
Chapter 9
DC Optimization Based Clustering
Algorithms

9.1 Introduction

This chapter presents the clustering algorithms based on the DC optimization
approaches. In Chap. 4, the clustering problems are formulated using the DC
representation of their objective functions. Using this representation we describe
three different DC optimization algorithms.

For simplicity we use the following unconstrained DC programming problem to
represent both the clustering and the auxiliary clustering problems (4.20) and (4.34):

{
minimize f (x) = f1(x) − f2(x)

subject to x ∈ R
n,

(9.1)

where both f1 and f2 are finite valued convex functions on R
n. As mentioned before,

if the squared Euclidean norm is used to define the similarity measure, then the
function f1 is smooth and the function f2 is, in general, nonsmooth. However, with
other two similarity measures d1 and d∞, both functions are nonsmooth. In this
chapter, we only consider the first case and present three different algorithms to
solve the clustering problem (9.1).

We start with the incremental nonsmooth DC clustering algorithm [36]. This
algorithm combines the MSINC-CLUST with the algorithm for finding inf-stationary
points given in Fig. 3.7. The latter algorithm, in its turn, applies the NDCM
presented in Fig. 3.8.

Then we present the DC diagonal bundle clustering algorithm [170]. Similar
to the incremental DC clustering algorithm, the DC diagonal bundle clustering
algorithm is a combination of the MSINC-CLUST and the NSO methods. However,
here we apply the DCD-Bundle given in Fig. 3.6 instead of the NDCM.

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_9

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_9

226 9 DC Optimization Based Clustering Algorithms

Finally, we describe the incremental DCA for clustering [20]. The algorithm is a
combination of the DCA (see Fig. 3.9) and the MSINC-CLUST.

9.2 Incremental Nonsmooth DC Clustering Algorithm

The incremental nonsmooth DC clustering algorithm (NDC-CLUST) is a combina-
tion of three different algorithms. The MSINC-CLUST is used to solve the clustering
problem globally. At each iteration of this algorithm the algorithm for finding inf-
stationary points is applied to solve both the clustering and the auxiliary clustering
problems. In its turn, the later algorithm uses the NDCM to find Clarke stationary
points of these problems. The flowchart of NDC-CLUST is given in Fig. 9.1.

Next, we present a detailed description of the NDC-CLUST. For a given point
x ∈ R

n and a number λ > 0, consider the set

Q1(x, λ) = conv
{∇f1(x + λg) : g ∈ S1

}
,

where S1 is the sphere of the unit ball. It is obvious that the set Q1(x, λ) is convex
and since the function f1 is smooth it is also compact for any x ∈ R

n and λ > 0.
Recall that a point x∗ ∈ R

n is called (λ, δ)-inf-stationary of the problem (9.1) if
and only if

∂f2(x∗) ⊂ Q1(x∗, λ) + B(000; δ),

and (λ, δ)-stationary if there exists ξ2 ∈ ∂f2(x∗) such that

ξ2 ∈ Q1(x∗, λ) + B(000; δ).

If a point x ∈ R
n is not a (λ, δ)-stationary point, then ‖ξ2 − z‖ ≥ δ for all

ξ2 ∈ ∂f2(x) and z ∈ Q1(x, λ). Take any ξ2 ∈ ∂f2(x) and construct the set

Q̃(x, λ, ξ2) = Q1(x, λ) − ξ2,

then we have

f (x + λu) − f (x) ≤ λ max
z∈Q̃(x,λ,ξ2)

zT u for all u ∈ R
n.

