
Chapter 7
Incremental Clustering Algorithms

7.1 Introduction

As we mentioned in Chap. 4, the clustering problem (4.3) is a nonsmooth global
optimization problem and may have many local minimizers. Applying the conven-
tional global optimization techniques is not always a good choice since they are
time-consuming for solving such problems, particularly in large data sets. The local
methods are fast, however, depending on the choice of starting cluster centers they
may end up at the closest local minimizer. Therefore, the success of these methods
in solving clustering problems heavily depends on the choice of initial centers.

Since the second half of 1980s, several algorithms have been introduced to
choose favorable starting cluster centers for local search clustering algorithms,
especially for the k-means algorithm [4, 14, 16, 19, 64, 190, 197]. In some of
these algorithms, starting points are generated randomly using certain procedures.
The use of the incremental approach allows us to choose good starting points in a
deterministic way from different parts of the search space. The paper [106] is among
the first introducing the incremental algorithm.

The existing incremental algorithms in cluster analysis can be divided, without
any loss of generality, into the following classes:

• algorithms where new data points are added at each iteration and cluster centers
are refined accordingly. Such algorithms are called single pass incremental
clustering algorithms; and

• algorithms where clusters are built incrementally adding one cluster center at a
time. This type of algorithms are called sequential clustering algorithms.

In the single pass incremental algorithms, new data points are presented as a
sequence of items and can be examined only in a few passes (usually just one). At
each iteration of these algorithms clusters are updated according to newly arrived

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_7

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_7

186 7 Incremental Clustering Algorithms

data. These algorithms require limited memory and also limited processing time per
item (see [130] and references therein).

In the second type of incremental algorithms, the data set is considered as static
and clusters are computed incrementally. Such algorithms compute clusters step by
step starting with one cluster for the whole data set and gradually adding one cluster
center at each iteration [19, 26, 29, 142, 197]. In this book, we consider this type of
incremental clustering algorithms.

There are following three optimization problems to be solved at each iteration of
incremental clustering algorithms [229]:

• problem of finding a center of one cluster;
• auxiliary clustering problem, defined in (4.29), to obtain starting points for

cluster centers; and
• clustering problem, given in (4.3), to determine all cluster centers.

In this chapter, we discuss different approaches for solving each of these problems.
In Sect. 7.2, we describe how a center of one cluster can be found. The general
incremental clustering algorithm is given in Sect. 7.3. This algorithm involves
solving of the auxiliary clustering problem (4.29).

Since both the cluster and the auxiliary cluster functions are nonconvex they may
have a large number of local minimizers. Therefore, having favorable starting points
will help us to obtain either global or nearly global solutions to clustering problems.
We describe the algorithm for finding such starting points for cluster centers in
Sect. 7.4. This algorithm generates a set of starting points for the cluster centers,
where the points guarantee the decrease of the cluster function at each iteration
of the incremental algorithm. Section 7.5 presents the multi-start incremental
clustering algorithm. This algorithm is an improvement of the general incremental
algorithm that applies the algorithm for finding a set of starting cluster centers.

Finally, the incremental k-medians algorithm and the discussion on the decrease
of its computational complexity are given in Sect. 7.6. This algorithm is a modifica-
tion of the k-medians algorithm, where the latter algorithm is used at each iteration
of the multi-start incremental algorithm to solve the clustering problem (4.3).

7.2 Finding a Center of One Cluster

In Chap. 5, the problem of finding a center of a cluster is formulated as an
optimization problem. Considering a cluster C, the problem of finding its center
x ∈ R

n can be reformulated as follows:{
minimize ϕ(x)

subject to x ∈ R
n,

(7.1)

where

7.3 General Incremental Clustering Algorithm 187

ϕ(x) = 1

|C|
∑
c∈C

dp(x, c).

If the similarity measure d2 is used, then the centroid of the cluster C is the solution
to the problem (7.1) which can be easily computed. If the distance function d1 is
applied, then according to Proposition 5.2 the median of the set C is a solution to
this problem. This means that there is no need to solve the problem (7.1) when the
similarity functions d1 and d2 are applied in the clustering problem.

