
Partitional Clustering
via Nonsmooth
Optimization

Adil M. Bagirov
Napsu Karmitsa
Sona Taheri

Clustering via Optimization

Unsupervised and Semi-Supervised Learning
Series Editor: M. Emre Celebi

Unsupervised and Semi-Supervised Learning

Series Editor
M. Emre Celebi, Computer Science Department, Conway, AR, USA

Springer’s Unsupervised and Semi-Supervised Learning book series covers the
latest theoretical and practical developments in unsupervised and semi-supervised
learning. Titles – including monographs, contributed works, professional books, and
textbooks – tackle various issues surrounding the proliferation of massive amounts
of unlabeled data in many application domains and how unsupervised learning
algorithms can automatically discover interesting and useful patterns in such
data. The books discuss how these algorithms have found numerous applications
including pattern recognition, market basket analysis, web mining, social network
analysis, information retrieval, recommender systems, market research, intrusion
detection, and fraud detection. Books also discuss semi-supervised algorithms,
which can make use of both labeled and unlabeled data and can be useful in
application domains where unlabeled data is abundant, yet it is possible to obtain a
small amount of labeled data.

Topics of interest in include:

– Unsupervised/Semi-Supervised Discretization
– Unsupervised/Semi-Supervised Feature Extraction
– Unsupervised/Semi-Supervised Feature Selection
– Association Rule Learning
– Semi-Supervised Classification
– Semi-Supervised Regression
– Unsupervised/Semi-Supervised Clustering
– Unsupervised/Semi-Supervised Anomaly/Novelty/Outlier Detection
– Evaluation of Unsupervised/Semi-Supervised Learning Algorithms
– Applications of Unsupervised/Semi-Supervised Learning

While the series focuses on unsupervised and semi-supervised learning, out-
standing contributions in the field of supervised learning will also be considered.
The intended audience includes students, researchers, and practitioners.

More information about this series at http://www.springer.com/series/15892

http://www.springer.com/series/15892

Adil M. Bagirov • Napsu Karmitsa • Sona Taheri

Partitional Clustering via
Nonsmooth Optimization
Clustering via Optimization

Adil M. Bagirov
School of Science, Engineering
& Information Technology
Federation University Australia
Ballarat, VIC, Australia

Napsu Karmitsa
Department of Mathematics and Statistics
University of Turku
Turku, Finland

Sona Taheri
School of Science, Engineering
& Information Technology
Federation University Australia
Ballarat, VIC, Australia

ISSN 2522-848X ISSN 2522-8498 (electronic)
Unsupervised and Semi-Supervised Learning
ISBN 978-3-030-37825-7 ISBN 978-3-030-37826-4 (eBook)
https://doi.org/10.1007/978-3-030-37826-4

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-37826-4

To our children:

Zarifa, Nushaba, Uma, and Selin

Preface

Cluster analysis deals with the problem of organizing objects in a data set into
clusters based on their similarities. It is among the most important tasks in data
mining. Clustering is also known under different names such as unsupervised data
classification, numerical taxonomy, and automatic data classification.

Nowadays clustering is applied in many areas of science, business, and engi-
neering. Such areas include biology, sociology, chemometrics, psychometrics,
economics, ecology, medical sciences, finance, text mining, cybersecurity, and
artificial intelligence.

In cluster analysis no prior information about data is required and, in general,
unlabelled data is considered. It is expected that the objects in a cluster are similar
to each other and dissimilar to the objects in other clusters.

All clustering algorithms involve some process for measuring the similarity of
objects in a data set. In data sets with only numeric attributes, different norms can
be used to define the similarity measure—in general, any Minkowski norm can be
utilized. Clustering problems with such similarity measures can be formulated as
global optimization problems. However, not all Minkowski norms lead to efficiently
tractable clustering problems. Throughout this book, we use the squared Euclidean
norm as well as the L1- and L∞-norms to define the similarity measures.

The first clustering algorithm, the k-means algorithm, was independently dis-
covered in various scientific areas: by Steinhaus in 1956, by Lloyd in 1957, by
Ball and Hall in 1965, and by MacQueen in 1967. Since then cluster analysis has
become an important research direction in machine learning. There are different
types of clustering problems, and many techniques based on completely different
approaches have been developed to solve them. In this book we concentrate on
optimization—in particular, nonsmooth optimization—approaches and algorithms
for solving clustering problems. We omit other approaches including those based
on statistical techniques.

This book has three parts. Part I consists of introduction to clustering, theoretical
results from nonsmooth analysis used to model the clustering problems, and
methods of nonsmooth optimization applied to design algorithms for solving
clustering problems. In this part, we do not provide proofs of theoretical results as

vii

viii Preface

they can be found elsewhere. We present these methods with their flowcharts. Part II
contains optimization formulations of the clustering problems as well as traditional
clustering and optimization-based clustering algorithms. Here, we first provide
descriptions of heuristic algorithms such as the k-means, the global k-means, the k-
medians, and the k-medoids algorithms. Then we describe some metaheuristics and
evolutionary clustering algorithms like tabu search, simulated annealing, genetic,
and artificial bee colony clustering algorithms. However, our main focus is on the
clustering algorithms, which are based on nonsmooth optimization approaches. All
these algorithms are presented using their flowcharts and step-by-step descriptions.
Finally, Part III is devoted to implementation and evaluation of clustering algorithms
using real-world data sets.

The book is ideal for everyone who is studying and learning cluster analysis. In
particular, it is intended for researchers and practitioners interested in optimization-
based approaches for solving clustering problems. Furthermore, it can be used as a
reference text by anyone including experts dealing with clustering.

Acknowledgments

The authors acknowledge Professor Alexander Rubinov with whom one of the
authors, Adil M. Bagirov, had a privilege to work with. He started to work on the
subject of this book with Professor Rubinov almost 20 years ago.

We are grateful to the following colleagues and collaborators, all of whom have
influenced on the contents of the book: Tero Aittokallio, Kaisa Joki, Marko M.
Mäkelä, Karim Mardaneh, Ehsan Mohebi, Burak Ordin, Gurkan Ozturk, Sattar
Seifollahi, Julien Ugon, Dean Webb, Adilson Elias Xavier, and John Yearwood.
The authors are also grateful to Springer’s team (Brian Halm, Mary James, Zoe
Kennedy, Abhishek Ravi Shankar, and Nandhakumar Sundar) for their support and
patience during the preparation of this book.

The work was financially supported by the Australian Government through the
Australian Research Council’s Discovery Projects funding scheme (Project No.
DP190100580), the Academy of Finland (Project No. 289500, 319274), Federation
University Australia, and University of Turku, Finland.

Ballarat, VIC, Australia Adil M. Bagirov
Turku, Finland Napsu Karmitsa
Ballarat, VIC, Australia Sona Taheri
October 2019

Introduction

Data clustering is one of the most important tasks in data mining. It deals with
the problem of partitioning a given data into clusters (groups) based on similarity
of objects, that is, all objects within the cluster are similar while objects in
different clusters are dissimilar. Different approaches and algorithms have been
developed to solve various clustering problems [174, 183, 216, 272, 279]. This
book is specifically devoted to optimization-based approaches for solving clustering
problems. More precisely, nonsmooth optimization techniques are used to develop
partitional clustering algorithms.

The book consists of three parts. In the first part, the basic concepts of cluster
analysis are defined and the necessary information on the theory and methods of
nonsmooth optimization is provided. This part contains three chapters. In Chap. 1,
we introduce notations used throughout the book, describe some concepts of cluster
analysis, discuss different types of clustering problems, and outline important
application areas of clustering. Chapter 2 contains necessary theoretical results
from nonsmooth analysis used to model and solve clustering problems. In this
chapter, we do not provide any proofs since they can be found in provided
references. Numerical methods of nonsmooth optimization, which are applied to
design clustering algorithms, and the basic ideas of their convergence analysis are
described in Chap. 3. The flowcharts of these methods are also given.

Part II consists of various optimization formulations of the clustering problems
as well as descriptions of heuristic, metaheuristic, and optimization-based clus-
tering algorithms. This part contains six chapters. In Chap. 4, different models of
partitional clustering problems are discussed. In particular, we give the nonsmooth
formulation of the clustering and the auxiliary clustering problems, their difference
of convex (DC) representations, and study the optimality conditions for these
problems.

Heuristic clustering algorithms such as the k-means, k-medians, k-medoids
algorithms as well as clustering algorithms based on mixture models and self-
organizing map are described in Chap. 5. The tabu search, simulated annealing,
genetic, artificial bee colony, particle swarm, and ant colony optimization algorithms
for clustering are presented in Chap. 6.

ix

x Introduction

Our main interest is on clustering algorithms which are based on (nonsmooth)
optimization models and techniques. These algorithms are designed based on
the combination of the local search optimization algorithms with the so-called
incremental approach. In Chap. 7, we describe the basic idea of the incremental
approach as well as three clustering algorithms based on the combination of this
approach and the heuristic clustering algorithms. Then in Chap. 8, we discuss five
nonsmooth optimization-based clustering algorithms. These algorithms combine
the incremental approach with the nonsmooth optimization techniques described in
Chap. 3. Finally, in Chap. 9, we present three clustering algorithms where we utilize
the DC structure of the clustering problems and combine the incremental approach
with the DC optimization methods. All algorithms in Chaps. 7–9 are presented using
their flowcharts and step-by-step descriptions.

Part III of this book is devoted to implementation and evaluation of clustering
algorithms using some real-world data sets. This part consists of three chapters.
Different evaluation measures for clustering, including cluster validity indices, are
discussed in Chap. 10. In Chap. 11 we discuss the implementation of clustering
algorithms considered in this book and give the description of data sets used to
evaluate these algorithms. The results of numerical experiments are reported in
Chap. 12 and finally, some concluding remarks are given in Chap. 13.

Contents

Part I Preliminaries

1 Introduction to Clustering . 3
1.1 Introduction . 3
1.2 Notations and Definitions . 5
1.3 Similarity Measures. 6
1.4 Types of Clustering Algorithms . 9
1.5 Applications of Clustering. 11

2 Theory of Nonsmooth Optimization . 15
2.1 Introduction . 15
2.2 Preliminaries . 16

2.2.1 Convex Sets . 16
2.2.2 Separating Hyperplanes . 18
2.2.3 Continuous, Lipschitz Continuous, and Convex

Functions . 19
2.3 Concepts of Nonsmooth Analysis . 22

2.3.1 Subdifferentials of Convex Functions. 22
2.3.2 Nonconvex Analysis . 24
2.3.3 Subdifferential Calculus . 28
2.3.4 Quasidifferentials . 31

2.4 Optimality Conditions . 33
2.5 Discrete Gradient . 35
2.6 Piecewise Partially Separable Functions . 37

2.6.1 Piecewise Partially Separable and Chained
Functions . 37

2.6.2 Properties of Piecewise Partially Separable
Functions . 39

2.6.3 Calculation of Discrete Gradients . 40
2.7 DC Optimization . 41

xi

xii Contents

2.8 Smoothing of Nonsmooth Functions. 45
2.8.1 Hyperbolic Smoothing of a Simple Maximum

Function . 46
2.8.2 Reformulation of Minimax Problem . 46
2.8.3 Hyperbolic Smoothing of the Maximum Function 48
2.8.4 Hyperbolic Smoothing of the Minimum Function 49

3 Nonsmooth Optimization Methods . 51
3.1 Introduction . 51
3.2 Subgradient Method . 53
3.3 Proximal Bundle Method . 55
3.4 Limited Memory Bundle Method . 59

3.4.1 Convergence of the LMBM .. 64
3.5 DC Diagonal Bundle Method . 67

3.5.1 Convergence of the DCD-BUNDLE . 73
3.6 Nonsmooth DC Method . 77

3.6.1 Convergence of the NDCM .. 80
3.7 DC Algorithm . 83

3.7.1 Convergence of the DCA . 85
3.8 Discrete Gradient Method . 86

3.8.1 Convergence of the DGM .. 89
3.9 Smoothing Method . 92

3.9.1 Convergence of the HSM . 93

Part II Clustering Algorithms

4 Optimization Models in Cluster Analysis . 97
4.1 Introduction . 97
4.2 Mixed Integer Programming Model . 98
4.3 Nonsmooth Optimization Model . 99
4.4 Nonsmooth DC Optimization Model . 105
4.5 Auxiliary Clustering Problem . 109

4.5.1 DC Representation of Auxiliary Cluster Function 113
4.6 Optimality Conditions . 116

4.6.1 Optimality Conditions for Clustering Problem 116
4.6.2 Optimality Conditions for Auxiliary Clustering

Problem . 121
4.7 Smoothing of Cluster Functions . 125

4.7.1 Hyperbolic Smoothing of Functions d1 and d∞ 125
4.7.2 Hyperbolic Smoothing of the Cluster Function 127
4.7.3 Smoothing of Auxiliary Cluster Function 129
4.7.4 Partial Smoothing of DC Cluster Function 131
4.7.5 Partial Smoothing of DC Auxiliary Cluster

Function . 132

Contents xiii

5 Heuristic Clustering Algorithms . 135
5.1 Introduction . 135
5.2 k-Means Algorithm and Its Variants . 136

5.2.1 k-Means Algorithm . 137
5.2.2 Variants of k-Means Algorithm . 140
5.2.3 Global k-Means Algorithm . 143

5.3 k-Medians Algorithm and Its Variants . 146
5.3.1 k-Medians Algorithm . 146
5.3.2 Variants of k-Medians Algorithm . 149

5.4 k-Medoids Algorithm . 151
5.5 Fuzzy c-Means Algorithm. 154
5.6 Clustering Algorithms Based on Mixture Models. 156

5.6.1 Mixture Models . 156
5.6.2 Maximum Likelihood Estimation . 158
5.6.3 Expectation Maximization Clustering Algorithm 158

5.7 Self-Organizing Map Algorithm . 160

6 Metaheuristic Clustering Algorithms . 165
6.1 Introduction . 165
6.2 Tabu Search Clustering Algorithm . 166
6.3 Simulated Annealing Clustering Algorithm . 169
6.4 Genetic Algorithm for Clustering . 172
6.5 Artificial Bee Colony Clustering Algorithm . 174
6.6 Particle Swarm Optimization Clustering Algorithm 177
6.7 Ant Colony Optimization Clustering Algorithm 180

7 Incremental Clustering Algorithms . 185
7.1 Introduction . 185
7.2 Finding a Center of One Cluster . 186
7.3 General Incremental Clustering Algorithm . 187
7.4 Computation of Set of Starting Cluster Centers 189
7.5 Multi-Start Incremental Clustering Algorithm . 194
7.6 Incremental k-Medians Algorithm . 195

8 Nonsmooth Optimization Based Clustering Algorithms 201
8.1 Introduction . 201
8.2 Modified Global k-Means Algorithm . 202
8.3 Fast Modified Global k-Means Algorithm. 206
8.4 Limited Memory Bundle Method for Clustering 211
8.5 Discrete Gradient Clustering Algorithm . 215
8.6 Smooth Incremental Clustering Algorithm . 220

9 DC Optimization Based Clustering Algorithms . 225
9.1 Introduction . 225
9.2 Incremental Nonsmooth DC Clustering Algorithm 226
9.3 DC Diagonal Bundle Clustering Algorithm . 232
9.4 Incremental DCA for Clustering . 237

xiv Contents

Part III Implementations and Evaluations of Clustering
Algorithms

10 Performance and Evaluation Measures . 245
10.1 Introduction . 245
10.2 Optimal Number of Clusters . 246
10.3 Cluster Validity Indices . 247

10.3.1 Optimal Value of Objective Function 248
10.3.2 Davies–Bouldin Index . 249
10.3.3 Dunn Index . 250
10.3.4 Hartigan Index . 251
10.3.5 Krzanowski–Lai Index. 251
10.3.6 Ball & Hall Index . 252
10.3.7 Bayesian Information Criterion . 252
10.3.8 WB Index . 253
10.3.9 Xu Index. 253
10.3.10 Xie-Beni Index . 253
10.3.11 Sym Index . 254
10.3.12 I Index . 255
10.3.13 Calinski–Harabasz Index . 256

10.4 Silhouette Coefficients and Plots . 257
10.5 Rand Index . 259
10.6 Adjusted Rand Index . 261
10.7 Purity . 262
10.8 Normalized Mutual Information . 263
10.9 F -Score. 264
10.10 Performance Profiles in Cluster Analysis . 265

10.10.1 Accuracy . 265
10.10.2 Number of Distance Function Evaluations 266
10.10.3 Computational Time . 267

11 Implementations and Data Sets . 269
11.1 Introduction . 269
11.2 Implementations of Clustering Algorithms . 269
11.3 Data Sets . 272

11.3.1 Extra Small Data Sets. 272
11.3.2 Small Data Sets . 273
11.3.3 Medium Sized Data Sets . 273
11.3.4 Large Data Sets . 274
11.3.5 Very Large Data Sets . 274

11.4 Parameters Selection in Finding Starting Cluster Centers 275

12 Numerical Experiments . 281
12.1 Introduction . 281
12.2 Importance of Procedure for Finding Starting Cluster Centers . . . 281

Contents xv

12.3 Performance Results of Incremental Clustering Algorithms. 284
12.3.1 Results for Extra Small Data Sets . 284
12.3.2 Results for Small Data Sets . 288
12.3.3 Results for Medium Sized Data Sets . 292
12.3.4 Results for Large Data Sets . 297
12.3.5 Results for Very Large Data Sets. 307

12.4 Comparative Results with Different Similarity Measures 310
12.4.1 Optimal Values for Cluster Functions. 310
12.4.2 Computational Time . 311
12.4.3 Visualization of Results . 313

13 Concluding Remarks . 315

References . 319

Index . 333

Acronyms and Symbols

Symbols and Notations

R
n n-dimensional Euclidean space

N Set of natural numbers
R̄+ Nonnegative numbers, R̄+ = {r ∈ R : r ≥ 0}
a, b, c, α, ε, λ Scalars
x, y, z Vectors
xT Transposed vector
xT y Inner product of x and y

‖x‖ Euclidean norm of x in R
n, ‖x‖ = (xT x

) 1
2

xi i-th component of vector x
{xh} Sequence of vectors
000, 000n Zero vector in R

n

A = {a1, . . . , am} Data set ai ∈ R
n, i = 1, . . . , m

a, a1, . . . , am Data points
A1, . . . , Ak Clusters
Ā = {A1, . . . , Ak} Set of clusters, partition of A

mj Number of data points in the cluster Aj

dp(x, y) Distance function, p > 0
B, G Matrices
(B)ij , bij Element in the row i, the column j of the matrix B

BT Transposed matrix
B−1 Inverse of the matrix B

‖B‖F Frobenius norm ‖B‖F =
(∑m

i=1
∑n

j=1 |bij |2
) 1

2

I Identity matrix
ei i-th column of the identity matrix
B(x; r) Open ball with the radius r and the central point x
B̄(x; r) Closed ball with the radius r and the central point x
S1 Sphere of the unit ball

xvii

xviii Acronyms and Symbols

(a, b) Open interval
[a, b] Closed interval
[a, b), (a, b] Half-open intervals
H(p, α) Hyperplane
H+(p, α), H−(p, α) Halfspaces
S, U Sets
cl S Closure of the set S

int S Interior of the set S

bd S Boundary of the set S

conv S Convex hull of the set S

∪m
i=1Si Union of sets Si, i = 1, . . . , m

∩m
i=1Si Intersection of sets Si, i = 1, . . . , m

levα f Level set of f with the parameter α

S × U Cartesian product of sets S and U

I, J , K Sets of indices
|I| Number of elements in the set I
f (x) Value of the objective function f at x
∇f (x) Gradient of the function f at x
∂

∂xi
f (x) Partial derivative of the function f with respect to xi

∇2f (x) Hessian matrix of the function f at x
∂2

∂xi∂xj
f (x) Second order partial derivative of the function f with

respect to xi and xj

Cm(Rn) Space of the function f : Rn → R with continuous partial
derivatives up to order m

Dh (Generalized) variable metric approximation of the inverse
of the Hessian matrix

f ′(x; d) Directional derivative of the function f at x in the direction
d

f ◦(x; d) Generalized directional derivative of the function f at x in
the direction d

∂cf (x) Subdifferential of the convex function f at x
∂f (x) Clarke subdifferential of the function f at x
∂εf (x) ε-subdifferential of the convex function f at x
∂G
ε f (x) Goldstein ε-subdifferential of the function f at x

ξ ∈ ∂f (x) Subgradient of the function f at x
Df (x) Quasidifferential of the function f at x,

Df (x) = [∂f (x), ∂f (x)
]

∂f (x) Subdifferential of the quasidifferentiable function f at x
∂f (x) Superdifferential of the quasidifferentiable function f at x
Γ (x, g, w, λ, α) Discrete gradient of the function f at x
Ωf Set in R

n where the function f is not differentiable
f̂k(x) Piecewise linear cutting-plane model of the function f at x
t ↓ 0 t → 0+
argmin f (x) Point where the function f attains its minimum value

Acronyms and Symbols xix

Argmin f (x) Set of points where the function f attains its minimum value
argmax f (x) Point where the function f attains its maximum value
Argmax f (x) Set of points where the function f attains its maximum

value
·� Ceiling of a number
C(n, k) = (n

k

)
Binomial coefficient n!

k!(n−k)!
O(·) Time complexity or space requirement of an algorithm
U [0, 1] Uniform distribution with the domain [0, 1]

Abbreviations

ABC Artificial bee colony
ACO Ant colony optimization
ANN Artificial neural networks
ARn index Adjusted Rand index
BH index Ball and Hall index
BIC Bayesian information criterion
BMU Best matching unit
CCCP Concave–convex procedure
CH index Calinski–Harabasz index
CLR Clusterwise linear regression
DC Difference of convex
DCA DC algorithm
DCD-BUNDLE DC diagonal bundle method
DCDB-CLUST DC diagonal bundle clustering algorithm
DB index Davies–Bouldin index
Dn index Dunn index
DG-CLUST Discrete gradient clustering algorithm
DGM Discrete gradient method
EM Expectation maximization
FGKM Fast global k-means algorithm
FMGKM Fast modified global k-means algorithm
GA Genetic algorithm
GKM Global k-means algorithm
H index Hartigan index
HSM Hyperbolic smoothing method
IDCA-CLUST Incremental DCA for clustering
IKMED Incremental k-medians algorithm
INC-CLUST Incremental clustering algorithm
IS-CLUST Smooth incremental clustering algorithm
KDD Knowledge discovery in databases
KL index Krzanowski–Lai index
LLC Locally Lipschitz continuous

xx Acronyms and Symbols

LMB-CLUST Limited memory bundle method for clustering
LMBM Limited memory bundle method
MGKM Modified global k-means algorithm
ML Maximum likelihood
MSAC Minimum sum-of-absolutes clustering
MSINC-CLUST Multi-start incremental clustering algorithm
MSSC Minimum sum-of-squares clustering
NDC-CLUST Incremental nonsmooth DC clustering algorithm
NDCM Nonsmooth DC method
NMI Normalized mutual information
NSO Nonsmooth optimization
PAM Partitioning around medoids
PBM Proximal bundle method
PSO Particle swarm optimization
Rn index Rand index
SA Simulated annealing
Sm index Sym index
SOM self-organizing map
TS Tabu search
XB index Xie–Beni index

Part I
Preliminaries

Chapter 1
Introduction to Clustering

1.1 Introduction

Over the last two decades there has been a significant growth in the amount of
data generated. This trend can be observed in various sources such as social media,
online transactions, network sensors, satellite and astronomical information. The
exponential increase in the volume of data poses significant challenges in the
decision making process. Analyzing data allows us to discover meaningful patterns
in data and to make better decisions. Therefore, it is imperative to develop new
approaches and computational tools in data analysis.

We start by introducing the commonly used tasks and terminologies in data anal-
ysis. Then we define the clustering problem and describe the similarity measures.
Finally, we give short surveys on different types of clustering algorithms and various
applications of clustering.

Knowledge discovery in databases (KDD) is a comprehensive process of dis-
covering and extracting useful knowledge (information) in data. The definition of
“useful information” depends on the end users’ requirements. The KDD appli-
cations cover almost all areas of human activities including marketing, finance,
information security, telecommunication, and engineering [103, 136]. The main
steps in the KDD process are as follows:

• data collection and selection;
• data pre-processing (e.g., cleansing and preparation);
• data transformation;
• data mining;
• incorporating prior knowledge on data; and
• data evaluation and knowledge presentation.

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_1

4 1 Introduction to Clustering

Data mining is a field of computer science—a predominantly computational
process—that aims to discover and extract previously unknown information (knowl-
edge) from data. It is among the most important steps in the KDD process. Indeed,
sometimes the term “data mining” is used as a synonym to KDD. However, in the
KDD process data mining is considered as a method (algorithm) to extract unknown
knowledge from data. Data mining has wide range of applications including
information retrieval [17, 232], image analysis [58, 63], bioinformatics [55], signal
processing, and internet security, to mention but a few. The process of data mining
involves several distinct tasks such as

• data representation;
• supervised data classification;
• association rules;
• feature selection and extraction;
• regression analysis; and
• clustering.

Data representation is a task of deciding on the representation of data. This
includes the size of data, the number of features available as well as their natures
and scales, and the number of clusters or classes. For example, in text data each
document may be represented as “a bag of words.” In this case, the words are used
as features but the order of words in the document is not important.

Supervised data classification or supervised learning involves the supervised
assignment of objects to the predefined and known classes. More precisely, the
objects with known classes (labels) are used to train/learn a description of the
classes. These objects constitute the training set. Then the supervised data classi-
fication approach is applied to label new objects from a test set into one or more of
these classes.

Association rule mining is a process for discovering and identifying frequent
patterns, correlations, associations, or causal structures in a data set. For instance,
given a set of transactions, association rule mining finds the rules which enable us
to predict an occurrence of a specific item based on the existence of the other items
in the transaction.

Feature selection is a process of selecting the most important, informative and
relevant features of data to be used in clustering or supervised data classification
tasks. Feature selection methods aim to identify the most informative features which
have strong discriminatory or predictive significance, to remove some uninformative
or noisy features and to reduce the dimension of the problem under consideration.
Feature extraction or feature combination process transforms or combines the
original set of features in order to find a much smaller set of new features with
higher quality of data. Both feature selection and feature extraction methods aim to
improve the performance of clustering and supervised data classification algorithms.

Regression analysis is a predictive modelling technique to approximate a rela-
tionship between a dependent variable (target) and one or more independent
variables (predictors). The most commonly used regression models are the linear
and logistic regressions but there are also many other regression models available.

1.2 Notations and Definitions 5

Regression analysis was initially developed in the field of statistics. However,
recently it has been widely used for predicting and forecasting purposes, and has
become an important tool in data mining.

Cluster analysis or clustering deals with the problem of organizing a collection of
objects into clusters based on their similarity. Clustering involves the identification
of subsets of data that are similar. Each subset intuitively corresponds to objects
that are more similar to each other than to objects in other subsets. Clustering is
carried out in an unsupervised way by trying to find these subsets without having any
predefined knowledge of the clusters. This means that identifying clusters is data
driven rather than data informed. Cluster analysis has been referred by a number of
different names over the years: Q-analysis, typology, grouping, clumping, numerical
taxonomy, and unsupervised data classification [155, 295].

Clustering is among the most useful approaches for pattern recognition, image
processing, decision making, data mining, and KDD. As a tool, it has a wide range of
applications in many fields like biomedical sciences, cybersecurity, signal analysis,
life science taxonomy, remote sensing, demography and social sciences, geology
and anthropology, economics, finance and planning.

Most clustering algorithms are either hierarchical or partitional. Hierarchical
clustering algorithms yield a dendrogram representing the nested grouping of
patterns and similarity levels at which groupings change [156, 174]. Partitional
clustering algorithms find a partition of objects that optimizes some predefined
clustering criterion [156, 223]. Partitional clustering can be divided into two
subclasses: hard partitional clustering, where each object belongs to only one
cluster and soft (fuzzy) partitional clustering, where each object may belong to
more than one cluster. In what follows we are mainly considering hard partitional
clustering.

1.2 Notations and Definitions

Throughout this book, we consider a data set A as a finite set of points given in an
n-dimensional space R

n. More precisely, the data set A is presented as

A = {a1, . . . , am}, ai ∈ R
n, i = 1, . . . , m.

The data points ai , i = 1, . . . , m are called instances (observations, objects) and
each instance has n attributes (features). We say that the dimensionality of data
(or the data set A) is n, and it is distinct from the size of the data set, that is m. For
simplicity, the notation a ∈ A will sometimes be used for a data point.

Unconstrained hard clustering deals with the problem of partitioning the points
of the set A into a given number k of disjoint subsets—clusters—Aj , j = 1, . . . , k

such that the partition satisfies the following criteria:

6 1 Introduction to Clustering

1. Aj �= ∅, j = 1, . . . , k;
2. Aj

⋂
Aq = ∅ for all j, q = 1, . . . , k, j �= q; and (1.1)

3. A =
k⋃

j=1

Aj .

In addition, no condition is imposed on clusters Aj , j = 1, . . . , k. These criteria
mean that all clusters are non-empty—that is, mj ≥ 1, where mj is the number of
points in the j th cluster—each data point belongs only to one cluster, and uniting
all the clusters reproduces the whole data set A.

The number of clusters k is an important parameter for any clustering algorithm.
If k = m, then each cluster contains exactly one object from the set A. This partition
is trivial and does not require a solution of any clustering problem. Therefore, we
will always assume that the number k is significantly less than the size of the data
set m.

Another important notion in clustering is a cluster representative. Each cluster
Aj is identified by its representative. The cluster representative is a simple set and it
is also known as a cluster profile, prototype, classification vector, and cluster label.
It is an item that summarizes and represents the objects in the cluster. In some sense
it should be close to every object in the cluster where closeness is defined using a
similarity measure. The cluster representative can be, for example, a point—usually
a center of the cluster—a sphere or a hyperplane.

In this book, we consider cluster centers as cluster representatives. We denote
the centers by xj ∈ R

n, j = 1, . . . , k and the collection of these centers by

x = (x1, . . . , xk) ∈ R
nk.

The problem of finding these centers is called the k-clustering (or k-partition)
problem.

Throughout this book we will consider clustering problems in data sets with only
numeric features. Clustering problems with categorical features and also algorithms
for their solutions are discussed and studied, for example, in [13, 112, 117, 129, 250].

1.3 Similarity Measures

The notion of similarity is fundamental in clustering. The similarity of the objects is
measured by a matching or similarity function (similarity measure). The similarity
measure is chosen based on the cluster representative and the types of features in a
data set. The choice of this measure is one of the main factors in determining the
complexity of the clustering task.

1.3 Similarity Measures 7

The similarity measures for clusters represented by centers (points) and for those
represented by hyperplanes are different. In addition, the similarity measures for
data sets containing only numeric features differ from those containing both numeric
and categorical or only categorical features. Nevertheless, all clustering algorithms
involve some kind of process for measuring the similarity of the objects. Any two
points belonging to the same cluster are supposed to be more mutually similar than
any two points from two different clusters.

Let b, c ∈ R
n be any two points from the data set A and denote by R̄+ = {r ∈

R : r ≥ 0}. A function d : A × A → R̄+ is called the similarity function or
similarity measure if it satisfies the following conditions:

• d(b, c) = 0 if and only if b = c and
• d(b, c) = d(c, b) for all b, c ∈ A.

The first condition means that the point b is similar to itself (this means that there
is no any dissimilarity of a data point to itself), while the second condition states
that if the point b is similar to c then the point c is similar to b, that is, similarity is
symmetric.

The use of different similarity measures may help to identify different cluster
structures of a data set. This in turn may lead to a significant improvement in the
decision making process. Furthermore, different cluster representatives, similarity
measures, and the number of clusters should be used in different data sets to obtain
meaningful results. For example, data given in Fig. 1.1 is best approximated using
two ball-shaped clusters and their centroids (x1 and x2). On the other hand, in data
given in Fig. 1.2 there are three clusters best approximated by three hyperplanes (red
lines).

When a data set contains only numeric attributes various distance functions can
be used to define the similarity measures. Nevertheless, in these cases it is more
convenient to use the notion of dissimilarity that is dual to similarity. Indeed, the
lower the value of dissimilarity, the more similar the two objects are.

Fig. 1.1 Two ball-shaped clusters

8 1 Introduction to Clustering

Fig. 1.2 Clusters described by three hyperplanes

In what follows, we consider data sets with only numeric attributes and, as
already mentioned, use centers of clusters as their representatives. Therefore, the
similarity measure for two objects is equivalent to the distance between these
objects.

We use the general Minkowski norms to define similarity measures for two points
b, c ∈ R

n:

dp(b, c) =
(

n∑

i=1

|bi − ci |p
)1/p

. (1.2)

Note that any p ∈ (0,∞) can be taken here, but only for p ≥ 1 this measure
is a distance function. The most commonly used distance functions are those
corresponding to values p = 1, 2 and p = ∞. In addition, any other Lp-norm with
p ≥ 1 could be considered to define similarity measures in clustering. However,
in these cases the clustering problem might become very complex to be solved
efficiently.

For p = 1, we get the similarity measure based on the L1-norm (also known as
the city block or the Manhattan norm):

d1(b, c) =
n∑

i=1

|bi − ci |. (1.3)

In the case of p = 2, the Minkowski norm (1.2) yields the well-known Euclidean
distance. In cluster analysis, we usually use the squared form of this norm—the
squared Euclidean distance:

d2(b, c) =
n∑

i=1

(bi − ci)
2. (1.4)

We also say that this similarity measure is based on the L2-norm. This measure can
be generalized as

d2(b, c) = (b − c)T H(b − c),

1.4 Types of Clustering Algorithms 9

where H is an n × n positive definite matrix. In the case of the squared Euclidean
distance, the cluster centers are called centroids.

Finally, the similarity measure is based on the L∞-norm (also known as the
Chebyshev norm), when p = ∞ is given by

d∞(b, c) = max
i=1,...,n

|bi − ci |. (1.5)

It should be noted that, in general, similarity measures need not to satisfy the
triangular inequality (known also as the Minkowski inequality) indicating that they
are not always distance functions. Particularly, the similarity measure d2 does not
satisfy this inequality, while the similarity measures d1 and d∞ do.

Clustering problems with the similarity measure defined by the squared
Euclidean distance have been studied extensively over the last six decades while
problems with other Minkowski norms have attracted significantly less attention. In
addition to similarity measures considered in this section, there are many other ways
of defining similarity. For instance, Bregman divergence and some monotonous
functions can be used to generalize the above considered similarity measures [295].
In [105], a similarity measure (relation) is defined as an equivalence relation. This
implies that such a similarity measure has a transitivity property which many other
similarity measures do not have.

1.4 Types of Clustering Algorithms

There are various types of clustering algorithms available. According to [3, 136,
158, 272, 273], a proper clustering algorithm should

• produce clusters which are unlikely to be altered drastically when additional
objects are incorporated;

• be stable in the sense that small changes in the features of the objects do not lead
to a significant change in clustering;

• be independent on the initial ordering of the objects;
• be able to filter the possible noise and define outliers;
• be scalable, i.e., able to be extended to large scale data sets with large number of

attributes;
• be able to define clusters of different shapes; and
• require the minimal knowledge about data to determine the parameters.

In addition, the result of clustering should be interpretable and usable. Evidently,
most clustering algorithms do not satisfy all these requirements. For instance, the
shape of the clusters found by partitional clustering algorithms usually depends on
the similarity measure while the hierarchical clustering algorithms do not scale well.
Furthermore, most clustering algorithms need a number of empirically determined
parameters—most importantly the number of clusters. This number is not known a
priori for many data sets and it should be provided by a user.

10 1 Introduction to Clustering

As already mentioned, most clustering algorithms can be grouped into two main
classes: partitional and hierarchical. More generally, the clustering algorithms can
be classified into the following categories: [3, 136]

• Partitional clustering algorithms: a partitioning algorithm constructs partitions
of data, where each partition represents a cluster. The most popular represen-
tatives of this class of clustering algorithms are the k-means algorithm and its
variations: for instance, kernel k-means, weighted k-means, and genetic k-means.

• Hierarchical clustering algorithms: a hierarchical algorithm creates a hierar-
chical decomposition of a data set. Based on the decomposition formed, the
algorithm can be classified as being either agglomerative or divisive. More
precisely, a hierarchical clustering algorithm produces a dendrogram presenting
a nested grouping of data and similarity levels at which the clusters change
[156, 174]. Most hierarchical clustering algorithms are variants of the single
link [269], complete link [177], and minimum variance [221, 291] algorithms.
In addition, it is worth of mentioning the first hierarchical clustering algorithm
BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [313]
and the most well-known hierarchical clustering algorithm CURE (Clustering
Using REpresentatives) [128]. With CURE it is possible to find cluster shapes
other than hyperspheres. This allows one to avoid the tendency of finding clusters
with similar sizes.

• Density-based clustering algorithms: a density-based clustering algorithm con-
siders clusters as regions in which the density of data points exceeds a predefined
threshold value [5, 100]. The general idea of the density-based algorithms is to
continue growing a given cluster as long as the density (number of data points)
in the “neighborhood” exceeds the threshold. Unlike the most other clustering
algorithms, density-based clustering algorithms can be used to create clusters
of arbitrary shape. The algorithm DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) [100], the KNNCLUST (k-NN density-based clus-
tering) [282] and its stochastic extension [58] are well-known representatives of
these algorithms. The performance evaluation of various density-based clustering
algorithms can be found in [5].

• Grid-based clustering algorithms: in the grid-clustering approach the data space
is divided into a finite number of cells that form a grid structure. Then all of
the clustering operations are performed on the grid structure. For instance, the
genetic-guided clustering algorithm [66] belongs to this class.

• Fuzzy and probabilistic model-based clustering algorithms: these algorithms
allow a data point to belong to one or more clusters. Representatives of this
class are the fuzzy c-means algorithm, the expectation-maximization clustering
algorithm, and the algorithms based on Bernoulli and Gaussian mixture models.

1.5 Applications of Clustering 11

1.5 Applications of Clustering

Clustering algorithms allow us to find hidden patterns in data without using any
prior information. Therefore, the application of clustering algorithms benefits many
areas of human activities. These application areas include—but are not limited to—
medicine and bioinformatics, cybersecurity, text mining, and image processing, as
well as economy, finance, and marketing. In addition, clustering can be combined
with other tools of data analysis and machine learning to obtain more versatile
approaches for KDD. Next, we describe some of these applications in more details.

Medicine and bioinformatics are among the most important areas that apply
clustering. Drug–target interactions such as drug sensitivity and resistance are
studied, for example, in [110, 222, 235] to obtain more effective drugs and
individual drug therapies for leukemia patients. Recently, microarray technology is
developed in biological studies to measure expression levels of thousands of genes
simultaneously. This makes it possible to investigate gene activities considering
the whole genome. Gene clustering is used, for example, in discovering groups
of correlated genes potentially coregulated or associated with the diseases. Many
clustering algorithms including those based on hierarchical clustering, biclustering
and mixture models as well as the k-means algorithm and the self-organizing
map have been used to solve clustering problems in gene expression data sets
[67, 68, 97, 230, 280, 308]. In addition, various algorithms have been applied for
clustering microarray data sets with a large number of genes to group patients with
different diseases (e.g., different types of cancer) [21, 96].