It is shown in Proposition 3.9 that if the point x is not a (λ, δ)-stationary, then
the set Q̃(x, λ, ξ2) can be used to find a direction of sufficient decrease of the
function f at x. However, the computation of this set is not always possible. Next,
we give a step by step algorithm which uses a finite number of elements from
Q̃(x, λ, ξ2) to compute descent directions, (λ, δ)-stationary points, and eventually
Clarke stationary points of the problem (9.1). The flowchart and the more detailed

9.2 Incremental Nonsmooth DC Clustering Algorithm 227

Fig. 9.1 Incremental nonsmooth DC clustering algorithm (NDC-CLUST)

228 9 DC Optimization Based Clustering Algorithms

description of this method (NDCM) are given in Sect. 3.6. Here, we use x1 for
the starting point; ε > 0 for the stopping tolerance; εL and εR for line search
parameters.

The convergence results for Algorithm 9.1 are given in Sect. 3.6. The next two
propositions recall the most important results in light of the clustering problem.

Proposition 9.1 Algorithm 9.1 finds (λ, δ)-stationary points of the clustering and
the auxiliary clustering problems in at most hmax iterations where

hmax =
⌈

f (x1)

λδεR

⌉
.

Proof The proof follows from Proposition 3.10 and the fact that f ∗ =
inf{f (x), x ∈ R

n} > 0 for both the clustering and the auxiliary clustering problems.

�

Proposition 9.2 Assume that ε = 0. Then all limit points of the sequence {xh}
generated by Algorithm 9.1 are Clarke stationary points of the clustering or the
auxiliary clustering problems.

An algorithm for finding inf-stationary points of the problem (9.1) is presented
next (see also Fig. 3.7). Assume that x∗ is a Clarke stationary point found by
Algorithm 9.1. If the subdifferential ∂f2(x∗) is a singleton, then according to
Proposition 3.7 the point is also an inf-stationary point.

9.2 Incremental Nonsmooth DC Clustering Algorithm 229

Algorithm 9.1 Nonsmooth DC algorithm

Input: x1 ∈ R
n, ε > 0, λ1 > 0, δ1 > 0, εL ∈ (0, 1) and εR ∈ (0, εL].

Output: Approximate Clarke stationary point xh.

1: (Outer iteration initialization) Set h = 1.

2: (Inner iteration initialization) Set s = 1 and xhs = xh. Choose any g ∈ S1 and compute
∇f1(xhs + λhg) and ξ2,hs

∈ ∂f2(xhs). Set

Q̄s
h = {∇f1(xhs + λhg) − ξ2,hs

}
.

3: (Stopping criterion) If λh < ε and δh < ε, then stop with xh as a final solution.
4: (Minimum norm) Compute

zhs = argmin
z∈Q̄s

h

‖z‖2.

5: (Inner iteration termination) If ‖zhs ‖ ≤ δh, then update λh+1 and δh+1. Set xh+1 = xhs , h =
h + 1 and go to Step 2.

6: (Search direction) Compute the search direction

dhs = − zhs

‖zhs ‖
.

7: If f (xhs + λhdhs) − f (xhs) > −εLλh‖zhs ‖, then go to Step 9.

8: (Serious step) Construct xhs+1 = xhs + ths dhs , where the step size ths is computed as

ths = argmax
{
t ≥ 0 : f (xhs + tdhs) − f (xhs) ≤ −εRt‖zhs ‖

}
.

Choose any g ∈ S1 and compute ∇f1(xhs+1 + λhg) and ξ2,hs+1
∈ ∂f2(xhs+1). Set

Q̄s+1
h =

{
∇f1(xhs+1 + λhg) − ξ2,hs+1

}
,

s = s + 1 and go to Step 4.

9: (Null step) Compute ∇f1(xhs + λhdhs). Update the set

Q̄s+1
h = conv

{
Q̄s

h ∪ {∇f1(xhs + λhdhs) − ξ2,hs

}}
.

Set xhs+1 = xhs , s = s + 1 and go to Step 4.

If the subdifferential ∂f2(x∗) is not a singleton, Corollary 3.3 implies that the
point x∗ is not inf-stationary. Then according to Proposition 3.6 a descent direction
from this point can be computed which in turn allows us to find a new starting point
for Algorithm 9.1.