Next, we consider the problem (7.1) when the function d∞ is used. Unlike the
functions d1 and d2, there is no explicit formula for finding a solution to this problem
with the function d∞, and one needs to apply some optimization methods to solve
it. In this case, we have

ϕ(x) = 1

|C|
∑
c∈C

d∞(x, c),

and the subdifferential of the function ϕ at x ∈ R
n is

∂ϕ(x) = 1

|C|
∑
c∈C

∂d∞(x, c),

where the subdifferential ∂d∞(x, c) is given in (4.10) and (4.11). Recall that the
necessary and sufficient condition for a point x to be a minimum is 000 ∈ ∂ϕ(x).

For a moderately large number of points in the set C, the subdifferential ∂ϕ(x)

may have a huge number of extreme points and therefore, the computation of the
whole subdifferential is not an easy task. To solve the problem (7.1) in this case, we
can apply versions of the bundle method which are finite convergent for minimizing
convex piecewise linear functions [32].

Another option is to use smoothing techniques to approximate the function d∞
by the smooth functions to replace the problem (7.1) by the sequence of smooth
optimization problems. Then we can apply any smooth optimization method to solve
these problems.

7.3 General Incremental Clustering Algorithm

As we mentioned, the incremental approach provides an efficient way to generate
starting cluster centers. In this section, we describe a general scheme of the
incremental clustering algorithm (INC-CLUST) using the nonconvex nonsmooth
optimization model of the clustering problem. Recall the clustering problem (4.3)

{
minimize fk(x)

subject to x = (x1, . . . , xk) ∈ R
nk,

(7.2)

188 7 Incremental Clustering Algorithms

where the function fk , given in (4.4), is

fk(x) = 1

m

m∑
i=1

min
j=1,...,k

dp(xj , ai). (7.3)

We also recall the auxiliary clustering problem (4.29)

{
minimize f̄k(y)

subject to y ∈ R
n,

(7.4)

where the function f̄k , defined in (4.28), is

f̄k(y) = 1

m

m∑
i=1

min
{
ri
k−1, dp(y, ai)

}
, (7.5)

and ri
k−1, given in (4.27), is the distance between the data point ai , i = 1, . . . , m

and its cluster center:

ri
k−1 = min

j=1,...,k−1
dp(xj , ai). (7.6)

The general scheme of the INC-CLUST for solving the k-partition problem (7.2)
is given in Fig. 7.1 and Algorithm 7.1.

Algorithm 7.1 Incremental clustering algorithm (INC-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of the next cluster center) Find a starting point ȳ ∈ R
n for the lth cluster center

by solving the auxiliary clustering problem (7.4).

4: (Refinement of all cluster centers) Select (x1, . . . , xl−1, ȳ) as a starting point to solve the
clustering problem (7.2) and find a solution (ỹ1, . . . , ỹl).

5: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

Remark 7.1 Algorithm 7.1 in addition to the k-partition problem solves also all
intermediate l-partition problems, where l = 1, . . . , k − 1.

Steps 3 and 4 are the most important steps of Algorithm 7.1, where both the
auxiliary clustering problem (7.4) and the clustering problem (7.2) are solved. Since
these problems are nonconvex they may have a large number of local minimizers.

7.4 Computation of Set of Starting Cluster Centers 189

Fig. 7.1 Incremental clustering algorithm (INC-CLUST)

In the next section, we describe a special procedure to generate favorable starting
points for solving these problems. Such an approach allows us to find high quality
solutions to the clustering problem using local search methods.

