
Chapter 10
Performance and Evaluation Measures

10.1 Introduction

In cluster analysis it is important to apply special evaluation and performance mea-
sures to assess the quality of clustering solutions and to compare the performance of
different clustering algorithms. Here, we differentiate evaluation and performance
measures. Evaluation measures are predominantly used to judge the quality of
clustering solutions whereas performance measures are applied to compare the
efficiency of the algorithms using the computational time and/or the number of the
objective and constraint functions evaluations.

A good clustering algorithm is able to find a true number of clusters and to
compute well-separated clusters which are compact and connected. Nevertheless,
quantifying and measuring these objectives are not a trivial task. In some applica-
tions when a data set contains a small number of instances and a very few attributes,
it might be possible to intuitively evaluate clustering results. However, such an
evaluation is not possible in large and medium sized data sets or even in small data
sets with several attributes.

The objectives of clustering—separability, connectivity, and compactness—are
defined as follows:

• separability of clusters means that they are pairwise separable: that is, for each
pair of clusters there exists a hyperplane separating them in the n-dimensional
space. Roughly speaking in this case, data points from different clusters are away
from each other;

• connectivity is the degree to which neighboring data points are placed in the
same cluster [137]. This degree is defined by a neighborhood algorithm. The
most commonly used neighborhood construction algorithms are the k-nearest
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neighbors, the ε-neighborhood [99], and the NC algorithm [151]. In general, the
connectivity decreases when the number of clusters increases;

• compactness of clusters is characterized by the degree of density of data points
around cluster centers. The compactness improves when the number of clusters
increases.

The quality of clustering results can be evaluated by the cluster validity
indices. In general, validation criteria can be divided into two groups: the internal
validation—that is based on the information intrinsic to data, and the external
validation—that is based on the previous knowledge of data. For instance, such
knowledge can be a class distribution of a data set. In this case, the known class
distributions in data sets can be used to compare the quality of solutions obtained by
clustering algorithms. More precisely, cluster distributions are matched with class
distributions and for example, the notion of purity is used to compare clustering
algorithms.

In this chapter, we describe some evaluation measures including various cluster
validity indices, silhouette coefficients, Rand index, purity, normalized mutual
information, and F -score to mention but a few. Among these measures, the last
three are external criteria. The Rand index and its modification can be used both as
an internal and an external criteria. All other evaluation measures considered in this
chapter are internal criteria.

Clustering algorithms can be compared using their accuracy, the required
computational time, and the number of distance function evaluations. Using these
three measures, we introduce performance profiles for clustering and apply them to
compare the clustering algorithms.

10.2 Optimal Number of Clusters

Determining the optimal number of clusters is among the most challenging prob-
lems in cluster analysis. Various cluster validity indices can be used to find the
optimal number. The values of these indices are calculated for different number of
clusters and a curve of the index values with respect to the number of clusters is
drawn. With most cluster validity indices, the optimal number corresponds to the
global (or local) minimum or maximum of a cluster validity index. The following
algorithm describes the necessary steps to find the optimal number of clusters with
respect to a given validity index.
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Algorithm 10.1 Finding optimal number of clusters

Input: Minimum and maximum number of clusters, kmin and kmax, respectively.
Output: An optimal number of clusters k ∈ [

kmin, kmax
]
.

1: (Initialization) Set j = kmin.

2: Run a clustering algorithm with j clusters.

3: Compute the cluster distribution Ā = {A1, . . . , Aj } and the corresponding cluster centers
x = (x1, . . . , xj ) ∈ R

nj . Calculate the index value for the j th partition.

4: (Stopping criterion) If j < kmax, then set j = j + 1 and go to Step 2.

5: Select j ∈ [kmin, kmax] for which the partition provides the best result according to some
criteria (minimum or maximum) as the optimal number of clusters. Set k = j and stop.

Remark 10.1 The value of kmin is usually chosen to be 2.

Remark 10.2 In the case of the incremental clustering algorithms, it is sufficient
to select only kmax and there is no need to apply this algorithm repeatedly as it
calculates clusters incrementally.

As mentioned above, the optimal number of clusters usually corresponds to
optimizers of cluster validity indices. However, it is not always the case as some
indices may monotonously decrease (or increase) depending on the number of
clusters or indices may have several local maximum or minimum values if kmax
is very large. Therefore, it may be more appropriate to use “knee” points to find the
optimal number of clusters. In the univariate case knee is a point where the index
curve is best approximated by a pair of lines. Although the knee point on the index
curve may indicate the optimal number of clusters, locating it is not an easy task.

One way to find the knee point is to use the difference between successive values
of indices. If the difference is significant, then the previous value of the index can be
accepted as the knee point. This type of detection uses only local information and
does not reflect the global trend of the index curve. Another way is to apply the L-
method that examines the boundary between the pair of straight lines in which they
most closely fit the index curve in hierarchical/segmentation clustering (see [256]
for more details).

10.3 Cluster Validity Indices

Finding the optimal number of clusters usually relies on the notion of the cluster
validity index as mentioned in the previous section. In addition, cluster validity
indices can be applied to evaluate the quality of cluster solutions and also can be
used as objective functions in clustering problems. Cluster validity indices have
been widely studied and applied in cluster analysis [134, 135, 155, 214, 303, 314].
Most of them assume certain geometrical shapes for clusters. When these assump-
tions are not met, then such indices may fail. Therefore, there is no universal cluster
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validity index applicable to all data sets and different indices should be tried in order
to decide about the true cluster structure of a data set.