230 9 DC Optimization Based Clustering Algorithms

Algorithm 9.2 Finding inf-stationary points of clustering problems

Input: x1 ∈ R
n, εA > 0 and εT ∈ (0, 1/2].

Output: Approximate inf-stationary point xj .

1: (Initialization) Set j = 1.

2: (Clarke stationary point) Apply Algorithm 9.1 starting from the point xj to find Clarke
stationary point x∗ with the optimality tolerance εA.

3: (Stopping criterion) If

∂f2(x∗) ⊂ {∇f1(x∗)
} + B(000; εA),

then stop: x∗ is an approximate inf-stationary point.

4: (Descent direction) Compute subgradients ξ1
2, ξ

2
2 ∈ ∂f2(x∗) such that

r = max
i=1,2

‖ξ i
2 − ∇f1(x∗)‖ ≥ εA,

and the direction uj = −v/‖v‖ at x∗, where

v = argmax
i=1,2

{
‖∇f1(x∗) − ξ i

2‖
}
.

5: (Step size) Compute xj+1 = x∗ + tj uj where

tj = argmax
{
t ≥ 0 : f (x∗ + tuj) − f (x∗) ≤ −εT tr

}
.

Set j = j + 1 and go to Step 2.

Note that if the subdifferential ∂f2(x) is not singleton, then the two subgradients
ξ1

2, ξ
2
2 ∈ ∂f2(x), such that ξ1

2 = ξ2
2 can be computed as described in Remarks 4.2

and 4.6. In addition, the following Lemmas show that the gradients of functions f̄k1
and fk1, given respectively in (4.33) and (4.19), satisfy Lipschitz condition.

Lemma 9.1 The gradient of the function f̄k1 satisfies Lipschitz condition on R
n

with the constant L = 2.

Proof Recall that the gradient of the function f̄k1 at a point y ∈ R
n is

∇f̄k1(y) = 2

m

∑
a∈A

(y − a).

Then for any y1, y2 ∈ R
n we get

∇f̄k1(y1) − ∇f̄k1(y2) = 2(y1 − y2).

Therefore,

‖∇f̄k1(y1) − ∇f̄k1(y2)‖ = 2‖y1 − y2‖,

9.2 Incremental Nonsmooth DC Clustering Algorithm 231

that is the gradient ∇f̄k1 satisfies the Lipschitz condition on R
n with the constant

L = 2.
�

Lemma 9.2 The gradient of the function fk1 satisfies Lipschitz condition on R
nk

with the constant L = 2.

Proof The proof is similar to that of Lemma 9.1.
�
Considering clustering problems we can now get the following result.

Proposition 9.3 Algorithm 9.2 terminates after the finite number of iterations at an
approximate inf-stationary point of the (auxiliary) clustering problem.

Proof The proof follows directly from Proposition 3.8 and Lemmas 9.1 and 9.2.
�
Now we are ready to give the NDC-CLUST for solving the problem (9.1). The

NDC-CLUST first uses Algorithm 7.2 to generate a set of promising starting points
for the auxiliary clustering problem. In addition, Algorithm 9.2 is utilized to solve
both the clustering and the auxiliary clustering problems. This algorithm, in its turn,
applies Algorithm 9.1 to find Clarke stationary points of the clustering problems.
The NDC-CLUST is described in Algorithm 9.3.

Algorithm 9.3 Incremental nonsmooth DC clustering algorithm (NDC-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l+1. If l > k, then stop. The k-partition problem has been solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 ⊂ R

n of starting points for solving the auxiliary clustering
problem (4.34).

4: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 9.2 to
solve the auxiliary clustering problem (4.34) starting from each point y ∈ Ā3. This algorithm
generates a set Ā5 of starting points for the lth cluster center.

