magnitude.

Some studies have shown that networks can be made easier to train by including
some shortened connections between layers nearest to the input and those nearest
to the output [20]. A similar technique was used in ResNet, an ultra-deep model
consisting of 152 layers which won ILSVRC 2015 [5]. In ResNet, additional
inputs are provided to each layer consisting of outputs from earlier layers that are
transformed and summed. Although these networks were very deep, the fact that
errors can be channeled directly to units in earlier layers made them easy to train
and optimize.

DenseNet [21] realizes similar advantages by using the feature maps from the
current layer as well as those from preceding layers as inputs to subsequent layers.
The DenseNet architecture includes several “dense blocks,” which are blocks of
layers in which all layers’ outputs are included as inputs to all succeeding layers, as
shown in Fig. 1.

This design guarantees better parameter efficiency (i.e., more performance with
fewer parameters) and facilitates backpropagation, making DenseNet easier to train.

DenseNet possesses other features to improve computational efficiency and to
prevent overfitting when training datasets with smaller sizes. “Bottleneck” layers
are inserted between successive layers in the dense block to cut down the number of
inputs to the ensuing layer. These bottleneck layers include a batch normalization,
a ReLU rectification, and a convolution that combines feature maps. Additionally,
between two successive dense blocks, DenseNet places a transition layer (e.g., the
final layer shown in Fig. 1), which also reduces the number of layer inputs to the
following dense block by a constant fraction.

Improved Plant Species Identification Using Convolutional Neural Networks. . . 201

Fig. 1 A dense block with five layers. Each feature map is fed as input to subsequent layers

In practice, CNNs are rarely trained from scratch, since it is often hard to find
datasets of sufficient size. A more common approach to training is transfer learning:
a network gains “knowledge” by training on one dataset, and is then applied to
recognize different but related data. For example, the knowledge gathered from
recognizing cars can equally be applied to some extent in recognizing trucks. One
variant of the transfer learning concept is fine-tuning [22]. To achieve fine-tuning,
we start by training a convolutional neural network (CNN) to learn features from
a wide domain with a classification function aimed at reducing the error in that
domain. We then replace this function and optimize the network to reduce the error
in another, more specific domain. Under this type of learning, we are transferring
the parameters and features of the network from the broader domain to the more
explicit one.

One final technique for performance enhancement that is simple to implement
involves combining the results from multiple models are used to obtain a combined
estimate (for example, by majority vote). This technique, known as “ensemble,” is
often used in deep learning competitions such as Kaggle (kaggle.com/competitions)
to give the winner a slight performance boost that edges it past the other entries.

4 Experimental Setup

The dataset used for this research was obtained from the Kaggle web site [23].
Separate datasets were supplied for training and testing. The training dataset
consists of 3803 RGB images from 960 distinct plants belonging to 12 species
at different growth stages. The images were assembled by [24], and represent
some of the most common weed species in Danish agriculture. Since there are
so many images per species, any algorithm that correctly classifies them should
be able to cope with high intra-class variations. Images from the dataset were
randomly separated into training and validation sets, with 70% for training and 30%

202 K. Igbineweka et al.

for validation. The training dataset was augmented through randomized geometric
transformations on the images including flipping, cropping and rescaling, rotation
and elastic deformation [25]. Additional augmentation was achieved by randomized
transformations of images’ brightness through scaling and shifting.

For this experiment, several preprocessing steps were carried out. For normal-
ization, the pixels were first scaled to values between 0 and 1 and then the mean
and standard deviation from the pretrained models were applied (normalization has
been shown to produce faster convergence [26]).

Three CNNs were used in the experiment: DenseNet161, DenseNet201, and
ReNet152. All networks were supplied by PyTorch [27], which is an open-source
deep learning library built on top of the Torch library [27]. PyTorch is actively
developed by the artificial intelligence research group at Facebook. With PyTorch, it
is easy to carry out machine learning computations using tensors. PyTorch also has
integrated CUDA® commands that can be used to implement parallel processing
on GPUs (Graphics Processing Units). PyTorch is widely used in several deep
learning applications, such as natural language processing and computer vision. All
computations were performed on the Google Cloud Platform (GCP).

The three networks were all fine-tuned with the same training procedure,
described as follows. First, the final layer in each pretrained network (a softmax
classifier) was replaced with a new softmax layer that outputs 12 classes and is
initialized with random input weights. This classifier was then trained from scratch,
using the training data derived from the plant seedling database.

The cutout regularization technique was used to prevent overfitting [28]. Cutout
consists of randomly mask out square regions on input during training. For this
experiment, a randomly located mask of size 50 × 50 is used to zero out a square
patch of pixels in each input image for every epoch. Specifically, and not all parts of
the cutout mask were contained in the image, thus allowing the network to receive
some examples where a huge portion of the image is noticeable during training.

The learning rates for different layers were assigned different values. The newly
introduced softmax classifier layer was assigned a larger learning rate, since it
was initialized with random values which do not reflect any useful information.
For the remaining layers, the learning rate was kept small in order to maintain the
parameters of the original network and gradually migrate previous knowledge to the
new network. These learning rates were further reduced as the training progressed.
For this experiment, for the first training epoch a learning rate of 0.1 was used for
the newly added softmax layer, while other network parameters were kept fixed
(corresponding to learning rate 0). In the second training epoch, the learning rate
was set to 0.0003 for all network parameters. As the training progressed, if the log
loss failed to improve in two consecutive epochs, then the learning rate is multiplied
by 0.1. All models were trained for 15 epochs with the PyTorch implementation of
the Adam algorithm [29] used for optimizing the parameters of the network.

For testing, two different strategies were used. The first was to test the images
with no augmentation applied. The second method used test time augmentation
(TTA) which has been shown to significantly improve the test results of con-
volutional neural network algorithms [13, 20]. TTA is simply the application of

Improved Plant Species Identification Using Convolutional Neural Networks. . . 203

several different transformations to the test images such as flipping, rotation, and
translations. These transformed images are then fed to the trained model with the
results averaged to get a more reliable prediction. For this experiment, a 12-TTA
strategy was used, as follows. First, we predict with the image and five other crops
of the image, i.e., top-left, top-right, bottom-left, bottom-right, and center. We do the
same thing with the image flipped horizontally and another five crops of the flipped
image. The 12 resulting predictions were averaged to give the final prediction, which
was used by the Adam algorithm to adjust the weights.

5 Results and Discussion

Training and validation results for the three different architectures are shown in
Fig. 2. For DenseNet161, training and validation results converged around epoch
8, and continued to decrease together until epoch 15. For DenseNet201 and
ResNet152, training and validation converged around epoch 5, followed by sub-
sequent decreases in both training and validation losses.

Table 1 shows results for the individual models without and with TTA. Both with
and without TTA, DenseNet161 was the lowest performer, while ResNet152 was
the (matched or unmatched) best performer. TTA gave improvements of between

Fig. 2 Training/validation loss vs. number of epochs for DenseNet161, DenseNet201, and
ResNet152

204 K. Igbineweka et al.

Table 1 Results from testing without and with augmentation

Model Without TTA With TTA
Error rate Accuracy (%) Error rate Accuracy (%)

DenseNet161 0.024287 97.57 0.022175 97.78
DenseNet201 0.020063 97.99 0.020063 97.99
ResNet152 0.020063 97.99 0.016895 98.31

Table 2 Result from testing
with ensemble

Method Error Accuracy (%)

Ensemble without augmentation 0.021119 97.89%
Ensemble with augmentation 0.014784 98.52

0 and 0.32 percent, with ResNet152 achieving the largest improvement. Overall,
ResNet152 with TTA was the best performer, 0.32 percent better than DenseNet201
(with or without TTA).

Table 2 summarizes the results for the ensemble system, which averaged the
results of the three baseline networks. When tested without TTA, the accuracy of the
ensemble system fell 0.1% short of that achieved by DenseNet201 and ResNet152.
On the other hand, ensemble with TTA surpassed ResNet152 by 0.22%, and gave
the best overall result.

6 Summary

In this chapter, we have presented a high-performance plant seedling classification
algorithm that uses CNN. This algorithm combines three models pretrained on
the ImageNet dataset, and was fine-tuned on a much smaller set of 3803 plant
images [24] which was augmented using various transformations. The use of test
time augmentation (TTA) during testing reduced error rate by 30%, from 0.021 to
0.015. This research has shown that a good classification result can be achieved
using relatively few training examples.

References

1. Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://
doi.org/10.1038/nature14539

2. P.J. Werbos, Applications of advances in nonlinear sensitivity analysis. Syst. Model Optim,
762–770 (1982). https://doi.org/10.1007/BFb0006203

3. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel,
Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551
(1989). https://doi.org/10.1162/neco.1989.1.4.541

4. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional
neural networks. Adv. Neural Inf. Proces. Syst. 25, 097–1105 (2012). https://doi.org/10.1016/
j.compmedimag.2014.06.005

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1007/BFb0006203
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1016/j.compmedimag.2014.06.005

Improved Plant Species Identification Using Convolutional Neural Networks. . . 205

5. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale visual recognition challenge.
Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

6. E. Aptoula, B. Yanikoglu, Morphological features for leaf based plant recognition, in 2013
IEEE International Conference on Image Processing, ICIP 2013—Proceedings, (2013), pp.
1496–1499. https://doi.org/10.1109/ICIP.2013.6738307

7. J. Wäldchen, P. Mäder, Plant species identification using computer vision techniques: a
systematic literature review. Arch. Comput. Methods Eng. 25(2), 507–543 (2018). https://
doi.org/10.1007/s11831-016-9206-z

8. W. Rawat, Z. Wang, Deep convolutional neural networks for image classification: A
comprehensive review. Neural Comput. 29(9), 2352–2449 (2017). https://doi.org/10.1162/
NECO_a_00990

9. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2323 (1998). https://doi.org/10.1109/5.726791

10. Y. LeCun, B. Boser, J.S. Denker, R.E. Howard, W. Habbard, L.D. Jackel, D. Henderson,
Handwritten digit recognition with a back-propagation network. Dermatol. Surg. 39(1pt2), 149
(1989). https://doi.org/10.1111/dsu.12130

11. K. Simonyan, & A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition (2014), 1–14. doi:https://doi.org/10.1016/j.infsof.2008.09.005

12. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. Going deeper with
convolutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 7–12 June (2015), 1–9. doi:https://doi.org/10.1109/CVPR.2015.7298594

13. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, & Z. Wojna, Rethinking the Inception
Architecture for Computer Vision (2015). doi:https://doi.org/10.1109/CVPR.2016.308

14. M.D. Zeiler, & R. Fergus, Visualizing and understanding convolutional networks. Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 8689 LNCS (Part 1), 818–833 (2014). doi:https://doi.org/
10.1007/978-3-319-10590-1_53

15. M.D. Zeiler, & R. Fergus, Visualizing and Understanding Convolutional Networks
arXiv:1311.2901v3 [cs.CV] 28 Nov 2013. Computer Vision–ECCV 2014, 8689, 818–833
(2014). doi:https://doi.org/10.1007/978-3-319-10590-1_53

16. G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural
networks by preventing co-adaptation of feature detectors. IEEE Signal Process. Mag. 29(6),
82–97 (2012). https://doi.org/10.1109/MSP.2012.2205597

17. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is
difficult. IEEE Trans. Neural Netw. 5(157), 166 (1994)

18. M. Lin, Q. Chen, & S. Yan, Network In Network (2013) p 1–10. doi:https://doi.org/10.1109/
ASRU.2015.7404828

19. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing
internal covariate shift Sergey. ArXiv 36(10), 800–805 (2015). https://doi.org/10.1007/s13398-
014-0173-7.2

20. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification, in Proceedings of the IEEE International Conference on
Computer Vision, 2015 Inter, (2015), pp. 1026–1034. https://doi.org/10.1109/ICCV.2015.123

21. G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional net-
works, in Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017-Jan, (2017), pp. 2261–2269. https://doi.org/10.1109/CVPR.2017.243

22. Y. Bengio, A. Courville, Deep learning of representations for unsupervised and transfer
learning. Intel. Syst. Ref. Libr 49(2011), 1–28 (2013). https://doi.org/10.1007/978-3-642-
36657-4_1

23. Plant Seedlings Classification (n.d.) Retrieved August 25, 2019, from https://www.kaggle.com/
c/plant-seedlings-classification

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/ICIP.2013.6738307
http://dx.doi.org/10.1007/s11831-016-9206-z
http://dx.doi.org/10.1162/NECO_a_00990
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1111/dsu.12130
http://dx.doi.org/10.1016/j.infsof.2008.09.005
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/ASRU.2015.7404828
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1007/978-3-642-36657-4_1
https://www.kaggle.com/c/plant-seedlings-classification

206 K. Igbineweka et al.

24. T.M. Giselsson, R.N. Jørgensen, Jensen, P. K., M. Dyrmann, & H.S. Midtiby, A Public Image
Database for Benchmark of Plant Seedling Classification Algorithms (2017). Retrieved from
http://arxiv.org/abs/1711.05458

25. O. Ronneberger, P. Fischer, & T. Brox U-net: Convolutional networks for biomedical image
segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241 (2015). doi:https:/
/doi.org/10.1007/978-3-319-24574-4_28

26. Y. LeCun, L. Bottou, G.B. Orr, K.R. Muller, Efficient BackProp. http://Yann.Lecun.Com/Exdb/
Publis/Pdf/Lecun-98B.Pdf, 91(1998), 399–404 (2017)

27. PyTorch (n.d.) Retrieved August 25, 2019, from https://pytorch.org/
28. T. DeVries, & G.W. Taylor, Improved Regularization of Convolutional Neural Networks with

Cutout (2017). doi:https://doi.org/10.1016/j.neuron.2007.06.026
29. D.P. Kingma, & J. Ba, Adam: A Method for Stochastic Optimization (2014). Retrieved from

http://arxiv.org/abs/1412.6980

http://arxiv.org/abs/1711.05458
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://yann.lecun.com/Exdb/Publis/Pdf/Lecun-98B.Pdf
https://pytorch.org/
http://dx.doi.org/10.1016/j.neuron.2007.06.026
http://arxiv.org/abs/1412.6980

Simulation of Biological Learning
with Spiking Neural Networks

Chukwuka N. Ojiugwo, Abderazek B. Abdallah, and Christopher Thron

1 Introduction

Artificial neural networks (ANNs) are computational models developed for learning
tasks, inspired by brain function [1]. These algorithms learn by examples without
being programmed with any task-specific rules. Instead, they generate identifying
features from the learning (training) data that they process. For example, ANNs can
be trained to recognize images of dogs by systematically analyzing sample images
manually labeled as “not dog” or “dog” and using the results to identify dogs in other
images. In general, ANNs are connected networks of neurons composed of different
layers. Each layer receives inputs from neurons in the previous layer (or layers),
does some processing, and passes outputs as input signals to neurons in the next
layer, which performs the same functions. Although ANNs have achieved success
in many fields (classification tasks, signal processing, recognition tasks, security
systems, and so on), they are biologically inaccurate and do not closely mimic the
operation mechanism of neurons in animal or human brains.

Spiking neural networks (SNNs) are the third-generation version of ANNs that
mimic realistic brain function [2]. Unlike conventional ANNs, SNNs use time-
varying signals. Inputs to neurons in SNNs consist of series of current spikes, which
affect the neuron’s membrane potential (defined as the electric voltage across the

C. N. Ojiugwo (�)
Department of Computer Science, African University of Science and Technology, Abuja, Nigeria
e-mail: cojiugwo@aust.edu.ng

A. B. Abdallah
School of Computer Science and Engineering, The University of Aizu, Aizu, Japan

C. Thron
Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX,
USA

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_9

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_9&domain=pdf
mailto:cojiugwo@aust.edu.ng
https://doi.org/10.1007/978-3-030-37830-1_9

208 C. N. Ojiugwo et al.

membrane). Neurons fire (or activate) when the membrane potential (or voltage)
reaches a specific threshold value. When a neuron fires, it generates current spikes
that travel to other neurons through synapses, and the process repeats with these
target neurons. Typically, in SNNs, a neuron’s membrane potential between input
spikes is modeled as a system of differential equations [3] that describe the natural
decay of the membrane potential.

The first biologically realistic model of a neuron was proposed by Alan Lloyd
Hodgkin and Andrew Huxley in 1952. Their model, known as the Hodgkin-Huxley
(HH) model [4], describes the response of the neuron’s membrane potential to the
input current. The model consists of 4 coupled differential equations in the variables
I (input current), Vm (membrane voltage), and 3 activation channels. The model has
10 biological parameters that can be measured empirically. The model explains the
neuron’s spiking behavior, but is only a single-neuron model, and does not describe
connections or transmission of signals between neurons.

The FitzHugh−Nagumo (FN) model was proposed in 1962 as a simplified
version of the HH model [5]. The model has only two equations, but it is still difficult
to analyze and simulate. Furthermore, it has no bursting behavior such as observed
in real neurons. To remedy this deficiency, Hindmarsh–Rose proposed a model with
three equations that explain bursting behavior [6].

All the biologically based models mentioned above share the following fea-
tures:

• The ability to generate spikes if the membrane potential crosses a threshold.
• A reset value to initialize the membrane potential after firing.
• A refractory period that prevents the neuron from immediately generating

subsequent spikes.
• Complicated dynamics that are difficult to characterize exactly.

The complication of these models has led researchers in the area of ANNs to
look for simpler models that have similar behavior but are easier to implement
and characterize. The earliest behavioral model of this type is the integrate and
fire model, initially investigated by Louis Lapicque in 1907 as discussed in [7].
The model compares the behavior of a neuron to a simple circuit with one resistor
and one capacitor in parallel. Although it does not model neurons’ biochemical
mechanisms, it successfully describes the qualitative behavior of neurons. An
improved version of integrate and fire is the leaky integrate and fire model, which
will be discussed in the next section.

The remainder of the chapter is organized as follows. In Sect. 2, we describe three
alternative functional neuron models that are used in SNNs. In Sect. 3, we describe
the spike-timing-dependent plasticity (STDP) learning algorithm and an application
of STDP to train a SNN to recognize handwritten digits [8]. In Sects. 4 and
5, we discuss available software SNN simulators and hardware implementations,
respectively. In Sect. 6, we summarize our work and discuss current and future
research as well as possible practical applications.

Simulation of Biological Learning with Spiking Neural Networks 209

2 Mathematical Neuron Models

In this section, we describe the equations and behavior of three mathematical models
of neurons: the integrate and fire (IF) and leaky integrate and fire (LIF) models
mentioned in the previous section as well as a conductance-based model.

2.1 Integrate and Fire (IF) Model

IF neurons have three modes of behavior: an accumulation mode, a firing mode,
and a refractory mode [9]. During the accumulation mode, the membrane voltage
Vm obey the following equation:

dV m

dt
= I (t)

Cm
, (1)

where I(t) is the input current and Cm is the membrane capacitance (a model
parameter). If the input current is nonnegative, the membrane voltage increases with
t until it reaches a threshold, Vth (also a model parameter). At this point the neuron’s
firing mode is activated, producing a delta function spike in the output current, and
resetting the voltage Vm to its resting potential, which is taken as Vm = 0. The
neuron then enters refractory mode, and the voltage remains at 0 for a refractory
period tref. After this, the neuron re-enters accumulation mode, and the process
repeats.

Figure 1 shows an SNN neuron’s response to the constant input current. As
shown in the figure, the period between activations is given by CVth

I
+ tref.

Figure 2 shows the IF neuron’s response to an input current consisting of
regularly spaced pulses. Each pulse produces a step in the membrane voltage, as
shown in Fig. 2b. When the voltage steps above the threshold, Vth, an output current
pulse is produced and the neuron’s voltage resets to 0.

One limitation of the IF model is that the neuron’s voltage remains constant until
a pulse arrives or firing occurs, which does not realistically depict neuronal behavior.
This deficiency is addressed by the leaky integrate and fire model described below.