In economics, cluster analysis is applied to compare economic developments
of municipalities—or countries, or other regions and to identify common factors
(e.g., unemployment rates, age structure, rate of change in the number of permanent
inhabitants, and the number of individual entrepreneurs) that have an influence on
economic development. In particular, clustering can be applied for comparing socio-
economic development of different areas and thus, it can help decision makers to
identify the regions with the largest need for stimulating their development [53].
Another interesting application of clustering techniques in economy is the study
of economic resilience of regions under crises [71]. The use of clustering in this
area allowed to identify patterns of economic resilience in Australian regions by
industry categories. Applying the clustering algorithm on census data from 2001,
2006, and 2011 helped to evaluate the impact of two major shocks the “13-year
drought” and the “global financial crisis” on four functional groups of regions in
Australia. The most widely applied method for clustering in economy is probably
the agglomerative hierarchical clustering. Nevertheless, the partitional methods like
k-means and k-medoids, and fuzzy clustering methods like fuzzy c-means are also
commonly used [247].

Cluster analysis has been widely applied in marketing research and, especially, in
market segmentation [176, 239]. Segmenting a market means dividing its potential
customers into separate groups, where customers in the same group are similar with
respect to a given set of characteristics and customers belonging to different groups

12 1 Introduction to Clustering

are dissimilar with respect to the same set of characteristics. The goal of using
cluster analysis in marketing is to accurately segment customers in order to achieve
more effective customer marketing via personalization. As companies collect
more data—and more detailed data—about customers, the advantages of targeting
specific groups of homogeneous customers compared to using a mass marketing
approach will continue to grow. The most commonly used clustering algorithms
for market segmentation are the k-means and Ward’s minimum variance methods
[87, 239]. In addition, many other clustering algorithms have been applied in this
area, such as support vector clustering [149], self-organizing feature map [188],
genetic clustering algorithm [283], and artificial neural networks (ANN) [147].

Further, financial data analysis is becoming increasingly important in the busi-
ness market [192]. Banking and financial institutes are applying various data mining
techniques, including clustering, to enhance the performance of their businesses.
As companies collect more data from daily operations, they expect to extract more
useful knowledge—for instance, the user credit category and confidence of expected
return—that helps them to make a reasonable decision for new customer’s requests.

Due to enormous growth of the available text data and number of documents,
the text mining has become a mandatory practice. Here, the clustering approach
allows us to find groups of similar documents each corresponding to one or more
topics [83]. The k-means algorithm and its variations have been applied to solve
this type of clustering problems. Generally, in text mining data points (documents)
are normalized and clustering is carried out on the unit sphere. In this case, the k-
means algorithm is also called the spherical k-means algorithm [83, 268]. Another
approach for clustering of patterns represented by sentences is presented in [202]. In
this approach, the similarity between patterns is expressed in terms of the distance
between their corresponding sentences. Each unlabelled data point is assigned to the
cluster of its k-nearest labelled neighbors as long as the average distance to the k

neighbors is below a given threshold. Efficient document clustering algorithms help
to improve the performance of search engines by pre-clustering the entire corpus and
the postretrieval document browsing technique. Modification of these algorithms by
assigning weights to documents improves the accuracy of clustering solutions [6].

Machine learning techniques are widely used in cybersecurity to detect malware
attacks [225]. For example, phishing is one of the most malicious attacks that
has enabled attackers to masquerade as legitimate users of organizations, such
as banks, to scam money and private information from victims. Phishing is
so widespread that combating the phishing attacks could overwhelm the victim
organization. Therefore, it is important to group the phishing attacks to formulate
effective defence mechanisms. Different clustering algorithms have been applied
to identify, analyze, and group phishing emails. They include k-means, multi-start
modified global k-means, the incremental nonsmooth optimization based clustering
algorithm, and difference of convex optimization based clustering algorithms [260].

1.5 Applications of Clustering 13

In addition, cluster analysis can be used in conjunction with other approaches of
machine learning. For example, clusterwise linear regression (CLR) is a combina-
tion of clustering and regression analysis [31, 34, 35, 81, 271]. The CLR technique is
used to obtain clusters by their specific regression coefficients in a linear regression
model. The CLR has been used, for instance, in rainfall prediction [37], forecasting
of PM10 in Earth’s atmosphere [238], and consumer benefit segmentation [292].

Chapter 2
Theory of Nonsmooth Optimization

2.1 Introduction

Nonsmooth optimization (NSO) refers to the general problem of minimizing
(or maximizing) functions with discontinuous gradients. These types of problems
appear in many applied fields, for example, in image denoising, optimal control, data
mining, economics, computational chemistry and physics. Since the classical theory
of optimization presumes certain differentiability and strong regularity assumptions
for the functions to be optimized it cannot be directly utilized.

This chapter contains necessary information on theoretical NSO which is used to
model clustering problems, to obtain optimality conditions and to design algorithms
for these problems. We first introduce some notations and basic concepts from
smooth analysis. Then we generalize the concepts of differential calculus for
nonsmooth convex functions [249], define subgradients and subdifferentials and
present some basic results for convex problems. These concepts and results
are further extended to optimization problems with locally Lipschitz continuous
(LLC) functions [70]. We define the so-called ε-subdifferentials that approximate
the subdifferentials. The notions of quasidifferential [79] and discrete gradients
[18, 28] are introduced as additional tools to handle both the nonsmoothness and
the nonconvexity. In addition, we formulate necessary and sufficient optimality
conditions for optimization problems with LLC functions. Finally, we consider
some special classes of nonconvex nonsmooth functions—DC functions, piecewise
partially separable functions, and max-functions—and show how their structures
can be utilized in NSO. The proofs of theorems, lemmas, and propositions in this
chapter are omitted since they can be found, for example, in [32].

Our notations are fairly standard: all the vectors x are considered as column
vectors and, correspondingly, all the transposed vectors xT are considered as row
vectors. We denote by xT y the usual inner product and by ‖x‖ the norm in the n-
dimensional real Euclidean space R

n. In other words

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_2

16 2 Theory of Nonsmooth Optimization

xT y =
n∑

i=1

xiyi and ‖x‖ = (xT x
) 1

2 ,

where x and y are in R
n and xi, yi ∈ R are the ith components of the vectors x and

y, respectively.
We denote by [x, y] the closed line-segment joining x and y

[x, y] =
{

z ∈ R
n : z = λx + (1 − λ)y for 0 ≤ λ ≤ 1

}
,

and by (x, y) the corresponding open line-segment.
An open (closed) ball with the center x ∈ R

n and the radius r > 0 is denoted by
B(x; r) (B̄(x; r)). That is,

B(x; r) = {y ∈ R
n : ‖y − x‖ < r}, and

B̄(x; r) = {y ∈ R
n : ‖y − x‖ ≤ r}.

We also denote by S1 the sphere of the unit ball

S1 = {y ∈ R
n : ‖y‖ = 1

}
.

2.2 Preliminaries

In this section, we describe some notations, concepts, and basic results from convex
and smooth analysis.

2.2.1 Convex Sets

A set S ⊂ R
n is said to be convex if

λx + (1 − λ)y ∈ S,

whenever x and y are in S and λ ∈ [0, 1]. This means that the set is convex if the
closed line-segment [x, y] is entirely contained in S whenever its endpoints x and y
are in S. Particularly, the empty set, the unit ball B̄(x; 1) and the whole Euclidean
space R

n are convex.
Let I = {i : i = 1, . . . , m}. If the sets Si ⊂ R

n are convex for i ∈ I, then their
intersection ∩i∈ISi is convex. If, in addition, each Si is non-empty and μi ∈ R, then
the set

∑
i∈I μiSi is convex. Figure 2.1 illustrates some convex and nonconvex sets.

2.2 Preliminaries 17

Fig. 2.1 Convex and nonconvex sets

Fig. 2.2 Convex hulls of convex and nonconvex sets

A linear combination
∑

i∈I λixi is called a convex combination of elements
x1, . . . , xm ∈ R

n if each λi ≥ 0 and
∑

i∈I λi = 1. For any set S ⊂ R
n, we define

the convex hull of S as a set of all possible convex combinations of its elements

conv S =
{

x ∈ R
n : x =

∑

i∈I
λixi ,

∑

i∈I
λi = 1, xi ∈ S, λi ≥ 0

}

.

The conv S is the smallest convex set containing S. Further, S is convex if and
only if S = conv S. Figure 2.2 illustrates the convex hulls of some convex and
nonconvex sets.

18 2 Theory of Nonsmooth Optimization

2.2.2 Separating Hyperplanes

Every non-zero vector v ∈ R
n and a scalar α ∈ R define a unique hyperplane

H(v, α) = {x ∈ R
n : vT x = α}.

A hyperplane divides the whole space R
n into two closed (or open) halfspaces

H+(v, α) = {x ∈ R
n : vT x ≥ α}, and

H−(v, α) = {x ∈ R
n : vT x ≤ α}.

If n = 1, the hyperplane H(v, α) = {x ∈ R : vx = α}, v �= 0 is the singleton
{α/v}, and the halfspaces are H+(v, α) = [α/v,∞) and H−(v, α) = (−∞, α/v].
The hyperplane is a line when n = 2 and is a plane when n = 3.

Next, we define the separating hyperplane: let S1, S2 ⊂ R
n be non-empty sets.

A hyperplane H(v, α) with v �= 000 separates S1 and S2 if S1 ⊆ H+(v, α) and
S2 ⊆ H−(v, α), in other words

vT x ≥ 0 for all x ∈ S1, and

vT x ≤ 0 for all x ∈ S2.

The separation is strict if S1 ∩ H(v, α) = ∅ and S2 ∩ H(v, α) = ∅.
Let S ⊂ R

n be a non-empty, closed convex set and x∗ /∈ S. Then there exists a
hyperplane H(v, α) separating S and {x∗}. In addition, two convex sets S1, S2 ⊂ R

n

such that S1 ∩ S2 = ∅ can always be separated by a hyperplane. For the strict
separation, S1 and S2 need to be closed and also at least one of them should to be
bounded. Figure 2.3 illustrates the separating hyperplane of some convex sets. Note
that the separating hyperplane in Fig. 2.3 is not unique and there exist infinitely
many hyperplanes separating these two convex sets.

Fig. 2.3 Separating hyperplane

2.2 Preliminaries 19

2.2.3 Continuous, Lipschitz Continuous, and Convex
Functions

A function f : Rn → R is said to be upper semicontinuous at x ∈ R
n if for every

sequence {xh} converging to x the following holds:

lim sup
h→∞

f (xh) ≤ f (x),

and lower semicontinuous if

f (x) ≤ lim inf
h→∞ f (xh).

A both upper and lower semicontinuous function is continuous. Upper and lower
semicontinuous as well as continuous functions are illustrated in Figs. 2.4, 2.5,
and 2.6, respectively.

Fig. 2.4 Upper
semicontinuous function

•
◦

Fig. 2.5 Lower
semicontinuous function

•
◦

Fig. 2.6 Continuous function

20 2 Theory of Nonsmooth Optimization

A function f : Rn → R is called Lipschitz continuous if

|f (x) − f (y)| ≤ L‖x − y‖ for all x, y ∈ R
n,

where L > 0 is a constant independent of x and y.
A function f : Rn → R is called locally Lipschitz continuous (LLC) at x ∈ R

n

with a constant L > 0 if there exists a positive number ε such that

|f (y) − f (z)| ≤ L‖y − z‖ for all y, z ∈ B(x; ε).

A function f : Rn → R is said to be convex if

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) (2.1)

for all x, y ∈ R
n and λ ∈ [0, 1]. If a strict inequality holds in (2.1) for all x, y ∈ R

n

such that x �= y and λ ∈ (0, 1), then the function f is said to be strictly convex.
A function f : Rn → R is (strictly) concave if −f is (strictly) convex. Further, a
function f that is not convex is called nonconvex. The convex function f : Rn → R

is LLC at any x ∈ R
n.

A function f : Rn → R is positively homogeneous if

f (λx) = λf (x)

for all λ ≥ 0 and subadditive if

f (x + y) ≤ f (x) + f (y)

for all x and y in R
n. A function that is both positively homogeneous and subadditive

is always convex.
A function f : Rn → R is said to be differentiable at x ∈ R

n if there exists a
vector ∇f (x) ∈ R

n and a function � : Rn → R such that for all d ∈ R
n

f (x + d) = f (x) + ∇f (x)T d + ‖d‖�(d),

and �(d) → 0 whenever ‖d‖ → 0. The vector ∇f (x) is called the gradient vector
of the function f at x and it is given by the formula

∇f (x) =
(∂f (x)

∂x1
, . . . ,

∂f (x)

∂xn

)T

.

Here, the components ∂f (x)/∂xj for j = 1, . . . , n, are called partial derivatives
of the function f . If the function is differentiable and all the partial derivatives are
continuous, then the function is said to be continuously differentiable or smooth
(f ∈ C1(Rn)). A smooth function is always LLC. Functions with discontinuous

2.2 Preliminaries 21

Fig. 2.7 Absolute value
function

f(x
)=
|x
|

f(x)

1.0 2.0

2.0

−1.0

1.0

−2.0−3.0 3.0

3.0

x

gradients are called nonsmooth. The simplest example of a nonsmooth function is
the absolute value function f (x) = |x|, x ∈ R (see Fig. 2.7).

Continuous differentiability of a function f : Rn → R at x implies that for any
ε > 0 there exists δ > 0 such that

∣∣f (z + ty) − f (z)
t

− ∇f (x)T y
∣∣ < ε

whenever 0 < t < δ and z ∈ B(x; δ).
The limit

f ′(x; d) = lim
t↓0

f (x + td) − f (x)

t

(if it exists) is called the directional derivative of f at x ∈ R
n in the direction

d ∈ R
n. The directional derivative can be used as an approximation for the change

of function values: thus, we can use it to detect directions where function values
increase, decrease, or do not change.

As a function of d, the directional derivative f ′(x; d) is positively homogeneous
and subadditive. If at a point x ∈ R

n the directional derivative f ′(x; d) exists in
every direction d ∈ R

n, then the function f is called directionally differentiable
at x. Both the differentiable and finite valued convex functions are directionally
differentiable. For a differentiable function f we have

f ′(x; d) = ∇f (x)T d,

and, if f is also convex, then for all y ∈ R
n we have

f (y) ≥ f (x) + f ′(x, y − x),

or

f (y) ≥ f (x) + ∇f (x)T (y − x).

22 2 Theory of Nonsmooth Optimization

A function f : R
n → R is said to be twice differentiable at x ∈ R

n if there
exists a vector ∇f (x) ∈ R

n, a symmetric matrix ∇2f (x) ∈ R
n×n, and a function

� : Rn → R such that for all d ∈ R
n

f (x + d) = f (x) + ∇f (x)T d + 1

2
dT ∇2f (x)d + ‖d‖2�(d),

where �(d) → 0 whenever ‖d‖ → 0. The matrix ∇2f (x) is called the Hessian
matrix of the function f at x and its entries are second order partial derivatives of
f , that is,

∇2f (x) =

⎡

⎢⎢⎢
⎣

∂2f (x)

∂x2
1

. . .
∂2f (x)
∂x1∂xn

...
. . .

...
∂2f (x)
∂xn∂x1

. . .
∂2f (x)

∂x2
n

⎤

⎥⎥⎥
⎦

.

If the function is twice differentiable and all the second order partial derivatives
are continuous, then the function is said to be twice continuously differentiable
(f ∈ C2(Rn)). Finally, we denote by C∞(Rn) the class of infinitely continuously
differentiable functions.

2.3 Concepts of Nonsmooth Analysis

The theory of nonsmooth analysis originates from convex analysis. Therefore,
we start this section by providing some important definitions and results for (not
necessarily differentiable) convex functions. We define the subgradient and the
subdifferential of a convex function [249], and then generalize these concepts to
the class of nonconvex LLC functions [70]. In addition, we describe rules for the
calculation of subgradients and subdifferentials of different classes of functions.
Finally, we recall the notion of the quasidifferential [78].

The aim of this section is not to give the detailed description of nonsmooth
analysis—for that we refer, for example, to [32, 70, 207, 249]—but rather to collect
some basic definitions and results necessary in the subsequent chapters of this book.

2.3.1 Subdifferentials of Convex Functions

Definition 2.1 The subdifferential of a convex function f : Rn → R at x ∈ R
n is

the set

∂cf (x) = { ξ ∈ R
n : f (y) ≥ f (x) + ξT (y − x) for all y ∈ R

n
}
.

2.3 Concepts of Nonsmooth Analysis 23

Each vector ξ ∈ ∂cf (x) is called a subgradient of f at x.

The subdifferential ∂cf (x) is a non-empty, convex, and compact set such that
∂cf (x) ⊆ B(000;L), where L > 0 is the Lipschitz constant of f at x. Note the
similarity between Definition 2.1 and the smooth differential theory: if f : Rn → R

is both convex and differentiable, then for all y ∈ R
n we have

f (y) ≥ f (x) + ∇f (x)T (y − x),

and the subdifferential is a singleton

∂cf (x) = {∇f (x)
}
. (2.2)

As mentioned above a finite valued convex function is directionally differentiable
everywhere, that is, the directional derivative f ′(x; d) exists in every direction d ∈
R

n for all x ∈ R
n. In addition, we have

f ′(x; d) = inf
t>0

f (x + td) − f (x)

t
for all d ∈ R

n.

The subdifferential ∂cf (x) can be represented with the aid of the directional
derivative f ′(x; d) and vice versa. Suppose that f : Rn → R is a convex function,
then for all x ∈ R

n we have

∂cf (x) = {ξ ∈ R
n : f ′(x, d) ≥ ξT d for all d ∈ R

n
}
, and (2.3)

f ′(x; d) = max
{
ξT d : ξ ∈ ∂cf (x)

}
for all d ∈ R

n. (2.4)

Further, any convex function can be presented by using its subgradients. This
result is very useful when developing numerical methods for optimization.

Theorem 2.1 If f : Rn → R is convex, then for all y ∈ R
n

f (y) = sup
{
f (x) + ξT (y − x) : x ∈ R

n, ξ ∈ ∂cf (x)
}
.

The subdifferential ∂fc(x) is sometimes approximated with a larger set—the so-
called ε-subdifferential—which is an extension of the subdifferential.

Definition 2.2 Let ε ≥ 0. The ε-subdifferential of a convex function f : Rn → R

at x ∈ R
n is the set

∂εf (x) = {ξ ∈ R
n : f (y) ≥ f (x) + ξT (y − x) − ε for all y ∈ R

n
}
.

Each element ξ ∈ ∂εf (x) is called an ε-subgradient of f at x.

The geometrical interpretation of the ε-subdifferential is as follows. A subgra-
dient ξ ∈ ∂f (x̄) at some point x̄ ∈ R

n belongs to ∂εf (x) if the affine function

24 2 Theory of Nonsmooth Optimization

u(y) = f (x̄) + ξT (y − x̄) giving the tangent line to the graph of the function f at x̄
satisfies the inequality u(x) ≥ f (x) − ε.

Similarly to the subdifferential ∂cf (x), the ε-subdifferential ∂εf (x) is a non-
empty, convex, and compact set such that ∂εf (x) ⊆ B(000;L), where L > 0 is the
Lipschitz constant of f at x. In addition, it has the following properties:

• ∂0f (x) = ∂cf (x); and
• if ε1 ≤ ε2, then ∂ε1f (x) ⊆ ∂ε2f (x).

We conclude this subsection by noting that the ε-subdifferential contains in a
compressed form the subgradient information in the whole neighborhood of a point
x ∈ R

n. This information is utilized, for instance, in bundle methods to be described
in Sect. 3.3.

Theorem 2.2 Let f : Rn → R be a convex function with the Lipschitz constant L

at x. Then for any ε ≥ 0 we have

∂cf (y) ⊆ ∂εf (x) for all y ∈ B
(
x; ε

2L

)
.

2.3.2 Nonconvex Analysis

The directional derivatives need not to exist for all LLC functions. Therefore, the
definitions given in the previous subsection are not always applicable to nonconvex
LLC functions. There are various alternatives available to generalize the concept of
subdifferential to the nonconvex case (see, e.g., [77, 78, 220, 236]). We use here the
generalized directional derivative and subdifferential by Clarke [70], since elements
of this subdifferential can be efficiently estimated or calculated as will be shown in
Theorem 2.4.

Definition 2.3 [70] Let f : R
n → R be a LLC at x ∈ R

n. The generalized
directional derivative of f at x in the direction d ∈ R

n is defined by

f ◦(x; d) = lim sup
y→x
t↓0

f (y + td) − f (y)
t

.

Note that the generalized directional derivative always exists for LLC functions and,
as a function of d, it is positively homogeneous and subadditive on R

n. Therefore,
we can now define the subdifferential for nonconvex LLC functions analogously
to the equation (2.3) in convex case with the directional derivative replaced by
the generalized directional derivative. In what follows we sometimes refer to this
subdifferential as Clarke subdifferential.

2.3 Concepts of Nonsmooth Analysis 25

Definition 2.4 [70] Let f : Rn → R be a LLC function at a point x ∈ R
n. Then

the subdifferential of f at x is the set

∂f (x) = {ξ ∈ R
n : f ◦(x; d) ≥ ξT d for all d ∈ R

n
}
.

Each vector ξ ∈ ∂f (x) is called a subgradient of f at x.

Similar to the subdifferential in convex case the subdifferential ∂f (x) is a non-
empty, convex, and compact set such that ∂f (x) ⊆ B(000;L), where L > 0 is the
Lipschitz constant of f at x. In addition, the generalized directional derivative can
be calculated using the subdifferential ∂f (x) as follows:

f ◦(x; d) = max
{
ξT d : ξ ∈ ∂f (x)

}
for all d ∈ R

n.

The subdifferential for LLC functions is a generalization of the subdifferential
for convex functions: if f : Rn → R is a convex function, then f ◦(x; d) = f ′(x; d)

for all d ∈ R
n, and ∂f (x) = ∂cf (x). Thus, we can omit the index c and use ∂f (x)

to denote the subdifferential of a convex function as well.
The subdifferential of LLC functions is also a generalization of the classical

derivative: if f : R
n → R is both LLC and differentiable at x ∈ R

n, then
∇f (x) ∈ ∂f (x). If, in addition, f : R

n → R is smooth at x ∈ R
n, then

∂f (x) = {∇f (x)
}
.

The LLC function f : Rn → R is strictly differentiable at a point x ∈ R
n if the

subdifferential ∂f (x) is a singleton. The function f is called strictly differentiable
on R

n if it is strictly differentiable at any x ∈ R
n.

The next theorem shows that the subdifferentials of LLC functions, including
subdifferentials of convex functions, are upper semicontinuous.

Theorem 2.3 [32] Let f : R
n → R be LLC. Then the subdifferential mapping

x �→ ∂f (x) is upper semicontinuous, that is at a point x ∈ R
n for any ε > 0 there

exists δ > 0 such that

∂f (y) ⊂ ∂f (x) + B(000; ε) (2.5)

for all y ∈ B(x; δ). Equivalently, for any sequences {xh} and {ξh} such that xh ∈
R

n, ξh ∈ ∂f (xh) if xh → x, ξh → ξ as h → ∞ then ξ ∈ ∂f (x).

Next, we recall a result that is essential for calculating subgradients in practice.
By Rademacher’s Theorem [101] a function which is Lipschitz continuous on a set
U ⊆ R

n is differentiable almost everywhere on U . This means that the gradient
exists almost everywhere and the subdifferential can be constructed as a convex hull
of all possible limits of gradients at points xi converging to x. Let

Ωf = {x ∈ R
n : f is not differentiable at the point x

}

be the set of points where f is not differentiable.

26 2 Theory of Nonsmooth Optimization

Fig. 2.8 Subdifferential of
the absolute value function

1.0 2.0−1.0

1.0

2.0

−2.0−3.0 3.0 x
−1.0

ξ

Theorem 2.4 Let f : Rn → R be LLC at x ∈ R
n. Then

∂f (x) = conv
{
ξ ∈ R

n : there exists {xh} ⊂ R
n \ Ωf such that

xh → x and ∇f (xh) → ξ
}
.

As an example of Theorem 2.4, let us consider the absolute value function
f (x) = |x|, x ∈ R (see Fig. 2.7). The function is differentiable everywhere but
at x = 0, and its gradient is given by

∇f (x) =
{

1, for x > 0,

−1, for x < 0.

The subdifferential of this function at x = 0 is given by (see also Fig. 2.8)

∂f (0) = conv{−1, 1} = [−1, 1].

The Goldstein ε-subdifferential, introduced in the next definition, is the approxi-
mation of the subdifferential of an LLC function.

Definition 2.5 Let a function f : Rn → R be LLC at x ∈ R
n and let ε ≥ 0. The

Goldstein ε-subdifferential of f is the set

∂G
ε f (x) = cl conv

{
∂f (y) : y ∈ B(x; ε)

}
.

Each element ξ ∈ ∂G
ε f (x) is called an ε-subgradient of the function f at x.

Similar to other subdifferential mappings presented so far, the Goldstein ε-
subdifferential ∂G

ε f (x) is a non-empty, convex, and compact set such that ∂G
ε f (x) ⊆

B(000;L). It also has the similar properties as the ε-subdifferential for convex
functions. More precisely,

2.3 Concepts of Nonsmooth Analysis 27

• ∂G
0 f (x) = ∂f (x); and

• if ε1 ≤ ε2, then ∂G
ε1

f (x) ⊆ ∂G
ε2

f (x).

In addition, as a corollary to Theorem 2.4 we have

∂G
ε f (x) = cl conv

{
ξ ∈ R

n : there exists {yh} ⊂ R
n \ Ωf such that

yh → y, ∇f (yh) → ξ , and y ∈ B(x; ε)
}
.

As in the convex case, the Goldstein ε-subdifferential contains in a compressed
form the subgradient information from the whole neighborhood of x.

Theorem 2.5 Let f : Rn → R be LLC at x ∈ R
n. Then for any ε ≥ 0 we have

∂f (y) ⊆ ∂G
ε f (x) for all y ∈ B(x; ε).

The relationship between the ε-subdifferential and the Goldstein ε-subdifferential
for convex functions is shown in the next theorem.

Theorem 2.6 Let f : Rn → R be a convex function with the Lipschitz constant L

at x. Then for all ε ≥ 0 we have

∂G
ε f (x) ⊆ ∂2Lεf (x).

The mapping x �→ ∂G
ε f (x) is upper semicontinuous at any x ∈ R

n.
We conclude this subsection by giving definitions of semismooth and weakly

semismooth functions. A function f : Rn → R is called semismooth at x ∈ R
n if it

is LLC at x and for every d ∈ R
n the limit

lim
ξ∈∂f (x+td′),

d′→d, t↓0

ξT d′

exists. Further, a function f : Rn → R is weakly semismooth at x ∈ R
n if it is LLC

at x and the limit

lim
ξ∈∂f (x+td),

t↓0

ξT d (2.6)

exists for every d ∈ R
n. Evidently, the semismoothness implies the weak semis-

moothness. The class of semismooth functions is fairly broad and it contains, for
instance, convex, concave, max- and min-type functions. The semismooth function
f is directionally differentiable and

f ′(x, d) = lim
ξ∈∂f (x+td′),

d′→d, t↓0

ξT d.

28 2 Theory of Nonsmooth Optimization

2.3.3 Subdifferential Calculus

In this subsection, we give some rules for calculation of subdifferentials. We con-
sider LLC functions but differentiation rules for the smooth and convex functions
can be obtained from these results as special cases. For general LLC functions we
restrict ourselves with inclusions instead of equalities in differentiation rules. In
order to obtain equalities we need the following regularity property.

Definition 2.6 A function f : R
n → R is said to be subdifferentially regular at

x ∈ R
n if it is LLC at x, and for all d ∈ R

n the directional derivative f ′(x; d) exists
and

f ′(x; d) = f ◦(x; d). (2.7)

The equality (2.7) is not satisfied in general even if f ′(x; d) exists. A simple example
is the concave function f (x) = −|x|: it has the directional derivative f ′(0; 1) =
−1, but the generalized directional derivative f ◦(0; 1) = 1. Nevertheless, there are
some simple rules when the function f : Rn → R is subdifferentially regular at
x:

• f is smooth at x;
• f is convex; or
• f = ∑

i∈I
λifi , where λi > 0 and fi is subdifferentially regular at x for each i ∈ I.

In Sect. 2.3.1, we noted that for a differentiable convex function the subdifferen-
tial is a singleton. Now we generalize this result to the broader class of functions:
if f : R

n → R is both differentiable and subdifferentially regular at x, then the
subdifferential ∂f (x) is a singleton

∂f (x) = {∇f (x)
}
.

Next, we present differentiation rules for LLC functions. The proofs of these
results can be found in [32].

Theorem 2.7 If the function f : Rn → R is LLC at x, then for all λ ∈ R

∂(λf)(x) = λ ∂f (x). (2.8)

Theorem 2.8 (Sum) Let fi : Rn → R be LLC at x and λi ∈ R for all i ∈ I. Then
the function

f (x) :=
∑

i∈I
λifi(x)

2.3 Concepts of Nonsmooth Analysis 29

is LLC at x and

∂f (x) ⊆
∑

i∈I
λi∂fi(x). (2.9)

In addition, if each fi is subdifferentially regular at x and each λi ≥ 0, then f is
subdifferentially regular at x and equality holds in (2.9).

Next, we generalize two main results of differential calculus, namely the mean-
value theorem and the chain rule.

Theorem 2.9 (Mean-Value Theorem) Let the function f : Rn → R be Lipschitz
continuous on an open set U ⊆ R

n. Let x, y ∈ R
n be such that x �= y and the

line-segment [x, y] ⊂ U . Then there exists a point z ∈ (x, y) such that

f (y) − f (x) ∈ ∂f (z)T (y − x),

where

∂f (z)T (y − x) =
{

u ∈ R
n : ∃ ξ ∈ ∂f (z) such that u = ξT (y − x)

}
.

Theorem 2.10 (Chain Rule) Let f : R
n → R be such that f = g ◦ h, where

h : Rn → R
m is LLC at x ∈ R

n and g : Rm → R is LLC at h(x) ∈ R
m. Then f is

LLC at x and

∂f (x) ⊆ conv
{
∂h(x)T ∂g

(
h(x)

)}
. (2.10)

There are several possibilities to achieve equality in (2.10) as the following theorem
shows. Recall the set I = {i : i = 1, . . . , m}.
Theorem 2.11 Let f : Rn → R be such that the assumptions of Theorem 2.10 are
satisfied. Then

(i) if g is subdifferentially regular at h(x), each hi is subdifferentially regular
at x and for any α ∈ ∂g

(
h(x)

)
we have αi ≥ 0 for all i ∈ I, then f is

subdifferentially regular at x and

∂f (x) = conv
{
∂h(x)T ∂g

(
h(x)

)};

(ii) if g is subdifferentially regular at h(x) and hi is smooth at x for all i ∈ I, then
f is subdifferentially regular at x and

∂f (x) = ∇h(x)T ∂g
(
h(x)

); and

(iii) if m = 1 and g is smooth at h(x), then f is subdifferentially regular at x and

∂f (x) = g′(h(x)
)
∂h(x).

30 2 Theory of Nonsmooth Optimization

Based on the chain rule, we can prove the generalization of the classical differenti-
ation rules for products and quotients of functions.

Theorem 2.12 (Products) Let f1 and f2 be LLC at x ∈ R
n. Then the function f1f2

is LLC at x and

∂(f1f2)(x) ⊆ f2(x)∂f1(x) + f1(x)∂f2(x). (2.11)

In addition, if f1(x), f2(x) ≥ 0 and f1, f2 are both subdifferentially regular at x,
then the function f1f2 is subdifferentially regular at x and equality holds in (2.11).

Theorem 2.13 (Quotients) Let f1 and f2 be LLC at x ∈ R
n and f2(x) �= 0. Then

the function f1/f2 is LLC at x and

∂
(f1

f2

)
(x) ⊆ f2(x)∂f1(x) − f1(x)∂f2(x)

(
f2(x)

)2 . (2.12)

In addition, if f1(x) ≥ 0, f2(x) > 0 and f1, f2 are both subdifferentially regular
at x, then the function f1/f2 is subdifferentially regular at x and equality holds
in (2.12).

Finally, we give a result for a class of functions which are frequently encountered
in NSO and which, indeed, are used also in nonsmooth formulations of clustering
problems, namely the max-functions. The problem of minimizing max-function is
called the minimax problem.

Theorem 2.14 (Max-Function) Let fi : Rn → R be LLC at x for all i ∈ I. Then
the function

f (x) := max
{
fi(x) : i ∈ I

}

is LLC at x and

∂f (x) ⊆ conv
{
∂fi(x) : i ∈ I(x)

}
, (2.13)

where

I(x) := {i ∈ I : fi(x) = f (x)
}
.

In addition, if fi is subdifferentially regular at x for all i ∈ I, then f is also
subdifferentially regular at x and equality holds in (2.13). Moreover,

f ′(x, d) = max
i∈I(x)

f ′
i (x, d), d ∈ R

n.

2.3 Concepts of Nonsmooth Analysis 31

2.3.4 Quasidifferentials

As already mentioned, there are other generalizations of the subdifferential for
nonconvex nonsmooth functions different from the Clarke subdifferential. In this
subsection, we briefly recall the notion of quasidifferential. We omit the proofs since
they can be found in [79].

Definition 2.7 A function f : X → R is called quasidifferentiable at x ∈ X ⊆ R
n

if it is directionally differentiable at x and there exists a pair of compact convex sets
[∂f (x), ∂f (x)] such that the directional derivative f ′(x; d) of the function f at x in
the direction d ∈ R

n can be represented in the form

f ′(x; d) = max
{
ξT d : ξ ∈ ∂f (x)

}+ min
{
νT d : ν ∈ ∂f (x)

}
. (2.14)

The set ∂f (x) is called the subdifferential of the function f at x and the ∂f (x) is
called the superdifferential of the function f at x. The pair Df (x) = [∂f (x), ∂f (x)]
is called the quasidifferential of the function f at x.

The simplest examples of quasidifferentiable functions include a convex function
f1 and a concave function f2 with the quasidifferentials given at a point x ∈ R

n

Df1(x) = [∂f1(x), {000}], and

Df2(x) = [{000}, ∂f2(x)
]
,

respectively.
The quasidifferential mapping enjoys the full calculus in a sense that the

equalities can be used instead of inclusions (cf. subdifferentially regular functions
with Clarke subdifferential in Sect. 2.3.3). The following rules can be used to
determine when the function f : R

n → R is quasidifferentiable at x ∈ R
n and

to compute quasidifferentials.

Theorem 2.15 (Sum and Product) Let functions f1, f2 : Rn → R be quasidiffer-
entiable at a point x. Then

(i) the function f = f1 + f2 is quasidifferentiable at x and

Df (x) = Df1(x) + Df2(x).

In other words, if [∂f1(x), ∂f1(x)] and [∂f2(x), ∂f2(x)] are quasidifferentials
of the functions f1 and f2 at x, respectively, then

∂f (x) = ∂f1(x) + ∂f2(x), and

∂f (x) = ∂f1(x) + ∂f2(x).

32 2 Theory of Nonsmooth Optimization

(ii) the function f = f1 · f2 is quasidifferentiable at x, and

Df (x) = f1(x)Df2(x) + f2(x)Df1(x),

where

∂f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x)∂f2(x) + f2(x)∂f1(x), if f1(x) ≥ 0, f2(x) ≥ 0,

f1(x)∂f2(x) + f2(x)∂f1(x), if f1(x) ≤ 0, f2(x) ≥ 0,

f1(x)∂f2(x) + f2(x)∂f1(x), if f1(x) ≤ 0, f2(x) ≤ 0,

f1(x)∂f2(x) + f2(x)∂f1(x), if f1(x) ≥ 0, f2(x) ≤ 0,

and

∂f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x)∂f2(x) + f2(x)∂f1(x), if f1(x) ≥ 0, f2(x) ≥ 0,

f1(x)∂f2(x) + f2(x)∂f1(x), if f1(x) ≤ 0, f2(x) ≥ 0,

f1(x)∂f2(x) + f2(x)∂f1(x), if f1(x) ≤ 0, f2(x) ≤ 0,

f1(x)∂f2(x) + f2(x)∂f1(x), if f1(x) ≥ 0, f2(x) ≤ 0.

Theorem 2.16 (Max- and Min-Functions) Let functions ϕi, i ∈ I be defined on
an open set X ⊂ R

n, be quasidifferentiable at a point x ∈ X and

f1(x) = max
i∈I

ϕi(x), and

f2(x) = min
i∈I

ϕi(x).

Then the functions f1 and f2 are quasidifferentiable at x and

Df1(x) = [∂f1(x), ∂f1(x)
]
, and

Df2(x) = [∂f2(x), ∂f2(x)
]
.

Here

∂f1(x) = conv
⋃

j∈M(x)

⎛

⎝∂ϕj (x) −
∑

i∈M(x),i �=j

∂ϕi(x)

⎞

⎠ ,

∂f1(x) =
∑

j∈M(x)

∂ϕj (x),

∂f2(x) =
∑

j∈N (x)

∂ϕj (x), and

∂f2(x) = conv
⋃

j∈N (x)

⎛

⎝∂ϕj (x) −
∑

i∈N (x),i �=j

∂ϕi(x)

⎞

⎠ .

2.4 Optimality Conditions 33

Here,
[
∂ϕj (x), ∂ϕj (x)

]
is a quasidifferential of the function ϕj at the point x, and

M(x) = {i ∈ I : ϕi(x) = f1(x)
}
, and

N (x) = {i ∈ I : ϕi(x) = f2(x)
}
.

By Applying Theorems 2.15 and 2.16 we obtain quasidifferentials for some
important functions frequently encountered in NSO like DC functions (see Sect. 2.7)
and functions represented as a sum of maximum or minimum functions.

It is worth of noting that the quasidifferential mapping is not uniquely defined: if
Df (x) = [

∂f (x), ∂f (x)
]

is a quasidifferential of the function f at a point x, then
for any compact convex set U ⊂ R

n the pair Df (x) = [∂f (x) + U, ∂f (x) − U
]

is
also a quasidifferential of f at x.

For the relationship between the Clarke subdifferential and the quasidifferential
we refer to [79].

2.4 Optimality Conditions

In this section, we first define global and local minima of functions. After that,
we generalize the classical first order optimality conditions for unconstrained NSO
problems using both the Clarke subdifferential and quasidifferential. At the end of
this section, we define the notion of a descent direction and show how to find it for
a LLC function.

We consider an unconstrained NSO problem of the form

{
minimize f (x)

subject to x ∈ R
n,

(2.15)

where the objective function f : Rn → R is LLC at x for all x ∈ R
n.

Definition 2.8 A point x ∈ R
n is a global minimizer of f if

f (x) ≤ f (y) for all y ∈ R
n.

In practice, this means that the global minimizer gives the smallest value—global
minimum—for the problem (2.15) on the whole space R

n.