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 9.2 to solve
the clustering problem (4.20) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

232 9 DC Optimization Based Clustering Algorithms

Remark 9.1 Algorithm 9.3 can be used to solve clustering problems with the
distance functions d1 and d∞ if we apply the partial smoothing to the functions fk

and f̄k , described in Sects. 4.7.4 and 4.7.5, respectively (see [23]). More specifically,
if we approximate the first component of the (auxiliary) cluster function by applying
a smoothing technique then Algorithm 9.3 becomes applicable to solve clustering
problems with the distance functions d1 and d∞.

9.3 DC Diagonal Bundle Clustering Algorithm

In this section, we describe the DC diagonal bundle clustering algorithm (DCDB-
CLUST) for solving the problem (9.1) in large data sets [170]. The algorithm is a
combination of three different algorithms. The MSINC-CLUST is used to solve the
clustering problem globally. At each iteration of this algorithm a modified version
of the algorithm for finding inf-stationary points (Algorithm 9.2) is applied to solve
both the clustering and the auxiliary clustering problems. The later algorithm uses
the DCD-BUNDLE to find Clarke stationary points of these problems. The flowchart
of DCDB-CLUST is given in Fig. 9.2.

The DCD-BUNDLE is developed specifically to solve the clustering problems
that are formulated as the nonsmooth DC optimization problem. The flowchart and
more details of this method are given in Sect. 3.5. Here, we give the algorithm
in its step by step form. We use x1 for the starting point; εc > 0 for the stopping

9.3 DC Diagonal Bundle Clustering Algorithm 233

Fig. 9.2 DC diagonal bundle clustering algorithm (DCDB-CLUST)

234 9 DC Optimization Based Clustering Algorithms

Algorithm 9.4 DC diagonal bundle algorithm

Input: x1 ∈ R
n, εc > 0, εL ∈ (0, 1/2), εR ∈ (εL, 1), m̂c ≥ 1 and itype ∈ {0, 1}.

Output: Clarke stationary point xh.

1: (Initialization) Set D1,1 = I . Compute f (x1), ∇f1,1 = ∇f1(x1) and ξ2,1 ∈ ∂f2(x1). If
itype = 1, set ε = εc. Otherwise, set ε = 103εc. Set h = 1.

2: (Serious step initialization) Set ξ̃h = ξh = ∇f1,h − ξ2,h and β̃h = 0. Set m = h.

3: (Convex direction) Compute dh = −D1,hξ̃h.

4: (Stopping criterion) Calculate wh = ξ̃
T

h D1,hξ̃h + 2β̃h. If wh < ε, then stop with xh as a final
solution.

5: (Auxiliary step) Evaluate

yh+1 = xh + dh, ∇f1,h+1 = ∇f1(yh+1) and ξ2,h+1 ∈ ∂f2(yh+1).

Set sh = dh , u1,h = ∇f1,h+1 − ∇f1,m, uh = ξ2,h+1 − ξ2,m, and add these values to the
correction matrices Sh, U1,h, and U2,h (delete the earliest values if |Sh| = |U1,h| = |U2,h| >

m̂c).

6: (Serious step) If

f (yh+1) − f (xh) ≤ −εLwh,

then compute D1,h+1 using Sh and U1,h. Set xh+1 = yh+1, f (xh+1) = f (yh+1) and go to
Step 2.

7: (Aggregation) Compute

αh+1 = f (xh) − f (yh+1) + (∇f1,h+1 − ξ2,h+1)
T dh,

and t ∈ (0, 1] such that ξ t
h+1 ∈ ∂f (xh + tdh) satisfies the condition

−βh+1 + (ξ t
h+1)

T dh ≥ −εRwh,

with βh+1 given in (3.19). Determine multipliers λk
i ≥ 0 for all i ∈ {1, 2, 3}, ∑3

i=1 λh
i = 1

that minimize the function

ϕ(λ1, λ2, λ3) = (λ1ξm + λ2ξ
t
h+1 + λ3ξ̃h)T D1,h(λ1ξm + λ2ξ

t
h+1 + λ3ξ̃h)

+ 2(λ2βh+1 + λ3β̃h).

