
Chapter 12
Numerical Experiments

12.1 Introduction

This chapter is primarily devoted to the study of the performance of optimization
based incremental clustering algorithms. Since the procedure of finding starting
cluster centers is an important part of all these algorithms we start the chapter with
discussing on the impact of this procedure to the solution obtained by a clustering
algorithm.

Then, we demonstrate the performance of the clustering algorithms using data
sets with different number of data points and attributes described in Chap. 11: extra
small, small, medium sized, large, and very large. The performance profiles are used
to evaluate the accuracy of clustering solutions, the number of distance function
evaluations and CPU time. In addition, we apply the DB index, the purity, the
NMI index and silhouettes to compare different clustering algorithms. In all these
algorithms, we consider the MSSC problem. To compare the performance of the
incremental clustering algorithms when different similarity measures—d1, d2 and
d∞—are used in their objective functions, we apply DG-Clust on three real-world
data sets given in Chap. 11: German towns, TSPLIB1060 and TSPLIB3038. We use
the Voronoi diagrams for this purpose.

12.2 Importance of Procedure for Finding Starting Cluster
Centers

In this section, we study the contribution of the procedure for generating starting
cluster centers to the quality of the final clustering solutions and also to the
overall performance of an incremental clustering algorithm. For this aim, we use
three data sets with different number of entries: Ionosphere (small size), Image
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segmentation (medium sized) and KEGG metabolic network (large scale). The
number of attributes in these data sets ranges from 19 to 34. This choice of data
sets allows us to clearly demonstrate the importance of this procedure.

In our experiments, we apply MGKM with and without the procedure for generat-
ing starting cluster centers. The performance of this solver with different procedures
is compared using three performance measures: accuracy, the number of distance
function calculations, and CPU time. The accuracy (or the error) is defined using
the formula (10.10).

Consider the k-clustering problem with k ≥ 2 and recall Algorithm 7.2—the
procedure for finding starting cluster centers. This procedure has the following
steps:

1: using radii of clusters from the previous iteration determine the list of data points
which are candidates to be a starting point;

2: consider each point as the kth cluster center and compute the decrease of the
cluster function fk , defined in (4.4), in comparison with the optimal value f ∗

k−1
for the (k − 1)-clustering problem;

3: remove some data points from the list using a threshold for the decrease;

4: for each point from the list compute the cluster around it and replace this data
point with the corresponding cluster center;

5: solve the auxiliary clustering problem starting from each of these centers.

Steps 1, 2 and 3 use only data points where the preliminary list of candidate
starting points is determined. Our aim is to demonstrate that Steps 4 and 5 are very
important and make a significant contribution to the quality of the final solution in
clustering. Therefore, we consider the following versions of MGKM:

• V 0 : MGKM0—the version where both Steps 4 and 5 are excluded;
• V 1 : MGKM4—the version where only Step 4 is used and Step 5 is excluded;
• V 2 : MGKM5—the version where Step 5 is used and Step 4 is excluded;
• V 3 : MGKM45—the full version with Steps 4 and 5.

The results are presented in Table 12.1, where as before k stands for the number
of clusters. In our experiments, we use 5 hours time limit in all versions, that is if
the algorithm exceeds this time limit, then its performance is considered as a failure
(denoted by “fail” in the table). To avoid writing very large numbers for distance
function evaluations (denoted by “distance function evals”) in the table, we include
a number after the name of each data set in brackets and to get the correct values,
numbers in distance function evaluations columns should be multiplied by these
numbers.

Results show that accuracies of all versions are comparable and differences
between them are not significant. Furthermore, as the size of a data set increases
the differences become even more insignificant. Regarding the number of distance
function evaluations, we can see that the use of the full version V 3 leads to a
significant reduction of the number in all cases. Results for versions V 2 and V 3
imply that the use of the auxiliary clustering problem in the procedure allows
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Table 12.1 Results with and without the procedure for finding starting points

Accuracy Distance function evals CPU time

k V0 V1 V2 V3 V0 V1 V2 V3 V0 V1 V2 V3

Ionosphere (×106)

2 0.00 0.00 0.00 0.00 1.28 0.55 0.71 0.44 0.33 0.11 0.11 0.06

3 0.03 0.03 0.03 0.03 2.77 1.15 1.24 0.81 0.67 0.22 0.22 0.11

5 0.06 0.07 0.11 0.11 6.28 2.12 2.22 1.51 1.38 0.36 0.36 0.20

7 0.05 0.00 0.10 0.52 10.69 3.40 3.47 2.28 2.14 0.55 0.56 0.30

10 0.27 0.30 0.53 0.28 17.84 5.27 4.91 3.42 3.28 0.81 0.80 0.45

15 0.84 0.65 0.95 2.10 26.07 8.05 6.65 5.05 4.50 1.17 1.06 0.64

20 1.31 1.22 1.54 3.32 34.07 10.34 8.39 6.72 5.70 1.45 1.33 0.86

22 1.50 1.31 1.21 2.80 36.73 11.30 9.05 7.32 6.11 1.59 1.44 0.94

25 1.58 2.00 1.38 3.03 42.81 12.89 9.96 8.42 7.03 1.81 1.56 1.08

Image segmentation (×106)