7.4 Computation of Set of Starting Cluster Centers

In this section, first we describe an algorithm for finding starting points for solving
the auxiliary clustering problem (7.4). We assume that for some l > 1, the solution
(x1, . . . , xl−1) to the (l − 1)-clustering problem is known. Consider the sets

S̄1 = {
y ∈ R

n : ra
l−1 ≤ dp(y, a) for all a ∈ A

}
, and (7.7)

S̄2 = {
y ∈ R

n : ra
l−1 > dp(y, a) for some a ∈ A

}
. (7.8)

Here, ra
l−1, a ∈ A is defined by (4.27). It is obvious that cluster centers

x1, . . . , xl−1 ∈ S̄1. The set S̄2 contains all points y ∈ R
n which are not cluster

centers and attract at least one point from the data set A.
Since the number l − 1 of clusters is less than the number m of data points in

the set A all points which are not cluster centers belong to the set S̄2 (because such
points attract at least themselves) and therefore, the set S̄2 is not empty. Obviously

S̄1 ∩ S̄2 = ∅ and S̄1 ∪ S̄2 = R
n.

Figure 7.2 illustrates the sets S̄1 and S̄2 where the similarity measure d2 is applied
to find cluster centers. There are three clusters in this figure. Their centers are shown
by “red” circles. The set S̄2 consists of all points inside three balls except cluster

190 7 Incremental Clustering Algorithms

Fig. 7.2 Illustration of sets
S̄1 and S̄2

centers and the set S̄1 contains three cluster centers and the part of the space outside
balls.

Note that

f̄l(y) ≤ 1

m

∑
a∈A

ra
l−1 for all y ∈ R

n, and

f̄l(y) = fl−1(x1, . . . , xl−1) = 1

m

∑
a∈A

ra
l−1 for all y ∈ S̄1.

This means that the lth auxiliary cluster function f̄l is constant on the set S̄1, and any
point from this set is a global maximizer of this function. In general, a local search
method terminates at any of these points. Therefore, starting points for solving the
auxiliary clustering problem (7.4) should not be chosen from the set S̄1.

We introduce a special procedure which allows one to select starting points from
the set S̄2. Take any y ∈ S̄2 and consider the sets Bi(y), i = 1, 2, 3 defined in (4.30).
Then the set A can be divided into two subsets B̄12(y) and B̄3(y), where

B̄12(y) = B1(y) ∪ B2(y) and B̄3(y) = B3(y). (7.9)

The set B̄3(y) contains all data points a ∈ A which are closer to the point y than to
their cluster centers, and the set B̄12(y) contains all other data points. Since y ∈ S̄2
the set B̄3(y) �= ∅. Furthermore,

B̄12(y) ∩ B̄3(y) = ∅ and A = B̄12(y) ∪ B̄3(y).

Figure 7.3 depicts the set B̄3(y) for a given y (black ball). There are two clusters
in this data set and their centers are shown by “red” circles. The set B̄3(y) contains
all “yellow” data points and the set B̄12(y) contains the rest of the data set.

At a point y ∈ R
n using the sets B̄12(y) and B̄3(y), the lth auxiliary cluster

function f̄l can be written as

7.4 Computation of Set of Starting Cluster Centers 191

Fig. 7.3 Illustration of sets
B̄12(y) and B̄3(y)

B̄3(y)

y .

f̄l(y) = 1

m

(∑
a∈B̄12(y)

ra
l−1 +

∑
a∈B̄3(y)

dp(y, a)
)
.

The difference between the values of f̄l(y) and fl−1(x1, . . . , xl−1) is

zl(y) = 1

m

∑
a∈B̄3(y)

(
ra
l−1 − dp(y, a)

)
,

which can be rewritten as

zl(y) = 1

m

∑
a∈A

max
{

0, ra
l−1 − dp(y, a)

}
. (7.10)

The difference zl(y) shows the decrease of the value of the lth cluster function fl

comparing with the value fl−1(x1, . . . , xl−1) if the points x1, . . . , xl−1, y are chosen
as the cluster centers for the lth clustering problem.

It is reasonable to choose a point y ∈ R
n that provides the largest decrease zl(y)

of the clustering function as the starting point for minimizing the auxiliary clustering
function. Since it is not easy to choose such a point from the whole space R

n we
restrict ourselves to the data set A.