Definition 2.9 A point x ∈ R
n is a local minimizer of f if there exists ε > 0

such that

f (x) ≤ f (y) for all y ∈ B(x; ε).

34 2 Theory of Nonsmooth Optimization

The local minimizer x is guaranteed to be the smallest value—local minimum—for
the problem (2.15) in some neighborhood of the point x.

The necessary conditions for a LLC function to attain its local minimum in
an unconstrained case are given in the next theorem. For a convex function these
conditions are also sufficient for global optimality.

Theorem 2.17 Let f : R
n → R be a LLC function at x ∈ R

n. If x is the local
minimizer of the function f , then

(i) f ◦(x; d) ≥ 0 for all d ∈ R
n; and

(ii) 000 ∈ ∂f (x).

Theorem 2.18 If f : Rn → R is a convex function, then the following conditions
are equivalent:

(i) the function f attains its global minimum value at x;
(ii) f ′(x; d) ≥ 0 for all d ∈ R

n; and
(iii) 000 ∈ ∂f (x).

Definition 2.10 A point x ∈ R
n satisfying the condition 000 ∈ ∂f (x) is called a

(Clarke) stationary point of f .

The necessary optimality condition can be formulated also with the help of the
Goldstein ε-subdifferential.

Theorem 2.19 Let f : Rn → R be a LLC function at x ∈ R
n. If f attains its local

minimum value at x, then for all ε ≥ 0 and y ∈ B(x; ε) we have

000 ∈ ∂G
ε f (y).

In addition, the quasidifferential (see Definition 2.7 in Sect. 2.3.4) can be used to
formulate optimality conditions.

Theorem 2.20 [79] Let f : Rn → R be a quasidifferentiable function. If a point
x ∈ R

n is the local minimizer of the function f , then

−∂f (x) ⊆ ∂f (x).

If, in addition, f is LLC at x and

−∂f (x) ⊂ int ∂f (x),

then the point x is a strict local minimizer of f on R
n.

Unless the optimal solution of the problem (2.15) has been found, an essential
part of most iterative optimization methods is to find a direction such that the
objective function values decrease along that direction. We complete this section
by defining a descent direction for an objective and show how to find it for a LLC
function.

2.5 Discrete Gradient 35

Definition 2.11 The direction d ∈ R
n is called a descent direction for f : Rn → R

at x ∈ R
n, if there exists ε > 0 such that for all t ∈ (0, ε] we have

f (x + td) < f (x).

Theorem 2.21 Let f : Rn → R be a LLC function at x ∈ R
n. The direction d ∈ R

n

is a descent direction for f if any of the following holds:

(i) f ◦(x; d) < 0;
(ii) ξT d < 0 for all ξ ∈ ∂f (x); or

(iii) ξT d < 0 for all ξ ∈ ∂G
ε f (x).

As a consequence, from the above results we obtain that at a non-stationary point a
descent direction always exists.

2.5 Discrete Gradient

In practice, the computation of subdifferential or even one subgradient is not always
an easy task. In this section, we introduce the notion of discrete gradient for a LLC
function [28]. A discrete gradient is an approximation of the subgradient at a given
point and only function values are used to compute it.

Let f : Rn → R be a LLC function and

G = {w ∈ R
n : w = (w1, . . . , wn), |wj | = 1, j = 1, . . . , n

}

be a set of all vertices of the unit hypercube in R
n. Given w ∈ G and α ∈ (0, 1],

define the sequence of n vectors

wj ≡ wj (α) = (αw1, α
2w2, . . . , α

jwj , 0, . . . , 0
)
, j = 1, . . . , n.

Take any vector g from the sphere of the unit ball S1, any vector w ∈ G and positive
numbers λ > 0, α ∈ (0, 1]. Consider the points

x0 = x + λg, xj = x0 + λwj (α), j = 1, . . . , n. (2.16)

For g ∈ S1, compute

c̄ = max
{|gi |, i = 1, . . . , n

}
,

and define the set

I(g) = {i ∈ {1, . . . , n} : |gi | = c̄
}
. (2.17)

It is clear that |gi | ≥ 1/n for all i ∈ I(g).

36 2 Theory of Nonsmooth Optimization

Definition 2.12 The discrete gradient of the function f : R
n → R at the point

x ∈ R
n is the vector

Γ i (x, g, w, λ, α) = (Γ i
1 , . . . , Γ i

n) ∈ R
n, g ∈ S1, i ∈ I(g),

with the following coordinates:

Γ i
j = (λαjwj)

−1(f (xj) − f (xj−1)
)
, j = 1, . . . , n, j �= i, and

Γ i
i = (λgi)

−1

⎛

⎝f (x + λg) − f (x) − λ

n∑

j=1,j �=i

Γ i
j gj

⎞

⎠ .

It follows from Definition 2.12 that

f (x + λg) − f (x) = λΓ i (x, g, w, λ, α)T g (2.18)

for all g ∈ S1, w ∈ G, λ > 0, α > 0.
For any x ∈ R

n, g ∈ S1, i ∈ I(g), w ∈ G, λ > 0, and α > 0 we have

‖Γ i‖ ≤ C(n)L, where C(n) = (n2 + 2n3/2 − 2n1/2)1/2,

and L is a Lipschitz constant of the function f at x. Furthermore, the set

D(x, λ, α) = cl conv
{

v ∈ R
n : there exist g ∈ S1, w ∈ G

such that v = Γ i (x, g, w, λ, α)
}

is an approximation to the subdifferential ∂f (x) for a sufficiently small λ > 0 as
stated in the following Theorem [28]:

Theorem 2.22 Let f : Rn → R be a semismooth function at x. For λ > 0 and
g ∈ S1 define

o(λ, g) = f (x + λg) − f (x) − λf ′(x; g).

If λ−1o(λ, g) → 0 uniformly with respect to g ∈ S1 as λ ↓ 0, then for any ε > 0
there exists λ0 > 0, α0 ∈ (0, 1] such that

D(x, λ, α) ⊂ ∂f (x) + B(000; ε)

for all λ ∈ (0, λ0) and α ∈ (0, α0).

The previous theorem assumes only the semismoothness of the function f . As noted
above, the class of semismooth functions is fairly broad. Thus, discrete gradients can
be used to approximate subdifferentials of a broad class of nonsmooth functions.

2.6 Piecewise Partially Separable Functions 37

The discrete gradient is defined with respect to a given direction g ∈ S1. In
practice, we first define a sequence of points x0, . . . , xn (see (2.16)) and compute
the values of the function f at these points. This means that we need to compute
n + 2 values of f including the point x. The ith coordinate of the discrete gradient
is defined so that it satisfies the equality (2.18). This equality can be considered as
a version of the mean-value theorem (see Theorem 2.9).

We complete this section by giving the necessary optimality condition using the
set D(x, λ, α), and by showing that, if this condition is not satisfied, then the set
D(x, λ, α) can be used to compute descent directions (see Definition 2.11) for the
objective function.

Theorem 2.23 Let x∗ ∈ R
n be a local minimizer of the function f . Then there

exists λ0 > 0 such that for all λ ∈ (0, λ0) and for all α ∈ (0, 1]

000 ∈ D(x∗, λ, α).

Theorem 2.24 Let x ∈ R
n, λ > 0, α ∈ (0, 1], and 000 �∈ D(x, λ, α). In other words,

‖v0‖ = min
{
‖v‖ : v ∈ D(x, λ, α)

}
> 0.

Then, g0 = −‖v0‖−1v0 is a descent direction of the function f at x.

2.6 Piecewise Partially Separable Functions

Many practical problems involve nonsmooth functions with large number of
variables. The clustering problem is among such problems. Most of the large-scale
optimization problems have a special structure, which can be exploited to design
efficient algorithms. In this section, we discuss one of them: piecewise partial
separability of nonsmooth functions. In particular, we show how to calculate the
discrete gradient for a piecewise partially separable function. This information can
be utilized with the discrete gradient method to be described in Sect. 3.8.

2.6.1 Piecewise Partially Separable and Chained Functions

Let f be a scalar function defined on an open set X0 ⊆ R
n containing a closed set

X ⊆ R
n.

Definition 2.13 The function f : X0 → R is called partially separable if there
exists a family of n × n diagonal matrices Ul, l = 1, . . . , M such that the function
f can be represented as

38 2 Theory of Nonsmooth Optimization

f (x) =
M∑

l=1

fl(Ulx). (2.19)

If M = n and diag(Ul) = el where el is the lth column of the identity matrix, then
the function f is called separable.

Without loss of generality we assume that all entries of the matrices Ul are either 0
or 1. Although, any function f can be considered as a partially separable function
if we take M = 1 and U1 = I , where I is the identity matrix, we consider only
the cases where M > 1 and ml—the number of non-zero elements in the diagonal
of Ul—is much smaller than n, (l = 1, . . . ,M). In other terms, the function f is
called partially separable if it can be represented as the sum of functions of a much
smaller number of variables.

Definition 2.14 The function f is said to be piecewise (partially) separable if there
exists a finite family of closed sets X1, . . . ,Xm such that

m⋃

j=1

Xj = X ,

and the function f is (partially) separable on each set Xj , j = 1, . . . , m.

Simple examples of piecewise separable functions are piecewise linear functions
and the maximum function f (x) = max

h=1,...,n
x2
h. In addition, an interesting and impor-

tant subclass of partially separable functions is the so-called chained functions.

Definition 2.15 The function f is said to be k-chained, k ≤ n, if it can be
represented as

f (x) =
n−k+1∑

l=1

fl(xl, . . . , xl+k−1), x ∈ R
n.

For instance, if k = 2, the function f is

f (x) =
n−1∑

l=1

fl(xl, xl+1).

Definition 2.16 The function f is said to be piecewise k-chained if there exists a
finite family of closed sets X1, . . . ,Xm such that

m⋃

j=1

Xj = X ,

2.6 Piecewise Partially Separable Functions 39

and the function f is k-chained on each set Xj , j = 1, . . . , m.

The relationship between various chained and (piecewise) separable functions are
listed below [25]:

• a separable function is 1-chained;
• a piecewise separable function is piecewise 1-chained;
• any k-chained function is partially separable;
• any piecewise k-chained function is piecewise partially separable;
• all separable functions are piecewise separable with m = 1;
• all partially separable functions are piecewise partially separable with m = 1;

and
• any piecewise separable function is piecewise partially separable.

2.6.2 Properties of Piecewise Partially Separable Functions

Some interesting properties of piecewise partially separable functions are as follows
(see [25], for more details):

Theorem 2.25 (Scalar Multiplication, Sum, Max- and Min-Functions) Let g

and h be piecewise partially separable (piecewise k-chained, piecewise separable)
continuous functions on the closed set X . Then

(i) f (x) = αg(x), α ∈ R, is piecewise partially separable (piecewise k-chained,
piecewise separable);

(ii) f (x) = g(x) + h(x) is piecewise partially separable (piecewise k-chained,
piecewise separable); and

(iii) f (x) = max
{
g(x), h(x)

}
, f (x) = min

{
g(x), h(x)

}
, and f (x) = ∣

∣g(x)
∣
∣ are

piecewise partially separable (piecewise k-chained, piecewise separable).

Next, we describe briefly the Lipschitz continuity and the directional differen-
tiability of piecewise partially separable functions. Let the function f be partially
separable and functions fl, l = 1, . . . ,M in (2.19) be directionally differentiable.
Then, the function f is also directionally differentiable and

f ′(x; d) =
M∑

l=1

f ′
l (Ulx;Uld), x, d ∈ R

n. (2.20)

Let f be a continuous and piecewise partially separable function on the closed
convex set X ⊂ R

n. In addition, let each function fl be LLC on Xj , j =
1, . . . , m. Then the function f is also LLC on X and, therefore, also Clarke
subdifferentiable (see Definition 2.4). Nevertheless, in general, piecewise partially
separable functions are not subdifferentially regular (see Definition 2.6) and, thus,
computation of the subdifferential or even one subgradient of such functions may
not be an easy task.

40 2 Theory of Nonsmooth Optimization

2.6.3 Calculation of Discrete Gradients

As noted before, for a general nonsmooth function f we need to compute its values
at n+ 2 points in order to compute one discrete gradient (see Definition 2.12). Nev-
ertheless, for nonsmooth piecewise partially separable functions the computation of
discrete gradients can be significantly simplified.

Let us consider the function

f (x) =
M∑

l=1

max
j∈Jl

min
k∈Kj

fljk(x), (2.21)

where functions fljk, k ∈ Kj , j ∈ Jl , l = 1, . . . , M, are partially separable (see
Definition 2.13) and Kj ,Jl are non-empty finite index sets. This means that there
exists a family of n × n diagonal matrices Ut

ljk with t = 1, . . . , Mljk such that

fljk(x) =
Mljk∑

t=1

f t
ljk(U

t
ljkx), k ∈ Kj , j ∈ Jl , l = 1, . . . , M.

Here, functions f t
ljk are called term functions. By Definition 2.14, the function

f is piecewise partially separable. In addition, if all functions fljk are r-chained
(separable), then the function f is piecewise r-chained (piecewise separable) (see
Definitions 2.14 and 2.16).

The total number of term functions is

N0 =
M∑

l=1

∑

j∈Jl

∑

k∈Kj

Mljk,

which means that for one evaluation of the function f we have to compute term
functions N0 times. In addition, for each evaluation of the discrete gradient we need
to compute n + 2 times the function f . Therefore, the total number of computation
of term functions for one evaluation of the discrete gradient is

Nt = (n + 2)N0.

This number can be significantly decreased if one exploits the piecewise partial
separability of the function f . In order to compute the discrete gradient of f at a
point x ∈ R

n with respect to any direction g ∈ S1 (where as before S1 is the sphere
of the unit ball), we first define the sequence (cf. the equation (2.16))

x0, . . . , xi−1, xi+1, . . . , xn, i ∈ I(g),

2.7 DC Optimization 41

where I(g) is defined in (2.17). For all q ∈ {1, . . . , n}, q �= i, the point xq differs
from xq−1 by one coordinate only.

At the point xq, q ∈ {1, . . . , n}, q �= i, the function fljk can be calculated using
the simplified scheme

fljk(xq) =
∑

t∈Qq
ljk

f t
ljk(U

t
ljkxq) +

∑

t∈Q̄q
ljk

f t
ljk(U

t
ljkxq−1), (2.22)

where

Qq
ljk =

{
t ∈ {1, . . . ,Mljk} : (Ut

ljk)qq = 1
}
, and

Q̄q
ljk =

{
t ∈ {1, . . . ,Mljk} : (Ut

ljk)qq = 0
}
.

This means that we compute only functions f t
ljk, t ∈ Qq

ljk at the point xq and all

other functions remain the same as at the point xq−1. Thus, in order to calculate the
function f at the point xq , the term functions need to be computed only

Ns =
M∑

l=1

∑

j∈Jl

∑

k∈Kj

|Qq
ljk|

times at this point. Since Mljk = |Qq
ljk| + |Q̄q

ljk| and usually |Qq
ljk| � |Q̄q

ljk|,
we can expect that Ns � N0. For example, if all functions fljk are r-chained, then
|Qq

ljk| ≤ r and |Q̄q
ljk| ≥ n−r−1 and, if the functions are separable, then |Qq

ljk| = 1

and |Q̄q
ljk| = n − 1.

Now, to compute a discrete gradient at the point x ∈ R
n with respect to the

direction g ∈ S1 we need to compute the function f at the points x and x + λg
using the formula (2.21). At all the other points xq, q = 1, . . . , n we can use
the simplified scheme (2.22). Therefore, the total number of computation of term
functions is

Nts = 2N0 + nNs,

which is significantly less than Nt when n is large.

2.7 DC Optimization

In this section, we consider a broad subclass of nonconvex NSO: the DC problems.
This type of problems frequently arise in practical applications. Notably, the
clustering problem can be represented as a nonsmooth DC problem (see Sect. 4.4).

42 2 Theory of Nonsmooth Optimization

A function f : R
n → R is called a DC function, if there exist two convex

functions f1, f2 : Rn → R such that

f (x) = f1(x) − f2(x).

Here, the functions f1 and f2 are called DC components and the difference f1 − f2
is a DC decomposition of f . DC functions, defined on R

n, are always LLC and
they may be nonsmooth. Particularly, if f is nonsmooth then at least one of the DC
components is also nonsmooth. In addition, DC functions are typically nonconvex.
Nevertheless, DC functions have the structure that can be used to separate the convex
(f1) and the concave (−f2) behavior of the function f .

DC functions preserve the DC structure under some simple operations frequently
used in optimization [284]:

Theorem 2.26 Assume that f i = f i
1 − f i

2 , i ∈ I, where I = {i : i = 1, . . . , m}
are DC functions. Then

(i) g(x) = ∑

i∈I
cif

i(x) is a DC function with any ci ∈ R;

(ii) g(x) = ∏

i∈I
f i(x) and h(x) = f1(x)/f2(x), f2(x) �≡ 0 are DC functions;

(iii) g(x) = ∣∣f i(x)
∣
∣ is a DC function for i ∈ I;

(iv) g(x) = min
{
f i(x) : i ∈ I

}
is a DC function. One of its DC decomposition

g = g1 − g2 is given by

g1(x) =
∑

i∈I
f i

1 (x), and

g2(x) = max
i∈I

⎧
⎨

⎩
f i

2 (x) +
∑

j∈I, j �=i

f
j

1 (x)

⎫
⎬

⎭
;

(v) h(x) = max
{
f i(x) : i ∈ I

}
is a DC function. One of its DC decomposition

h = h1 − h2 is given by

h1(x) = max
i∈I

⎧
⎨

⎩
f i

1 (x) +
∑

j∈I, j �=i

f
j

2 (x)

⎫
⎬

⎭
, and

h2(x) =
∑

i∈I
f i

2 (x).

Note that the DC representation of a function is not unique: from one DC
representation we can easily construct new ones by adding any convex function
to both DC components f1 and f2.

The class of DC functions is very broad: any convex or concave function as well
as every twice continuously differentiable function is a DC function. In addition, as

2.7 DC Optimization 43

shown above simple operations can be used to obtain more complex DC structures
from simple ones. Finally, every continuous function can be approximated by a DC
function with any given precision [284].

An unconstrained DC optimization problem is formulated as

{
minimize f (x) = f1(x) − f2(x)

subject to x ∈ R
n.

(2.23)

Next, we present necessary conditions for local optimality of this problem.

Theorem 2.27 Let f1 and f2 be convex functions. If x∗ ∈ R
n is a local minimizer

of f = f1 − f2, then

∂f2(x∗) ⊆ ∂f1(x∗), (2.24)

000 ∈ ∂f (x∗), and (2.25)

∂f1(x∗) ∩ ∂f2(x∗) �= ∅. (2.26)

Points satisfying (2.24) are called inf-stationary. This condition guarantees local
optimality of x∗ if f2 is a polyhedral convex function of the form

f2(x) = max
i=1,...,m

{
cT
i x − bi

}
,

where ci ∈ R
n and bi ∈ R. Nevertheless, the condition (2.24) is hard to be verified in

practice since we usually do not know the whole subdifferentials of DC components
f1 and f2.

Points satisfying (2.25) are called Clarke stationary (see Definition 2.10). This
condition is often utilized in general nonconvex NSO. However, DC functions are
not, in general, subdifferentially regular (see Definition 2.6). This means that for the
subdifferential of f we have

∂f (x∗) ⊆ ∂f1(x∗) − ∂f2(x∗), (2.27)

and therefore, the Clarke stationarity, in general, is difficult to verify using only
values and subgradients of DC components.

The condition (2.26) is called criticality, and the points satisfying this condition
are called critical points. The condition (2.26) is a relaxation of inf-stationarity, and
it is the most commonly used optimality condition in DC optimization due to the
fact that it can be easily verified. However, the major drawback is that a critical
point needs not to be a local optimum or even a saddle point of the problem (2.23)
[114, 161].

There exist interesting relationships between the optimality conditions (2.24),
(2.25) and (2.26) (see [114]): inf-stationarity always implies Clarke stationarity and
a Clarke stationarity point is always a critical point. Nevertheless, the opposite is

44 2 Theory of Nonsmooth Optimization

true only under some additional assumptions. For example, if the function f2 is
differentiable at a critical point x∗ ∈ R

n, then we have

∂f2(x∗) = {∇f2(x∗)
} ⊆ ∂f1(x∗), and

000 ∈ ∂f (x∗) = ∂f1(x∗) − ∂f2(x∗),

indicating also the inf-stationarity and Clarke stationarity of the point x∗. If only the
first DC component f1 is differentiable at a critical point x∗ ∈ R

n, then the equality
holds in (2.27) and we get

000 ∈ ∂f (x∗) = ∂f1(x∗) − ∂f2(x∗) = {∇f1(x∗)
}− ∂f2(x∗),

which means that the Clarke stationarity is achieved. However, ∂f2(x∗) may contain
more than one subgradient and cannot be a subset of ∂f1(x∗) = {∇f1(x∗)

}
. In this

case, the point x∗ is not inf-stationary. The relationships between the sets of different
stationary points are summarized in Fig. 2.9.

We complete this section by noting that a DC function f = f1 − f2 is
quasidifferentiable and its quasidifferential at a point x ∈ R

n is

Df (x) = [∂f1(x),−∂f2(x)
]
.

It is easy to notice that for unconstrained DC optimization problems the inf-
stationarity follows from the necessary optimality condition using the quasidiffer-
ential (see Theorem 2.20).

Fig. 2.9 Relationships between sets of different stationary points

2.8 Smoothing of Nonsmooth Functions 45

2.8 Smoothing of Nonsmooth Functions

Smoothing techniques have been used in NSO since 1970s. The use of such
techniques allows one to apply powerful smooth optimization algorithms for solving
NSO problems. Most smoothing techniques can only be applied when the objective
and/or constraint functions have some specific structures: for instance, functions
represented as

• a maximum of the finite number of smooth functions;
• a minimum of the finite number of smooth functions;
• a maximum of minimum of the finite number of smooth functions; and
• a sum of maxima of minima of the finite number of smooth functions.

There are also some smoothing methods which do not require such structures. For
instance, the smoothing method introduced in [227] is applicable to general convex
functions and the so-called Steklov smoothing method (see for example, [98]) can
be applied to any LLC function. However, the computation of smoothing function
in this method is very time-consuming.

Since the objective functions in the clustering problems are represented as a sum
of maxima of minima of simple smooth functions and, consequently, have a specific
structure we apply smoothing techniques to exploit such a structure. In this section,
first we study smoothing of functions represented as a maximum of the finite number
of continuously differentiable functions. More specifically, we consider the finite
minimax problem

{
minimize f (x)

subject to x ∈ R
n,

(2.28)

where

f (x) = max
i∈I

fi(x), (2.29)

and the functions fi, i ∈ I are smooth. Note that this type of problems are fre-
quently encountered in practical applications. By Definition 2.6 and Theorem 2.14
the objective function f in the problem (2.28) is subdifferentially regular and its
subdifferential at a point x ∈ R

n can be expressed as

∂f (x) = conv
{∇fi(x) : i ∈ I(x)

}
,

where I(x) = {i ∈ I : fi(x) = f (x)
}
.

Smoothing techniques, without loss of generality, can be divided into two classes:
local and global smoothing techniques. Local smoothing techniques try to smooth
the objective function f given in (2.28) in some neighborhood of the so-called kink
points (points where the function is not differentiable). Such techniques have been
considered, for example, in [38, 307, 310].

46 2 Theory of Nonsmooth Optimization

Smoothing techniques from the second class approximate the objective function
f globally, that is, in the whole domain of the function. This class includes, in
particular, the exponential [302, 305] and the hyperbolic smoothing [30, 299–301]
techniques.

We will concentrate on the hyperbolic smoothing technique and will start by
introducing it for a simple maximum function. In order to apply this technique to
more general minimax problems (2.28), we reformulate the objective function (2.29)
in the minimax problem and establish the relationship between the original minimax
and the reformulated problems. We describe the main properties of the hyperbolic
smoothing function. Based on these properties, an algorithm—a hyperbolic smooth-
ing method—for solving the finite minimax problem (2.28) is given in Sect. 3.9 and
the method is applied to design a clustering algorithm in Sect. 8.6.

2.8.1 Hyperbolic Smoothing of a Simple Maximum Function

We start with the definition of the hyperbolic smoothing function [299–301]. Let us
first consider the following simple maximum function:

ϕ(x) = max{0, x}, x ∈ R. (2.30)

The hyperbolic smoothing function approximating the function (2.30) is defined as

φτ (x) = x + √
x2 + τ 2

2
. (2.31)

Here, τ > 0 is called a precision or smoothing parameter. The function φτ is an
increasing convex C∞-function and

ϕ(x) < φτ (x) ≤ ϕ(x) + τ

2

for all τ > 0 and x ∈ R. The hyperbolic function for smoothing the function (2.30)
is illustrated in Fig. 2.10, where the blue curve shows the smoothing function.

2.8.2 Reformulation of Minimax Problem

In order to apply the hyperbolic smoothing (2.31) to the finite maximum func-
tion (2.29), we represent it as a sum of the maximum of two functions by adding a
new auxiliary variable t ∈ R. Consider the function

F(x, t) = t +
∑

i∈I
max

{
0, fi(x) − t

}
. (2.32)

2.8 Smoothing of Nonsmooth Functions 47

-3.0 -2.0 -1.0 1.0 2.0 3.0

-1.0

1.0

2.0

Fig. 2.10 Hyperbolic smoothing of the function (2.30)

It is clear that f (x) = F
(
x, f (x)

)
. In addition, we have

f (x) = min
t∈R F(x, t).

Let us denote by

Ψi(x, t) = max
{
0, fi(x) − t

}
, i ∈ I.

For a given point (x, t) ∈ R
n+1, the index set I can be represented as

I = I1 ∪ I2 ∪ I3,

where

I1 ≡ I1(x, t) = {i ∈ I : fi(x) − t < 0
}
,

I2 ≡ I2(x, t) = {i ∈ I : fi(x) − t = 0
}
, and

I3 ≡ I3(x, t) = {i ∈ I : fi(x) − t > 0
}
.

Since functions fi, i ∈ I are smooth it follows from Theorem 2.14 that functions
Ψi are subdifferentially regular, and the subdifferential ∂Ψi(x, t), (x, t) ∈ R

n+1 is
given by

∂Ψi(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

000n+1, if i ∈ I1,

conv
{
000n+1, (∇fi(x),−1)

}
, if i ∈ I2,

{
(∇fi(x),−1)

}
, if i ∈ I3,

48 2 Theory of Nonsmooth Optimization

where 000n+1 is used to denote (n + 1)-dimensional vector of zeros. In addition,
applying Theorem 2.8 the subdifferential of the function F at the point (x, t) can
be expressed as

∂F (x, t) = {(000n, 1)
}+

∑

i∈I1

000n+1

+
∑

i∈I2

conv
{
000n+1, (∇fi(x),−1)

}+
∑

i∈I3

{
(∇fi(x),−1)

}
.

The following propositions establish the relationship between functions f and
F . Their proofs can be found in [30].

Proposition 2.1 (Stationary Points) Assume that

(i) a point x∗ ∈ R
n is a stationary point of f . Then (x∗, t∗) ∈ R

n+1 is a stationary
point of the function F where t∗ = f (x∗); and

(ii) a point (x∗, t∗) ∈ R
n+1 is a stationary point of the function F . Then x∗ ∈ R

n

is a stationary point of f .

Proposition 2.2 (Local Minimizer) Assume that

(i) a point x∗ ∈ R
n is a local minimizer of f . Then (x∗, t∗) ∈ R

n+1 is a local
minimizer of the function F where t∗ = f (x∗); and

(ii) a point (x∗, t∗) ∈ R
n+1 is a local minimizer of the function F . Then x∗ ∈ R

n is
a local minimizer of f .

In addition, the values of global minima of functions f and F are equal [307].

2.8.3 Hyperbolic Smoothing of the Maximum Function

Applying (2.31), we obtain the following hyperbolic smoothing of the func-
tion (2.32):

Φτ (x, t) = t + 1

2

∑

i∈I

(
fi(x) − t +

√
(fi(x) − t)2 + τ 2

)
, τ > 0. (2.33)

Obviously, Φτ (x, t) is smooth and for any x ∈ R
n, t ∈ R, and τ > 0 we have

0 < Φτ (x, t) − F(x, t) ≤ mτ

2
.

The gradient of the function Φτ is given by

∇Φτ (x, t) = (G1
τ (x, t),G2

τ (x, t)
)
,

2.8 Smoothing of Nonsmooth Functions 49

where

G1
τ (x, t) = 1

2

∑

i∈I

(
1 + βiτ (x, t)

)
∇fi(x),

G2
τ (x, t) = 1 − 1

2
|I| − 1

2

∑

i∈I
βiτ (x, t), and

βiτ (x, t) = fi(x) − t
√

(fi(x) − t)2 + τ 2
.

Proposition 2.3 Assume that

v = lim
τ→0

∇Φτ (x, t).

Then v ∈ ∂F (x, t).

Proposition 2.4 Assume that sequences {xh}, {th} and {τh} are given such that
xh ∈ R

n, th ∈ R, th ≥ f (xh) and τh > 0, h = 1, 2, In addition, assume that
xh → x, th → t, τh → 0 as h → ∞ and

v = lim
h→∞ ∇Φτh

(xh, th).

Then v ∈ ∂F (x, t).

Proposition 2.5 Suppose that functions fi, i ∈ I are smooth and their gradients
∇fi are LLC. Then the gradient ∇Φτ is also LLC for any given τ > 0.

2.8.4 Hyperbolic Smoothing of the Minimum Function

Hyperbolic smoothing for minimum functions can be defined similarly to that for
maximum functions. For the function

ϕ̄(x) = min{0, x}, x ∈ R,

we have

ϕ̄(x) = − max{0,−x},

and therefore, the hyperbolic smoothing function φ̄τ for ϕ̄ is given by

φ̄τ (x) = x − √
x2 + τ 2

2
. (2.34)

50 2 Theory of Nonsmooth Optimization

Now consider the minimum function

f̄ (x) = min
j∈J

f̄j (x), J = {1, . . . , q},

where functions f̄j , j ∈ J are smooth. Then

f̄ (x) = − max
j∈J

(− f̄j (x)
)
.

Applying (2.31) we define the hyperbolic smoothing function Φ̄τ with τ > 0 for
the function f̄ as

Φ̄τ (x, t) = t + 1

2

∑

j∈J

(
f̄j (x) − t −

√
(f̄j (x) − t)2 + τ 2

)
.

Chapter 3
Nonsmooth Optimization Methods

3.1 Introduction

Consider the following unconstrained minimization problem

{
minimize f (x)

subject to x ∈ R
n.

(3.1)

Here, the objective function f : Rn → R is, in general, LLC. The basic scheme of
various iterative (smooth) optimization algorithms for solving the problem (3.1) is
given in Fig. 3.1. For example, the well-known steepest descent method for smooth
optimization finds the descent direction by using the formula

dh = −∇f (xh),

(h is the iteration counter) and the step size th by minimizing the function f (xh +
tdh) subject to t > 0. In addition, the steepest descent method—as well as several
other smooth optimization methods—terminates when the norm ‖∇f (xh)‖ of the
gradient of the objective is small enough.

All this works fine as long as the objective function is continuously differentiable.
However, in many practical applications, including clustering problems, we can
only assume that the objective function f : Rn → R is LLC: it is not necessarily
differentiable nor convex. Moreover, in practical applications, we do not usually
know the whole subdifferential ∂f (x) of the nonsmooth function but only one
arbitrary element ξ ∈ ∂f (x). These facts may cause difficulties in almost all steps
of an iterative algorithm as listed below.

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_3

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_3

52 3 Nonsmooth Optimization Methods

Fig. 3.1 Basic iterative algorithm

• Finding a descent direction and step sizes: for a smooth function a descent direc-
tion can be obtained as the opposite direction of the gradient ∇f (x). However,
for a nonsmooth function the gradient does not exist at every point and, as already
noted, its generalization, the subdifferential ∂f (x), is normally not fully known.
On the other hand, a direction opposite to an arbitrary subgradient ξ ∈ ∂f (x)

does not need to be a descent direction. This also makes the computation of the
step size t challenging.

• Necessary optimality condition and a stopping criterion: for a smooth function
a necessary condition for a local minimum is that ∇f (x) = 0. By continuity the
norm ‖∇f (x)‖ becomes small when we are close to an optimal point providing
a good stopping criterion (i.e., ‖∇f (x)‖ < ε) for algorithms. For nonsmooth
functions the gradient usually does not exist at optimal points and the above
mentioned property is no longer true when we replace the gradient with an
arbitrary subgradient.

3.2 Subgradient Method 53

• Approximation of subgradients: in practical applications it is common to approx-
imate the gradient by finite difference estimates. However, this approach is valid
only for smooth functions, since for them we have f ′(x; d) = ∇f (x)T d. In
the nonsmooth case, the mapping x �→ ∂f (x) is not continuous and, thus, the
conventional finite difference estimates may give an element which does not
belong to the subdifferential.

• Numerical difficulties due to the nonsmoothness: the discontinuity of the mapping
x �→ ∂f (x) also means that a small variation on xh may cause large variation
on ∂f (xh). Therefore, an algorithm may perform very differently in different
platforms due to rounding errors that yield different sequences {xh}. This makes
the numerical comparison of different algorithms—or even the same algorithm
in different platforms—a very delicate task.

All these facts imply that careful theoretical bases and special tools are needed to
solve NSO problems.

In iterative optimization methods—whether the problem is smooth or
nonsmooth—we try to generate a sequence {xh} that converges to a minimum
point x∗ of the objective function, that is, xh → x∗ whenever h → ∞. If an
iterative method converges to a (local) minimum x∗ from any arbitrary starting
point x1, it is said to be globally convergent. If it converges to a (local) minimum in
some neighborhood of x∗, it is said to be locally convergent. It is worth of noting
that a globally convergent method does not necessarily attempt to find the global
minimum of the objective function.

Recall that the objective function f in the problem (3.1) is LLC. In addition,
unless said otherwise, we assume that at every point x both the value of the
objective f (x) and one arbitrary subgradient ξ from the subdifferential ∂f (x) can
be evaluated.

3.2 Subgradient Method

The idea behind the subgradient methods is to generalize the gradient method (e.g.,
the steepest descent method) by replacing the gradient with an arbitrary subgradient.
Therefore, the search direction in the standard subgradient method is given by

dh = −ξh,

where ξh is any subgradient from the subdifferential ∂f (xh). The subgradient
method uses the same search direction as the steepest descent method when the
objective function is continuously differentiable. In this case, the function f has
only one subgradient at any point xh which is the gradient vector ∇f (xh) itself.
However, for a nonsmooth objective we take an arbitrary subgradient from the
subdifferential (since the whole subdifferential is usually unknown) and that causes

54 3 Nonsmooth Optimization Methods

Fig. 3.2 Subgradient method

some challenges: first, a non-descent search direction may occur and, thus, the
standard line search operations cannot be applied.

One option is to select step sizes a priori. Various step size rules have been
developed (see, e.g., [46]). Due to possible non-descent search direction one
needs to keep track of the lowest (best) value f best

h = min{f best
h−1, fh} and the

corresponding point xbest
h obtained so far.

The norm of an arbitrary subgradient ‖ξh‖ need not to be small even if 000 ∈
∂f (xh) and, thus, there is no implementable subgradient based stopping criterion
in the subgradient method. Typically, the maximum number of iterations hmax is
chosen and the computation terminates when h > hmax. Figure 3.2 illustrates the
standard subgradient method.

The standard subgradient method is proved to be globally convergent if the
objective function is convex and step sizes satisfy

3.3 Proximal Bundle Method 55

th ≥ 0, lim
h→∞ th = 0 and

∞∑

j=1

tj = ∞.

Due to the simple structure and low storage requirements of subgradient methods,
they are widely used and are among popular methods of NSO. Nevertheless, the rate
of convergence of the standard subgradient method is not even linear. To overcome
this drawback the variable metric ideas were adopted to the subgradient context
in [267] by introducing two space dilation methods (the ellipsoid method and the r-
algorithm). In addition, two adaptive variable metric methods, differing in the step
size control, were derived in [285]. An extensive overview of various subgradient
methods can be found in [267].

3.3 Proximal Bundle Method

As noted in the previous section, the whole subdifferential of a nonsmooth objective
function usually is not possible to calculate and the use of a single arbitrary
subgradient may lead to difficulties in almost all steps of an iterative optimization
algorithm.

The basic idea behind various versions of bundle methods is to approximate the
whole subdifferential of the objective with a bundle of subgradients. In addition, a
null step is used if the current search direction is not “good enough.” This allows
us to obtain more information about the local behavior of the objective function
than if one uses a single arbitrary subgradient. Furthermore, the sequence {fh} is
non-increasing.

To date, bundle methods are regarded as the most effective and reliable methods
for NSO. In this section, we briefly introduce the most frequently used one—the
proximal bundle method (PBM). For more details on this method and various other
bundle methods, we refer, e.g., to [145, 169, 180, 206, 207, 258, 297]. The flowchart
of the simplified version of the PBM is given in Fig. 3.3.

As already mentioned, bundle methods approximate the subdifferential of the
objective. This is done by gathering subgradients from previous iterations into the
bundle. The subgradient information is used to construct a (convex) piecewise linear
local approximation, the so-called cutting-plane model, for the objective. Suppose
that at the hth iteration of the algorithm we have the current iteration point xh,
some auxiliary points yj ∈ R

n (from previous iterations), and the corresponding
subgradients ξ j ∈ ∂f (yj) for j ∈ Jh available. Here, the index set Jh is a non-
empty subset of {1, . . . , h}. We will discuss later on how to choose it. The cutting-
plane model is defined as

f̂h(x) = max
j∈Jh

{
f (yj) + ξT

j (x − yj)
}
.

56 3 Nonsmooth Optimization Methods

Fig. 3.3 Proximal bundle method

If f is convex, then the cutting-plane model f̂h underestimates f everywhere.
However, if f is nonconvex, then the cutting-plane model is not guaranteed to be an
underestimate of the objective even locally. The most common way to deal with this
challenge is to do some downward shifting to the model (see, e.g., [179, 207] and
the limited memory bundle method in the next section). More recently, the model
itself is designed to capture the nonconvex behavior of the objective function. This is
the case, for example, in the DC optimization methods to be described in Sects. 3.5
and 3.6.

3.3 Proximal Bundle Method 57

A descent direction for the cutting-plane model f̂h and, therefore, hopefully also
for the original objective f is determined by solving a quadratic programming
direction finding problem

dh = argmin
d∈Rn

{
f̂h(xh + d) + 1

2
uhdT d

}
. (3.2)

Here, the stabilizing term 1
2uhdT d guarantees the existence of the solution dh and

keeps the approximation local enough. The weighting parameter uh > 0 improves
the convergence rate and intends to accumulate second order information about the
curvature of f around xh.

Although the direction dh is a descent direction for the model f̂h, it is not
necessarily the descent direction for the objective f , or the decrease in function
values along this direction may not be sufficient. In order to determine the step size
along the search direction dh, we use the line search procedure. There exist several
line search procedures suitable for bundle methods. Here, we discuss one of them
that is used (with slight modifications) also for the limited memory bundle method to
be described in the next section. The flowchart of the procedure is given in Fig. 3.4.

