
Chapter 5
Heuristic Clustering Algorithms

5.1 Introduction

The number of ways in which a set of m objects can be partitioned into k non-empty
groups is given by the Stirling number [64]:

S(m, k) = 1

k!
k∑

i=0

(−1)k−i

(
k

i

)
im, (5.1)

where
(

k

i

)
= k!

i!(k − i)!
is the binomial coefficient. The Stirling number can be approximated by km/k!. A
complete enumeration of all possible clusterings in order to determine the global
minimum of the nonconvex clustering problem is computationally prohibitive for
large data sets [174]. In fact, it has been proven that the clustering problem is NP-
hard even for two clusters [7] or two attributes [205]. Therefore, various heuristics
have been developed to solve the clustering problems.

In this chapter, we consider mainly heuristic partitional clustering algorithms
for solving hard clustering problems, which do not explicitly use the NSO model.
A partitional clustering algorithm produces a single partition of data with no
hierarchical structure. This means that the algorithm requires the number of clusters
to be specified—as a rule—a priori. A partitional algorithm usually optimizes an
objective function defined using the data set. Most of these algorithms need to be
run multiple times with different starting states, and the best configuration produced
is the one used as the (optimal) clustering.
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We start by describing the k-means algorithm that is undoubtedly the most well-
known and widely used partitional clustering algorithm. We also briefly describe
the main ideas of different versions of k-means. Particularly, we describe the global
k-means algorithm that computes clusters incrementally. Algorithms based on the
incremental approach start with the calculation of one cluster center and gradually
add a new cluster center at each iteration of the algorithm. Such an approach leads
to the finding of at least a nearly global minimizer of the clustering problem.

The k-means algorithm and its variants use the squared Euclidean distance
function (1.4) as a similarity measure. In Sect. 5.3 we recall the k-medians algorithm
that aims to solve clustering problems with the d1 distance function (1.3). Further,
in Sect. 5.4 we give a short description of the k-medoids algorithm, where the final
cluster centers are the most centrally located data points in the clusters.

The last three sections of this chapter present clustering algorithms that are not
partitional and/or not applicable for hard clustering problems. First, we describe the
fuzzy c-means algorithm that allows a data point to belong to more than one cluster,
that is, the soft clustering problem is considered. As may be inferred by the name,
the fuzzy c-means clustering algorithm is an extension of the k-means algorithm.
Second, we recall the basic idea of clustering algorithms based on mixture models.
In some sense these algorithms can be considered as fuzzy clustering algorithms
with the membership matrix defined as a probability of each data point belonging to
a particular cluster.

The artificial neural networks (ANNs) have been used extensively for both
supervised data classification and clustering [264]. The most common ANN used
for clustering include the Kohonen’s learning vector quantization and the self-
organizing map [185] and adaptive resonance theory models [61]. These networks
have simple architectures with single layers and the weights in the networks are
learnt by iteratively changing them until a predefined termination criterion is
satisfied. These learning or weight changing procedures are similar to some used
in classical clustering approaches. For instance, the procedure used in the learning
vector quantization is similar to the k-means algorithm. The ANNs do not use any
clustering models considered in this book. Therefore, to give an idea of the ANN in
clustering applications we only provide an overview of the self-organizing map in
Sect. 5.7.

5.2 k-Means Algorithm and Its Variants

The k-means algorithm is the most commonly used technique in partitional cluster-
ing. Early versions of this algorithm were introduced in [40, 108, 200, 204, 277].
The paper [298] places the k-means algorithm among the ten most important data
mining algorithms.
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Fig. 5.1 k-means algorithm

5.2.1 k-Means Algorithm

The k-means algorithm aims to solve the MSSC problem that is when the similarity
measure d2 is applied. This algorithm minimizes the objective function (4.2) of the
mixed integer programming formulation of the clustering problem.

The k-means algorithm utilizes an iterative scheme which starts with an arbitrary
selected initial cluster configuration of the data, then alters the cluster membership
in an iterative manner to obtain a better configuration. The popularity of the k-
means algorithm is due to the fact that it is very simple and easy to implement. The
flowchart of the basic k-means algorithm is given in Fig. 5.1.

At the beginning, the k-means algorithm randomly chooses k cluster centers with
a predefined k. Then it alternates between two major steps until a stopping criterion
is satisfied. These steps are as follows:



138 5 Heuristic Clustering Algorithms

• distribution of data points among clusters utilizing the minimum squared
Euclidean distance; and

• recomputing of cluster centers.

In other words, the k-means algorithm iteratively reassigns data points to clusters
based on the similarity between the points and the cluster centers until there is no
further reassignment or significant decrease in the value of the clustering function.

Next, we present the k-means algorithm in the step by step form. Then we give a
more detailed description of the procedures used.

Algorithm 5.1 k-means algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) Choose a seed solution consisting of k centers (not necessarily belonging to
A).

2: Allocate each data point a ∈ A to its closest center and obtain a k-partition of A.

3: (Stopping criterion) If some predefined stopping criterion is met, then stop.

4: Recompute centers for the new partition and go to Step 2.

In Step 4, the following problem is solved to find the center xj of the cluster
Aj , j = 1, . . . , k:

⎧
⎨

⎩
minimize

∑

a∈Aj

d2(xj , a)

subject to xj ∈ R
n.