If a data point a ∈ A is a cluster center, then this point belongs to the set S̄1,
otherwise it belongs to the set S̄2. Therefore, we choose points y from the set Ā0 =
A \ S̄1. Obviously, Ā0 �= ∅. Take any y = a ∈ Ā0, compute zl(a) and define the
number

z1
max = max

a∈Ā0

zl(a). (7.11)

The number z1
max represents the largest decrease of the cluster function which can

be provided by any data point. Let γ1 ∈ [0, 1] be a given number. Compute the
following subset of Ā0:

Ā1 = {
a ∈ Ā0 : zl(a) ≥ γ1z

1
max

}
. (7.12)

192 7 Incremental Clustering Algorithms

The set Ā1 contains all data points that provide the decrease of the cluster
function no less than the threshold γ1z

1
max. This set is obtained from the set Ā0 by

removing data points that do not provide sufficient decrease of the cluster function.
Apparently, Ā1 �= ∅ for any γ1 ∈ [0, 1]. If γ1 = 0, then Ā1 = Ā0 and if γ1 = 1,
then the set Ā1 contains data points providing the largest decrease z1

max.
For each point a ∈ Ā1 compute the set B̄3(a) and its center c(a). Replace the

point a by c(a) since the center c(a) is a better representative of the set B̄3(a) than
the point a. If the similarity measure dp is defined using the L2-norm, then c(a)

is the centroid of the set B̄3(a). In other cases, c(a) is found as a solution to the
problem (7.1) where

ϕ(x) = 1

|B̄3(a)|
∑

b∈B̄3(a)

dp(x, b).

Let

Ā2 = {
c ∈ R

n : there exists a ∈ Ā1 such that c = c(a)
}

be the set of such solutions. It is obvious that Ā2 �= ∅. For each c ∈ Ā2, compute
the number zl(c) using (7.10) and find the number

z2
max = max

c∈Ā2

zl(c). (7.13)

The number z2
max represents the largest value of the decrease

fl−1(x1, . . . , xl−1) − fl(x1, . . . , xl−1, c)

among all centers c ∈ Ā2.
For a given number γ2 ∈ [0, 1], define the following subset of Ā2:

Ā3 = {
c ∈ Ā2 : zl(c) ≥ γ2z

2
max

}
. (7.14)

The set Ā3 contains all points c ∈ Ā2 that provide the decrease of the cluster
function no less than the threshold γ2z

2
max. This set is obtained from the set Ā2

by removing centers which do not provide the sufficient decrease of the cluster
function. It is clear that the set Ā3 �= ∅ for any γ2 ∈ [0, 1]. If γ2 = 0, then Ā3 = Ā2
and if γ2 = 1, then the set Ā3 contains only centers c providing the largest decrease
of the cluster function fl .

All points from the set Ā3 are considered as starting points for solving the
auxiliary clustering problem (7.4). Since all data points are used for the computation
of the set Ā3, it contains starting points from different parts of the data set. Such a
strategy allows us to find either global or nearly global solutions to the problem (7.2)
(as well as to the problem (7.4)) using local search methods.

7.4 Computation of Set of Starting Cluster Centers 193

Applying a local search algorithm, the auxiliary clustering problem (7.4) is
solved using starting points from Ā3. A local search algorithm generates the same
number of solutions as the number of starting points. The set of these solutions is
denoted by Ā4. This set is a non-empty subset of the set of stationary points of the
auxiliary cluster function f̄l .

A local search algorithm starting from different points may arrive to the same
stationary point or stationary points which are close to each other. To identify such
stationary points we define a tolerance ε > 0. If the distance between any two points
from the set Ā4 is less than this tolerance, then we keep a point with the lower value
of the function f̄l and remove another point from the set Ā4.

