
Chapter 8
Nonsmooth Optimization Based
Clustering Algorithms

8.1 Introduction

In Chap. 4, we formulated different optimization models of the clustering problem.
Using these models, one can apply various heuristics or optimization methods
to solve clustering problems. Algorithms considered in this chapter are based on
the NSO model of these problems. More specifically, we consider incremental
clustering algorithms where at each iteration the clustering and the auxiliary
clustering problems are solved by applying either heuristics like the k-means or
NSO algorithms [19, 22, 24, 26, 29, 33, 36, 170, 171].

We start with the description of the modified global k-means algorithm in
Sect. 8.2. This algorithm is an improvement of the GKM. The main difference
between these two algorithms is that the GKM uses only data points to find starting
cluster centers whereas the modified global k-means algorithm solves the auxiliary
clustering problem to compute them. In Sect. 8.3, we describe a further improvement
of the modified global k-means algorithm called the fast modified global k-means
algorithm. In addition, we discuss various procedures to reduce the computational
complexity of the modified global k-means algorithm.

Then, we introduce three incremental clustering algorithms where the LMBM,
the DGM, and the HSM are used to solve the clustering and the auxiliary clustering
problems. More precisely, the limited memory bundle method for clustering is
described in Sect. 8.4; the discrete gradient clustering algorithm is presented in
Sect. 8.5; and the smooth incremental clustering algorithm is given in Sect. 8.6.

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_8

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_8

202 8 Nonsmooth Optimization Based Clustering Algorithms

8.2 Modified Global k-Means Algorithm

In this section, we present the modified global k-means algorithm (MGKM) to solve
the clustering problem (7.2) where the similarity measure d2 is used [19, 21]. The
algorithm is the modified version of the GKM, and it is based on the incremental
approach. The flowchart of the MGKM is illustrated in Fig. 8.1.

Fig. 8.1 Modified global k-means algorithm (MGKM)

8.2 Modified Global k-Means Algorithm 203

The MGKM starts with the computation of the centroid of the whole data set.
Then a new cluster center is added at each iteration. More precisely, the auxiliary
clustering problem (7.4) is solved to compute a starting point for the lth center. The
new center together with the previous l−1 cluster centers is taken as a starting point
for solving the lth partition problem. The k-means Algorithm 5.1 is applied starting
from this point to find the lth partition of the data set.

Assume that (x1, . . . , xl−1), l ≥ 2, be a solution to the (l − 1)th clustering
problem. Let p = 2. Recall the sets S̄1 and S̄2 defined in (7.7) and (7.8), respectively.
Take any y ∈ S̄2 and consider the sets B̄12(y) and B̄3(y) given in (7.9). The algorithm
for finding a starting point for the lth cluster center involves Algorithm 5.1 and
proceeds as follows.

Algorithm 8.1 Finding a starting point

Input: Data set A and the solution (x1, . . . , xl−1) to the (l − 1)th clustering problem, l ≥ 2.
Output: Starting point for the lth cluster center.

1: For each a ∈ S̄2 ∩ A, compute the set B̄3(a), its center c and the value f̄l,a = f̄l (c) of the
auxiliary cluster function f̄l at the point c.

2: Compute

f̄l,min = min
a∈S̄2∩A

f̄l,a, ā = argmin
a∈S̄2∩A

f̄l,a,

and select the corresponding center c̄.

3: Compute the set B̄3(c̄) and its center.

4: Reassign data points and update the center of the set B̄3(c̄) until no more points escape or
return to this set. Let ȳ be the final value of c̄. Then ȳ is a starting point for the lth cluster
center.

In Steps 1 and 2 of Algorithm 8.1, a starting point is found to minimize the
auxiliary cluster function f̄l , given in (7.5). This point is chosen among all data
points that can attract at least one data point (see Step 1). For each such data point a,
the set B̄3(a) and its center are computed. Then the function f̄l is evaluated at these
centers, and the center that provides the lowest value of the function f̄l is selected
as a starting point to minimize the function f̄l .

In Step 4 of Algorithm 8.1, we apply Algorithm 5.1 to minimize the auxiliary
cluster function f̄l . In this case the first l − 1 cluster centers are fixed and only the
lth cluster center is updated at each iteration.

Remark 8.1 Algorithm 8.1 is a special case of Algorithm 7.2 when we select γ1 = 0
and γ2 = 1.

Proposition 8.1 Let ȳ be a cluster center generated by Algorithm 8.1. Then this
point is a local minimizer of the auxiliary cluster function f̄l .

204 8 Nonsmooth Optimization Based Clustering Algorithms

Proof Recall the sets Bi(y), i = 1, 2, 3 defined in (4.30). Since ȳ is a cluster center
we have B2(ȳ) = ∅. This is due to the fact that in the hard clustering problem, each
data point belongs to only one cluster. Then the function (7.5) can be rewritten as

f̄l(ȳ) = 1

m

⎛
⎝ ∑

a∈B1(ȳ)

ra
l−1 +

∑
a∈B3(ȳ)

d2(ȳ, a)

⎞
⎠ .