2 0.00 0.00 0.00 0.00 0.29 0.22 0.14 0.19 0.27 0.08 0.06 0.05

3 0.00 0.00 0.00 0.00 0.77 0.60 0.36 0.42 0.56 0.22 0.13 0.08

5 0.00 0.00 0.00 0.00 5.38 2.51 2.10 1.28 2.45 0.83 0.48 0.17

7 0.00 2.31 2.30 2.30 12.20 3.92 3.40 2.17 4.41 1.09 0.72 0.30

10 0.00 1.75 1.75 1.75 21.10 7.86 4.82 3.54 6.05 1.81 0.92 0.44

15 0.49 0.49 0.48 1.90 42.58 14.50 8.79 6.61 8.91 2.59 1.45 0.73

20 0.61 0.76 0.79 0.62 92.14 24.05 14.71 11.16 14.94 3.61 2.16 1.14

22 0.64 0.83 0.85 0.66 118.05 29.38 17.93 13.03 17.94 4.16 2.52 1.30

25 0.43 0.86 0.84 0.65 161.32 36.15 23.14 16.95 22.72 4.83 3.14 1.64

KEGG metabolic network (×107)

2 0.00 0.00 0.00 0.00 0.44 0.35 0.28 0.35 285.28 9.72 10.30 10.28

3 0.00 0.00 0.00 0.00 2.92 1.29 0.79 1.04 4097.22 398.09 201.55 51.69

5 fail 0.07 0.07 0.07 Fail 2.61 1.83 2.19 Fail 794.25 593.31 234.08

7 fail 0.18 0.18 0.18 Fail 3.41 2.55 2.78 Fail 1096.13 842.88 298.98

10 fail 0.01 0.01 0.01 Fail 5.03 4.07 4.10 Fail 1658.86 1311.27 583.70

15 fail 2.96 2.98 2.98 Fail 7.89 6.38 6.48 Fail 1996.03 1514.92 682.95

20 fail 1.26 1.42 1.18 Fail 11.99 10.43 10.48 Fail 2087.19 1677.55 760.66

22 fail 1.74 2.01 1.74 Fail 13.81 12.06 12.33 Fail 2113.00 1698.78 787.09

25 fail 0.21 0.04 1.74 Fail 17.79 15.99 16.10 Fail 2236.72 1936.06 867.17

us to significantly reduce the number of distance function evaluations without
deteriorating the final solution. This is due to the fact that the solution obtained
by solving the auxiliary clustering problem is close to the solutions of the clustering
problem and the k-means algorithm requires a limited number of iterations to obtain
them. Similar observations are true also for the required CPU time. Here, we can see
that the use of the version V 3 allows us to significantly decrease the CPU time even
in comparison with the versions V 1 and V 2.

These results clearly show that regardless of the size of the data sets, the use
of the procedure for finding starting cluster centers allows us to significantly reduce
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the computational effort while preserving almost the same accuracy for the obtained
clustering solutions. Furthermore, the auxiliary clustering problem is an important
component of the incremental clustering algorithms.

12.3 Performance Results of Incremental Clustering
Algorithms

In this section, we present results on the performance of the incremental clustering
algorithms as well as results obtained by the MS-KM. We include the latter algo-
rithm for the comparison purpose. In MS-KM, the number of randomly generated
starting points is limited by 1000, however, we also applied the time limit which is
twice of the CPU time required by MGKM. We do not present results of MS-KM based
on performance profiles using the CPU time and the number of distance function
evaluations as the CPU time and also in some sense the number of distance function
evaluations are fixed for this algorithm.

We present the results of our experiments for each class of data sets separately.
The best known value of the cluster function for a given k is denoted by fbest. Note
that, in all tables in order to find the true best values of the cluster function, numbers
given in the fbest column should be multiplied by the number given after the names
of data sets.

The error E of a given solution is computed using (10.10). We say that an
algorithm finds the best known solutions to the clustering problem if its error
0 ≤ E ≤ 0.1. If 0.1 < E ≤ 1, then an algorithm finds nearly the best known
solution. For performance profiles, we select in (10.11) and (10.14) the constants
c = c̄ = 1 and the number of iterations to solve a clustering problem M = 100.

12.3.1 Results for Extra Small Data Sets

We apply GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust, and
MS-KM to extra small data sets. Other algorithms are not best suited for such data
sets. Up to ten clusters are computed in all data sets. Results for accuracy are given
in Table 12.2. Note that the best known solutions for all data sets, but Liver disorder
data set, are also known to be the global solutions to the corresponding clustering
problems.