Next, we define

f̄ min
l = min

y∈Ā4

f̄l(y). (7.15)

The number f̄ min
l is the lowest value of the auxiliary cluster function f̄l over the set

Ā4. Let γ3 ∈ [1,∞) be a given number. Introduce the following set:

Ā5 = {
y ∈ Ā4 : f̄l(y) ≤ γ3f̄

min
l

}
. (7.16)

The set Ā5 contains all stationary points where the value of the function f̄l is no
more than the threshold γ3f̄

min
l . Note that the set Ā5 �= ∅. If γ3 = 1, then Ā5

contains the best local minimizers of the function f̄l obtained using starting points
from the set Ā3. If γ3 is sufficiently large, then Ā5 = Ā4. Points from the set Ā5 are
used as a set of starting points for the lth cluster center to solve the lth clustering
problem (7.2).

Summarizing all described above, the algorithm for finding starting points to
solve the problem (7.2) proceeds as follows [228].

Algorithm 7.2 allows us to use more than one starting point to solve the clustering
problem (7.2) in Step 4 of Algorithm 7.1. Moreover, these points always guarantee
the decrease of the cluster function value at each iteration of the incremental
algorithm and are distinct from each other in the search space. Such an approach

Algorithm 7.2 Finding set of starting points for the lth cluster center

Input: Data set A and the solution (x1, . . . , xl−1) to the (l − 1)-clustering problem, l ≥ 2.
Output: Set of starting points for the lth cluster center.

1: (Initialization) Select numbers γ1, γ2 ∈ [0, 1] and γ3 ∈ [1,∞).

2: Compute z1
max using (7.11) and the set Ā1 using (7.12).

3: Compute z2
max using (7.13) and the set Ā3 using (7.14).

4: Compute the set Ā4 of stationary points of the auxiliary clustering problem (7.4) applying a
local search algorithm and using starting points from the set Ā3.

5: Compute f̄ min
l using (7.15) and the set Ā5 using (7.16). Ā5 is the set of starting points for the

lth cluster center.

194 7 Incremental Clustering Algorithms

Algorithm 7.3 Multi-start incremental clustering algorithm (MSINC-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 7.2 to
compute the set Ā5 defined by (7.16).

4: (Computation of a set of cluster centers) For each ȳ ∈ Ā5, select (x1, . . . , xl−1, ȳ) as a starting
point to solve the lth clustering problem (7.2) and find its solution (ŷ1, . . . , ŷl). Denote by Ā6
a set of all such solutions.

5: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

6: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

allows us to apply local search methods to obtain a high quality solution to the
global optimization problem (7.2).

7.5 Multi-Start Incremental Clustering Algorithm

In this section, we present the multi-start incremental clustering algorithm (MSINC-
CLUST) for solving the problem (7.2). This algorithm is an improvement of
Algorithm 7.1 where in Step 3, Algorithm 7.2 is applied. Similar to Algorithm 7.1,
the MSINC-CLUST builds clusters dynamically adding one cluster center at a time
by solving the auxiliary clustering problem (7.4).

The MSINC-CLUST applies Algorithm 7.2 to compute a set of starting cluster
centers. Using these centers as initial points, the lth clustering problem (7.2) is
solved (l = 2, . . . , k). Then a solution with the least cluster function value, defined
in (7.3), is accepted as the solution to the clustering problem. The flowchart of the
MSINC-CLUST is given in Fig. 7.4 and its step by step description is presented in
Algorithm 7.3.

7.6 Incremental k-Medians Algorithm 195

Fig. 7.4 Multi-start incremental clustering algorithm (MSINC-CLUST)

Remark 7.2 Similar to Algorithm 7.1, this algorithm solves all intermediate l-
partition problems (l = 1, . . . , k − 1) in addition to the k-partition problem.
However, Algorithm 7.1 can find only stationary points of the clustering problem,
while Algorithm 7.3 is able to find either global or nearly global solutions.

Note that the most important steps in Algorithm 7.3 are Step 3, where the
auxiliary clustering problem (4.29) is solved to find starting points, and Step 4,
where the clustering problem (7.2) is solved for each starting point. To solve
these problems, we will introduce different algorithms in this and the following
two chapters.