2.2 Leaky Integrate and Fire (LIF) Model

The LIF model is similar to the IF model, except an additional “leak” term is added
to keep neuron voltage from remaining constant during periods of non-stimulation
[10]. Before firing, the LIF neuron membrane voltage, Vm, obeys the following
equation:

210 C. N. Ojiugwo et al.

Fig. 1 IF Model with constant input current: (a) constant input current, (b) neuron voltage (IF-
model), (c) output current

dV m

dt
= I (t)

Cm
− Vm(t)

CmRm
, (2)

where Rm is the membrane resistance and I(t) and Cm are the input current and
membrane capacitance as before. The factor Vm

Rm
in (2) denotes current resulting

from the diffusion of ions that occurs via the membrane if some balance is not met
in the cell. Activation and refractory modes are the same as in the IF model.

Figure 3 shows a case where the input current is constant. As shown
in the figure, the period between activations is given by tact + tref, where
tact = − CR(log(RC) − log (IR − Vth)).

Simulation of Biological Learning with Spiking Neural Networks 211

Fig. 2 IF Model with pulse input current (plot was created using the Brian2 software simulator—
see Sect. 4.2): (a) pulses(spikes) input current, (b) neuron voltage (IF-model), (c) output current

Figure 4 shows the response of an LIF neuron to a series of input current pulses,
and is analogous to Fig. 2 which showed the response of an IF neuron in the
same situation. Each pulse produces a step followed by a down-sloped arc in the
membrane voltage. When the voltage steps above the threshold, Vth, an output pulse
is produced and the voltage resets to 0.

In general, neurons are connected to multiple presynaptic neurons which provide
inputs. Figure 5 shows an example of an LIF model neuron connected to several
input neurons through synapses.

In Fig. 5, three presynaptic neuron inputs (x1, x2, x3) are connected to the neuron
through different synapses. Each presynaptic neuron fires at a different rate, and

212 C. N. Ojiugwo et al.

Fig. 3 LIF Neuron Model with constant input current (figures created with Brian2 simulator): (a)
constant input current, (b) neuron voltage (LIF-model), (c) output current

each input spike’s amplitude depends upon the strength of the connecting synapse.
A typical simulation of a neuron’s response is shown in Fig. 6. In Fig. 6d, the three
input spike trains from (a–c) are combined and weighed according to the weights
of the three different connecting synapses. Comparing (d) and (e), we may see that
spikes with higher weights produce higher jumps in the neuron voltage. Both the
timing and weights of the input spikes are important in determining the voltage
response of the neuron, which in turn determines the spiking times of the neuron (see
(f)). The relation between synaptic weights, spike timing, and neuron response is

Simulation of Biological Learning with Spiking Neural Networks 213

Fig. 4 LIF Neuron Model with pulse input current (figure produced using Brian2 software
simulator): (a) pulse input current, (b) neuron voltage (LIF-model), (c) output current

Integration
+ leakage spike

refractory
period

outputinput
x1
x2
x3

I I

I I I
I

Fig. 5 A simple neuron with three inputs connected through different synapses

214 C. N. Ojiugwo et al.

C
ur

re
nt

C
ur

re
nt

C
ur

re
nt

v(
m

v)

C
ur

re
nt

(a)

(b) (e)

(f) (c)

(d)

S
yn

ap
se

 C
on

du
ct

an
ce

 x
 C

ur
re

nt

1.0

0.8

0.6

0.4

0.2

0.0
0

1.0

0.8

0.6

0.4

0.2

0.0
01000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Time (ms)Time (ms)

tact + tref

 tref tref

Fig. 6 LIF Neuron Model with multiple input spike(pulse) trains (figure produced using Brian2
software simulator): (a) input spike-train 1, (b) input spike-train 2, (c) input spike-train 3, (d)
weighted input current from spike trains(1, 2, 3), (e) neuron voltage (LIF-model), (f) output current

central to the spike-timing-dependent plasticity learning rule that will be discussed
in Sect. 3.

In general, the total input current to neuron i is the sum over all current
pulses from input neurons that are connected to i via synapses. The mathematical
expression for the input current Ii(t) is:

Ii(t) =
∑
j

wij

∑
f

δ
(
t − tj,n

)
, (3)

where tj, n represents the time of the nth spike of the jth presynaptic neuron; wij is
the strength (weight) of synaptic efficacy between neurons j and i; and δ represents
the Dirac delta function.

2.3 Conductance-Based Neuron Model

The LIF model has several realistic features: input spike trains, synapses with
different weights, and neuron voltages that decay with time all reflect observed
behavior of actual neurons. However, it differs significantly from the biological-

Simulation of Biological Learning with Spiking Neural Networks 215

0 200 400 600 800 1000
t (ms)

–40

–60v
(m

V
)

Fig. 7 Conductance based neuron models in Brian2 based on Eq. (4). The figure shows an upper
trace of pre excitatory (gi = 0); and a lower trace of pre inhibitory (ge = 0). Note: (figure produced
using Brian2 software simulator)

based models (HH, FN, HR models) in which changes in membrane voltage are
caused by changes in neuron conductance. A simple conductance-based behavioral
model for membrane voltage is given in [8];

τ
dV

dt
= (Erest − V) + ge (Eexc − V) + gi (Einh − V) , (4)

where τ is a time constant, Erest defines the membrane resting potential, and Eexc,
Einh, ge, and gi are the equilibrium potentials and conductivities of excitatory
and inhibitory synapses, respectively. In this model, the neuron is supposed to be
connected to two different types of input neurons: excitatory and inhibitory. When
an excitatory input neuron sends a signal to the neuron, the conductance ge is
increased: the amount of increase depends on the weight of the synapse connecting
the input neuron to the neuron. Similarly, when an inhibitory neuron signals the
neuron, the conductance gi is increased according to synapse weight. Apart from
these increases, the excitatory and inhibitory conductance decay exponentially
according to the equations:

τge

dge

dt
= −ge; τgi

dgi

dt
= −gi, (5)

Typically, τge > τgi
, since it has been observed experimentally that excitatory

synapses decay slower than inhibitory synapses.
Once the neuron’s membrane potential crosses its threshold Vthres, the neuron

fires and its membrane potential resets to Vrest. As in the IF and LIF models, a
refractory period follows during which the neuron’s voltage remains at Vrest.

In the conductance-based model, the neuron’s response is highly dependent on
the weights of (excitatory and inhibitory) input neurons. This fact can be made use of
to train the neural network by adjusting synaptic weights. In the next section, we will
present the spike-timing-dependent-plasticity algorithm, which uses this method for
SNN training (Fig. 7).

216 C. N. Ojiugwo et al.

3 Spike-time-dependent plasticity learning algorithm

In conventional ANNs, the backpropagation algorithm is widely used for training.
It is possible to use a version of backpropagation to train SNNs, but this requires
recharacterizing the input and output signals in terms of “spike rates,” which has
no biological basis [11]. An alternative learning algorithm that does not require
translation to spike rates is spike-timing-dependent plasticity (STDP) [12]. The
STDP learning rule is based on actual neuron behavior, as observed by [13]. They
observed that if a neuron fires shortly after an input spike, then the weight of the
synapse connecting the input to the neuron tends to increase. On the other hand,
if an input neuron spikes shortly after the neuron fires, then the weight of the
corresponding synapse decreases. In the usual terminology, input neurons’ spikes
are referred to as “presynaptic,” while the responding neuron’s spike is called
“postsynaptic.”

3.1 Description of STDP

There are several variants of STDP: the following presentation is based on the
documentation for the Brian2 software simulator. A mathematical expression for
the synapse weight w(t) which reflects the synapse-changing behavior described in
[13] is:

w(t) = w0 +
∑

tpre<t

∑
tpost<t

W
(
tpost − tpre

)
, (6)

where w0 is the starting weight, tpre and tpost represent pre- and postsynaptic spike
times, respectively, and W(s) is a fixed function (specified by the model) which is
negative when s < 0 and positive when s > 0. A common form for the function
W(s) is:

W(s) =
⎧⎨
⎩

−A−e
−|s|
τ− s < 0

A+e
−|s|
τ+ s > 0

, (7)

(see Fig. 8) where A−, A+> 0 are model parameters that specify the magnitudes
of weight changes, and τ− and τ+ denote time decay constants that reflect the
steepness of the function for s < 0 and s > 0, respectively.

To implement Eq. (6), it is best to find simplified equations for the weight change
when a new presynaptic or postsynaptic spike arrives. First, a presynaptic spike
arriving at time t produces a change �w in the value of the synaptic weight given
by (6), where �w is given by the function trpre(t) defined as:

Simulation of Biological Learning with Spiking Neural Networks 217

Fig. 8 STDP weight
function W(t)

Δ w = trpre(t) =
∑

tpost<t

W
(
tpost − t

) =
∑

tpost<t

−A−e
−|tpost−t |

τ− =
⎛
⎝−A−

∑
tpost<t

e
tpost
τ−

⎞
⎠ e

−t
τ−

(8)

Following reference [14], we refer to this function as a “trace” because it evolves
continuously even when no presynaptic spikes occur. Note that the function trpre(t)
only has a practical effect on the system when a presynaptic spike occurs at time t:
the trace is only used as a way of keeping track of the previous spiking history.

From the form of Eq. (8), we may see that the function trpre satisfies the
differential equation:

d

dt
trpre = − trpre

τpre
(9)

The arrival of postsynaptic spikes also affects the trace trpre. If a postsynaptic
spike occurs at time t, then an additional term is introduced into the sum in Eq. (9)
which produces a downward jump discontinuity in the trace:

Postsynpatic spike at time t ⇒ trpre(t) = trpre
(
t−
)− A− , (10)

where trpre(t−) is the value of the trace just before time t (before the jump) and
trpre(t) is the new value following the jump.

In summary, when a presynaptic spike occurs, the synaptic weight experiences a
change w → w + trpre(t), where trpre(t) satisfies Eqs. (6) and (7).

On the other hand, if a postsynaptic spike arrives at time t, it produces a synaptic
change �w given by the function tpost(t), where

trpost(t) =
∑
tpre<t

W
(
tpre − t

) =
∑
tpre<t

A+e
−|tpre−t |

τ =
⎛
⎝A+

∑
tpre<t

e
tpre
τ

⎞
⎠ e

−t
τ

(11)

218 C. N. Ojiugwo et al.

From (11) we may obtain a differential equation for trpost similar to (9):

d

dt
trpost = − trpost

τpost
(12)

If a presynaptic spike occurs at time t, then an additional term is also introduced
into the sum in Eq. (11) which produces an upward jump in the trace:

Presynpatic spike occurs at time t ⇒ trpost(t) = trpost
(
t−
)+ A+ (13)

In summary, when a postsynaptic spike occurs, the synaptic weight experiences
a change w → w + trpost(t), where trpost satisfies (12) and (13).

3.2 Handwritten digit recognition using STDP

Diehl and Cook [8] presented an SNN model that uses unsupervised learning.
They used biologically plausible system components, including conductance-based
synapses and STDP learning. Figure 9 shows the neuron model architecture which
they used. The inputs to the model are images of 28 × 28 pixels. The model
comprises two layers: an input layer and a processing layer. The input layer has
28 × 28 neurons, where each neuron is connected to one pixel of the input image.
Each input neuron converts its pixel’s intensity to a spike train, and the times

Inhibitory Neurons

La
te

ra
l I

nh
ib

itio
n

Excitatory Neurons

Input Data

3
2
8
0
5
8

8

0
1
2
7
7
1
1

7
4
4
4
2
3
3

9
6

3
3

9
9

9

6
8
8
2
3
4

4

1
9
1
5
8
8
8

7

7
6
6
6
6
6

2

0
0
4
1
2

2

Fig. 9 Network architecture for unsupervised learning of handwritten digits [8]. The figure shows
the input layer (labeled “Input Data”) and the processing layer consisting of excitatory and
inhibitory neurons connected laterally

Simulation of Biological Learning with Spiking Neural Networks 219

between spikes are Poisson-distributed and the mean rate of spiking is proportional
to the corresponding pixel’s intensity.

The processing layer consists of equal numbers of excitatory and inhibitory
neurons (different layer sizes were used, as explained below). Each excitatory
neuron is connected to all input neurons. Each inhibitory neuron takes input from
one excitatory neuron and sends outputs to all other excitatory neurons. The effect
of the inhibitory neurons on the excitatory neurons is termed “lateral inhibition.”

The membrane voltages for neurons in the processing layer have a conductance-
based response to inputs as defined by Eqs. (4) and (5). The outputs of excitatory
neurons are modified to prevent any single neuron from dominating the response
pattern. Specifically, the firing threshold of the neuron is given by Vthresh + θ, where
θ increases by a fixed step every time the neuron fires, and then exponentially
decays. This modification of neuron firing is called “homeostasis,” and limits the
firing rate of highly stimulated neurons so that other neurons have a chance to
compete.

All synapses weights from input to excitatory neurons were learned using STDP.
For purposes of comparison, three different STDP rules were used. The first rule
uses a presynaptic trace with no postsynaptic trace, and the weight change Δwpost
when a postsynaptic spike occurs is:

Δwpost = (
trpre − trtar

)
(wmax − w)μ (14)

where ŋ, wmax, and μ determine the learning rate, the maximum weight, and the
dependence of the update on the previous weight; and trtar defines the target value
of the presynaptic trace when a postsynaptic spike occurs. The third rule uses both
pre- and postsynaptic traces with a power-law dependence on weight. No significant
difference between the different STDP rules’ performances was noted.

The MNIST dataset [15] serves as input to the model. This well-known dataset
comprises 60,000 training and 10,000 testing samples of 28 × 28-pixel images of
handwritten digits (0–9), respectively. Each of the 576 neurons in the input layer
converts one pixel’s intensity to a Poisson-distributed spike train input of duration
350 ms. The neuron’s mean firing rate was set to be proportional to the pixel
intensity: if for any input the excitatory neurons in the second layer fired fewer
than five spikes during the 350 ms period, then the constant of proportionality
was increased until a minimum of five spikes were fired. During training, MNIST
training images were presented with a 150 ms interval between images to allow
neuron variables to reset. Once training is completed, the synapse weights and
neuron thresholds are fixed, and each neuron is assigned a class (0–9) according
to the digit that responded most strongly throughout the course of the training set.
The classification accuracy of the model was determined using the test set of 10,000
samples. During testing, the predicted digit is determined by taking the average
responses of each neuron per class, and the class with the peak average firing rate
gets selected.

Altogether Diehl and Cook trained four models of 100, 400, 1600, and 6400
excitatory neurons (with an equal number of inhibitory neurons), respectively.

220 C. N. Ojiugwo et al.

Larger models were trained with multiple passes of the MNIST training set: the
larger the model, the longer training took to converge. Classification accuracy (as
measured with the test set) ranged from 83% with 100 excitatory neurons up to 95%
with 6400 excitatory neurons, using the power-law weight-dependent STDP rule.
These results demonstrate that high classification accuracy can be achieved using
an SNN with biologically realistic parameters for unsupervised learning.

4 SNN Simulation Software

4.1 Overview

Several different SNN software simulators are available. In these simulators, neuron
models are implemented in the form of ODEs that represent biological neurons.
Simulators can be synchronous (clock-driven) or asynchronous (event-driven), so
they run in discrete time or in abstract time, respectively. Generally, the larger
the number of neurons simulated, the slower the simulation, since the simulator
substrate has a finite computational power shared between all the neurons. For
medium scale neural networks, the time relation goes below the real-time boundary,
making it slower than the real time.

Figures 1, 2, 3, 4, 5, and 6 above were generated using the Brian2 software sim-
ulator. In the following subsections, we describe several SNN software simulators,
including Brian2. Properties of these simulators are summarized in Table 1.

4.2 Brian2 Simulator

The Brian2 simulator [16] is an open-source Python package for implementing
spiking neuron models. The primary aim of Brian2 is to make the writing of
simulation code fast and flexible for the developer. It allows developers to spend

Table 1 Comparison of SNN software simulators

Simulator License Platform Language Focus Parallelism PyNN

Brian2 GNU GPL Linux,
Windows, Mac

Python Neurons
Networks

Distributed
GPU

Yes

NEURON GNU GPL Linux, Unix,
OS X,
Windows

Fortran,
Python, C,
C++

Neurons
Networks

MPI Yes

GENESIS GNU GPL Linux, Mac,
Windows

C Neurons No

NEST GNU GPL Linux, Unix,
OS X

Python,
C++, Cython

Neurons
Networks

Distributed
MPI

Yes

Simulation of Biological Learning with Spiking Neural Networks 221

more time on the details of their models, and less on their implementation.
Brian2 can implement various neuron models, although it is typically much slower
compared to hardware implementation when complex ANNs are involved. Brian2 is
clock-driven, and all events occur on a fixed time grid. The Brian2 python code uses
vector-based computational techniques for efficient calculations [17]. The simulator
is available on Linux, Windows, and Mac operating systems.

Figure 10 gives an example of a Python3 implementation of a neuron model with
multiple inputs using the Brian2 package. Model parameters with units are defined
in lines 7–9. In lines 10–13 the neuron voltage model is defined using an ODE in
standard mathematical form. The model has three input spike trains, connected to

Fig. 10 Example of Brian2 code for simulating a neuron with three spike train inputs

222 C. N. Ojiugwo et al.

the neuron by 3 synapses. Lines 15–17 give the synapse weights, and lines 20–31
give characteristics of the three input spike trains including number and timing of
spikes. Lines 34–37 define a NeuronGroup, which is a group of neurons that share
the same equations (models) defining their properties. In this model, the neuron
group consists of a single neuron. Lines 39–44 specify the synapses connecting the
inputs to the neuron, including the effect of input spikes on the neuron voltage.
Lines 46–47 give the neuron voltage and current initial conditions, and lines 49–
51 define monitors that store system signals that can be displayed in plots: Fig. 6e,
f give the outputs from the neuron voltage state monitor (statemon) and spike
monitor (spikemon), respectively. For more details, readers are directed to the
online Brian2 documentation [14]. Also, our Brian2-Python codes can be found on
the book’s GitHub link: https://github.com/chuks-ojiugwo/Implementations-and-
Applications-of-Machine-Learning.

4.3 NEURON Simulator

NEURON simulator is a GNU general public license (GPL) software for modeling
neuron models originally developed at Yale and Duke universities [18]. Although
initially written in hoc (a C-based programming language), a Python script is
also available. The NEURON simulator supports parallelization using the message
passing interface (MPI) protocol, which makes it possible to be used on multicore
computers. NEURON supports a graphic user interface (GUI) that is available
for users with limited programming knowledge, which explains its popularity in
computational neuroscience courses and laboratories around the world. With the
GUI, it is possible to generate publication-quality results without having to write
programming codes at all. It uses both discrete clock-driven and event-driven time
paradigm in its operation. Like Brian2, the simulator enables multiple neuron
models in the same simulation and equally implements learning features such as
STDP. Also, like Brian2, NEURON runs slower than hardware implementations
and is available on Linux, Windows, and Mac operating systems.

4.4 GENESIS Simulator

The GEneral NEural SImulation System (GENESIS) simulator developed by James
M. Bower at Caltech [19] was the first simulator to enable the construction of large-
scale neural networks. The simulator aims to reproduce the biological behavior of
neural systems, from the level of biochemical reactions up to large-scale neural
networks. GENESIS uses a high-level simulation language to construct neurons
and their networks. In practice, GENESIS input commands are entered either by
script file, GUI, or GENESIS command shell. The scripting language and the
modules are powerful enough that only a few lines of script are needed to specify a

https://github.com/chuks-ojiugwo/Implementations-and-Applications-of-Machine-Learning
https://github.com/chuks-ojiugwo/Implementations-and-Applications-of-Machine-Learning

Simulation of Biological Learning with Spiking Neural Networks 223

sophisticated simulation. At present, GENESIS allows parallelized modeling of sin-
gle neurons and networks on multiple-instruction-multiple-data parallel computers.
Like NEURON and Brian2 simulators, GENESIS allows multiple neuron models in
the same simulation, as well as implementing learning features. GENESIS is also
slow compared to hardware implementation and is available on Linux, Windows,
and Mac operating systems.