Assume that εL ∈ (0, 1) and εR ∈ (εL, 1) are some fixed line search parameters.
We search for the two step sizes thR ∈ (0, 1] and thL ∈ [0, thR] such that exactly one of
the possibilities—a serious step or a null step—occurs. A necessary condition for a
serious step is to have

thL = thR > 0 and f (xh + thRdh) ≤ f (xh) + εLthRvh, (3.3)

where vh is the predicted amount of descent

vh = f̂h(xh + dh) − f (xh) < 0.

If the condition (3.3) is satisfied, we set xh+1 = yh+1 = xh + thRdh and we call this
step a serious step.

If the current search direction is not good enough, that is, the value of the
objective at the new auxiliary point yh+1 = xh + thRdh is not decreased enough,
the null step occurs. In this case, we have

thR > thL = 0 and − βh
h+1 + ξT

h+1dh ≥ εRvh, (3.4)

where ξh+1 ∈ ∂f (yh+1), and βh
j , j ∈ Jh, is the subgradient locality measure [193,

213] given by

βh
j = max

{
|f (xh) − f (yj) − ξT

j (xh − yj)| , γ ‖xh − yj‖2
}

(3.5)

58 3 Nonsmooth Optimization Methods

Fig. 3.4 Line search procedure

and γ ≥ 0. If the objective function is convex, we can set γ = 0 and the subgradient
locality measure reverts to the linearization error that is used to evaluate the
accuracy of the piecewise linear model. In the case of a null step, we set xh+1 = xh.

Having a null step means that there exists discontinuity in the gradient of f .
Then the requirement (3.4) ensures that xh and yh+1 lie on the opposite sides of
this discontinuity and the new subgradient ξh+1 ∈ ∂f (yh+1) forces a remarkable
modification to the next direction finding problem. Under the weak semismoothness
assumption (see the equation (2.6)) the line search procedure is guaranteed to find
the step sizes thL and thR such that exactly one of the two possibilities—a serious step
or a null step—occurs.

The PBM is terminated if

vh ≥ −ε,

where ε > 0 is a final accuracy tolerance supplied by the user.

3.4 Limited Memory Bundle Method 59

Next, we discuss how to update the weighting parameter uh and the index set Jh.
The minimal requirements for the weights uh > 0 are that they lie in a compact
interval and the condition uh+1 ≥ uh is valid at null steps. Therefore, the simplest
strategy for updating the weighting parameter uh is to keep it fixed. That is uh = ū

for some fixed ū. However, this choice may lead to some difficulties: if ū is very
large, we will have small |vh| and ‖dh‖ and, thus, almost all steps are serious but
with very small improvement to function values. On the other hand, if ū is very
small, we will have large |vh| and ‖dh‖ and every serious step is followed by many
null steps. To avoid these difficulties, the weight uh can be kept as a variable which
is updated when necessary. Different updating rules are given, for instance, in [180].

As mentioned at the beginning of this section, the index set Jh must be a non-
empty subset of {1, . . . , h}. Since, in practice, the choice Jh = {1, . . . , h} would
cause serious difficulties with storage and computations after a large number of
iterations, the size of the set has to be bounded. That is, we set |Jh| ≤ mξ , where
mξ is a predefined size of the bundle. Usually the index set Jh is chosen as follows:

Jh =
{{

1, . . . , h
}
, if h ≤ mξ ,

Jh−1 ∪ {h} \ {h − mξ

}
, if h > mξ .

The PBM is proved to be globally convergent under the weak semismoothness
assumption (see the Eq. (2.6)). Furthermore, if Jh �= {1, . . . , h}, the global
convergence of the method can be guaranteed by using the subgradient aggrega-
tion strategy, which accumulates information from previous iterations [179]. The
convergence rate of the PBM is linear for convex functions [248] and for piecewise
linear problems it achieves a finite convergence [258].

3.4 Limited Memory Bundle Method

There exist a vast variety of practical problems involving nonsmooth functions with
a large number of variables. Nevertheless, most NSO methods were designed to
solve only small- or medium sized problems. For instance, in the PBM explained
above, the computational demand often significantly increases even for relatively
small problems. One reason for this is that the PBM needs a relatively large bundle
(mξ ≈ n) and, therefore, the size of the quadratic programming direction finding
problem (3.2) increases as the number of variables increases.

The standard subgradient methods (Sect. 3.2) are applicable to solve large-scale
problems due to their low storage requirements. However, it is known that they
converge very slowly for such problems.

In this section, we consider the limited memory bundle method (LMBM) [131–
133, 168] for solving general, possibly nonconvex, large-scale NSO problems. The
method is a hybrid of the variable metric bundle method [203, 289] for small- and

60 3 Nonsmooth Optimization Methods

Fig. 3.5 Limited memory bundle method

medium sized NSO and the limited memory variable metric method (see e.g. [56])
for smooth large-scale optimization.

The flowchart of the LMBM is presented in Fig. 3.5. The LMBM is characterized
by the usage of null steps together with the aggregation of subgradients. Moreover,
the search direction is calculated by the limited memory variable metric approach
(the limited memory BFGS (L-BFGS) update after a serious step and the limited
memory SR1 (L-SR1) update, otherwise). Thus, the LMBM avoids solving the time-
consuming quadratic programming direction finding problem (3.2) appearing in
standard bundle methods as well as storing and manipulating large matrices as is the
case in the variable metric bundle methods. The usage of null steps gives sufficient
information about the nonsmooth objective whenever the current search direction

3.4 Limited Memory Bundle Method 61

is not good enough. In addition, unlike the standard subgradient methods it enables
non-increasing iterates. Finally, a simple aggregation of subgradients that uses only
three subgradients guarantees the convergence of the aggregate subgradients to zero
and makes it possible to evaluate a stopping criterion.

These improvements make the LMBM suitable for solving large-scale NSO
problems. Namely, the number of operations needed for the calculation of the
search direction and the aggregate values is only linearly dependent on the number
of variables while, for example, with the variable metric bundle method this
dependence is quadratic. In what follows, we describe different components of the
LMBM in more details.

The fundamental idea in the LMBM is to calculate the search direction using
the classical limited memory variable metric scheme dh = −Dh∇f (xh), where
Dh is the limited memory variable metric update that represents the approximation
of the inverse of the Hessian matrix. However, since for a nonsmooth objective f

the gradient ∇f (xh) does not need to exist, we use (an aggregate) subgradient ξ̃h

instead of the usual gradient. Therefore, the search direction is given by

dh = −Dhξ̃h. (3.6)

The role of the matrix Dh, which is not formed explicitly, is to accumulate
information about previous subgradients.

As noted in the previous sections, the search direction computed using an
arbitrary subgradient is not necessarily a descent one. This is true even if we
replace it with a little bit better approximation—an aggregate subgradient ξ̃h

(to be described later). Thus, similarly to the PBM we need to use the line search
procedure that is able to generate a null step if the current search direction is not
good enough. A new iteration point xh+1 and a new auxiliary point yh+1 are given as

xh+1 = xh + thLdh, and

yh+1 = xh + thRdh, forh ≥ 1

with y1 = x1, where thR ∈ (0, tmax] and thL ∈ [0, thR] are step sizes, and tmax > 1 is
the upper bound for the step size.

A necessary condition for a serious step to be taken is to have

thR = thL > 0 and f (yh+1) ≤ f (xh) − εLthRwh, (3.7)

where εL ∈ (0, 1/2) is a line search parameter, and wh > 0 represents the desirable
amount of descent of f at xh. If the condition (3.7) is satisfied, we set xh+1 = yh+1
and a serious step is taken. Otherwise, a null step occurs. In null steps, we have

thR > thL = 0 and − βh+1 + ξT
h+1dh ≥ −εRwh, (3.8)

62 3 Nonsmooth Optimization Methods

where εR ∈ (εL, 1/2) is a line search parameter, ξh+1 ∈ ∂f (yh+1), and βh+1 is the
subgradient locality measure (βh+1 = βh

h+1 in (3.5)). In this case, we set xh+1 = xh

but information about the objective function is increased since we store the auxiliary
point yh+1 and the corresponding auxiliary subgradient ξh+1 ∈ ∂f (yh+1), and we
use them to compute new aggregate values and the limited memory update matrix.

The LMBM uses the subgradient ξh ∈ ∂f (xh) after the serious step and the
aggregate subgradient ξ̃h after the null step to find search directions (i.e., we set
ξ̃h = ξh if the previous step was a serious step, see Fig. 3.5). The aggregation
procedure used in the LMBM differs significantly from that usually used in bundle
methods (see, e.g., [179]). In the LMBM, we use the procedure similar to the
variable metric bundle methods [289], where only three subgradients and two
locality measures are needed. We proceed by solving the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize ϕ(λ1, λ2, λ3)

subject to λi ≥ 0 for all i ∈ {1, 2, 3},
3∑

i=1
λi = 1,

where

ϕ(λ1, λ2, λ3) = [λ1ξm + λ2ξh+1 + λ3ξ̃h

]T
Dh

[
λ1ξm + λ2ξh+1 + λ3ξ̃h

]

+ 2
(
λ2βh+1 + λ3β̃h

)
. (3.9)

Here, ξm ∈ ∂f (xh) is the current subgradient (m denotes the index of the iteration
after the latest serious step, i.e., xh = xm), ξ̃h is the current aggregate subgradient
from the previous iteration, and as before ξh+1 ∈ ∂f (yh+1). In addition, βh+1 is
the current subgradient locality measure and β̃h is the current aggregate subgradient
locality measure (β̃1 = 0). The optimal values λh

i , i ∈ {1, 2, 3}, are easy to calculate
(see [289]).

The new aggregate subgradient ξ̃h+1 and the aggregate subgradient locality
measure β̃h+1 are computed as

ξ̃h+1 = λh
1ξm + λh

2ξh+1 + λh
3 ξ̃h and β̃h+1 = λh

2βh+1 + λh
3 β̃h. (3.10)

This simple aggregation procedure gives us a possibility to retain the global
convergence without solving the complicated quadratic programming direction
finding problem (3.2) appearing in standard bundle methods. Moreover, only one
trial point yh+1 and the corresponding subgradient ξh+1 ∈ ∂f (yh+1) need to be
stored instead of n+3 subgradients typically stored in bundle methods. Finally, it is
worth of noting that the aggregate values need to be computed only if the last step
was a null step. Otherwise, we set ξ̃h+1 = ξh+1 and β̃h+1 = 0 (see Fig. 3.5).

The idea in the limited memory matrix updating is that instead of storing and
manipulating large n × n matrices Dh, one stores a small number of the so-called

3.4 Limited Memory Bundle Method 63

correction vectors obtained at the previous iterations of the algorithm and uses these
vectors to implicitly define the variable metric matrices. In the smooth case, these
correction vectors are given by sh = xh+1 − xh and uh = ∇f (xh+1) − ∇f (xh). In
the LMBM, the correction vectors are slightly modified from those used for smooth
optimization: since we may have xh+1 = xh due to the usage of null steps we
use the auxiliary point yh+1 instead of xh+1 when updating sh. In addition, since
the gradient need not to exist for nonsmooth objective the correction vectors uh are
computed using subgradients, that is, the vectors are given by sh = yh+1 − xh and
uh = ξh+1 − ξm.

Let us denote by m̂c the user-specified maximum number of stored correction
vectors (3 ≤ m̂c) and by m̂h = min { h − 1, m̂c } the current number of stored
correction vectors. Then n × m̂h dimensional correction matrices Sh and Uh are
defined by

Sh = [sh−m̂h
. . . sh−1

]
and (3.11)

Uh = [uh−m̂h
. . . uh−1

]
.

The oldest correction vectors are deleted to make room for new ones when the
available storage space is used up. Thus, except for the first few iterations, we always
have the m̂c most recent correction pairs (si , ui) available.

In the LMBM, both the L-BFGS and the L-SR1 update formulas [56] are used
for the calculation of the search direction and the aggregate values. In the case of
a null step, the LMBM uses the L-SR1 update formula, since with this formula
it is possible to preserve the boundedness and some other properties of generated
matrices that are needed to guarantee the global convergence of the method. The
inverse L-SR1 update is defined by

Dh = ϑhI − (ϑhUh − Sh

)(
ϑhU

T
h Uh − Rh − RT

h + Ch

)−1(
ϑhUh − Sh

)T
,

where Rh is an upper triangular matrix of the order m̂h given by

(Rh)ij =
{

sT
h−m̂h−1+i

uh−m̂h−1+j , if i ≤ j,

0, otherwise.

The matrix Ch is diagonal with the order m̂h such that

Ch = diag
[
sT
h−m̂h

uh−m̂h
, . . . , sT

h−1uh−1
]
,

and ϑh is a positive scaling parameter.
Since these additional properties are not required after a serious step the more

efficient L-BFGS update is employed. The inverse L-BFGS update is defined by

64 3 Nonsmooth Optimization Methods

Dh = ϑhI + [Sh ϑhUh

] [(R−1
h)T Ch + ϑhU

T
h UhR

−1
h −(R−1

h)T

−R−1
h 0

] [
ST

h

ϑhU
T
h

]
.

The similar representations for the direct L-BFGS and L-SR1 updates can be given;
however, the implementation of the LMBM only needs the inverse update formulas.

Note that we never compute the matrix Dh, but only the product Dhv, where
v is equal to ξm, ξh+1, or ξ̃h. This way the number of operations needed for
the calculation of the search direction and the aggregate values is only linearly
dependent on the number of variables and we do not need to store large n × n

matrices.
The final task to be considered is to formulate the stopping criterion in the

algorithm. As noted before, the norm of an arbitrary subgradient does not need
to be small when we are close to an optimal point. In the LMBM, the aggregate
subgradient ξ̃h provides a better approximation than an arbitrary subgradient does,
however, still the direct test ‖ξ̃h‖ < ε, for some ε > 0, is too uncertain as a stopping

criterion. In the LMBM, the term ξ̃
T

h Dhξ̃h = −ξ̃
T

h dh and the aggregate subgradient
locality measure β̃h are used to improve the accuracy of the sole norm ‖ξ̃h‖.
Therefore, the LMBM uses the value

wh = −ξ̃
T

h dh + 2β̃h > 0 (3.12)

as a stopping parameter, and it stops if wh ≤ ε for some user specified ε > 0. In
addition, the parameter wh is used during the line search procedure to represent the
desirable amount of descent (see, Eq. (3.7)).

The LMBM is proved to be globally convergent for LLC objective functions
under the weak semismoothness assumption [133]. The basic schema of the
convergence proof is given in the next subsection.

3.4.1 Convergence of the LMBM

In this subsection, we recall some technical details of the convergence properties
of the LMBM. A more detailed description with the proofs of Lemmas is given in
[133]. The following assumptions are used in the proofs:

Assumption 3.1 The objective function f : Rn → R is LLC.

Assumption 3.2 The objective function f : Rn → R is weakly semismooth (see
Eq. (2.6)).

Assumption 3.3 The level set levf (x1) f = {
x ∈ R

n : f (x) ≤ f (x1)
}

is bounded
for any starting point x1 ∈ R

n.

The optimality condition 000 ∈ ∂f (x) is sufficient when f is convex. Since the
convexity of the function f is not assumed, we can only prove that the LMBM

3.4 Limited Memory Bundle Method 65

converges to a stationary point. In order to do this, we assume that the final accuracy
tolerance ε is equal to zero. The convergence proof of the LMBM can be divided
into the following three tasks:

• finite convergence of the line search procedure: we omit the proof, since it is true
for most bundle-type methods and consequently is not a specific property of the
LMBM;

• termination of the LMBM after a finite number of iterations: if the LMBM
terminates after a finite number of iterations, say at iteration h, then the point
xh is a Clarke stationary point of the objective; and

• infinite number of iterations: if the sequence {xh} generated by the LMBM is
infinite, then its every accumulation point x̄ is a Clarke stationary point of the
objective.

Proposition 3.1 Each execution of the line search procedure is finite.

Proof See [289]. ��
Remark 3.1 The sequence {xh}, generated by the LMBM, is bounded according
to Assumption 3.3. The monotonicity of the sequence {fh} follows from the
condition (3.7), being satisfied for serious steps and the fact that xh+1 = xh for null
steps. The sequence {yh} is also bounded, since xh+1 = yh+1 for serious steps and
‖yh+1 − xh+1‖ ≤ Ctmax for null steps with a predefined C > 0 (see [133] for more
details). The local boundedness and the upper semicontinuity of the subdifferential
imply the boundedness of subgradients ξh as well as their convex combinations.

Lemma 3.1 Suppose that the LMBM is not terminated before the hth iteration.
Then, there exist numbers λh,j ≥ 0 for j = 1, . . . , h and σ̃h ≥ 0 such that

(ξ̃h, σ̃h) =
h∑

j=1

λh,j
(
ξ j , ‖yj − xh‖

)
,

h∑

j=1

λh,j = 1 and β̃h ≥ γ σ̃ 2
h .

Lemma 3.2 Let x̄ ∈ R
n be given and suppose that there exist vectors ḡ, ξ̄ i , ȳi , and

numbers λ̄i ≥ 0 for i = 1, . . . , l, l ≥ 1, such that

(ḡ, 0) =
l∑

i=1

λ̄i

(
ξ̄ i , ‖ȳi − x̄‖),

ξ̄ i ∈ ∂f (ȳi), i = 1, . . . , l, and

l∑

i=1

λ̄i = 1. (3.13)

Then ḡ ∈ ∂f (x̄).

66 3 Nonsmooth Optimization Methods

Proposition 3.2 If the LMBM terminates at the hth iteration, then the point xh is
stationary for f .

Proof If the LMBM terminates, then the condition ε = 0 implies that wh = 0.
Thus, by (3.5), (3.10), (3.12), Lemma 3.1 and the fact that we initialize β̃h = 0
after serious steps, we have ξ̃h = 000 and β̃h = σ̃h = 0. Now, by Lemma 3.1 and by
applying Lemma 3.2 with

x̄ = xh, l = h, ḡ = ξ̃h, and

ξ̄ i = ξ i , ȳi = yi , λ̄i = λh,i for i ≤ h,

we obtain 000 = ξ̃h ∈ ∂f (xh) and, thus, xh is stationary for f . ��
From now on, we suppose that the LMBM does not terminate, that is, wh > 0

for all h.

Lemma 3.3 If there exist a point x̄ ∈ R
n and an infinite set H ⊂ {1, 2, . . .} such

that {xh}h∈H → x̄ and {wh}h∈H → 0, then 000 ∈ ∂f (x̄).

Lemma 3.4 Suppose that the number of serious steps is finite, and the last serious
step occurs at the iteration m − 1. Then there exists a number h∗ ≥ m, such that
wh+1 ≤ wh for all h ≥ h∗. In addition, we have wh → 0 as h → ∞.

Corollary 3.1 Suppose that the number of serious steps is finite and the last serious
step occurs at the iteration m − 1. Then, the point xm is Clarke stationary for f .

Proposition 3.3 Every accumulation point x̄ of the sequence {xh} generated by the
LMBM is stationary for f .

Proof Let x̄ be an accumulation point of {xh} and let H ⊂ {1, 2, . . .} be an
infinite set such that {xh}h∈H → x̄. Following Corollary 3.1, we can restrict our
consideration to the case where the number of serious steps (with thL > 0) is infinite.
By Proposition 3.1, the line search procedure is terminating. In the termination with
a serious step we have the condition (3.7) satisfied and either thL ≥ tmin for some
tmin ∈ (0, 1) or βk+1 > εAwh with εA ∈ (0, εR − εL) (for more details see [133]).
Denote by

H′ = {h : thL > 0, there existsi ∈ H, i ≤ h such thatxi = xh

}
.

Obviously, H′ is infinite and {xh}h∈H′ → x̄. The continuity of f implies that
{fh}h∈H′ → f (x̄) and, thus, fh ↓ f (x̄) by the monotonicity of the sequence {fh}
obtained by (3.7) and (3.8). Now, using the fact that thL ≥ 0 for all h ≥ 1, we obtain

0 ≤ εLthLwh ≤ fh − fh+1 → 0 for h ≥ 1. (3.14)

Thus, if the set H1 = {h ∈ H′ : thL ≥ tmin} is infinite, then {wh}h∈H1 → 0 and
{xh}h∈H1 → x̄ by (3.14) and, thus, by Lemma 3.3 we have 000 ∈ ∂f (x̄).

3.5 DC Diagonal Bundle Method 67

If the set H1 is finite, then the set H2 = {h ∈ H′ : βh+1 > εAwh} has to be
infinite. To the contrary, let us assume that

wh ≥ δ > 0 for all h ∈ H2.

From (3.14), we have {thL}h∈H2 → 0. In addition, we have

‖xh+1 − xh‖ ≤ CthL,

with a predefined C > 0 (see [133] for more details) for all h ≥ 1. Thus, we have

{‖xh+1 − xh‖
}
h∈H2

→ 0.

By (3.5), (3.14), the boundedness of {ξh}, and the fact that yh+1 = xh+1 for serious
steps, we obtain {βh+1}h∈H2 → 0, which is in contradiction with

εAδ ≤ εAwh < βh+1 forh ∈ H2.

Therefore, there exists an infinite set H3 ⊂ H2 such that

{wh}h∈H3 → 0 and {xh}h∈H3 → x̄.

Then, applying Lemma 3.3 we obtain that 000 ∈ ∂f (x̄). ��
Remark 3.2 If ε > 0, then the LMBM terminates in a finite number of steps.

3.5 DC Diagonal Bundle Method

NSO is traditionally based on convex analysis and the convergence of most
numerical methods is obtained under the convexity assumption. Usually, the convex
model of the objective is reasonably accurate also for nonconvex problems, except
regions in the domain where there exists the so-called concave behavior of the
objective function. In this case the linearization error, used as an accuracy measure
of the piecewise linear model, has negative values and the model is no longer an
underestimate of the objective. The common way to deal with this difficulty is to
do some downward shifting (e.g., to use the subgradient locality measures (3.5)
instead of linearization errors), but the amount of this shifting might be more or less
arbitrary.

This is the case also in the PBM and the LMBM described in the previous
sections. Nevertheless, whenever the structure of a problem is known this infor-
mation can be used to develop a better approach to handle nonconvexity. This is
true, in particular, when the objective function has a DC structure (see Sect. 2.7).
We recall that the function f : R

n → R is DC if it can be given in the form
f (x) = f1(x) − f2(x), where f1 and f2 are convex functions.

68 3 Nonsmooth Optimization Methods

In this section, we present the basic ideas of the DC diagonal bundle method
(DCD-BUNDLE) [167, 170]. Although the DCD-BUNDLE was originally developed
specifically for solving clustering problems that are given in the nonsmooth DC
formulation (see Sect. 4.4), it can be applied to solve any general DC optimization
problem where either f1 or f2 is smooth or we can compute the subgradient ξ ∈
∂f (x) at any x. Note that the last requirement is not always easy to meet since DC
functions, in general, are not subdifferentially regular (see Definition 2.6).

For simplicity, we now assume that the first DC component f1 is smooth. This
is the case, for instance, in the DC formulation of the clustering problem with
the squared Euclidean distance. Furthermore, we assume that at every point x
one can evaluate the values of the DC components f1 and f2 of the objective f ,
the gradient ∇f1(x) of the first component, and one arbitrary subgradient ξ2 from
the subdifferential ∂f2(x) of the second component. Due to the smoothness of f1
we have ∇f1(x) − ξ2 ∈ ∂f (x) for any ξ2 ∈ ∂f2(x). Figure 3.6 illustrates the DCD-
BUNDLE.

The DCD-BUNDLE combines the approach used to design the LMBM with the
sparse matrix updating and different usage of metrics depending on a convex or
concave behavior of the objective at the current iteration point. In addition, it utilizes
the explicit DC structure of the problem. The method shares the good properties of
the LMBM. More precisely, the time-consuming quadratic programming direction
finding problem (3.2) appearing in the standard bundle methods need not to be
solved nor the number of stored subgradients needs to grow with the dimension
of the problem. Furthermore, the method uses only a few vectors to represent the
diagonal variable metric approximation of the Hessian matrix and, thus, similar to
the LMBM it avoids storing and manipulating large matrices as is the case in the
variable metric bundle method [203, 289]. In addition, in many large-scale problems
the Hessian (if it exists) is sparse. Due to the diagonal variable metric update
formula, the DCD-BUNDLE can handle the large dimensionality and the sparsity
of the objective. The usage of different metrics in the DCD-BUNDLE gives us a
possibility to better deal with the nonconvexity of the problem than the downward
shifting using subgradient locality measures.

Similar to the LMBM, the DCD-BUNDLE uses at most m̂c in the recent correction
vectors to compute the updates for the matrices. These correction vectors are
given by

sh = yh+1 − xh,

u1,h = ∇f1(yh+1) − ∇f1(xh), and

u2,h = ξ2,h+1 − ξ2,m,

where xh is the current iteration point, yh+1 = xh + dh is a new auxiliary point
with dh, the current search direction, ξ2,h+1 ∈ ∂f2(yh+1), and ξ2,m ∈ ∂f2(xh). As
with the LMBM we may have xh+1 = xh due to the null steps and thus we use here
the auxiliary point yh+1 instead of xh+1. In addition, we compute the subgradient
differences separately for both DC components. For the smooth component f1,

3.5 DC Diagonal Bundle Method 69

Fig. 3.6 DC diagonal bundle method

we use the gradient vectors similar to smooth variable metric methods. Since the
second component f2 is nonsmooth the correction vectors u2 are computed using
subgradients. Therefore, instead of just two correction matrices Sh and Uh used
in the LMBM, we have three correction matrices

Sh = [sh−m̂h+1 . . . sh

]
,

U1,h = [u1,h−m̂h+1 . . . u1,h

]
, and

70 3 Nonsmooth Optimization Methods

U2,h = [u2,h−m̂h+1 . . . u2,h

]
,

where m̂h = min{h, m̂c}. We use these matrices to compute separate approxima-
tions to both f1 and f2.

The diagonal approximation of the Hessian Bl,h+1 (l = 1, 2) is defined by
solving the problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize
∥∥Bl,h+1Sh − Ul,h

∥∥2
F

subject to
(
Bl,h+1

)
ij

= 0, for i �= j,
(
Bl,h+1

)
ii

≥ μ, for i = 1, 2, . . . , n,

(3.15)

for some μ > 0, where ‖.‖F denotes the Frobenius norm of a matrix. Note that the
verification of the positive definiteness is added to the problem as a constraint. The
problem (3.15) has a solution

(
Bl,h+1

)
ii

=
{

bi/Qii, if bi/Qii > μ,

μ, otherwise,

where

b = 2
m̂h∑

i=h−m̂h+1

diag(si)ul,i and Q = 2
m̂h∑

i=h−m̂h+1

[
diag(si)

]2
,

with si ∈ S and ul,i ∈ Ul, l = 1, 2. In the DCD-BUNDLE, we use the inverse

of this matrix, that is, Dl,h = (
Bl,h

)−1. Note that in addition to the upper bound
μmax = 1

μ
, we use the lower bound μmin (0 < μmin < μmax) for the components of

the matrix. We call the approximations D1,h and D2,h the “convex approximation”
and the “concave approximation,” respectively.

The DCD-BUNDLE uses the above mentioned diagonal approximations to
compute a search direction. If the previous step was a serious step, we suppose
that the convex model of the function is good enough. In this case, we use directly
the “convex approximation” of the Hessian, the current subgradient of the objective
function and compute the search direction by the formula

dh = −D1,hξh,

where ξh = ∇f1(xh) − ξ2,h ∈ ∂f (xh) and ξ2,h ∈ ∂f2(xh). Otherwise, we use the
sign of the linearization error to detect the “convex” or “concave” behavior of the
objective. The linearization error αh+1 at a point yh+1 is defined by

αh+1 = f (xh) − f (yh+1) + (∇f1(yh+1) − ξ2,h+1
)T dh.

3.5 DC Diagonal Bundle Method 71

If αh+1 > 0, we still use the “convex approximation” of the Hessian, but instead of
an arbitrary subgradient ξh we use an aggregate subgradient ξ̃h. Thus, the search
direction is given by

dh = −D1,hξ̃h.

Finally, in the case of negative αh+1, we first compute the convex combination of
the “convex” and negative “concave” approximations such that the combination
still remains positive definite. Then we use this combination to compute the
search direction. In other words, we compute the smallest qh ∈ [0, 1] such that
qhD1,h − (1 − qh)D2,h is positive definite. Since D1,h and D2,h are both diagonal
matrices this value is very easy to compute. The search direction is computed by the
formula

dh = −(qhD1,h − (1 − qh)D2,h

)
ξ̃h. (3.16)

Next, we compute a new auxiliary point: yh+1 = xh+dh. Note that no line search
is used here (cf. the LMBM). A necessary condition for a serious step to be taken is
to have

f (yh+1) ≤ f (xh) − εLwh, (3.17)

where εL ∈ (0, 1/2) is a given descent parameter and wh > 0 represents the
desirable amount of descent of f at xh. If the condition (3.17) is satisfied, we set
xh+1 = yh+1 and a serious step is taken. In the case of a serious step we consider
the current “convex approximation” to be good enough and continue with this metric
even if the linearization error αh+1 was negative.

If the condition (3.17) is not satisfied, a null step occurs. In null steps, we search
for a scalar t ∈ (0, 1] such that ξ t

h+1 = ∇f1(xh + tdh) − ξ t
2,h+1, with ξ t

2,h+1 ∈
∂f2(xh + tdh), satisfies the condition (cf. (3.8))

−βh+1 + (ξ t
h+1)

T dh ≥ −εRwh. (3.18)

Here, εR ∈ (εL, 1/2) is a given parameter and βh+1 (with γ ≥ 0) is the subgradient
locality measure defined similar to bundle methods as

βh+1 = max
{
|f (xh) − f (xh + tdh) + t (ξ t

h+1)
T dh|, γ ‖tdh‖2

}
. (3.19)

It has been proved in [113] that t satisfying (3.19) always exists. For the simplicity,
we omitted computation of t in Fig. 3.6. In the case of a null step, we set xh+1 = xh.
Nevertheless, information about the objective is increased as we use the auxiliary
point yt

h+1 = xh + tdh and the corresponding auxiliary subgradient ξ t
h+1 ∈

∂f (yt
h+1) in the computation of next aggregate values. The aggregation procedure

and stopping criterion used in the DCD-BUNDLE are similar to those of the original

72 3 Nonsmooth Optimization Methods

LMBM (see the previous section) if we replace Dh by D1,h and ξ i by ∇f1(yi)−ξ t
2,i

(i = m,h + 1).
The DCD-BUNDLE finds the Clarke stationary point of the DC optimization

problem (2.23). If the function f2 is differentiable, then this point is also an inf-
stationary point (see Theorem 2.27 and Fig. 2.9). In addition, the inf-stationarity of
the solution can be obtained under a milder assumption:

Assumption 3.4 If the subdifferential ∂f2(x) is not a singleton at a point x ∈ R
n,

then we can always compute two subgradients ξ1
2, ξ

2
2 ∈ ∂f2(x) such that ξ1

2 �= ξ2
2.

This assumption is satisfied, for example, for the clustering problems (see Sect. 4.4).
Figure 3.7 illustrates an algorithm for finding inf-stationary points [36]. The

algorithm involves a special procedure to escape from the Clarke stationary point

Fig. 3.7 Algorithm for finding inf-stationary points

3.5 DC Diagonal Bundle Method 73

that is not inf-stationary. The algorithm can be used together with the DCD-BUNDLE

and the nonsmooth DC method (to be described in the next section).
Let us assume that x∗ is a Clarke stationary point. If the subdifferential ∂f2(x∗)

is a singleton, then x∗ is also an inf-stationary point. This follows from the fact that
at a Clarke stationary point we have

000 ∈ ∂f (x∗) = ∇f1(x∗) − ξ∗
2,

where ξ∗
2 is the only subgradient in ∂f2(x∗).

If ∂f2(x∗) ⊂ {∇f1(x∗)
} + B(000; ε) for some sufficiently small ε > 0, then the

point x∗ can be considered as an approximate inf-stationary point. Otherwise, if the
subdifferential ∂f2(x∗) is not a singleton at x∗, we can compute the subgradients
ξ1

2, ξ
2
2 ∈ ∂f2(x∗) such that ξ1

2 �= ξ2
2 and the direction u = −v/‖v‖, where

v = argmax
i=1,2

‖∇f1(x∗) − ξ i
2‖.

Then we have f ′(x∗; u) ≤ −‖v‖ and the direction u is a descent direction for the
objective. Therefore, we can use it to find a new starting point for the DCD-BUNDLE

or the nonsmooth DC method.

3.5.1 Convergence of the DCD-BUNDLE

In this subsection, we discuss briefly about the convergence properties of the DCD-
BUNDLE. More detailed proofs of Lemmas can be found in [170]. The following
assumptions are needed in the proofs.

Assumption 3.5 The objective function f = f1 − f2 is DC and f1 is smooth.

Assumption 3.6 The level set levf (x1) f is bounded for every starting point
x1 ∈ R

n.

Note that Assumption 3.6 is the same as Assumption 3.3 used in the LMBM.
Assumptions 3.1 and 3.2 are also valid here since a DC function is always LLC
and semismooth.

We first show that a point generated by the DCD-BUNDLE is a Clarke stationary
point of the DC optimization problem (2.23). In order to do so, we assume that
the optimality tolerance ε = 0. This part of the proof closely follows the ideas of
the convergence proof of the LMBM. Nevertheless, some results are easier to prove
for the DCD-BUNDLE due to the diagonal update formula and the lack of the line
search during serious steps. After that, we prove that the DCD-BUNDLE combined
with the algorithm for finding inf-stationary points terminates after a finite number
of iterations at an inf-stationary point.

74 3 Nonsmooth Optimization Methods

Remark 3.3 The sequence {xh} generated by the DCD-BUNDLE is bounded by
Assumption 3.6. The monotonicity of the sequence {fh} is obtained due to the
condition (3.17) being satisfied at serious steps and the fact that xh+1 = xh for
null steps. The matrices D1 and D2 are bounded since all their components are in a
closed interval [μmin, μmax]. Therefore, the search direction dh and the sequence
{yh} are also bounded. The boundedness of subgradients ξh and their convex
combinations follow from the local boundedness and the upper semicontinuity of
the subdifferential.

The next lemma and proposition are similar to Lemma 3.1 and Proposition 3.2,
respectively, given in the proof of the LMBM.

Lemma 3.5 Suppose that the DCD-BUNDLE is not terminated before the hth
iteration. Then, there exist numbers λh,j ≥ 0 for j = 1, . . . , h and σ̃h ≥ 0 such that

(ξ̃h, σ̃h) =
h∑

j=1

λh,j
(
ξ j , ‖yj − xh‖

)
,

h∑

j=1

λh,j = 1 and β̃h ≥ γ σ̃ 2
h .

Proposition 3.4 If the DCD-BUNDLE terminates at the hth iteration, then the point
xh is Clarke stationary for f .

Proof If the DCD-BUNDLE terminates, then the condition ε = 0 implies that wh =
0. Therefore, ξ̃h = 000 and by (3.10), (3.12), (3.19) we get β̃h = 0. Since we set
β̃h = 0 after serious steps by Lemma 3.5 we have σ̃h = 0. Applying Lemma 3.2
with

x̄ = xh, l = h, ḡ = ξ̃h, and

ξ̄ i = ξ i , ȳi = yi , λ̄i = λh,i for i ≤ h,

and using Lemma 3.5 we have 000 = ξ̃h ∈ ∂f (xh), meaning that xh is a Clarke
stationary point for f .

If the DCD-BUNDLE does not terminate, then wh > 0 for all h. The next lemma,
corollary, and proposition are similar, respectively, to Lemma 3.4, Corollary 3.1,
and Proposition 3.3 given in the proof of the LMBM. Nevertheless, due to the use
of the diagonal updates the limit with respect to h in Lemma 3.6 differs from that
in Lemma 3.4. In addition, since the DCD-BUNDLE does not use the line search at
serious steps the proof of Proposition 3.5 is simpler than that of Proposition 3.3.

Lemma 3.6 Suppose that the number of serious steps is finite and the last serious
step occurs at the iteration m − 1. Then wh+1 ≤ wh for all h > m. In addition,
wh → 0 as h → ∞.

Corollary 3.2 Suppose that the number of serious steps is finite and the last serious
step occurs at the iteration m − 1. Then, the point xm is Clarke stationary of the
function f .

Proposition 3.5 Every accumulation point of the sequence {xh} is Clarke station-
ary for f .

3.5 DC Diagonal Bundle Method 75

Proof Let x̄ be an accumulation point of the sequence {xh} and H ⊂ {1, 2, . . .} be
an infinite set such that {xh}h∈H → x̄. In view of Corollary 3.2, we can restrict our
consideration to the case where the number of serious steps is infinite. Denote by

H′ = {h : xh+1 = xh + dh and there existsi ∈ H, i ≤ h such thatxi = xh

}
.

It is clear that H′ is infinite and {xh}h∈H′ → x̄. The continuity of f implies that
{f (xh)}h∈H′ → f (x̄), and, therefore, f (xh) ↓ f (x̄) due to the monotonicity of
the sequence {f (xh)} according to the descent step condition (3.17). Using the
condition (3.17) and the fact that xh+1 = xh in null steps, we obtain

0 ≤ εLwh ≤ f (xh) − f (xh+1) → 0 for h ≥ 1. (3.20)

Thus, we have

{wh}h∈H′ → 0 and {xh}h∈H′ → x̄.

Then it follows from Lemma 3.3 that 000 ∈ ∂f (x̄). ��
Remark 3.4 If ε > 0, then the DCD-BUNDLE terminates after the finite number
of iterations. In addition, the proofs remain valid if f1 is nonsmooth convex and
f2 is smooth convex, or if both f1 and f2 are nonsmooth convex functions with a
condition that we can compute the subgradient ξ ∈ ∂f (x) at any x.

Now, we prove that the algorithm for finding inf-stationary points (see Fig. 3.7)
terminates after a finite number of iterations. In addition to Assumptions 3.4–3.6,
we need the next assumption.

Assumption 3.7 The gradient ∇f1 : R
n → R

n of the function f1 satisfies the
Lipschitz condition.

Proposition 3.6 Assume that the subdifferential ∂f2(x) is not a singleton at x and
the subgradients ξ1

2, ξ
2
2 ∈ ∂f2(x) are such that ξ1

2 �= ξ2
2. Consider the direction

u = −v/‖v‖ where

v = argmax
i=1,2

‖∇f1(x∗) − ξ i
2‖.

Then

f ′(x; u) ≤ −‖v‖.

Proof Since the subdifferential ∂f2(x) is not a singleton and ξ1
2 �= ξ2

2 it follows that
v �= 0. For simplicity, assume v = ∇f1(x) − ξ2

2. Then the convexity of functions f1
and f2 implies that

f ′(x; u) =f ′
1(x; u) − f ′

2(x; u)

76 3 Nonsmooth Optimization Methods

=(∇f1(x)
)T u − max

ξ2∈∂f2(x)
ξT

2 u

≤(∇f1(x) − ξ2
2

)T u

= − ‖∇f1(x) − ξ2
2‖ < 0.