It is clear that ȳ is a minimum point of the convex function

ϕ(x) = 1

m

∑
a∈B3(ȳ)

d2(x, a),

that is ϕ(ȳ) ≤ ϕ(x) for all x ∈ R
n. There exists ε > 0 such that

d2(y, a) > ra
l−1 for all a ∈ B1(ȳ) and for all y ∈ B(ȳ; ε), and

d2(y, a) < ra
l−1 for all a ∈ B3(ȳ) and for all y ∈ B(ȳ; ε).

Then for any y ∈ B(ȳ; ε) we have

f̄l(y) = 1

m

⎛
⎝ ∑

a∈B1(ȳ)

ra
l−1 +

∑
a∈B3(ȳ)

d2(y, a)

⎞
⎠

= 1

m

∑
a∈B1(ȳ)

ra
l−1 + ϕ(y)

≥ 1

m

∑
a∈B1(ȳ)

ra
l−1 + ϕ(ȳ)

= f̄l(ȳ).

Therefore, f̄l(y) ≥ f̄l(ȳ) for all y ∈ B(ȳ; ε). This completes the proof. ��

8.2 Modified Global k-Means Algorithm 205

Next, we give the step by step form of the MGKM.

Algorithm 8.2 Modified global k-means algorithm (MGKM)

Input: Data set A, the number of clusters k to be computed and a tolerance ε ≥ 0.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Let f1 be the corresponding value of

the clustering function (7.3). Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of the next cluster center) Let x1, . . . , xl−1 be the cluster centers for the (l−1)th
partition problem. Apply Algorithm 8.1 to find a starting point ȳ ∈ R

n for the lth cluster center.

4: (Refinement of all cluster centers) Select (x1, . . . , xl−1, ȳ) as a new starting point, apply the
k-means Algorithm 5.1 to solve the clustering problem (7.2) for k = l. Let (ỹ1, . . . , ỹl) be a
solution to this problem and fl be the corresponding value of the clustering function.

5: (Stopping criterion) If

fl−1 − fl

f1
≤ ε,

then stop, otherwise set xj = ỹj , j = 1, . . . , l and go to Step 2.

Algorithm 8.2 has two stopping criteria. The algorithm stops when either it solves
all l-partition problems, l = 1, . . . , k or the stopping criterion in Step 5 is satisfied.
Note that f ∗

l = inf{fl(x), x ∈ R
nk} ≥ 0 for all l ≥ 1 and the sequence {f ∗

l } is
decreasing, that is,

f ∗
l+1 ≤ f ∗

l for all l ≥ 1.

This means that the stopping criterion in Step 5 will be satisfied after a finite number
of iterations and therefore, Algorithm 8.2 computes as many clusters as the data set
A contains with respect to the tolerance ε > 0. Note that the choice of this tolerance
is crucial for Algorithm 8.2: large values of ε can result in the appearance of large
clusters whereas small values can lead to small and artificial clusters.

In Step 3 of Algorithm 8.2, a starting point for the lth cluster center is computed.
This is done by applying Algorithm 8.1 and minimizing the auxiliary cluster
function. This algorithm requires the calculation of the distance or affinity matrix of
the data set A. The matrix can be computed before the application of Algorithm 8.1
in small and medium sized data sets. However, it cannot be done for large data sets
as such a matrix is too big to be stored in the memory of a computer. This means that
in the latter case, the affinity matrix is computed at each iteration of the MGKM.

206 8 Nonsmooth Optimization Based Clustering Algorithms

8.3 Fast Modified Global k-Means Algorithm

Algorithm 8.2 is time-consuming in large data sets as it requires the computation
of the affinity matrix at each iteration. The fast modified global k-means algorithm
(FMGKM) [29] is an improved version of Algorithm 8.2 and does not rely on the
affinity matrix to compute starting points. Instead, the FMGKM uses some weights
within the auxiliary cluster function for generating starting points from different
parts of the data set. This leads to the elimination of computing or sorting the
whole affinity matrix and therefore, to the reduction of computational effort and
the memory usage. The flowchart of the FMGKM is similar to that of the MGKM
given in Fig. 8.1.

Next, we describe the FMGKM. Let

U = {u1, . . . , us}

be a finite set of positive numbers. For u ∈ U , the auxiliary cluster function f̄l ,
given in (7.5), is modified as follows:

f̄ u
l (y) = 1

m

∑
a∈A

min
{
ra
l−1, u d2(y, a)

}
. (8.1)

If u = 1, then f̄ u
l (y) = f̄l(y) for all y ∈ R

n. Take u ∈ U and define the set

S̃u
2 = {

y ∈ R
n : ra

l−1 > u d2(y, a) for some a ∈ A
}
,

and for any y ∈ S̃u
2 consider the set

B̃u
3 (y) = {

a ∈ A : ra
l−1 > u d2(y, a)

}
.