4.5 NEST Simulator

NEST is a simulation software for SNN models that support large-scale neuron
networks [20]. It is GPL licensed and written in the C++, Python, and Cython
programming languages. The NEST simulator provides high accuracy and precision
of its simulations. It supports parallel and distributed simulation, using OpenMP
or POSIX Threads and the NEST simulation kernel, respectively. PyNEST is
the primary NEST user interface that supports Python libraries. NEST supports
other simulators, such as PyNN (which also supports Brian2, NEURON, and
neuromorphic hardware).

5 Hardware Implementations

5.1 Overview

Hardware implementations of SNNs include brain-inspired processors (also known
as neuromorphic chips), and computing systems build with such processors.
Neuromorphic chips replicate biological brain functions at the hardware level and
use basic analog and digital components to perform these functions much faster
than is possible in software simulations [21]. Systems built using these chips can
simulate millions of neurons and billions of synapses, and are capable of performing
complex real-time cognition tasks. Applications include sensor networks, self-
driving automobiles, smartphones, robots, medical imaging, public safety, real-time
video analysis, signal processing, olfactory detection, and digital pathology [22].
The following paragraphs introduce some of the most prominent neuromorphic
hardware implementations, whose properties are summarized in Table 2.

5.2 IBM TrueNorth

The IBM TrueNorth is a multicore neuromorphic chip designed by IBM solely
for SNNs [23]. The chip has 4096 cores, and each core has 256 programmable,
fully connected neurons. As an interconnected network of neurosynaptic cores,

224 C. N. Ojiugwo et al.

Table 2 Comparison of SNN neuromorphic hardware

Name (type)
Developer
(year)

Number of
cores

Number of
neurons

Number of
synapses

Power con-
sumption

IBM
TrueNorth
(processor)

IBM (2014) 4096 4096 × 256 1.6 × 1010 70 mW

ROLLS
(processor)

ETH Zurich
(2015)

Analog (no
cores)

256 1.28 × 105 Approx.
4 mW

NeuroGrid
(system)

Stanford
(2009)

16
Neurocores

16 × 256×
256

6 × 106 3 W

SpiNNaker
(system)

U. Manchester
(2019)

1,036,800
ARM9 cores

1000 neurons
per core

>1000 per
neuron

90 kW

TrueNorth has an architecture completely unlike conventional microprocessors.
TrueNorth is event-driven and highly energy-efficient, consuming 45 mW for a
million synapses, over 2000 times less than the current generation of conventional
computer chips. The TrueNorth chip implements “gray matter” on a spike-based
messaging network with an intracore crossbar memory, and “white matter” using
long-range connections. According to the research work of [23], a TrueNorth neuron
can replicate 20 different biological neuron functions and behaviors. The TrueNorth
design and architecture supports cognitive computing [24], and has been used to
classify video images at more than 1000 frames per second [25]. It has also been
used in robots to enable them to navigate difficult terrain [26].

5.3 Reconfigurable On-Line Learning Spiking (ROLLS)
neuromorphic processor

The Reconfigurable On-Line Learning Spiking (ROLLS) neuromorphic processor is
a complete custom mixed-signal implementation, developed at ETH [27]. ROLLS
mimics the functions of biological spiking neurons and synapses for exploring
neuroscience models and building brain-inspired computing systems. By supporting
a wide range of cortical-like computational modules composed of plasticity mech-
anisms, this device enables the realization of intelligent autonomous systems with
online learning capabilities. The design is robust and capable enough to run a wide
range of activities like recurrent and deep networks. The device has 256 neurons
and 128k analog synapses, and a prototype consumes approximately 4 mW with an
area of 51.4 mm2.

5.4 NeuroGrid

NeuroGrid is a neuromorphic system which was developed at Stanford to simulate
massive biological neural network models in real time [28]. The system can simulate

Simulation of Biological Learning with Spiking Neural Networks 225

up to a million neurons with billions of synaptic connections, using 16 cores
of 256 × 256 neurons each, embedded on a circuit board that consumes 3 W.
It uses both analog and digital computation to mimic ion channel activity and
structured connectivity patterns, respectively. NeuroGrid also uses shared circuits
as axons, synapses, and dendrites to reduce transistor count. A software stack was
developed including a user interface, hardware abstraction layer, and drivers. Using
the interface, a user can configure neural networks, interact with simulations, and
obtain real-time visualizations of system operation.

5.5 SpiNNaker

SpiNNaker (Spiking Neural Network Architecture) is a computing engine with a
million cores, meant to simulate the behavior of up to a billion neurons in real
time [29]. The modeling of large systems of spiking neurons is computationally
expensive regarding processing power and communication. SpiNNaker is a mas-
sively parallel computer system developed to provide a cost-effective and flexible
simulator for neuroscience simulation. It deploys a cluster of ARM9 cores, using
packet communication via a custom massively interconnected fabric. With up to
1,036,800 ARM9 cores, SpiNNaker uses 64kbytes of data tightly coupled memory
(DTCM) and 32kbytes of instruction tightly coupled memory (ITCM) for each
core. Packets are of size 40 bits or 72 bits each, which are transmitted using
a custom concurrent routing framework. In SpiNNaker operation, the computing
engine consumes up to 90 kW of electrical power. The machine is built to mimic the
brain’s biological structure and behavior, which exhibits massive parallelism and
resilience to the failure of individual components. Given over one million cores,
and one thousand simulated neurons per core, the SpiNNaker machine is capable
of simulating one billion neurons, equivalent to over 1% of the human brain’s 85
billion neurons.

6 Conclusion

In this chapter, we have presented an overview of spiking neuron models, as well
as some available SNN software and hardware simulation platforms. Also, we
provided a detailed description of the STDP learning algorithm with application
in handwritten digit recognition using Diehl and Cook experiment, which was
implemented and tested with the well-known MNIST dataset [15]. In the above
discussion, we have emphasized that SNNs are much more biologically realistic
than ANNs, which is why they are used by neuroscientists in brain research.
However, engineers have also shown an interest in SNNs because of their low
power consumption and cognitive abilities. Recently, SNNs have found practical
applications in autonomous robots and robotic limbs for quadriplegics [25, 26], and
SNNs continue to be a popular area of research within the domain of robotics.

226 C. N. Ojiugwo et al.

References

1. U. Güçlü, M. van Gerven, Probing human brain function with artificial neural networks, in
Comput. Model. Brain Behav., ed. by A.A. Moustafa, (2017), pp. 413–423. https://doi.org/
10.1002/9781119159193.ch30

2. D. Soni, Spiking neural networks, the next generation of machine learning, Data Science and
Machine Learning (2010). https://towardsdatascience.com/spiking-neural-networks-the-next-
generation-of-machine-learning-84e167f4eb2b. Accessed 13 Oct 2019

3. H. Hazan et al., BindsNET: A machine learning-oriented spiking neural networks library in
python. Front. Neuroinform.12, 1–18 (2018)

4. T. Mondeel, Modelling Neuronal Excitation: The Hodgkin-Huxley Model (2012)
5. J.B. Baladron, D.F. Javier, O. Faugeras, J. Touboul, Mean-field description and propagation of

chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci.2(1),
1–67 (2012). https://doi.org/10.1186/2190-8567-2-10

6. J.L. Hindmarsh, R.M. Rose, A model of neuronal bursting using three coupled first order
differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)

7. L.F. Abbott, Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res.
Bull. 50(5–6), 303–304 (1999)

8. P. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-dependent
plasticity. Front. Comput. Neurosci. 9, 99 (2015)

9. Ş. Mihalaş, E. Niebur, A generalized linear integrate-and-fire neural model produces diverse
spiking behaviors. Neural Comput. 21(3), 704–718 (2009)

10. R.D. Vilela, B. Lindner, Comparative study of different integrate-and-fire neurons: Spon-
taneous activity, dynamical response, and stimulus-induced correlation. Phys. Rev. E Stat.
Nonlinear Soft Matter Phys. 80(3), 1–12 (2009)

11. A. Tavanaei, A. Maida, BP-STDP: Approximating backpropagation using spike timing depen-
dent plasticity. Neurocomputing 330, 39–47 (2019)

12. H. Markram, W. Gerstner, P.J. Sjöström, Spike-timing-dependent plasticity: A comprehensive
overview. Front. Synaptic Neurosci., 2–5 (2012)

13. G. Bi, M. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu.
Rev. Neurosci. 24(1), 139–166 (2001)

14. M. Stimberg, Brian 2 documentation—Brian 2 2.2.2.1 documentation (2016)
15. Y. LeCun, C. Cortes, C. Burges, The MNIST database of handwritten digits. Courant Inst.

Math. Sci., 1–10 (1998)
16. D. Goodman, Brian: A simulator for spiking neural networks in Python. Front. Neuroinform.

2 (2008)
17. R. Brette, D.F.M. Goodman, Vectorized algorithms for spiking neural network simulation.

Neural Comput. 23(6), 1503–1535 (2011)
18. Neuron, Welcome to the community of NEURON users and developers (2018). http://

www.neuron.yale.edu/neuron/. Accessed 26 Sept 2019
19. Genesis, GENESIS Resources (2019). http://genesis-sim.org/. Accessed 26 Sept 2019
20. M.-O. Gewaltig, M. Diesmann, NEST (Neural simulation tool). Scholarpedia 2(4), 1430

(2007)
21. M. Smith, Self aware patterns, SelfAwarePatterns (2018). https://selfawarepatterns.com/2019/

05/08/brain-inspired-hardware/. Accessed 30 Sept 2019
22. D. S. Modha, Introducing a brain-inspired computer: TrueNorth’s neurons to revolution-

ize system architecture, IBM Research (2015). http://www.research.ibm.com/articles/brain-
chip.shtml. Accessed 30 Sept 2019

23. A. S. Cassidy et al., Cognitive computing building block: A versatile and efficient digital
neuron model for neurosynaptic cores, in Proceedings of the International Joint Conference
on Neural Networks (2013)

24. F. Akopyan et al., TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable
neurosynaptic chip. IEEE Trans. Comput. Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015)

https://doi.org/10.1002/9781119159193.ch30
https://towardsdatascience.com/spiking-neural-networks-the-next-generation-of-machine-learning-84e167f4eb2b
http://dx.doi.org/10.1186/2190-8567-2-10
http://www.neuron.yale.edu/neuron/
http://genesis-sim.org/
https://selfawarepatterns.com/2019/05/08/brain-inspired-hardware/
http://www.research.ibm.com/articles/brain-chip.shtml

Simulation of Biological Learning with Spiking Neural Networks 227

25. M. Feldman, IBM finds killer app for truenorth neuromorphic chip, TOP500 Supercomputer
Sites (2016). https://www.top500.org/news/ibm-finds-killer-app-for-truenorth-neuromorphic-
chip/. Accessed 30 Sept 2019

26. T. Hwu, J. Isbell, N. Oros, and J. Krichmar, A self-driving robot using deep convolutional neu-
ral networks on neuromorphic hardware, in Proceedings of the International Joint Conference
on Neural Networks, vol 2017 (2017), pp. 635–641

27. N. Qiao et al., A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128K synapses. Front. Neurosci. 9 (2015).
https://doi.org/10.3389/fnins.2015.00141

28. B.V. Benjamin et al., Neurogrid: A mixed-analog-digital multichip system for large-scale
neural simulations. Proc. IEEE 102(5), 699–716 (2014)

29. E. Painkras et al., SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural
network simulation. IEEE J. Solid State Circuits 48(8), 1943–1953 (2013)

https://www.top500.org/news/ibm-finds-killer-app-for-truenorth-neuromorphic-chip/
http://dx.doi.org/10.3389/fnins.2015.00141

An Efficient Algorithm for Mining
Frequent Itemsets and Association Rules

Sallam Fageeri, Rohiza Ahmad, and Hitham Alhussian

1 Introduction

Association rule mining (ARM) is an increasingly popular approach in data mining.
This popularity is motivated by the fact that traditional statistical techniques, data
management tools, and decision support systems are unable to handle enormous
amounts of data. The key to effective application of association rules is finding
a representation of database items that enable rapid identification and reduced
memory. In this chapter we make use a binary representation of data, which makes
it possible to employ very fast bitwise operations to speed up processing. We verify
this approach on several (publicly available) benchmark datasets, and show that this
binary-based approach outperforms other algorithms in terms of reduced execution
time and memory usage.

Association rule mining (ARM) on databases was first introduced by Agarwal et
al. [1]. A recorded database transaction typically consists of a set of items (itemset),
as shown in Table 1. We may imagine that each transaction corresponds to one

S. Fageeri (�)
Department of Information Systems, CEMIS College, University of Nizwa, Nizwa,
Sultanate of Oman
e-mail: sallam@unizwa.edu.om

R. Ahmad
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, Malaysia
e-mail: rohiza_ahmad@petronas.com.my

H. Alhussian
High Performance Cloud Computing Center (HPC3), Institute of Autonomous Systems,
Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
e-mail: Seddig.alhussian@petronas.com.my

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_10

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_10&domain=pdf
mailto:sallam@unizwa.edu.om
mailto:rohiza_ahmad@petronas.com.my
mailto:Seddig.alhussian@petronas.com.my
https://doi.org/10.1007/978-3-030-37830-1_10

230 S. Fageeri et al.

Table 1 Example of
transaction records

TID Itemsets

100 A B C

200 A C D E

300 B C D F

400 A B C D

500 A B C F

shopper’s visit to a store, and each letter represents an item purchased by the shopper
(A = apples, B = bananas, etc.)

ARM discovers frequent relationships between itemsets: for example, an associ-
ation rule could be that transactions that contain {B, C} also tend to contain D. Such
rules may be useful in making profitable decisions in cross-marketing, promotional
pricing, catalog design, customer segmentation, store layout, etc.

Formally, the association rule problem may be characterized as follows. Let
I = {i1, i2, ..., id} be an itemset, and let D be a database consisting of N
transactions denoted as {Tj, n = 1, . . . , N} such that Tn ⊆ I ∀ n. An association
rule is an implication of the form X ⇒ Y, where X, Y ⊆ I, and X ∩ Y = ∅. For
example, with reference to Table 1, we find that the rule {A} ⇒ {B} holds true
for transactions 100, 400, and 500, the rule fails for transaction 200, and the rule
does not apply to transaction 300 (since item A is not in this transaction). Another
example is {B} ⇒ {C, D}, which is true for transactions 300, 400, false for 100, 500,
and does not apply to 200.

Association rules have two important attributes: support and confidence. Support
indicates the proportion of all transactions in which the rule makes a correct
prediction, while confidence is the proportion of applicable transactions in which
the rule is correct. In the above examples, {A} ⇒ {B} has support 3/5 (since 3 out of
5 total transactions represent a correct prediction) and confidence ¾ (since there are
3 correct predictions out of 4 applicable transactions). On the other hand, for similar
reasons {B} ⇒ {C, D} has support 2/5 and confidence 2/4.

To define these attributes mathematically, we must first define the frequency of
an itemset X in database D as the proportion of transactions in D that contain X:

Freq (X,D) = | {XT } |
| D | (1)

At this point we make note of an important property of frequency known as
the reverse monotonicity property: if itemset Y is contained in itemset X, then the
support of Y is greater than the support of X. Mathematically we may write this as:

Y ⊆ X ⇒ Freq (Y,D) ≥ Freq (X,D) (2)

Given the definition of itemset frequency, we may define the support of a rule
X ⇒ Y with respect to D as the frequency of X

⋃
Y in D:

An Efficient Algorithm for Mining Frequent Itemsets and Association Rules 231

Support (X ⇒ Y,D) = Freq
(
X
⋃

Y,D
)

(3)

On the other hand, the confidence of a rule with respect to D is the proportion of
database transactions that contain X which also contain X

⋃
Y:

Conf idence (X ⇒ Y,D) = Freq
(
X
⋃

Y,D
)

Freq (X,D)
(4)

To further illustrate these definitions, consider a database containing 100,000
database transactions, of which 2000 transactions contain A and B and 800
contain A, B, C. Then the association rule {A, B} => {C} has a support of 0.008
(800/100,000) and a confidence of 0.4 (800/2000).

If the support of a rule is very small, then it gives a correct conclusion in a very
small proportion of transactions, and is thus not very useful. On the other hand, if
the confidence is small, then it is not an accurate predictor. Thus, the search for
association rules is typically limited to those rules with support greater than a given
minimum value (minsup) and minimum confidence (minconf). The complexity of
the ARM algorithm decreases with increasing minsup and minconf, because such
increases reduce the search space. On the other hand, if minsup and/or minconf is
set too high, then only the most obvious associations may be discovered and many
interesting associations may be missed.

1.1 Problem Decomposition

Based on the description given in the previous section, we may divide the ARM
problem into two phases:

Find all itemsets with frequency greater than or equal to minsup. These itemsets are
referred to as “frequent itemsets.”

For each itemset Z found in (1), find all association rules with support Z having
confidence greater than or equal to minconf.

Phase (I) is the most computationally expensive step [2–4]. An exhaustive search
for frequent itemsets (and their frequencies) requires comparing all transactions in
the dataset with all possible itemsets, a total of N × 2d comparisons. The number
of comparisons grows exponentially with the number of items: in the data mining
literature this is referred to as “the curse of dimensionality.” Various strategies may
be used to cut down the number of comparisons (see Sect. 3).

It follows that once the frequent itemsets {Z1, . . . , ZJ} and their frequencies
are found, phase (II) may readily be accomplished by computing the ratios
freq(Zj)/freq(Zk) for each pair of frequent itemsets Zj, Zk with Zk ⊂ Zj. If the ratio
is greater than minconf, then the association rule Zk ⇒ Zj\Zk (where “\” denotes
the set difference operation) meets the minimum support and minimum confidence

232 S. Fageeri et al.

criteria. Therefore phase (II) involves computing at most
∑J

{j=0}2|Zj | ratios: this
number is typically much smaller than the number of comparisons required in phase
I. It follows that most of the efforts in improving ARM are focused on improving
the search for frequent itemsets.

2 Outline of the Binary-Based ARM Algorithm

As mentioned previously, frequent itemset generation is the most resource-intensive
part of association rules mining. In this section, we will describe an algorithm
for frequent itemset generation with reduced complexity. The algorithm uses the
following three strategies in order to reduce the complexity:

• Binary data representation (reduces the cost of scanning transactions)
• Bitwise operations (reduces the cost of comparisons)
• Pruning (reduces the number of candidate itemsets)

In the coming subsections we briefly describe these strategies, and in the next
section we give a more detailed description of the algorithm.

2.1 Binary Data Representation

Transaction databases may be represented in many ways [5, 6]. The data repre-
sentation can affect the process of computing the frequency of candidate itemsets,
and also affect the input and output cost. Figure 1 shows two different approaches
to representation of transactions databases. The horizontal layout lists the items
associated with each transaction identifier (TID), and the vertical layout (also known
as a “TID-list”) lists the TID’s associated with each item. The horizontal layout is
used by the well-known Apriori algorithm, while TID-lists enable the computation

Fig. 1 Horizontal and
vertical data format

An Efficient Algorithm for Mining Frequent Itemsets and Association Rules 233

Table 2 Binary
representation of database
BitSetDB

TID (j) BitSetDB (j)

0 11001
1 01110
2 00101
3 10110
4 11010
5 10001
6 11000
7 11100
8 10110
9 01000

Table 3 Array of frequencies Freq derived from the binary database BitSetDB

0 1 2 3 4
7 6 5 4 3

of itemset frequencies by intersecting the TID’s listed for each item in the itemset.
TID-lists tend to be memory intensive (since each entry is a TID, which in general
is larger than an item ID), so in some cases refining techniques are required to
compress TID-lists.