Set ξ̃
t

h+1 = λh
1ξm + λh

2ξ t
h+1 + λh

3 ξ̃h and β̃h+1 = λh
2βh+1 + λh

3 β̃h.

8: (Null step) If m = h, then compute D1,h+1 using Sh and U1,h. Otherwise, set D1,h+1 = D1,h.
Two cases can occur.

(i) (Convex Null Step) If αh+1 ≥ 0, then set xh+1 = xh, h = h + 1 and go to Step 3.
(ii) (Concave Null Step) If αh+1 < 0, then compute D2,h+1 using Sh and U2,h. Set xh+1 =

xh, h = h + 1.

9: (Concave direction) Compute the smallest q ∈ (0, 1) such that the matrix qD1,h −(1−q)D2,h

remains positive semidefinite. Compute

dh = − (
qD1,h − (1 − q)D2,h

)
ξ̃h

and go to Step 4.

9.3 DC Diagonal Bundle Clustering Algorithm 235

tolerance; εL and εR for line search parameters; γ for the distance measure
parameter; m̂c for the maximum number of stored correction vectors used to form
diagonal updates. We also use itype to show the type of the problem, that is:

• itype = 0: the auxiliary clustering problem (7.4);
• itype = 1: the clustering problem (7.2).

The convergence properties of the DCD-BUNDLE are studied in Sect. 3.5.
Here, we recall the most important results for clustering problems. Note that
Assumptions 3.5–3.6 are trivially satisfied for both the cluster and the auxiliary
cluster functions.

Proposition 9.4 Assume εc = 0. If Algorithm 9.4 terminates at the hth iteration,
then the point xh is a Clarke stationary point of the (auxiliary) clustering problem.

Proposition 9.5 Assume εc = 0. Every accumulation point of the sequence {xh}
generated by Algorithm 9.4 is a Clarke stationary of the (auxiliary) clustering
problem.

If the function f2 in the problem (9.1) is smooth, then the point found by Algo-
rithm 9.4 is also inf-stationary. Otherwise, a slight modification of Algorithm 9.2 is
applied to find an inf-stationary point of the problem. This modification is given in
Algorithm 9.5.

Algorithm 9.5 Finding inf-stationary points of clustering problems

Input: x1 ∈ R
n, εA > 0 and εT ∈ (0, 1/2].

Output: Approximate inf-stationary point x∗.

1: (Initialization) Set j = 1.

2: (Clarke stationary point) Apply Algorithm 9.4 starting from the point xj to find the Clarke
stationary point x∗ with the optimality tolerance εA.

3: (Stopping criterion) If

∂f2(x∗) ⊂ {∇f1(x∗)
} + B(000; εA),

then stop: x∗ is an approximate inf-stationary point.

4: (Descent direction) Compute subgradients ξ1
2, ξ

2
2 ∈ ∂f2(x∗) such that

r = max
i=1,2

‖ξ i
2 − ∇f1(x∗)‖ ≥ εA,

and the direction uj = −v/‖v‖ at x∗, where

v = argmax
i=1,2

‖∇f1(x∗) − ξ i
2‖.

5: (Step size) Compute xj+1 = x∗ + tj uj where

tj = argmax
{
t ≥ 0 : f (x∗ + tuj) − f (x∗) ≤ −εT tr

}
.

Set j = j + 1 and go to Step 2.

236 9 DC Optimization Based Clustering Algorithms

If the subdifferential ∂f2(x) is not a singleton, then we can compute two different
subgradients ξ1

2, ξ
2
2 ∈ ∂f2(x) in Step 4 of Algorithm 9.5 (see Remarks 4.2 and 4.6).

In addition, in Lemmas 9.1 and 9.2, we proved that the gradients of functions f̄k1
and fk1 (see (4.20) and (4.34)) satisfy the Lipschitz condition. Then we get the
following convergence result for clustering problems.