The set S̃u
2 is similar to the set S̄2 defined in (7.8) and the set B̃u

3 (y) is similar to the
set B̄3(y) described in (7.9). The set B̃u

3 (y) contains all data points attracted by the
point y ∈ S̃u

2 with a given weight u > 0.
The following algorithm is a modified version of Algorithm 8.1 and computes a

starting point for the lth cluster center.

8.3 Fast Modified Global k-Means Algorithm 207

Algorithm 8.3 Finding a starting point

Input: Data set A, the solution (x1, . . . , xl−1) to the (l − 1)th clustering problem, l ≥ 2 and the
set U = {u1, . . . , us}.
Output: Starting point for the lth cluster center.

1: Set t = 1.

2: Take ut ∈ U . For each a ∈ S̃
ut

2 ∩ A compute the set B̃
ut

3 (a), its center c and the value
f̄

ut

l,a = f̄
ut

l (c) of the function f̄
ut

l at the point c.

3: Compute

f̄
ut

l,min = min
a∈S̃

ut
2 ∩A

f̄
ut

l,a and ā = argmin
a∈S̃

ut
2 ∩A

f̄
ut

l,a,

and select the corresponding center c̄t .

4: Compute the set B̃
ut

3 (c̄t) and its center.
5: Reassign data points until no more points escape or return to this set. Let ȳ(ut) be the final

value for the center c̄t . Compute the value f̄l,t of the auxiliary function f̄l , given in (7.5), at
the point ȳ(ut).

6: Set t = t + 1. If t ≤ s, then go to Step 2.

7: Compute

f̄l,min = min
t=1,...,s

f̄l,t ,

and let

f̄l,t0 = f̄l,min for t0 ∈ {1, . . . , s}.

Set ȳ = ȳ(ut0) as a starting point for the lth cluster center.

In order to solve the auxiliary clustering problem (7.4) in Step 5 of Algorithm 8.3,
we apply Algorithm 5.1. Here, only one cluster center is updated, other cluster
centers are known from previous iterations and they are fixed. Since Algorithm 5.1
is only able to find local solutions to this problem more than one starting points are
used to compute high quality solutions.

Starting points are computed using the function (8.1) with different values of
u. If u is sufficiently small, then the starting point will be close to other cluster
centers, most likely near the center of the largest cluster. If u = 1, then we get the
same starting point as in the case of Algorithm 8.1. As the value of u is increased
the starting points become more isolated data points. This leads to the finding of
starting points from different parts of the data set.

208 8 Nonsmooth Optimization Based Clustering Algorithms

The FMGKM is presented in step by step form as follows.

Algorithm 8.4 Fast modified global k-means algorithm (FMGKM)

Input: Data set A, the number of clusters k to be computed and a tolerance ε > 0.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Let f1 be the corresponding value of

the clustering function (7.3). Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of the next cluster center) Let x1, . . . , xl−1 be the cluster centers for the (l−1)th
partition problem. Apply Algorithm 8.3 to find a starting point ȳ ∈ R

n for the lth cluster center.

4: (Refinement of all cluster centers) Select (x1, . . . , xl−1, ȳ) as a new starting point, apply
Algorithm 5.1 to solve the clustering problem (7.2) for k = l. Let (ỹ1, . . . , ỹl) be a solution to
this problem and fl be the corresponding value of the clustering function.

5: (Stopping criterion) If

fl−1 − fl

f1
< ε,

then stop, otherwise set xj = ỹj , j = 1, . . . , l and go to Step 2.

The most time-consuming step in Algorithm 8.4 is Step 3, where Algorithm 8.3
is applied to minimize the auxiliary cluster function (8.1) for different u ∈ U and to
find the starting point for the lth cluster center. In its turn, Step 2 of Algorithm 8.3
is time-consuming as in this step, clusters are computed for each data point a ∈
S̃

ut

2 ∩ A. This requires the partial computation of the affinity matrix. In addition,
centers of those clusters and values of the function f̄ u

l at these centers need to be
computed. Since for each data point only one center is obtained the complexity of
the computation of the function f̄ u

l is the same as the complexity of the computation
of the affinity matrix.

In [29], two different approaches are introduced to reduce the computational
complexity of Step 2 in Algorithm 8.3. Both approaches exploit the incremental
nature of the algorithm. In these approaches a matrix, consisting of the distances
between data points and cluster centers is used instead of the affinity matrix. Since
the number of clusters is significantly less than the number of data points the former
matrix is much smaller than the latter one. More precisely, in these approaches data
points which are close to cluster centers from the (l − 1)th partition are excluded.
Therefore, these data points are removed from the list of points which can attract
large clusters and also from the list of points which can be attracted by non-excluded
data points.

