
Chapter 11
Implementations and Data Sets

11.1 Introduction

We discuss the implementations of various incremental clustering algorithms and
provide some recommendations on the choice of their parameters. These algorithms
are designed by combining the multi-start incremental algorithm with either NSO
methods or variants of the k-means algorithm. All the NSO based incremental
clustering algorithms involve the algorithm for finding initial cluster centers. Using
numerical results, we discuss the choice of parameters for the latter algorithm.
In addition, we describe some real-world data sets that are used to evaluate the
clustering algorithms.

We start this chapter by introducing the algorithms applied in our numerical
experiments and by providing details of their implementations. Then, in Sect. 11.3
we present data sets used in our experiments. Finally, in Sect. 11.4 we discuss the
parameters selection for the algorithm that is used to find initial cluster centers (i.e.,
Algorithm 7.2 given in Sect. 7.4).

11.2 Implementations of Clustering Algorithms

We use the following algorithms in our numerical experiments:

• MS-KM—multi-start k-means algorithm;
• GKM—global k-means algorithm (Sect. 5.2.3);
• MGKM—modified global k-means algorithm (Sect. 8.2);
• LMB-CLUST—limited memory bundle method for clustering (Sect. 8.4);
• DG-CLUST—discrete gradient clustering algorithm (Sect. 8.5);
• IS-CLUST—smooth incremental clustering algorithm (Sect. 8.6);
• NDC-CLUST—incremental nonsmooth DC clustering algorithm (Sect. 9.2);

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_11

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_11


270 11 Implementations and Data Sets

• DCDB-CLUST—DC diagonal bundle clustering algorithm (Sect. 9.3);
• IDCA-CLUST—incremental DCA for clustering (Sect. 9.4).

The source codes (Fortran77 or Fortran95) of these algorithms are available at
https://github.com/SnTa2019/Clustering-via-Nonsmooth-Optimization and also at
http://napsu.karmitsa.fi/clustering/.

In the first three clustering algorithms, MS-KM, GKM, and MGKM, the
underlying solver is the k-means algorithm (see Sect. 5.2). We use the standard
implementation of the k-means algorithm in our experiments. The stopping criterion
in this algorithm is formulated using the maximum number of data points which are
allowed to change their clusters. More specifically, for some δ ≥ 0 the number
mc = δm is defined, where m is the number of points in a data set. If the number of
points changing their clusters is less than or equal to mc, then the k-means algorithm
terminates. In extra small, small, and medium sized data sets we set δ = 0 and for
large and very large data sets we use δ = 10−3.

Unlike other clustering algorithms listed above, the MS-KM is not an incremental
algorithm and starting points for the clustering problem are generated using a
simple multi-start randomized scheme. Note that, this algorithm does not provide
any intermediate solutions for 1 < l < k and therefore, several runs need
to be performed with different number of clusters. We denote by MS-KM the
implementation of the MS-KM and set the maximum number of starting points in
MS-KM to 1000.

GKM is an implementation of the incremental algorithm with the k-means
algorithm, where each data point is used as a starting point for the kth cluster
center and no auxiliary clustering problem is utilized. The original GKM utilizes the
mixed integer programming formulation (4.2) of the clustering problem, however,
the NSO formulation (4.3) of this problem can also be used. In its original design,
GKM is only suitable for clustering relatively small data sets. In the implementation,
we use only one starting point for the kth cluster center. More specifically, a data
point which provides the largest decrease of the cluster function is utilized. This
allows us to apply GKM to large data sets. Furthermore, we consider two different
implementations of the GKM as follows:

• the affinity (or distance) matrix of a data set is computed before the application
of the GKM. This implementation is applicable to small and medium sized data
sets as the affinity matrix for large data sets cannot be stored in the memory of a
computer and

• the affinity matrix is computed at each iteration. We can apply this implementa-
tion to large data sets.

Similar to other incremental clustering algorithms, GKM solves all the intermedi-
ate l-partition problems where l = 1, . . . , k.