Proposition 9.6 Algorithm 9.5 terminates after finite number of iterations at an
approximate inf-stationary point of the (auxiliary) clustering problem.

Proof The proof follows directly from Proposition 3.8 and Lemmas 9.1 and 9.2.
�
Next, we give the step by step description of the DCDB-CLUST.

Algorithm 9.6 DC diagonal bundle clustering algorithm (DCDB-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 ⊂ R

n of starting points for the auxiliary clustering problem (4.34).

4: (Computation of a set of starting points for the clustering problem) For each y ∈ Ā3 apply
Algorithm 9.5 to solve the auxiliary clustering problem (4.34) and find Ā5, a set of starting
points for the lth cluster center in the lth clustering problem (4.20).

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 9.5 to solve
the clustering problem (4.20) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

Remark 9.2 Similar to Algorithm 9.3, Algorithm 9.6 can be applied to solve
clustering problems with the distance functions d1 and d∞ if we apply the partial
smoothing to the cluster function fk and the auxiliary cluster function f̄k .

9.4 Incremental DCA for Clustering 237

9.4 Incremental DCA for Clustering

In this section, we describe an incremental DCA for clustering (IDCA-CLUST) to
solve the clustering problem (9.1) [20]. The IDCA-CLUST is based on the MSINC-
CLUST and the DCA, where the latter algorithm is utilized at each iteration of
the MSINC-CLUST to solve the clustering and the auxiliary clustering problems.
Figure 9.3 illustrates the flowchart of the IDCA-CLUST.

First, we recall the DCA for solving the unconstrained DC programming
problem (9.1) when the first DC component f1 is continuously differentiable.

Algorithm 9.7 DC algorithm

Input: Starting point x1 ∈ R
n.

Output: Critical point xh.

1: (Initialization) Set h = 1.

2: Compute ξ2,h ∈ ∂f2(xh).

3: (Stopping criterion) If ξ2,h = ∇f1(xh), then stop.

4: Find the solution xh+1 to the convex optimization problem

{
minimize f1(x) − ξT

2,h(x − xh)

subject to x ∈ R
n.

(9.2)

5: Set h = h + 1 and go to Step 2.

Next, we explain how this algorithm can be applied to solve the clustering and
the auxiliary clustering problems (9.1). We start with the clustering problem. Let
xh = (xh,1, . . . , xh,k) ∈ R

nk be a vector of cluster centers at the iteration h and
A1, . . . , Ak be the cluster partition of the data set A provided by these centers.

We discussed the subdifferentials of the functions f1 and f2 in Sect. 4.4. Here,
we recall them when the similarity measure d2 is used in these functions. In this
case, the function f1 is continuously differentiable and we have

∇fk1(x) = 2(x − ã), x ∈ R
nk,

where ã = (ā, . . . , ā) and ā = 1
m

∑m
i=1 ai .

For the subdifferential of the function f2, recall the function ϕa(x) and the set
R̃a(x), x ∈ R

nk , defined in (4.22) and (4.23), respectively:

ϕa(x) = max
j=1,...,k

k∑
s=1,s =j

d2(xs , a),

238 9 DC Optimization Based Clustering Algorithms

Fig. 9.3 Incremental DCA for clustering (IDCA-CLUST)

9.4 Incremental DCA for Clustering 239

and

R̃a(x) =
{
j ∈ {1, . . . , k} :

k∑
s=1,s =j

d2(xs , a) = ϕa(x)
}
.

Then we have

∂ϕa(x) = conv
{

2
(
x1 − a, . . . , xj−1 − a,000, xj+1 − a, . . . , xk − a

)
,

j ∈ R̃a(x)
}
,

and

∂fk2(x) = 1

m

∑
a∈A

∂ϕa(x).