7.6 Incremental k-Medians Algorithm

In this section, we design the incremental k-medians algorithm (IKMED) as an
application of Algorithm 7.3. The k-medians algorithm (Algorithm 5.4), presented
in Chap. 5, is simple and easy to implement. However, this algorithm is sensitive to
the choice of starting points and finds only local solutions that can be significantly
different from the global solution in large data sets. The IKMED overcomes these

196 7 Incremental Clustering Algorithms

Fig. 7.5 Incremental k-medians algorithm (IKMED)

drawbacks by applying Algorithm 7.2. Characteristically for k-medians, the distance
function d1 is used to define the similarity measure in the IKMED. Fig. 7.5 illustrates
the flowchart of this algorithm.

The IKMED first calculates the center of the whole data set as its median. Then
it applies Algorithm 7.2 to compute the set of initial cluster centers by solving the
auxiliary clustering problem (7.4). Using these centers, the clustering problem (7.2)
is solved. Note that Algorithm 5.4 is utilized to solve both problems (7.2) and (7.3).

7.6 Incremental k-Medians Algorithm 197

The following algorithm describes the IKMED in step by step.

Algorithm 7.4 Incremental k-medians algorithm (IKMED)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply
Algorithm 7.2 to compute the set Ā3 of starting points for solving the auxiliary clustering
problem (7.4).

4: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 5.4 to
solve the auxiliary clustering problem (7.4) starting from each point y ∈ Ā3. This algorithm
generates a set Ā5 of starting points for the lth cluster center.

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 5.4 for k = l to
solve the clustering problem (7.2) starting from the point (x1, . . . , xl−1, ȳ) and find its solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

In Step 4 of Algorithm 7.4 one can apply the modified version of the k-medians
Algorithm 5.4 to solve the auxiliary clustering problem and to find starting points
for the lth cluster center. In this version, cluster centers x1, . . . , xl−1 are fixed and
the algorithm updates only the lth center. Therefore, we call it the partial k-medians
algorithm. The description of this algorithm is given below.

We use the sets S̄2 and B̄3(y), y ∈ R
n, defined in (7.8) and (7.9), respectively.

Note that we employ the distance function d1 in computing these sets.

198 7 Incremental Clustering Algorithms

Algorithm 7.5 Partial k-medians algorithm

Input: Data set A and the solution (x1, . . . , xl−1) ∈ R
n(l−1) to the (l − 1)-partition problem.

Output: Solution ȳ ∈ R
n to the auxiliary clustering problem (7.4).

1: (Initialization) Select a starting point y1 ∈ S̄2. Set h = 1.

2: Compute the set B̄3(yh).

3: (Stopping criterion) If B̄3(yh) = B̄3(yh−1) for h > 1, then stop with the solution ȳ = yh to
the auxiliary clustering problem.

4: Find a center c̄ of the set B̄3(yh) by computing its coordinates as the medians of the
corresponding attributes.

5: Set yh+1 = c̄, h = h + 1 and go to Step 2.

Remark 7.3 The set S̄2 contains all data points a ∈ A which are not cluster centers
and therefore, in Step 1 one can choose the point y1 among such data points.
More specifically, we can choose y1 ∈ A \ S̄1 where the set S̄1 is given in (7.7).
Furthermore, since for any y ∈ S̄2 the set B̄3(y) is not empty and the value of the
auxiliary cluster function decreases at each iteration h the problem of finding the
center of the sets B̄3(yh), h ≥ 1 in Step 4 is well defined.

Note that the stopping criterion in Step 3 means that the algorithm terminates
when no data point changes its cluster.

The most time-consuming steps in Algorithm 7.4 are Steps 3, 4, and 5. To
reduce the computational effort required in these steps, we discuss three different
approaches as follows:

1. Reduction of the number of starting cluster centers. As mentioned above, starting
points for solving the auxiliary clustering problem (7.4) can be chosen from the
set A \ S̄1. At the lth iteration (l ≥ 2) of Algorithm 7.4, we can remove points
that are close to cluster centers x1, . . . , xl−1. For each cluster Aq, 1 ≤ q ≤ l−1,
compute its average radius

r
q
av = 1

|Aq |
∑

a∈Aq

d1(xq, a),

and define the subset Âq ⊆ Aq as

Âq = {
a ∈ Aq : r

q
av ≤ d1(xq, a)

}
.