A third alternative representation is the binary representation shown in Table 2
as the array BitSetDB. This resembles the horizontal format in that rows correspond
to transactions; but instead of listing the items involved in each transaction, a binary
string is used to indicate inclusion of items within each transaction’s itemset as
follows. Each item in I is assigned an index from 0 to d − 1, where d = |I|. For
each TID, a d-bit string is listed: if the item indexed by j is included within the
transaction, then the j’th bit is 1; otherwise the j’th bit is 0. For example, in Table
1 the first row gives BitSetDB(0) = ‘11001’, meaning that transaction 0 contains
items indexed by 0,1, and 4. Similarly, BitSetDB(3) = ‘10110’, which implies that
items 0, 2, 3 are included in transaction 3.

By counting the frequency of 1’s at each bit position, an array Freq may be
constructed that records frequency of all items in the database (see Table 3). Note
that the leftmost bit corresponds to bit position 0.

The mathematical formula for the entries of Freq is

Freq(j) =
∑N

i=1
BitSetDB(i)(j), j = 1, 2, . . . , m (5)

2.2 Masks and Bitwise Operations

Given the binary data representation described above, efficient search for frequent
itemsets is enabled through the use of masks. An example of a mask is shown in

234 S. Fageeri et al.

Fig. 2 A bitSetMask for
identifying an itemset with 2
items

Bit values

Fig. 2. The mask length corresponds to the parameter m, which is the total number
of items included in the dataset (and is also the length of the binary representation
of each transaction). In Fig. 2, bits 0 and 2 are set to True and all others to False.
When this mask is applied to a binary transaction record, the result will be equal to
the mask if and only if items 0 and 2 are in the transaction.

In general, given an itemset I = {i1, i2, . . . , id}, a mask may be constructed for
detecting that itemset according to the following specification. Letting bj denote the
j’th bit of the mask, we let:

bj =
{

1 if j = ik for some k, 1 ≤ k ≤ d

0 otherwise

When this mask is ANDed with a binary transaction, then the result is equal to
the mask if and only if the transaction contains the itemset I. It follows that in order
to identify the support of any itemset, all that is needed is to AND the itemset’s mask
with all transactions, and note when the result is equal to the itemset’s mask. This
fact may be used to rapidly identify transactions that contain itemsets. It remains to
specify a systematic order in which different itemsets are tested so as to identify all
large frequent itemsets as quickly as possible. This procedure is described in detail
in the next section.

2.3 Itemset Pruning via Merging Operation

The algorithm searches for itemsets by size: first frequent items, then frequent
2-itemsets (i.e., itemsets with 2 items), then frequent 3-itemsets, and so on. As
the algorithm tests larger and larger itemsets, the number of possible itemsets
increases exponentially with the number of items. For example, in the case where
there are 10 total items, then there are 10 1-itemsets, (10)(9)/2 = 45 2-itemsets,
(10)(9)(8)/(3)(2)(1) = 120 possible 3-itemsets, and so on. In order to reduce the
number of k-itemsets tested, we may make use of the results obtained from (k − 1)-
itemsets using a “merging” technique (this technique was first used in the Apriori
algorithm designed by Agrawal et. al. [6]).

We may illustrate this technique with an example. Suppose {A, B, C}, {A, B, D},
{A, C, D}, {A, C, E}, {A, D, E}, {B, C, E}, {B, D, E}, and {C, D, E} have been
identified as the frequent 3-itemsets for a particular transaction database. For any
4-itemset to be frequent, all 3-item subsets must also be frequent. For example, for

An Efficient Algorithm for Mining Frequent Itemsets and Association Rules 235

Fig. 3 Merging frequent 2-itemsets to find candidate 3-itemsets

{A, B, C, D} to be frequent, then {A, B, C}, {A, B, D}, {A, C, D}, and {B, C, D} must
also be frequent. But since {B, C, D} is not frequent, this possibility is eliminated.
Similarly, for {B, C, D, E} to be frequent, then {B, C, D}, {B, C, E}, {B, D, E}, and
{C, D, E} must all be frequent. Once again, this possibility is eliminated because
{B, C, D} is not frequent. In this example, only {A, C, D, E} is a possible 4-itemset
because {A, C, D}, {A, C, E}, {A, D, E}, and {C, D, E} are all frequent. So an easy
test for whether a 4-itemset may be frequent is to check that all 3-itemsets obtained
by removing a single item are also frequent. (This test does not guarantee that the
4-itemset is frequent, but it does disqualify many candidates that will thus not need
to be checked.)

This rule may be readily generalized to n-itemsets for any value of k with k > 2. A
necessary condition for {I1, I2, . . . , Ik} to be frequent is that all k itemsets obtained
by removing a single Ij from the set must still be frequent.

A rule that is easier to implement (but less thorough) is to identify pairs of n − 1
itemsets that have the same n − 2 initial items, and then merge all such pairs to form
the list of candidate n-itemsets. In the above example, the 3-itemsets {A, B, C} and
{A, B, D} have {A, B}, in common so that {A, B, C, D} is a candidate 4-itemset. Also,
{A, C, D} and {A, C, E} have {A, C} in common so that {A, C, D, E} is a candidate
4-itemset.

A simpler example of merging 2-itemsets to form candidate 3-itemsets is shown
in Fig. 3.

2.4 Binary-Based Algorithm Description

The rest of the binary-based algorithm can be described through the following steps.

2.4.1 Top-Level Description

Figure 4 gives a flowchart for the proposed algorithm, which consists of two
phases, as indicated in Sect. 2.1. Phase I involves finding itemsets whose support

236 S. Fageeri et al.

Fig. 4 Top-level flowchart of the approach

Table 4 Sample transactions TID Itemset

100 A B C

200 A C D E

300 B C D F

400 A B C D

500 A B C F

is greater than the user-specified minimum support (such itemsets are called “large
frequent itemsets”). This phase (which is the most computationally intensive part
of the calculation) divides naturally into three steps, as shown in the figure. Phase
II extracts rules which meet the support criterion and also possess minimum
confidence greater than the user-specified minimum confidence.

The four procedures shown in Fig. 5 may be described as follows:

• Binary data representation: obtains the list of items in the database, and generates
the binary representation of the database transactions.

• Identify frequent 1-itemsets: scans the database, counts the frequency of all items
in the itemset using Eq. (3), and creates a list of items whose support is greater
than or equal to minsup.

• Identify frequent n-itemsets: generates the lists of all frequent itemsets with
support greater than or equal to minsup.

• Identify frequent itemsets with minimum confidence: generates all the association
rules based on the frequent itemsets that have been generated in the previous
procedures.

In the following discussion, the above procedures will be illustrated using the
database of sample transactions shown in Table 4.

An Efficient Algorithm for Mining Frequent Itemsets and Association Rules 237

2.4.2 Binary Data Representation

This procedure reads transactions from the stored database and generates a database
containing the binary representation of the transactions, as described in Sect. 3.
Figure 5 illustrates this procedure in a flowchart form (Table 5).

2.4.3 Procedure for Finding Frequent 1-Itemsets

The binary representation has the advantage that the supports of all items may be
found by independently examining the contents of items’ columns, as shown in Fig.
6. As a result, supports of multiple items may be computed in parallel.

TF

Start

While Not
DB.EOF

Get T from DB

add item to item SetFor each
item in T

Set the corresponding bit
of item in BitTran

Add bitTran to BitSetDB

End

TF

Fig. 5 Flowchart for creating binary database (DB = database, T = transaction, BitTran = binary
transaction, BitSetDB = binary database)

Table 5 Shows the output of
this procedure applied to the
original database in Table 1

TID A B C D E F

100 1 1 1 0 0 0
200 1 0 1 1 1 0
300 0 1 1 1 0 1
400 1 1 1 1 0 0
500 1 1 1 0 0 1

238 S. Fageeri et al.

Fig. 6 Support counting
column by column using the
binary representation

Table 6 Sample output from the procedure for finding frequent 1-itemsets, with
minsupp set equal to 0.5

Items D A F C B E

Freq
Support

3
0.6

4
0.8

2
0.4

5
1.0

4
0.8

1
0.2

Frequent items D A C B
Grayed item are identified as infrequent

Sample empty bitSet of size 1000

F F

B
it

99
9

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

3

B
it

2

B
it

1

B
it

0

Three bits: 0 3 and 5

Example of a mask set
of size 6 with two bits:
2 and 5.

T F F T TF

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

F F T F TF

Fig. 7 Examples of masks: (left) unset mask; (right) masks set for itemsets of 2 and 3 bits

After counting the 1’s in each column, the support is computed by dividing by the
total number of transactions as indicated in Eq. (3). The result of these operations
on the binary database in Table 2 is shown in Table 6 (Fig. 7).

2.4.4 Procedure for Generating Frequent Itemsets with Multiple Items

The identification of frequent itemsets is done in two stages. The first stage
calculates the frequent itemsets of size 2 (which are designated as 2-itemsets), while
the second stage calculates the frequent itemsets of size >2. As indicated in Sect. 2.8,
the current implementation uses masks to calculate itemset frequencies. A mask is

An Efficient Algorithm for Mining Frequent Itemsets and Association Rules 239

a vector (linear array) of bits with size equal to the number of items (which is also
equal to the width of the binary database). Figure 8 shows an example of a mask in
the case where the transactions contain 1000 items. To calculate the support of any
itemset, the bits corresponding to the itemset are set as “T,” while all other bits are
“F.”

Once the mask bits are set for a particular itemset, the support of the itemset is
counted by comparing the mask with each transaction in the binary database and
performing logical operations. If the bitwise AND of the mask with the transaction
agrees with the transaction, then +1 is added to the support count, as shown in
Fig. 8c, d.

Figure 9 gives a flowchart showing the process for determining 2-itemsets. Two
nested loops are used to generate all possible pairs of frequent items (i, j); for
each of these pairs, the mask with nonzero bits at positions i and j is created; then
the mask is ANDed with each transaction in the database, and transactions where
the AND result agrees with the mask are counted as containing the itemset (i, j)
(Table 7).

Fig. 8 ANDing the mask for the 2-itemset (A,B) with all transactions in the binary database: (a)
original dataset; (b) dataset converted to binary format; (c) list of frequent itemsets; (d) binary
mask for (A,B), applied to all transactions in the database (with total count of occurrences)

Table 7 Shows the result of mask generation for the 2-itemset (A, D), and subse-
quent ANDing with transactions using the sample binary database shown in Table
2

240 S. Fageeri et al.

Start

F

F

F

F

F

T

T

T

T

T

For each frequent
item i

Set bit ii in mask

For each frequent
item j, j>i

Clear the mask

Set bit ji in mask

For each binary
transaction bitTron

result=mask AND bitTran
count

minSupport

unset bit j mask

Result=
mask?

count= count + 1

add {i,j} to list of frequent itemsets

1

Fig. 9 Flowchart showing generation of frequent 2-itemsets

In the second stage, lists of frequent itemsets with more than 2 items are
generated. A while loop is used to search for frequent n-itemsets, conditioned on
whether the set of frequent n − 1 itemsets is non-empty. If so, then this set is ordered
in lexicographic order. Another pair of nested loops scans through the ordered n − 1
itemsets to identify pairs that can be merged, as described in Sect. 2.8. Based on
these pairs, a list of candidate n-itemsets is generated. Once again, masks are used
to count the frequencies of these candidate itemsets.

2.4.5 Phase II: Extracting Association Rules

Based on the frequent itemsets discovered in phase I, in phase II the association rules
are extracted [1]. We first show how this is done in a specific example. Supposing
that {A, B, C} is a frequent itemset, then all possible rules involving the 3 items A, B,
C are shown in the tree diagram of Figure 10. The confidences for all of these rules
may be found by taking ratios of frequencies that have already been computed. For
example, the confidence of the rule {A, B} ⇒ C is Freq({A, B, C})/Freq({A, B}).

An Efficient Algorithm for Mining Frequent Itemsets and Association Rules 241

Fig. 10 Example of extracting association rules

Table 8 Synthetic datasets characteristics

Dataset #Items #Transactions Average # of transactions Max |T| Type

T10I4D100K 1000 100,000 10 29 Sparse
T40I10D100K 1000 100,000 40 77 Sparse

Table 9 Real datasets characteristics

Dataset #Items #Transactions Average items/transact. Max |T| Type

Retail 16470 88,162 10 76 Sparse
Accidents 468 340,183 33 51 Dense
Chess 76 3196 37 37 Dense
Connect 130 67,557 43 43 Dense
Pumsb 7117 49,046 74 74 Dense

2.5 Datasets

All datasets used in the evaluation of the algorithm are publicly available in [7].
Both synthetic and real datasets were included.

The synthetic datasets are provided by the QUEST generator of data generated
from IBM’s Almaden research lab. The method used to generate the synthetic
datasets is described in Agrawal et al. [8]. Table 8 shows the characteristics of the
synthetic datasets.

The real datasets are provided by the frequent itemsets mining dataset repository,
based on workshops conducted in [7]. Table 9 shows the characteristics of the real
datasets.

The following characteristics of these dataset may be noted:

1. T40I10D100K datasets are sparse, but they produce a large number of frequent
items, when the minimum support threshold value is small.

242 S. Fageeri et al.

2. T10I4D100K, T20I6D100K, and Retail datasets are very sparse and have a small
number of frequent itemsets even though the minimum support threshold value
is small.

3. Accidents, Chess, and Connect are unstructured datasets containing large number
of transactions and a small number of unique items.

4. Pumsb is an unstructured dataset containing a large number of transactions, as
well as a large number of unique items.

2.6 Software and Hardware Specifications

All algorithms were implemented in Java language. The hardware used for the
experiments is DELL PRECISION T1700 machine equipped with 4 cores running
at 3.10 GHz speed and 8 GB of RAM memory. The operating system installed in
the hardware is Windows 7 64 bits.

2.7 Execution Time Benchmarking

Figure 11 shows the execution times for five different frequent itemset algorithms
for four different benchmark datasets. In each graph, execution time is shown
as a function of support: as support decreases, the number of frequent itemsets
increases, and the execution time increases correspondingly. The binary-based
algorithm consistently has the lowest execution times—in some cases, less than half
the execution time of its nearest competitor. This improvement can be attributed
to the faster execution of bitwise operations used in the binary-based algorithm,
compared to operations used in the other algorithms. As far as the other algorithms,
H-mine has the highest times (usually more than 4 times slower than binary-based)
typically followed by Apriori (2–3 times worse than binary-based). The relative
efficiency of FP-growth and Eclat depends on the dataset, as different types of
datasets make different demands on the construction of the data structures used by
these algorithms.

2.8 Memory Usage Benchmarking

Figure 12 shows the memory usage for five different frequent itemset algorithms
for four different benchmark datasets. As before, memory is shown as a function
of support: as support decreases, the number of frequent itemsets increases, and the
memory typically increases as well. The graphs show that the binary-based method
consistently uses the smallest amount of memory. This reflects the efficiency of the

An Efficient Algorithm for Mining Frequent Itemsets and Association Rules 243

0
200
400
600
800

1000
1200
1400
1600
1800

0.08 0.075 0.07 0.065 0.06 0.055 0.05

Ex
ec

ut
io

n
Ti

m
e(

M
S)

Support %

Apriori Eclat FP-Growth H-mine Binary

T10I4D100K dataset

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0.5 0.2 0.1 0.05 0.02

Ex
ec

ut
io

n
Ti

m
e

(M
S)

Support %

H-mine Eclat FP-Growth Apriori Binary

T40I4D100K dataset

0

2000

4000

6000

8000

10000

12000

14000

0.9 0.85 0.8 0.75 0.7

Ex
ec

ut
io

n
Ti

m
e(

M
S)

Support %

Apriori Eclat FP-Growth H-mine Binary

0

500

1000

1500

2000

2500

3000

3500

0.05 0.04 0.03 0.02 0.01

Ex
ec

ut
io

n
Ti

m
e(

M
S)

Support %

Apriori FP-Growth Eclat H-mine Binary

Accidents dataset Retail dataset

Fig. 11 Execution times for different frequent itemset algorithms for four different benchmarks:
(top left) T10I4D100K synthetic dataset; (top right) T40I4D100K synthetic dataset; (bottom left)
Accidents dataset; (bottom right) Retail dataset

0

5

10

15

20

25

30

35

40

0.08 0.075 0.07 0.065 0.06 0.055 0.05

M
ai

n
M

em
or

y
(M

B
)

Support %

Apriori Eclat FP-Growth H-mine Binary

0
5

10
15
20
25
30
35
40
45

0.5 0.2 0.1 0.05 0.02

M
ai

n
M

em
or

y
(M

)

Support %

Apriori Eclat FP-Growth H-mine Binary

0
50

100
150
200
250
300
350
400
450

0.9 0.85 0.8 0.75 0.7

M
ai

n
M

em
or

y
(M

)

Support %

Apriori Eclat FP-Growth H-mine Binary

0

10

20

30

40

50

60

70

80

0.05 0.04 0.03 0.02 0.01

M
ai

n
M

em
or

y
(M

)

Support %

Apriori Eclat FP-Growth H-mine Binary-Based

T10I4D100K dataset T40I4D100K dataset

Accidents Retail

Fig. 12 Memory usage (in megabytes) for different frequent itemset algorithms for four different
benchmarks: (top left) T10I4D100K synthetic dataset; (top right) T40I4D100K synthetic dataset;
(bottom left) Accidents dataset; (bottom right) Retail dataset

244 S. Fageeri et al.

bitset representation of the database. Unlike FP-growth and H-mine, the algorithm
does not require the construction of accessory data structures (e.g., FP-trees). Thus,
the memory used is fairly stable, even as the support (and hence the number of
frequent itemsets) increases.

2.9 Summary

The experimental setup as well as the evaluated performance of the binary-based
approach against the state-of-the-art algorithms is presented. The performance
has been evaluated using two important factors: execution time and memory
usage. Different datasets with different characteristics have been used to test the
performance of the proposed binary-based approach. With regard to execution
times, binary-based approach as a new technique employing binary representation
of the dataset as well as bitwise operations to manipulate the data always achieves
better performance in all datasets for all high and low support values. With regard
to memory consumption, the binary-based approach also outperforms all other
algorithms and achieved the lowest memory usage in almost all datasets. As
previously mentioned, this is likely due to the efficiency of the binary format, which
stores each transaction in the database as a fixed-width binary bitset, with individual
items represented by 0s and 1s.

References

1. R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large
databases, in ACM SIGMOD Record, (1993), pp. 207–216

2. Y. Le Bras, P. Lenca, S. Lallich, On optimal rule mining: a framework and a necessary and
sufficient condition of antimonotonicity, in Advances in Knowledge Discovery and Data Mining,
(Springer, 2009), pp. 705–712

3. N. Vanetik, Analyzing closed frequent itemsets with convex polytopes, http://arxiv.org/abs/
1203.4380 (2012), pp. 1–14

4. S.K. AV, A. Al-Rabea, I.M. El Emary, Frequent itemsets mining: an efficient graphical approach.
World Appl. Program. 1, 330–338 (2011)

5. M.J. Zaki, Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12, 372–
390 (2000)

6. T. Pang-Ning, M. Steinbach, V. Kumar, Introduction to data mining, in Library of Congress
(2006)

7. B. Goethals, Frequent itemset mining dataset repository. Available: http://fimi.cs.helsinki.fi/
data/ (2013)

8. R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in Proceedings of the 20th
International Conference Very Large Data Bases, VLDB, (1994), pp. 487–499

http://arxiv.org/abs/1203.4380
http://fimi.cs.helsinki.fi/data/

Receiver Operating Characteristic
Curves in Binary Classification of Protein
Secondary Structure Data

Saad Subair and Christopher Thron

1 Introduction

The most basic classification problem involves distinguishing between two classes
of objects based on the value of a single measurement or calculated value. This so-
called dichotomous (or binary) classification is a convenient and powerful tool for
decision-making, although it may introduce distortions [1, 2].