8.3 Fast Modified Global k-Means Algorithm 209

Let x1, . . . , xl−1, l ≥ 2 be known cluster centers. Assume viq is the squared
Euclidean distance between the data point ai , i = 1, . . . , m and the cluster center
xq, q = 1, . . . , l − 1, that is

viq = d2(ai , xq).

Let vq = (
v1q, . . . , vmq

) ∈ R
m, q = 1, . . . , l − 1. Consider a matrix V of the size

m × (l − 1), whose columns are vectors vq, q = 1, . . . , l − 1:

V = [viq], i = 1, . . . , m, q = 1, . . . , l − 1.

Let also r = (r1
l−1, . . . , r

m
l−1) be a vector of m components where ri

l−1 is the squared
Euclidean distance between the data point ai and its cluster center in the (l − 1)th
partition (see (7.6)). Note that the matrix V and the vector r are available after the
(l − 1)th iteration of the incremental clustering algorithm.

Now, we are ready to describe the following two approaches to reduce the
computational complexity of Step 2 of Algorithm 8.3.

1. Reduction of the number of pairwise distance computations. Let a data point
aj ∈ A be given and xq(j) be its cluster center. Here q(j) ∈ {1, . . . , l − 1}. For a
given u ∈ U and the data point ai if

(
1 + 1√

u

)2
r
j

l−1 ≤ viq(j),

then aj �∈ B̃u
3 (ai). Indeed, we have

‖ai − aj‖ ≥ ‖ai − xq(j)‖ − ‖aj − xq(j)‖ ≥ (1/
√

u)‖aj − xq(j)‖.

Thus, we get ud2(ai , aj) ≥ r
j

l−1, and therefore aj �∈ B̃u
3 (ai). This condition

allows us to reduce the number of pairwise distance computations. This reduction
becomes substantial as the number of clusters increases. Define the set

R̃u(ai) =
{

aj ∈ A :
(

1 + 1√
u

)2
r
j

l−1 > viq(j)

}
.

It is clear that

B̃u
3 (ai) ⊆ R̃u(ai).

The set R̃u(ai) can be used instead of the set A to compute the value of the
function f̄ u

l in Step 2 of Algorithm 8.3. In this case, one may not get the exact
value of this function; however, it gives a good approximation to the exact value.
Furthermore, take

210 8 Nonsmooth Optimization Based Clustering Algorithms

w ∈
(

1,
(

1 + 1√
u

)2]
,

and consider the set

R̃u
w(ai) =

{
aj ∈ A : wr

j

l−1 > d2(ai , aj)
}
.

Then replace A by R̃u
w(ai) for the computation of the function f̄ u

l . This will
further reduce the amount of computations in Step 2 of Algorithm 8.3.

2. Reduction of the number of starting cluster centers. This approach is similar to
that of considered in Algorithm 7.4. More specifically, data points which are very
close to previous cluster centers are not considered for being starting points to
minimize the auxiliary cluster function (8.1). At the (l − 1)th iteration a squared
averaged radius

d̄
q
av = 1

|Aq |
∑

a∈Aq

d2(xq, a),

and a squared maximum radius

d̄
q
max = max

a∈Aq
d2(xq, a)

of each cluster Aq, q = 1, . . . , l − 1 are computed. Consider the numbers

αq = d̄
q
max

d̄
q
av

≥ 1 and βq = ε(αq − 1),

where ε > 0 is a sufficiently small number. Let

γql = 1 + βq(l − 1), q = 1, . . . , l − 1.

It is clear that γql ≥ 1, q = 1, . . . , l − 1. Define the following subset of the
cluster Aq :

Āq = {
a ∈ Aq : γql d̄

q
av ≤ d2(xq, a)

}
.

In other words, the set Āq is obtained from the cluster Aq by removing all points
for which d2(xq, a) < γqd̄

q
av . Since in the incremental approach the clusters are

becoming more stable as the number l increases it follows that the numbers γql

are increased as l increases. Define the set

Ā =
l−1⋃
q=1

Āq,

8.4 Limited Memory Bundle Method for Clustering 211

and consider only data points a ∈ Ā as the candidates to be starting points for
minimizing the auxiliary cluster function f̄l .

Summarizing, Steps 2 and 3 of Algorithm 8.3 can be rewritten as follows:

2’: for each a ∈ S̃
ut

2 ∩ Ā compute the set B̃
ut

3 (a), its center c, and the value f̄
ut

l,a =
f̄

ut

l (c) of the function f̄
ut

l at the point c over the set R̃u
w(a).

3’: compute

f̄
ut

l,min = min
a∈S̃

ut
2 ∩Ā

f̄
ut

l,a and ā = argmin
a∈S̃

ut
2 ∩Ā

f̄
ut

l,a,

and the corresponding center c̄.

The use of these two schemes allows us to significantly reduce the computational
complexity of Algorithm 8.4 and accelerate its convergence.