This problem is convex and its objective function is strongly convex. Therefore,
the problem has a unique solution. The necessary and sufficient condition for
optimality is

∑

a∈Aj

(xj − a) = 000,

which leads to the following formula for the center xj , j = 1, . . . , k:

xj = 1

mj

∑

a∈Aj

a,

where mj is the number of objects in the cluster Aj , j = 1, . . . , k. Thus, there
is no need to solve any optimization problem to find cluster centers in Step 4 of
Algorithm 5.1.
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Various stopping criteria can be used in Step 3 of the k-means algorithm. They
include:

• let ε > 0 be a given tolerance and mt be a number of data points changing their
clusters at the t th iteration of Algorithm 5.1. If

mt

m
≤ ε,

then the algorithm terminates with xt = (xt,1, . . . , xt,k) as a solution to the
clustering problem;

• when no data point changes its clusters, then Algorithm 5.1 terminates. This
corresponds to the previous stopping criterion when ε = 0; and

• let ε > 0 be a given tolerance and xt−1 = (xt−1,1, . . . , xt−1,k) and xt =
(xt,1, . . . , xt,k) be solutions found at iterations t − 1 and t , t > 1. If

ζk(xt−1) − ζk(xt )

ζk(xt−1)
≤ ε,

where ζk is the objective function in the clustering problem (4.2), then Algo-
rithm 5.1 terminates with xt = (xt,1, . . . , xt,k) as a solution to the clustering
problem.

It should be noted that the second stopping criterion works best in small data sets,
although, it can be used also in larger data sets. The first criterion works best in
medium sized and large data sets, and finally, the third stopping criterion works best
in large and very large data sets.

In [263], conditions under which the k-means algorithm converges in a finite
number iterations to the solution of the MSSC problem are established.

Proposition 5.1 Algorithm 5.1 converges to an optimal solution of the clustering
problem in a finite number of iterations.

Proof It is obvious that the maximum number of subsets of the set A is 2m,
where m is the number of data points in A. Particularly, the maximum number of
combinations in which a set of m data points can be partitioned into k non-empty
groups is S(m, k) given by (5.1). As mentioned above each iteration of the k-means
algorithm consists of two main steps as follows:

(i) reassigning data points to the current cluster centers; and
(ii) updating of the cluster centers using the new distribution of points.

As the new centers provide minimum of the clustering function for the redistributed
clusters and the objective function is strongly convex for each cluster, the value of
the clustering objective function strictly decreases at each iteration of the k-means
algorithm. That is, the k-means algorithm generates the sequence of combinations
of points where the value of the clustering function decreases and therefore, all these
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combinations are different. Since the number of such combinations is finite the k-
means algorithm terminates after finite number of iterations. ��

It is easy to see that the mixed integer programming model (4.2) with the
similarity measure d2 can be reformulated as

{
minimize fk(x)

subject to x = (x1, . . . , xk) ∈ R
nk,

where

fk(x) = 1

m

k∑

j=1

mj∑

i=1

d2(xj , aj
i ).

Here, k is the number of clusters, mj is the number of objects in the cluster Aj ,

j = 1, . . . , k, aj
i ∈ A is the ith element of the cluster Aj , i = 1, . . . , mj , and xj is

the centroid of the j th cluster obtained by

xj = 1

mj

mj∑

i=1

aj
i .

5.2.2 Variants of k-Means Algorithm

The k-means algorithm suffers from being sensitive to the selection of the initial
clustering partition or cluster centers [12]. It converges to a local solution which can
significantly differ from the global solution, especially in large data sets. Various
versions of the k-means algorithm have been proposed in the literature, many of
them focussing on the selection of a good initial partition (see, for example, [4, 64,
153, 154, 245]). Below we list some of these algorithms.

• Forgy algorithm [108]: the algorithm randomly chooses k points from the data
set and uses them as initial centers. The idea behind this selection is that when
choosing points randomly we are more likely to select a point from a region
with the highest density of points. However, there is no guarantee that we will
not select some poorly located outliers [12]. This algorithm is also called the h-
means clustering algorithm. Application of this algorithm may lead to obtaining
empty clusters [272].

• MacQueen algorithm [204]: in this algorithm, points in a data set are ordered.
To solve the k-partition problem, first, one takes the first k points in the data set
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A as the initial cluster centers. Then a point is assigned to a cluster with the least
squared Euclidian distance between the point and the cluster center. After the
assignment of each point its previous and new cluster centers are updated. This
can be done easily. For example, assume that the data point ā ∈ A is moved from
the cluster At to the cluster Aj , t, j ∈ {1, . . . , k}. Let xt and xj be the centers of
clusters At and Aj , respectively. Then these centers will be updated as

x′
t = 1

mt − 1

(
mtxt − ā

)
, and

x′
j = 1

mj + 1

(
mj xj + ā

)
,

where mt and mj are the number of data points in clusters with centers xt and xj ,
respectively, and x′

t and x′
j are the updated cluster centers. The outcome of this

algorithm depends on the order of points in a data set. The number of clusters
found by the MacQueen algorithm cannot change because each cluster should
contain at least one data point. If a cluster contains only one data point, then this
point cannot be assigned to a different cluster.

• Ball and Hall’s algorithm [41]: for a given number k of clusters, the Ball and
Hall’s algorithm determines the starting cluster centers in k steps. First, some
distance threshold T is defined. The first center is computed as the center of the
whole data set A as

x1 = 1

m

m∑

i=1

ai .

Assume that l, (1 < l < k) centers are computed. In order to find the (l + 1)th
initial cluster center, the algorithm chooses the first data point whose distance
from all the previously found centers is no less than a given threshold T . This
process continues until all k starting cluster centers are obtained. The usage of
the distance threshold T allows one to ensure that the starting points are well
separated. Nevertheless, it may be difficult to define an appropriate value for T .
In addition, the algorithm is sensitive to ordering of points in a data set.

• Maximin algorithm [126, 172]: the original maximin algorithm chooses the
first starting cluster center x1 arbitrarily. In some variants of this algorithm,
a data point with the greatest Euclidean norm is selected as the first cluster
center instead of an arbitrary selection. Then, the lth starting cluster center
xl , (1 < l ≤ k) is chosen to be the data point that has the greatest minimum
distance to the previously selected centers x1, . . . , xl−1. More precisely, first for
each data point a ∈ A we calculate

dmin(a) = min
t=1,...,l−1

d2(a, xt )
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and then define xl as

xl = argmax
a∈A

dmin(a).