MGKM is an implementation of the MGKM. This is an incremental algorithm
which utilizes the auxiliary clustering problem and the algorithm for finding starting
cluster centers. For the parameters of the latter one, we refer to Sect. 11.4. At each
iteration of the MGKM, the clustering problem is solved by applying the k-means

https://github.com/SnTa2019/Clustering-via-Nonsmooth-Optimization
http://napsu.karmitsa.fi/clustering/


11.2 Implementations of Clustering Algorithms 271

algorithm and the auxiliary clustering problem is solved by utilizing the partial k-
means algorithm where all cluster centers are fixed but one. We use the stopping
tolerance ε = 0 (see Algorithm 8.2 in Sect. 8.2) and therefore, MGKM always
computes up to the maximum number of clusters provided by the user.

LMB-Clust is an implementation of the LMB-CLUST specifically developed
for solving clustering problems in large and very large data sets. In our experiments,
we use the stopping tolerance εc = 10−3. For small and medium sized data sets,
the stopping tolerance should be set smaller than 10−3. In addition, we apply the
modified version of the underlying optimization solver LMBM with the initial
number of stored correction pairs (used to form the variable metric update) equal
to 7 and the maximum number of stored correction pairs equal to 15. Otherwise, the
default values of parameters of the LMBM are used.

DG-Clust is an implementation of the DG-CLUST. As mentioned before, the
DG-CLUST exploits piecewise separability of the cluster and auxiliary cluster func-
tions. It does not utilize the subgradients of the objective cluster functions, instead
it approximates them using values of the objective functions. Thus DG-Clust
is suitable also for solving clustering problems with the similarity measures d1
and d∞. The simplified scheme, described in Sect. 8.5, is applied to compute
discrete gradients of the cluster and the auxiliary cluster functions which allows
us to significantly reduce the number of distance function evaluations. The most
important parameter in DG-Clust is λ > 0 for approximation of the subgradients.
Its initial value is chosen λ1 = 1 and at the hth (h > 1) iteration it is updated as
λh = μλh−1 where μ = 0.2. Other parameters are chosen as δh = 10−7 for all h,
ε = 10−6 and α = 1.

IS-Clust is an implementation of the IS-CLUST. The smoothing (or precision)
parameter is chosen as τh = μτh−1, h > 1 where τ1 = 1 and μ = 0.1. To solve the
smooth optimization problems, IS-Clust applies the Quasi-Newton method with
the BFGS update.

NDC-Clust is an implementation of the NDC-CLUST. This algorithm takes into
account the DC representation of the objective cluster function. The main parameter
in NDC-Clust is the step λ > 0 used to approximate the first DC component. This
parameter is chosen as λh = μλh−1, h > 1, where μ = 0.1 and λ1 = 1. Otherwise,
the default parameters of the underlying optimization solver are used. In particular,
δh = 10−7 for all h, and ε = 10−6.

DCDB-Clust is an implementation of the DCDB-CLUST, where the DC
structure of the clustering and the auxiliary clustering problems are utilized. This
method is designed for solving clustering problems in large data sets. In our
experiments, we use the stopping tolerance εc = 10−3. Similar to LMB-Clust,
the stopping tolerance should be set smaller for small and medium sized data sets.
The underlying optimization solver DCD-BUNDLE uses seven correction pairs to
form the diagonal updates. In addition, the default values of other parameters of the
optimization solver are used.

IDCA-Clust is an implementation of the IDCA-CLUST. Since the objective
functions in the subproblem (9.2) of the IDCA-CLUST are convex quadratic



272 11 Implementations and Data Sets

functions with the simple structure their unique minima can be calculated explicitly
without involving any optimization procedure or tuneable parameters.

All computational experiments were carried out in a PC with the CPU Intel(R)
Core(TM) i5-8250U 1.60 GHz and RAM 8 GB working under Windows 10.

11.3 Data Sets

Data sets can be classified based on different parameters. Such parameters include
the number of data points, the number of attributes, the number of classes if they
are available (binary or multi-class), types of attributes (numeric, categorical, or
mixture of both), completeness or incompleteness of data, in particular, absence of
values of some attributes in some data points (missing values). We will use data sets
with numeric attributes and no missing values.

The definition of the complexity of a data set is a problem and a model dependent.
For instance, the complexity of a data set may be different from the perspective of
the supervised data classification and clustering. Different models of a clustering
problem contain different types and numbers of variables. Some of these models
have constraints. Therefore, the complexity of a data set with respect to each of
these models might be different. It is also not an easy task to determine how the
complexity of a data set affects the time complexity of an algorithm. If a data set has
well-separated clusters, then most clustering algorithms may require significantly
less iterations than in data sets with not well-separated clusters.