8.4 Limited Memory Bundle Method for Clustering

In this section, we present the limited memory bundle method for clustering
(LMB-CLUST) [171]. The LMB-CLUST has been developed specifically to solve
clustering problems in large data sets. The algorithm combines two different
approaches to solve the clustering problem when the squared Euclidian distance d2
is used as a similarity measure. The MSINC-CLUST is used to solve the clustering
problem globally and the LMBM is applied at each iteration of the algorithm to
solve both the clustering problem (7.2) and the auxiliary clustering problem (7.4).
The flowchart of the LMB-CLUST is given in Fig. 8.2.

The LMBM, given in Fig. 3.5, is originally developed for solving general large-
scale nonconvex NSO problems. Here, this method is slightly modified to be better
suited for solving the clustering and the auxiliary clustering problems. In particular,
a nonmonotone line search is used to find step sizes thL and thR . In addition, different
stopping tolerances are utilized for different problems. That is, the tolerance ε is set
to be relatively large for the auxiliary clustering problem (7.4)—since this problem
need not to be solved very accurately—and smaller for the clustering problem (7.2).

Next, we give the modified version of the LMBM in its step by step form. We use
x1 for the starting point; εc > 0 for the stopping tolerance; εL and εR for line search
parameters; γ for the distance measure parameter; m̂c for the maximum number
of stored correction vectors used to form limited memory matrix updates; tmax is an
upper bound for serious steps; C is a control parameter for the length of the direction
vector. We also use itype to show the type of the problem, that is:

• itype = 0: the auxiliary clustering problem (7.4); and
• itype = 1: the clustering problem (7.2).

212 8 Nonsmooth Optimization Based Clustering Algorithms

Fig. 8.2 Limited memory bundle method for clustering (LMB-CLUST)

In both cases, the objective function is denoted by f and the number of variables in
the optimization problem is denoted by n. Hence f = f̄l and n = n for the auxiliary
clustering problem and f = fl and n = nl for the lth clustering problem.

8.4 Limited Memory Bundle Method for Clustering 213

Algorithm 8.5 Modified limited memory bundle algorithm

Input: x1 ∈ R
n, εc > 0, εL ∈ (0, 1/2), εR ∈ (εL, 1/2), tmax > 1, γ > 0, C > 0, m̂c ≥ 3 and

itype ∈ {0, 1}.
Output: Clarke stationary point xh.

1: (Initialization) Set y1 = x1 and β1 = 0. Compute f1 = f (x1) and ξ1 ∈ ∂f (x1). If itype = 1,
then set ε = εc. Otherwise, set ε = 103εc. Set h = 1.

2: (Serious step initialization) Set ξ̃h = ξh, β̃h = 0 and m = h.

3: (Direction finding) If h = 1, set d1 = −ξ1. Otherwise, compute

dh = −Dhξ̃h

by the L-BFGS update if m = h (use m̂h = min{h − 1, m̂c} correction vectors in Uh and Sh)
and by the L-SR1 update, otherwise.

4: (Stopping criterion) Compute wh = −ξ̃
T

h dh + 2β̃h. If wh < ε, then stop with xh as the final
solution.

5: (Line search) Set the scaling parameter θh for the length of the direction vector as θh =
min { 1, C/‖dh‖ }. Use a nonmonotone line search to determine the step sizes thR ∈ (0, tmax]
and thL ∈ [0, thR] and set the corresponding values

xh+1 = xh + thLθhdh, fh+1 = f (xh+1), and

yh+1 = xh + thRθhdh, ξh+1 ∈ ∂f (yh+1).

Set uh = ξh+1 − ξm and sh = yh+1 − xh = thRθhdh and append these values to Uh and Sh. If
the modified serious step condition

thR = thL > 0 and f (yh+1) ≤ max
i∈M

f (xi) − εLthRwh,

where M ⊆ {l : xl+1 = xl + t lRθldl} such that M contains at most the ten greatest indices l,
is satisfied, then set βh+1 = 0, h = h + 1 and go to Step 2. Otherwise, calculate the locality
measure βh+1 by

βh+1 = max
{
|f (xh) − f (yh+1) + ξT

h+1(yh+1 − xh)|, γ ‖yh+1 − xh‖2
}
.

6: (Aggregation) Determine multipliers λh
i ≥ 0 for all i ∈ {1, 2, 3}, ∑3

i=1 λh
i = 1 that minimize

the function ϕ(λ1, λ2, λ3) given in (3.9), where Dh is calculated by the same updating formula
as in Step 3. Compute ξ̃h+1 and β̃h+1 as

ξ̃h+1 = λh
1ξm + λh

2ξh+1 + λh
3 ξ̃h and β̃h+1 = λh

2βh+1 + λh
3 β̃h.

Set h = h + 1 and go to Step 3.

The convergence properties of the LMBM are given in Sect. 3.4. Here, we
recall the most important results in light of the clustering problem. Note that

214 8 Nonsmooth Optimization Based Clustering Algorithms

Assumptions 3.1–3.3, needed to prove the global convergence of the LMBM, are
trivially satisfied for both the clustering and the auxiliary clustering problems.