This process continues until all k starting cluster centers are obtained.
• Lloyd algorithm: it is believed that this algorithm is one of the oldest versions

of the k-means clustering algorithm introduced in 1957. However, the algorithm
was published only in 1982 [200]. For solving the k-partition problem, the Lloyd
algorithm starts with an arbitrary (or random) set of starting cluster centers X =
{x1, . . . , xk}. Then for each a ∈ A it computes the closest center ya ∈ X to a. At
the final step it updates the cluster centers as

xj = 1

|Ij |
∑

i∈Ij

ai , Ij =
{
i ∈ {1, . . . , m} : yai

= xj

}
.

This process continues until the set X is not changed in two successive iterations.
• Hartigan and Wong algorithm [144]: this algorithm is considered as an alterna-

tive heuristic to the Lloyd algorithm. Given a partition A1, . . . , Ak , the algorithm
randomly selects a single point a from its cluster Aj , j ∈ {1, . . . , k}. This point
is considered as a singleton cluster with the center a. Then the algorithm updates
the center of the cluster Aj \ {a} and finds the closest cluster to which a should
be reassigned by minimizing the clustering objective function.

• X-means algorithm [234]: this algorithm is different to other variants of the k-
means algorithm since it produces not only the set of clusters, but also the optimal
(true) number k of clusters. In the X-means algorithm, instead of predefining
k, the user specifies a range [kmin, kmax] for the number of clusters where k ∈
[kmin, kmax]. The Bayesian information criterion (BIC) score is used to identify k

in this algorithm. The algorithm starts with k = kmin and adds new cluster centers
when necessary until the upper bound kmax is reached. Then the BIC scores
are computed for all number of clusters in the range and the optimal number
k of clusters is selected with the best score. Finally, the cluster distribution
corresponding to the number k is chosen as the output of the algorithm. The X-
means algorithm consists of two main operations: the Improve-Params and the
Improve-Structure. The first operation is used to run the k-means algorithm until
it converges. The second operation finds out if and where a new center should
appear. This is achieved by splitting some clusters.

• j -means algorithm [141]: this algorithm is able to tackle degeneracy which
may happen with the k-means (more specifically with the h-means) algorithm.
If among obtained clusters only k − k1 are non-degenerate (i.e., non-empty)
for some 1 ≤ k1 < k, then k1 data points that are most distant from their
cluster centers are selected. Considering these points as new ones, additional
cluster centers are obtained and all points are reassigned.
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• k-means++ algorithm [14]: this algorithm chooses the first starting cluster
center x1 ∈ A randomly. Assuming that l − 1, l ≥ 2 starting cluster centers
x1, . . . , xl−1 have been selected, the lth starting cluster center is chosen to be a
data point a ∈ A with the probability

Pl(a) = dmin(a)
∑l−1

t=1 dp(a, xt )
.

Here, dp is any distance function—usually the squared Euclidean distance
function—and

dmin(a) = min
t=1,...,l−1

dp(a, xt )

is the minimum distance between the data point a and the set of starting cluster
centers chosen so far. The k-means++ algorithm probabilistically selects log(k)

centers in each round, and then greedily selects the center that reduces the value
of the cluster function the most. Such a modification allows one to avoid choosing
two centers that are close to each other.

There are several other initialization algorithms for the k-means clustering algorithm
(see, e.g. [4, 64, 237]). These methods are based on the approach on dividing the
search space into disjoint subsets of simple structure (for example, hypercubes),
using them to identify dense regions of data and choosing starting cluster centers
from the densest regions.

5.2.3 Global k-Means Algorithm

The objective functions in all optimization models of the partitional clustering
problem are nonconvex and they may have many local minimizers. Moreover, as the
number of clusters increases, the number of local minimizers increases considerably.
Nevertheless, global or nearly global minimizers of the clustering problem are of
interest as they provide the best cluster structure of a data set with the least number
of clusters.

Global minimizers (or global solutions of the mixed integer programming
problem (4.2)) of the function ζk are points where the function attains its least value
over the feasible set. Since the clustering problem is NP-hard global optimization
algorithms are not always applicable to solve this problem and, even if they are,
finding global minimizers may become very time-consuming in large data.

In the most variants of the k-means algorithm some procedures are introduced to
improve the quality of the solution. These procedures, mainly, try to select a good
initial partition with a given number k of clusters.
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Fig. 5.2 Global k-means algorithm

Another approach is to compute clusters incrementally. Algorithms based on an
incremental approach start with the calculation of one cluster center and gradually
add a new cluster center at each iteration of the algorithm. More precisely, in order
to compute k-partition, k > 1, of the data set A, incremental algorithms start
from an initial state with the k − 1 centers for the (k − 1)-partition problem and
the remaining kth center is placed in an appropriate position. The global k-means
algorithm (GKM), introduced in [197], is one representative of these algorithms.
The flowchart of this algorithm is given in Fig. 5.2.

The GKM is a significant improvement of the k-means algorithm [197]. It is an
incremental algorithm where each data point is used as a starting point for the kth
cluster center. Next, we give the GKM in step by step form.

The GKM applies the k-means algorithm m times at each iteration of the
incremental algorithm, and therefore, it is not very efficient in large data sets. Two
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Algorithm 5.2 Global k-means algorithm

Input: Data set A and the number k of clusters to be computed.
Output: Solution to the l-partition problem, l = 1, . . . , k.

1: (Initialization) Compute the centroid x1 of the data set A as

x1 = 1

m

m∑

i=1

ai , ai ∈ A, i = 1, . . . , m, (5.2)

and set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop.

3: Take the centers x1, . . . , xl−1 from the (l − 1)th iteration and consider each point a ∈ A

as a starting point for the lth cluster center, thus obtaining m initial solutions with l points
(x1, . . . , xl−1, a). Apply the k-means algorithm with k = l starting from each of them, and
denote the obtained solution by (ŷ1(a), . . . , ŷl (a)).