Typically, classification involves setting a threshold, and for each object the
choice of class is determined by whether the value found for that object is above
or below the threshold. It follows that evaluating the effectiveness of a classifier
and choosing the most appropriate threshold are key considerations in the practical
use of binary classification. For this purpose, Receiver Operating Characteristics
(ROC) curves are extremely useful for assessing the performance of classifiers.
ROC curves are well known in biological and medical decision-making, and have
been increasingly adopted as a tool for analysing and visualizing many aspects of
machine learning algorithms or methods.

We will introduce the concepts involved in the construction and use of ROC
curves by means of a specific example, namely, classification of protein shape.

S. Subair (�)
College of Computer Studies, International University of Africa (IUA), Khartoum, Sudan

C. Thron
Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX,
USA

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_11

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-37830-1_11

246 S. Subair and C. Thron

2 Classification of Protein Shape

The structure of any protein can be classified as either helical (H), strands (E), or
coil (C). In biological systems, the proteins present in the system consist of about
30%, 20%, and 50% of H, E, and C respectively [3]. In this context, distinguishing
any one of the three types from the other two is a binary classification problem.
Note that rates of successful prediction are strongly dependent on the prevalence of
the classes that are being distinguished. For example, a trivial prediction algorithm
which assigns all proteins to C gives correct prediction rates of approximately 50%,
even though no measurements are being performed. On the other hand, an equally
trivial prediction algorithm that assigns all proteins to H will be correct only 30% of
the time. The two methods are equally uninformative, although one appears to give
a better result than the other.

Supposing that we have an amino acid sequence of length n, then we have n
structures that can have values H, E, or C. We will consider the case of a binary
classification between C and non-C. Accordingly we define d1, d2, . . . dn. such that
dj = 1 if the jth structure is non-C, and dj = 0 otherwise. We similarly define g1,
g2, . . . gn as the classifier’s outputs for the n structures: gj = 1 if the jth structure
is classified as non-C, and gj = 0 otherwise. In this situation, there are four possible
outcomes for the jth amino acid in the sequence:

• dj = 1, gj = 1 (true positive: jth structure is correctly identified as C),
• dj = 0, gj = 0 (true negative: jth structure is correctly identified as non-C),
• dj = 0, gj = 1 (false positive: jth structure is incorrectly identified as C),
• dj = 1, gj = 0 (false negative: jth structure is incorrectly identified as non-C),

3 Sensitivity and Specificity

Based on the four possible outcomes we have just described, we define the following
four numbers that completely characterize the classification result:

TP = the number true positives.
TN = the number of true negatives.
FP = the number of false positives.
FN = the number of false negatives.

From these definitions it is clear that every structure must give exactly one of the
four results, so we have:

n = T P + T N + FP + FN.

The four numbers are often arranged into a 2 × 2 contingency table (or confusion
matrix) as shown in Table 1.

Receiver Operating Characteristic Curves in Binary Classification of Protein. . . 247

Table 1 Contingency table
for classification results

Prediction (gj)
C non-C

Actual (dj) C TP FN

Non-C FP TN

Fig. 1 Relation between threshold changes and TP, FP, TN, and FN

We may define the sensitivity as the proportion of C structures that are correctly
identified as C. The sensitivity is obtained by dividing the true positives by the total
number of positives:

Sensitivity (also called hit rate or true positive rate) = T P/ (T P + FN) .

We may also define the specificity as the proportion of non-C structures that
are correctly identified as non-C. The specificity is obtained by dividing the true
negatives by the total number of negatives:

Specificity (also called selectivity or true negative rate) = T N/ (FP + T N) .

In other situations where either the actual state dj or the output gj is not binary,
then the situation is more complex and four numbers are not enough to summarize
the situation. If gj is not binary, binary predictions can still be obtained by using
a cut-off threshold: the prediction is rendered as 1 if gj is above a predetermined
threshold value, and 0 otherwise (in this paper we will adopt the convention that
if gj is equal to the threshold, then the value is 0). The numbers TP, TN, FP, and
FN will then vary with the threshold choice. As the threshold is decreased, more
and more structures will exceed the threshold, and the number of true positives
(TP) increases—but so does the number of false positives (FP). Conversely, as the
threshold is increased, the number of true negatives (TN) increases, but so does the
number of false negatives (FN). There is always trade-off between the proportions
of false positives and false negatives produced by the algorithm or the classifier (see
Fig. 1).

248 S. Subair and C. Thron

Fig. 2 Cut point for classification between normal and abnormal individuals

An alternative representation of the four numbers TP, FP, TN and FN is shown
in Fig. 2. The two curves show the frequencies of normal and abnormal structures
in a sample of about 600 structures, as a function of their scores on a certain test
(for example, the figure shows that there were 100 normal and about 10 abnormal
structures with a score of 6, while there were 20 normal and about 45 abnormal
structures with a score of 8). The test score can be used to predict normal from
abnormal by setting a threshold (or cut point), and classify individuals above the cut
point as abnormal, and individuals below the cut point as normal. The position of the
cut point will determine the number of true positive, true negatives, false positives,
and false negatives as shown in Fig. 2. Consequently, the sensitivity and specificity
of the test based on a particular threshold can also be estimated from TP, FP, TN,
and FN using the formulas given above.

Additional information is required to identify the best threshold, namely the
relative cost of FP and FN errors. Assigning values to these costs are complex and
subjective and dependent upon the context within which the classification rule will
be used. However, once the relative costs have been determined, the calculation of
the best threshold is straightforward. Supposing that the costs of FP and FN errors
are cFP and cFN , then the cost due to the errors for the give sample is:

Error cost = cFP · FP + cFN · FN.

Receiver Operating Characteristic Curves in Binary Classification of Protein. . . 249

Calcula�on of op�mal cut point for binary classifica�on example
cFP cFN
1 5

Test value
(cut point)

Normal
freq.

Abnormal
freq. FP FN Cost

1 0 0 480 0 480
2 20 0 460 0 460
3 60 0 400 0 400
4 100 0 300 0 300
5 120 5 180 5 205
6 100 10 80 15 155
7 60 20 20 35 195
8 20 50 0 85 425
9 0 20 0 105 525

10 0 10 0 115 575
11 0 5 480 120 1080

TOTALS 480 120

Fig. 3 Calculation of costs for different cut points, given specified values of cFP and cFN . The
lowest cost is achieved when 6 is chosen as cut point. Since test values are integers, any non-
integer between 6 and 7 will also give the same results

It is easy to find (using a computer if necessary) the cut point that yields the
smallest error cost. For example, consider the sample shown in Fig. 2, and suppose
that cFN is determined to be 5 times larger than cFP. Then the best cut point is
between 6 (inclusive) and 7 (exclusive), as shown in the spreadsheet in Fig. 3.
Although this cost calculation was only done for one sample size, all costs scale
equally for different sample sizes, so the same cut points will be optimal regardless
of sample size.

Alternatively, the optimum cut point can also be calculated on the basis of the
following information:

• Sensitivity (denoted by sens).
• Specificity (denoted by spec).
• Prevalence of the normal case (given as a fraction of the total population size:

denoted by p).
• Relative costs of FP and FN (denoted by cFP and cFN).

Based on this information, the optimum cut point is the one that minimizes the
expected error cost per sample, given by:

Expected error cost per sample = (cFP) (1 − sens) (p)+ (cFN) (1 − spec) (1 − p)

250 S. Subair and C. Thron

4 Receiver Operating Characteristics (ROC) Curves

The Receiver operating characteristics (ROC) curve summarizes the trade-off
between sensitivity and specificity for different choices of threshold. The curve is
constructed by plotting the false positive rate (equal to (1 − specificity)) on the
horizontal axis, versus true positive rate (equal to sensitivity) on the vertical axis.
As shown in Fig. 1, true and false positive rates have the same trend, and thus the
ROC curve will always have a positive slope. Furthermore, the true positive rate will
always be larger than the false positive rate, for otherwise, the test is worse than ran-
dom guessing! It follows that the ROC curve will always lie above the 45 degree line.
An example ROC curve, calculated from the data shown in Fig. 2 is shown in Fig. 4.

The closer the curve follows the left-hand border and then the top border of the
chart, the more accurate the test, while the closer the curve comes to the 45-degree
diagonal of the ROC space, the less accurate the test.

Although the ROC curve in itself is not sufficient to determine an optimal cut
point, it does accurately represent the possibilities of sensitivity and specificity that
can be achieved. For example, if a sensitivity of 0.9 is desired, the curve in Fig. 4
shows that the achievable specificity is roughly 1–0.15, or 0.85.

The area under the curve (AUC) is a measure of the overall test accuracy. The
AUC can be interpreted as the average sensitivity, where the average is assessed
over all possible values of selectivity. An AUC of close to 1 means the test is quite
effective in distinguishing between classes, while an AUC of close to 0.5 means
that the test is little better than random guessing. As mentioned before, different
thresholds will give rise to different.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
False Positive Rate (1-Specificity)

ROC curve for normal/abnormal structures

Fig. 4 ROC curve for data shown in Fig. 2

Receiver Operating Characteristic Curves in Binary Classification of Protein. . . 251

5 A Practical Example: Assessment of NN-GORV-II
Algorithm for Structure Identification

The GOR (Garnier–Osguthorpe–Robson) method is widely used to predict the
secondary structure of proteins based on information theory and Bayesian statistics
[4]. The method has been improved over the years by including larger databases,
more detailed statistics, and evolutionary information. The most recent version is
known as GOR version 5, or GORV [3, 5].

Figure 5 shows NN-GORV-II test scores (referred to here as “cut scores”) of a
sample of 10,772 secondary structures (7626 coil and 3146 non-coil). The same data
is shown numerically in Table 1 in the first three columns. (Note that as discussed
above, strand and helical were grouped together into a single class.)

In the calculation of FPV and TPV, we will consider non-coil as a “positive”
result. So, for example, if we take the value 3 as cut point, then all values above 3
are taken as positives (i.e. non-coil). From the table we may calculate that 7626 –
544 − 625 = 6457 coil structures are falsely identified as positives, so the false
positive rate (FPR) for cut point 3 is 6457/7626 = 0.847. On the other hand, 3146 –
33 − 45 = 3068 out of 3146 non-coil are correctly identified as positives, giving a
TPR of 3068/3146 = 0.975. The fourth and fifth columns of Table 2 are computed
in this manner from the numbers in columns 2 and 3. The area calculation in Table
2 is computed using the trapezoid rule. For example, the area from cut point 5 to
cut point 6 is equal to the difference in FPR values times the average TPR value, or

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

Cut Scores

Number
of
Observa
tions

Coil
Not Coil

Fig. 5 The cut scores of coil and non-coils secondary structure states predicted by the NN-GORV-
II algorithm using Method V reduction scheme

252 S. Subair and C. Thron

Table 2 Data from Fig. 5 in tabular form, together with calculated false positive rate, true positive
rate, and AUC areas

Test value (cut point) Number of coil Number of non-coil FPR TPR Area

1 544 33 1 1 0
2 625 45 0.929 0.990 0.071
3 929 139 0.847 0.975 0.081
4 1244 185 0.725 0.931 0.116
5 2588 1187 0.562 0.872 0.147
6 710 415 0.222 0.495 0.232
7 912 814 0.129 0.363 0.040
8 18 14 0.010 0.104 0.028
9 56 314 0.007 0.100 0.000
10 0 0 0.000 0.000 0.000
Totals 7626 3146 0.715

(0.562 − 0.222)·(0.872 + 0.495)/2, which yields the value 0.232 in row 6 of the last
column. The summation of the nine scores areas represents the total area under the
curve (AUC), which is a measure of the prediction accuracy. The AUC of this test
as shown in the table is 0.7151.

A rather complicated expression for the standard error of the AUC estimate may
be found in [7]. “pROC” is a software package which can be loaded within the R
statistics programming language, which can calculate confidence intervals for the
AUC. For the data in Table 2, the standard error works out to 0.0057.

Figure 6 shows the ROC curve obtained by plotting the points in columns 4 and
5 of Table 2. Compared with the ROC curve in Fig. 4, we may see clearly that this
method has less predictive power than the normal/abnormal structures identification.
This should not be surprising because the overlap between the areas under the
normal and abnormal cut-point curves in Fig. 5 is much greater than that between
coil and non-coil cut-point curves in Fig. 2.

The AUC value of 0.72 may be interpreted as the average TPR over all possible
FPR’s. Note that the TPR for FPR = 1/2 is equal to 0.8. In fact, it will always
be true for any ROC curve that the TPR for FPR = 1/2 will be greater than the
AUC. The value 0.72 is consistent with what has been reported by. This result is
consistent with the correlation coefficients of the NN-GORV-II method described in
our previous work [6].

6 Summary

We have explained the calculation and interpretation of ROC curves as used in
binary classification and have demonstrated their use in the classification of protein
secondary structures.

Receiver Operating Characteristic Curves in Binary Classification of Protein. . . 253

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (1 - Specificity)

AUC = 0.72

Fig. 6 ROC curve for the data shown in Fig. 5 and tabulated in Table 2

References

1. A.H. Fielding, J.F. Bell, A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997)

2. D.J. Hand, W.E. Henley, Statistical classification methods in consumer credit scoring: A review.
J. R. Stat. Soc. A. Stat. Soc. 160(3), 523–541 (1997)

3. A. Kloczkowski et al., Combining the GOR V algorithm with evolutionary information for
protein secondary structure prediction from amino acid sequence. Proteins 49, 154–166 (2002)

4. J. Garnier et al., Analysis of the accuracy and implications of simple methods for predicting the
secondary structure of globular proteins. J. Mol. Biol. 120, 97–120 (1978)

5. T.Z. Sen, R.L. Jernigan, J. Garnier, A. Kloczkowski, GOR V server for protein secondary
structure prediction. Bioinformatics 21(11), 2787–2788 (2005)

6. S.O. Subair, S. Deris, Predicting protein secondary structure using artificial neural networks and
information theory, in Application of Agents and Intelligent Information Technologies, ed. by V.
Sugumaran, (Idea Group, USA, 2007), pp. 337–362

7. C. Cortes, M. Mohri, Confidence intervals for the area under the ROC curve. Adv. Neural Inf.
Proces. Syst. 17, 305–312 (2005)

Budget Reconciliation Through Dynamic
Programming

Tad Laver, Lucas Brandt, and Christopher Thron

1 Introduction

1.1 Discrepancies in Military Accounting

“U.S. Army fudged its accounts by trillions of dollars, auditor finds” reads the
banner headline of a 2016 article in Reuters’ U.S. web page [1]. The situation
described by the article was not necessarily mismanagement of funds, but rather
poor bookkeeping due to incomplete records pertaining to expenditures. Here we
present a more detailed explanation of the actual situation.

U.S. Army brigade comptrollers who oversee accounts have access to their
brigades’ daily “commits” and “obligations.” “Commits” are like purchase orders:
they represent expenses that have been authorized and the order sent to the supplier,
but the money has not yet been spent. “Obligations” are actual withdrawals from
the brigade’s account. Every valid obligation has necessarily been previously
committed, but the commit may have occurred several days previously.

Of course, commits and obligations are both important information, and are
essential to balancing the budget. Unfortunately, the Army lacks a comprehensive
system to correlate specific commits to their corresponding obligations, since only
the total daily amounts are recorded. This is complicated by the fact that the total
commits do not exactly match the total obligations, because other budgetary items
such as credits for returned machinery and gasoline expenditures also affect the
record of commits. The disconnect between commits and obligations produces a
perpetual uncertainty in the current status of the budget, because it is unknown how
much of the remaining funds in the account have already been spoken for. This

T. Laver (�) · L. Brandt · C. Thron
Texas A&M University-Central Texas, Killeen, TX, USA

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1_12

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37830-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-37830-1_12

256 T. Laver et al.

uncertainty can lead to budget imbalances, and at the end of the fiscal year this
may lead to overspending or unspent funds which are then frozen until they can be
accounted for.

Given that a comprehensive system for budget reconciliation is lacking, we
may develop an algorithm that infers the correspondence between commits and
obligations as accurately as possible. This is a very complex problem because of the
large number of expenditures involved. It may be characterized as an optimization
problem, since we want to find the “best” or most likely match between commits
and obligations.

1.2 Dynamic Programming Overview, and a Simple Example
from Biochemistry

Dynamic programming is a powerful technique for solving very large optimization
problems. This was first developed by R. Bellman at the RAND Corporation
in the 1950s [2]; since then it has been applied to a wide variety of applied
fields in engineering and computer science [3–6]. Dynamic programming can be
characterized as a “divide and conquer” approach: an optimal solution is found by
successively restricting the set of possible solutions, so that the search is conducted
very efficiently.

Before explaining the dynamic programming algorithm used in budget reconcili-
ation, we first present a simple example that elucidates the principles and procedures
underlying dynamic programming.

The Viterbi algorithm is a dynamic programming algorithm which determines
a most probable sequence of states or events based on partial information. For
each successive state in the sequence, it finds a limited set of possible best
sequences up to that state. After the last state has been processed, the best of the
remaining sequences is chosen, which gives an overall best sequence based on
all the information provided. The Viterbi algorithm is widely applied in different
fields, most importantly in digital communications where it played a crucial role
in the development of digital cellular telephony [7]. The following example is an
application of the Viterbi algorithm to molecular biology [8].

Deoxyribonucleic acid (DNA) molecules in a living cell contain the genetic
information that is used to duplicate the cell during cell reproduction. DNA
molecules consist of two linked strands, and each strand consists of a sequence of
nucleotides. There are four nucleotides (Adenine, Cytosine, Guanine, and Thymine,
represented as A, C, G, T) and they can appear in virtually any order: for example,
ACTCCTCCGTAAGTG . . . represents a possible sequence.

Different sections of a DNA molecule can be roughly identified as being in one
of two states.

The two states in this case are referred to as H and L, or high and low GC ratio,
respectively. GC ratio deals with guanine-cytosine content in a sequence and is a

Budget Reconciliation Through Dynamic Programming 257

measure of what ratio of the DNA sequence is made of guanine and cytosine. A
DNA sequence can move between a high and low GC ratio many times within its
chain, but it will also have an overall GC content. In general, longer chains will tend
to have a high GC content and shorter chains will have a low GC content.

Figure 1 shows the amino acid frequencies and transition probabilities between
high and low states in a typical DNA sequence. The two boxes labeled H and L
give the frequencies of the different nucleotides corresponding to the two states: the
H state has a higher probability of producing G and C nucleotides, and the L state
has a higher probability of producing A and T nucleotides. The arrows emerging
from the box representing the H state indicate that if the current nucleotide is in a
H segment, then there is a probability of 0.5 that the next nucleotide is also in the H
state, and a probability of 0.5 that the state switches to L. On the other hand, if the
current nucleotide is in a L segment, according to the arrows emerging from the “L”
box there is a probability of 0.6 that the next nucleotide is also in the L state, and a
probability of 0.4 that the state switches to H. The arrows pointing from the “Start”
box indicate that is an even chance that the chain starts in H or L states, as indicated
in the top box in the figure.

We do not have any way of directly observing which state a DNA sequence is
in at any moment: for this reason, H and L are called hidden states, and this type
of model is called a Hidden Markov Model (HMM). Although it is not possible to
precisely determine the sequence of H’s and L’s for a given DNA chain, using the
probabilities given in Fig. 1 it is possible to compute the HL sequence that is most
probable, given the observed nucleotide sequence. The Viterbi algorithm enables us
to calculate this most probable sequence in a highly efficient way, as we shall see
shortly.