Thus, the direction u is a descent direction at the point x. ��
Proposition 3.7 If at a Clarke stationary point x ∈ R

n of the problem (2.23) the
subdifferential ∂f2(x) is a singleton, then x is also an inf-stationary point.

Proof The proof follows from (3.22) and the definition of inf-stationary points. ��
Corollary 3.3 If at a Clarke stationary point x ∈ R

n of the problem (2.23) the
subdifferential ∂f2(x) is not a singleton, then x is not an inf-stationary point.

Proposition 3.8 Let ε > 0 be any given number. Then the algorithm for finding
inf-stationary points terminates after a finite number of iterations at an approximate
inf-stationary point x∗ of the problem (2.23) satisfying the condition

∂f2(x∗) ⊂ {∇f1(x∗)
}+ B(000; ε). (3.21)

Proof Assume that at the j th iteration we get the Clarke stationary point xj which
does not satisfy the condition (3.21). Then the subdifferential ∂f2(xj) is not a
singleton and, therefore, there exist subgradients ξ1

2, ξ2
2 ∈ ∂f2(xj) such that

ξ1
2 �= ξ2

2. For simplicity, assume that uj = −v/‖v‖ and v = ∇f1(xj) − ξ1
2, where

‖v‖ ≥ ε. Take any t > 0. The mean-value theorem (Theorem 2.9) implies that for
some σj ∈ (0, 1) we have

f (xj + tuj) − f (xj) = (f1(xj + tuj) − f1(xj)
)− (f2(xj + tuj) − f2(xj)

)

≤ t
(∇f1(xj + tσj uj

)T uj − t
(
ξ1

2

)T uj

≤ t
(∇f1(xj) − ξ1

2

)T uj

+ t
(∇f1(xj + tσj uj) − ∇f1(xj)

)T uj .

Let L > 0 be a Lipschitz constant of the gradient ∇f1. Then

‖∇f1(xj + tσj uj) − ∇f1(xj)‖ ≤ Ltσj‖uj‖ = Ltσj .

This means that

f (xj + tuj) − f (xj) ≤t
(∇f1(xj) − ξ1

2

)T uj + Lt2σj

= − t‖∇f1(xj) − ξ1
2‖ + Lt2σj

< t(−r + Lt),

3.6 Nonsmooth DC Method 77

where r = max
i=1,2

‖∇f1(xj) − ξ i
2‖. Since ‖v‖ ≥ ε it follows that r ≥ ε. Then for

t̄ = r/2L and for any εT ∈ (0, 1/2] we have

f (xj + t̄ ūj) − f (xj) < − r2

4L
≤ −εT t̄r ≤ −εT t̄ε.

This means that at each iteration we have tj ≥ t̄ ≥ ε/2L and the function f

decreases by at least εT ε2/2L > 0 at each iteration. By Assumption 3.6 the function
f is bounded from below. Thus, the algorithm for finding inf-stationary points must
stop after a finite number of iterations. ��

3.6 Nonsmooth DC Method

In this section, we introduce another algorithm, the nonsmooth DC method
(NDCM), for solving unconstrained NSO problems with the DC objective
function (2.23), where f1 is a smooth convex function and f2 is, in general, a
nonsmooth convex function. Similar to the DCD-BUNDLE given in the previous
section, the NDCM is originally developed as a part of the clustering algorithm [36].

The method uses the bundling idea in case of null steps, but it only bundles
gradients of the first component function f1. The subgradient of the second
component function f2 is kept fixed during the null steps. In what follows, we
assume that at every point x we can evaluate the values of the DC components
f1 and f2 of the objective f , the gradient ∇f1(x) of the first component, and one
arbitrary subgradient ξ2 from the subdifferential ∂f2(x) of the second component.
Due to the smoothness of f1 we have

∂f (x) = conv
{∇f1(x) − ξ2 : ξ2 ∈ ∂f2(x)

}
. (3.22)

Let us take any λ > 0 and define the following sets at a point x ∈ R
n:

Q1(x, λ) = conv
{∇f1(x + λg) : g ∈ S1

}
and

Q̃(x, λ, ξ2) = Q1(x, λ) − ξ2,

where ξ2 ∈ ∂f2(x) and S1 is the sphere of the unit ball.

Definition 3.1 A point x∗ ∈ R
n is called a (λ, δ)-inf-stationary of the prob-

lem (2.23) (with smooth f1) if and only if

∂f2(x∗) ⊂ Q1(x∗, λ) + B(000; δ). (3.23)

78 3 Nonsmooth Optimization Methods

Definition 3.2 A point x∗ ∈ R
n is called a (λ, δ)-stationary of the problem (2.23)

if there exists ξ2 ∈ ∂f2(x∗) such that

ξ2 ∈ Q1(x∗, λ) + B(000; δ). (3.24)

If a point x ∈ R
n is not a (λ, δ)-stationary point, then the set Q̃(x, λ, ξ2) can be

used to find a descent direction for the function f at x. However, the computation of
the entire set Q̃(x, λ, ξ2) is usually not possible. In the NDCM, we only use a finite
number of elements from this set to compute search directions.

The NDCM has both inner and outer iterations. In its turn, the inner iteration
consists of serious and null steps. We select sequences {δh} and {λh} such that
δh, λh ↓ 0 as h → ∞. In principle, any such sequences can be chosen in the
NDCM.

The outer iteration depends on the index h and in this iteration parameters δh and
λh are updated. The inner iteration depends on the index s. In the inner iteration, we
compute the search direction and we either update the solution or add a new element
to the set Q̄s

h ⊂ Q̃(xhs , λh, ξ2,hs
). In other words, we either take a serious step or a

null step occurs. Figure 3.8 illustrates the NDCM.
At the beginning of each inner iteration (i.e., s = 1), we first compute the

gradient ∇f1(xh1 +λhg) with respect to any initial direction g ∈ S1 and an arbitrary
subgradient ξ2,h1

∈ ∂f2(xh1). We set zh1 = ∇f1(xh1 + λhg) − ξ2,h1
, define the

initial bundle Q̄1
h = {zh1}, and compute the search direction dh1 by

dh1 = − zh1

‖zh1‖
.

In the following inner iterations (i.e., s > 1), we compute the vector

zhs = argmin
z∈Q̄s

h

‖z‖2,

and the search direction

dhs = − zhs

‖zhs ‖
.

Next, we check whether the direction dhs (s ≥ 1) is descent or not. If it is, we have

f (xhs + λhdhs) − f (x) ≤ −εLλh‖zhs ‖, (3.25)

with the given numbers εL ∈ (0, 1) and λh > 0. In this case, we compute the next
(inner) iteration point

xhs+1 = xhs + ths dhs ,

where the step size ths is defined as

3.6 Nonsmooth DC Method 79

Fig. 3.8 Nonsmooth DC method

ths = argmax
{
t ≥ 0 : f (xhs + tdhs) − f (xhs) ≤ −εRt‖zhs ‖

}
,

with a given εR ∈ (0, εL]. In the case of a serious step, we set

Q̄s+1
h = {∇f1(xhs+1 + λhg) − ξ2,hs+1

}
,

using any direction g ∈ S1 and continue to the next inner iteration with s = s + 1.

80 3 Nonsmooth Optimization Methods

Otherwise, a null step occurs. In this case, we compute a new gradient ∇f1(xhs +
λhdhs), update the set

Q̄s+1
h = conv

{
Q̄s

h ∪ {∇f1(xhs + λhdhs) − ξ2,hs
}
}
,

set xhs+1 = xhs , and continue the inner iterations with s = s + 1. Note that, at null
steps the subgradient ξ2,hs

remains unchanged (i.e., we set ξ2,hs+1
= ξ2,hs

).
The inner iteration stops if

‖zhs ‖ ≤ δh.

This condition means that for given values of δh and λh the last iteration xhs is a
(λh, δh)-stationary point. Therefore, this point is accepted as a new iteration xh+1
and the algorithm returns to the outer iteration to update the values of parameters
δh and λh. In its turn, the outer iteration stops if both δh < ε and λh < ε with a
given termination tolerance ε > 0. This stopping criterion means that the further
decrease of values of δh and λh will not significantly improve the solution xh. It has
been proved in [36]—and it will be shown in the next subsection—that this solution
is Clarke stationary.

Similar to the DCD-BUNDLE, we can use the special procedure given in Fig. 3.7
to escape from the Clarke stationary points which are not inf-stationary.

3.6.1 Convergence of the NDCM

In this subsection, we study the convergence properties of the NDCM. A more
detailed description with the proofs of Lemmas is given in [36]. The assumptions
needed are the same as with the DCD-BUNDLE:

Assumption 3.8 The objective function f = f1 − f2 is DC and f1 is smooth.

Assumption 3.9 The level set levf (x1) f is bounded for every starting point x1 ∈
R

n.

We start by recalling that if a point x is not a (λ, δ)-stationary, then the set
Q̃(x, λ, ξ2) can be used to find a descent direction. After that, we show that the
number of null steps in the NDCM is finite and, eventually, also the number of inner
iterations is finite. We conclude by proving that the NDCM converges to a Clarke
stationary point of the problem (2.23).

Proposition 3.9 Assume that the point x is not (λ, δ)-stationary. Then the direction

d̄ = − z̄
‖z̄‖ ,

3.6 Nonsmooth DC Method 81

where z̄ = argmin{‖z‖2 : z ∈ Q̃(x, λ, ξ2)} �= 000, is a descent direction of the function
f at x, and

f (x + λd̄) − f (x) ≤ −λ‖z̄‖.

Proof Since the point x is not (λ, δ)-stationary we have ‖ξ2 − z‖ ≥ δ for all ξ2 ∈
∂f2(x) and z ∈ Q1(x, λ). Therefore, ‖z̄‖ ≥ δ and

f (x + λd) − f (x) ≤ λ max
z∈Q̃(x,λ,ξ2)

zT d

for all d ∈ R
n. From the necessary condition for a minimum we have

z̄T (z − z̄) ≥ 0 for all z ∈ Q̃(x, λ, ξ2),

or equivalently

z̄T z ≥ ‖z̄‖2 for all z ∈ Q̃(x, λ, ξ2).

Dividing both sides by −‖z̄‖ we have zT d̄ ≤ −‖z̄‖ for all z ∈ Q̃(x, λ, ξ2), and the
proof follows. ��
Lemma 3.7 Let M ∈ (0,∞) be such that

max
{

max
{‖∇f1(x + λg)‖ : g ∈ S1

}
, max

{‖ξ2‖ : ξ2 ∈ ∂f2(x)
}} ≤ M.

Then there are at most s0 null steps in an inner iteration of the NDCM, where

s0 =
⌈ 4

(1 − εL)2

(M

δ

)4⌉
.

Here, ·� is a ceiling of a number and εL ∈ (0, 1).

Proposition 3.10 Assume that f ∗ = inf
{
f (x), x ∈ R

n
}

> −∞. For any λh, δh >

0, the NDCM finds (λh, δh)-stationary points using at most smax serious steps where

smax =
⌈f (xh1) − f ∗

εRλhδh

⌉
. (3.26)

Proof Assume the contrary, that is the sequence {xhs } is infinite and points xhs are
not (λh, δh)-stationary for any s = 1, 2, This means that ‖zhs ‖ > δh for all
s = 1, 2, Since εR ≤ εL it follows from (3.25) that the step size ths ≥ λh for
any s > 0. Then we have

f (xhs+1) − f (xhs) ≤ −εRλhδh,

82 3 Nonsmooth Optimization Methods

and, therefore, we get

f (xhs+1) − f (xh1) ≤ −εRsλhδh.

This means that f (xhs) → −∞ as s → ∞, which contradicts Assumption 3.9.
Since f ∗ ≤ f (xhs+1) it is obvious that the maximum number of iterations smax is
given by (3.26). ��
Proposition 3.11 Assume that ε = 0. Then all accumulation points of the sequence
{xh} generated by the NDCM are Clarke stationary points of the problem (2.23).

Proof Since the NDCM is a descent algorithm the sequence {xh} belongs to the
level set levf (x1) f . In addition, since levf (x1) f is compact this sequence has at
least one accumulation point. Assume that x̄ is an accumulation point of {xh} and
there exists the subsequence {xhj

} such that xhj
→ x̄ as j → ∞. After each outer

iteration hj , we obtain a (λhj
, δhj

)-stationary point xhj +1 which means that there
exists ξ2,hj +1 ∈ ∂f2(xhj +1) such that

ξ2,hj +1 ∈ Q1(xhj +1, λhj
) + B(000; δhj

).

Replacing hj by hj − 1 we have

ξ2,hj
∈ Q1(xhj

, λhj −1) + B(000; δhj −1). (3.27)

By continuity of the gradient ∇f1(x) we have that for any γ > 0 there exists an
index j0 > 0 such that

‖∇f1(xhj
+ λhj −1g) − ∇f1(x̄)‖ < γ

for all j > j0 and g ∈ S1. This means that for all j > j0 we have

Q1(xhj
, λhj −1) ⊂ {∇f1(x̄)

}+ B(000; γ), (3.28)

and from (3.27) and (3.28) we get

ξ2,hj
∈ ∇f1(x̄) + B(000; γ + δhj −1). (3.29)

The mapping x �→ ∂f2(x) is upper semicontinuous. Therefore, for any θ > 0 there
exists j̄ > 0 such that for all j > j̄ we have

ξ2,hj
∈ ∂f2(x̄) + B(000; θ).

Without loss of generality, assume that there exists ξ̄2 ∈ ∂f2(x̄) such that ‖ξ2,hj
−

ξ̄2‖ < θ for all j > j̄ . Then it follows from (3.29) that

3.7 DC Algorithm 83

‖∇f (x̄) − ξ̄2‖ < θ + γ + δhj −1 for all j > ĵ = max
{
j0, j̄

}
.

Since γ and θ are arbitrary and δh ↓ 0 as h → ∞ we have

ξ̄2 − ∇f1(x̄) = 0.

Thus, 000 ∈ ∂f (x̄) and x̄ is a Clarke stationary point. ��

3.7 DC Algorithm

In this section, we describe the well-known DC algorithm (DCA) for solving the
unconstrained DC programming problem (2.23). Note that unlike the previous
sections we now do not require differentiability of the first (or the second) DC
component. Nevertheless, if we assume that f2 is differentiable, then the DCA
reduces to the concave-convex procedure (CCCP, see, e.g., [274, 309]) frequently
used in machine learning applications.

In what follows, we denote by f ∗
i the conjugate of the function fi , i = 1, 2 as

f ∗
i (ξ) = sup

{
ξT x − fi(x) : x ∈ R

n
}
.

We describe the so-called simplified DCA. This method consists in the construction
of two sequences: {xh} and {ξh}, candidates to primal and dual solutions, respec-
tively. We take any starting point x1 ∈ R

n, set h = 1 and define

ξh ∈ ∂f2(xh) and xh+1 ∈ ∂f ∗
1 (ξh).

It is obvious that the point xh+1 is a solution to the problem

{
minimize f1(x) − ξT

2,hx

subject to x ∈ R
n,

(3.30)

which is equivalent to

{
minimize f1(x) − (f2(xh) + ξT

2,h(x − xh)
)

subject to x ∈ R
n.

This is a convex optimization problem whose objective function is obtained from
the DC objective by replacing the second DC component f2 with its affine
underestimation. Similarly, ξh ∈ ∂f2(xh) means that ξh is a solution to the convex
problem

84 3 Nonsmooth Optimization Methods

Fig. 3.9 DC algorithm

{
minimize f ∗

2 (ξ) − (f ∗
1 (ξh−1) + (ξ − ξh−1)

)T xh

subject to ξ ∈ R
n.

The sequences {xh} and {ξh} are well defined (see Lemma 1 in [183]).
Thus, the basic—and simplified—idea of the DCA is to linearize the concave part

−f2 around the current iterate xh by using the subgradient ξ2,h ∈ ∂f2(xh). Finding
the subgradient ξ2,h ∈ ∂f2(xh) is considered as a dual problem, while finding the
next iterate xh is considered as a primal problem. A detailed study of the DCA can
be found in [194, 195].

There are various implementations of the DCA, since the algorithm itself
does not specify which optimization method is used to solve the convex primal
problem (3.30). The simplified DCA scheme for solving the problem (2.23) is given
in Fig. 3.9.

If the first component function f1 is smooth, then one can apply powerful smooth
optimization methods to solve (3.30). Moreover, for smooth f1 we can easily check
whether the criticality is achieved by testing if ξ2,h = ∇f1(xh). Otherwise, the

3.7 DC Algorithm 85

DCA can be terminated, for instance, if f (xh+1) = f (xh) which means that ξ2,h ∈
∂f1(xh) ∩ ∂f2(xh) and the point xh is critical for the problem (2.23).

It is well known that accumulation points of the sequence {xh} generated by the
DCA are critical points of the problem (2.23). In the case of clustering problems
with the squared Euclidean distance, these points are also Clarke stationary since in
such problems the function f1 is smooth and the sets of critical points and Clarke
stationary points of the problem (2.23) coincide (see Fig. 2.9).

3.7.1 Convergence of the DCA

We recall the convergence properties of the simplified DCA for general uncon-
strained DC problems. Since the proof is very specialized we omit it by referring to
[194, 278] and give here only the main result without the proof.

Let

Δxh = xh+1 − xh and Δξ2,h = ξ2,h+1 − ξ2,h,

and for a convex function f define

ρ(f) = sup
{
ρ ≥ 0 : f − ρ

2
‖ · ‖2 is convex

}
. (3.31)

Assume that ρ(fi) and ρ(f ∗
i) are defined for the functions fi and f ∗

i , i = 1, 2 by
applying (3.31). Let ρi and ρ∗

i be such that

0 ≤ ρi < ρ(fi) and 0 ≤ ρ∗
i < ρ(f ∗

i), i = 1, 2.

Here, ρi = 0 if ρ(fi) = 0 and ρ∗
i = 0 if ρ(f ∗

i) = 0. Furthermore, ρi may take the
value ρ(fi) (respectively, ρ∗

i may take the value ρ(f ∗
i)) if it is attained (i = 1, 2).

The following assumptions are needed to prove the convergence of the simpli-
fied DCA.

Assumption 3.10 The functions f1 and f2 are proper lower semicontinuous
convex.

Assumption 3.11 The level set levf (x1) f is bounded for any starting point x1 ∈
R

n.

The next proposition states that the values of the objective function are decreasing
at every iteration of the DCA and the criticality of the solution is achieved when
f (xh+1) = f (xh).

Proposition 3.12 Assume that Assumptions 3.10 and 3.11 hold true and suppose
that the sequences {xh} and {ξ2,h} are generated by the simplified DCA. Then we
have

86 3 Nonsmooth Optimization Methods

f1(xh+1) − f2(xh+1) ≤ f ∗
2 (ξ2,h) − f ∗

1 (ξ2,h) − max
{ρ2

2
‖Δxh‖2,

ρ∗
2

2
‖Δξ2,h‖2

}

≤ f1(xh) − f2(xh) − max
{ρ1 + ρ2

2
‖Δxh‖2,

ρ∗
1

2
‖Δξ2,h−1‖2 + ρ2

2
‖Δxh‖2,

ρ∗
1

2
‖Δξ2,h−1‖2 + ρ∗

2

2
‖Δξ2,h‖2

}

for all h ≥ 1. The equality

f1(xh+1) − f2(xh+1) = f1(xh) − f2(xh)

holds if and only if

xh ∈ ∂f ∗
1 (ξ2,h), ξ2,h ∈ ∂f2(xh+1), and

(ρ1 + ρ2)Δxh = ρ∗
1Δξ2,h−1 = ρ∗

2Δξ2,h = 0.

In this case, we have

f1(xh+1) − f2(xh+1) = f ∗
2 (ξ2,h) − f ∗

1 (ξ2,h),

and xh+1, xh are critical points of the problem (2.23).

3.8 Discrete Gradient Method

In most NSO algorithms it is assumed that the value of the objective function and
its one subgradient can be computed at any point. However, in some practical
applications it is not possible—or it may be very time-consuming—to compute
subgradients. In principle, derivative free methods can be applied to solve NSO
problems. For example, the generalized pattern search methods are well suited
for NSO [15, 281]. However, their convergence is proved under some restrictive
differentiability assumptions, which are not satisfied in many important practical
problems. Particularly, the objective functions are often not strictly differentiable at
their local minimizers.

In this section, we describe the discrete gradient method (DGM) [28] which
can be considered as a semi-derivative free method for solving nonsmooth and, in
general, nonconvex optimization problems. The DGM does not use subgradients—
even not approximation of them—except final iterations of the solution process (i.e.,
near the optimal point).

3.8 Discrete Gradient Method 87

The idea of the DGM is to hybridize derivative free methods with bundle
methods. In contrast with bundle methods, which require the computation of a single
subgradient of the objective function at each auxiliary point, the DGM computes
discrete gradients (see Definition 2.12) using function values only. As noted in
Sect. 2.5, discrete gradients can be used to approximate subdifferentials of a broad
class of nonsmooth functions. In addition, in the case of a piecewise partially
separable objective function, discrete gradients can be computed very efficiently
as shown in Sect. 2.6.3. On the other hand, similar to bundle methods the previous
values of discrete gradients are gathered into a bundle and the null step is used if the
current search direction is not good enough.

The DGM has both inner and outer iterations. In turn, the inner iteration consists
of serious and null steps. We select sequences {δh} and {λh} such that δh, λh ↓ 0 as
h → ∞, any starting point x1 ∈ R

n and set x11 = x1. The outer iteration depends on
the index h and parameters δh and λh are updated in this iteration. The inner iteration
depends on the index s. In the inner iteration, we compute the search direction. We
either update the solution or add an element into the set of discrete gradients. In
other words, we either take a serious step or a null step occurs. The flowchart of the
DGM is given in Fig. 3.10.

At the beginning of each inner iteration (i.e., s = 1), we first compute the discrete
gradient vh1 = Γ i (xh1 , g, w, λh, α) (see Definition 2.12) with respect to any initial
direction g ∈ S1, i ∈ I(g), any fixed w ∈ G and α ∈ (0, 1]. We set the initial bundle
of discrete gradients D̄(xh1) = {vh1}, v̄h1 = vh1 and compute the search direction
dh1 by

dh1 = − v̄h1

‖v̄h1‖
.

In the following inner iterations (i.e., s > 1), we compute the vector

v̄hs = argmin
v∈D̄(xhs)

‖v‖2,

that is the distance between the convex hull of all computed discrete gradients and
the origin, and the search direction

dhs = − v̄hs

‖v̄hs ‖
.

Next, we check whether the direction dhs (s ≥ 1) is descent or not. If it is, we
have

f (xhs + λhdhs) − f (xhs) ≤ −εLλh‖v̄hs ‖, (3.32)

with the given numbers εL ∈ (0, 1) and λh > 0. In this case, we compute the next
(inner) iteration point

88 3 Nonsmooth Optimization Methods

Fig. 3.10 Discrete gradient method

xhs+1 = xhs + ths dhs ,

where the step size ths is defined as

ths = argmax
{
t ≥ 0 : f (xhs + tdhs) − f (xhs) ≤ −εRt‖v̄hs ‖

}
,

3.8 Discrete Gradient Method 89

with a given εR ∈ (0, εL]. In the case of a serious step, we compute the new discrete
gradient vhs+1 = Γ i (xhs+1, g, w, λh, α) with respect to any direction g ∈ S1, set
D̄(xhs+1) = {vhs+1}, and continue to the next inner iteration with s = s + 1.

If the direction dhs does not satisfy the condition (3.32), then a null step occurs.
In this case, we compute another discrete gradient vhs+1 = Γ i (xhs , dhs , w, λh, α)

with respect to the direction dhs , update the bundle of discrete gradients

D̄(xhs+1) = conv
{
D̄(xhs) ∪ {vhs+1}

}
,

set xhs+1 = xhs , and continue the inner iterations with s = s + 1. Note that, at each
null step the approximation of the subdifferential ∂f (x) is improved.

The inner iteration stops if

‖v̄hs ‖ ≤ δh.

This condition means that for given values of δh and λh the last iteration xhs can
be considered as an approximate solution for the objective, and this solution cannot
be significantly improved using the same values of parameters. Therefore, this point
is accepted as a new iteration xh+1 and the algorithm returns to the outer iteration
to update the values of parameters δh and λh. In its turn, the outer iteration stops if
both δh < ε and λh < ε with a given termination tolerance ε > 0. This stopping
criterion means that the further decrease of values of δh and λh will not improve
both the approximation of the subdifferential and the solution xh.

Since in the DGM the descent direction can be computed for any values of λ > 0
one can take λ1 ∈ (0, 1), some β ∈ (0, 1) and update λh, for instance, by the
formula λh = βhλ1, h > 1. Thus, the approximations to subgradients are used only
at the final stage, which guarantees the convergence of the method. In most of the
iterations such approximations are not used and, thus, the DGM can be considered
as a semi-derivative free method.

In the paper [28], it is proved that the DGM is globally convergent for
LLC functions under the assumption that the set of discrete gradients uniformly
approximates the subdifferential. In addition, improved convergence results for the
DGM are given in [181]. In the next subsection, we present the basic scheme for the
proof of convergence of the DGM.

3.8.1 Convergence of the DGM

In this subsection, we recall some technical details of the convergence properties of
the DGM. A more detailed results are given in [28]. The following assumptions are
used in the proofs.

Assumption 3.12 The objective function f : Rn → R is semismooth.

90 3 Nonsmooth Optimization Methods

Assumption 3.13 The objective function f : Rn → R is a quasidifferentiable func-
tion (see Definition 2.7) whose subdifferential and superdifferential are polytopes at
any x ∈ R

n.
Assumption 3.14 The level set levf (x1) f is bounded for any starting point
x1 ∈ R

n.

Assumptions 3.12 and 3.13 are satisfied, for instance, for functions represented
as a maximum, minimum, or max–min of a finite number of smooth functions.
Assumption 3.14 is used in most continuous optimization methods to prove their
convergence.

We start by showing that for given δh and λh the number of serious and null steps
in inner iterations of the DGM is finite.

Lemma 3.8 Let L be a Lipschitz constant of the objective function f and

C̄ = C(n)L, where C(n) = (4n2 − 3n)1/2.

Then for any δh ∈ (0, C̄), the number s0 of null steps in the inner loop of the DGM
is finite. Here,

s0 ≤ 1 + 2
⌈ log2(δh/C̄)

log2 r

⌉
,

with

r = 1 −
⌈1 − εL

2C̄
δh

⌉2
.

Proposition 3.13 For any δh, λh > 0, the number smax of serious steps in the inner
loop of the DGM is finite with

smax ≤
⌈f (xh) − f ∗

εLλhδh

⌉
,

where f ∗ = inf
{
f (x), x ∈ R

n
}

> −∞.

Proof At the beginning of the sth inner iteration in the DGM, the value of the
objective function f is f (xhs). Furthermore, at each serious step the condition (3.32)
is satisfied and ‖v̄hs ‖ > δh. Therefore, we have

f (xhs+1) − f (xhs) ≤ f (xhs + λhdhs) − f (xhs)

≤ −εLλh‖v̄hs ‖
< −εLλhδh.

This means that at each inner iteration the value of the objective function is reduced
by at least uh = εLλhδh and this number does not depend on the serious steps. By

3.8 Discrete Gradient Method 91

Assumption 3.14, we have f ∗ > −∞ and at the initialization of inner iterations we
set xh = xh1 . Thus, the number of the serious steps cannot be more than

⌈
(f (xh) −

f ∗)/uh

⌉
. This completes the proof. ��

Corollary 3.4 Assume that conditions of Lemma 3.8 and Proposition 3.13 are
satisfied. Then for any h, the number of steps Mh in the hth outer iteration of the
DGM is finite and Mh = s0smax.

In Theorem 2.22, we showed that for semismooth functions f : R
n → R at

a given point x ∈ R
n under a mild condition, the closed convex hull of the set

of discrete gradients D(x, λ, α) is an approximation of the subdifferential ∂f (x)

for the sufficiently small λ > 0. However, this is true only at a point x ∈ R
n. In

order to get convergence results for the DGM, we need a relationship between the
set D(x, λ, α) and ∂f (x) also in some neighborhood of x. Therefore, we need an
additional assumption:

Assumption 3.15 Let x ∈ R
n be a given point. For any η > 0, there exist γ >

0, λ0 > 0 and α0 ∈ (0, 1] such that

D(y, λ, α) ⊂ ∂f
(
x + B̄(000; η)

)+ B(000; η)

for all y ∈ B(x; γ), λ ∈ (0, λ0), and α ∈ (0, α0). Here,

∂f
(
x + B̄(000; η)

) = cl conv
⋃

y∈B̄(x;η)

∂f (y).

Proposition 3.14 Suppose that Assumptions 3.12–3.15 hold for the objective func-
tion f in the problem (3.1). Then every accumulation point of the sequence {xh}
generated by the DGM belongs to the set

X0 = {x ∈ R
n : 000 ∈ ∂f (x)

}
.

Proof Since the function f is continuous and the set levf (x1) f is bounded we get
f ∗ > −∞. Therefore, by Corollary 3.4 the inner loop of the DGM terminates after
finite number of steps and generates a point xh+1 such that xh+1 = xhs for some
s > 0. In addition, we have

min
v∈D̄(xh+1)

‖v‖ ≤ δh. (3.33)

It is clear that

D̄(xh+1) ⊆ D(xh+1, λh, α). (3.34)

Since {f (xh)} is a decreasing sequence the point xh ∈ levf (x1) f for all h ≥ 1.
Thus, the sequence {xh} is bounded and it has at least one accumulation point.

92 3 Nonsmooth Optimization Methods

Assume that x̄ is an accumulation point of {xh} and there exists the subsequence
{xhj

} such that xhj
→ x̄ as j → ∞. It follows from (3.33) and (3.34) that

min
{
‖v‖ : v ∈ D(xhj

, λhj −1, α)
}

≤ δhj −1. (3.35)

According to Assumption 3.15 at the point x̄ for any η > 0, there exist γ > 0, α0 >

0, and λ0 > 0 such that

D(y, λ, α) ⊂ ∂f
(
x̄ + B̄(000; η)

)+ B(000; η) (3.36)

for all y ∈ B(x̄; γ), α ∈ (0, α0), and λ ∈ (0, λ0). Since the sequence {xhj
}

converges to x̄ for γ > 0 there exists j0 > 0 such that xhj
∈ B(x̄; γ) for all

j ≥ j0. On the other hand, since δh, λh → 0 as h → ∞ there exists h0 > 0
such that δh < η and λh < λ0 for all h > h0. Then there exists j1 ≥ j0 such that
hj ≥ h0 + 1 for all j ≥ j1. Thus, it follows from (3.35) and (3.36) that

min
{
‖v‖ : v ∈ ∂f (x̄ + B̄(000; η)

}
≤ 2η.

Since η > 0 is arbitrary and the mapping ∂f (x) is upper semicontinuous we have
000 ∈ ∂f (x̄). This completes the proof. ��

3.9 Smoothing Method

In this section, we consider numerical methods for solving NSO problems which
are based on smoothing techniques. Such an approach allows us to apply powerful
smooth optimization algorithms for solving nonsmooth problems. Nevertheless, the
application of smoothing techniques requires some special structure of the problem.
We consider the finite minimax problem (2.28).

This type of problems are frequently encountered in practical applications
including the cluster analysis. Since the functions fi are smooth the objective
function

f (x) = max
i∈I

fi(x), I = {1, . . . , m}

in the problem (2.28) is subdifferentially regular and its subdifferential at a point
x ∈ R

n can be expressed as (see Sect. 2.8):

∂f (x) = conv
{∇fi(x) : i ∈ I(x)

}
,

where I(x) = {i ∈ I : fi(x) = f (x)
}
.

3.9 Smoothing Method 93

We consider the hyperbolic smoothing technique [30] which allows one to
smooth the function f globally. The smoothing is controlled by the precision
parameter τ . Given a sequence {τh} such that τh > 0 and τh → 0 as h → ∞,
the finite minimax problem (2.28) can be replaced by the sequence of the following
smooth problems:

{
minimize Φτh

(x, f (x))

subject to x ∈ R
n,

(3.37)

where

Φτh
(x, t) = t +

∑

i∈I

fi(x) − t +√(fi(x) − t)2 + τ 2

2
.

Results from Sect. 2.8 demonstrate that algorithms from smooth optimization can
be applied to solve the problem (3.37).

The hyperbolic smoothing method (HSM) for solving the problem (2.28) is given
in Fig. 3.11. Let {εh} be a given sequence such that εh > 0 and εh → 0 as h →
∞. At every iteration h of the smoothing method, we apply a smooth optimization
solver to the problem (3.37) with a starting point xh to find a point x̄ such that

‖∇Φτh
(x̄, f (x̄))‖ < εh. (3.38)

The choice of sequences {τh} and {εh} might be crucial for some problems. In
principle, we can choose the smoothing (precision) parameter τ > 0 sufficiently
small to solve the problem (3.37) only once. However, such an approach may make
the problem ill-conditioned which will significantly increase computational efforts
when solving it. The usage of the sequence {τh} may help to prevent such a situation.
Moreover, if {τh} converges too quickly to 0, then the ill-conditioned behavior of
the problem may gradually increase. In this case, a large number of iterations are
required to achieve the condition (3.38). In order to avoid this, one should ensure
that the sequence {τh} converges to 0 slower than the sequence {εh}.

3.9.1 Convergence of the HSM

Next, we prove that any accumulation point of the sequence {xh} generated by the
HSM given in Fig. 3.11 is a stationary point of the finite minimax problem (2.28)
[30].

Assumption 3.16 The level set levf (x1) f is bounded for any starting point
x1 ∈ R

n.

94 3 Nonsmooth Optimization Methods

Fig. 3.11 Hyperbolic smoothing method for minimax problems

Proposition 3.15 Any accumulation point of the sequence {xh} generated by the
HSM is a stationary point of the problem (2.28).

Proof It is clear that xh ∈ levf (x1) f for all h ≥ 1. Since the set levf (x1) f

is bounded the sequence {xh} has at least one accumulation point. Let x̄ be an
accumulation point of the sequence {xh} and, for simplicity, assume that xh → x̄ as
h → ∞. It follows from Proposition 2.4 that 000n+1 ∈ ∂F

(
x̄, f (x̄)

)
which means(

x̄, f (x̄)
)

is a stationary point of the function F (see Sect. 2.8). Then applying
Proposition 2.1, we get that x̄ is a stationary point of the problem (2.28). ��

Part II
Clustering Algorithms

Chapter 4
Optimization Models in Cluster Analysis

4.1 Introduction

In this chapter, we consider unconstrained hard clustering problems. Let A be a set
of finite number of points in the n-dimensional space R

n as defined in Chap. 1:

A = {a1, . . . , am}, ai ∈ R
n, i = 1, . . . , m.

The hard unconstrained clustering problem is the distribution of points of the set
A into a given number k of disjoint clusters Aj , j = 1, . . . , k with respect to the
predefined criteria (1.1).

The notion of the similarity measure is essential to formulate clustering prob-
lems. In particular, the similarity measure is defined using different distance
functions, in other words using different Minkowski norms. In general, the distance
function, defined by (1.2) is

dp(b, c) =
(n∑

i=1

(bi − ci)
p
)1/p

, b, c ∈ R
n. (4.1)

Here, p ∈ [1,∞). For p = 1, we get the similarity measure which is based on the
L1-norm and for p = ∞, the similarity measure is defined using the L∞-norm.
In both cases, the similarity measures are also distance functions. For p = 2, the
squared Euclidean distance (the squared L2-norm) is used to define the similarity
measure:

d2(b, c) =
n∑

i=1

(bi − ci)
2, b, c ∈ R

n.

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_4

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_4

98 4 Optimization Models in Cluster Analysis

In this case, the similarity measure is no longer a distance function. One can also use
values p ∈ (0, 1) in (4.1) to define the similarity measures; however, these measures
are not distance functions. Clustering problems defined using the similarity measure
based on the L1-norm are known as the minimum sum-of-absolutes clustering
(MSAC) problems and those defined using the squared L2-norm are called the
minimum sum-of-squares clustering (MSSC) problems.

Next, we describe different optimization models of the clustering problem: the
mixed integer programming, the nonconvex NSO, and the nonsmooth DC models.
We introduce also the so-called auxiliary clustering problem and study smoothing
of both the clustering and the auxiliary clustering problems.

4.2 Mixed Integer Programming Model

In this section, we present the mixed integer programming formulation of the
clustering problem. Let the association weight wij of the point ai ∈ A with the
cluster Aj is given by

wij =
{

1, if the point ai is allocated to the cluster Aj ,

0, otherwise.

Then the mixed integer nonlinear programming formulation of the clustering
problem is [26]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minimize ζk(x, w)

subject to wij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , k,
k∑

j=1
wij = 1, i = 1, . . . , m,

xj ∈ R
n, j = 1, . . . , k,

(4.2)

where

ζk(x, w) = 1

m

m∑

i=1

k∑

j=1

wij dp(xj , ai)

is called the kth cluster function, x = (x1, . . . , xk) ∈ R
nk and w = (w1, . . . , wk),

wi ∈ R
m.

The problem (4.2) contains mk integer (binary) variables wij , i = 1, . . . , m, j =
1, . . . , k and nk continuous variables xj ∈ R

n, j = 1, . . . , k. The objective function
ζk is convex for k = 1 and nonconvex for k > 1. This function is nonsmooth if
similarity measures d1 or d∞ are used.

4.3 Nonsmooth Optimization Model 99

For the similarity measure d2, the objective function ζk is smooth and the cluster
centers xj (called also centroids) are computed as

xj =
∑m

i=1 wij ai∑m
i=1 wij

, j = 1, . . . , k.

In this case, the problem (4.2) becomes an integer programming problem as the
centers xj , j = 1, . . . , k are no longer decision variables.

Note that in the case of the similarity measure d1, the centers xj , j = 1, . . . , k

are computed as the medians of clusters. Therefore, similar to the case d2, the
problem (4.2) becomes an integer programming problem.

4.3 Nonsmooth Optimization Model

The NSO model of the clustering problem is formulated as follows [19, 20, 27, 52,
171]:

{
minimize fk(x)

subject to x = (x1, . . . , xk) ∈ R
nk,

(4.3)

where

fk(x) = 1

m

m∑

i=1

min
j=1,...,k

dp(xj , ai). (4.4)

The problem (4.3) is called the NSO clustering problem. It contains nk continuous
variables xj ∈ R

n, j = 1, . . . , k, and this number does not depend on the number
of instances. The objective function fk in the problem (4.3) is called the kth cluster
function. It is convex for k = 1, and nonconvex for k > 1. If the similarity measure
is defined using the squared Euclidean distance, then the function fk for k = 1
is smooth. However, for k > 1 this function is nonsmooth due to the minimum
operation. For the similarity measures based on the L1- and L∞-norms, the function
fk is nonsmooth for all k ≥ 1. This is due to the minimum operation and the fact
that both functions d1 and d∞ are nonsmooth.

Example 4.1 Next, we illustrate the cluster function fk(x), x ∈ R
2 for k = 2.