Results presented in Table 12.2 demonstrate that MS-KM cannot be considered as
an alternative to any other algorithm. It is able to find the best known solutions only
when the number of clusters is small. Otherwise, MS-KM fails to find a good quality
solution. Other algorithms show the good performance in finding accurate solutions.
Nevertheless, most algorithms, except IS-Clust, failed to find solutions with high
accuracy in Bavaria postal two data set.
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Table 12.2 Accuracy results for extra small data sets

k fbest GKM MGKM DG-Clust NDC-Clust IDCA-Clust IS-Clust MS-KM

German towns (×105)

2 1.21426 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.77009 1.45 0.00 0.00 0.00 0.00 0.00 0.00

4 0.49601 0.72 0.00 0.00 0.00 0.00 0.00 0.00

5 0.38716 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.30535 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.24433 0.09 0.09 0.00 0.09 0.09 0.00 0.00

8 0.21483 1.33 0.69 0.00 0.69 0.69 0.59 3.61

9 0.18669 1.48 1.48 0.00 1.48 1.48 1.37 8.66

10 0.16427 1.06 1.06 0.00 1.06 1.06 0.00 7.70

Bavaria postal 1 (×1010)

2 60.25472 7.75 0.00 0.00 0.00 0.00 0.00 7.75

3 29.45066 0.00 0.00 0.00 0.00 0.00 0.00 20.02

4 10.44747 0.00 0.00 0.00 0.00 0.00 0.00 0.08

5 5.97615 0.00 0.00 0.00 0.00 0.00 0.00 23.58

6 3.59085 0.00 28.02 27.79 27.65 28.02 27.65 28.02

7 2.19832 1.50 69.39 0.00 0.00 69.39 69.39 98.03

8 1.33854 0.00 141.13 0.00 0.00 141.13 0.00 225.23

9 0.84237 0.00 259.69 0.00 0.00 259.69 1.44 416.79

10 0.64465 0.00 350.66 0.00 0.00 350.66 0.00 452.52

Bavaria postal 2 (×1010)

2 1.99080 162.17 144.28 144.28 144.28 144.28 144.28 144.28

3 1.73988 0.00 0.00 0.00 0.00 0.00 0.00 106.79

4 0.75591 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.53429 1.86 1.14 1.14 1.14 1.14 0.00 1.14

6 0.31876 1.21 39.04 39.04 39.04 39.04 0.00 39.04

7 0.22159 0.50 77.07 76.94 76.94 77.07 0.00 95.00

8 0.17045 0.73 113.22 112.22 112.22 113.21 0.00 153.50

9 0.14011 0.14 142.69 142.48 142.48 142.69 0.00 208.41

10 0.11908 0.16 170.46 169.65 169.65 170.46 0.00 240.56

Iris plant(×102)

2 1.52348 0.00 0.00 0.00 0.00 0.01 0.00 0.00

3 0.78851 0.01 0.00 0.01 0.01 0.01 0.00 0.00

4 0.57228 0.05 0.05 0.00 0.00 0.02 0.00 0.00

5 0.46446 0.54 0.06 0.00 0.00 0.09 0.00 0.06

6 0.39040 1.44 0.07 0.00 0.00 0.10 0.00 0.07

7 0.34298 3.17 0.00 0.00 0.00 0.03 0.00 13.90

8 0.29989 1.71 0.09 0.00 0.00 0.29 0.00 30.27

9 0.27786 2.85 0.10 0.00 0.00 0.40 0.00 40.60

10 0.25834 3.56 0.51 0.00 0.50 0.34 0.06 42.70

(continued)
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Table 12.2 (continued)

k fbest GKM MGKM DG-Clust NDC-Clust IDCA-Clust IS-Clust MS-KM

TSPLIB1060 (×1010)

2 0.98319 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.67058 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.47520 0.01 0.01 0.00 0.00 0.01 0.00 0.00

5 0.37910 0.01 0.01 0.01 0.01 0.06 0.00 0.00

6 0.31770 0.06 0.06 0.06 0.06 0.06 0.06 0.00

7 0.27042 0.02 0.02 0.02 0.00 0.02 0.03 0.01

8 0.22643 0.00 0.00 0.00 0.00 0.00 0.02 19.44

9 0.19910 0.30 0.30 0.14 0.00 0.30 0.02 35.81

10 0.17548 0.23 0.04 0.03 0.04 0.23 0.04 28.97

Liver disorders (×106)

2 0.42398 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.32271 0.71 0.71 0.71 0.88 0.88 0.00 0.00

4 0.26066 0.49 0.49 0.11 0.22 0.48 0.22 0.00

5 0.21826 0.08 0.08 0.00 0.07 0.07 0.08 0.01

6 0.18709 0.97 0.05 0.00 0.00 0.14 0.00 0.28

7 0.16420 0.72 0.34 0.00 0.00 0.37 0.00 14.26

8 0.14778 0.41 0.41 0.00 0.00 0.29 0.01 26.95

9 0.13734 0.83 0.00 0.31 0.20 0.31 0.33 36.10

10 0.12742 0.21 0.01 0.00 0.15 0.29 0.00 16.76
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Fig. 12.1 Performance profiles for extra small data sets. (a) Relative errors. (b) Distance function
evals. (c) CPU time