Let k ≥ 2 and Ā = {A1, . . . , Ak} be the cluster distribution of the data set A and
x1, . . . , xk be its cluster centers. Let also mj = |Aj | be the number of points in the
cluster Aj , j = 1, . . . , k. Two important numbers are used in most cluster validity
indices. The first one is the sum of squares within the clusters (intra-cluster) defined
as

Wk =
k∑

j=1

∑

a∈Aj

d2(xj , a). (10.1)

Note that Wk is the value of the clustering objective function multiplied by the
number of points in the set A. It can be rewritten as

Wk =
∑

a∈A

min
j=1,...,k

d2(xj , a). (10.2)

The second number is the sum of squares between each cluster center and the
center of the entire set A—called the (inter-cluster)—defined as

Bk =
k∑

j=1

mjd2(xj , x̄), (10.3)

where x̄ ∈ R
n is the center of the set A.

Note that Wk is used to measure the compactness of clusters whereas Bk is
considered as a measure of separation of clusters.

10.3.1 Optimal Value of Objective Function

An optimal value of the objective function in the clustering problem can be used
to find the optimal number of clusters. There are different optimization models
of clustering problems, and the aim in these models is to minimize the objective
function by attaining a high intra-cluster and a low inter-cluster similarity. This
means that the clustering objective function is an internal criterion for the quality
of clustering and we can get compact and in some cases well-separated clusters
by minimizing the objective. However, this aim may not be achieved always. The
main reason is that clustering is a global optimization problem—it has many local
solutions and only global or nearly global ones provide a good quality cluster
solutions. Nevertheless, most clustering algorithms are local search methods. They
start from any initial solution and find the closest local solution which might be far
away from the global one.



10.3 Cluster Validity Indices 249

The optimal value of the clustering function found by a clustering algorithm
decreases usually as the number of clusters increases. However, this is not always
the case. For example, optimal values may not decrease when the k-means or the
k-medians algorithms are applied. In these cases, the use of such values may lead to
an erroneous decision on the number of clusters as these values may be generated
by unexpected local minimizers.

The use of the incremental approach helps us to avoid such undesirable sit-
uations. The optimal value of the clustering function found by an incremental
clustering algorithm monotonously decreases as the number of clusters increases.
Monotonicity of these values with respect to the number of clusters means that there
are no (local) minimizers and the knee points should be used to estimate the optimal
number of clusters. The following approach can be used to estimate the optimal
number of clusters. Let ε > 0 be a given tolerance. For the clustering problem, if

Wk − Wk+1

W1
≤ ε,

then k is accepted as the optimal number of clusters (Wk is defined in (10.1)). The
number W1 is used to define the relative error as this number is a characteristic of
the whole data set.

Note that the optimal value of the cluster function alone may not provide an
accurate optimal number of clusters and additional measures are needed. In what
follows, we introduce cluster validity indices using the similarity measure d2;
however, most of them can also be given for the similarity measures d1 and d∞.

10.3.2 Davies–Bouldin Index

Davies–Bouldin (DB) index [75] is a function of the ratio of the sum of within-
cluster scatter to between-cluster separation. For the k-partition problem consider

S(Aj ) = 1

mj

∑

a∈Aj

d2(xj , a),

which is the average squared Euclidean distance of all data points from the cluster
Aj to their cluster center xj , j = 1, . . . , k. Let d2(xl , xj ) be the squared Euclidean
distance between cluster centers xl and xj , l, j = 1, . . . , k, j �= l. Introduce the
following two numbers:

Rlj = S(Al) + S(Aj )

d2(xl , xj )
, and

R̄j = max
l=1,...,k

Rlj , j = 1, . . . , k.
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The small value of Rlj means that the lth and j th clusters are separated, and the
small value of R̄j indicates that the j th cluster is separated from all other clusters.
The DB index is defined as

DBk = 1

k

k∑

j=1

R̄j .

Note that the DB index is small if the clusters are compact and well-separated.
Consequently, the DB index will have a small value for a good clustering. More
specifically, the optimal number of clusters can be identified using local minimizers
of the DB index.

10.3.3 Dunn Index

Dunn (Dn) index was introduced in [93, 94]. For k ≥ 2, consider the k-partition
problem. Let

dist(Aj ,Al) = min
a∈Aj , b∈Al

d2(a, b)

be a squared Euclidean distance between the lth and j th clusters, j, l =
1, . . . , k, j �= l. The squared diameter of the cluster Aj is given by

diam(Aj ) = max
a,b∈Aj

d2(a, b).

Let

Δk = max
j=1,...,k

diam(Aj ).

Then the Dn index is defined as

Dnk = 1

Δk

min
j=1,...,k

min
l=1,...,k, l �=j

dist(Aj ,Al).

The Dn index maximizes the inter-cluster distances and minimizes the intra-
cluster distances. This index measures the minimum separation to maximum
compactness ratio, so the higher the Dn index value is the better clustering is.
Therefore, the number of clusters that maximizes Dnk can be chosen as the optimal
number of clusters. Some generalizations of the Dn index have been proposed, for
instance, in [255].

It should be noted that the squared distance between clusters can be defined in
many different ways. Here, we define it by calculating pairwise squared distances
between points from clusters. However, cluster centers can be used to define this
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distance. Note that the similarity measures d1 and d∞ can also be utilized to define
the Dn index.