Applying these formulas for subdifferentials, the subgradient ξ2,h ∈ ∂f2(xh) in
Step 2 of Algorithm 9.7 is

ξ2,h = 2

m

(∑
a∈A\A1

(xh,1 − a), . . . ,
∑

a∈A\Ak

(xh,k − a)
)

= 2

m

(
(m − |A1|)xh,1 − (mā − |A1|ā1), . . . ,

(m − |Ak|)xh,k − (mā − |Ak|āk)
)
,

where āl is the center of the cluster Al, l = 1, . . . , k and ā is the center of the whole
set A. In addition, the solution xh+1 = (xh+1,1, . . . , xh+1,k) to the problem (9.2) in
Step 4 of Algorithm 9.7 is

xh+1,t =
(

1 − |At |
m

)
xh,t + |At |

m
āt , t = 1, . . . , k,

and the stopping criterion in Step 3 of this algorithm can be given as

xh,t =
(

1 − |At |
m

)
xh,t + |At |

m
āt , t = 1, . . . , k.

In order to apply Algorithm 9.7 for solving the auxiliary clustering problem,
recall the sets Bi(y), i = 1, 2, 3, defined in (4.30) for p = 2 and y = xh ∈ R

n:

B1(xh) = {
a ∈ A : ra

l−1 < d2(xh, a)
}
,

B2(xh) = {
a ∈ A : ra

l−1 = d2(xh, a)
}
, and

240 9 DC Optimization Based Clustering Algorithms

B3(xh) = {
a ∈ A : ra

l−1 > d2(xh, a)
}
.

Then the subgradient ξ2,h ∈ ∂f2(xh) in Step 2 of Algorithm 9.7 is computed as

ξ2,h = 2

m

∑
a∈B1(xh)

(xh − a), xh ∈ R
n.

Furthermore, the solution xh+1 to the problem (9.2) in Step 4 is

xh+1 = 1

m

⎛
⎝|B1(xh)|xh +

∑
a∈B2(xh)∪B3(xh)

a

⎞
⎠ .

Finally, the stopping criterion in Step 3 of Algorithm 9.7 can be given by

∑
a∈B2(xh)∪B3(xh)

(xh − a) = 0.

These results demonstrate that there is no need to apply any optimization
algorithm to solve the problem (9.2) for both the DC clustering and the DC auxiliary
clustering problems. In both cases solutions can be expressed explicitly.

Proposition 9.7 All accumulation points of the sequence {xh} generated by Algo-
rithm 9.7 are Clarke stationary points of the problem (9.1) when d2 is used as a
similarity measure.

Proof Since the function f1 in the problem (9.1) with the similarity measure d2
is smooth the sets of critical points and Clarke stationary points of this problem
coincide (see Theorem 2.27 and Fig. 2.9).
�

Now, we are ready to design an IDCA-CLUST. This algorithm is based on
the MSINC-CLUST and the DCA. The IDCA-CLUST applies the MSINC-CLUST

for solving the clustering problem globally and the DCA is utilized at each
iteration of the MSINC-CLUST to solve both the clustering and the auxiliary
clustering problems. The step by step description of the IDCA-CLUST is given in
Algorithm 9.8.

Remark 9.3 Similar to Algorithms 9.3 and 9.6, we can apply Algorithm 9.2 in
Steps 4 and 5 of Algorithm 9.8. Then we obtain inf-stationary points of both the
clustering and the auxiliary clustering problems.

9.4 Incremental DCA for Clustering 241

Algorithm 9.8 Incremental DCA for clustering (IDCA-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 of starting points for solving the auxiliary clustering problem (4.34).

4: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 9.7 to
solve the auxiliary clustering problem (4.34) starting from each point y ∈ Ā3. This algorithm
generates a set Ā5 of starting points for the lth cluster center.

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 9.7 to solve
the clustering problem (4.20) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

	9 DC Optimization Based Clustering Algorithms
	9.1 Introduction
	9.2 Incremental Nonsmooth DC Clustering Algorithm
	9.3 DC Diagonal Bundle Clustering Algorithm
	9.4 Incremental DCA for Clustering