4: Compute the value of the function ζl , defined in (4.2), at the point (ŷ1(a), . . . , ŷl (a)), find

ζmin
l = min

a∈A
ζl

(
ŷ1(a), . . . , ŷl (a)

)
,

and define the point (ỹ1, . . . , ỹl ) such that

ζl(ỹ1, . . . , ỹl ) = ζmin
l .

5: Set xj = ỹj , j = 1, . . . , l and go to Step 2.

different approaches were proposed to reduce the computational burden [197]. One
approach is to compute the distance matrix D = [dij ], i, j = 1, . . . , m of the data
set A, where dij = d2(ai , aj ), before the application of the GKM. This reduces the
number of distance function evaluations significantly. However, this approach has a
limitation as the matrix D for large data sets (with tens of thousands of data points
and more) cannot be stored in the memory of a computer.

The second approach is to use only one data point as a candidate for the next
cluster center. More precisely, it selects a data point that provides the largest
decrease of the cluster function, and this point is considered as the kth cluster center.
This approach leads to the design of the fast global k-means algorithm (FGKM).
Next, we give a very brief overview of this algorithm.

Let x1, . . . , xk−1 be a given solution to the (k − 1)th clustering problem and
ζ ∗
k−1 = ζk−1(x1, . . . , xk−1) be the corresponding value of the objective function

given in (4.2). The FGKM computes an upper bound ζ ∗
k ≤ ζ ∗

k−1 − bj on the ζ ∗
k as

bj =
m∑

i=1

max
{

0, ri
k−1 − d2(ai , aj )

}
, j = 1, . . . , m, (5.3)
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where ri
k−1 is the squared distance between ai and the closest center among k − 1

cluster centers x1, . . . , xk−1, defined in (4.27). Then a data point aj ∈ A with the
maximum value of bj is chosen as a starting point for the kth cluster center. The
FGKM can be applied to large data sets, however, it is usually not as accurate as
the original GKM.

5.3 k-Medians Algorithm and Its Variants

There are some applications where clustering algorithms defined using the d1 and
d∞ distance functions generate more meaningful results than those defined using
the function d2. Particularly, clustering algorithms with d1 and d∞ are more robust
to outliers [312], and in high dimensional data mining applications the function d1
is consistently more preferable than d2 [2].

The distance function d1 was used to define the similarity measure in clustering
problems first time by Carmichael and Sneath in 1969 [59] (see, also [174]). In its
current form the k-medians algorithm was introduced by Späth in 1976 [270]. Since
then many variants of this algorithm have been proposed (see, e.g., [50, 82, 139,
234, 254, 288]. A comparison of clustering algorithms using the d1 and d∞ distance
functions is given in [85].

5.3.1 k-Medians Algorithm

The k-medians algorithm aims to solve clustering problems where the similarity
(dissimilarity) measure is defined using the L1-norm, that is, the similarity measure
is the distance function d1 defined in (1.3). Otherwise, this algorithm is similar to the
k-means algorithm. The flowchart of the k-medians algorithm is given in Fig. 5.3.

At each iteration of the k-medians algorithm we need to solve the following
problem for each cluster C = Aj , j = 1, . . . , k:

{
minimize ϕ(x)

subject to x ∈ R
n,

(5.4)

where

ϕ(x) = 1

|C|
∑

c∈C

d1(x, c),

and |C| is the cardinality of the cluster C. The coordinates of the solution x to this
problem are medians of corresponding attributes.
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Fig. 5.3 k-medians algorithm

Definition 5.1 A point x ∈ R
n whose coordinates are medians of attributes of the

set C is called the median of this set.

Proposition 5.2 Assume that for any i ∈ {1, . . . , n} coordinates ci are different for
all c ∈ C. Then the median of the set C is the solution to the problem (5.4).

Proof The function ϕ can be written as

ϕ(x) = 1

|C|
∑

c∈C

n∑

i=1

|xi − ci | = 1

|C|
n∑

i=1

∑

c∈C

|xi − ci |.

Consider functions

ψi(xi) =
∑

c∈C

|xi − ci | =
∑

c∈C

max{xi − ci, ci − xi}, i = 1, . . . , n.
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Then the function ϕ can be represented as

ϕ(x) = 1

|C|
n∑

i=1

ψi(xi).

This means that the minimization of ϕ is equivalent to the minimization of functions
ψi, i = 1, . . . , n. For a given i ∈ {1, . . . , n} define the following sets:

C−
i = {c ∈ C : ci < xi},

C+
i = {c ∈ C : ci > xi}, and

C0
i = {c ∈ C : ci = xi}.

Since all numbers ci (c ∈ C) are different it is obvious that for a given x ∈ R
n the

cardinality of the set C0
i is either 0 or 1. Then the subdifferential of the function ψi

at xi is

∂ψi(xi) = |C−
i | − |C+

i | +
[

− |C0
i |, |C0

i |
]

=
[
|C−

i | − |C+
i | − |C0

i |, |C−
i | − |C+

i | + |C0
i |

]
.

For a point xi to be a global minimizer of the function ψi , it is necessary and
sufficient that 0 ∈ ∂ψi(xi). This means that at xi we have

|C−
i | − |C+

i | − |C0
i | ≤ 0, and

|C−
i | − |C+

i | + |C0
i | ≥ 0.