Performance profiles for extra small data sets are illustrated in Fig. 12.1.
IS-Clust is the most successful in finding the best known solutions and GKM
is the most successful in solving clustering problems with the error no more than
5%. MS-KM has the worst performance while GKM requires the least number of
distance function evaluations and CPU time. On the other hand, NDC-Clust uses
more distance function evaluations and DG-Clust requires more CPU time than
any other algorithm.

In Fig. 12.2 graphs for three indices (DB, purity and NMI ) and in Fig. 12.3
silhouette plots for k = 2, 3, 5 and ten clusters are illustrated using results obtained
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Fig. 12.2 Results for Iris Plant data set using different indices. (a) DB index. (b) Purity. (c) NMI
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Fig. 12.4 Results for Liver disorder data set using different indices. (a) DB index. (b) Purity. (c)
NMI index

by the IS-CLUST in Iris plant data set. The DB index has several knee points at k =
3, 4, 5, 6 and one local minimizer at k = 9. In general, the purity increases as the
number of clusters increases; however, at k = 3 it has a local maximizer. The NMI

index gets its highest value at k = 3. Finally, silhouette plots show that clusters are
well-separated when k = 3. These results demonstrate a good consistency of the
class and the cluster (with k = 3) distributions in Iris Plant data set.

In Fig. 12.4 graphs for the three indices and in Fig. 12.5 silhouette plots for
k = 2, 3, 5 and ten clusters are given based on results obtained by IS-Clust
in Liver disorder data set. Here, the DB index has three distinct local minimizers
at k = 5, 7 and k = 9. The purity increases as the number of clusters increases;
however, this increase is not significant. The NMI index is close to 0 for k < 3
and silhouette plots show that clusters are not compact and not well-separated for
k = 2, 3, 5, 10. Summarizing these results we can conclude that the class and the
cluster distributions in Liver disorder data set are incompatible.

12.3.2 Results for Small Data Sets

We apply GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust, and
MS-KM to small data sets. Other algorithms are not well suited for these data sets.
Up to 25 clusters are computed in these data sets.

Results for accuracy are given in Table 12.3. The results show that MS-KM can
reach the best solutions only when the number of clusters is small. Otherwise,
this algorithm fails to find high quality solutions. Other algorithms are, in general,
successful in finding accurate solutions.

Performance profiles for small data sets are presented in Fig. 12.6. IS-Clust is
the most successful in finding the best known solutions and in solving clustering
problems with the error no more than 5%. As before, MS-KM has the worst
performance while GKM requires the least number of distance function evaluations
and CPU time. In addition, NDC-Clust uses more distance function evaluations
and DG-Clust requires more CPU time than any other algorithm.
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Fig. 12.5 Silhouette plots for Liver disorder data set. (a) k = 2. (b) k = 3. (c) k = 5. (d) k = 10

In Fig. 12.7, the graph of the DB index is given using the results obtained by
IS-Clust in TSPLIB3038 data set. Note that the purity and the NMI index
require the existence of the class labels and since this data set has no classes we
only present the DB index in Fig. 12.7. The silhouette plots for TSPLIB3038 data
set with k = 2, 3, 5 and ten clusters are given in Fig. 12.8. From Fig. 12.7, it can be
observed that the DB index has local minimizers at k = 5, 7, 11, 15, 20. Silhouette
plots show that in the 10-partition of the data set six clusters are compact and
well-separated and other clusters contain some “misclassified” points. The similar
observation is true for the k-partitions of the data set with k = 2, 3 and 5.

In Fig. 12.9 graphs for the three indices and in Fig. 12.10 silhouette plots for
k = 2, 3, 5, 10, and 25 clusters are given using results obtained by IS-Clust in
Vehicle silhouettes data set. The DB index has the distinct local minimizers at k =
4, 7, 11, 14 and k = 19. The purity increases as the number of clusters increases;
however, even for 25 clusters it is only about 55%. The largest value for the NMI
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Table 12.3 Accuracy results for small data sets

k fbest GKM MGKM DG-Clust NDC-Clust IDCA-Clust IS-Clust MS-KM

Heart disease (×105)

2 5.98899 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 4.67508 5.02 3.96 5.14 5.14 5.14 4.67 0.00