Proposition 8.2 Assume that εc = 0. If the LMBM terminates after a finite number
of iterations, say at the iteration h, then the point xh is a Clarke stationary point of
the (auxiliary) clustering problem.

Proposition 8.3 Assume that εc = 0. Every accumulation point x̄ generated by the
LMBM is a Clarke stationary point of the (auxiliary) clustering problem.

Remark 8.2 The LMBM terminates in a finite number of steps if we choose εc > 0.

Next, we describe the LMB-CLUST and give its step by step algorithm. Since the
problem (7.2) is nonconvex it is important to select favorable starting points before
applying a local search method like the LMBM to solve it. The LMB-CLUST uses
the MSINC-CLUST for solving the clustering problem globally and the LMBM
is applied at each iteration of the MSINC-CLUST to solve both the problems (7.2)
and (7.4).

Algorithm 8.6 Limited memory bundle method for clustering (LMB-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 ⊂ R

n of starting points for the auxiliary clustering problem (7.4).

4: (Computation of a set of starting points for the clustering problem) For each y ∈ Ā3 apply
Algorithm 8.5 with itype = 0 to solve the auxiliary clustering problem (7.4) and find Ā5, a set
of starting points for the lth partition problem (7.2).

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 8.5 with itype = 1 to
solve the clustering problem (7.2) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

8.5 Discrete Gradient Clustering Algorithm 215

8.5 Discrete Gradient Clustering Algorithm

In this section, we describe the discrete gradient clustering algorithm (DG-CLUST)
to solve the clustering problem (7.2). As mentioned in Sect. 3.8, the underlying
optimization solver DGM is a semi-derivative free method for solving nonconvex
NSO problems. The DGM does not use subgradients or their approximations but
only at the end of the solution process and thus, it can be used to solve problems
which are not subdifferentially regular. Therefore, the clustering algorithm based on
the DGM can be used to solve clustering problems with the similarity measures d1
and d∞, in addition to d2 based clustering problems.

The flowchart of the DG-CLUST is given in Fig. 8.3. Similar to other opti-
mization based clustering algorithms, the DG-CLUST uses the MSINC-CLUST for
solving the clustering problem globally and the DGM is applied at each iteration of
the MSINC-CLUST to solve both the problems (7.2) and (7.4).

The flowchart of the DGM with a more detailed description is given in Sect. 3.8.
Here, we give this method in its step by step form. Note that we use x1 for the
starting point; ε > 0 for the stopping tolerance; and εL and εR for line search
parameters.

As before, we use the following notations: the objective function is denoted by f

and n stands for the size of the optimization problem. That is, f = f̄l and n = n for
the auxiliary clustering problem and f = fl and n = nl for the l-partition problem.

216 8 Nonsmooth Optimization Based Clustering Algorithms

Fig. 8.3 Discrete gradient clustering algorithm (DG-CLUST)

8.5 Discrete Gradient Clustering Algorithm 217

Algorithm 8.7 Discrete gradient method

Input: x1 ∈ R
n, ε > 0, λ1 > 0, δ1 > 0, α ∈ (0, 1], εL ∈ (0, 1] and εR ∈ (0, εL].

Output: Final solution xh.

1: (Outer iteration initialization) Set h = 1.

2: (Inner iteration initialization) Set s = 1 and xhs = xh. Choose any g ∈ Ss, w ∈ G. Compute
a discrete gradient vhs = Γ i (xhs , g, w, λh, α). Set D̄(xhs) = {vhs }.

3: (Stopping criterion) If λh < ε and δh < ε, then stop with xh as a final solution.
4: (Minimum norm). Compute the vector

v̄hs = argmin
v∈D̄(xhs)

‖v‖2.

5: (Inner iteration termination) If ‖v̄hs ‖ ≤ δh, then update λh+1 and δh+1. Set xh+1 = xhs , h =
h + 1 and go to Step 2.

6: (Search direction) Compute the search direction

dhs = − v̄hs

‖v̄hs ‖
.

7: If f (xhs + λhdhs) − f (xhs) > −εLλh‖v̄hs ‖, then go to Step 9.

8: (Serious step) Construct xhs+1 = xhs + ths dhs , where the step size ths is computed as

ths = argmax
{
t ≥ 0 : f (xhs + tdhs) − f (xhs) ≤ −εRt‖v̄hs ‖

}
.

Compute a new discrete gradient vhs+1 using xhs+1 and any g ∈ S1:

vhs+1 = Γ i (xhs+1 , g, w, λh, α).

Set D̄(xhs+1) = {vhs+1 }, s = s + 1 and go to Step 4.

9: (Null step) Compute a new discrete gradient vhs+1 using xhs and dhs :

vhs+1 = Γ i (xhs , dhs , w, λh, α).

Update the set

D̄(xhs+1) = conv
{
D̄(xhs) ∪ {vhs+1 }

}
.