In order to clarify the calculations involved, we will compute the probability
that the nucleotide sequence TAC is observed and at the same time the hidden HL
sequence is LLH. The initial probability of starting in L and observing nucleotide
T is (.5)(.3) = .15. The probability of transitioning from L to L and observing
nucleotide A is (.6)(.3) = .18. The probability of transitioning from L to H and
observing nucleotide C is (.4)(.3) = .12. Since these three successive transitions
are independent of each other, we may multiply them together to get the net

Fig. 1 Schematic representation of High and Low states, showing transition probabilities between
states and probabilities of getting each nucleotide while in each state (after Borodovsky and
Ekisheva [8])

258 T. Laver et al.

Fig. 2 Calculations for initial state probabilities. State H and observed nucleotide G has a higher
probability than state L and G, but at this point we are not ready to make a final decision

probability. Therefore, the net probability of getting TAC along with LLH is
(.15)(.18)(.12) = .00324.

With the calculations clarified, let us now find the HL sequence that has the max-
imum probability, given the observed nucleotide sequence. Let A and B represent
the observed nucleotide sequence and the hidden HL sequence, respectively. Then
P(B| A) represents the conditional probability that we would like to maximize. This
conditional probability is related to the probability that A and B are both true as
follows: P(B| A) = P(A and B)/P(A). Since A is known, it follows that P(A) is a
fixed number. Hence maximizing P(B| A) is equivalent to maximizing P(A and B)
because the two quantities differ by a constant factor. Hence in the following we
will address the problem of maximizing P(A and B), i.e., finding the HL sequence
out of all possible HL sequences that gives maximum probability when paired with
the observed nucleotide sequence.

We may represent the Viterbi approach to this calculation using a trellis diagram,
as shown in Fig. 2. The observed nucleotide sequence GGCA . . . is used to label
the stage in the trellis. The upward-sloping green arrow indicates the case where
the first nucleotide is G, and the first HL state is H: the probability of this case is
P(start → H) · P(G| H) = (0.5)(0.3) = 0.15, based on the numbers given in Fig. 1.
The downward-sloping green arrow shows the case where the first nucleotide is G
and the first HL state is L: the probability of this case is found to be 0.1.

The stages in the trellis are computed successively. Figure 3 shows the calcu-
lations for the second stage. This time, four transitions are computed: H → H,
H → L, L → H, and L → L. The transition probability for H → H is mul-
tiplied by the probability that the first HL state is H, giving the result that
P(HH) = (0.15)(0.15) = 0.225. The probabilities P(LH), P(HL), and P(LL) are
computed similarly, yielding 0.012, 0.015, and 0.012, respectively. In this case,
P(HH) > P(LH), so of the possible 2-letter sequences ending in H, HH is preferred. It
follows that LH may be eliminated, since all sequences beginning LH . . . will have
lower probabilities than the corresponding sequences beginning HH Similarly,

Budget Reconciliation Through Dynamic Programming 259

Fig. 3 Second set of calculations, and state L and observed nucleotide A has the highest
probability of the four calculated combinations at this stage

Fig. 4 Calculations for the fourth trellis stage. The surviving HL sequences may be found by
following the green arrows backwards from the final L state, which is the final state with the higher
probability

of the 2-letter sequences ending in L, P(HL) > P(LL), and HL is preferred, so
LL may be eliminated as a possibility. As a result, in Fig. 4 the probabilities
corresponding to LH and LL have been crossed out. The green arrows at the second
stage indicate the transitions that correspond to the two surviving HL sequences,
HH and HL.

Figure 4 show the results from the fourth and final stage in the computation of
this simple 4-letter example. The probability for the path ending in L is greater than
for the path ending in H, so the lower ending is chosen. Tracing back along the green
arrows, we find that HHHL is the HL path which, when combined with the observed
nucleotide sequence GGCA, has the highest probability.

We may compute the number of calculations that were required to find this
optimal HL path. Moving from start to the first state required computing two
transition probabilities. Subsequently, each stage required 4 transition probabilities.

260 T. Laver et al.

This makes a total of 2 + 4 + 4 + 4 = 14 calculated probabilities. This is a
savings of 2 over calculating the probability for all 16 HL sequences of length
four, which seems insignificant. However, the savings mount up very quickly when
the number of stages increases. Using the Viterbi algorithm, each additional stage
requires 4 additional calculations: it follows that n stages requires 4n − 2 probability
calculations. On the other hand, the number of HL sequences of length n is 2n,
which grows large quickly. For example, if we have a DNA sequence of length
100, the Viterbi algorithm requires less than 400 calculated probabilities, while an
exhaustive calculation of all HL sequence probabilities would require calculation of
2100 probabilities!

1.2.1 Budget Reconciliation with Dynamic Programming

Our goal was to derive, implement, and verify a dynamic programming algorithm
that can reconcile commits and obligations in Army brigade budgets. The require-
ments for the algorithm were determined to be the following. First, it must first
be able to identify the most likely match between commits and obligations for
budget reconciliation purposes. Second, the algorithm must also be able to estimate
the probability distribution of commit-to-obligation delays for predictive purposes.
Finally, it must also be easily adaptable to a wide range of scenarios.

For our original implementation, we made certain assumptions based on one
author’s (LJB) personal experience with managing brigade budgets. As indicated
above, we assumed that the commits and obligations for a given unit are reported
as separate streams. We also assumed that each commit obligates as a whole
within a given time window of w days (which was taken as one working week of
6 days). Although this is an approximation, it is fairly accurate because commits are
usually dominated by a single large expenditure (e.g., an aircraft engine) which will
naturally be paid for all at once. (It is possible to relax this assumption and perform
further optimization using linear programming, but this is beyond the scope of this
chapter.)

Finally, we assumed that return credits and untracked expenses such as fuel
introduce Gaussian noise into the system, so that there is a normally distributed
(i.e., Gaussian) discrepancy between commits obligated on any given date and the
recorded obligation for that date. The mathematical implications of this assumption
are as follows. Let us set:

Xn := (sum of commits that obligate at time n) − (recorded total obliga-
tion at time n).

The assumption of Gaussian noise implies that the probability density p of Xn is
given by a Gaussian distribution:

p (x) = 1√
2πσ 2

e
− x2

2σ2 ,

where σ is the (unknown) standard deviation of the discrepancy.

Budget Reconciliation Through Dynamic Programming 261

Since all of the Xn’s are assumed to be independent, it follows that probabilities
multiply and the probability that X1, X2, . . . , XN take values given by the sequence
(x1, . . . , xN) is.

p (x1, x2, . . . , xN) = p (x1) . . . p (xn) =
⎛
⎝ 1√(

2πσ 2
)

⎞
⎠

n

e
− x2

1+···+x2
N

2σ2 .

We want to find the most likely sequence x1, . . . , xN . This implies that we want
to maximize the function p(x1, x2, . . . , xN), which is equivalent to maximizing its
logarithm since log is an increasing function. We have:

log p (x1, x2, . . . , xN) = a − b
(
x2

1 + x2
2 + · · · + x2

N

)
,

where a and b are constants. It follows that maximizing p(x) is equivalent to
minimizing the sum of squares x2

1 + x2
2 + · · · + x2

N . In summary, in order to
find the most likely matching between commitments and obligations, we should
find the possible matching that minimizes the sum of squared differences between
observed and inferred obligations for the entire process. For a year-long budget this
problem would have hundreds of variables, so the exhaustive approach of trying all
possible matchings is wildly impractical. On the other hand, dynamic programming
is eminently suited for finding solutions, as we shall see.

2 Methods

2.1 Dynamic Programming Algorithm Step-by-Step
Description

In order to create a trellis as we did with the nucleotide sequence example, we will
need to define a set of states of the system that undergo transitions from day to day.
As in the nucleotide example, each state should encapsulate all relevant (but hidden)
information about commits and obligations that influence transitions to the next
state, and which can be used to compute transition probabilities. Notice that on day
n, the only possible obligations consist of the commits that were made w or fewer
days previously: in other words, only the commits made between n − w and n − 1
which have not yet been obligated may be obligated at time n. It follows that the only
relevant information needed for determining the possible commits on day n is the set
of unobligated commits for the time interval [n − w, n − 1]. This information may
be encoded as a string of w bits, where each obligated (resp. unobligated) commit
in the interval is represented by a 0 (resp. 1). So, for example, if n = 10 and w = 4,
then the string 0110 indicates that the commits at times 6, 9 have been obligated and
the commits at times 7, 8 remain unobligated.

262 T. Laver et al.

Fig. 5 On day one, there is no possibility of a commit yet, and the “window” is nonexistent

Here we give a step-by-step example to show the transition between states
over time. Subsequently we will construct the trellis, which is somewhat more
complicated than the trellis in Fig. 1. In this example we will use n = 6.

The process begins at n = 1 as shown in Fig. 5. The state of the system is the
empty set, because there are no prior commits that can be obligated or unobligated.

At time n = 2, there is only one prior commit, namely the commit at time 1. This
commit cannot have been previously obligated, since a commit cannot be obligated
the same day. Therefore, the only possible state at n = 2 is the single bit 1.

At time n = 3, the prior commits occurred at times 1, 2. The commit at time
2 must be unobligated, but the commit at time 1 could be either obligated or
unobligated. It follows that the possible states at n = 2 are 01 and 11.

If we skip down to n = 6, we find that there are 5 prior commits, as shown in Fig.
6. The commit on day 5 must be unobligated, but the other four may or may not be
obligated. It follows that there are 16 possible states at n = 6, as listed in the figure.

The state size grows larger from n = 1 to n = 7. When n = 7, the state consists
of 6 bits, where the final bit is 1: this implies that there are 25 = 32 possible states.
Since we are using w = 6, it follows that 6 bits is the maximum state size and for
n ≥ 7, the window remains the same size and shifts as n increases (see Fig. 7).

We are now ready to construct the trellis expressing the transitions from state to
state, in analogy to Fig. 2. Given each state at time n, there is a limited set of possible
previous states at time n − 1. To illustrate this, let us look at a simplified case with
only four bits (w = 4), and we suppose the state at time n is 0101 (the transitions
will be the same for any n, as long as n > 4). In this case, the bit string 0101 indicates
that times n − 4 and n − 2 are characterized by “0” bits, meaning that the commits
at these times have been obligated before time n. On the other hand, times n − 3
and n − 1 have “1” bits, indicating that the commits at these times have not yet
been obligated before time n. This implies that the commit at time n − 3 was also
unobligated at time n − 1. Therefore, the second to rightmost bit in the state at n − 1

Budget Reconciliation Through Dynamic Programming 263

Fig. 6 On day 6 the window is 5 days long, with 16 possible commits

Fig. 7 On every day from 7 on there will be 32 possible combinations with each possible commit
being a bit string 6 long with the last entry being a 1

must be a “1.” We also know that the rightmost bit in any state is a “1.” As to the
two leftmost bits of the state at time n-1, they may or may not have been obligated.
Putting all this information together, we may conclude that the state at time n − 1
must have had the form **11, where ‘*’ indicates the bit could have been either 0
or 1 depending on whether or not the corresponding commit obligated before n. In
Fig. 8 we have drawn segments joining possible source states for destination state
0101.

Likewise, for each destination state we may draw segments that represent
possible transitions. The result is the trellis shown in Fig. 9. In the trellis, only half
of the possible segments from source to destination are drawn—hence use of the
trellis can reduce calculation by ½.

264 T. Laver et al.

Fig. 8 Since we know that the destination is 0101, we limit the possible sources from 8 to 4 in
this case

Fig. 9 This trellis shows the possible sources for each element in each state. Some elements are
very restrictive while others are not restrictive at all

Each transition segment in the trellis that joins a state at time n−1 to a state at
time n corresponds to a particular set of obligations at time n. For example, Fig.
10 includes the transition 0111 → 0011, which indicates that the commits at times
n − 4 and n − 3 were obligated at time n − 1. We may use this commit information
to determine the value of the deviation xn, and thus determine the corresponding

Budget Reconciliation Through Dynamic Programming 265

Noise Standard Deviation vs Proportion of Errors

0.4

0.3

0.2

0.1

0.0

P
ro

po
rt

io
n

of
 E

rr
or

s

0.00 0.05 0.10

Noise Standard Deviation

0.15 0.20 0.25

Noise Standard Deviation vs Delay Profile Error

0.04

0.03

0.02

0.01

0.00

D
el

ay
 P

ro
fil

e
E

rr
or

0.00 0.05 0.10

Deviation Mean

0.15 0.20 0.25

Absolute Value
Root Mean Square

Fig. 10 Proportion of erroneous commit-to-obligation assignments (left) and mean absolute error
and root mean squared error in delay profile (right) as a function of noise standard deviation

probability p(xn), which may in turn be used to calculate the probability of the path
through the trellis that ends with that particular transition.

We must make special mention of the case where the leftmost bit of the state
at time n − 1 is a “1,” indicating that the commit at time n − w has not yet
been obligated before time n. Whether or not this commit obligates at time n, the
system will transition to the same state at time n, because (as we have mentioned
previously) the leftmost bit of the state drops off at the next time. So, in fact, each
segment in the trellis whose left endpoint is a state beginning with “1” represents two
different possible transitions. The algorithm deals with this ambiguity by evaluating
p(xn) in both cases, and choosing the larger alternative. If it turns out that the
leftmost commit does not obligate, it can never be obligated in the future, because
it has passed out of the obligation window. When this happens, the algorithm has
identified a potential unobligated commit, which is a budget discrepancy that should
be further investigated.

2.2 Code Structure

We programmed the algorithm in the open-source software Python, because of its
high-level mathematical capabilities as well as its good execution speed. At top
level, the code structure is as follows:

1. Initialization of parameters and data structures.
2. Generation of simulated commits and obligations.
3. Loop: dynamic programming process.
4. Recovery of solution and output of statistics.

These four stages in the code are described in more detail below.

266 T. Laver et al.

2.2.1 Initialization

The following initializations were made:

• Parameters for simulated commits: Total number of days (T), probability of a
commit on any given day (prob_commit), commit mean size.

• Parameters for simulated obligations: Window size (w); probability distribution
of commit-to-obligation delays (i.e., delay profile); mean and standard deviation
of unmatched obligations (credits and incidental expenses).

• Data structures for dynamic programming:

• List of states. This is a list of length 2w − 1, where each list entry is an array
of w binary bits. All possible arrays of w bits are included which have final
bit 1. The arrays are generated in binary numerical order. This list provides a
“dictionary” that enables translation from integer to binary representations of
states.

• Histories of previously obligated commits corresponding to each current state.
These histories represent the pattern of obligated commits that minimize
the sum of squared differences between daily obligated commits and actual
observed obligations. Each current state has its own unique history, just
as in the nucleotide example. The histories comprise a list of 2w − 1 items
corresponding to the 2w − 1 possible states. These 2w − 1 items are themselves
lists with n entries, where n represents the current time: the kth entry is an
integer between 0 2w − 1 and (inclusive) which represents the commits that
obligate at time k. For example, suppose w = 5 and the 29th entry of the ninth
in-list is 25. This implies that in the history of state 9 (representing the binary
string 01001) the commits that are obligated at time 29 are indicated by the
binary representation of the integer 25 (11001). Initially, the 2w − 1 histories
are all 1-entry lists with the single entry 0, since at time n = 1 there are no
prior commits and hence no obligations. The histories are updated at each
trellis stage: at stage n, a new entry is added to each history, representing
commits that are obligated at time n.

• List of current values associated with states. The current value of a state is
given by the sum of squared differences between daily obligated commits
determined by the state’s history and observed daily obligations. The list of
current values is an array of real numbers of length 2w − 1, initialized to all
zeros. This list is updated at each time step, when the values of states are
updated at each trellis stage.

2.2.2 Generation of Simulated Commits and Obligations

Commits were generated independently for each day. For any given day, a commit
was generated with probability prob_commit. Each commit was generated as
an exponential random variable with the given mean (the standard deviation of an
exponential random variable is equal to the mean).

Budget Reconciliation Through Dynamic Programming 267

Obligations were generated as follows. For each commit, a delay is generated
according to the specified delay profile. The total obligation on any given day is the
sum of delayed commits that fall on that day, plus a random noise that represents
untracked credits and incidental expenses.

2.2.3 Loop over N: Dynamic Programming Process

The steps in each iteration in the dynamic programming process are as follows:

• Initialize the destination state values as an array of size 2w − 1, where each value
in the array is initialized to a very large negative number (these values will be
replaced by new values based on the trellis calculations.

• Loop through source states:

• Loop through all transitions from possible source states.

– Compute updated value (source state value + transition value).
– If updated value is less than the transition destination state’s current

value.

• Replace destination state value with computed value.
• Append to source state history an additional integer that represents the

commits obligated at time n as indicated by the transition.
• Replace destination state history with this updated source state history.

– End (If).

• End (loop through transitions).

• End (loop through source states).
• Replace all source state values with destination state values.
• Replace all source state histories with destination state histories.

2.2.4 Recovery of Solution and Output of Statistics

After the algorithm has looped through all time steps, the state with the minimum
value is chosen, and the history of that state is read to determine the obligation
times of all commits. These obligation times are compared with the actual obligation
times, and these results are used to compute error rates.

3 Results

The main results were obtained via simulation. Some results were also obtained by
applying the algorithm to actual data, as described below.

268 T. Laver et al.

Table 1 Baseline parameters used in simulations

Parameter type Parameter Value

General Simulation time (days) 100,000
Commit Specifications Prob. of commit on any given day 1

Daily commit mean 1
Daily commit standard deviation 1

Obligation specifications Window size 6

Delay profile (probability distribution of delays)
[

1
12 , 1

6 , 1
4 , 1

4 , 1
6 , 1

12

]

Noise mean (expected sum of untracked,
obligated daily expenses)

0

Noise standard deviation 0.05

Commit Probability vs Proportion of Errors Commit Probability vs Delay Profile Error

0.024

0.022

0.020

0.018

0.016

0.014

0.012

0.010

D
el

ay
 P

ro
fil

e
E

rr
or

0.15

0.14

0.13

0.12

0.11

P
ro

po
rt

io
n

of
 E

rr
or

s

0.2 0.4 0.6 0.8 1.0

Probability of a Commit

0.2 0.4 0.6 0.8 1.0

Probability of a Commit

Absolute Value
Root Mean Square

Fig. 11 Commit-to-obligation assignment error probability (left) and mean/root mean squared
error of delay profile estimate (right) as a function of the daily probability of a commit

3.1 Simulation

Simulations were run to verify the model’s accuracy. Baseline parameters are listed
in Table 1. For all simulations, parameters are set to baseline values unless otherwise
specified.

Figure 10 shows the dynamic programming algorithm’s ability to match commits
to obligations and to estimate delay profiles as a function of noise standard deviation
(recall that in practice, noise is due to untracked credits and various untracked
expenses which are a small fraction of total expenditures). When the noise level is
zero, errors are also zero, indicating that the algorithm performs perfectly on a clean
record where all daily commits and obligations are recorded. Not surprisingly, both
assignment errors and delay profile estimation error increase as the noise standard
deviation increases. When the noise standard deviation reaches 0.25 (i.e., roughly ¼
of expenses are untracked) up to 50% of obligations are incorrectly identified, but
the mean absolute delay profile error is still rather small (about 4%).

Figure 11 shows error rates and delay profile estimation errors for different
commitment frequencies. As described earlier, the model presumes either a single

Budget Reconciliation Through Dynamic Programming 269

commit or no commit on each day, so the commitment frequency may vary from 0
(no commits at all) to 1 (a commit occurs every day). On days when commits occur,
the commit size is chosen randomly according to an exponential distribution with
parameters as in Table 1. The figure shows that the proportion of errors increases as
the frequency of commits increases: this may be attributed to the fact that as commits
become more frequent, the number of possible matchings between commits and
obligations increases and hence the greater possibility for error. On the other hand,
the delay profile error initially decreases as the commit probability increases, and
reaches a minimum at around p(commit) = 0.6. The second figure shows that the
mean absolute delay profile error is consistently about 90% of the root mean squared
error: in comparison, for a Gaussian distribution the mean absolute error is about
80% of the root mean squared error.