In most optimization based clustering algorithms, considered in this book,
optimization algorithms require the calculation of the value of the cluster functions
and their one subgradient at each point. In the case of the MSSC problems, the
objective is piecewise quadratic and quadratic functions can be represented as a
sum of the squared Euclidean distances. In the case of the similarity measures d1
and d∞, the objective cluster function is piecewise linear. For such functions, the
complexity of calculation of their values and subgradients depends on the number
of points and attributes in a data set. This means that the complexity depends on the
number of entries in a data set. Therefore, we use the number of entries to classify
data sets as extra small, small, medium sized, large, and very large data sets.

11.3.1 Extra Small Data Sets

We group those data sets that contain no more than 3000 entries as extra small. The
brief description of these data sets, used in our numerical experiments, and their
references are given in Table 11.1.



11.3 Data Sets 273

Table 11.1 Brief description of extra small data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

German towns 59 2 – 116 [272]

Bavaria postal 1 84 3 – 252 [272]

Bavaria postal 2 84 4 – 336 [272]

Iris plant 150 3 3 450 [91]

TSPLIB1060 1060 2 – 2120 [246]

Liver disorder 356 6 2 2136 [91]

Table 11.2 Brief description of small data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

Heart disease 297 13 2 3861 [91]

TSPLIB3038 3038 2 – 6076 [246]

Pima Indians diabetes 768 8 2 6144 [91]

Breast cancer Wisconsin 683 9 2 6147 [91]

Ionosphere 351 34 2 11,934 [91]

Vehicle silhouettes 846 18 4 15,228 [91]

Table 11.3 Brief description of medium sized data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

D15112 15,112 2 – 30,224 [246]

Image segmentation 2310 19 7 43,890 [91]

Page blocks 5473 10 5 54,730 [91]

Pla85900 85,900 2 – 171,800 [246]

Pen-based recognition 10,992 16 10 175,872 [91]

of handwritten digits

11.3.2 Small Data Sets

The data sets containing more than 3000 but less than 20,000 entries are classified
as small. The brief description of such data sets, including their references, is given
in Table 11.2.

11.3.3 Medium Sized Data Sets

Medium sized data sets are those containing more than 20,000 but less than 2.0 ×
105 entries. These data sets are presented in Table 11.3 with their corresponding
references.



274 11 Implementations and Data Sets

11.3.4 Large Data Sets

We group the data sets containing more than 2 × 105 but less than 2 × 106 entries
as large. The brief description of these data sets, including their corresponding
references, is given in Table 11.4.

11.3.5 Very Large Data Sets

Very large data sets are those containing more than 2×106 entries. We give the brief
description of these data sets and their corresponding references in Table 11.5.

Table 11.4 Brief description of large data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

EEG eye state 14,980 14 2 209,720 [91]

Landsat satellite 6435 36 6 231,660 [91]

Letter recognition 20,000 16 26 320,000 [91]

Optical recognition 5620 64 10 359,680 [91]

of handwritten digits [91]

Person activity 164,860 3 11 494,580 [91]

Shuttle control 58,000 9 7 522,000 [91]

Skin segmentation 245,057 3 2 735,171 [91]

KEGG metabolic 53,413 20 – 1,068,260 [91]

relation network [91]

3D road network 434,874 3 – 1,304,622 [91]

Gas sensor array drift 13,910 128 6 1,780,480 [91]

Table 11.5 Brief description of very large data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

Online news popularity 39,644 58 2 2,299,352 [91]

Sensorless drive diagnosis 58,509 48 11 2,866,941 [91]

ISOLET 7797 616 26 4,802,952 [91]

Covertype 581,012 10 7 5,810,012 [91]

MiniBooNE particle 130,064 50 2 6,503,200 [91]

identification [91]

Gisette 13,500 5000 – 67,500,000 [91]



11.4 Parameters Selection in Finding Starting Cluster Centers 275

11.4 Parameters Selection in Finding Starting Cluster
Centers

One of the most important components of the incremental clustering algorithms
is the procedure for finding starting cluster centers. This procedure is given in
Algorithm 7.2. It contains three parameters γ1, γ2 ∈ [0, 1], and γ3 ∈ [1,∞) whose
optimal values depend on the size of a data set. More precisely, they depend more
on the number of data points than on the number of attributes.