Depending on the cardinality of the set C0
i , we have two cases:

(i) for |C0
i | = 0 , we get |C−

i | − |C+
i | = 0, that is, |C−

i | = |C+
i | and therefore, the

total number of points c ∈ C with different ith coordinate is 2|C−
i | (or 2|C+

i |).
It means that this number is even and it is obvious that xi is the median; and

(ii) for |C0
i | = 1, we have −1 ≤ |C−

i |−|C+
i | ≤ 1. This leads to the following three

options:

• if |C−
i | = |C+

i | − 1, then the number of points c ∈ C with different ith
coordinates is even. Therefore, xi is the median coinciding with one of
ci (c ∈ C);

• if |C−
i | = |C+

i |, then the number of points c ∈ C with different ith
coordinates is odd and xi is the median coinciding with the coordinate which
is exactly in the middle;
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• if |C−
i | = |C+

i | + 1, then the number of points c ∈ C with different ith
coordinates is even, and again xi is the median coinciding with one of ci (c ∈
C).

This completes the proof. ��
Remark 5.1 The assumption used in Proposition 5.2 is reasonable. If there is any
two data points with the same ith coordinate, i ∈ {1, . . . , n}, then one of them can
be changed by adding a very small number to it.

In practice, the calculation of the median for each cluster Aj , j = 1, . . . , k can
be time-consuming. One way to deal with this difficulty is to apply Weiszfeld’s
algorithm [293, 294] to find the medians. This algorithm proceeds as follows.

Algorithm 5.3 Weiszfeld’s algorithm

Input: Finite point set C ⊂ R
n and a tolerance ε > 0.

Output: Median c̄ of the set C.

1: (Initialization) Compute the centroid c of the set C and set c̄ = c.

2: Compute

u =
∑

c∈C

c
‖c − c̄‖ and u1 =

∑

c∈C

1

‖c − c̄‖ .

3: Compute c̄1 = u/u1.

4: (Stopping criterion) If ‖c̄1 − c̄‖ < ε, then stop. Otherwise, set c̄ = c̄1 and go to Step 2.

The Weiszfeld’s algorithm may fail to converge when one of its estimates c̄ falls
on one of the points c ∈ C.

In addition, since (5.4) is a convex NSO problem one can apply any NSO
algorithms, given in Chap. 3, to solve it and most of these methods will find the
median in a finite number of steps.

The step by step form of the k-medians algorithm is given next.
In Step 4 of Algorithm 5.4, one can apply stopping criteria used in the k-means

algorithm (see Sect. 5.2.1).

5.3.2 Variants of k-Medians Algorithm

As mentioned before, various versions of the k-medians algorithm have been
proposed. Next, we describe the most important—or at least the most well-known—
ones:
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Algorithm 5.4 k-medians algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) Select initial cluster centers (x1, . . . , xk) ∈ R
nk .

2: Allocate data points to the closest cluster center using the distance function d1 and find the
cluster partition A1, . . . , Ak .

3: Compute the center xj of the cluster Aj as a vector of medians of attributes using data points
from the cluster Aj , j = 1, . . . , k.

4: (Stopping criterion) Repeat Steps 2 and 3 until a predefined stopping criterion is met.

• ISODATA clustering algorithm [92, 157, 288]: this algorithm does not require
the number of clusters to be known a priori but only a user-defined threshold
for the cluster separation. It uses splitting and merging to find clusters. First,
the ISODATA algorithm places some initial cluster centers randomly with an
initial number of clusters. Then it assigns data points to these centers using the
d1 distance function and obtains the initial cluster distribution of the data set. For
each cluster, a new cluster center is computed as its median. Then the standard
deviations within each cluster and also the distances between the new centers are
calculated. Next, the following two operations are applied to obtain a new cluster
distribution:

– a cluster is split if its standard deviation is greater than the user-defined
threshold; and

– two clusters are merged if the distance between their centers is less than the
user-defined threshold.

These iterations continue until one of the following stopping criteria met:

– the average inter-center distance falls below the user-defined threshold;
– the average change in the inter-center distance between iterations is less than

a threshold; or
– the maximum number of iterations is reached.

The outcome of the ISODATA algorithm strongly depends on the choice of
starting cluster centers. In addition, the algorithm may become time-consuming
for clustering in highly unstructured data sets. The strength of the ISODATA
algorithm is that it requires limited information from the user.

• X-medians algorithm: this algorithm is an improvement of the original k-
medians algorithm [234], and can be considered as a version of the X-means
algorithm with the similarity measure defined using the L1-norm. The X-medians
algorithm does not require the number of clusters to be provided, instead lower
and upper bounds for this number are required. The details of the X-means
algorithm are given in Sect. 5.2.2.
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In addition, versions of the k-medians algorithm for solving fuzzy clustering
problems were proposed in [50, 116, 306]. These algorithms are similar to the fuzzy
c-means algorithm to be described in Sect. 5.5.

5.4 k-Medoids Algorithm

In the MSSC problems the calculation of centroids or in the clustering problems
with the d1 and d∞ distance functions, the calculation of cluster centers may yield
points that are not in a data set A. The medoid is defined as the point of a cluster,
whose average dissimilarity to all points in the cluster is the lowest in comparison
with any other point from that cluster, that is, it is the most centrally located data
point in the cluster. The k-medoids algorithm aims to find such points in clusters.
A flowchart of this algorithm is given in Fig. 5.4.

Fig. 5.4 k-medoids algorithm
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The k-medoids algorithm is a partitional clustering algorithm. This algorithm
is similar to the k-means algorithm but it calculates medoids instead of means.
Therefore, it is considered to be more resilient to outliers compared to k-means.
Different similarity measures using various distance functions can be used within
the k-medoids algorithm.

The problem of finding k medoids x = (x1, . . . , xk) ∈ R
nk with k > 1 can be

formulated as the constrained minimization problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize fk(x)

subject to ϕ(xj ) = min
i=1,...,m

‖xj − ai‖ = 0, j = 1, . . . , k,

x = (x1, . . . , xk) ∈ R
nk,

(5.5)

where

fk(x) = 1

m

m∑

i=1

min
j=1,...,k

dp(xj , ai ).