3.2 Application of Algorithm to Real Budget Data

In addition to establishing the algorithm’s accuracy on simulated data, we also
verified that the algorithm is able to identify budget errors on real data. One author
(L.B.) was a brigade comptroller, and applied the algorithm to data from his own
brigade. The algorithm uncovered a discrepancy between commits and obligations
in the data. Upon further investigation, $2,480,000 in commits were found to be
unaccounted for. Fortunately, he was able to act upon this information within the
same fiscal year and rectify the brigade’s account.

4 Conclusions

The dynamic programming method developed in this paper has been shown via
simulation and practice to reliably give largely correct matchings between commits
and obligations, as well as fairly accurate delay profiles. The method can be
extended directly to more complicated situations, for instance, when the delay
profiles are time-dependent or when there are multiple types of commits with
different delay profiles. The code’s modular structure facilitates modifications to
accommodate more complicated situations. The assumption that any given day’s
commits obligate as a whole may be relaxed by a two-stage algorithm. In the
first stage, the best matching with undivided commits is found (as in the current
algorithm). In the second stage, inferred obligations that differ significantly from
observed obligations may be optimally divided among neighboring days by solving
a linear programming problem.

The use of binary strings to represent states is a technique that can also be applied
to other types of problems, for instance, scheduling of jobs when the jobs must be
completed within a limited time window.

270 T. Laver et al.

References

1. S.J. Paltrow, U.S. Army fudged its accounts by trillions of dollars, auditor finds. [online] Reuters
(2016). Available at https://www.reuters.com/article/us-usa-audit-army/u-s-army-fudged-its-
accounts-by-trillions-of-dollars-auditor-finds-idUSKCN10U1IG [Accessed 18 Dec. 2018]

2. R. Bellman, Dynamic Programming (Princeton University Press, Princeton, 1957)
3. D.P. Bertsekas, Dynamic Programming and Optimal Control (Athena Scientific, Belmont,

2005)
4. C. Freak, Top 50 dynamic programming practice problems. Noteworthy—J. Blog.

(2018). [online] Available at: https://blog.usejournal.com/top-50-dynamic-programming-
practice-problems-4208fed71aa3 [Accessed 24 October 2019]

5. International Federation of Operations Research Societies (IFORS). IFORS tutorial:
dynamic programming (n.d.). [online] Available at: http://ifors.org/tutorial/category/dynamic-
programming/ [Accessed 7 Oct. 2019]

6. J. Kleinberg, E. Tardos, Algorithm design. Pearson Education India (2006)
7. A.J. Viterbi, A personal history of the Viterbi algorithm. IEEE Signal Process. Mag. 23(4), 120–

142 (2006)
8. M. Borodovsky, S. Ekisheva, Problems and Solutions in Biological Sequence Analysis (Cam-

bridge University Press, Cambridge, 2006)

https://www.reuters.com/article/us-usa-audit-army/u-s-army-fudged-its-accounts-by-trillions-of-dollars-auditor-finds-idUSKCN10U1IG
https://blog.usejournal.com/top-50-dynamic-programming-practice-problems-4208fed71aa3
http://ifors.org/tutorial/category/dynamic-programming/

Index

A
AdaBoost, 81, 122, 124, 167
Adaptive Gaussian thresholding, 120–121
Adaptive gradient descent (AdaGrad), 164–166
Adaptive histogram-based skin detection, 69,

70
Additive Angular Margin Loss (AAML), 164
Adjacency matrix, 11
AlexNet, 199
American Sign Language (ASL), 77, 79–81
Amino acid sequence, 246
Apriori algorithm, 232
Arabic Sign Language (ArSL), 79
ArcFace (2018), 172
Area under the curve (AUC), 250, 252
Array BitSetDB, 233
Artificial neural networks (ANNs)

behavioral model, 208
computational models, 207
neurons connected networks, 207
SNNs, 207
STDP (see Spike-timing-dependent

plasticity (STDP))
Association rule mining (ARM)

attributes, 230
database transaction, 229, 230
definition, 229
minsup and minconf, 231
phases, 231, 232
reverse monotonicity property, 230

Automatic voltage regulator (AVR), 29
Auxiliary approaches, 64

B
Backpropagation, 140, 142, 168, 199, 200
Bagging, 166, 167
Batch normalization (BN), 200
Bayes’ classifier, 68
Bayes’ rule, 68
Binary-based ARM algorithm

association rules extraction
datasets, 241–242
software/hardware specifications, 242

binary data representation, 232–233, 237
execution time benchmarking, 242
frequent itemsets

generation, 232
identification, 238–240
procedures, 237–238

itemset pruning, merging operation,
234–235

masks and bitwise operations, 233–234
memory usage benchmarking, 242–243
top-level description, 235–237

Binary encoding, 44
Binary predictions, 247
Biological neuron, 141, 220, 224
Bit-string encoding, 37
Boosting, 167
Bootstrap aggregation, 167
Bootstrap samples, 166, 167
“Bottleneck” layers, 200
Brian2 simulator

documentation, 222
NeuronGroup, 222

© Springer Nature Switzerland AG 2020
S. Subair, C. Thron (eds.), Implementations and Applications of Machine Learning,
Studies in Computational Intelligence 782,
https://doi.org/10.1007/978-3-030-37830-1

271

https://doi.org/10.1007/978-3-030-37830-1

272 Index

Brian2 simulator (cont.)
open-source Python package, 220
Python3 implementation, 221
vector-based computational techniques,

221
Budget reconciliation

commits and obligations, 260, 261
credits/untracked expenses, 260
Gaussian distribution, 260
managing brigade, 260
probability, 261

C
CAMShift, 73, 74, 80
CASIA-WebFace, 173
Center loss function, 160, 161
Classic DE (CDE), 38, 42, 57, 58
CNN architecture

AlexNet, 199
BN, 200
DenseNet, 200
ensemble, 201
GoogLeNet, 200
ILSVRC, 199
inception module, 199
MNIST, 199
ResNet, 200
slowed-down convergence, 199
transfer learning, 201

“Commits”, 255
Comprehensive system, 255, 256
Computational intelligence (CI), 30
Computer vision, 119, 125, 137
Conductance-based neuron model, 214–215
2014 Congress on Evolutionary Computation

(CEC-2014), 9–10, 23–25
Connected components labelling (CCL), 80
Contactless approaches, 64
Contrastive center loss function, 161
Conventional optimization techniques, 30
Conventional PSS (CPSS), 30
Convolutional neural networks

(CNN/ConvNet)
architecture (see CNN architecture)
classification layer, 199
classifiers

kNN, 155
MLPs, 155
SVM, 155–156

convolutional layer, 152, 198
definition, 198
detection, 187
“features”, 180

features extraction and classification,
185–187

filters, 188
hyperparameters, 153
layer design

local connectivity, 152
parsimonious connectivity, 152–153
weight sharing, 153

LFW, 190
local connectivity/weight sharing, 198
local spatial characteristics, 197
loss function (see Loss function)
organizational structure, 198
ORL database, 190, 191
plant classification, 198
pooling, 154, 188
pooling layers, 199
proposed model, 188, 189
receptive fields, 151
setting, 190
testing dataset, 202–203
training, 180

bagging, 166
boosting, 167
dataset, 201–202
dropout, 167–169

units, 151
uses, 197
YaleB, 190, 193, 194

CosFace (2018), 172
Cross correlation template matching, 95–96,

121–122
Crossover

definition, 40
exponential, 41
probability, 40
target vector, 40
trial vector, 40
uniform, 41

Crossover probability (CR), 58
Cutout regularization technique, 202

D
Damping ratios, 35–36
Darwinian evolution theory, 37
Data augmentation

lighting variation, 181, 183–185
PCA, 181
simulation, 180
3D reconstruction (see 3D face

reconstruction)
Data tightly coupled memory (DTCM), 225
DeepFace facial recognition system, 170, 171

Index 273

DeepID (2015), 171
Deep learning, 197

applications, 139
artificial neural networks, 139
CNN, 140, 179 (see also Convolutional

neural networks (CNN/ConvNet))
complex systems, 140
facial recognition (see Facial recognition)
learning rate (see Learning rate)
MLP (see Multilayer perceptron (MLP))
origin, 140
overlearning, 151
SLP (see Single-layer perceptron (SLP))
underlearning, 151

Delta adaptive gradient descent (AdaDelta),
165–166

DenseNet, 200
Deoxyribonucleic acid (DNA), 256
Detection

face, 99
hand, 95–97
hold detection, 109–111
motion, 102
skin, 97–98

Dichotomous/binary classification, 245, 246
Differential evolution (DE)

characterization, 36
control parameters, 57, 58
crossover, 40–41
Darwinian evolution theory, 37
development, 36
differential mutation technique, 31
efficiency and robustness, 31
F and CR parameters, 54, 56, 57
flowchart, PSS design, 46, 47
vs. GA, 31
initialization, 38
mutation, 38–40
one-to-one selection process, 37
optimal PSS parameters, 45
parameters, 46, 49
performance, 58
perturbation, 37
population and candidate structure, 37–38
population size, 54, 56
in PSS, 31
SaDE, 42–43
selection process, 41
self-adaptive schemes, 31
termination, 41–42

“Divide and conquer” approach, 256
Dlib-ml (machine learning toolkit), 187
Dropout, 167–169, 199

Dynamic programming algorithm
amino acid frequencies, 257
baseline parameters, 268
budget reconciliation, 256
code structure, 265–267
commitment frequencies, 268, 269
description, 256
“divide and conquer” approach, 256
DNA molecules, 256
HL sequence, 258
HMM, 257
2-letter sequences, 259
probability calculations, 260
real budget data, 256
reconciliation (see Budget reconciliation)
simulation, 268–269
step-by-step description, 261
transition probability, 257, 259
trellis, 258
Viterbi algorithm, 256

E
Edge detection, 74, 137
Edge histogram descriptor (EHD), 79
Eigenvalues, 34–36
Eigenvectors, 34–35
Electrical power systems

deregulation, 29
low-frequency oscillations, 29
and PSS, 29–30

Electromechanical modes, 29
Empirically determined correlation threshold,

96, 110, 111, 122
Enhanced skin detection (ESD), 97, 101
Enhanced skin highlighting (ESH)

face histogram, 100
for final skin image, 101
NHF procedure, 100–101
procedure, 99–100
skin detection component, 98

“Ensemble”, 201
Evolutionary algorithms (EAs)

GAs, 30
linearization, 33–34
modal analysis, 34–36
population-based optimizers, 30
PSS (see Power systems stabilizers (PSS))
small signal stability, 32
state-space representation, 32–33

Evolutionary genetic algorithm (EGA), 31
Evolutionary population dynamics (EPD), 80
Exponential crossover, 41

274 Index

F
Face detection, 69
Face histogram

computing histograms, 98
enhanced histograms, 101
ESD, 97
ESH, 98
as initial skin model, 97–98
NHF, 100–101
2-dimensional histogram, 99

FaceNet (2015), 171
Facial expressions, 64
Facial recognition

CASIA-WebFace, 173
challenge, 179
classifier, 170
CNN model

ArcFace (2018), 172
CosFace (2018), 172
DeepFace, 170
DeepID (2015), 171
FaceNet (2015), 171
SphereFace (2017), 172
VGGFace (2015), 171

data augmentation, 172, 180 (see also Data
augmentation)

deep learning, 179
features extraction and classification,

185–187
LFW, 173
lighting variations, 180, 183–185
normalization, 172
real-world environments, 172
SLLFW, 174
steps, 170
subcategories, 139
VGGFace and VGGFace2, 173

False negatives (FN), 247
False positives (FP), 247
Feature representation, 113, 116

See also Histogram of oriented gradients
(HOGs)

Fine-tuning, 201
Finite state machines (FSM), 109–110
FitzHugh–Nagumo (FN) model, 208
Flocks-of-features method, 71
Fully convolutional network (FCN), 79
Fuzzy adaptive differential evolution (FADE),

42

G
Garnier–Osguthorpe–Robson (GOR)

AUC, 252

FPR, 251
information theory/Bayesian statistics, 251
NN-GORV-II test scores, 251
pROC, 252
ROC, 252
TPR, 251

Gaussian distribution, 68, 260
Gaussian mixture modeling (GMMs), 73,

125–127, 137
Gaussian thresholding, 120, 121, 137
GC ratio, 256, 257
Gene pool recombination (GPR), 1
GEneral NEural SImulation System

(GENESIS) simulator, 222–223
General public license (GPL), 222
Gene scanning, 2
Genetic algorithms (GAs)

computer-based search, 1
conventional operations, 6–7
genetic drift, 30–31
optimization, 1
population-based search methods, 30
P3PGA (see Parallel 3-parent genetic

algorithm (P3PGA))
two-parent genetic processes, 1

Gesture recognition, 81–85
Global elite, 3
Good features to track, 71
Google Cloud Platform (GCP), 202
Google Colaboratory platform, 187
GoogLeNet, 199, 200
Graphics Processing Units (GPUs), 202

H
Haar features, 122
Haar-like wavelet features, 122–124
Hamburg notation system, 63
Hand motion recognition, 81–86
Hand orientation, 114–115
Hand retrieval, 64–65

combined skin and motion image, 102–103
detection, hand, 95–97
ESD, 97
ESH (see Enhanced skin highlighting

(ESH))
face detection, 99
face histogram, 97–99
hand tracking

data association, object tracking,
104–106

sub-component, 103–104
tracking initialisation, 106
tracking update, 107

Index 275

input capture, 94
motion detection, 102
steps, process, 93, 94
sub-components, 93, 94

Hand segmentation
goal, 112
non-oriented bounding box, 112
segmented hands, 113
sub-component, 112

Hand shape and finger-spelling recognition
ASL, 77
machine learning approaches, 79–81
pre-selected and recognised, 77
rule-based approaches, 78–79
single orientation, 77

Hand shape recognition, 86, 114–115
Hand tracking, 86

applications, 70
object detection/tracking, 70
tracking a single hand

CAMShift tracking algorithm, 73
Frame differencing, 73
HSV colour space, 73
Kalman filters, 73, 74
LBPs operator, 73
LK optical flow tracking approach, 71
single cue, 72
skin clusters, 71
skin probability, 72
static skin detection model, 71
system in action, 71–72
visual results, 72, 73

tracking both hands
computational complexity and

efficiency, 76
edge detection, 74
Kalman filters, 74
management of self-occlusions, 74
motion forecasting method, 76
motion, texture and colour features, 74
multi-cue approach, 74
non-parametric skin detection

procedure, 75
sign language manual parameter

recognition system, 76
system in action, 74–75
visual results, 74–75

Handwritten digit recognition
classification accuracy, 220
excitatory and inhibitory neurons, 219
homeostasis, 219
MNIST dataset, 219
neuron model architecture, 218
pixel’s intensity, 219

STDP rules, 219
unsupervised learning, 218

“Hebbian theory”, 140
Hidden Markov models (HMMs), 82, 87, 257
Histogram-based skin detection, 69
Histogram of oriented gradients (HOGs), 79,

81, 87, 113, 127–129
Hodgkin-Huxley (HH) model, 208
HSV colour space, 73
Hyperparameters, 151

I
IBM TrueNorth, 223–224
Image classification

HOG, 127, 129
SVM (see Support vector machines

(SVMs))
Image inversion, 120–121
ImageNet competition, 199
ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), 197, 199, 200
Image processing

FaceNet, 171
lighting variations, 183–185
skin detection (see Skin detection)

Image segmentation
adaptive Gaussian thresholding, 120–121
cross correlation template matching,

121–122
description, 120
image inversion, 120–121
Viola–Jones (see Viola–Jones face

detection)
Instruction tightly coupled memory (ITCM),

225
Integrate and fire (IF) model, 209

J
Jacobian matrix, 148
jDE algorithms, 57, 58

K
Kalman filters, 73, 74
Kernel function, 133
Kernel trick, 133
k-nearest neighbours (kNNs) classifier, 80

L
Labeled Faces in the Wild (LFW)

CNN models, 179
with data augmentation, 191

276 Index

Labeled Faces in the Wild (LFW) (cont.)
facial recognition systems, 190
without data augmentation, 191

Lagging phase angle, 29
Lambert reflectance model, 183, 185, 193
Large frequent itemsets, 235
Leaky integrate and fire (LIF) model

activation and refractory modes, 210
input current pulses, 211
neuron membrane voltage, 209
presynaptic neuron, 211, 214
spike’s amplitude, 212
STDP learning rule, 214

Learning process, PBIL, 45
Learning rate, 45, 147

AdaDelta, 165–166
AdaGrad, 164–165
hyperparameter, 164
learning process, 45

Lighting variation
cosine function, 185
illumination variation, 183, 184
intensities, 184–185
3D triangulation, 183–184

Linear algebra, 35
Linearization, 33–34
LK optical flow tracking approach, 71
Local binary patterns (LBPs), 73, 81
Local binary sub-patterns (LBsP), 81
Local elite, 3
Loss function

based on angular distances
AAML, 164
A-softmax loss, 164
LMCL, 164
L-softmax loss, 163

center and contrastive center loss, 160–161
contrastive loss, 159–160
cross-entropy loss, 157–159
triplet loss, 161–163

Low frequency oscillations, 29

M
Machine learning, 197

approaches, 79–81
deep learning (see Deep learning)
kNN, 155

Manual parameter representation and
recognition (MPRR)

feature representation, 113–114
FSM, 109–110
hand orientation and shape recognition,

114–115

hand segmentation, 112–113
hold detection methodology, 107, 109–111
sign language manual parameters, 108–109
SWML, 107, 115
two-stage process, 107

Manual parameters, 64, 65, 76
Mathematical neuron models

conductance-based model, 214–215
IF model, 209
LIF model, 209–214

McCulloch–Pitts model (MCP), 140
MeanShift, 74
MegaFace, 173, 179
“Merging” technique, 234, 235
Message passing interface (MPI), 222
Minimal cost, 3, 10–13
MNIST dataset, 219
Modal analysis, eigenvalues, 34–36
Monocular-view approaches, 64
Morphological operations, 72, 78, 101
Motion detection, 73, 86

description, 125
fitness value, 126
Gaussian components, 126–127
pixel’s probability distribution, 125
“significance”, 125

Motion forecasting method, 76
“Moving skin” image, 94, 103
Multi-class SVM

DAG, 135–136
n-fold cross-validation, 136
one-versus-all, 134
one-versus-one, 134–135

Multidimensional sigmoid, 156
Multilayer perceptron (MLP), 81

with hidden layers, 145
SLP, 144
training process

chain rule, 148
description, 146–147
gradient descent, 147
input and activation functions, 146
learning rate, 147
mathematical notation, 145–146
“minibatch” propagation, 148
MSE, 147
stochastic, 148

Multi-objective particle swamp optimisation
(MOPSO), 80

Multi-parent recombination mechanisms,
1–2

Multi-population, 3, 22
Mutant vector, 38–39
Mutation

Index 277

base vector, 39
DE/best/1, 39
DE/best/2, 39–40
definition, 38
DE/local-to-best/2, 40
DE/rand/1, 39
DE/rand/2, 40
difference vector, 39
mutant vector, 38–39

N
Neocognitron, 140
NEST simulator, 223
“Network within network”, 199
NeuroGrid, 224–225
Neurons

artificial neural networks, 139
CNN (see Convolutional neural networks

(CNN/ConvNet))
with dendrites and axons, 141
“Hebbian theory”, 140
MCP, 140
neocognitron, 140
network enhancements

loss function (see Loss function)
probability outputs with softmax,

156–157
perceptron, 141

NEURON simulator, 222
Non-parametric skin detection, 68–70
Normalization, 172
Novel hole-filling (NHF), 100–102
Nucleotides, 256–259, 261

O
Object detection/tracking, 70
Obligations, 255
Optimal hyperplane, 129, 130, 133
Optimization

DE, 38, 41
learning rate, 164–166
MVMO, 9
PBIL, 1, 43
SMIB system, 50
stabilizers parameters, 30
SVM, 155