10.3.4 Hartigan Index

Hartigan (H ) index is one of the first cluster validity indices introduced in [143].
The H index is defined as

Hk =
( Wk

Wk+1
− 1

)
(m − k − 1). (10.4)

Another expression for this index is

Hk = log
Bk

Wk

,

where Wk and Bk are defined in (10.1) and (10.3), respectively.
Let us consider the first definition of the H index. We assume that Wk+1 ≤ Wk

for all k ≥ 1. However, the difference between two successive values of Wk becomes
smaller and smaller as the number k of clusters increases. This means that the
first term in (10.4) is nonnegative and approaches to 0 as the number of clusters
increases. The second term decreases as the number of clusters increases. Therefore,
the maximum value of the H index may correspond to the optimal number of
clusters.

The second expression for the H index is based on the compactness and the
separation of clusters. For a good clustering, the value of Bk is expected to be as
large as possible and the value of Wk to be as small as possible. This means that the
(local) maximum of the H index corresponds to a good clustering distribution. Note
that different similarity measures can be used to define the H index.

10.3.5 Krzanowski–Lai Index

Krzanowski–Lai (KL) index was introduced in [187] and is defined as

KLk = |vk|
|vk+1| , k > 1.

Here

vk = (
k − 1

) 2
n Wk−1 − k

2
n Wk,

and n is the number of attributes in the data set A.
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If the set A contains a large number of attributes, then vk ≈ Wk−1 − Wk and the
optimal number of clusters may coincide with a local maximizer of KLk or with its
knee point. On the other hand, when the number of attributes is very small (say for
example, less than six), then the optimal number of clusters can be identified using
knee points of the KL index curve.

10.3.6 Ball & Hall Index

Ball & Hall (BH ) index was introduced in [40]. This index is very simple and can
be easily calculated as

BHk = Wk

k
.

Since one can expect that Wk+1 ≤ Wk for all k > 1 it follows that the BH

index decreases as k increases. Therefore, in general, it is not expected that BHk

has a local minimizer or maximizer. This is always true for incremental clustering
algorithms for which BHk decreases monotonously. In this case, we can define a
tolerance ε > 0. If

BHk − BHk+1 ≤ ε for some k ≥ 2,

then k can be accepted as the optimal number of clusters. Alternatively, the optimal
number of clusters can be determined using knee points on the BH index curve.

10.3.7 Bayesian Information Criterion

Bayesian information criterion (BIC) was introduced in [315]. The BIC is defined
as

BICk = Lm − 1

2
k
(
n + 1

) k∑

j=1

log
(
mj

)
,

where L > 0 is a log-likelihood in the BIC, mj is the number of data points in
the j th cluster, j = 1, . . . , k, and n is the number of attributes in the data set A.
Note that knee points of the BIC can be considered as a possible optimal number
of clusters.
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10.3.8 WB Index

The sum-of-squares based index, called the WB index was introduced in [316] and
its modifications are studied in [314]. The WB index is defined as

WBk = kWk

Bk

,

where Wk and Bk are defined in (10.1) and (10.3), respectively. The name of this
index originates from notations used for these two numbers.

As mentioned before, the smaller the value of Wk is the better compactness of
clusters and the larger value of Bk is the better separated clusters. Therefore, the
minimum of WBk corresponds to the optimal number of clusters.

10.3.9 Xu Index

Xu index [304] is defined as

Xuk = n

2
log

( Wk

nm2

)
+ log(k).

Since for a good clustering the values of Wk are expected to be as small as possible it
follows that the optimal number of clusters can be identified using local minimizers
of the Xu index.

10.3.10 Xie-Beni Index

Xie-Beni (XB) index [303] is applicable to fuzzy clustering problems. Nevertheless,
it can also be applied to hard clustering problems with some slight modifications.

Let wij be a membership degree of the ith data point ai to the cluster Aj , i =
1, . . . , m, j = 1, . . . , k. Introduce the following numbers:

Uk =
m∑

i=1

k∑

j=1

w2
ij d2(xj , ai ), and

Ũk = min
j=1,...,k

min
t=j+1,...,k

d2(xj , xt ).

Here, Uk is the clustering objective function value on the fuzzy clustering problem
multiplied by the number of data points. The value of Ũk indicates how far cluster
centers lie from each other. Then the XB index is defined as
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XBk = Uk

mŨk

.

It is clear that the smaller value of Uk means more compact clusters. The larger
value of Ũk indicates well-separated clusters. Therefore, the minimum value of the
XB index corresponds to the optimal number of clusters.

To make the XB index applicable to hard clustering problems, Uk needs to be
modified as follows:

Uk =
k∑

j=1

∑

a∈Aj

d2(xj , a), or

Uk =
m∑

i=1

min
j=1,...,k

d2(xj , ai ).

In this case, Uk coincides with Wk defined in (10.1). The similarity measures d1 and
d∞ can also be used to define the XB index.

10.3.11 Sym Index

Sym (Sm) index [42] is used to measure the overall average symmetry with respect
to cluster centers. Take any cluster Â from the k-partition Ā = {A1, . . . , Ak} and
denote its center by x̂. Let ȳ ∈ Â. Compute 2x̂ − ȳ which reflects the point ȳ with
respect to the center x̂. Denote the reflected point by ŷ. Assume that kN nearest
neighbors yi , i = 1, . . . , kN of ŷ are at the squared Euclidean distances d2(ŷ, yi ).
Compute the symmetry measure ds of ȳ with respect to x̂ as

ds(ȳ, x̂) =
∑kN

i=1 d2(ŷ, yi )

kN

.