Consider the following set in R:

A={−3,−2.6, −2.2, −1.8, −1.4, −1, 1, 1.4, 1.8, 2.2, 2.6, 3, 4, 4.4, 4.8, 5.2, 5.6, 6}.
(4.5)

100 4 Optimization Models in Cluster Analysis

(a) (b)

f 2(x1,x2)

x1
x2

f 2(x1,x2)

x1

x2

Fig. 4.1 Graphs of cluster function f2 with similarity measures d1 and d2. (a) Cluster function f2
with d1. (b) Cluster function f2 with d2

Graphs of the function f2 on the data set A with the similarity measures d1 and d2
are illustrated in Fig. 4.1. Here, the function f2 with d1 is as follows:

f2(x1, x2) = 1

18

{
min{|x1 + 3|, |x2 + 3|}, min{|x1 + 2.6|, |x2 + 2.6|},
min{|x1 + 2.2|, |x2 + 2.2|}, min{|x1 + 1.8|, |x2 + 1.8|},
min{|x1 + 1.4|, |x2 + 1.4|}, min{|x1 + 1|, |x2 + 1|},
min{|x1 − 1|, |x2 − 1|}, min{|x1 − 1.4|, |x2 − 1.4|},
min{|x1 − 1.8|, |x2 − 1.8|}, min{|x1 − 2.2|, |x2 − 2.2|},
min{|x1 − 2.6|, |x2 − 2.6|}, min{|x1 − 3|, |x2 − 3|},
min{|x1 − 4|, |x2 − 4|}, min{|x1 − 4.4|, |x2 − 4.4|},
min{|x1 − 4.8|, |x2 − 4.8|}, min{|x1 − 5.2|, |x2 − 5.2|},
min{|x1 − 5.6|, |x2 − 5.6|}, min{|x1 − 6|, |x2 − 6|}

}
,

and with the similarity measure d2 this function is

f2(x1, x2)= 1

18

{
min{(x1 + 3)2, (x2 + 3)2}, min{(x1 + 2.6)2, (x2 + 2.6)2},

min{(x1 + 2.2)2, (x2 + 2.2)2}, min{(x1 + 1.8)2, (x2 + 1.8)2},
min{(x1 + 1.4)2, (x2 + 1.4)2}, min{(x1 + 1)2, (x2 + 1)2},

4.3 Nonsmooth Optimization Model 101

min{(x1 − 1)2, (x2 − 1)2}, min{(x1 − 1.4)2, (x2 − 1.4)2},
min{(x1 − 1.8)2, (x2 − 1.8)2}, min{(x1 − 2.2)2, (x2 − 2.2)2},
min{(x1 − 2.6)2, (x2 − 2.6)2}, min{(x1 − 3)2, (x2 − 3)2},
min{(x1 − 4)2, (x2 − 4)2}, min{(x1 − 4.4)2, (x2 − 4.4)2},
min{(x1 − 4.8)2, (x2 − 4.8)2}, min{(x1 − 5.2)2, (x2 − 5.2)2},
min{(x1 − 5.6)2, (x2 − 5.6)2}, min{(x1 − 6)2, (x2 − 6)2}

}
.

We now present some important properties of the cluster function fk . We start
with the description of the subdifferentials of the similarity functions d1, d2, and
d∞. Take any a ∈ A. The function d1(·, a) is, in general, nonsmooth convex function
and it can be expressed as

d1(x, a) =
n∑

q=1

max{xq − aq, aq − xq}, x ∈ R
n.

It follows from Theorem 2.14 that the subdifferential of the function d1 at a point
x ∈ R

n is

∂d1(x, a)=conv
{
ξ =(ξ1, . . . , ξn) ∈ R

n : ξq = sign(xq − aq), if xq �= aq,

ξq ∈ [−1, 1], otherwise
}
,

(4.6)

where q = 1, . . . , n and

sign(z) =
⎧
⎨

⎩

−1, if z < 0,

0, if z = 0,

1, if z > 0.

It follows from (4.6) that for all x ∈ R
n and ξ ∈ ∂d1(x, a), we have

‖ξ‖1 ≤ n and ‖ξ‖ ≤ √
n. (4.7)

Note that we have ‖.‖ = ‖.‖2.

For a given a ∈ A, the function d2(·, a) is continuously differentiable and its
gradient at a point x ∈ R

n is

∇d2(x, a) = 2(x − a). (4.8)

102 4 Optimization Models in Cluster Analysis

Finally, consider the distance function d∞. In this case, we have

d∞(x, a) = max
q=1,...,n

|xq − aq | = max
q=1,...,n

max
{
xq − aq, aq − xq

}
.

Define the set

R̄a(x) = {q ∈ {1, . . . , n} : |xq − aq | = d∞(x, a)
}
, (4.9)

and introduce the sets

I−(a, x) = {q ∈ {1, . . . , n} : xq < aq

}
,

I+(a, x) = {q ∈ {1, . . . , n} : xq > aq

}
, and

I0(a, x) = {q ∈ {1, . . . , n} : xq = aq

}
.

The condition I0(a, x) ∩ R̄a(x) �= ∅ implies that R̄a(x) = I0(a, x) = {1, . . . , n},
and therefore d∞(x, a) = 0. Then

∂d∞(x, a) = conv
{− eq, eq, q ∈ {1, . . . , n}}. (4.10)

Here, eq ∈ R
n is the qth unit vector. If I0(a, x) ∩ R̄a(x) = ∅, then

R̄a(x) ⊂ I−(a, x) ∪ I+(a, x).

In this case, we get

∂d∞(x, a) = conv
{
(0, . . . , 0, sign(xq − aq), 0 . . . , 0) : q ∈ R̄a(x)

}
. (4.11)

It follows from (4.10) and (4.11) that for all x ∈ R
n and ξ ∈ ∂d∞(x, a) we have

‖ξ‖ ≤ 1 and ‖ξ‖∞ ≤ 1. (4.12)

Proposition 4.1 The functions d1, d2, and d∞ are LLC on R
n.

Proof Take any bounded subset X ⊂ R
n, and assume that it is convex (otherwise,

one can take its convex hull). Select any two points x, y ∈ X. Applying the mean-
value Theorem 2.9, we get

dp(y, a) − dp(x, a) ∈ ∂dp(z, a)T (y − x), p = 1, 2,∞

for some z ∈ (x, y). Since X is convex z ∈ X. Then applying Cauchy–Schwarz
inequality we have

|dp(y, a) − dp(x, a)| ≤ max
ξ∈∂dp(x,a)

‖ξ‖‖x − y‖.

4.3 Nonsmooth Optimization Model 103

It follows from (4.7) and (4.12) that the distance functions d1 and d∞ satisfy the
Lipschitz condition on R

n with the Lipschitz constants L = √
n and L = 1,

respectively. For the gradient ∇d2(x, a) given in (4.8) we get

‖∇d2(x, a)‖ ≤ 2
(‖x‖ + ‖a‖).

Since the set X is bounded there exists M1 > 0 such that ‖x‖ ≤ M1 for all x ∈ X.
Let

M2 = max
a∈A

‖a‖ < +∞.

Then, the function d2 satisfies the Lipschitz condition on the set X with the Lipschitz
constant L = 2(M1 + M2). ��
Remark 4.1 Notice that we consider Lipschitz condition for all similarity functions
using the L2-norm.

For each a ∈ A, consider the function

ψa(x1, . . . , xk) = min
j=1,...,k

dp(xj , a), xj ∈ R
n. (4.13)

Proposition 4.2 The function ψa defined in (4.13) is LLC on R
nk .

Proof Let X ⊂ R
nk be any bounded subset. Take any x, y ∈ X and consider the sets

Ra(x) = {j ∈ {1, . . . , k} : dp(xj , a) = ψa(x)
}
, and (4.14)

Ra(y) = {j ∈ {1, . . . , k} : dp(yj , a) = ψa(y)
}
.

Select any j1 ∈ Ra(x) and j2 ∈ Ra(y). Then it follows from Proposition 4.1 that
there exists L > 0, not depending on x and y, such that

ψa(y) − ψa(x) ≥ dp(yj2, a) − dp(xj2 , a) ≥ −L‖yj2 − xj2‖ ≥ −L‖y − x‖,
ψa(y) − ψa(x) ≤ dp(yj1, a) − dp(xj1 , a) ≤ L‖yj1 − xj1‖ ≤ L‖y − x‖.

Thus, we have

∣∣ψa(y) − ψa(x)
∣∣ ≤ L‖y − x‖,

where L = √
n for p = 1, L = 1 for p = ∞, and L = 2(M1 + M2) for p = 2. ��

Proposition 4.3 The function fk defined in (4.4) is LLC on R
nk for the similarity

functions d1, d2, and d∞.

Proof The Lipschitz continuity of the function fk follows from the facts that the
functions ψa, defined in (4.13), are LLC for any a ∈ A and the sum of LLC functions

104 4 Optimization Models in Cluster Analysis

is also LLC, where the Lipschitz constant of the function fk is L = √
n for p = 1,

L = 1 for p = ∞, and L = 2(M1 + M2) for p = 2. ��
The functions d1, d2, and d∞ are finite valued convex functions on R

n and
therefore, they are directionally differentiable. The directional derivatives of these
functions can be obtained using their subdifferentials and the formula (2.4).
Therefore, the function ψa, defined in (4.13), is also directionally differentiable and

ψ ′
a(x; u) = min

j∈Ra(x)
d ′
p

(
(xj , a); uj

)
, u = (u1, . . . , uk) ∈ R

nk. (4.15)

Here, d ′
p

(
(xj , a); uj

)
is the directional derivative of the function dp at the point

xj ∈ R
n in the direction uj ∈ R

n, j ∈ Ra(x).

Proposition 4.4 The function fk , given by (4.4) with the similarity functions d1, d2,
or d∞, is directionally differentiable at any x = (x1, . . . , xk) ∈ R

nk and

f ′
k(x; u) = 1

m

∑

a∈A

min
j∈Ra(x)

d ′
p

(
(xj , a); uj

)
, u = (u1, . . . , uk) ∈ R

nk. (4.16)

Proof The directional differentiability of the function fk follows from its represen-
tation as a sum of minimum functions ψa, a ∈ A, and the expression (4.16) follows
from (4.15) for the directional derivative of the function ψa. ��
Corollary 4.1 Assume that at a point x = (x1, . . . , xk) ∈ R

nk there exists a ∈ A

such that the cardinality |Ra(x)| ≥ 2 and d ′
p

(
(xj1 , a); uj1

) �= d ′
p

(
(xj2, a); uj2

)
for

some j1, j2 ∈ Ra(x) and uj ∈ R
n where u = (u1, . . . , uk) ∈ R

nk . Then the function
fk is not regular at x.

Proof The generalized directional derivative f ◦
k (x; u) of the function fk at the point

x ∈ R
nk in the direction u = (u1, . . . , uk) ∈ R

nk is given by

f ◦
k (x; u) = 1

m

∑

a∈A

max
j∈Ra(x)

d ′
p

(
(xj , a); uj

)
.

This obviously implies that if the conditions of the corollary are satisfied then
f ′

k(x; u) < f ◦
k (x; u) for some u ∈ R

nk . This completes the proof. ��
If all conditions of Corollary 4.1 are satisfied for some a ∈ A, then it follows

from the proof of this corollary that at the point x ∈ R
nk there exists u ∈ R

nk

such that ψ ′
a(x; u) < ψ◦

a (x; u). This together with Corollary 4.1 implies that, in
general, functions ψa, a ∈ A and fk are not regular. Thus, in general, at the point
x = (x1, . . . , xk) ∈ R

nk we have

∂ψa(x) ⊆ conv
{
∂dp(xj , a) : j ∈ Ra(x)

}
, and

∂fk(x) ⊆ 1

m

∑

a∈A

∂ψa(x). (4.17)

Next, we show that the function fk is piecewise separable.

4.4 Nonsmooth DC Optimization Model 105

Proposition 4.5 The function fk , defined by (4.4), is piecewise separable for the
similarity functions d1, d2, and d∞.

Proof It is clear that functions d1 and d2 are separable and the function d∞ is
piecewise separable. Since the function

ψa(x) = min
j=1,...,k

dp(xj , a), x = (x1, . . . , xk) ∈ R
nk, a ∈ A

is represented as a minimum of the finite number of functions each depending on
a subset of variables it is piecewise separable according to Theorem 2.25. The
function fk—as a sum of piecewise separable functions ψa, a ∈ A—is also
piecewise separable by this theorem. ��

4.4 Nonsmooth DC Optimization Model

The objective function fk in the clustering problem (4.3) can be represented as a
difference of two convex functions [36, 80, 170]

fk(x) = fk1(x) − fk2(x), x = (x1, . . . , xk) ∈ R
nk, (4.18)

where

fk1(x) = 1

m

m∑

i=1

k∑

j=1

dp(xj , ai), and (4.19)

fk2(x) = 1

m

m∑

i=1

max
j=1,...,k

k∑

s=1,s �=j

dp(xs , ai).

Therefore, the problem (4.3) can be reformulated as a DC optimization clustering
problem

{
minimize fk(x) = fk1(x) − fk2(x)

subject to x = (x1, . . . , xk) ∈ R
nk.

(4.20)

As mentioned before, the function dp is convex at x for p = 1, p = 2, and
p = ∞. Therefore, the function fk1 as a sum of convex functions is convex.
Furthermore, since the maximum of a finite number of convex functions is convex,
the function fk2 is also convex as a sum of maxima of sum of convex functions.
For the similarity measure d2 the function fk1 is smooth and the function fk2 is,
in general, nonsmooth. If p = 1 or p = ∞, then both fk1 and fk2 are nonsmooth
functions.

Proposition 4.6 The functions fk1 and fk2 are LLC.

106 4 Optimization Models in Cluster Analysis

Proof The local Lipschitz continuity of DC components fk1 and fk2 follows from
their convexity. For p = 1 the Lipschitz constant L = √

n, for p = 2 this constant
is 2(M1 +M2) and for p = ∞ one has L = 1 (see the proof of Proposition 4.1). ��

It is obvious that the functions fk1 and fk2 are directionally differentiable as they
are finite valued convex functions on R

nk and

f ′
k(x; u) = f ′

k1(x; u) − f ′
k2(x; u), x, u ∈ R

nk. (4.21)

Next, we describe subdifferentials of the functions fk1 and fk2 for each similarity
measure dp. For a given ai ∈ A, i = 1, . . . , m, consider the following function:

ϕi(x) = max
j=1,...,k

k∑

s=1,s �=j

dp(xs , ai). (4.22)

Then the function fk2 can be represented as

fk2(x) = 1

m

m∑

i=1

ϕi(x).

For each ai ∈ A, introduce the set

R̃i (x) =
{
j ∈ {1, . . . , k} :

k∑

s=1,s �=j

dp(xs , ai) = ϕi(x)
}
. (4.23)

Then the subdifferential ∂ϕi(x) at the point x ∈ R
nk can be expressed as

∂ϕi(x) = conv

{(
ξ1, . . . , ξ j−1,000, ξ j+1, . . . , ξ k

)
, ξ t ∈ ∂dp(xt , ai),

t = 1, . . . , k, t �= j, j ∈ R̃i (x)

}
.

For p = 1 the subdifferential ∂d1(xt , ai) is defined by (4.6), for p = 2 the
subdifferential ∂d2(xt , ai) is a singleton and given in (4.8) and for p = ∞ the
subdifferential ∂d∞(xt , ai) is given by (4.10) and (4.11), t = 1, . . . , k. For p = 2
we can get more simple representation of the subdifferential ∂ϕi(x) as

∂ϕi(x) = conv

{
2
(
x1 − ai , . . . , xj−1 − ai ,000, xj+1 − ai , . . . , xk − ai

)
,

j ∈ R̃i (x)

}
.

4.4 Nonsmooth DC Optimization Model 107

For each ai ∈ A, i ∈ {1, . . . , m}, consider the set

Πi(x) =
{
ξ = (ξ1, . . . , ξ k) : ξ j ∈ ∂dp(xj , ai), j = 1, . . . , k

}
.

Thus, taking into account that the functions fk1 and fk2 are convex we have

∂fk1(x) = 1

m

m∑

i=1

Πi(x), and (4.24)

∂fk2(x) = 1

m

m∑

i=1

∂ϕi(x). (4.25)

For the similarity measure d2, the set Πi(x) is a singleton and we have

Πi(x) =
{

2
(
x1 − ai , . . . , xk − ai

)}
.

In addition, it follows from (4.8) that the function fk1 is continuously differentiable
in this case and we have

∇fk1(x) = 2(x − ã), (4.26)

where ã = (ā, . . . , ā) and ā is the center of the set A, that is

ā = 1

m

m∑

i=1

ai .

Proposition 4.7 For p = 2, the gradient ∇fk1 of the function fk1 satisfies the
Lipschitz condition with the Lipschitz constant L = 2:

‖∇fk1(x) − ∇fk1(y)‖ ≤ 2‖x − y‖ for all x, y ∈ R
nk.

Proof The proof follows from the expression (4.26) of the gradient. ��
Since, in general, DC functions are not regular we have

∂fk(x) ⊆ ∂fk1(x) − ∂fk2(x), x ∈ R
nk.

The equality holds for the similarity measure d2.

Proposition 4.8 For p = 2, the Clarke subdifferential ∂fk(x) of the cluster function
fk at x ∈ R

nk is

∂fk(x) = ∇fk1(x) − ∂fk2(x).

108 4 Optimization Models in Cluster Analysis

Proof Denote by D(x) = ∇fk1(x) − ∂fk2(x). For the general nonsmooth DC
functions we have ∂fk(x) ⊆ D(x), therefore, we only prove the opposite inclusion.
Since the finite valued convex functions fk1 and fk2 are directionally differentiable
the function fk is also directionally differentiable and we have

f ′
k(x; u) = f ′

k1(x; u) − f ′
k2(x; u), u ∈ R

nk.

The function fk is DC, and therefore, the function −fk is DC and we get

(−fk)
′(x; u) = f ′

k2(x; u) − f ′
k1(x; u), u ∈ R

nk.

In addition, we have (see, e.g. (2.4))

f ′
k1(x; u) = (∇fk1(x))T u, and

f ′
k2(x; u) = max

ξ2∈∂fk2(x)
ξT

2 u.

Then

(−fk)
◦(x; u) ≥ (−fk)

′(x; u)

= f ′
k2(x; u) − f ′

k1(x; u)

= max
ξ2∈∂fk2(x)

(
ξ2 − ∇fk1(x)

)T u

for all u ∈ R
nk , and therefore, we have (−fk)

◦(x; u) ≥ vT u for all u ∈ R
nk and

v ∈ −D(x). This means that −D(x) ⊆ ∂(−fk)(x) = −∂fk(x) considering the
convexity of the set D(x). Thus, we have D(x) ⊆ ∂fk(x) and this completes the
proof. ��
Proposition 4.9 For the functions fk1 and fk2 the following holds:

(i) the function fk1 is separable for the functions d1 and d2 and piecewise
separable for the function d∞; and

(ii) the function fk2 is piecewise separable for functions d1, d2, and d∞.

Proof For the case (i), since both d1 and d2 are separable according to Theorem 2.25
in these two cases the function fk1 as a sum of separable functions is also separable.
The function d∞ is piecewise separable and therefore, the function fk1 is also
piecewise separable as a sum of piecewise separable functions.

For the case (ii), it follows from Theorem 2.25 that functions represented as a
maximum of separable or piecewise separable functions are piecewise separable
and therefore, the function ϕi defined in (4.22) is piecewise separable for similarity
measures d1, d2, and d∞. Then again by applying Theorem 2.25 we get the proof.

��

4.5 Auxiliary Clustering Problem 109

4.5 Auxiliary Clustering Problem

The objective function in the clustering problem (4.3) is nonconvex and the problem
itself is a global optimization problem. This function has many local minimizers
and its global or nearly global minimizers are of interest. Conventional global
optimization techniques may become extremely time-consuming for solving the
clustering problem in large data sets with relatively large number of clusters. Local
search optimization algorithms are much faster than their global search counterparts;
however, starting from a given point they may end up at the closest local minimizer
which can be significantly different from the global minimizer.

The success of local search methods in finding global or nearly global solutions
to the clustering problems highly depends on the choice of starting points. Different
approaches can be used to generate such points (see [63], for some of these
approaches). We introduce the auxiliary clustering problem to design algorithms
for finding a set of “good/promising” starting points.

Assume that the solution x1, . . . , xk−1, k ≥ 2 to the (k − 1)-clustering problem
is known. Denote by ri

k−1 the distance (the squared distance for p = 2) between the
data point ai , i = 1, . . . , m and its cluster center

ri
k−1 = min

j=1,...,k−1
dp(xj , ai). (4.27)

We will also use the notation ra
k−1 for the data point a ∈ A. The kth auxiliary cluster

function is defined as [19]

f̄k(y) = 1

m

m∑

i=1

min
{
ri
k−1, dp(y, ai)

}
, y ∈ R

n. (4.28)

This function is nonsmooth and as a sum of minima of convex functions it is,
in general, nonconvex. The kth auxiliary cluster function has n variables and the
number of variables does not depend on the number of clusters k.

The kth auxiliary clustering problem is formulated as [19]

{
minimize f̄k(y)

subject to y ∈ R
n.

(4.29)

It is obvious that

f̄k(y) = fk(x1, . . . , xk−1, y) for all y ∈ R
n.

Example 4.2 Next, we illustrate the auxiliary cluster function f̄k . Consider the
set (4.5) and assume that k = 3. This means that the solution to the 2-clustering
problem is known which is (−2, 3.5). In order to construct the function f̄k , first we
compute the numbers ri

2, i = 1, . . . , 18. For the similarity measure d1 we have

110 4 Optimization Models in Cluster Analysis

r1
2 = 1, r2

2 = 0.6, r3
2 = 0.2, r4

2 = 0.2, r5
2 = 0.6, r6

2 = 1, r7
2 = 2.5, r8

2 = 2.1,

r9
2 = 1.7, r10

2 = 1.3, r11
2 = 0.9, r12

2 = 0.5, r13
2 = 0.5, r14

2 = 0.9, r15
2 = 1.3,

r16
2 = 1.7, r17

2 = 2.1, r18
2 = 2.5.

Then the function f̄3 with the similarity measure d1 is

f̄3(y) = 1

18

{
min{1, |y + 3|}, min{0.6, |y + 2.6|}, min{0.2, |y + 2.2|},
min{0.2, |y + 1.8|}, min{0.6, |y + 1.4|}, min{1, |y + 1|},
min{2.5, |y − 1|}, min{2.1, |y − 1.4|}, min{1.7, |y − 1.8|},
min{1.3, |y − 2.2|}, min{0.9, |y − 2.6|}, min{0.5, |y − 3|},
min{0.5, |y − 4|}, min{0.9, |y − 4.4|}, min{1.3, |y − 4.8|},
min{1.7, |y − 5.2|}, min{2.1, |y − 5.6|}, min{2.5, |y − 6|}

}
.

Now, consider the similarity measure d2. For this measure, we have

r1
2 = 1, r2

2 = 0.36, r3
2 = 0.04, r4

2 = 0.04, r5
2 = 0.36, r6

2 = 1, r7
2 = 6.25,

r8
2 = 4.41, r9

2 = 2.89, r10
2 = 1.69, r11

2 = 0.81, r12
2 = 0.25, r13

2 = 0.25,

r14
2 = 0.81, r15

2 = 1.69, r16
2 = 2.89, r17

2 = 4.41, r18
2 = 6.25.

Then we get

f̄3(y)= 1

18

{
min{1, (y + 3)2}, min{0.36, (y + 2.6)2}, min{0.04, (y + 2.2)2},

min{0.04, (y + 1.8)2}, min{0.36, (y + 1.4)2}, min{1, (y + 1)2},
min{6.25, (y − 1)2}, min{4.41, (y − 1.4)2}, min{2.89, (y − 1.8)2},
min{1.69, (y − 2.2)2}, min{0.81, (y − 2.6)2}, min{0.25, (y − 3)2},
min{0.25, (y − 4)2}, min{0.81, (y − 4.4)2}, min{1.69, (y − 4.8)2},
min{2.89, (y − 5.2)2}, min{4.41, (y − 5.6)2}, min{6.25, (y − 6)2}

}
.

Graphs of the function f̄3 with the similarity measures d1 and d2 are depicted
in Fig. 4.2. It is easy to see that in both cases, there are some regions where the
functions are constant.

4.5 Auxiliary Clustering Problem 111

0.3

0.6

0.9

1.2

-8 -6 -4 -2 0 2 4 6 8 10 12 14
y

f̄ 3(y)

0.5

1

1.5

2

2.5

-8 -6 -4 -2 0 2 4 6 8 10 12 14

f̄ 3(y)

y

a b

Fig. 4.2 Graphs of auxiliary cluster function f̄3 with similarity measures d1 and d2. (a) Auxiliary
cluster function f̄3 with d1. (b) Auxiliary cluster function f̄3 with d2

Next, we study some important properties of the auxiliary cluster function f̄k .
For a given a ∈ A, consider the function

θa(y) = min
{
ra
k−1, dp(y, a)

}
.

Proposition 4.10 The function θa is LLC for any a ∈ A.

Proof Take any bounded subset X ⊂ R
n and y, z ∈ X. Then the following cases are

possible:

(i) ra
k−1 ≤ dp(y, a) and ra

k−1 ≤ dp(z, a): then we have

θa(z) − θa(y) = 0;

(ii) ra
k−1 > dp(y, a) and ra

k−1 ≤ dp(z, a): then we get

0 ≤ θa(z) − θa(y) ≤ dp(z, a) − dp(y, a);

(iii) ra
k−1 ≤ dp(y, a) and ra

k−1 > dp(z, a): then we have

dp(z, a) − dp(y, a) ≤ θa(z) − θa(y) ≤ 0;

(iv) ra
k−1 > dp(y, a) and ra

k−1 > dp(z, a): this means that

θa(z) − θa(y) = dp(z, a) − dp(y, a).

In all cases, we have

|θa(z) − θa(y)| ≤ |dp(z, a) − dp(y, a)|.

Since the function dp is LLC for p = 1, p = 2, and p = ∞ it follows that
the function θa is also LLC. Its Lipschitz constant is the same as constants of the
corresponding similarity functions dp. ��

112 4 Optimization Models in Cluster Analysis

The function θa is directionally differentiable and at a point y ∈ R
n for the

direction u ∈ R
n we have

θ ′
a(y; u) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if ra
k−1 < dp(y, a),

min
{
0, d ′

p

(
(y, a); u

)}
, if ra

k−1 = dp(y, a),

d ′
p

(
(y, a); u

)
, if ra

k−1 > dp(y, a).

Since the function θa is LLC it has generalized directional derivatives and at a point
y ∈ R

n with respect to a direction u ∈ R
n one has

θ◦
a (y; u) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if ra
k−1 < dp(y, a),

max
{
0, d ′

p

(
(y, a); u

)}
, if ra

k−1 = dp(y, a),

d ′
p

(
(y, a); u

)
, if ra

k−1 > dp(y, a).

It follows from representations of the directional and generalized directional
derivatives of the function θa that if at a point y ∈ R

n one has ra
k−1 = dp(y, a)

and there exists u ∈ R
n such that d ′

p

(
(y, a); u

)
> 0, then θ ′

a(y; u) < θ◦
a (y; u) and

the function θa is not regular at y. Since the function θa is LLC it is subdifferentiable
and, in general, we have

∂θa(y; u)

⎧
⎪⎪⎨

⎪⎪⎩

= {000}, if ra
k−1 < dp(y, a),

⊆ {000, ∂dp(y, a)
}
, if ra

k−1 = dp(y, a),

= ∂dp(y, a), if ra
k−1 > dp(y, a).

Proposition 4.11 The auxiliary cluster function f̄k , defined in (4.28), is LLC on R
n.

Proof The proof follows from Proposition 4.10 that the functions θa, a ∈ A are
LLC. Moreover, the Lipschitz constant of the function f̄k is the same as that of the
functions θa, a ∈ A for p = 1, p = 2, and p = ∞. ��

The function f̄k is directionally differentiable and we have

f̄ ′
k(y; u) = 1

|A|
∑

a∈A

θ ′
a(y; u), y, u ∈ R

n.

Furthermore, since the function f̄k is LLC it has the generalized directional
derivatives and it is also subdifferentiable. However, in general, this function is not
regular as a sum of nonregular functions θa, a ∈ A. Then at a point y ∈ R

n, one
only has

∂f̄k(y) ⊆ 1

|A|
∑

a∈A

∂θa(y).

4.5 Auxiliary Clustering Problem 113

In order to get more constructive formula for the subdifferential ∂f̄k(y) at the point
y ∈ R

n, consider the sets

B1(y) = {a ∈ A : ra
k−1 < dp(y, a)},

B2(y) = {a ∈ A : ra
k−1 = dp(y, a)}, and (4.30)

B3(y) = {a ∈ A : ra
k−1 > dp(y, a)}.

The set B1(y) contains all data points a ∈ A which are closer to their cluster centers
than to the point y, the set B2(y) contains all data points which are the same distance
from their cluster centers and the point y, and finally, the set B3(y) contains all data
points which are closer to the point y than to their cluster centers. We assume that
B3(y) �= A for any y ∈ R

n. This condition means that there is no point y ∈ R
n

which can attract all data points than their cluster centers. The case B3(y) = A for
some y ∈ R

n is rather pathological.
Now the function f̄k can be represented as

f̄k(y) = 1

m

(∑

a∈B1(y)

ra
k−1 +

∑

a∈B2(y)

min
{
ra
k−1, dp(y, a)

}+
∑

a∈B3(y)

dp(y, a)

)
,

and thus the subdifferential of f̄k at the point y ∈ R
n when B1(y) = A is

∂f̄k(y) = {000},

otherwise

∂f̄k(y) ⊆ 1

m

(∑

a∈B2(y)

conv
{
000, ∂dp(y, a)

}+
∑

a∈B3(y)

∂dp(y, a)

)
. (4.31)

Proposition 4.12 The auxiliary cluster function f̄k , defined in (4.28), is piecewise
separable for p = 1, p = 2, and p = ∞.

Proof According to Theorem 2.25 the function θa, a ∈ A is piecewise separable
for p = 1, p = 2 and p = ∞. Then due to Theorem 2.25 the function f̄k is also
piecewise separable as a sum of such functions. ��

4.5.1 DC Representation of Auxiliary Cluster Function

Similar to the cluster function fk , the auxiliary cluster function f̄k is also DC [36,
170] and

f̄k(y) = f̄k1(y) − f̄k2(y), (4.32)

114 4 Optimization Models in Cluster Analysis

where

f̄k1(y) = 1

m

m∑

i=1

(
ri
k−1 + dp(y, ai)

)
, and (4.33)

f̄k2(y) = 1

m

m∑

i=1

max
{
ri
k−1, dp(y, ai)

}
.

It is clear that both f̄k1 and f̄k2 are convex functions. Then the auxiliary clustering
problem (4.29) can be reformulated as

{
minimize f̄k(y) = f̄k1(y) − f̄k2(y)

subject to y ∈ R
n.

(4.34)

Proposition 4.13 The functions f̄k1 and f̄k2 are LLC on R
n.

Proof Let X ⊂ R
n be any bounded subset. It is obvious that the function f̄k1 is LLC,

and on the set X its Lipschitz constant is the same as constants of the corresponding
similarity functions (see Proposition 4.1). To prove the locally Lipschitz continuity
of the function f̄k2, consider the function

θ̄a(y) = max
{
ra
k−1, dp(y, a)

}
, a ∈ A.

Take any y, z ∈ X. Similar to Proposition 4.10, we have the following cases:

(i) ra
k−1 < dp(y, a) and ra

k−1 < dp(z, a): then we have

θ̄a(z) − θ̄a(y) = dp(z, a) − dp(y, a);

(ii) ra
k−1 ≥ dp(y, a) and ra

k−1 < dp(z, a): then we get

0 ≤ θ̄a(z) − θ̄a(y) ≤ dp(z, a) − dp(y, a);

(iii) ra
k−1 < dp(y, a) and ra

k−1 ≥ dp(z, a): then we have

dp(z, a) − dp(y, a) ≤ θ̄a(z) − θ̄a(y) ≤ 0;

(iv) ra
k−1 ≥ dp(y, a) and ra

k−1 ≥ dp(z, a): this means that

θ̄a(z) − θ̄a(y) = 0.

In all cases, we have

|θ̄a(z) − θ̄a(y)| ≤ |dp(z, a) − dp(y, a)|.

4.5 Auxiliary Clustering Problem 115

Since the function dp is LLC for p = 1, p = 2, and p = ∞, the function θ̄a is
also LLC. Then we get that the function f̄k2 is LLC and its Lipschitz constant is the
same as constants of the corresponding similarity functions. ��

Using the sets Bi(y), y ∈ R
n, i = 1, 2, 3, defined in (4.30), the function f̄k2 at

the point y can be rewritten as

f̄k2(y) = 1

m

(∑

a∈B1(y)

dp(y, a) +
∑

a∈B2(y)

max
{
ra
k−1, dp(y, a)

}
(4.35)

+
∑

a∈B3(y)

ra
k−1

)
.

As finite valued convex functions defined on R
n the functions f̄k1 and f̄k2 are

directionally differentiable, and we have

f̄ ′
k1(y; u) = 1

m

∑

a∈A

d ′
p

(
(y, a); u

)
, and (4.36)

f̄ ′
k2(y; u) = 1

m

(∑

a∈B1(y)

d ′
p

(
(y, a); u

)+
∑

a∈B2(y)

max
{
0, d ′

p

(
(y, a); u

)}
)

. (4.37)

Then the subdifferential ∂f̄k1(y) of the function f̄k1 at the point y ∈ R
n is

∂f̄k1(y) = 1

m

∑

a∈A

∂dp(y, a). (4.38)

In the case when B3(y) = A at the point y ∈ R
n we have

∂f̄k2(y) = {000} (4.39)

and when B3(y) �= A the subdifferential ∂f̄k2(y) of the function f̄k2 at y ∈ R
n is

∂f̄k2(y) = 1

m

(∑

a∈B1(y)

∂dp(y, a) +
∑

a∈B2(y)

conv
{
000, ∂dp(y, a)

}
)

. (4.40)

For p = 2, the function f̄k1 is differentiable and

∇f̄k1(y) = 2(y − ā), (4.41)

116 4 Optimization Models in Cluster Analysis

where ā is the center of the set A. In this case, we get a simple formula for the
subdifferential ∂f̄k2(y) as

∂f̄k2(y) = 2

m

(∑

a∈B1(y)

(y − a) +
∑

a∈B2(y)

conv
{
000, y − a

})
. (4.42)

Proposition 4.14 Let p = 2. Then the Clarke subdifferential ∂f̄k(y) of the function
f̄k at y ∈ R

n can be given as

∂f̄k(y) = ∇f̄k1(y) − ∂f̄k2(y).

Proof The proof is similar to that of Proposition 4.8. ��
Proposition 4.15 For the DC components f̄k1 and f̄k2 the following holds:

(i) the function f̄k1 is separable for p = 1 and p = 2 and it is piecewise separable
for p = ∞; and

(ii) the function f̄k2 is piecewise separable for p = 1, p = 2, and p = ∞.

Proof

(i) Since the functions d1 and d2 are separable the function f̄k1 is also separable as
a sum of separable functions. Piecewise separability of the function f̄k1 follows
from piecewise separability of d∞ and Theorem 2.25.

(ii) Due to Theorem 2.25, the maximum of finite number of separable or piecewise
separable functions is piecewise separable. Then the function f̄k2 is piecewise
separable as a sum of piecewise separable functions. ��

4.6 Optimality Conditions

In this section, we formulate optimality conditions for the clustering and the
auxiliary clustering problems (4.3) and (4.29) using, in particular, their respective
DC models (4.20) and (4.34).

4.6.1 Optimality Conditions for Clustering Problem

Different optimality conditions can be obtained for the clustering problem using
its formulations (4.3) and (4.20). We start with the formulation of the optimality
condition using the Clarke subdifferential.

Proposition 4.16 Let x∗ ∈ R
nk be a local minimizer of the problem (4.3). Then

000 ∈ ∂fk(x∗). (4.43)

4.6 Optimality Conditions 117

Proof According to Proposition 4.3, the function fk is LLC. Then the proof follows
from Theorem 2.17. ��
Points satisfying the condition (4.43) are called the Clarke stationary points of the
clustering problem (4.3).

Corollary 4.2 Clarke stationary points x = (x1, . . . , xk) ∈ R
nk of the clustering

problem (4.3) satisfy the following condition:

000 ∈
∑

a∈A

conv
{
∂dp(xj , a), j ∈ Ra(x)

}
,

for p = 1, 2,∞. The set Ra(x) is defined in (4.14).

Proof The proof follows from Proposition 4.16 and the inclusion (4.17). ��
Next, we consider optimality conditions obtained using the nonsmooth DC

model (4.20) of the clustering problem. The following theorem follows from
Theorem 2.27.

Theorem 4.1 Let x∗ ∈ R
nk be a local minimizer of the problem (4.20). Then

∂fk2(x∗) ⊆ ∂fk1(x∗), and (4.44)

∂fk1(x∗) ∩ ∂fk2(x∗) �= ∅. (4.45)

Proof The condition (4.44) follows from (2.24), and the condition (4.45) results
from (2.26) in Theorem 2.27. ��
Points satisfying the condition (4.44) are called inf-stationary, and points satisfying
the condition (4.45) are called critical points of the clustering problem (4.20).

We formulate optimality conditions for each similarity functions d1, d2, and d∞
separately. We start with the function d1. The subdifferentials of the functions fk1
and fk2 are given in (4.24) and (4.25), respectively. These subdifferentials at the
point x ∈ R

nk can be rewritten as

∂fk1(x) = 1

m

∑

a∈A

(
∂d1(x1, a), ∂d1(x2, a), . . . , ∂d1(xk, a)

)
, (4.46)

and the subdifferential of the function ϕa, defined in (4.22), at x is

∂ϕa(x) = conv

{(
∂d1(x1, a), . . . , ∂d1(xj−1, a),000, ∂d1(xj+1, a), . . . ,

∂d1(xk, a)
)
, j ∈ R̃a(x)

}
.

118 4 Optimization Models in Cluster Analysis

The set R̃a(x) is defined in (4.23). Then the subdifferential ∂fk2(x) can be
expressed as

∂fk2(x) = 1

m

∑

a∈A

∂ϕa(x). (4.47)

For a given x ∈ R
nk , consider the sets

Cj (x) = {a ∈ A : j ∈ R̃a(x)
}
, j = 1, . . . , k. (4.48)

Proposition 4.17 Assume that a point x∗ = (x∗
1, . . . , x∗

k) ∈ R
nk is a local

minimizer of the problem (4.20) with the similarity measure d1 and the sets Cj (x∗)
are not empty for any j = 1, . . . , k. Then

000 ∈
(∑

a∈C1(x∗)
∂d1(x∗

1, a), . . . ,
∑

a∈Ck(x∗)
∂d1(x∗

k, a)
)
. (4.49)

Proof The point x∗ is a local minimizer of the problem (4.20), and therefore,
this point is also an inf-stationary point. Then applying (4.44) we get ∂fk2(x∗) ⊆
∂fk1(x∗). Using the expressions of subdifferentials of functions fk1 and fk2, given
in (4.46) and (4.47), we have

∑

a∈A

∂ϕa(x∗) ⊆
∑

a∈A

(
∂d1(x∗

1, a), ∂d1(x∗
2, a), . . . , ∂d1(x∗

k, a)
)
. (4.50)

Here, the subdifferential of the function ϕa at x∗ is

∂ϕa(x∗) =
(∑

a∈A\C1(x∗)
∂d1(x∗

1, a), . . . ,
∑

a∈A\Ck(x∗)
∂d1(x∗

k, a)
)
.