Assume that l ≥ 2 and the solution to the (l − 1)-clustering problem is known.
Algorithm 7.2 consists of the following three main steps:

• first, each data point is considered as a candidate starting cluster center together
with the solution of the previous (l − 1)-clustering problem obtained by
some incremental clustering algorithm. A data point which provides the largest
decrease of the clustering function is determined. Then a threshold is computed
by multiplying this maximum decrease by the parameter γ1 ∈ [0, 1]. The data
points which provide the decrease of the clustering function greater than this
threshold are selected as potential starting cluster centers while the rest of the
data points are removed;

• second, the selected data points are replaced by the centers of clusters around
them, and the decrease of the clustering function is calculated using these
centers. Similar to the previous step, a threshold is computed using the maximum
decrease with the parameter γ2 ∈ [0, 1], and the centers providing the decrease
greater than this threshold are kept as potential starting cluster centers; and

• in the last step, the auxiliary clustering problem is solved starting from each point
left in the list of potential starting cluster centers, and the values of the auxiliary
clustering function are computed at each (local) solution obtained. Then using the
smallest value of this function, one more threshold parameter—γ3 ∈ [1,∞)—is
defined. Solutions of the auxiliary clustering problem with the function values
less than this threshold are included to the final list of starting cluster centers.
Together with the solution of the previous (l − 1)-clustering problem this list is
used as a set of starting points for solving the l-clustering problem.

Note that there is no theoretical result which would help us to find exact values of
the parameters γ1, γ2, and γ3. We use numerical experiments on some data sets with
different sizes to provide some recommendations on the values of these parameters.
Let us denote by Ā1(γ1), the set Ā1 obtained from (7.12) using γ1 ∈ [0, 1];
by Ā3(γ1, γ2), the set Ā3 obtained from (7.14) using γ1, γ2 ∈ [0, 1]; and by
Ā5(γ1, γ2, γ3), the set Ā5 obtained from (7.16) using γ1, γ2 ∈ [0, 1], γ3 ∈ [1,∞).
It is clear that for all γ1 ≤ μ1, γ2 ≤ μ2, γ3 ≥ μ3 we have

Ā1(μ1) ⊆ Ā1(γ1),

Ā3(μ1, μ2) ⊆ Ā3(γ1, γ2), and (11.1)

Ā5(μ1, μ2, μ3) ⊆ Ā5(γ1, γ2, γ3).



276 11 Implementations and Data Sets

Notice that the set Ā1(0) contains all data points which are not cluster centers.
This means that if γ1 = γ2 = 0 and γ3 is sufficiently large, then the number of
starting points in Step 5 of Algorithm 7.2 is the number of data points which are
not cluster centers. This is the largest number of starting points for the clustering
problem which can be obtained. The least number of starting points is obtained
when γ1 = γ2 = γ3 = 1.

The inclusions in (11.1) imply that an incremental clustering algorithm obtains
its best solution when γ1 = γ2 = 0 and γ3 is sufficiently large, and this solution
cannot be improved using any other values of γ1, γ2 ∈ [0, 1] and γ3 ∈ [1,∞).
Nevertheless, computational effort required by any incremental clustering algorithm
reduces as parameters γ1 and γ2 increase and the parameter γ3 decreases. Therefore,
for a given data set we are interested in finding the largest values of γ1 and γ2, and
the smallest value of γ3 such that an incremental clustering algorithm can still obtain
its best solution to the clustering problem and further increase of γ1, γ2 or decrease
of γ3 deteriorates the solution.

Let us denote by f̃k(γ1, γ2, γ3) the value of the cluster function fk , given in (4.4),
obtained by an incremental clustering algorithm for the given values of γ1, γ2, γ3,
and k clusters. First, we set γ1 = γ2 = 0 and γ3 = 10 (assuming that this value is
sufficiently large) and find f̃k(0, 0, 10). This means that we compute the largest
possible sets Ā1 and Ā3 and find the best possible solution by the incremental
algorithm. Then we calculate f̃k(γ1, γ2, γ3) for

γ1, γ2 = 0.05i, i = 1, . . . , 20, and

γ3 = 1 + 0.01(i − 1), i = 1, . . . , 101.