5 3.27965 0.52 0.53 0.00 0.01 0.53 0.44 0.03

7 2.64942 2.59 0.00 0.32 0.02 0.00 0.32 4.44

10 2.00558 0.83 0.19 0.00 0.00 0.19 0.03 20.82

15 1.46895 0.55 0.18 0.13 0.18 0.43 0.00 25.37

20 1.16993 0.67 0.00 0.52 0.36 0.51 0.49 37.96

22 1.09199 2.45 0.08 0.40 0.00 0.94 0.23 47.81

25 0.99314 3.33 1.36 0.00 1.13 1.31 0.06 62.52

TSPLIB3038 (×109)

2 3.16880 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 2.17634 3.43 3.43 3.43 3.43 3.43 3.43 0.00

5 1.19820 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.83967 1.87 1.73 1.85 1.73 1.73 1.73 0.00

10 0.56025 2.78 0.58 0.57 0.58 0.58 0.00 0.00

15 0.35604 0.07 0.05 0.00 0.00 0.07 0.06 0.00

20 0.26681 2.00 0.43 0.14 0.20 0.43 0.16 0.17

22 0.24295 1.64 0.54 0.02 0.00 0.55 0.03 1.19

25 0.21450 0.78 0.43 0.43 0.56 0.43 0.00 1.56

Pima Indians diabetes (×106)

2 5.14238 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 2.91332 1.23 1.23 1.23 1.23 1.23 1.23 0.00

5 1.73687 0.15 0.15 0.00 0.15 0.15 0.01 0.01

7 1.30315 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.93066 1.84 0.06 0.00 1.66 0.06 1.12 12.66

15 0.69579 0.21 0.00 1.06 0.23 0.05 1.37 34.14

20 0.57278 0.28 0.00 0.18 0.10 0.35 0.27 47.39

22 0.53501 0.55 0.34 0.33 0.00 0.38 0.14 55.16

25 0.48874 0.38 0.38 0.35 0.00 0.43 0.17 67.21

Breast cancer Wisconsin (×104)

2 1.93232 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 1.62555 0.01 0.01 0.00 0.00 0.01 0.00 0.00

5 1.37047 2.28 0.01 0.02 0.00 0.02 0.00 0.00

7 1.20497 1.44 0.12 0.00 0.02 0.10 0.00 6.27

10 1.01996 0.16 0.32 0.04 0.13 0.27 0.00 17.41

15 0.86928 1.02 0.58 0.55 0.68 0.97 0.00 23.39

20 0.76651 3.40 0.69 0.68 0.53 1.42 0.00 31.34

22 0.72906 5.37 2.12 0.48 1.35 2.42 0.00 32.59

25 0.69446 4.48 0.35 0.00 1.12 2.41 0.38 32.68

(continued)
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Table 12.3 (continued)

k fbest GKM MGKM DG-Clust NDC-Clust IDCA-Clust IS-Clust MS-KM

Ionosphere (×104)

2 0.24194 0.00 0.00 0.00 0.00 0.00 0.00 2.75

3 0.21933 0.96 0.03 0.89 0.02 0.03 0.00 2.45

5 0.18908 0.11 0.11 0.00 0.10 0.11 0.13 2.20

7 0.17382 0.46 0.53 0.00 0.38 0.53 0.03 3.28

10 0.15540 2.74 0.27 0.00 0.22 0.32 0.12 5.11

15 0.13729 6.48 2.10 0.92 1.61 1.43 0.00 6.47

20 0.12307 9.23 3.32 2.09 2.79 2.73 0.00 13.52

22 0.11839 9.70 2.80 1.62 2.00 2.92 0.00 15.27

25 0.11147 10.00 3.03 1.38 1.86 2.98 0.00 21.06

Vehicle silhouettes (×106)

2 7.29088 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 4.87412 0.02 0.02 0.00 0.00 0.02 0.02 0.00

5 2.36484 0.00 0.00 0.00 0.04 0.00 0.00 0.00

7 1.71738 1.08 0.00 0.00 0.00 0.00 0.00 1.72

10 1.25217 0.68 0.04 0.52 0.01 0.22 0.00 21.48

15 0.89095 1.03 0.02 0.00 0.07 0.08 0.00 24.49

20 0.74221 1.17 0.26 0.09 0.00 0.28 0.12 15.44

22 0.69630 0.68 0.09 0.00 0.02 0.09 0.03 20.05

25 0.63106 1.10 0.07 0.00 0.03 0.08 0.01 31.18
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Fig. 12.6 Performance profiles for small data sets. (a) Relative errors. (b) Distance function evals.
(c) CPU time

index is about 0.22 for k = 5 and k = 7. Silhouette plots show that not all clusters
are well-separated in k-partitions with k = 2, 3, 5, 10 and 25. For instance, five
clusters are not well-separated when k = 25. These results demonstrate that in
vehicle silhouettes data set the class and the cluster distributions are not consistent.
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12.3.3 Results for Medium Sized Data Sets

GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust, LMB-Clust
and DCDB-Clust are applied to medium sized data sets. Results for accuracy are
given in Table 12.4. These results demonstrate that, overall, all algorithms, except
DCDB-Clust, are able to find the best known solutions.