Here, the constraints ϕ(xj ) = 0, j = 1, . . . , k guarantee that the solution points
xj , j = 1, . . . , k are medoids, that is, they belong to A. Applying the penalty
function method, the problem (5.5) is reduced to the unconstrained minimization
problem

{
minimize Fk(x)

subject to x = (x1, . . . , xk) ∈ R
nk,

where

Fk(x) = fk(x) + ρ

k∑

j=1

|ϕ(xj )|,

and ρ > 0 is the penalty parameter.
The k-medoids algorithm was first introduced by Späth in 1985 [273]. This

algorithm minimizes the objective function value by swapping data points from one
cluster to another one. First, the k-medoids algorithm randomly generates starting
medoids using data points. With these medoids as initial centers, each data point
is assigned to its closest medoid and the cluster distribution is obtained. Then those
data points whose movements from one cluster to another one result in the reduction
of the objective function value are chosen as new cluster centers (medoids). This
process is continued until no point moving results in the decrease of the value of the
objective function Fk .

The widely used version of the k-medoids algorithm is the partitioning around
medoids (PAM) algorithm. It was first introduced in [173] (see, also [174, 231, 286])
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where the d1 distance function was used to define the similarity measure. One
version of the PAM algorithm is given below where we use the similarity measure
dp with p = 1, 2,∞. Note that the outcome of this algorithm does not depend on
the order of points in a data set.

Algorithm 5.5 Partitioning around medoids

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) For each data point a ∈ A calculate

f1,a =
∑

b∈A,b �=a

dp(a, b),

find f min
1 = min

a∈A
f1,a and identify a data point ā ∈ A such that f1,ā = f min

1 . Set x1 = ā, s = 1

and define the set of selected points S = {ā} and the set of unselected points U = A \ S.

(i) Set s = s + 1. If s > k, then go to Step 2 since the initial medoids (x1, . . . , xk) have
been found.

(ii) For each data point a ∈ U calculate the value

fs,a =
∑

b∈U,b�=a

min
{
dp(x1, b), . . . , dp(xs−1, b), dp(a, b)

}
.

Compute f min
s = min

a∈U
fs,a and find a point ā ∈ U such that fs,ā = f min

s . Set xs = ā,

the set of selected points S = S
⋃{ā}, the set of unselected points U = A \ S and go

to Step 1(i).

2: Assign each data point to its closest medoid, find the cluster partition A1, . . . , Ak and compute
the value f̂k of the objective function fk , given in the problem (5.5). Set l = 1.

3: Take the medoid xl . For each a ∈ U , calculate

fl,a = 1

m

∑

b∈U,b�=a

min
{
dp(x1, b), . . . , dp(xl−1, b), dp(a, b), dp(xl+1, b), . . .

, dp(xk, b)
}
.

Compute

f min
l = min

a∈U
fl,a,

and find a data point ā such that fl,ā = f min
l .

4: If f min
l < f̂k , then set xl = ā and f̂k = f min

l . Update the sets S = S \ {xl} ⋃{ā} and
U = U \ {ā} ⋃{xl}.

5: If l < k, set l = l + 1 and go to Step 3.

6: (Stopping criterion) If f̂k < fk , then go to Step 2. Otherwise stop.
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5.5 Fuzzy c-Means Algorithm

Hard clustering approaches generate partitions or groups where each data point
belongs to one and only one cluster. Fuzzy clustering extends the idea into the
multi-label domain where data points may belong simultaneously to many clusters.
In practice, fuzzy clustering associates each data point with every cluster using a
membership function. The output of the fuzzy clustering algorithms is, therefore, a
clustering rather than a partition.

Given the data set A, the problem of finding c fuzzy clusters is formulated as the
optimization problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize Uc(W)

subject to wij ∈ [0, 1], i = 1, . . . , m, j = 1, . . . , c,
c∑

j=1
wij = 1, i = 1, . . . , m,

(5.6)

where

Uc(W) =
m∑

i=1

c∑

j=1

w
q
ij dp(xj , ai ).

Here, q > 1 is a predefined real number—the so-called fuzzifier—and W =
[wij ], i = 1, . . . , m, j = 1, . . . , c is the m × c membership matrix. The fuzzy
cluster centers x1, . . . , xc are defined as

xj =
∑m

i=1 w
q
ij ai

∑m
i=1 w

q
ij

, j = 1, . . . , c. (5.7)

The design of the membership values wij —and thus, the membership matrix
W—is an important problem in fuzzy clustering. One widely used formula for
computing wij is

wij = 1

∑c
t=1

( ‖ai−xj ‖
‖ai−xt‖

) 2
q−1

, i = 1, . . . , m, j = 1, . . . , c. (5.8)

The fuzzifier q determines the level of cluster fuzziness. Large values of q result in
smaller membership values wij . If there is no any prior information, one can take
q = 2.

A fuzzy clustering algorithm usually selects an initial fuzzy partition of m data
points into c clusters by initializing the membership matrix W , computes the value
of the fuzzy objective function Uc(W), and reassigns data points to clusters to
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Fig. 5.5 Fuzzy c-means algorithm

reduce this objective function. A common fuzzy clustering algorithm is the fuzzy
c-means algorithm. The flowchart of this algorithm is given in Fig. 5.5.

The fuzzy c-means algorithm is an extension of the k-means algorithm. It is
also referred as the soft clustering or soft k-means algorithm. This algorithm was
first introduced by Dunn in 1973 [93] and was modified by Bezdek in 1981 [47].
Similar to k-means, the d2 similarity measure is usually used with the fuzzy c-
means algorithm. In addition, the variants of the fuzzy c-means algorithm applying
similarity measures with the L1- and L∞-norms are given in [50, 116, 306]. The
fuzzy c-means algorithm is widely used, for instance, in pattern recognition. The
step by step description of this algorithm is given next.
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Algorithm 5.6 Fuzzy c-means algorithm

Input: Data set A, the number of clusters c to be computed and a tolerance ε > 0.
Output: Solution to the c-clustering problem and the membership matrix W .