The largest values of γ1, γ2 and the smallest value of γ3 satisfying the condition

f̃k(γ1, γ2, γ3) − f̃k(0, 0, 10)

f̃k(0, 0, 10)
≤ ε (11.2)

are accepted as an estimation of the optimal values of parameters γj , j = 1, 2, 3.
Here, ε ≥ 0 is a given tolerance.

Next, we demonstrate how to find estimations for the optimal values of γj , j =
1, 2, 3. For this aim, we apply IS-Clust on data sets Iris plant and the Breast
cancer Wisconsin (see Tables 11.1 and 11.2 for details of these data sets). The results
with different values of parameters are presented in Tables 11.6 and 11.7. We give
first the results with γ1 = γ2 = 0 and γ3 = 10, and then the results with the largest
values of γ1, γ2 and the smallest value of γ3 that satisfy condition (11.2). Finally,
we present results with nondecreasing values of γ1 and γ2. In these tables, we use
the following notations:

• k—the number of clusters;
• E—the error in % computed using (10.9); and
• α—the parameter defined by



11.4 Parameters Selection in Finding Starting Cluster Centers 277

α = Nd(γ1, γ2, γ3)

Nd(0, 0, 10)
,

where Nd(γ1, γ2, γ3) is the number of distance function evaluations by the incre-
mental algorithm for given values of γ1, γ2, γ3. It is clear that Nd(0, 0, 10) is the
number of distance function evaluations by the same algorithm when γ1 = γ2 = 0
and γ3 = 10. The parameter α reflects the ratio of computational effort for given
γ1, γ2 ∈ [0, 1] and γ3 ≥ 1 with respect to that of for γ1 = γ2 = 0 and γ3 = 10.

Since the data set Iris plant is extra small we take ε = 0 for it. From Table 11.6,
we see that the largest values of γ1, γ2 and the smallest value of γ3 satisfying the
condition (11.2) are: γ1 = 0.50, γ2 = 0.55, γ3 = 1.10. Results show that any
increase of γ1, γ2 and any decrease of γ3 deteriorate the best solution. It can also be
observed that values of γ2 < γ1 does not improve the accuracy of the algorithm.
Results given in columns at the bottom right corner of Table 11.6 confirm this
claim. Results for the parameter α demonstrate that the selection of optimal values
of γj , j = 1, 2, 3 allows us to significantly reduce the computational effort without
deteriorating the clustering solution.

For the data set Breast cancer Wisconsin, we take ε = 0.01. The largest values
of γ1, γ2 and the smallest value of γ3 satisfying the condition (11.2) are: γ1 =
0.60, γ2 = 0.80, γ3 = 1.01. Results in Table 11.7 show that any increase of γ1, γ2 or

Table 11.6 Results for different values of (γ1, γ2, γ3): Iris plant

k E α E α E α E α

(0.00, 0.00, 10.00) (0.50, 0.55, 1.10) (0.50, 0.55, 1.05) (0.55, 0.55, 1.10)

2 0.00 1.00 0.00 0.11 0.00 0.11 0.00 0.09

3 0.00 1.00 0.00 0.34 0.00 0.34 0.00 0.30

4 0.00 1.00 0.00 0.32 0.00 0.31 0.00 0.28

5 0.00 1.00 0.00 0.28 0.00 0.25 0.00 0.23

6 0.00 1.00 0.00 0.36 0.00 0.33 0.00 0.31

7 0.00 1.00 0.00 0.28 0.01 0.26 0.01 0.24

8 0.00 1.00 0.00 0.20 0.25 0.19 0.25 0.17

9 0.00 1.00 0.00 0.17 0.27 0.17 0.27 0.15

10 0.00 1.00 0.00 0.15 0.00 0.16 0.00 0.14

(0.55, 0.55, 2.00) (0.50, 0.60, 1.10) (0.50, 0.60, 2.00) (0.55, 0.00, 2.00)