Set xhs+1 = xhs , s = s + 1 and go to Step 4.

The global convergence of Algorithm 8.7 has been studied in Sect. 3.8. Note that
assumptions needed to get its convergence are satisfied for both the cluster and the
auxiliary cluster functions. Next, we present the step by step description of the DG-
CLUST.

218 8 Nonsmooth Optimization Based Clustering Algorithms

Algorithm 8.8 Discrete gradient clustering algorithm (DG-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 ⊂ R

n of starting points for solving the auxiliary clustering
problem (7.4).

4: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 8.7 to
solve the auxiliary clustering problem (7.4) starting from each point y ∈ Ā3. This algorithm
generates a set Ā5 of starting points for the lth cluster center.

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 8.7 to solve
the clustering problem (7.2) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the l-partition
problem and go to Step 2.

Note that the DGM uses only discrete gradients to find an approximate solution
to both the clustering and the auxiliary clustering problems. The calculation of
discrete gradients can be simplified using a special structure of a problem such as
the piecewise separability or piecewise partial separability of the objective functions
(see Sect. 2.6.3).

It is proved in Propositions 4.5 and 4.12 that both the cluster function (7.3)
and the auxiliary cluster function (7.5) are piecewise separable with the similarity
measures d1, d2, and d∞. Therefore, we can simplify the calculations of discrete
gradients for both the cluster and the auxiliary cluster functions.

First, we consider the computation of discrete gradients of the cluster function
fk . This function is the special case of the function f , defined in (2.21) as

f (x) =
m∑

i=1

max
h∈Hi

min
j∈Jh

fihj (x).

The cluster function fk does not depend on the index h and the sets Hi , i =
1, . . . , m are all singletons. Therefore, for all h ∈ Hi we have Jh = {1, . . . , k}
and

fk(x) = 1

m

m∑
i=1

min
l=1,...,k

fil(xl),

8.5 Discrete Gradient Clustering Algorithm 219

where fil(xl) = dp(xl , ai), l = 1, . . . , k.

Then the term functions are

(xlt − ait)
2 for p = 2, and

|xlt − ait | for p = 1,∞.

Here, t = 1, . . . , n, l = 1, . . . , k, i = 1, . . . , m, and therefore, the total number of
such term functions is mnk. Since the function fk has nk number of variables one
needs nk + 1 evaluations of this function to compute its one discrete gradient. Then
the total number of evaluations of term functions to compute one discrete gradient
of fk is Nt = mnk(nk + 1).

According to the definition of the discrete gradients for a given i ∈ {1, . . . , nk}
we compute values of the function fk at the following nk + 1 points:

x, x0, x1, . . . , xi−1, xi+1, . . . , xnk.

We need the full evaluation of the function fk only at two points: at x and x0 which
requires 2mnk calculations of the term functions. Other points from this sequence
are obtained from the previous point by changing only one coordinate which is the
coordinate of only one cluster center. This means that we need to update only m

term functions at points x1, . . . , xi−1, xi+1, . . . , xnk and the number of evaluations
of the term functions at these points is m(nk − 1). Therefore, the total number
of evaluations of term functions for computation of one discrete gradient is N̄t =
m(3nk − 1).

Thus, in order to calculate one discrete gradient of the function fk at the point x
the following simplified scheme can be used. We compute the values of the function
fk at the points x and x0. Then we store values of all term functions calculated at
x0. In order to calculate the value of fk at x1 we update only those term functions
which contain the first coordinate and keep all other term functions as they are. We
repeat this scheme for all other coordinates. Note that we compute the function fk

at the point x when we compute the first discrete gradient at this point. The use
of this scheme allows us to reduce the number of term functions evaluations for
computation of the first discrete gradient

Nt

N̄t

= mnk(nk + 1)

m(3nk − 1)
≈ nk + 1

3

times and approximately (nk + 1)/2 times for the computation of all other discrete
gradients at x. This reduction becomes very significant as the number of clusters k

increases.
The similar scheme can be designed to compute discrete gradients of the

auxiliary cluster function f̄k . Here, the total number of term functions is mn. The
function f̄k has n variables and therefore, one needs n+1 evaluations of this function
to compute its one discrete gradient. This means that the total number of evaluations
of term functions to compute one discrete gradient of f̄k is Nt = mn(n + 1).

220 8 Nonsmooth Optimization Based Clustering Algorithms

For a given i ∈ {1, . . . , n}, we compute values of the function f̄k at the following
n + 1 points:

x, x0, x1, . . . , xi−1, xi+1, . . . , xn.

The full evaluation of the function f̄k at points x and x0 requires 2mn calculations of
the term functions. Other points from this sequence are obtained from the previous
point by changing only one coordinate. This means that we need to update only m

term functions at points x1, . . . , xi−1, xi+1, . . . , xn and therefore, the total number
of evaluations of the term functions for calculating of f̄k at these points is m(n−1).
The total number of evaluations of term functions for computation of one discrete
gradient is N̄t = m(3n − 1).