Then the proof follows from this expression and the inclusion (4.50). ��
Now, consider the function d2. In this case, the DC component fk1 is continu-

ously differentiable and its gradient is given by (4.26). The subdifferential of the
function ϕa at a point x ∈ R

nk can be rewritten as

∂ϕa(x) = conv
{

2
(
(x1 − a), . . . , (xj−1 − a),000, (xj+1 − a), . . . , (xk − a)

)
,

j ∈ R̃a(x)
}
.

Proposition 4.18 Let x∗ ∈ R
nk be a local minimizer of the problem (4.20) with the

similarity measure d2. Then the objective function fk is continuously differentiable
at this point and

∂fk(x∗) = {∇fk(x∗)} = {000}.

4.6 Optimality Conditions 119

Proof It follows from (4.26) that the subdifferential ∂fk1(x∗) is a singleton for any
x∗ ∈ R

nk . Since the local minimizer x∗ of the problem (4.20) is its inf-stationary
point the subdifferential ∂fk2 is a singleton at the point x∗. This means that the
subdifferentials ∂ϕa(x∗), a ∈ A are also singletons at the point x∗ which in turn
means that the index sets R̃a(x∗) are singletons for all a ∈ A. This implies that for
each a ∈ A there exists a unique j ∈ {1, . . . , k} such that R̃a(x∗) = {j}. It follows
from the DC representation of the function fk that this j stands for the index of the
cluster to which the data point a belongs, and for this point there exists only one
cluster center x∗

j such that

min
s=1,...,k

d2(x∗
s , a) = d2(x∗

j , a).

Therefore, d2(x∗
s , a) > d2(x∗

j , a) for any s = 1, . . . , k, s �= j , and we get that the
sets Cj (x∗), defined by (4.48), are pairwise disjoint:

Cj1(x
∗) ∩ Cj2(x

∗) = ∅, j1, j2 = 1, . . . , k, j1 �= j2.

Using these sets the gradient of the function fk2 can be expressed as

∇fk2(x∗) = 2

m

⎛

⎝
∑

a∈A\C1(x∗)
(x∗

1 − a), . . . ,
∑

a∈A\Ck(x∗)
(x∗

k − a)

⎞

⎠ .

This together with (4.26) implies that

∇fk(x∗) = 2

m

⎛

⎝
∑

a∈C1(x∗)
(x∗

1 − a), . . . ,
∑

a∈Ck(x∗)
(x∗

k − a)

⎞

⎠ .

This means that the cluster function fk is continuously differentiable at any inf-
stationary point x∗ of the problem (4.20) and the Clarke subdifferential of this
function are singletons at such points, that is

∂fk(x∗) = {∇fk(x∗)
}
.

Then the necessary condition for a minimum implies that ∇fk(x∗) = 000. ��
Proposition 4.19 The sets of Clarke stationary and critical points of the prob-
lem (4.20) with the similarity measure d2 coincide and at these points

∇fk1(x) ∈ ∂fk2(x).

Proof It follows from Proposition 4.8 that

∂fk(x) = ∇fk1(x) − ∂fk2(x), x ∈ R
nk.

120 4 Optimization Models in Cluster Analysis

If a point x ∈ R
nk is Clarke stationary, then 000 ∈ ∂fk(x) and we get ∇fk1(x) ∈

∂fk2(x) and therefore, x is a critical point.
If x ∈ R

nk is a critical point, then ∇fk1(x) ∈ ∂fk2(x) and therefore, 000 ∈ ∂fk(x)

and x is a Clarke stationary point. ��
Remark 4.2 If a point x ∈ R

nk is not inf-stationary, then, in general, the function
fk2 is not strictly differentiable at this point and the subdifferential ∂fk2(x) is not a
singleton. Then it is easy to calculate two different subgradients from ∂fk2. Consider
the following sets:

A1 = {a ∈ A : |R̃a(x)| = 1
}
, and

A2 = {a ∈ A : |R̃a(x)| ≥ 2
}
.

If A1 = A, then ∂fk2(x) is a singleton. If |A2| ≥ 1, then ∂fk2(x) is not a singleton.
Take any a ∈ A2. Since |R̃a(x)| ≥ 2 this point is attracted by at least two cluster
centers, say j1, j2 ∈ {1, . . . , k}, j1 �= j2. Using these two cluster centers, we
compute two subgradients ξ1, ξ2 ∈ R

nk of the function ϕa, defined by (4.22),
as follows:

ξ1 = 2
(
(x1 − a), . . . , (xj1−1 − a),000, (xj1+1 − a), . . . , (xk − a)

)
, and

ξ2 = 2
(
(x1 − a), . . . , (xj2−1 − a),000, (xj2+1 − a), . . . , (xk − a)

)
.

Since j1 �= j2 and a is not a cluster center it follows that ξ1 �= ξ2.

Finally, we discuss optimality conditions for the problem (4.20) when the
similarity measure d∞ is applied in its objective function. For a given xt ∈ R

n

and a ∈ A if d∞(xt , a) = 0, then the subdifferential ∂d∞(x, a) is defined by (4.10),
otherwise it is defined by (4.11). Then applying (4.24) we get that the subdifferential
∂fk1(x) of the function fk1 at x ∈ R

nk is

∂fk1(x) = 1

m

∑

a∈A

(
∂d∞(x1, a), . . . , ∂d∞(xk, a)

)
,

and applying (4.25) the subdifferential ∂fk2(x) of the function fk2 at x ∈ R
nk can

be expressed as

∂fk2(x) = 1

m

∑

a∈A

conv
{(

∂d∞(x1, a), . . . , ∂d∞(xj−1, a),000,

∂d∞(xj+1, a), . . . , ∂d∞(xk, a)
)
, j ∈ R̃a(x)

}
.

Then for the point x∗ = (x∗
1, . . . , x∗

k) ∈ R
nk to be a local minimizer of the

problem (4.20) it is necessary that

4.6 Optimality Conditions 121

∂fk2(x∗) ⊆ ∂fk1(x∗). (4.51)

Using the sets Cj (x∗), j = 1, . . . , k, defined in (4.48), we can get the necessary
condition similar to that given in Proposition 4.17 for the clustering problem based
on d1.

Proposition 4.20 Assume that a point x∗ = (x∗
1, . . . , x∗

k) ∈ R
nk is a local

minimizer of the problem (4.20) with the similarity measure d∞ and the sets Cj (x∗)
are not empty for any j = 1, . . . , k. Then

000 ∈
⎛

⎝
∑

a∈C1(x∗)
∂d∞(x∗

1, a), . . . ,
∑

a∈Ck(x∗)
∂d∞(x∗

k, a)

⎞

⎠ . (4.52)

Proof The proof repeats to that of Proposition 4.17 and therefore, is omitted. ��
Proposition 4.21 Assume x∗ = (x∗

1, . . . , x∗
k) ∈ R

nk is the inf-stationary point of
the problem (4.20) with the similarity measure d∞ and the sets R̄a(x∗), defined
by (4.9), are singletons for any a ∈ A, x∗

j i �= ai for all a ∈ A, j ∈ {1, . . . , k}
and i ∈ {1, . . . , n}. Then the function fk is strictly differentiable at x∗ and we have
∇fk(x∗) = 000.

Proof Under given conditions, the subdifferential ∂fk1(x∗) is a singleton as sub-
differentials d∞(x∗

j , a) are singletons for all a ∈ A and j = 1, . . . , k. Since the
point x∗ is inf-stationary it follows from (4.51) that the subdifferential ∂fk2(x∗) is
also a singleton. This means that ∇fk2(x∗) = ∇fk1(x∗), the function fk is strictly
differentiable at x∗ and we get ∇fk(x∗) = 000. ��

4.6.2 Optimality Conditions for Auxiliary Clustering Problem

In this subsection, we discuss optimality conditions for the auxiliary clustering
problem using its general formulation (4.29) and also the DC model (4.34). We
formulate such conditions for similarity measures d1, d2, and d∞. We start with the
formulation of conditions by applying the Clarke subdifferential.

Proposition 4.22 Let y∗ ∈ R
n be a local minimizer of the problem (4.29). Then

000 ∈ ∂f̄k(y∗). (4.53)

Proof It follows from Proposition 4.12 that the function f̄k is LLC on R
n and

therefore, the proof follows from Theorem 2.17. ��
Points satisfying the condition (4.53) are called the Clarke stationary points of the
auxiliary clustering problem (4.29).

122 4 Optimization Models in Cluster Analysis

Corollary 4.3 Let y∗ ∈ R
n be a stationary point of the problem (4.29). Assume that

the set B3(y∗), defined in (4.30), is not empty. Then

000 ∈
∑

a∈B2(y∗)
conv

{
000, ∂dp(y∗, a)

}+
∑

a∈B3(y∗)
∂dp(y∗, a), p = 1, 2,∞.

Proof The proof follows from (4.31) and Proposition 4.22. ��
Next, we formulate optimality conditions obtained using the DC representa-

tion (4.32) of the auxiliary cluster function f̄k . The subdifferentials of the functions
f̄k1 and f̄k2, in general form, are given in (4.38) and (4.40), respectively.

Theorem 4.2 Let y∗ ∈ R
n be a local minimizer of the problem (4.34). Then

∂f̄k2(y∗) ⊆ ∂f̄k1(y∗), and (4.54)

∂f̄k1(y∗) ∩ ∂f̄k2(y∗) �= ∅. (4.55)

Proof The proof follows from Theorem 2.27. ��
Points satisfying the condition (4.54) are called inf-stationary, and points satisfying
the condition (4.55) are called critical points of the auxiliary clustering prob-
lem (4.29).

Corollary 4.4 Let the set B2(y∗) = ∅. Then for a point y∗ to be a local minimizer
of the problem (4.34) it is necessary that

∑

a∈B1(y∗)
∂dp(y∗, a) ⊆

∑

a∈B1(y∗)∪B3(y∗)
∂dp(y∗, a). (4.56)

Proof The proof follows from expressions for ∂f̄k1(y∗), ∂f̄k2(y∗) and the inclu-
sion (4.54). ��
Remark 4.3 All inf-stationary points of the problem (4.34) satisfy the condi-
tion (4.56). The condition B2(y∗) = ∅ means that any data point is attracted either
by its cluster center or by the point y∗.

Now, we formulate optimality conditions for the problem (4.29) using the
similarity measures d1, d2, and d∞. We start with the measure d1.

Proposition 4.23 Assume y∗ ∈ R
n is the inf-stationary point of the problem (4.34)

with the similarity measure d1, the set B2(y∗) = ∅ and y∗
i �= ai, i = 1, . . . , n for

all a ∈ A. Then the point y∗ satisfies the condition

∑

a∈B3(y∗)

(
sign(y∗

1 − a1), . . . , sign(y∗
n − an)

)
= 000.

4.6 Optimality Conditions 123

Proof The condition y∗
i �= ai, i = 1, . . . , n for all a ∈ A and the expression (4.6)

imply that the function d1 is strictly differentiable at y∗, the subdifferentials ∂d1(y∗)
are singletons and

∇d1(y∗, a) =
(

sign(y∗
1 − a1), . . . , sign(y∗

n − an)
)
.

Then we get from Corollary 4.4 that

∑

a∈B1(y∗)
∇d1(y∗, a) =

∑

a∈B1(y∗)
∇d1(y∗, a) +

∑

a∈B3(y∗)
∇d1(y∗, a).

This completes the proof. ��
Next, we consider the auxiliary clustering problem with the similarity measure

d2. In this case the function f̄k1 is differentiable and its gradient is given by (4.41)
and the function f̄k2 is, in general, nonsmooth and its subdifferential is given
in (4.42). According to Proposition 4.14 for all y ∈ R

n the Clarke subdifferential of
the function f̄k can be represented as

∂f̄k(y) = ∇f̄k1(y) − ∂f̄k2(y).

Proposition 4.24 At any inf-stationary point y∗ of the problem (4.34) with the
similarity measure d2, the subdifferential ∂f̄k2(y∗) is a singleton and

∂f̄k2(y∗) = 2

m

⎧
⎨

⎩

∑

a∈B1(y∗)
(y∗ − a)

⎫
⎬

⎭
. (4.57)

Proof Since the subdifferential ∂f̄k1 is a singleton at any y ∈ R
n it follows from

the definition of inf-stationary points that the set ∂f̄k2(y∗) must be a singleton at
all such points. The first term in (4.42) is a singleton. If the set B2(y∗) is empty,
then we get the expression (4.57) for the subdifferential ∂f̄k2(y∗). Assume that the
set B2(y∗) is not empty. Since the subdifferential ∂f̄k2(y∗) is a singleton the second
term in its expression (4.42) must be a singleton at the inf-stationary point y∗. This
means that y∗ = a for every a ∈ B2(y∗), and therefore, the set B2(y∗) is a singleton
and the subdifferential ∂f̄k2(y∗) is given by (4.57). ��
Remark 4.4 The condition y∗ = a for every a ∈ B2(y∗) implies that the set B2(y∗)
cannot have more than one point and therefore, y∗ = x∗

j for some j = 1, . . . , k − 1,

where x∗
j is the center of the cluster Aj . This means that in most inf-stationary points

y∗ ∈ R
n the set B2(y∗) is likely to be empty.

Proposition 4.25 The sets of Clarke stationary and critical points of the prob-
lem (4.34) with the similarity measure d2 coincide, and they are given by

Y = {y ∈ R
n : ∇f̄k1(y) ∈ ∂f̄k2(y)

}
. (4.58)

124 4 Optimization Models in Cluster Analysis

Proof Assume the point ȳ is a critical point of the problem (4.34). Since the
subdifferential f̄k1 at any y ∈ R

n is a singleton we get ∇f̄k1(ȳ) ∈ ∂f̄k2(ȳ). Then it
follows from Proposition 4.14 that 000 ∈ ∂f̄k(ȳ), meaning that ȳ is Clarke stationary.

Now, assume that ȳ is Clarke stationary. Then Proposition 4.14 implies that
∇f̄k1(ȳ) ∈ ∂f̄k2(ȳ) and therefore, ȳ is a critical point. ��
Remark 4.5 It is obvious that any inf-stationary point of the problem (4.34) is also
Clarke stationary and critical points of this problem.

Proposition 4.26 For a point y∗ ∈ R
n such that B3(y∗) �= ∅, to be a local

minimizer of the problem (4.34) with the similarity measure d2 it is necessary that

∑

a∈B3(y∗)
(y∗ − a) = 000. (4.59)

Proof Any local minimizer of the problem (4.34) is an inf-stationary point to this
problem. Then the proof follows from the expression of the gradient ∇f̄k1(y∗),
the expression (4.57) in Proposition 4.24, Remark 4.4 and the assumption that
B3(y∗) �= ∅. ��

Next, we demonstrate how two different subgradients from the subdifferential
∂f̄k2(y), y ∈ R

n can be computed if this subdifferential is not a singleton. This
result will be used to develop an algorithm that can escape a Clarke stationary point
and converge to an inf-stationary point.

Remark 4.6 To compute different subgradients, we can choose ξ1
2, ξ2

2 ∈ ∂f̄k2(y)
using (4.42) as follows:

ξ1
2 = 2

m

∑

a∈B1(y)

(y − a), and

ξ2
2 = ξ1

2 + ξ̄2, ξ̄2 = argmax
a∈B2(y)

‖y − a‖. (4.60)

Note that if ξ̄2 = 000, then ∂f̄k2(y) is a singleton.

Finally, we study optimality conditions for the problem (4.34), where the distance
function d∞ is used in its objective function. Using the subdifferentials ∂d∞, given
in (4.10) and (4.11), we can write the subdifferentials of functions f̄k1 and f̄k2 at
y ∈ R

n as

∂f̄k1(y) = 1

m

∑

a∈A

∂d∞(y, a), and

∂f̄k2(y) = 1

m

⎛

⎝
∑

a∈B1(y)

∂d∞(y, a) +
∑

a∈B2(y)

conv
{
000, ∂d∞(y, a)

}
⎞

⎠ .

4.7 Smoothing of Cluster Functions 125

Proposition 4.27 Assume that y∗ ∈ R
n is the inf-stationary point of the prob-

lem (4.34) and the sets R̄a(y∗), defined by (4.9), are singletons for any a ∈ A,
y∗
i �= ai for all a ∈ A and i ∈ {1, . . . , n}. Then the function f̄k with the similarity

measure d∞ is strictly differentiable at y∗ and ∇f̄k(y∗) = 000.

Proof Under given conditions, the subdifferential ∂f̄k1(y∗) is a singleton as subdif-
ferentials d∞(y∗, a) are singletons for all a ∈ A. Since the point y∗ is inf-stationary
it follows from (4.54) that the subdifferential ∂f̄k2(y∗) is also a singleton. This
means that ∇f̄k2(y∗) = ∇f̄k1(y∗), the function f̄k is strictly differentiable at y∗
and ∇f̄k(y∗) = 000. ��

4.7 Smoothing of Cluster Functions

In this section, we describe the hyperbolic smoothing of the cluster function fk and
the auxiliary cluster function f̄k , defined in (4.4) and (4.28), respectively. We start
with the discussion on the smoothing of similarity measures. Since the similarity
function d2 is differentiable there is no need for further smoothing when d2 is used
in the cluster and the auxiliary cluster functions. However, the distance functions d1
and d∞ are nondifferentiable and need to be smoothed to make possible the use of
smooth optimization methods.

4.7.1 Hyperbolic Smoothing of Functions d1 and d∞

Take any a ∈ R
n and fix it. Then for any x ∈ R

n, we have

d1(x, a) = ‖x − a‖1

=
n∑

q=1

|xq − aq |

=
n∑

q=1

max
{
xq − aq, aq − xq

}

=
n∑

q=1

(
xq − aq + 2 max

{
0, aq − xq

})
.

Applying the HSM, described in Sect. 2.8, d1(x, a) can be approximated by the
smooth function η1,τ (·, a) : Rn → R as follows:

126 4 Optimization Models in Cluster Analysis

Fig. 4.3 Smooth approximation of the similarity function d1

η1,τ (x, a) =
n∑

q=1

√
(xq − aq)2 + τ 2, (4.61)

where τ > 0 is a smoothing parameter. Figure 4.3 illustrates the level curves of the
function d1 (blue) and its hyperbolic smooth approximation η1,τ (red).

Next, we explain the smoothing of the function d∞. Take any a ∈ R
n and fix it.

For any x ∈ R
n, we get

d∞(x, a) = ‖x − a‖∞
= max

q=1,...,n
|xq − aq |

= max
q=1,...,n

max{xq − aq, aq − xq}

= max
q=1,...,2n

Ωqa(x),

where

Ωqa(x) = xq − aq and Ω(q+n)a(x) = −xq + aq, q = 1, . . . , n.

Consider the function

Ω(x, θa) = θa +
2n∑

q=1

max
{
0,Ωqa(x) − θa

}
,

4.7 Smoothing of Cluster Functions 127

Fig. 4.4 Smooth
approximation of the
similarity function d∞

where θa = d∞(x, a). Then the hyperbolic smoothing of the function Ω and,
consequently, the function d∞(·, a) is given by

η∞,τ (x, θa) = θa + 1

2

2n∑

q=1

(
Ωqa(x) − θa +

√
(Ωqa(x) − θa)2 + τ 2

)
. (4.62)

Figure 4.4 presents the level curves of the function d∞ (blue) and its hyperbolic
smooth approximation η∞,τ (red).

4.7.2 Hyperbolic Smoothing of the Cluster Function

In this subsection, we describe the hyperbolic smoothing of the cluster function fk ,
defined in (4.4). It is clear that

min
j=1,...,k

dp(xj , ai) = − max
j=1,...,k

−dp(xj , ai), i = 1, . . . , m.

Then the function fk can be rewritten as

fk(x1, . . . , xk) = − 1

m

m∑

i=1

max
j=1,...,k

−dp(xj , ai).

128 4 Optimization Models in Cluster Analysis

Define the following function Fk : Rnk → R similar to the function (2.32):

Fk(x, t) = − 1

m

m∑

i=1

⎛

⎝ti +
k∑

j=1

max
{
0,−dp(xj , ai) − ti

}
⎞

⎠ ,

where x = (x1, . . . , xk), t = (t1, . . . , tm), and scalars ti , i = 1, . . . , m are
defined as

ti = max
j=1,...,k

−dp(xj , ai) = − min
j=1,...,k

dp(xj , ai) ≤ 0, i = 1, . . . , m. (4.63)

Then applying (2.33) we get the hyperbolic smoothing Φk,τ of the function Fk:

Φk,τ (x, t) = − 1

m

m∑

i=1

⎛

⎝ti +
k∑

j=1

−dp(xj , ai) − ti +
√

(dp(xj , ai) + ti)2 + τ 2

2

⎞

⎠

= 1

m

m∑

i=1

⎛

⎝−ti +
k∑

j=1

ti + dp(xj , ai) −
√

(dp(xj , ai) + ti)2 + τ 2

2

⎞

⎠ ,

(4.64)

where τ > 0 is a smoothing parameter.
For the distance function d1, we replace it by its approximation η1,τ , given

in (4.61), and get the following smooth approximation of the cluster function fk:

Uk,τ (x, t) = 1

m

m∑

i=1

⎛

⎝−ti +
k∑

j=1

ti + η1,τ (xj , ai) −
√

(η1,τ (xj , ai) + ti)2 + τ 2

2

⎞

⎠ .

Then for a sequence {τh} such that τh ↓ 0 as h → ∞, the problem (4.3) is replaced
by the sequence of smooth problems

{
minimize Uk,τh

(x, t)

subject to x = (x1, . . . , xk) ∈ R
nk,

(4.65)

where t = (t1, . . . , tm), ti , i = 1, . . . , m are defined using (4.63).
In the case of the similarity measure d2, we get the following approximation for

the cluster function fk:

Qk,τ (x, t) = − 1

m

m∑

i=1

⎛

⎝ti +
k∑

j=1

−d2(xj , ai) − ti +
√

(d2(xj , ai) + ti)2 + τ 2

2

⎞

⎠

= 1

m

m∑

i=1

⎛

⎝−ti +
k∑

j=1

ti + d2(xj , ai) −
√

(d2(xj , ai) + ti)2 + τ 2

2

⎞

⎠ ,

(4.66)

4.7 Smoothing of Cluster Functions 129

where t = (t1, . . . , tm), ti , i = 1, . . . , m are defined using (4.63). Then by taking
any sequence {τh} such that τh ↓ 0 as h → ∞ the clustering problem (4.3) is
replaced by the sequence of the following smooth problems:

{
minimize Qk,τh

(x, t)

subject to x = (x1, . . . , xk) ∈ R
nk.

(4.67)

Finally, in the case of the distance function d∞ replacing this function by its
approximation η∞,τ , given in (4.62), we get the following smooth approximation of
the cluster function fk:

Vk,τ (x, t,Θ) = − 1

m

m∑

i=1

ti

+ 1

m

m∑

i=1

k∑

j=1

ti + η∞,τ (xj , θ
j
ai

) −
√

(η∞,τ (xj , θ
j
ai

) + ti)2 + τ 2

2
.

Here, t = (t1, . . . , tm), ti , i = 1, . . . , m are defined using (4.63), Θ = [θj
ai

]ij , i =
1, . . . , m, j = 1, . . . , k, and θ

j
ai

= d∞(xj , ai).

Take any sequence {τh} such that τh ↓ 0 as h → ∞. Then the problem (4.3) is
replaced by the sequence of smooth problems

{
minimize Vk,τh

(x, t,Θ)

subject to x = (x1, . . . , xk) ∈ R
nk.

(4.68)

4.7.3 Smoothing of Auxiliary Cluster Function

In this subsection, we describe the hyperbolic smoothing of the auxiliary cluster
function f̄k , defined in (4.28). The function f̄k can be rewritten as

f̄k(y) = 1

m

m∑

i=1

(
ri
k−1 + min

{
0, dp(y, ai) − ri

k−1

})

= 1

m

m∑

i=1

(
ri
k−1 − max

{
0, ri

k−1 − dp(y, ai)
})

= − 1

m

m∑

i=1

(
− ri

k−1 + max
{
0, ri

k−1 − dp(y, ai)
})

.

130 4 Optimization Models in Cluster Analysis

Applying (2.31), we obtain the following hyperbolic smoothing function Φ̄k,τ :
R

n → R to f̄k:

Φ̄k,τ (y) = 1

m

m∑

i=1

ri
k−1

− 1

m

m∑

i=1

ri
k−1 − dp(y, ai) +

√
(ri

k−1 − dp(y, ai))2 + τ 2

2

= 1

m

m∑

i=1

ri
k−1 + dp(y, ai) −

√
(ri

k−1 − dp(y, ai))2 + τ 2

2
. (4.69)

If we use d1 as the similarity measure, then the smooth approximation of the
function f̄k is obtained from (4.69) by replacing d1 with its smooth approximation
η1,τ , defined in (4.61):

Ūk,τ (y) = 1

m

m∑

i=1

ri
k−1 + η1,τ (y, ai) −

√
(ri

k−1 − η1,τ (y, ai))2 + τ 2

2
.

Then by selecting any sequence {τh} such that τh ↓ 0 as h → ∞, the auxiliary
clustering problem (4.29) is replaced by the sequence of the following smooth
problems:

{
minimize Ūk,τh

(y)

subject to y ∈ R
n.

(4.70)

In the case of the auxiliary cluster function with the similarity measure d2, one
needs to simply substitute p = 2 in the expression of the function Φ̄k,τ . Then using
the sequence {τh}, we can replace the auxiliary clustering problem (4.29) by the
sequence of the following smooth problems:

{
minimize Φ̄k,τh

(y)

subject to y ∈ R
n.

(4.71)

Finally, in the case of the cluster function with the distance function d∞ the
auxiliary cluster function (4.69) can be approximated by using the function η∞,τ ,
given in (4.62), that is

V̄k,τ (y, θa) = 1

m

m∑

i=1

ri
k−1 + η∞,τ (y, θai

) −
√

(ri
k−1 − η∞,τ (y, θai

))2 + τ 2

2
.

4.7 Smoothing of Cluster Functions 131

Here, θai
= d∞(y, ai), i = 1, . . . , m. Then we can replace the problem (4.29) by

the sequence of the smooth problems

{
minimize V̄k,τh

(y, θa)

subject to y ∈ R
n,

(4.72)

with the sequence {τh}, τh ↓ 0 as h → ∞.

4.7.4 Partial Smoothing of DC Cluster Function

As mentioned above, if the function dp in (4.20) is defined using L1- or L∞-
norms, then both functions fk1 and fk2 are nonsmooth. In these cases, due to the
fact that the general nonsmooth DC functions are not subdifferentially regular, the
subdifferential calculus exists only in the form of inclusions. One possible approach
to get the full subdifferential calculus for these functions is to smooth either the first,
second or both DC components of the cluster function (4.18). Note that smoothing
of both components leads to more complex functions involving many smoothing
parameters. In this book, we smooth the first DC component as the function fk1
is quite simple nonsmooth function, whereas the second component fk2 is more
complex.

Assume that the distance function d1 is used in the function (4.18). The function
η1,τ , given in (4.61), is the smooth approximation of the distance function d1. Then
the function

Ûk1,τ (x) = 1

m

m∑

i=1

k∑

j=1

η1,τ (xj , ai) (4.73)

is the smooth approximation for the first DC component fk1. Using it we get the
following approximation for the cluster function fk:

Ûk,τ (x) = Ûk1,τ (x) − fk2(x).

Then the problem (4.20) can be replaced by [22, 23]

{
minimize Ûk,τh

(x)

subject to x = (x1, . . . , xk) ∈ R
nk,

(4.74)

where the sequence {τh} is such that τh > 0 and τh ↓ 0 as h → ∞.
Next, we describe the partial smoothing of the function (4.18) when the distance

function d∞ is applied. Using the smooth function η∞,τ , given in (4.62), we have
the following approximation for the function fk1:

132 4 Optimization Models in Cluster Analysis

V̂k1,τ (x) = 1

m

m∑

i=1

k∑

j=1

η∞,τ (xj , θ
j
ai

). (4.75)

Here, θ
j
ai

= d∞(xj , ai), i = 1, . . . , m, j = 1, . . . , k. Then the approximation for
the function (4.18) is

V̂k,τ (x) = V̂k1,τ (x) − fk2(x),

and for a sequence {τh}, τh > 0, τh ↓ 0 as h → ∞, the problem (4.20) is
replaced by

{
minimize V̂k,τh

(x)

subject to x = (x1, . . . , xk) ∈ R
nk.

(4.76)

Note that the Clarke subdifferential calculus can be efficiently applied to compute
subgradients of the objective functions in the clustering problems (4.74) and (4.76).

4.7.5 Partial Smoothing of DC Auxiliary Cluster Function

Similar to the partial smoothing of the DC cluster function, we can formulate the
partial smoothing of the auxiliary cluster function f̄k , defined in (4.32).

For the distance function d1 using its smooth approximation η1,τ , given in (4.61),
we have the smooth function

Ũk1,τ (y) = 1

m

m∑

i=1

(
ri
k−1 + η1,τ (y, ai)

)
, (4.77)

which is the approximation of the function f̄k1. In this case an approximation for
the function f̄k can be defined as

Ũk,τ (y) = Ũk1,τ (y) − f̄k2(y).

By selecting a sequence {τh} such that τh > 0 and τh ↓ 0 as h → ∞, we can replace
the problem (4.34) by [23]

{
minimize Ũk,τh

(y)

subject to y ∈ R
n.

(4.78)

4.7 Smoothing of Cluster Functions 133

For the distance function d∞, we use its smooth approximation η∞,τ , given
in (4.62). Then we get the smooth function

Ṽk1,τ (y) = 1

m

m∑

i=1

(
ri
k−1 + η∞,τ (y, θai

)
)
. (4.79)

Here, θai
= d∞(y, ai), i = 1, . . . , m. Therefore, an approximation for the function

f̄k is

Ṽk,τ (y) = Ṽk1,τ (y) − f̄k2(y).

Then the problem (4.34) is replaced by

{
minimize Ṽk,τh

(y)

subject to y ∈ R
n,

(4.80)

with the sequence {τh}, τh ↓ 0 as h → ∞. Note that the full subdifferential calculus
for the objective functions in the problems (4.78) and (4.80) exists. Therefore, the
Clarke subdifferential calculus can be efficiently applied to compute subgradients
of these functions and to design algorithms for finding Clarke stationary points of
the problems.

Chapter 5
Heuristic Clustering Algorithms

5.1 Introduction

The number of ways in which a set of m objects can be partitioned into k non-empty
groups is given by the Stirling number [64]:

S(m, k) = 1

k!
k∑

i=0

(−1)k−i

(
k

i

)
im, (5.1)

where
(

k

i

)
= k!

i!(k − i)!
is the binomial coefficient. The Stirling number can be approximated by km/k!. A
complete enumeration of all possible clusterings in order to determine the global
minimum of the nonconvex clustering problem is computationally prohibitive for
large data sets [174]. In fact, it has been proven that the clustering problem is NP-
hard even for two clusters [7] or two attributes [205]. Therefore, various heuristics
have been developed to solve the clustering problems.

In this chapter, we consider mainly heuristic partitional clustering algorithms
for solving hard clustering problems, which do not explicitly use the NSO model.
A partitional clustering algorithm produces a single partition of data with no
hierarchical structure. This means that the algorithm requires the number of clusters
to be specified—as a rule—a priori. A partitional algorithm usually optimizes an
objective function defined using the data set. Most of these algorithms need to be
run multiple times with different starting states, and the best configuration produced
is the one used as the (optimal) clustering.

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_5

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_5

136 5 Heuristic Clustering Algorithms

We start by describing the k-means algorithm that is undoubtedly the most well-
known and widely used partitional clustering algorithm. We also briefly describe
the main ideas of different versions of k-means. Particularly, we describe the global
k-means algorithm that computes clusters incrementally. Algorithms based on the
incremental approach start with the calculation of one cluster center and gradually
add a new cluster center at each iteration of the algorithm. Such an approach leads
to the finding of at least a nearly global minimizer of the clustering problem.

The k-means algorithm and its variants use the squared Euclidean distance
function (1.4) as a similarity measure. In Sect. 5.3 we recall the k-medians algorithm
that aims to solve clustering problems with the d1 distance function (1.3). Further,
in Sect. 5.4 we give a short description of the k-medoids algorithm, where the final
cluster centers are the most centrally located data points in the clusters.

The last three sections of this chapter present clustering algorithms that are not
partitional and/or not applicable for hard clustering problems. First, we describe the
fuzzy c-means algorithm that allows a data point to belong to more than one cluster,
that is, the soft clustering problem is considered. As may be inferred by the name,
the fuzzy c-means clustering algorithm is an extension of the k-means algorithm.
Second, we recall the basic idea of clustering algorithms based on mixture models.
In some sense these algorithms can be considered as fuzzy clustering algorithms
with the membership matrix defined as a probability of each data point belonging to
a particular cluster.

The artificial neural networks (ANNs) have been used extensively for both
supervised data classification and clustering [264]. The most common ANN used
for clustering include the Kohonen’s learning vector quantization and the self-
organizing map [185] and adaptive resonance theory models [61]. These networks
have simple architectures with single layers and the weights in the networks are
learnt by iteratively changing them until a predefined termination criterion is
satisfied. These learning or weight changing procedures are similar to some used
in classical clustering approaches. For instance, the procedure used in the learning
vector quantization is similar to the k-means algorithm. The ANNs do not use any
clustering models considered in this book. Therefore, to give an idea of the ANN in
clustering applications we only provide an overview of the self-organizing map in
Sect. 5.7.

5.2 k-Means Algorithm and Its Variants

The k-means algorithm is the most commonly used technique in partitional cluster-
ing. Early versions of this algorithm were introduced in [40, 108, 200, 204, 277].
The paper [298] places the k-means algorithm among the ten most important data
mining algorithms.

5.2 k-Means Algorithm and Its Variants 137

Fig. 5.1 k-means algorithm

5.2.1 k-Means Algorithm

The k-means algorithm aims to solve the MSSC problem that is when the similarity
measure d2 is applied. This algorithm minimizes the objective function (4.2) of the
mixed integer programming formulation of the clustering problem.

The k-means algorithm utilizes an iterative scheme which starts with an arbitrary
selected initial cluster configuration of the data, then alters the cluster membership
in an iterative manner to obtain a better configuration. The popularity of the k-
means algorithm is due to the fact that it is very simple and easy to implement. The
flowchart of the basic k-means algorithm is given in Fig. 5.1.

At the beginning, the k-means algorithm randomly chooses k cluster centers with
a predefined k. Then it alternates between two major steps until a stopping criterion
is satisfied. These steps are as follows:

138 5 Heuristic Clustering Algorithms

• distribution of data points among clusters utilizing the minimum squared
Euclidean distance; and

• recomputing of cluster centers.

In other words, the k-means algorithm iteratively reassigns data points to clusters
based on the similarity between the points and the cluster centers until there is no
further reassignment or significant decrease in the value of the clustering function.

Next, we present the k-means algorithm in the step by step form. Then we give a
more detailed description of the procedures used.

Algorithm 5.1 k-means algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) Choose a seed solution consisting of k centers (not necessarily belonging to
A).

2: Allocate each data point a ∈ A to its closest center and obtain a k-partition of A.

3: (Stopping criterion) If some predefined stopping criterion is met, then stop.

4: Recompute centers for the new partition and go to Step 2.

In Step 4, the following problem is solved to find the center xj of the cluster
Aj , j = 1, . . . , k:

⎧
⎨

⎩

minimize
∑

a∈Aj

d2(xj , a)

subject to xj ∈ R
n.

This problem is convex and its objective function is strongly convex. Therefore,
the problem has a unique solution. The necessary and sufficient condition for
optimality is

∑

a∈Aj

(xj − a) = 000,

which leads to the following formula for the center xj , j = 1, . . . , k:

xj = 1

mj

∑

a∈Aj

a,

where mj is the number of objects in the cluster Aj , j = 1, . . . , k. Thus, there
is no need to solve any optimization problem to find cluster centers in Step 4 of
Algorithm 5.1.

5.2 k-Means Algorithm and Its Variants 139

Various stopping criteria can be used in Step 3 of the k-means algorithm. They
include:

• let ε > 0 be a given tolerance and mt be a number of data points changing their
clusters at the t th iteration of Algorithm 5.1. If

mt

m
≤ ε,

then the algorithm terminates with xt = (xt,1, . . . , xt,k) as a solution to the
clustering problem;

• when no data point changes its clusters, then Algorithm 5.1 terminates. This
corresponds to the previous stopping criterion when ε = 0; and

• let ε > 0 be a given tolerance and xt−1 = (xt−1,1, . . . , xt−1,k) and xt =
(xt,1, . . . , xt,k) be solutions found at iterations t − 1 and t , t > 1. If

ζk(xt−1) − ζk(xt)

ζk(xt−1)
≤ ε,

where ζk is the objective function in the clustering problem (4.2), then Algo-
rithm 5.1 terminates with xt = (xt,1, . . . , xt,k) as a solution to the clustering
problem.

It should be noted that the second stopping criterion works best in small data sets,
although, it can be used also in larger data sets. The first criterion works best in
medium sized and large data sets, and finally, the third stopping criterion works best
in large and very large data sets.

In [263], conditions under which the k-means algorithm converges in a finite
number iterations to the solution of the MSSC problem are established.

Proposition 5.1 Algorithm 5.1 converges to an optimal solution of the clustering
problem in a finite number of iterations.

Proof It is obvious that the maximum number of subsets of the set A is 2m,
where m is the number of data points in A. Particularly, the maximum number of
combinations in which a set of m data points can be partitioned into k non-empty
groups is S(m, k) given by (5.1). As mentioned above each iteration of the k-means
algorithm consists of two main steps as follows:

(i) reassigning data points to the current cluster centers; and
(ii) updating of the cluster centers using the new distribution of points.

As the new centers provide minimum of the clustering function for the redistributed
clusters and the objective function is strongly convex for each cluster, the value of
the clustering objective function strictly decreases at each iteration of the k-means
algorithm. That is, the k-means algorithm generates the sequence of combinations
of points where the value of the clustering function decreases and therefore, all these

140 5 Heuristic Clustering Algorithms

combinations are different. Since the number of such combinations is finite the k-
means algorithm terminates after finite number of iterations. ��

It is easy to see that the mixed integer programming model (4.2) with the
similarity measure d2 can be reformulated as

{
minimize fk(x)

subject to x = (x1, . . . , xk) ∈ R
nk,

where

fk(x) = 1

m

k∑

j=1

mj∑

i=1

d2(xj , aj
i).