Then the point symmetry based distance dps(ȳ, x̂) between ȳ and x̂ is computed as

dps(ȳ, x̂) = ds(ȳ, x̂) · d2(ȳ, x̂).

Note that the number of neighbor points kN cannot be 1. Otherwise, the point ŷ
is in a data set and dps(ȳ, x̂) = 0 and therefore, the impact of the Euclidean distance
is ignored. On the other hand, large values of kN may reduce the symmetry property
of a point with respect to a particular cluster center. In practice, kN is a user defined
number and can be chosen as 2.

The maximum separation between a pair of clusters over all possible pairs of
clusters is defined by
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Dk = max
i=1,...,k

max
j=1,...,k

‖x̂i − x̂j‖. (10.5)

For each cluster Aj , j = 1, . . . , k compute

Ej =
∑

a∈Aj

dps(a, x̂j ), and

Ek =
k∑

j=1

Ej .

Then the Sm index is defined as

Smk = Dk

kEk

.

The Sm index should be maximized in order to obtain the optimal number of
clusters. This index can also be extended to use the similarity measures d1 and d∞.

10.3.12 I Index

I index [8, 208] is defined as

Ik =
(1

k
× F1

Fk

× Dk

)q

,

where Dk is given in (10.5) and q is any positive integer—usually q = 2. The
number Fk is defined as the value of clustering function multiplied by the number
of data points. That is

Fk =
∑

a∈A

min
j=1,...,k

d2(a, xj ).

It is obvious that F1 corresponds to Fk when k = 1.
There are three factors in the definition of the I index: the first one is the

reciprocal of the number of clusters and it decreases as the number of clusters
increases; the second factor is the ratio of F1 and Fk . Here, F1 is a constant for
a given data set. Since, in general, with an increase of k the value of Fk will be
decreased this factor ensures the formation of more compact clusters; the third
factor, Dk generally increases as k increases. Due to the complementary nature of
these three factors, it is guaranteed that the I index is able to determine the optimal
partitioning. It is clear that the I index is maximized to obtain the optimal number
of clusters.
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10.3.13 Calinski–Harabasz Index

Calinski–Harabasz (CH ) index [57] is defined using the sum of squares within
the clusters and the sum of squares between the clusters. The CH index for the
k-partition problem with k ≥ 2 is given by

CHk = (m − k)Bk

(k − 1)Wk

, (10.6)

where Wk and Bk are defined in (10.1) and (10.3), respectively.
The CH index can be expressed with a different formulation. Let dA be the

general mean of all squared distances between points ai , aj ∈ A:

dA = 2
∑m

i=1
∑m

j=i+1 d2(ai , aj )

m(m − 1)
,

and dj be the mean value for each cluster Aj , j = 1, . . . , k:

dj = 2
∑

a∈Aj

∑
b∈Aj d2(a, b)

mj (mj − 1)
.

Then the sum of squares within the clusters can be alternatively computed as
(cf. (10.1))

Wk = 1

2

( k∑

j=1

(mj − 1)dj

)
,

and the sum of squares between the clusters is alternatively defined as (cf. (10.3))

Bk = 1

2

(
(k − 1)dA + (m − k)Qk

)
.

Here, Qk is a weighted mean of the differences between the general and the within-
cluster mean squared distances, that is

Qk = 1

m − k

k∑

j=1

(mj − 1)(dA − dj ).

Then the CH index, given in (10.6), can be reformulated as

CHk = dA + (
m−k
k−1

)
Qk

dA − Qk

.



10.4 Silhouette Coefficients and Plots 257

If the distances between all pairs of points are equal, then Qk = 0 and we get
CHk = 1. Since dA is a constant for a data set A it follows that the minimum value
of Wk maximizes Qk for a given k.

The parameter Qk can also be used to compare partitions obtained for different
number of clusters: the difference Qk − Qk−1 indicates an average gain in the
compactness of clusters resulting from the change from k − 1 to k clusters. Hence,
the behavior of Qk depending on k may be sensitive to the existence of such clusters.
Let

qk = Qk

dA

.

It is clear that qk ∈ [0, 1]. The case qk = 0 means that all distances between pairs
of data points are equal while qk = 1 implies k = m.

Then the CH index can be rewritten as

CHk = 1 + (
m−k
k−1

)
qk

1 − qk

.

If data points are grouped into k clusters with a small within-cluster variation, then
the change from k −1 to k causes a considerable increase in qk . This in turn leads to
a rapid increase of the CH index. Therefore, this index can be applied to identify the
optimal number of clusters. It is suggested in [57] to choose the value of k for which
the CH index has a (local) maximum or at least a comparatively rapid increase. The
latter point can be considered as a knee point on the CH index curve. If there are
several such local maxima or knee points, then the smallest corresponding value of
k can be chosen. In practice, this means that the computation can be stopped when
the first local maximum or the knee point is found.

10.4 Silhouette Coefficients and Plots

The aim of the silhouette plot is to identify compact and well-separated clusters
[251] (see, also [174]). More precisely, the silhouette plot is used to interpret and
validate consistency within clusters. It provides a concise graphical representation
of how well each data point lies within its cluster.