Performance profiles for medium sized data sets are depicted in Fig. 12.11.
They show that IS-Clust is the most successful algorithm in finding the
best known solutions and GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust
and IS-Clust are all successful in solving clustering problems with the error
no more than 5%. DCDB-Clust has the worst performance both in terms of
errors and distance function calls. MGKM requires the least number of distance
function evaluations whereas LMB-Clust requires the least CPU time among all
algorithms. Finally, GKM uses more CPU time than other algorithms.

In Fig. 12.12 graphs of the three indices and in Fig. 12.13 silhouette plots for k =
2, 3, 5, 10 and 25 clusters are illustrated using results obtained by IS-Clust in
Image segmentation data set. The DB index has local minimizers at k = 3, 7, 16, 21
and k = 3 is a global minimizer. Overall, the purity shows the steady increase as the
number of clusters increases; however, it becomes almost a constant after k = 16.
The NMI index has the large value at k = 7 and the largest value at k = 14. Note
that the number of classes in this data set is 7. Results for silhouettes demonstrate
that a large portion of clusters are not well-separated. Summarizing, we can say
that in this data set there is some compatibility between the class and the cluster
distributions but it is not very high.

The graph of the DB index for Pla85900 data set is depicted in Fig. 12.14. The
DB index has local minimizers at k = 4, 8, 11, 13 and k = 21. Among them k = 4,
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Fig. 12.11 Performance profiles for medium sized data sets. (a) Relative errors. (b) Distance
function evals. (c) CPU time
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Fig. 12.12 Results for Image segmentation data set using different indices. (a) DB index. (b)
Purity. (c) NMI index

k = 8 and k = 21 are global minimizers or nearly global minimizers. The deep
global minimizer is located at k = 4.

12.3.4 Results for Large Data Sets

We apply GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust,
LMB-Clust, and DCDB-Clust to large data sets. Results for accuracy are given
in Tables 12.5 and 12.6. Note that in these tables the values of fbest are the
best values obtained by algorithms used in our numerical experiments. Results
demonstrate that all algorithms are successful in finding best known solutions.

Performance profiles for large data sets are presented in Fig. 12.15. As before,
IS-Clust is the most successful in finding the best solutions, and DG-Clust,
IS-Clust, NDC-Clust, IDCA-Clust are successful in solving clustering
problems with the error no more than 5%. LMB-Clust requires the least and
GKM the largest number of distance function evaluations. In addition, LMB-Clust
requires the least CPU time among all algorithms. GKM uses more CPU time than
other algorithms.
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Fig. 12.14 DB index for Pla85900 data set

In Fig. 12.16 graphs of the three indices are depicted using results obtained by
IS-Clust in Gas sensor array drift data set. It can be seen that the DB index has
local minimizers at k = 4, 6, 11, 17, 24 and k = 4 is the global minimizer. The
purity increases up to about 55% as the number of clusters increases. The NMI

index has the largest values at k = 17 and k = 22, 23, 24, 25 with the value 0.34.
Note that the number of classes in this data set is 6. The results show that in this
data set the level of the compatibility between the class and the cluster distributions
is not high.

The graph of the DB index for KEGG metabolic relation network data set is
presented in Fig. 12.17. Here, the DB index has many local minimizers. Two of
them are global minimizers (k = 7 and k = 10). This means that the most compact
and well-separated clusters for this data set obtained for the 7- and 10-partitions.

12.3.5 Results for Very Large Data Sets

GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust, LMB-Clust
and DCDB-Clust are applied to very large data sets. Results for accuracy are given
in Table 12.6. Note that in these tables the values of fbest are the best values obtained
by all algorithms used in the numerical experiments.

We can see that not all algorithms are able to solve clustering problems within
the given 5 h time limit. GKM fails in three largest data sets, MGKM fails in two of
them, IDCA-Clust and IS-Clust fail in one of them. This means that these
algorithms are not always applicable to solve clustering problems in very large data
sets. However, LMB-Clust succeeds to solve all problems within the given 5 h
time limit.

Performance profiles for very large data sets are presented in Fig. 12.18. It can
be observed that LMB-Clust is the most successful in finding the best known
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Fig. 12.17 DB index for
KEGG metabolic relation
network data set
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solutions and NDC-Clust is the most successful in solving clustering problems
with the error no more than 5%. In addition, LMB-Clust has the least number of
distance function evaluations and CPU time. The results also show that GKM is not
applicable to very large data sets, it requires largest number of distance function
evaluations and CPU time among all algorithms.

In Fig. 12.19 graphs of the DB index and purity are presented based on results
obtained by IS-Clust in Covertype data set. It can be seen from the figure
that the DB index has local minimizers at k = 3, 8, 21 and k = 8 is a global
minimizer. The DB index tends to increase as the number of clusters increases.
This can be considered as an indication that according to the DB index the 8-
partition of Covertype data set has the best separated clusters among all k-partitions
(k = 2, . . . , 25).