Otsu thresholding, 100
Overlearning, 151, 167, 169

P
Padding, 153
Parallel direct search method, 36

Parallel 3-parent genetic algorithm (P3PGA)
CEC-2014, 9–10, 23–25
change matrix, 5
computer implementation, 7, 8
4-digit quantity, 3–4
gene change, 5
generation number vs. fitness, 7, 9
local and global elite, 3, 7
in medical science, 2
minimal cost route evaluation (see Wireless

mesh networks (WMNs))
mitochondrial change, 3
number of functions, 10, 11
parameter values, 3–5
3-parent child, 2
population after crossover and mutation, 7
populations, individuals and fitness, 5–6
pseudocode, 3, 4
single-point crossover operation, 6
three-parent populations, 5

Parametric skin detection, 67–68, 82
Particle filters, 74
Particle swarm optimization (PSO), 31
Perceptron, 140, 141
Point clouds, 181, 182
Polygonal meshes, 181–182
Population-based incremental learning (PBIL)

binary encoding, 44
disadvantage, 31
EGA algorithm, 31
flowchart, PSS design, 46, 48
learning process, 45
mutation, 44
optimal PSS parameters, 45
parameters, 46, 49
PSS parameters, 31
PVs, 43, 44
search space, 43
termination, 45
user-defined inputs, 46

Power demand, 29
Power systems stabilizers (PSS)

adaptive DE to PSS design
CDE, 57
mutation process, 57
SMIB system, 57

conventional, 30
and electrical power systems, 29–30
multimachines system, 30
parameters, 46, 57, 58
PSO, 31
SA, 31
SMIB (see Single machine to infinite bus

(SMIB))

278 Index

Power systems stabilizers (PSS) (cont.)
system configurations, 45–46
system open-and closed-loop eigenvalues,

57, 59
TAM (see Two-area multimachine (TAM))

Principal component analysis (PCA), 170, 181,
186

PRNet (position map regression network), 187
Probability vectors (PVs), 43, 44
Protein secondary structure prediction

binary classification, 245
dichotomous/binary classification, 245
GOR, 251–252
protein shape classification, 246
ROC (see Receiver operating characteristics

(ROC))
sensitivity and specificity

classification, 246
contingency table, 246
C structures, 247
cut-off threshold, 247
error cost, 248, 249
non-C structures, 247
normal and abnormal structures, 248
optimum cut point, 249

Python script, 222
PyTorch, 202

R
Radial basis function (RBF), 133, 134,

143
Random decision forest (RDF), 79
RBF kernel, 133, 134
Real datasets, 241
Real-valued genes, 6
Receiver operating characteristics (ROC)

AUC, 250
average sensitivity, 250
biological and medical decision-making,

245
construction, 245
false positive rate, 250
possibilities, 250
trade-off, 250

Reconfigurable on-line learning spiking
(ROLLS), 224

Recurrent neural networks (RNNs), 197
Regularization, 169
ReLU (rectified linear unit) function, 142, 149,

150, 160, 162, 189
ReLU rectification, 200
Routing metric, 11
Rule-based approaches, 78–79

S
Segmentation, hand, 112–113
Self-adaptive differential evolution (SaDE),

42–43
Shape recognition, 119, 134
Sign language recognition

assumptions, 65
auxiliary approaches, 64
capturing, 64
computer-readable textual format, 63
contactless approaches, 64
gesture input, 63
hand retrieval, 64–65 (see also Hand

retrieval)
hand shape and finger-spelling, 77–81
manual parameter representation, 64, 65
monocular-view approaches, 64
MPRR (see Manual parameter

representation and recognition
(MPRR))

parameters, 64
skin detection, 65–70
transcription system, 63

SignWriting, 115
SignWriting Markup Language (SWML),

107–109, 115, 116
Similar looking LFW (SLLFW), 174
Simulated annealing (SA), 31
Single cue, 72
Single-layer perceptron (SLP)

activation functions, 143
biological neuron, 141, 220, 224
formal specification, 141
Heaviside function, 142
logistic (or sigmoid) function, 142–143
perceptron, 141
potential, 142
RBF, 143
ReLU function, 142
tanh function, 143

Single machine to infinite bus (SMIB)
electromechanical modes, 50, 52
operating conditions, 46
PSS optimization

DE fitness curve, 50
parameters, 50, 51
PBIL fitness curve, 50, 51

synchronous generator, 46
system diagram, 46, 49

Single orientation, 77
Skin clusters, 71
Skin colour distribution, 69
Skin-coloured KLT features, 71
Skin detection, 86

Index 279

applications, 66
binary adaptation, 65
chromaticity, 65
non-parametric, 68–70
parametric, 67–68
static, 66–67

Skin probability, 72
Small signal stability, 32
SNNs hardware implementations

brain-inspired processors, 223
IBM TrueNorth, 223–224
neuroGrid, 224–225
real-time cognition tasks, 223
ROLLS, 224
SpiNNaker, 225

SNN simulation software
Brian2 python code, 221
Brian2 simulator, 220
GENESIS simulator, 222–223
hardware implementation, 221
NEST simulator, 223
NEURON simulator, 222
ODEs, 220
Python3 implementation, 221

Softmax classifier layer, 202
Softmax function, 157
South African Deaf, 63
South African Sign Language (SASL), 63, 64
SphereFace (2017), 172
Spike-timing-dependent plasticity (STDP)

differential equation, 217, 218
handwritten digit recognition, 218–220
postsynaptic, 216, 217
presynaptic, 216, 217
software simulator, 216

Spiking Neural Network Architecture
(SpiNNaker), 225

Spiking neural networks (SNNs)
differential equations, 208
hardware implementations, 223–225
mathematical models (see Mathematical

neuron models)
simulation software, 220–223
STDP (see Spike-timing-dependent

plasticity (STDP))
time-varying signals, 207

State-space representation, 32–33
Static skin detection, 66–67, 82
Stochastic universal sampling (SUS), 6
Support vector machines (SVMs)

classification, 80, 81
decision rule, 130
hyperplanes, 129
maximisation and minimisation, 132

multi-class (see Multi-class SVM)
“optimal hyperplane”, 129, 133
supervised machine learning, 115
two-class classification problem, 129, 130

Synthetic datasets, 241

T
Target vector, 40
Template-matching, see Rule-based approaches
Termination, DE

fixed number of generations, 42
limited time, 42
objective met, 41
population statistics, 42

Test time augmentation (TTA), 202–204
Texture-based feature descriptors, 81
3D face reconstruction

from a 2-D image, 181
point clouds, 181
polygonal meshes, 181–182
surface models, 181
3DMM, 182–183
UV-mapping and 3D face, 183

3D morphable models (3DMM), 182–183
Three-parent genetic algorithm (3PGA), 2, 3

See also Parallel 3-parent genetic algorithm
(P3PGA)

Torch library, 202
Tracking, hand

data association, object tracking, 104–106
initialisation, 106
sub-component, 103–104
update, 107

Training, MLP’s parameters, see Multilayer
perceptron (MLP)

Transaction identifier (TID), 232, 233
Transfer learning, 185–187, 201
Transition probability, 257, 261
Trellis, 258, 261
Trial vector, 40
Triplet loss function, 162, 171
Trivial prediction algorithm, 246
True negatives (TN), 247
True positives (TP), 247
Two-area multimachine (TAM)

generating units and ratings, 46
inter-area modes, 51, 53–55
operating conditions, 49
PSS optimization

DE fitness curve, 51, 53
parameters, 51, 54
PBIL fitness curve, 51, 53

system line diagram, 46, 49

280 Index

Two-parent genetic processes, 1
2-Parent populations, 3, 5, 11, 12

U
Underlearning, 151
Uniform crossover, 41
UV-mapping, 183

V
VGGFace2, 173
VGGFace (2015), 171
Viola–Jones face detection, 69, 99, 119, 120,

122
AdaBoost learning algorithm, 124–125
face detection approach, 122
Haar-like wavelet features, 122–124
hyperplane, 129

Viola–Jones face detector, 69
Viterbi algorithm, 256, 260

W
Wireless mesh networks (WMNs)

adjacency matrix, 11

architectural details, 13, 15
comparative performance of P3PGA

100 node client WMNs, 15–16
500 node client WMNs, 17–18
1000 node client WMNs, 18–19
2000 node client WMNs, 18–20
2500 node client WMNs, 20–21

end-to-end route, 11
genetic processes, 13
in MATLAB, 13
NDth node, 11–12
optimal cost route evaluation, 11, 14–15
overall performance, 21–22
route/path, 11
routing metric, 11
set of nodes/points, 10

Y
Yale Face Database B (YaleB), 180, 190–193
YouTubeFace (YTF), 171, 179

Z
Zernike Invariant Moments (ZIM), 81

	Preface
	Reference

	Contents
	Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless Mesh Networks
	1 Introduction
	2 P3PGA Algorithm
	3 Simulated Performance, Results, and Discussion
	4 P3PGA for Minimal Cost Route Evaluation
	5 Implementation and Performance of the Proposed Approach
	5.1 Comparative Performance of 100 Node Client WMNs
	5.2 Comparative Performance of 500 Node Client WMNs
	5.3 Comparative Performance of 1000 Node Client WMNs
	5.4 Comparative Performance of 2000 Node Client WMNs
	5.5 Comparative Performance of 2500 Node Client WMNs
	5.6 Overall Performance Considering all Networks

	6 Conclusions
	References

	Application of Evolutionary Algorithms to Power System Stabilizer Design
	1 Introduction
	1.1 Oscillations in Electrical Power Systems and Power Systems Stabilizers
	1.2 Algorithms for Parameter Optimization: Differential Evolution and Population-Based Incremental Learning

	2 Problem Statement
	2.1 Overview
	2.2 State-Space Representation
	2.3 Linearization
	2.4 Modal Analysis

	3 The Differential Evolution Algorithm
	3.1 Overview
	3.2 Detailed DE Algorithm Description
	3.2.1 Population Structure
	3.2.2 Initialization
	3.2.3 Mutation
	3.2.4 Crossover
	3.2.5 Selection
	3.2.6 Termination

	3.3 Self-Adaptive DE Algorithms

	4 Population-Based Incremental Learning (PBIL)
	4.1 Overview
	4.2 Binary Encoding, Probability Vector, and Population
	4.3 Mutation
	4.4 Learning Process
	4.5 Termination

	5 Application of DE and PBIL to PSS Design
	5.1 Overview
	5.2 System Configurations
	5.3 Single Machine Infinite Bus System: Results of Optimization
	5.4 Two-Area Multimachine System: Results of Optimization
	5.5 Sensitivity of Differential Evolution to Algorithm Control Parameters.
	5.5.1 Effects of F and CR Parameters on DE Convergence
	5.5.2 Effect of Population Size

	5.6 Application of Adaptive DE to PSS Design
	5.7 Performance Summary

	6 Chapter Summary
	 References

	Automatic Sign Language Manual Parameter Recognition (I): Survey
	1 Background and Motivation
	2 Skin Detection
	2.1 Static Skin Detection
	2.2 Parametric Skin Detection
	2.3 Non-parametric Skin Detection

	3 Hand Tracking
	3.1 Approaches to Tracking a Single Hand
	3.2 Approaches to Tracking Both Hands

	4 Hand Shape and Finger-spelling Recognition
	4.1 Rule-Based Approaches
	4.2 Machine Learning Approaches

	5 Hand Motion/Gesture Recognition
	6 Summary and Conclusions
	References

	Automatic Sign Language Manual Parameter Recognition (II): Comprehensive System Design
	1 Introduction
	2 Hand Retrieval
	2.1 Input Capture
	2.2 Hand Detection
	2.3 Skin Detection
	2.4 Face Detection
	2.5 Face Histogram Computation
	2.6 Enhanced Skin Highlighting Principle and Its Application to the Left and Right Hands
	2.7 Computation of Enhanced Histograms for the Hands and Integration into the Face Histogram
	2.8 Enhanced Skin Highlighting for the Final Skin Image
	2.9 Motion Detection
	2.10 Combination of Skin and Motion Images
	2.11 Hand Tracking
	2.11.1 Data Association for Object Tracking
	2.11.2 Tracking Initialisation
	2.11.3 Tracking Update

	3 Manual Parameter Representation and Recognition
	3.1 Hold Detection for Motion Representation
	3.1.1 Determining When the Hand Starts Moving
	3.1.2 Determining Stops or Changes in Direction of the Hand

	4 Hand Segmentation
	5 Feature Representation
	6 Hand Orientation and Shape Recognition
	7 SignWriting Lookup and Transcription
	8 Summary
	References

	Computer Vision Algorithms for Image Segmentation, Motion Detection, and Classification
	1 Introduction
	2 Image Segmentation
	2.1 Adaptive Gaussian Thresholding and Image Inversion
	2.2 Cross Correlation Template Matching
	2.3 Viola–Jones Face Detection
	2.3.1 Haar-Like Wavelet Features and Their Computation
	2.3.2 Integral Image Representation for Haar-Like Wavelet Computation
	2.3.3 Selection of Features Using AdaBoost and Arrangement into a Rejection Cascade

	3 Motion Detection Using Gaussian Mixture Modeling
	4 Feature Representation Using the Histogram of Oriented Gradients Feature Descriptor
	5 Support Vector Machine Classification
	5.1 Support Vector Machine Classification Principle
	5.2 Mapping onto Higher-Dimensional Spaces
	5.3 Multi-Class SVM Classification Techniques
	5.3.1 One-Versus-All
	5.3.2 One-Versus-One
	5.3.3 Directed Acyclic Graph Support Vector Machine

	5.4 n-Fold Cross-Validation

	6 Conclusion
	References

	Overview of Deep Learning in Facial Recognition
	1 Introduction
	2 Neural Nets: Basic Structure and Function
	2.1 History
	2.2 Basic Concepts and Constructs in Deep Learning
	2.2.1 Single-Layer Perceptron
	2.2.2 The Multilayer Perceptron
	2.2.3 Training of MLP's

	2.3 Underlearning and Overlearning
	2.4 Convolutional Neural Networks (CNN)
	2.4.1 Convolutional Layers
	2.4.2 Guiding Principles of Convolutional Layer Design
	2.4.3 CNN Layer Hyperparameters: Window Size, Depth, Stride, and Padding
	2.4.4 Pooling
	2.4.5 Classifiers on CNN Outputs

	3 Neural Net Enhancements and Optimizations
	3.1 Producing Probability Outputs with Softmax
	3.2 Loss Functions
	3.2.1 Cross-Entropy Loss
	3.2.2 Contrastive Loss
	3.2.3 Center Loss and Contrastive Center Loss
	3.2.4 Triplet Loss
	3.2.5 Loss Functions Based on Angular Distances

	3.3 Optimization of Learning Rate
	3.3.1 Adaptive Gradient Descent (AdaGrad)
	3.3.2 Delta Adaptive Gradient Descent (AdaDelta)

	3.4 Enhanced Training Techniques
	3.4.1 Bagging
	3.4.2 Boosting
	3.4.3 Dropout

	4 Facial Recognition
	4.1 Convolutional Neural Net Models for Facial Recognition
	4.1.1 DeepFace
	4.1.2 DeepID (2015)
	4.1.3 FaceNet (2015)
	4.1.4 VGGFace (2015)
	4.1.5 SphereFace (2017)
	4.1.6 CosFace (2018)
	4.1.7 ArcFace (2018)

	4.2 Facial Recognition Without Constraint Using Deep Learning
	4.2.1 Data Variability Issues

	4.3 Facial Recognition Datasets
	4.3.1 Labeled Faces in the Wild (LFW)
	4.3.2 CASIA-WebFace
	4.3.3 VGGFace and VGGFace2
	4.3.4 Similar Looking Labeled Faces in the Wild (SLLFW)

	5 Conclusion
	References

	Improving Deep Unconstrained Facial Recognition by Data Augmentation
	1 Introduction
	2 Facial Recognition System Design Elements
	2.1 Overview
	2.2 Data Augmentation
	2.2.1 Data Augmentation Overview
	2.2.2 3-D Face Reconstruction
	2.2.3 Lighting Variation

	2.3 CNN Training for Classification
	2.3.1 Overview
	2.3.2 Features Extraction

	3 Experimental Setup
	3.1 Computational Platform
	3.2 Description of CNN Model
	3.2.1 Inputs
	3.2.2 Filters
	3.2.3 Subsampling (Pooling)

	3.3 Datasets Used
	3.3.1 Labeled Faces in the Wild (LFW)
	3.3.2 ORL Database
	3.3.3 Yale Face Database B

	3.4 Experimental Training and Testing Configurations
	3.4.1 Experiment 1: LFW Without Data Augmentation
	3.4.2 Experiment 2: LFW with Data Augmentation

	4 Results and Interpretation
	4.1 Evaluation on ORL
	4.2 Evaluation on YaleB

	5 Conclusion
	References

	Improved Plant Species Identification Using Convolutional Neural Networks with Transfer Learning and Test Time Augmentation
	1 Introduction
	2 Convolutional Neural Networks
	3 CNN Architectures
	4 Experimental Setup
	5 Results and Discussion
	6 Summary
	 References

	Simulation of Biological Learning with Spiking Neural Networks
	1 Introduction
	2 Mathematical Neuron Models
	2.1 Integrate and Fire (IF) Model
	2.2 Leaky Integrate and Fire (LIF) Model
	2.3 Conductance-Based Neuron Model

	3 Spike-time-dependent plasticity learning algorithm
	3.1 Description of STDP
	3.2 Handwritten digit recognition using STDP

	4 SNN Simulation Software
	4.1 Overview
	4.2 Brian2 Simulator
	4.3 NEURON Simulator
	4.4 GENESIS Simulator
	4.5 NEST Simulator

	5 Hardware Implementations
	5.1 Overview
	5.2 IBM TrueNorth
	5.3 Reconfigurable On-Line Learning Spiking (ROLLS) neuromorphic processor
	5.4 NeuroGrid
	5.5 SpiNNaker

	6 Conclusion
	References

	An Efficient Algorithm for Mining Frequent Itemsets and Association Rules
	1 Introduction
	1.1 Problem Decomposition

	2 Outline of the Binary-Based ARM Algorithm
	2.1 Binary Data Representation
	2.2 Masks and Bitwise Operations
	2.3 Itemset Pruning via Merging Operation
	2.4 Binary-Based Algorithm Description
	2.4.1 Top-Level Description
	2.4.2 Binary Data Representation
	2.4.3 Procedure for Finding Frequent 1-Itemsets
	2.4.4 Procedure for Generating Frequent Itemsets with Multiple Items
	2.4.5 Phase II: Extracting Association Rules

	2.5 Datasets
	2.6 Software and Hardware Specifications
	2.7 Execution Time Benchmarking
	2.8 Memory Usage Benchmarking
	2.9 Summary

	References

	Receiver Operating Characteristic Curves in Binary Classification of Protein Secondary Structure Data
	1 Introduction
	2 Classification of Protein Shape
	3 Sensitivity and Specificity
	4 Receiver Operating Characteristics (ROC) Curves
	5 A Practical Example: Assessment of NN-GORV-II Algorithm for Structure Identification
	6 Summary
	References

	Budget Reconciliation Through Dynamic Programming
	1 Introduction
	1.1 Discrepancies in Military Accounting
	1.2 Dynamic Programming Overview, and a Simple Example from Biochemistry
	1.2.1 Budget Reconciliation with Dynamic Programming

	2 Methods
	2.1 Dynamic Programming Algorithm Step-by-Step Description
	2.2 Code Structure
	2.2.1 Initialization
	2.2.2 Generation of Simulated Commits and Obligations
	2.2.3 Loop over N: Dynamic Programming Process
	2.2.4 Recovery of Solution and Output of Statistics

	3 Results
	3.1 Simulation
	3.2 Application of Algorithm to Real Budget Data

	4 Conclusions
	References

	Index