Silhouettes are constructed using the k-partition Ā = {A1, . . . , Ak}, its cluster
centers x1, . . . , xk , and the collection of all proximities between data points. Take
any point a ∈ A and denote by Aj , j ∈ {1, . . . , k} the cluster to which this point
belongs. Assuming that this cluster contains other data points apart from a, compute

d̄a = 1

mj − 1

∑

b∈Aj ,b �=a

d2(a, b).
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Here, d̄a is the average dissimilarity of the point a to all other points of the cluster
Aj . Choose any t ∈ {1, . . . , k}, t �= j and compute

d̄t,a = 1

mt

∑

b∈At

d2(a, b),

which is the average dissimilarity of the point a to points from the cluster At .
Calculate the minimum average dissimilarity

d̂a = min
t=1,...,k, t �=j

d̄t,a.

Let d̄t0,a = d̂a, t0 ∈ {1, . . . , k}, t0 �= j . The cluster At0 is called the neighbor
cluster of the data point a. For each point a ∈ A, calculate the silhouette coefficient
s(a) using the following formula:

s(a) =
⎧
⎨

⎩

1 − d̄a/d̂a, if d̄a < d̂a,

0, if d̄a = d̂a,

d̂a/d̄a − 1, if d̄a > d̂a.

This formula can be rewritten as

s(a) = d̂a − d̄a

max{d̄a, d̂a}
.

It is clear that s(a) ∈ [−1, 1] for all a ∈ A. When s(a) is close to 1, the
within dissimilarity d̄a is much smaller than the smallest between dissimilarity d̂a.
Therefore, we can say that a is well-clustered as it seems that a is assigned to an
appropriate cluster and the second best choice At0 is not nearly as close as the actual
choice Aj . If s(a) = 0 or it is close to 0, then d̄a and d̂a are approximately equal.
This means that the point a lies equally far away from Aj and At0 , and it is not clear
which cluster it should be assigned. In this case, the data point can be considered
as an intermediate case. When s(a) is close to −1, d̄a is much larger than d̂a. This
means that on the average a is much closer to At0 than Aj . Hence, it would be more
natural to assign a to At0 than to Aj and we can conclude that a is misclassified. To
conclude, s(a) measures how well the data point a matches with the clustering at
hand, that is, how well the point has been assigned.

The numbers s(a) can be used to draw the silhouette plot. The silhouette of the
cluster Aj is a plot of s(a) ranked in a decreasing order for all points a in Aj . The
silhouette plot shows which data points lie well within the cluster and which ones
are merely somewhere in between clusters. A wide silhouette indicates large s(a)

values and hence a pronounced cluster. The other dimension of the silhouette plot is
its height which simply equals the number of objects in Aj .



10.5 Rand Index 259
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Fig. 10.1 Illustration of silhouette plot for ten clusters

Combining the silhouette of different clusters we can draw a single silhouette plot
for the whole data set A. This allows us to distinguish clear-cut clusters from the
weak (not well-separated) ones. In addition, the number of objects in each cluster
Aj can be detected by using the height of the silhouette of the cluster Aj .

To illustrate silhouette plots we consider the 10-partition of image segmentation
data set obtained using the MGKM. The silhouette plot of the 10-partition is given
in Fig. 10.1. It is depicted using the R package available from https://cran.r-project.
org/web/packages/clues/clues.pdf (see [290], for details). In this figure, clusters
are shown using different colors. The height and area of the cluster depend on
the number of its data points. The very narrow “pink” cluster is the smallest and
the “blue” cluster is the largest one. If any cluster has data points with negative
silhouettes, then this cluster is not well-separated. The absence of such points
means that the cluster is considered as well-separated. The top “black,” “green,”
“light blue,” “yellow” and the bottom “red” clusters are not well-separated from
other clusters. The “blue” cluster contains a very few “misclassified” points. The
remaining four clusters are considered as separable from other clusters. The right
hand side of clusters reflects the number of data points well lying inside their own
clusters. The top “red,” “blue,” and the bottom “black” clusters contain more such
points than any other cluster.

10.5 Rand Index

Rand (Rn) index [243] measures similarity between two different cluster distribu-
tions of the same data set (see, also [215, 257]). Let Ā1 and Ā2 be two cluster
distributions of the data set A:

https://cran.r-project.org/web/packages/clues/clues.pdf
https://cran.r-project.org/web/packages/clues/clues.pdf
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Table 10.1 Contingency
table for comparing partitions
Ā1 and Ā2

Ā2

Partition Clusters A1
2 A2

2 . . . A
k2
2 Total

Ā1 A1
1 n11 n12 . . . n1k2 s1

A2
1 n21 n22 . . . n2k2 s2

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

A
k1
1 nk11 nk12 . . . nk1k2 sk1

Total r1 r2 . . . rk2 m

Ā1 = {A1
1, . . . , A

k1
1 }, k1 > 1, and (10.7)

Ā2 = {A1
2, . . . , A

k2
2 }, k2 > 1. (10.8)

Denote the elements of the k1 × k2 matrix by nij , where nij represents the number
of data points belonging to the ith cluster Ai

1 of the cluster partition Ā1 and the
j th cluster of the cluster partition Ā2, i = 1, . . . , k1, j = 1, . . . , k2. Then the
contingency table for distributions Ā1 and Ā2 can be formed as in Table 10.1. In
this table, the entry si indicates the number of data points in the ith cluster of the
cluster partition Ā1 and rj shows the number of data points in the j th cluster of the
cluster partition Ā2.