Note that if the cluster Aq is not empty, then the set Âq is also non-empty.
Consider the following subset of the set A:

Â =
l−1⋃
q=1

Âq .

7.6 Incremental k-Medians Algorithm 199

Replacing the set A \ S̄1 by the set Â \ S̄1 allows us to reduce—in some cases
significantly—the number of starting cluster centers and to remove those points
which do not provide the sufficient decrease of the cluster function.

2. Exclusion of some stationary points of the auxiliary clustering problem (7.4). If
any two stationary points from the set Ā4 are close to each other with respect
to some predefined tolerance, then one of them is removed while another one is
kept. In order to do so we define a tolerance ε = f̂1/ml, where f̂1 is the optimal
value of the cluster function f1. If d1(y1, y2) ≤ ε for two points y1, y2 ∈ Ā4, then
the point with the lowest value of the auxiliary cluster function is kept in Ā4 and
another point is removed.

3. Use of the triangle inequality to reduce the number of distance calculations.
Since d1 is the distance function it satisfies the triangle inequality. This can be
used to reduce the number of distance function calculations of Algorithm 5.4
in solving both the clustering and the auxiliary clustering problems. First, we
consider the auxiliary clustering problem (7.4). Assume that (x1, . . . , xl−1) is
the solution to the (l − 1)-partition problem. Recall that the distance between the
data point a ∈ A and its cluster center is denoted by

ra
l−1 = min

j=1,...,l−1
d1(xj , a).

Let ȳ be a current approximation to the solution of the problem (7.4). Compute
distances d1(ȳ, xj), j = 1, . . . , l − 1. Assume that a ∈ Aj for some j ∈
{1, . . . , l − 1}. According to the triangle inequality we have

d1(ȳ, xj) ≤ d1(a, ȳ) + d1(a, xj) = d1(a, ȳ) + ra
l−1, or

d1(a, ȳ) ≥ d1(ȳ, xj) − ra
l−1.

This means that if d1(ȳ, xj) > 2ra
l−1, then d1(a, ȳ) > ra

l−1 and therefore, there
is no need to calculate the distance d1(a, ȳ) as the point a does not belong to the
cluster with the center ȳ.

Similar approach can be considered for the clustering problem (7.2). Let
(x̄1, . . . , x̄l) be a current approximation to the solution of the lth partition
problem. Compute distances d1(x̄i , x̄j) for i, j = 1, . . . , l. Assume that for a
given point a ∈ A, the distances d1(a, x̄i), i = 1, . . . , j have been calculated or
estimated for some j ∈ {1, . . . , l − 1}. Let x̃ ∈ {x̄1, . . . , x̄j } be such that

d1(a, x̃) = min
i=1,...,j

d1(a, x̄i).

200 7 Incremental Clustering Algorithms

According to the triangle inequality we have

d1(x̃, x̄j+1) ≤ d1(a, x̃) + d1(a, x̄j+1), or

d1(a, x̄j+1) ≥ d1(x̃, x̄j+1) − d1(a, x̃).

If d1(x̃, x̄j+1) > 2d1(a, x̃), then there is no need to calculate the distance
d1(a, x̄j+1) as the point a does not belong to the cluster Aj+1 with the center
x̄j+1. The last approach allows us to significantly reduce the number of distance
function evaluations as the number of clusters increases.

	7 Incremental Clustering Algorithms
	7.1 Introduction
	7.2 Finding a Center of One Cluster
	7.3 General Incremental Clustering Algorithm
	7.4 Computation of Set of Starting Cluster Centers
	7.5 Multi-Start Incremental Clustering Algorithm
	7.6 Incremental k-Medians Algorithm