1: (Initialization) Select c initial cluster centers (x1, . . . , xc) ∈ R
nc. Apply (5.8) to compute the

membership matrix W1. Then compute the value of the objective function Uc(W1). Set l = 1.

2: Apply (5.7) and the membership matrix Wl to compute new cluster centers x1, . . . , xc.

3: Update the membership matrix Wl+1 and compute the value of the objective function
Uc(Wl+1).

4: (Stopping criterion) If

|Uc(Wl+1) − Uc(Wl)| < ε,

then stop. Otherwise set l = l + 1 and go to Step 2.

Note that, if we use d2 as the similarity measure and q → 1, then in the
equation (5.8) for each data point ai ∈ A the coefficients wij become either 1 or 0.
This means that the fuzzy clustering problem becomes the hard clustering problem
and the fuzzy c-means algorithm becomes the k-means algorithm. In addition,
usually for any given data point the membership value for one cluster is significantly
greater than its values for all other clusters. This shows a higher confidence in
the assignment of that point to this cluster. Therefore, using the largest values of
the membership function we can replace the fuzzy cluster distribution by the hard
cluster distribution.

5.6 Clustering Algorithms Based on Mixture Models

Finite mixture models are a class of probability distribution formed by a convex
combination of two or more probability density functions. They are initially
developed by Newcomb in 1886 [226] and Pearson in 1894 [233], and later extended
for solving regression [240] and clustering problems [43, 45, 49, 51, 104, 196, 211,
212, 296].

To some extent, partitional clustering algorithms based on the mixture models
can be considered as fuzzy clustering algorithms. However, the probabilities of each
data point being a member of a particular cluster are used to define the membership
matrix in algorithms based on the mixture models.

5.6.1 Mixture Models

In the mixture model approach, it is assumed that data points arise from k ≥ 2
distinct random processes. Each of these processes is modelled by a specific density
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function. Let z be a random variable. A density function ϕ is a mixture of k

components ψ1, . . . , ψk if

ϕ(z) =
k∑

j=1

λjψj (z), (5.9)

where λj are the mixing weights satisfying the conditions

k∑

j=1

λj = 1, 0 ≤ λj ≤ 1, j = 1, . . . , k.

In practice, it is usually assumed that the density functions ψj are of parametric
form, that is they depend on some parameter θj , j = 1, . . . , k. In general, these
parameters are unknown. Then (5.9) can be written as

ϕ(z, θ) =
k∑

j=1

λjψj (z, θj ).

Here, ψj are called probability density functions, j = 1, . . . , k and the overall
parameter vector is θ = (λ1, . . . , λk, θ1, . . . , θk).

Clustering algorithms based on mixture models are partitional model-based
algorithms. Assume that the number of clusters k is predefined. Then the data
points to be clustered are drawn from a mixture of k clusters in some unknown
proportions λ1, . . . , λk , that is, each data point a ∈ A is taken from a population
whose probability density function is the mixture probability density function of the
form

f (a, θ) =
k∑

j=1

λjfj (a, θj ), (5.10)

where fj (a, θj ) is the probability density function of the j th component, a is a
vector of input variables (data points), θj is the component specific parameter vector
for the density function fj , λj is the (unknown) mixing proportion—also known
as a prior probability of the component j—and θ is the vector of all parameters:
θ = (λ1, . . . , λk, θ1, . . . , θk).

The model (5.10) is considered as a finite mixture model density with the
parameter vector θ . This parameter can be estimated, for instance, by the maximum
likelihood method. Nevertheless, estimation of parameters θ1, . . . , θk and coeffi-
cients λ1, . . . , λk , when fj , j = 1, . . . , k are not the same parametric probability
density functions, is a challenging problem. Therefore, from now on we assume that
functions fj , j = 1, . . . , k are represented using the same parametric distribution,
that is, they are the same function fj ≡ f̄ , j = 1, . . . , k for some probability
density function f̄ .
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Various probability density functions can be used to design clustering algorithms
based on the finite mixture model. The multivariate Gaussian mixtures are the most
popular choices. In this case, parameters to be estimated are the mean value vector
and the dispersion matrix. In addition, the beta and Bernoulli distributions have been
used to design mixture models based clustering algorithms. Once the mixture model
has been fitted, a probabilistic clustering of data into k clusters can be obtained
in terms of the fitted posterior probabilities of component membership for data.
An outright assignment of data into k clusters is achieved by assigning each data
point to the component to which it has the highest estimated posterior probability of
belonging.

5.6.2 Maximum Likelihood Estimation

The parameters θ1, . . . , θk and coefficients λ1, . . . , λk can be estimated using the
maximum likelihood (ML) estimation by applying the expectation maximization
algorithm. Given m independent points ai ∈ A, i = 1, . . . , m, we can formulate a
likelihood function as

L(θ) =
m∏

i=1

⎛

⎝
k∑

j=1

λj f̄ (ai , θj )

⎞

⎠ , or

L0(θ) ≡ ln L(θ) =
m∑

i=1

ln

⎛

⎝
k∑

j=1

λj f̄ (ai , θj )

⎞

⎠ . (5.11)

Now, the clustering problem becomes a ML estimation problem of the giving num-
ber of k clusters and the set A. The coefficients λ1, . . . , λk and parameters θ1, . . . , θk

are estimated by maximizing the function L or, equivalently, the function L0.
Functions L and L0 are multi modal and may have many local maximizers. The

standard procedure for finding the ML estimate—that is, to maximize the function
L or L0—is the EM algorithm. This algorithm is particularly applicable in the multi
parameter situations.

5.6.3 Expectation Maximization Clustering Algorithm

The expectation maximization (EM) algorithm is the primary tool in finite mixture
models and clustering algorithms based on these models [212]. The algorithm seeks
to find the ML estimates iteratively applying two steps: expectation step (E-step) and
maximization step (M-step). Then these estimates are used for computing weights
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Fig. 5.6 Expectation maximization clustering algorithm

for cluster distribution. A flowchart of the EM clustering algorithm is given in
Fig. 5.6.