Let C(m, 2) be the number of 2-combinations from m data points. Among all
possible combinations of pairs C(m, 2), there are the following different types of
pairs:

• data points in a pair belong to the same cluster in Ā1 and to the same cluster in
Ā2. Denote the number of such pairs by N1;

• data points in a pair belong to the same cluster in Ā1 and to different clusters in
Ā2. Denote the number of such pairs by N2;

• data points in a pair belong to the same cluster in Ā2 and to different clusters in
Ā1. Denote the number of such pairs by N3; and

• data points in a pair belong to different clusters in Ā1 and to different clusters in
Ā2. Denote the number of such pairs by N4.

The values of N1, N2, N3, and N4 can be calculated using entries from Table 10.1:

N1 =
k1∑

i=1

k2∑

j=1

C(nij , 2) = 1

2

⎛

⎝
k1∑

i=1

k2∑

j=1

n2
ij − m

⎞

⎠ ,

N2 =
k1∑

i=1

C(si, 2) − N1 = 1

2

⎛

⎝
k1∑

i=1

s2
i −

k1∑

i=1

k2∑

j=1

n2
ij

⎞

⎠ ,

N3 =
k2∑

j=1

C(rj , 2) − N1 = 1

2

⎛

⎝
k2∑

j=1

r2
j −

k1∑

i=1

k2∑

j=1

n2
ij

⎞

⎠ , and
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N4 = C(m, 2) − N1 − N2 − N3 = 1

2

⎛

⎝
k1∑

i=1

k2∑

j=1

n2
ij + m2 −

k1∑

i=1

s2
i −

k2∑

j=1

r2
j

⎞

⎠ .

Then the Rn index can be calculated as

Rn = N1 + N4

N1 + N2 + N3 + N4
.

Note that the Rn index is ranging from 0 to 1. If Rn = 0, then two cluster
distributions have no similarity, and if Rn = 1, then they are identical.

The Rn index can also be used to measure the similarity between a cluster
distribution and a class distribution in data sets with class outputs. In this case, we
can replace one of cluster distributions above by the class distribution. Therefore,
the Rn index is both an internal and an external index.

10.6 Adjusted Rand Index

The Rn index of two random cluster distributions may not have a constant value (say
zero) or it may approach its upper limit of unity as the number of clusters increases.
To overcome these limitations several other measures have been introduced, for
example, the Fowlkes–Mallows index proposed in [109]. Another example of such
measures is the Adjusted Rand (ARn) index which is an improvement of the Rn

index [150]. This index is considered as one of the successful cluster validation
indices [215].

Recall the cluster distributions Ā1 and Ā2, given in (10.7) and (10.8), for the data
set A. Then the ARn index is

ARn =
C(m, 2)(N1 + N4) −

(
(N1 + N2)(N1 + N3) + (N2 + N4)(N3 + N4)

)

(
C(m, 2)

)2 −
(
(N1 + N2)(N1 + N3) + (N2 + N4)(N3 + N4)

) ,

or

ARn =
C(m, 2)

∑
i

∑
j C(nij , 2) −

(∑
i C(si, 2)

∑
j C(rj , 2)

)

1
2C(m, 2)

( ∑
i C(si, 2) + ∑

j C(rj , 2)
)

−
( ∑

i C(si, 2)
∑

j C(rj , 2)
) ,

where, nij , si , rj are values from Table 10.1.
The ARn index can be used both as an internal and an external index. In the latter

case it is assumed that the data set A has class outputs and its cluster distribution is
compared with the class distribution.
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10.7 Purity

Purity measures the quality of clustering in data sets with class outputs [83]. More
precisely, it shows how well the cluster distribution obtained by a certain clustering
algorithm reflects the existing class structure of a data set. Therefore, the purity is
applicable when a data set has a class label, that is, the purity is an external criterion.
The purity can be computed for each cluster Aj , j = 1, . . . , k and the whole data
set A.

Let Ā = {A1, . . . , Ak} be the cluster distribution of the set A obtained by a
clustering algorithm. It is assumed that k ≥ 2 and Aj �= ∅, j = 1, . . . , k. Let also
C̄ = {C1, . . . , Cl} be the set of true classes of the set A. The cluster Aj may contain
different number of points from classes Ct , t = 1, . . . , l. Denote by ntj the number
of points from the t th class belonging to the j th cluster. For this cluster compute

m̄j = max
t=1,...,l

ntj , j = 1, . . . , k.

Then the purity of the cluster Aj is defined as

Pu(Aj ) = m̄j

mj

,

where mj is the number of points in the cluster Aj . Usually the purity is expressed
in percentage, hence this formula can be rewritten as

Pu(Aj ) = m̄j

mj

× 100%.

The purity for the cluster distribution Ā is

Pu(Ā) =
∑k

j=1 m̄j

m
× 100%.

The purity is 1 (100%) if each cluster contains data points only from one class.
Note that increasing the number of clusters, in general, will increase the purity.
In particular, if each cluster has only one data point, then the purity is equal to
1 (100%). This implies that the purity cannot be used to evaluate the trade-off
between the quality and the number of clusters.
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10.8 Normalized Mutual Information

Normalized mutual information (NMI ) is a combination of the mutual information
and the entropy [189]. The mutual information is used to measure how well the
computed clusters and the true classes predict one another. The entropy is used to
measure the amount of information inherent in both the cluster distribution and the
true classes. The entropy is also used to normalize the mutual information which
allows us to evaluate the trade-off between the quality and the number of clusters.
The NMI is an external criterion to evaluate the quality of clusters.