The purity tends to increase starting from 48% up to about 52% as the number of
clusters increases from 2 to 25. This means that we should calculate a large number
of clusters to get a significant increase of the purity in Covertype data set.
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Fig. 12.18 Performance profiles for very large data sets. (a) Relative errors. (b) Distance function
evals. (c) CPU time
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Fig. 12.20 DB index for
Gisette data set
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The graph of the DB index for Gisette data set is presented in Fig. 12.20. This
index has three distinct local minimizers at k = 8, 16 and k = 24. However, it tends
to decrease as the number of clusters increases. This means that we need to compute
a large number of clusters to find a cluster distribution with well-separated clusters.
This is not unexpected for Gisette data set as it has 5000 attributes and is sparse.

12.4 Comparative Results with Different Similarity
Measures

In this section, we discuss the performance of the incremental clustering algorithms
when different similarity measures—d1, d2, and d∞—are used in the clustering
functions. For this aim, we apply DG-Clust on different sizes of data sets:
Bavaria postal 1, Bavaria postal 2, Iris plant, TSPLIB1060, Breast cancer Wisconsin,
TSPLIB3038, D15112, Image segmentation, Page blocks, Pla85900, EEG eye state,
and KEGG metabolic relation network. We use the cluster function values, the CPU
time and Voronoi diagrams to compare results. The maximum number of clusters in
extra small data sets is 10, in small size data sets 15 and it is 20 in all other data sets.

12.4.1 Optimal Values for Cluster Functions

Table 12.7 presents optimal values of the cluster function fk obtained using
similarity measures d1, d2, d∞ and different number k of clusters. Note that these
values are multiplied by m—the number of points in a data set—and also by
numbers shown under names of data sets. The results show that in all cases, except



12.4 Comparative Results with Different Similarity Measures 311

Iris plant data set, the values of the cluster function with d∞ are the smallest among
all three similarity measures.

12.4.2 Computational Time

The dependence of the CPU time used by DG-Clust for similarity measures
d1, d2, and d∞ are depicted in Fig. 12.21. The following conclusions can be made
based on these results:

Table 12.7 Optimal values for cluster functions with different similarity measures