The E-step estimates the expected value of the complete data log likelihood
function (5.11) using the observed data a and the current parameter estimates
λj , θj , j = 1, . . . , k. Let θ t = (λt

j , θ t
j ), j = 1, . . . , k be the parameters estimate

at the t th iteration. At the next iteration, the EM algorithm calculates the function

Q(θ, θ t ) =
m∑

i=1

ln
k∑

j=1

wt
ij λj f̄ (ai , θj ), (5.12)

where

wt
ij = λt

j f̄ (ai , θ
t
j )∑k

r=1 λt
r f̄ (ai , θ t

r )

is the posterior probability that the ith data point belongs to the j th component of
the mixture after the t th iteration.
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The M-step maximizes the expectation of log likelihood for each component
separately using the posterior probabilities as weights. In the M-step the Q(θ, θ t )

is maximized with respect to θ and the (t + 1)th iteration of the EM algorithm is
defined as

θ t+1 = argmax
θ∈Θ

Q(θ , θ t ).

Here, Θ denotes the set of parameters θ . The E-steps and M-steps are repeated
until some prespecified stopping criterion is met. One criterion can be defined based
on the convergence of the parameters θ t ; however, this might be too demanding if
there is a large number of parameters. The other criterion—probably, the most usual
stopping criterion—is to stop when the relative increase in the likelihood function
is sufficiently small. In addition, the predefined maximum number of iterations can
be used as a stopping criterion.

Once the estimates of λj and θj , j = 1, . . . , k are obtained—we denote them as
λ̂j and θ̂j , respectively—each data point ai ∈ A can be assigned to the cluster Aj

(using Bayes rule) via the estimated posterior probability

ŵij = λ̂j f̄ (ai , θ̂j )∑k
r=1 λ̂r f̄ (ai , θ̂r )

.

This process is considered as a fuzzy clustering of a point ai . In addition, we can
form a deterministic clustering by applying the rule

• assign ai to Aj , if ŵij > ŵir for all r = 1, . . . , k, r �= j.

Note that the EM algorithm is a local search algorithm and can converge only to
local maximizers of the functions L and L0 [76, 210]. Thus, there is no guarantee
of finding the best cluster structure.

5.7 Self-Organizing Map Algorithm

Self-organizing map (SOM) is an unsupervised neural network [185] (see also
[184]) that usually contains a 2-dimensional array of neurons. The SOM algorithm
is widely used since it generates an intuitive two-dimensional map of a multidimen-
sional data set. The flowchart of the method is given in Fig. 5.7.

Assume that we are given a set of input data vectors A = {a1, . . . , am} (ai ∈ R
n)

and a set of k neurons that are represented as k weights W = {w1, . . . , wk} (wj ∈
R

n). The data points ai , i ∈ {1, . . . , m} are presented to the network one at a time.
The point ai is compared with all weight vectors wj , j = 1, . . . , k, and the nearest
wj is selected as the best matching unit (BMU) for this point. We say that the data
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Fig. 5.7 Self-organizing map algorithm

point ai is mapped to the best matching neuron c and denote the corresponding
weight by wc.

The weights of the BMU are adjusted by

wj = wj + α(t)β(t)(ai − wj ), j = 1, . . . , k, (5.13)

where β is a neighborhood function and α is a learning rate at the iteration t . Usually
β is a decreasing exponential function of t . For instance, it can be defined as

β(t) = exp
(

− r2

2σ(t)2

)
,
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where

σ(t) = η
T − t

T
, η ≥ 1.

The value of the function β depends on the iteration t > 0, the maximum number
of iterations T given for the algorithm, and the distance r in the output space of
each neuron in the set of neighborhood weights Nc. The set Nc around the BMU are
selected such that

Nc = {
wl : dnt (c, l) ≤ r, l �= c

}
,

where dnt (c, l) ∈ N is the distance between the BMU and a neuron l in 2-
dimensional coordinates of the network topology and r > 0 is the predefined radius.
The learning rate α is a decreasing linear function of t that reduces the effect of the
neighborhood function β as t → T .

The quality of the map is usually measured by the quantization error

E = 1

m

m∑

i=1

‖ai − wc‖, (5.14)

where wc is the weight of the BMU of ai , i = 1, . . . , m. The overall goal of
the SOM algorithm is to minimize this error. A general description of the SOM
algorithm is as follows.

Algorithm 5.7 Self-organizing map algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Set of k weights wj , j = 1, . . . , k of neurons.

1: (Initialization) Initialize the maximum number of iterations T , a radius r of the network and
weight vectors wj , j = 1, . . . , k. Set stopping tolerance ε > 0 and the iteration counter t = 1.

2: Select a data point ai , i = 1, . . . , m and find its closest neuron c (BMU), where c is

c = argmin
j=1,...,k

‖ai − wj‖.

Denote the corresponding weight by wc.

3: Set wj = wc. Update the weights of the BMU and its neighboring neurons using

wj = wj + α(t)β(t)(ai − wj ),

where β is a neighborhood function and α is a learning rate at the iteration t .

4: If all input data are presented to the network go to Step 5, otherwise go to Step 2.

5: (Stopping criterion) Calculate E using (5.14). If E ≤ ε or t > T , then stop. Otherwise set
t = t + 1 and go to Step 2.
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Algorithm 5.7, in general, generates a suboptimal partition if the initial weights
are not properly selected. Therefore, the choice of initial weights is very important.
Several algorithms have been introduced for initialization of weights in the SOM
algorithm [217–219]. In addition, a global optimization approach for the determi-
nation of weights of layered feed-forward networks is introduced in [265]. The
description of other neural network architectures for the learning of recognition
categories can be found in [60, 62].
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