Recall that Ā is the cluster distribution obtained by a clustering algorithm for the
data set A and C̄ is the set of its true classes. Let ntj be the number of points from
the t th class belonging to the j th cluster, nt be the number of points in the class Ct ,
and mj be the number of points in the cluster Aj .

The estimation P̄j of probability for a data point being in the j th cluster is P̄j =
mj/m, j = 1, . . . , k, the estimation P̂t of probability for a data point being in the
t th class is P̂t = nt/m and finally, the estimation P̄tj of probability for a data point
being in the intersection Aj ∩ Ct is P̄tj = ntj /m. Then the mutual information
I (Ā, C̄) between the cluster distribution Ā and the class distribution C̄ is defined as

I (Ā, C̄) =
k∑

j=1

l∑

t=1

P̄tj log
( P̄tj

P̄j P̂t

)

=
k∑

j=1

l∑

t=1

ntj

m
log

( mntj

mjnt

)
.

The estimation H(Ā) for the entropy of the cluster distribution Ā is computed as

H(Ā) = −
k∑

j=1

P̄j log P̄j

= −
k∑

j=1

mj

m
log

(mj

m

)

and the estimation H(C̄) for the entropy of the class distribution C̄ is

H(C̄) = −
l∑

t=1

P̂t log P̂t

= −
l∑

t=1

nt

m
log

(nt

m

)
.
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Then the NMI is calculated by

NMI(Ā, C̄) = 2I (Ā, C̄)

H(Ā) + H(C̄)
.

It is clear that NMI(Ā, C̄) ∈ [0, 1]. NMI(Ā, C̄) = 1 means that the cluster
distribution Ā and the class distribution C̄ of the data set A are identical, that is
the cluster distribution obtained by a clustering algorithm has a high quality.

10.9 F -Score

F -score (known also as F -measure) is an external validity index to evaluate the
quality of clustering solutions [191]. The introduction of this index is inspired by
the information retrieval metric known as the F -measure. We describe the F -score
using notations from the previous section.

The F -score combines the concepts of precision (Pr) and recall (Re). For the
cluster Aj , j = 1, . . . , k and the class Ct , t = 1, . . . , l, Pr and Re are defined as

Pr(Aj , Ct ) = ntj

nt

, and

Re(Aj , Ct ) = ntj

mj

.

Then the F-score of the cluster Aj and the class Ct is given by

F(Aj , Ct ) = 2Pr(Aj , Ct ) × Re(Aj , Ct )

P r(Aj , Ct ) + Re(Aj , Ct )
.

Note that F(Aj , Ct ) ∈ [0, 1], t = 1, . . . , l, j = 1, . . . , k. The total F -score Ft is
computed as

Ft = 1

m

k∑

j=1

mj max
t=1,...,l

F (Aj , Ct ).

It is obvious that Ft ∈ [0, 1]. The higher the F -score is, the better the clustering
solution is. This measure has an advantage over the purity since it measures both
the homogeneity and the completeness of a clustering solution. The homogeneity of
a clustering solution means that all its clusters contain only data points which are
members of a single class. The completeness of a clustering solution means that data
points that are members of a given class are elements of the same cluster.
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10.10 Performance Profiles in Cluster Analysis

Performance profiles, introduced in [86], are widely used to compare optimization
algorithms. Such profiles have been introduced for comparison of (sub)gradient-
based and derivative free optimization algorithms. The number of function (and
gradient) evaluations and the computational time are usually used to compute these
profiles.

Clustering is a global optimization problem and the ability of a clustering
algorithm to find global or nearly global solutions is important as such solutions
provide the best cluster structure of a data set with the least number of clusters.
Therefore, here we introduce performance profiles for comparison of clustering
algorithms. The profiles are defined using three parameters: the accuracy, the
number of distance function evaluations, and the computational time.

10.10.1 Accuracy

Accuracy of clustering algorithms can be determined using the known global
solutions or the best known solutions of clustering problems. Consider the k-
partition problem in a data set A. Assume that f ∗

k > 0 is the best known value
of the objective function in the k-partition problem and f̄k is the lowest value of this
function obtained by a clustering algorithm Υ . Then the accuracy (or error) EΥ of
the algorithm Υ for solving the k-partition problem is defined as

Ek
Υ = f̄k − f ∗

k

f ∗
k

. (10.9)

In some cases, it is convenient to present the error (or accuracy) in %, therefore the
error can be defined as

Ek
Υ = f̄k − f ∗

k

f ∗
k

× 100%. (10.10)

We describe performance profiles using the percentage representation of the error.
Assume that the algorithm Υ is applied to solve the l-clustering problems for l =
2, . . . , k in t data sets. Then the total number of clustering problems is t (k − 1).
Denote by E

l,q
Υ the error of the solution obtained by the algorithm Υ for solving the

l-clustering problem in the qth data set, where l ∈ {2, . . . , k} and q ∈ {1, . . . , t}.
Let τ ≥ 0 be any given number. For the algorithm Υ , define the set

σΥ (τ) = {
(l, q) : E

l,q
Υ ≤ τ

}
.
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It is clear that the set σΥ (0) contains only those indices (l, q) in which the algorithm
Υ finds the best known solutions. Furthermore, for sufficiently large τ we have

σΥ (τ) = {
(l, q) : l ∈ {2, . . . , k}, q ∈ {1, . . . , t}}.