k d1 d2 d∞ d1 d2 d∞ d1 d2 d∞
Bavaria postal 1 Bavaria postal 2 Iris plant

×106 ×1010 ×106 ×106 ×1010 ×106 ×102 ×102 ×102

2 4.0249 60.2547 3.9940 1.8600 5.2192 0.9456 2.1670 1.5235 0.9715

3 2.8284 29.4507 2.7892 1.2607 1.7399 0.6594 1.5920 0.7885 0.7420

5 1.7208 5.9762 1.6948 0.7872 0.5442 0.4221 1.2460 0.4645 0.5860

7 1.0704 2.1983 1.0368 0.5659 0.2215 0.2946 1.0620 0.3430 0.4915

10 0.6037 0.6447 0.5828 0.4340 0.1181 0.2173 0.9070 0.2583 0.4245

TSPLIB1060 TSPLIB3038 Breast cancer

×107 ×109 ×106 ×106 ×109 ×106 ×104 ×104 ×104

2 0.3864 9.8319 2.6809 3.7308 3.1688 2.5651 0.6401 1.9323 0.1831

3 0.3139 6.7058 2.1508 3.0056 2.1763 2.1221 0.5702 1.6256 0.1607

5 0.2310 3.7915 1.6546 2.2551 1.1982 1.5576 0.5165 1.3707 0.1460

10 0.1563 1.7553 1.1048 1.5508 0.5634 1.0738 0.4270 1.0212 0.1278

15 0.1198 1.1219 0.8827 1.2295 0.3560 0.8592 0.3872 0.8711 0.1172

D15112 Image segmentation Page blocks

×108 ×1011 ×108 ×106 ×107 ×105 ×107 ×1010 ×106

2 0.8860 3.6840 0.6109 0.5192 3.5606 1.4929 0.8414 5.7937 4.1746

3 0.6908 2.5324 0.4896 0.4160 2.7416 1.3284 0.6747 3.3134 3.4309

5 0.4998 1.3271 0.3619 0.3400 1.7143 1.1081 0.4882 1.3218 2.4671

10 0.3618 0.6489 0.2524 0.2575 0.9967 0.8170 0.3152 0.4533 1.4446

15 0.2930 0.4324 0.2065 0.2188 0.6556 0.6966 0.2555 0.2495 1.1784

20 0.2501 0.3218 0.1768 0.1942 0.5137 0.6200 0.2200 0.1672 1.0160

Pla85900 EEG eye state KEGG metabolic

×1010 ×1015 ×1010 ×107 ×108 ×106 ×107 ×108 ×106

2 2.0656 3.7491 1.4533 0.5289 8178.1381 1.5433 0.3586 11.3853 1.9821

3 1.6262 2.2806 1.1434 0.4197 1833.8806 0.9049 0.2800 4.9006 1.5112

5 1.2587 1.3397 0.8712 0.2944 1.3386 0.5183 0.2095 1.8837 1.0549

10 0.8950 0.6829 0.6218 0.2191 0.4567 0.3947 0.1459 0.6352 0.6667

15 0.7335 0.4625 0.5082 0.1965 0.3500 0.3562 0.1231 0.3512 0.5114

20 0.6374 0.3517 0.4443 0.1827 0.2899 0.3292 0.1108 0.2654 0.4440
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• DG-Clust requires the largest CPU time with d∞ in all data sets except Bavaria
postal 1 and TSPLIB1060, and the least CPU time with d2 in all data sets. The
clustering problem with d∞ is the most complex one and DG-Clust requires
a large number of approximate subgradient evaluations to find search directions
in this problem. On the other hand, the clustering problem with d2 is the easiest

0

0.1

0.2

0.3

0.4

0.5

2 3 5 7 10

CP
U

No.Clusters
a

0

0.3

0.6

0.9

1.2

1.5

CP
U

No.Clusters

b

0

1

2

3

4

5

CP
U

No.Clusters

c

0

5

10

15

20

25

CP
U

No.Clusters

d

0

10

20

30

40

CP
U

No.Clusters

e

0

10

20

30

40

50

CP
U

No.Clusters
f

0

40

80

120

160

CP
U

No.Clusters

g

0

600

1200

1800

2400

3000

CP
U

No.Clusters

h

0

150

300

450

600

750

2 3 5 10 15 20

CP
U

No.Clusters

i

0

600

1200

1800

2400

3000

CP
U

No.Clusters

j

0

150

300

450

600

750

15 25

CP
U

No.Clusters

k

0

1000

2000

3000

4000

5000

6000

2 3 5 7 10 2 3 5 7 10

2 3 5 10 15 2 3 5 10 15 2 3 5 10 15

2 3 5 10 15 20 2 3 5 10 15 20

2 3 5 10 15 20 25 2 3 5 10 20 2 3 5 10 15 20 25

CP
U

No.Clusters

l

Fig. 12.21 CPU time with different similarity measures. (a) Bavaria postal 1. (b) Bavaria postal
2. (c) Iris plant. (d) TSPLIB1060. (e) TSPLIB3038. (f) Breast cancer. (g) D15112. (h) Image
segmentation. (i) Page blocks. (j) Pla85900. (k) EEG eye state. (l) KEGG metabolic
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as d2 is smooth. In this case, the optimization method does not require a large
number of approximate subgradient evaluations to find search directions;

• the CPU time required by DG-Clust depends more strongly on the number
of attributes than on the number of data points. This claim is confirmed by
comparing results for data sets with the similar number of data points and
significantly different number of attributes: Image segmentation, TSPLIB3038,
D15112, EGE eye state, Pla85900, and KEGG metabolic relation network. The
comparison shows that DG-Clust becomes time-consuming in large data sets
with the large number of attributes. In such data sets the size of the optimization
problem increases rapidly as the number of clusters increase; and

• for all similarity measures the CPU time required at each iteration of the
incremental algorithm, in general, is more than that of required at the previous
iterations. This is due to the fact that the size of the optimization problem for
finding all cluster centers increases at each iteration of the incremental algorithm.

12.4.3 Visualization of Results

Voronoi diagrams are used to visualize results obtained by DG-Clust in three data
sets: German towns, TSPLIB1060 and TSPLIB3038. We utilize the software from
[259] for this purpose. Figures 12.22, 12.23 and 12.24 present Voronoi diagrams for
these data sets with five clusters. We can see that cluster structures for similarity
measures d1, d2, and d∞ are different in all data sets, although the distributions of
cluster centers for d1 and d2 functions in TSPLIB1060 data set are similar.

Fig. 12.22 Visualization of clusters in German towns data set. (a) L1-norm. (b) L2-norm. (c)
L∞-norm
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Fig. 12.23 Visualization of clusters in TSPLIB1060 data set. (a) L1-norm. (b) L2-norm. (c) L∞-
norm

Fig. 12.24 Visualization of clusters in TSPLIB3038 data set. (a) L1-norm. (b) L2-norm. (c) L∞-
norm


	12 Numerical Experiments
	12.1 Introduction
	12.2 Importance of Procedure for Finding Starting Cluster Centers
	12.3 Performance Results of Incremental Clustering Algorithms
	12.3.1 Results for Extra Small Data Sets
	12.3.2 Results for Small Data Sets
	12.3.3 Results for Medium Sized Data Sets
	12.3.4 Results for Large Data Sets
	12.3.5 Results for Very Large Data Sets

	12.4 Comparative Results with Different Similarity Measures
	12.4.1 Optimal Values for Cluster Functions
	12.4.2 Computational Time
	12.4.3 Visualization of Results