2 0.00 0.38 0.00 0.11 0.00 0.48 0.00 0.38

3 0.00 0.39 0.00 0.34 0.00 0.45 0.00 0.39

4 0.00 0.33 0.00 0.32 0.00 0.39 0.00 0.33

5 0.00 0.26 0.00 0.27 0.00 0.32 0.00 0.26

6 0.00 0.26 0.00 0.26 0.00 0.29 0.00 0.26

7 0.01 0.25 0.01 0.25 0.01 0.28 0.01 0.25

8 0.25 0.21 0.25 0.22 0.25 0.24 0.25 0.21

9 0.27 0.21 0.27 0.23 0.27 0.24 0.27 0.21

10 0.00 0.23 0.00 0.25 0.00 0.26 0.00 0.23



278 11 Implementations and Data Sets

Table 11.7 Results for different values of (γ1, γ2, γ3): Breast cancer Wisconsin

k E α E α E α E α

(0.00, 0.00, 10.00) (0.60, 0.80, 1.01) (0.60, 0.80, 2.00) (0.60, 0.80, 1.00)

2 0.00 1.00 0.00 0.34 0.00 0.34 0.00 0.06

5 0.00 1.00 0.00 0.16 0.00 0.16 0.61 0.02

10 0.00 1.00 0.00 0.08 0.00 0.08 0.03 0.01

15 0.00 1.00 0.85 0.06 0.85 0.06 1.22 0.01

20 0.00 1.00 0.76 0.06 0.76 0.06 0.70 0.01

25 0.00 1.00 0.00 0.06 0.00 0.06 1.22 0.01

(0.65, 0.80, 1.01) (0.65, 0.80, 2.00) (0.60, 0.85, 1.01) (0.60, 0.85, 2.00)

2 0.00 0.27 0.00 0.27 0.00 0.34 0.00 0.34

5 0.00 0.13 0.00 0.13 0.00 0.14 0.00 0.14

10 0.00 0.07 0.00 0.07 0.00 0.06 0.00 0.06

15 1.03 0.06 1.03 0.05 1.02 0.05 1.02 0.05

20 0.99 0.05 0.99 0.05 0.80 0.04 0.80 0.04

25 0.00 0.05 0.00 0.05 0.22 0.04 0.00 0.04

any decrease of γ3 slightly deteriorates the best solution obtained by the incremental
algorithm. Results for the parameter α demonstrate that the selection of estimations
of the optimal values of γj , j = 1, 2, 3 allows us to significantly reduce the number
of distance function evaluations in comparison with those required by the algorithm
when γ1 = γ2 = 0 and γ3 = 10. We can see that values of γ1 and γ2 are larger and
γ3 is smaller for this data set comparing to those for Iris plant.

Results presented in Tables 11.6 and 11.7, in general, lead to the following
observations:

• the optimal values of γ1, γ2 ∈ [0, 1] increase and the optimal value of γ3 ≥ 1
decreases as the size of a data set increases;

• we can select γ2 ∈ [γ1, 1];
• the optimal value of γ3 seems to be close to 1. This means that the solutions found

by solving the auxiliary clustering problem are very close to the local minimizers
of the clustering problem; and

• the values of α demonstrate that the use of the optimal values (or their
estimations) of parameters leads to a significant decrease in computational effort.
This decrease becomes even more significant as the number of clusters and the
size of a data set increase.

To conclude, small values of γ1, γ2 and large values of γ3 will increase
computational time considerably in large data sets without any significant improve-
ment in the quality of the solution to the clustering problem. Therefore, in the
implementations of incremental clustering algorithms, we recommend to select the
parameters γj , j = 1, 2, 3 as follows:

• for small and extra small data sets: γ1 and γ2 lie in the interval [0.4, 0.6] while
γ3 ∈ [1.1, 2];



11.4 Parameters Selection in Finding Starting Cluster Centers 279

• for medium sized data sets: we can set γ1 ∈ [0.55, 0.65], γ2 ∈ [0.75, 0.85], and
γ3 ∈ [1.01, 1.05];

• for large data sets: we set γ1 ∈ [0.90, 0.95], γ2 ∈ [0.925, 0.975], and γ3 ∈
[1.005, 1.0075]; and

• for extra large data sets: we set γ1 ∈ [0.975, 0.995], γ2 ∈ [0.99, 0.999], and
γ3 = 1.001.

Note that these values are not optimal and can only be considered as recommended
values.


	11 Implementations and Data Sets
	11.1 Introduction
	11.2 Implementations of Clustering Algorithms
	11.3 Data Sets
	11.3.1 Extra Small Data Sets
	11.3.2 Small Data Sets
	11.3.3 Medium Sized Data Sets
	11.3.4 Large Data Sets
	11.3.5 Very Large Data Sets

	11.4 Parameters Selection in Finding Starting Cluster Centers