Then the probability that the algorithm Υ solves the collection of clustering
problems with the accuracy τ ≥ 0 is given as

PΥ (τ) = |σΥ (τ)|
t (k − 1)

.

Define a threshold τ0 > 0. An algorithm Υ is unsuccessful in solving the l-
clustering problem in the qth data set if E

l,q
Υ > τ0 (l ∈ {2, . . . , k}, q ∈ {1, . . . , t}).

This allows us to draw the graph of the function PΥ (τ) in the interval [0, τ0].
Note that the higher the graph on the left hand side is more accurate the algorithm

is in finding the best known solutions than other algorithms. The higher on the right
hand side means that the algorithm is more robust in finding the nearly best known
solutions than the other algorithms.

10.10.2 Number of Distance Function Evaluations

Most optimization based clustering algorithms use values and subgradients (or
gradients) of the cluster function to solve clustering problems. To compute them,
we need to calculate distance functions and also apply minimum operations for
each data point. Recall that the data set A has m data points and n attributes.
It is expected that, in average, the number of distance function evaluations in a
clustering algorithm depends linearly or almost linearly on the number of clusters.
At each iteration, the number of such evaluations is O(mk), where k is the number
of clusters.

Assume that a clustering algorithm uses M iterations to solve the k-clustering
problem. Then the expected value for the number of distance function evaluations
required by the algorithm is

N(m, k) = cMmk. (10.11)

Here, c > 0 is a given constant. The number N can be used as a benchmark to
evaluate the performance of clustering algorithms. Note that unlike the performance
profiles usually used in optimization [86], this benchmark does not depend on any
solver. Therefore, we can use it to rank clustering algorithms both in the sense of
efficiency and robustness.

First, we define when one can consider the performance of an algorithm as
success or failure. Since clustering is a global optimization problem we consider any
run of a clustering algorithm Υ as success if it finds either global (or best known) or
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nearly global (or nearly best known) solution. Thus, we can define some threshold
τ > 0 (in %). If the error Ek

Υ ≤ τ , then the algorithm Υ is considered to be
successful otherwise, it fails to solve the clustering problem.

Assume that v clustering solvers Υ1, . . . , Υv are applied to solve the l-clustering
problems for l = 2, . . . , k in t data sets. Let N(l, q) be a benchmark number
computed using (10.11) for the qth data set with l clusters. For each solver Υs, s =
1, . . . , v, denote by Qs the set of clustering problems successfully solved applying
this solver:

Qs ⊆ {
(l, q) : q ∈ {1, . . . , t}; l ∈ {2, . . . , k}}. (10.12)

Let

V = {
s ∈ {1, . . . , v} : Qs �= ∅}

, (10.13)

and take any s ∈ V . Define the number

σs(l, q) = Ns
lq

N(l, q)
,

where Ns
lq is the number of distance function evaluations used by the solver Υs for

solving the l-clustering problem in the qth data set.
Compute the number

τmax = max
s∈V

max
(l,q)∈Qs

σs(l, q).

For any s ∈ V and a number τ ∈ (0, τmax] consider the set

Xs(τ) = {
(l, q) ∈ Qs : σs(l, q) ≤ τ

}
.

Then the performance profiles for the solver Υs, s ∈ V can be defined as

ρs(τ ) = |Xs(τ)|
t (k − 1)

.

For other solvers Υs, s /∈ V we set ρs(τ ) = 0 for all τ ≥ 0.

10.10.3 Computational Time

Performance profiles using the computational time can be obtained in a similar
way to those using the distance function evaluations. The number of operations
for one evaluation of the squared Euclidean distance function is 3n − 1, where n is
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the number of attributes in the data set A. Consider the k-clustering problem. The
number of distance function evaluations for one iteration of an algorithm and the
total number of operations are estimated by O(mk) and O(nmk), respectively.

Assume that a clustering algorithm uses about M iterations to solve the k-
clustering problem. Then we get a number

T (m, k) = c̄Mnmk (10.14)

as an expected value for the number of operations, where c̄ > 0 is a given constant.
Dividing T by 109 (this number depends on characteristics of a computer), we
get the expected value T for the computational time. This number is used as
a benchmark to evaluate the performance of clustering algorithms based on the
computational time.

As in the case of the number of distance function evaluations, we introduce a
threshold τ > 0 (in %) to define whether an algorithm fails or succeeds to solve
the clustering problem. Assume that v clustering solvers Υ1, . . . , Υv are applied
to solve the l-clustering problems for l = 2, . . . , k in t data sets. For each solver
Υs, s = 1, . . . , v define the set Qs using (10.12) and the set V by applying (10.13).

Take any s ∈ V and compute

βs(l, q) = T s
lq

T (l, q)
,

where T s
lq is the computational time used by the solver Υs for solving the l-clustering

problem in the qth data set. Calculate the number

τmax = max
s∈V

max
(l,q)∈Qs

βs(l, q).

For any s ∈ V and a number τ ∈ (0, τmax], consider the set

Xs(τ) = {
(l, q) ∈ Qs : βs(l, q) ≤ τ

}
.

For each solver Υs, s ∈ V , we can define the performance profiles as follows:

ρs(τ ) = |Xs(τ)|
t (k − 1)

.

For other solvers Υs, s /∈ V we set ρs(τ ) = 0 for all τ ≥ 0.
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