Therefore, we can apply the following simplified scheme to compute one discrete
gradient of the f̄k at the point x. We compute the function f̄k at the points x and x0

and store the values of all term functions calculated at x0. In order to calculate
the value of f̄k at x1 for each data point we update only the first term function
and keep all other term functions as they are. This scheme is repeated for all other
coordinates. Applying this scheme leads to the reduction of the number of term
functions evaluations to compute the first discrete gradient

Nt

N̄t

= mn(n + 1)

m(3n − 1)
≈ n + 1

3

times and approximately (n + 1)/2 times for the computation of all other discrete
gradients at x.

8.6 Smooth Incremental Clustering Algorithm

In this section, we describe the smooth incremental clustering algorithm (IS-
CLUST) where the objective functions in both the clustering and the auxiliary
clustering problems are approximated by smooth functions [33]. To approximate
objective functions, we apply the HSM, described in Sect. 3.9. The hyperbolic
smoothings of the cluster function fk and the auxiliary cluster function f̄k are
given in Sects. 4.7.2 and 4.7.3, respectively. For convenience, we recall these smooth
functions for any l = 2, . . . , k:

Φl,τ (x, t) = − 1

m

m∑
i=1

⎛
⎝ti +

l∑
j=1

−dp(xj , ai) − ti +
√

(dp(xj , ai) + ti)2 + τ 2

2

⎞
⎠

= 1

m

m∑
i=1

⎛
⎝−ti +

l∑
j=1

ti + dp(xj , ai) −
√

(dp(xj , ai) + ti)2 + τ 2

2

⎞
⎠ ,

8.6 Smooth Incremental Clustering Algorithm 221

and

Φ̄l,τ (y) = 1

m

m∑
i=1

ri
l−1

− 1

m

m∑
i=1

ri
l−1 − dp(y, ai) +

√
(ri

l−1 − dp(y, ai))2 + τ 2

2

= 1

m

m∑
i=1

ri
l−1 + dp(y, ai) −

√
(ri

l−1 − dp(y, ai))2 + τ 2

2
,

where x = (x1, . . . , xl) ∈ R
nl, y ∈ R

n and t = (t1, . . . , tm), such that

ti = − min
j=1,...,l

dp(xj , ai), i = 1, . . . , m.

As mentioned before, if the function dp is defined using the squared Euclidean
norm, then the functions Φl,τ and Φ̄l,τ are both smooth since d2 is differentiable.
However, the other two functions d1 and d∞ are nonsmooth, and we need to reapply
the hyperbolic smoothing technique to these functions to approximate them with the
smooth functions. These results are presented in Sect. 4.7.

Take any sequence {τh} such that τh ↓ 0 as h → ∞, then the clustering and the
auxiliary clustering problems (7.2) and (7.4) can be replaced by the sequence of the
following smooth problems, respectively:

{
minimize Φl,τh

(x, t)

subject to x = (x1, . . . , xl) ∈ R
nl,

(8.2)

and

{
minimize Φ̄l,τh

(y)

subject to y ∈ R
n.

(8.3)

The IS-CLUST solves the clustering problem by combining the MSINC-CLUST

and an optimization method. The IS-CLUST applies the MSINC-CLUST to solve
the clustering problem globally. Since the clustering and the auxiliary clustering
problems (8.2) and (8.3) are smooth problems the IS-CLUST can utilize any smooth
optimization method to solve them. The flowchart of the IS-CLUST is presented in
Fig. 8.4.

222 8 Nonsmooth Optimization Based Clustering Algorithms

Fig. 8.4 Smooth incremental clustering algorithm (IS-CLUST)

8.6 Smooth Incremental Clustering Algorithm 223

The IS-CLUST is given in its step by step description as follows.

Algorithm 8.9 Smooth incremental clustering algorithm (IS-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the next cluster center) Apply Algorithm 7.2 and
by solving the smooth auxiliary clustering problem (8.3), compute the set Ā5.

4: (Computation of a set of cluster centers) For each ȳ ∈ Ā5, take (x1, . . . , xl−1, ȳ) as a starting
point and solve the smooth clustering problem (8.2) and find a solution (ŷ1, . . . , ŷl). Denote
by Ā6 a set of all such solutions.

5: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

6: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

Note that in Step 3 of this algorithm when we apply Algorithm 7.2 to compute
the set of starting points Ā5, the auxiliary cluster function f̄l is approximated by the
smooth function Φ̄l,τ .

	8 Nonsmooth Optimization Based Clustering Algorithms
	8.1 Introduction
	8.2 Modified Global k-Means Algorithm
	8.3 Fast Modified Global k-Means Algorithm
	8.4 Limited Memory Bundle Method for Clustering
	8.5 Discrete Gradient Clustering Algorithm
	8.6 Smooth Incremental Clustering Algorithm