Here, k is the number of clusters, mj is the number of objects in the cluster Aj ,

j = 1, . . . , k, aj
i ∈ A is the ith element of the cluster Aj , i = 1, . . . , mj , and xj is

the centroid of the j th cluster obtained by

xj = 1

mj

mj∑

i=1

aj
i .

5.2.2 Variants of k-Means Algorithm

The k-means algorithm suffers from being sensitive to the selection of the initial
clustering partition or cluster centers [12]. It converges to a local solution which can
significantly differ from the global solution, especially in large data sets. Various
versions of the k-means algorithm have been proposed in the literature, many of
them focussing on the selection of a good initial partition (see, for example, [4, 64,
153, 154, 245]). Below we list some of these algorithms.

• Forgy algorithm [108]: the algorithm randomly chooses k points from the data
set and uses them as initial centers. The idea behind this selection is that when
choosing points randomly we are more likely to select a point from a region
with the highest density of points. However, there is no guarantee that we will
not select some poorly located outliers [12]. This algorithm is also called the h-
means clustering algorithm. Application of this algorithm may lead to obtaining
empty clusters [272].

• MacQueen algorithm [204]: in this algorithm, points in a data set are ordered.
To solve the k-partition problem, first, one takes the first k points in the data set

5.2 k-Means Algorithm and Its Variants 141

A as the initial cluster centers. Then a point is assigned to a cluster with the least
squared Euclidian distance between the point and the cluster center. After the
assignment of each point its previous and new cluster centers are updated. This
can be done easily. For example, assume that the data point ā ∈ A is moved from
the cluster At to the cluster Aj , t, j ∈ {1, . . . , k}. Let xt and xj be the centers of
clusters At and Aj , respectively. Then these centers will be updated as

x′
t = 1

mt − 1

(
mtxt − ā

)
, and

x′
j = 1

mj + 1

(
mj xj + ā

)
,

where mt and mj are the number of data points in clusters with centers xt and xj ,
respectively, and x′

t and x′
j are the updated cluster centers. The outcome of this

algorithm depends on the order of points in a data set. The number of clusters
found by the MacQueen algorithm cannot change because each cluster should
contain at least one data point. If a cluster contains only one data point, then this
point cannot be assigned to a different cluster.

• Ball and Hall’s algorithm [41]: for a given number k of clusters, the Ball and
Hall’s algorithm determines the starting cluster centers in k steps. First, some
distance threshold T is defined. The first center is computed as the center of the
whole data set A as

x1 = 1

m

m∑

i=1

ai .

Assume that l, (1 < l < k) centers are computed. In order to find the (l + 1)th
initial cluster center, the algorithm chooses the first data point whose distance
from all the previously found centers is no less than a given threshold T . This
process continues until all k starting cluster centers are obtained. The usage of
the distance threshold T allows one to ensure that the starting points are well
separated. Nevertheless, it may be difficult to define an appropriate value for T .
In addition, the algorithm is sensitive to ordering of points in a data set.

• Maximin algorithm [126, 172]: the original maximin algorithm chooses the
first starting cluster center x1 arbitrarily. In some variants of this algorithm,
a data point with the greatest Euclidean norm is selected as the first cluster
center instead of an arbitrary selection. Then, the lth starting cluster center
xl , (1 < l ≤ k) is chosen to be the data point that has the greatest minimum
distance to the previously selected centers x1, . . . , xl−1. More precisely, first for
each data point a ∈ A we calculate

dmin(a) = min
t=1,...,l−1

d2(a, xt)

142 5 Heuristic Clustering Algorithms

and then define xl as

xl = argmax
a∈A

dmin(a).

This process continues until all k starting cluster centers are obtained.
• Lloyd algorithm: it is believed that this algorithm is one of the oldest versions

of the k-means clustering algorithm introduced in 1957. However, the algorithm
was published only in 1982 [200]. For solving the k-partition problem, the Lloyd
algorithm starts with an arbitrary (or random) set of starting cluster centers X =
{x1, . . . , xk}. Then for each a ∈ A it computes the closest center ya ∈ X to a. At
the final step it updates the cluster centers as

xj = 1

|Ij |
∑

i∈Ij

ai , Ij =
{
i ∈ {1, . . . , m} : yai

= xj

}
.

This process continues until the set X is not changed in two successive iterations.
• Hartigan and Wong algorithm [144]: this algorithm is considered as an alterna-

tive heuristic to the Lloyd algorithm. Given a partition A1, . . . , Ak , the algorithm
randomly selects a single point a from its cluster Aj , j ∈ {1, . . . , k}. This point
is considered as a singleton cluster with the center a. Then the algorithm updates
the center of the cluster Aj \ {a} and finds the closest cluster to which a should
be reassigned by minimizing the clustering objective function.

• X-means algorithm [234]: this algorithm is different to other variants of the k-
means algorithm since it produces not only the set of clusters, but also the optimal
(true) number k of clusters. In the X-means algorithm, instead of predefining
k, the user specifies a range [kmin, kmax] for the number of clusters where k ∈
[kmin, kmax]. The Bayesian information criterion (BIC) score is used to identify k

in this algorithm. The algorithm starts with k = kmin and adds new cluster centers
when necessary until the upper bound kmax is reached. Then the BIC scores
are computed for all number of clusters in the range and the optimal number
k of clusters is selected with the best score. Finally, the cluster distribution
corresponding to the number k is chosen as the output of the algorithm. The X-
means algorithm consists of two main operations: the Improve-Params and the
Improve-Structure. The first operation is used to run the k-means algorithm until
it converges. The second operation finds out if and where a new center should
appear. This is achieved by splitting some clusters.

• j -means algorithm [141]: this algorithm is able to tackle degeneracy which
may happen with the k-means (more specifically with the h-means) algorithm.
If among obtained clusters only k − k1 are non-degenerate (i.e., non-empty)
for some 1 ≤ k1 < k, then k1 data points that are most distant from their
cluster centers are selected. Considering these points as new ones, additional
cluster centers are obtained and all points are reassigned.

5.2 k-Means Algorithm and Its Variants 143

• k-means++ algorithm [14]: this algorithm chooses the first starting cluster
center x1 ∈ A randomly. Assuming that l − 1, l ≥ 2 starting cluster centers
x1, . . . , xl−1 have been selected, the lth starting cluster center is chosen to be a
data point a ∈ A with the probability

Pl(a) = dmin(a)
∑l−1

t=1 dp(a, xt)
.

Here, dp is any distance function—usually the squared Euclidean distance
function—and

dmin(a) = min
t=1,...,l−1

dp(a, xt)

is the minimum distance between the data point a and the set of starting cluster
centers chosen so far. The k-means++ algorithm probabilistically selects log(k)

centers in each round, and then greedily selects the center that reduces the value
of the cluster function the most. Such a modification allows one to avoid choosing
two centers that are close to each other.

There are several other initialization algorithms for the k-means clustering algorithm
(see, e.g. [4, 64, 237]). These methods are based on the approach on dividing the
search space into disjoint subsets of simple structure (for example, hypercubes),
using them to identify dense regions of data and choosing starting cluster centers
from the densest regions.

5.2.3 Global k-Means Algorithm

The objective functions in all optimization models of the partitional clustering
problem are nonconvex and they may have many local minimizers. Moreover, as the
number of clusters increases, the number of local minimizers increases considerably.
Nevertheless, global or nearly global minimizers of the clustering problem are of
interest as they provide the best cluster structure of a data set with the least number
of clusters.

Global minimizers (or global solutions of the mixed integer programming
problem (4.2)) of the function ζk are points where the function attains its least value
over the feasible set. Since the clustering problem is NP-hard global optimization
algorithms are not always applicable to solve this problem and, even if they are,
finding global minimizers may become very time-consuming in large data.

In the most variants of the k-means algorithm some procedures are introduced to
improve the quality of the solution. These procedures, mainly, try to select a good
initial partition with a given number k of clusters.

144 5 Heuristic Clustering Algorithms

Fig. 5.2 Global k-means algorithm

Another approach is to compute clusters incrementally. Algorithms based on an
incremental approach start with the calculation of one cluster center and gradually
add a new cluster center at each iteration of the algorithm. More precisely, in order
to compute k-partition, k > 1, of the data set A, incremental algorithms start
from an initial state with the k − 1 centers for the (k − 1)-partition problem and
the remaining kth center is placed in an appropriate position. The global k-means
algorithm (GKM), introduced in [197], is one representative of these algorithms.
The flowchart of this algorithm is given in Fig. 5.2.

The GKM is a significant improvement of the k-means algorithm [197]. It is an
incremental algorithm where each data point is used as a starting point for the kth
cluster center. Next, we give the GKM in step by step form.

The GKM applies the k-means algorithm m times at each iteration of the
incremental algorithm, and therefore, it is not very efficient in large data sets. Two

5.2 k-Means Algorithm and Its Variants 145

Algorithm 5.2 Global k-means algorithm

Input: Data set A and the number k of clusters to be computed.
Output: Solution to the l-partition problem, l = 1, . . . , k.

1: (Initialization) Compute the centroid x1 of the data set A as

x1 = 1

m

m∑

i=1

ai , ai ∈ A, i = 1, . . . , m, (5.2)

and set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop.

3: Take the centers x1, . . . , xl−1 from the (l − 1)th iteration and consider each point a ∈ A

as a starting point for the lth cluster center, thus obtaining m initial solutions with l points
(x1, . . . , xl−1, a). Apply the k-means algorithm with k = l starting from each of them, and
denote the obtained solution by (ŷ1(a), . . . , ŷl (a)).

4: Compute the value of the function ζl , defined in (4.2), at the point (ŷ1(a), . . . , ŷl (a)), find

ζmin
l = min

a∈A
ζl

(
ŷ1(a), . . . , ŷl (a)

)
,

and define the point (ỹ1, . . . , ỹl) such that

ζl(ỹ1, . . . , ỹl) = ζmin
l .

5: Set xj = ỹj , j = 1, . . . , l and go to Step 2.

different approaches were proposed to reduce the computational burden [197]. One
approach is to compute the distance matrix D = [dij], i, j = 1, . . . , m of the data
set A, where dij = d2(ai , aj), before the application of the GKM. This reduces the
number of distance function evaluations significantly. However, this approach has a
limitation as the matrix D for large data sets (with tens of thousands of data points
and more) cannot be stored in the memory of a computer.

The second approach is to use only one data point as a candidate for the next
cluster center. More precisely, it selects a data point that provides the largest
decrease of the cluster function, and this point is considered as the kth cluster center.
This approach leads to the design of the fast global k-means algorithm (FGKM).
Next, we give a very brief overview of this algorithm.

Let x1, . . . , xk−1 be a given solution to the (k − 1)th clustering problem and
ζ ∗
k−1 = ζk−1(x1, . . . , xk−1) be the corresponding value of the objective function

given in (4.2). The FGKM computes an upper bound ζ ∗
k ≤ ζ ∗

k−1 − bj on the ζ ∗
k as

bj =
m∑

i=1

max
{

0, ri
k−1 − d2(ai , aj)

}
, j = 1, . . . , m, (5.3)

146 5 Heuristic Clustering Algorithms

where ri
k−1 is the squared distance between ai and the closest center among k − 1

cluster centers x1, . . . , xk−1, defined in (4.27). Then a data point aj ∈ A with the
maximum value of bj is chosen as a starting point for the kth cluster center. The
FGKM can be applied to large data sets, however, it is usually not as accurate as
the original GKM.

5.3 k-Medians Algorithm and Its Variants

There are some applications where clustering algorithms defined using the d1 and
d∞ distance functions generate more meaningful results than those defined using
the function d2. Particularly, clustering algorithms with d1 and d∞ are more robust
to outliers [312], and in high dimensional data mining applications the function d1
is consistently more preferable than d2 [2].

The distance function d1 was used to define the similarity measure in clustering
problems first time by Carmichael and Sneath in 1969 [59] (see, also [174]). In its
current form the k-medians algorithm was introduced by Späth in 1976 [270]. Since
then many variants of this algorithm have been proposed (see, e.g., [50, 82, 139,
234, 254, 288]. A comparison of clustering algorithms using the d1 and d∞ distance
functions is given in [85].

5.3.1 k-Medians Algorithm

The k-medians algorithm aims to solve clustering problems where the similarity
(dissimilarity) measure is defined using the L1-norm, that is, the similarity measure
is the distance function d1 defined in (1.3). Otherwise, this algorithm is similar to the
k-means algorithm. The flowchart of the k-medians algorithm is given in Fig. 5.3.

At each iteration of the k-medians algorithm we need to solve the following
problem for each cluster C = Aj , j = 1, . . . , k:

{
minimize ϕ(x)

subject to x ∈ R
n,

(5.4)

where

ϕ(x) = 1

|C|
∑

c∈C

d1(x, c),

and |C| is the cardinality of the cluster C. The coordinates of the solution x to this
problem are medians of corresponding attributes.

5.3 k-Medians Algorithm and Its Variants 147

Fig. 5.3 k-medians algorithm

Definition 5.1 A point x ∈ R
n whose coordinates are medians of attributes of the

set C is called the median of this set.

Proposition 5.2 Assume that for any i ∈ {1, . . . , n} coordinates ci are different for
all c ∈ C. Then the median of the set C is the solution to the problem (5.4).

Proof The function ϕ can be written as

ϕ(x) = 1

|C|
∑

c∈C

n∑

i=1

|xi − ci | = 1

|C|
n∑

i=1

∑

c∈C

|xi − ci |.

Consider functions

ψi(xi) =
∑

c∈C

|xi − ci | =
∑

c∈C

max{xi − ci, ci − xi}, i = 1, . . . , n.

148 5 Heuristic Clustering Algorithms

Then the function ϕ can be represented as

ϕ(x) = 1

|C|
n∑

i=1

ψi(xi).

This means that the minimization of ϕ is equivalent to the minimization of functions
ψi, i = 1, . . . , n. For a given i ∈ {1, . . . , n} define the following sets:

C−
i = {c ∈ C : ci < xi},

C+
i = {c ∈ C : ci > xi}, and

C0
i = {c ∈ C : ci = xi}.

Since all numbers ci (c ∈ C) are different it is obvious that for a given x ∈ R
n the

cardinality of the set C0
i is either 0 or 1. Then the subdifferential of the function ψi

at xi is

∂ψi(xi) = |C−
i | − |C+

i | +
[

− |C0
i |, |C0

i |
]

=
[
|C−

i | − |C+
i | − |C0

i |, |C−
i | − |C+

i | + |C0
i |
]
.

For a point xi to be a global minimizer of the function ψi , it is necessary and
sufficient that 0 ∈ ∂ψi(xi). This means that at xi we have

|C−
i | − |C+

i | − |C0
i | ≤ 0, and

|C−
i | − |C+

i | + |C0
i | ≥ 0.

Depending on the cardinality of the set C0
i , we have two cases:

(i) for |C0
i | = 0 , we get |C−

i | − |C+
i | = 0, that is, |C−

i | = |C+
i | and therefore, the

total number of points c ∈ C with different ith coordinate is 2|C−
i | (or 2|C+

i |).
It means that this number is even and it is obvious that xi is the median; and

(ii) for |C0
i | = 1, we have −1 ≤ |C−

i |−|C+
i | ≤ 1. This leads to the following three

options:

• if |C−
i | = |C+

i | − 1, then the number of points c ∈ C with different ith
coordinates is even. Therefore, xi is the median coinciding with one of
ci (c ∈ C);

• if |C−
i | = |C+

i |, then the number of points c ∈ C with different ith
coordinates is odd and xi is the median coinciding with the coordinate which
is exactly in the middle;

5.3 k-Medians Algorithm and Its Variants 149

• if |C−
i | = |C+

i | + 1, then the number of points c ∈ C with different ith
coordinates is even, and again xi is the median coinciding with one of ci (c ∈
C).

This completes the proof. ��
Remark 5.1 The assumption used in Proposition 5.2 is reasonable. If there is any
two data points with the same ith coordinate, i ∈ {1, . . . , n}, then one of them can
be changed by adding a very small number to it.

In practice, the calculation of the median for each cluster Aj , j = 1, . . . , k can
be time-consuming. One way to deal with this difficulty is to apply Weiszfeld’s
algorithm [293, 294] to find the medians. This algorithm proceeds as follows.

Algorithm 5.3 Weiszfeld’s algorithm

Input: Finite point set C ⊂ R
n and a tolerance ε > 0.

Output: Median c̄ of the set C.

1: (Initialization) Compute the centroid c of the set C and set c̄ = c.

2: Compute

u =
∑

c∈C

c
‖c − c̄‖ and u1 =

∑

c∈C

1

‖c − c̄‖ .

3: Compute c̄1 = u/u1.

4: (Stopping criterion) If ‖c̄1 − c̄‖ < ε, then stop. Otherwise, set c̄ = c̄1 and go to Step 2.

The Weiszfeld’s algorithm may fail to converge when one of its estimates c̄ falls
on one of the points c ∈ C.

In addition, since (5.4) is a convex NSO problem one can apply any NSO
algorithms, given in Chap. 3, to solve it and most of these methods will find the
median in a finite number of steps.

The step by step form of the k-medians algorithm is given next.
In Step 4 of Algorithm 5.4, one can apply stopping criteria used in the k-means

algorithm (see Sect. 5.2.1).

5.3.2 Variants of k-Medians Algorithm

As mentioned before, various versions of the k-medians algorithm have been
proposed. Next, we describe the most important—or at least the most well-known—
ones:

150 5 Heuristic Clustering Algorithms

Algorithm 5.4 k-medians algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) Select initial cluster centers (x1, . . . , xk) ∈ R
nk .

2: Allocate data points to the closest cluster center using the distance function d1 and find the
cluster partition A1, . . . , Ak .

3: Compute the center xj of the cluster Aj as a vector of medians of attributes using data points
from the cluster Aj , j = 1, . . . , k.

4: (Stopping criterion) Repeat Steps 2 and 3 until a predefined stopping criterion is met.

• ISODATA clustering algorithm [92, 157, 288]: this algorithm does not require
the number of clusters to be known a priori but only a user-defined threshold
for the cluster separation. It uses splitting and merging to find clusters. First,
the ISODATA algorithm places some initial cluster centers randomly with an
initial number of clusters. Then it assigns data points to these centers using the
d1 distance function and obtains the initial cluster distribution of the data set. For
each cluster, a new cluster center is computed as its median. Then the standard
deviations within each cluster and also the distances between the new centers are
calculated. Next, the following two operations are applied to obtain a new cluster
distribution:

– a cluster is split if its standard deviation is greater than the user-defined
threshold; and

– two clusters are merged if the distance between their centers is less than the
user-defined threshold.

These iterations continue until one of the following stopping criteria met:

– the average inter-center distance falls below the user-defined threshold;
– the average change in the inter-center distance between iterations is less than

a threshold; or
– the maximum number of iterations is reached.

The outcome of the ISODATA algorithm strongly depends on the choice of
starting cluster centers. In addition, the algorithm may become time-consuming
for clustering in highly unstructured data sets. The strength of the ISODATA
algorithm is that it requires limited information from the user.

• X-medians algorithm: this algorithm is an improvement of the original k-
medians algorithm [234], and can be considered as a version of the X-means
algorithm with the similarity measure defined using the L1-norm. The X-medians
algorithm does not require the number of clusters to be provided, instead lower
and upper bounds for this number are required. The details of the X-means
algorithm are given in Sect. 5.2.2.

5.4 k-Medoids Algorithm 151

In addition, versions of the k-medians algorithm for solving fuzzy clustering
problems were proposed in [50, 116, 306]. These algorithms are similar to the fuzzy
c-means algorithm to be described in Sect. 5.5.

5.4 k-Medoids Algorithm

In the MSSC problems the calculation of centroids or in the clustering problems
with the d1 and d∞ distance functions, the calculation of cluster centers may yield
points that are not in a data set A. The medoid is defined as the point of a cluster,
whose average dissimilarity to all points in the cluster is the lowest in comparison
with any other point from that cluster, that is, it is the most centrally located data
point in the cluster. The k-medoids algorithm aims to find such points in clusters.
A flowchart of this algorithm is given in Fig. 5.4.

Fig. 5.4 k-medoids algorithm

152 5 Heuristic Clustering Algorithms

The k-medoids algorithm is a partitional clustering algorithm. This algorithm
is similar to the k-means algorithm but it calculates medoids instead of means.
Therefore, it is considered to be more resilient to outliers compared to k-means.
Different similarity measures using various distance functions can be used within
the k-medoids algorithm.

The problem of finding k medoids x = (x1, . . . , xk) ∈ R
nk with k > 1 can be

formulated as the constrained minimization problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize fk(x)

subject to ϕ(xj) = min
i=1,...,m

‖xj − ai‖ = 0, j = 1, . . . , k,

x = (x1, . . . , xk) ∈ R
nk,

(5.5)

where

fk(x) = 1

m

m∑

i=1

min
j=1,...,k

dp(xj , ai).

Here, the constraints ϕ(xj) = 0, j = 1, . . . , k guarantee that the solution points
xj , j = 1, . . . , k are medoids, that is, they belong to A. Applying the penalty
function method, the problem (5.5) is reduced to the unconstrained minimization
problem

{
minimize Fk(x)

subject to x = (x1, . . . , xk) ∈ R
nk,

where

Fk(x) = fk(x) + ρ

k∑

j=1

|ϕ(xj)|,

and ρ > 0 is the penalty parameter.
The k-medoids algorithm was first introduced by Späth in 1985 [273]. This

algorithm minimizes the objective function value by swapping data points from one
cluster to another one. First, the k-medoids algorithm randomly generates starting
medoids using data points. With these medoids as initial centers, each data point
is assigned to its closest medoid and the cluster distribution is obtained. Then those
data points whose movements from one cluster to another one result in the reduction
of the objective function value are chosen as new cluster centers (medoids). This
process is continued until no point moving results in the decrease of the value of the
objective function Fk .

The widely used version of the k-medoids algorithm is the partitioning around
medoids (PAM) algorithm. It was first introduced in [173] (see, also [174, 231, 286])

5.4 k-Medoids Algorithm 153

where the d1 distance function was used to define the similarity measure. One
version of the PAM algorithm is given below where we use the similarity measure
dp with p = 1, 2,∞. Note that the outcome of this algorithm does not depend on
the order of points in a data set.

Algorithm 5.5 Partitioning around medoids

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) For each data point a ∈ A calculate

f1,a =
∑

b∈A,b �=a

dp(a, b),

find f min
1 = min

a∈A
f1,a and identify a data point ā ∈ A such that f1,ā = f min

1 . Set x1 = ā, s = 1

and define the set of selected points S = {ā} and the set of unselected points U = A \ S.

(i) Set s = s + 1. If s > k, then go to Step 2 since the initial medoids (x1, . . . , xk) have
been found.

(ii) For each data point a ∈ U calculate the value

fs,a =
∑

b∈U,b�=a

min
{
dp(x1, b), . . . , dp(xs−1, b), dp(a, b)

}
.

Compute f min
s = min

a∈U
fs,a and find a point ā ∈ U such that fs,ā = f min

s . Set xs = ā,

the set of selected points S = S
⋃{ā}, the set of unselected points U = A \ S and go

to Step 1(i).

2: Assign each data point to its closest medoid, find the cluster partition A1, . . . , Ak and compute
the value f̂k of the objective function fk , given in the problem (5.5). Set l = 1.

3: Take the medoid xl . For each a ∈ U , calculate

fl,a = 1

m

∑

b∈U,b�=a

min
{
dp(x1, b), . . . , dp(xl−1, b), dp(a, b), dp(xl+1, b), . . .

, dp(xk, b)
}
.

Compute

f min
l = min

a∈U
fl,a,

and find a data point ā such that fl,ā = f min
l .

4: If f min
l < f̂k , then set xl = ā and f̂k = f min

l . Update the sets S = S \ {xl}⋃{ā} and
U = U \ {ā}⋃{xl}.

5: If l < k, set l = l + 1 and go to Step 3.

6: (Stopping criterion) If f̂k < fk , then go to Step 2. Otherwise stop.

154 5 Heuristic Clustering Algorithms

5.5 Fuzzy c-Means Algorithm

Hard clustering approaches generate partitions or groups where each data point
belongs to one and only one cluster. Fuzzy clustering extends the idea into the
multi-label domain where data points may belong simultaneously to many clusters.
In practice, fuzzy clustering associates each data point with every cluster using a
membership function. The output of the fuzzy clustering algorithms is, therefore, a
clustering rather than a partition.

Given the data set A, the problem of finding c fuzzy clusters is formulated as the
optimization problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize Uc(W)

subject to wij ∈ [0, 1], i = 1, . . . , m, j = 1, . . . , c,
c∑

j=1
wij = 1, i = 1, . . . , m,

(5.6)

where

Uc(W) =
m∑

i=1

c∑

j=1

w
q
ij dp(xj , ai).

Here, q > 1 is a predefined real number—the so-called fuzzifier—and W =
[wij], i = 1, . . . , m, j = 1, . . . , c is the m × c membership matrix. The fuzzy
cluster centers x1, . . . , xc are defined as

xj =
∑m

i=1 w
q
ij ai

∑m
i=1 w

q
ij

, j = 1, . . . , c. (5.7)

The design of the membership values wij —and thus, the membership matrix
W—is an important problem in fuzzy clustering. One widely used formula for
computing wij is

wij = 1

∑c
t=1

(‖ai−xj ‖
‖ai−xt‖

) 2
q−1

, i = 1, . . . , m, j = 1, . . . , c. (5.8)

The fuzzifier q determines the level of cluster fuzziness. Large values of q result in
smaller membership values wij . If there is no any prior information, one can take
q = 2.

A fuzzy clustering algorithm usually selects an initial fuzzy partition of m data
points into c clusters by initializing the membership matrix W , computes the value
of the fuzzy objective function Uc(W), and reassigns data points to clusters to

5.5 Fuzzy c-Means Algorithm 155

Fig. 5.5 Fuzzy c-means algorithm

reduce this objective function. A common fuzzy clustering algorithm is the fuzzy
c-means algorithm. The flowchart of this algorithm is given in Fig. 5.5.

The fuzzy c-means algorithm is an extension of the k-means algorithm. It is
also referred as the soft clustering or soft k-means algorithm. This algorithm was
first introduced by Dunn in 1973 [93] and was modified by Bezdek in 1981 [47].
Similar to k-means, the d2 similarity measure is usually used with the fuzzy c-
means algorithm. In addition, the variants of the fuzzy c-means algorithm applying
similarity measures with the L1- and L∞-norms are given in [50, 116, 306]. The
fuzzy c-means algorithm is widely used, for instance, in pattern recognition. The
step by step description of this algorithm is given next.

156 5 Heuristic Clustering Algorithms

Algorithm 5.6 Fuzzy c-means algorithm

Input: Data set A, the number of clusters c to be computed and a tolerance ε > 0.
Output: Solution to the c-clustering problem and the membership matrix W .

1: (Initialization) Select c initial cluster centers (x1, . . . , xc) ∈ R
nc. Apply (5.8) to compute the

membership matrix W1. Then compute the value of the objective function Uc(W1). Set l = 1.

2: Apply (5.7) and the membership matrix Wl to compute new cluster centers x1, . . . , xc.

3: Update the membership matrix Wl+1 and compute the value of the objective function
Uc(Wl+1).

4: (Stopping criterion) If

|Uc(Wl+1) − Uc(Wl)| < ε,

then stop. Otherwise set l = l + 1 and go to Step 2.

Note that, if we use d2 as the similarity measure and q → 1, then in the
equation (5.8) for each data point ai ∈ A the coefficients wij become either 1 or 0.
This means that the fuzzy clustering problem becomes the hard clustering problem
and the fuzzy c-means algorithm becomes the k-means algorithm. In addition,
usually for any given data point the membership value for one cluster is significantly
greater than its values for all other clusters. This shows a higher confidence in
the assignment of that point to this cluster. Therefore, using the largest values of
the membership function we can replace the fuzzy cluster distribution by the hard
cluster distribution.

5.6 Clustering Algorithms Based on Mixture Models

Finite mixture models are a class of probability distribution formed by a convex
combination of two or more probability density functions. They are initially
developed by Newcomb in 1886 [226] and Pearson in 1894 [233], and later extended
for solving regression [240] and clustering problems [43, 45, 49, 51, 104, 196, 211,
212, 296].

To some extent, partitional clustering algorithms based on the mixture models
can be considered as fuzzy clustering algorithms. However, the probabilities of each
data point being a member of a particular cluster are used to define the membership
matrix in algorithms based on the mixture models.

5.6.1 Mixture Models

In the mixture model approach, it is assumed that data points arise from k ≥ 2
distinct random processes. Each of these processes is modelled by a specific density

5.6 Clustering Algorithms Based on Mixture Models 157

function. Let z be a random variable. A density function ϕ is a mixture of k

components ψ1, . . . , ψk if

ϕ(z) =
k∑

j=1

λjψj (z), (5.9)

where λj are the mixing weights satisfying the conditions

k∑

j=1

λj = 1, 0 ≤ λj ≤ 1, j = 1, . . . , k.

In practice, it is usually assumed that the density functions ψj are of parametric
form, that is they depend on some parameter θj , j = 1, . . . , k. In general, these
parameters are unknown. Then (5.9) can be written as

ϕ(z, θ) =
k∑

j=1

λjψj (z, θj).

Here, ψj are called probability density functions, j = 1, . . . , k and the overall
parameter vector is θ = (λ1, . . . , λk, θ1, . . . , θk).

Clustering algorithms based on mixture models are partitional model-based
algorithms. Assume that the number of clusters k is predefined. Then the data
points to be clustered are drawn from a mixture of k clusters in some unknown
proportions λ1, . . . , λk , that is, each data point a ∈ A is taken from a population
whose probability density function is the mixture probability density function of the
form

f (a, θ) =
k∑

j=1

λjfj (a, θj), (5.10)

where fj (a, θj) is the probability density function of the j th component, a is a
vector of input variables (data points), θj is the component specific parameter vector
for the density function fj , λj is the (unknown) mixing proportion—also known
as a prior probability of the component j—and θ is the vector of all parameters:
θ = (λ1, . . . , λk, θ1, . . . , θk).

The model (5.10) is considered as a finite mixture model density with the
parameter vector θ . This parameter can be estimated, for instance, by the maximum
likelihood method. Nevertheless, estimation of parameters θ1, . . . , θk and coeffi-
cients λ1, . . . , λk , when fj , j = 1, . . . , k are not the same parametric probability
density functions, is a challenging problem. Therefore, from now on we assume that
functions fj , j = 1, . . . , k are represented using the same parametric distribution,
that is, they are the same function fj ≡ f̄ , j = 1, . . . , k for some probability
density function f̄ .

158 5 Heuristic Clustering Algorithms

Various probability density functions can be used to design clustering algorithms
based on the finite mixture model. The multivariate Gaussian mixtures are the most
popular choices. In this case, parameters to be estimated are the mean value vector
and the dispersion matrix. In addition, the beta and Bernoulli distributions have been
used to design mixture models based clustering algorithms. Once the mixture model
has been fitted, a probabilistic clustering of data into k clusters can be obtained
in terms of the fitted posterior probabilities of component membership for data.
An outright assignment of data into k clusters is achieved by assigning each data
point to the component to which it has the highest estimated posterior probability of
belonging.

5.6.2 Maximum Likelihood Estimation

The parameters θ1, . . . , θk and coefficients λ1, . . . , λk can be estimated using the
maximum likelihood (ML) estimation by applying the expectation maximization
algorithm. Given m independent points ai ∈ A, i = 1, . . . , m, we can formulate a
likelihood function as

L(θ) =
m∏

i=1

⎛

⎝
k∑

j=1

λj f̄ (ai , θj)

⎞

⎠ , or

L0(θ) ≡ ln L(θ) =
m∑

i=1

ln

⎛

⎝
k∑

j=1

λj f̄ (ai , θj)

⎞

⎠ . (5.11)

Now, the clustering problem becomes a ML estimation problem of the giving num-
ber of k clusters and the set A. The coefficients λ1, . . . , λk and parameters θ1, . . . , θk

are estimated by maximizing the function L or, equivalently, the function L0.
Functions L and L0 are multi modal and may have many local maximizers. The

standard procedure for finding the ML estimate—that is, to maximize the function
L or L0—is the EM algorithm. This algorithm is particularly applicable in the multi
parameter situations.

5.6.3 Expectation Maximization Clustering Algorithm

The expectation maximization (EM) algorithm is the primary tool in finite mixture
models and clustering algorithms based on these models [212]. The algorithm seeks
to find the ML estimates iteratively applying two steps: expectation step (E-step) and
maximization step (M-step). Then these estimates are used for computing weights

5.6 Clustering Algorithms Based on Mixture Models 159

Fig. 5.6 Expectation maximization clustering algorithm

for cluster distribution. A flowchart of the EM clustering algorithm is given in
Fig. 5.6.

The E-step estimates the expected value of the complete data log likelihood
function (5.11) using the observed data a and the current parameter estimates
λj , θj , j = 1, . . . , k. Let θ t = (λt

j , θ t
j), j = 1, . . . , k be the parameters estimate

at the t th iteration. At the next iteration, the EM algorithm calculates the function

Q(θ, θ t) =
m∑

i=1

ln
k∑

j=1

wt
ij λj f̄ (ai , θj), (5.12)

where

wt
ij = λt

j f̄ (ai , θ
t
j)

∑k
r=1 λt

r f̄ (ai , θ t
r)

is the posterior probability that the ith data point belongs to the j th component of
the mixture after the t th iteration.

160 5 Heuristic Clustering Algorithms

The M-step maximizes the expectation of log likelihood for each component
separately using the posterior probabilities as weights. In the M-step the Q(θ, θ t)

is maximized with respect to θ and the (t + 1)th iteration of the EM algorithm is
defined as

θ t+1 = argmax
θ∈Θ

Q(θ , θ t).

Here, Θ denotes the set of parameters θ . The E-steps and M-steps are repeated
until some prespecified stopping criterion is met. One criterion can be defined based
on the convergence of the parameters θ t ; however, this might be too demanding if
there is a large number of parameters. The other criterion—probably, the most usual
stopping criterion—is to stop when the relative increase in the likelihood function
is sufficiently small. In addition, the predefined maximum number of iterations can
be used as a stopping criterion.

Once the estimates of λj and θj , j = 1, . . . , k are obtained—we denote them as
λ̂j and θ̂j , respectively—each data point ai ∈ A can be assigned to the cluster Aj

(using Bayes rule) via the estimated posterior probability

ŵij = λ̂j f̄ (ai , θ̂j)
∑k

r=1 λ̂r f̄ (ai , θ̂r)
.

This process is considered as a fuzzy clustering of a point ai . In addition, we can
form a deterministic clustering by applying the rule

• assign ai to Aj , if ŵij > ŵir for all r = 1, . . . , k, r �= j.

Note that the EM algorithm is a local search algorithm and can converge only to
local maximizers of the functions L and L0 [76, 210]. Thus, there is no guarantee
of finding the best cluster structure.

5.7 Self-Organizing Map Algorithm

Self-organizing map (SOM) is an unsupervised neural network [185] (see also
[184]) that usually contains a 2-dimensional array of neurons. The SOM algorithm
is widely used since it generates an intuitive two-dimensional map of a multidimen-
sional data set. The flowchart of the method is given in Fig. 5.7.

Assume that we are given a set of input data vectors A = {a1, . . . , am} (ai ∈ R
n)

and a set of k neurons that are represented as k weights W = {w1, . . . , wk} (wj ∈
R

n). The data points ai , i ∈ {1, . . . , m} are presented to the network one at a time.
The point ai is compared with all weight vectors wj , j = 1, . . . , k, and the nearest
wj is selected as the best matching unit (BMU) for this point. We say that the data

5.7 Self-Organizing Map Algorithm 161

Fig. 5.7 Self-organizing map algorithm

point ai is mapped to the best matching neuron c and denote the corresponding
weight by wc.

The weights of the BMU are adjusted by

wj = wj + α(t)β(t)(ai − wj), j = 1, . . . , k, (5.13)

where β is a neighborhood function and α is a learning rate at the iteration t . Usually
β is a decreasing exponential function of t . For instance, it can be defined as

β(t) = exp
(

− r2

2σ(t)2

)
,

162 5 Heuristic Clustering Algorithms

where

σ(t) = η
T − t

T
, η ≥ 1.

The value of the function β depends on the iteration t > 0, the maximum number
of iterations T given for the algorithm, and the distance r in the output space of
each neuron in the set of neighborhood weights Nc. The set Nc around the BMU are
selected such that

Nc = {wl : dnt (c, l) ≤ r, l �= c
}
,

where dnt (c, l) ∈ N is the distance between the BMU and a neuron l in 2-
dimensional coordinates of the network topology and r > 0 is the predefined radius.
The learning rate α is a decreasing linear function of t that reduces the effect of the
neighborhood function β as t → T .

The quality of the map is usually measured by the quantization error

E = 1

m

m∑

i=1

‖ai − wc‖, (5.14)

where wc is the weight of the BMU of ai , i = 1, . . . , m. The overall goal of
the SOM algorithm is to minimize this error. A general description of the SOM
algorithm is as follows.

Algorithm 5.7 Self-organizing map algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Set of k weights wj , j = 1, . . . , k of neurons.

1: (Initialization) Initialize the maximum number of iterations T , a radius r of the network and
weight vectors wj , j = 1, . . . , k. Set stopping tolerance ε > 0 and the iteration counter t = 1.

2: Select a data point ai , i = 1, . . . , m and find its closest neuron c (BMU), where c is

c = argmin
j=1,...,k

‖ai − wj‖.

Denote the corresponding weight by wc.

3: Set wj = wc. Update the weights of the BMU and its neighboring neurons using

wj = wj + α(t)β(t)(ai − wj),

where β is a neighborhood function and α is a learning rate at the iteration t .

4: If all input data are presented to the network go to Step 5, otherwise go to Step 2.

5: (Stopping criterion) Calculate E using (5.14). If E ≤ ε or t > T , then stop. Otherwise set
t = t + 1 and go to Step 2.

5.7 Self-Organizing Map Algorithm 163

Algorithm 5.7, in general, generates a suboptimal partition if the initial weights
are not properly selected. Therefore, the choice of initial weights is very important.
Several algorithms have been introduced for initialization of weights in the SOM
algorithm [217–219]. In addition, a global optimization approach for the determi-
nation of weights of layered feed-forward networks is introduced in [265]. The
description of other neural network architectures for the learning of recognition
categories can be found in [60, 62].

Chapter 6
Metaheuristic Clustering Algorithms

6.1 Introduction

Partitional clustering is a global optimization problem. However, traditional clus-
tering algorithms such as k-means and other heuristics described in the previous
chapter can only guarantee convergence to a local solution which may not reflect an
existing cluster structure of a data set. There have been some attempts to reformulate
the clustering problem in order to solve it globally. For instance, in [261] the
clustering function is reformulated as an equivalent implicit concave function. Then
the concept of convexity cuts is implemented to obtain the optimal solution. This
approach leads to an exact algorithm for clustering; however, the algorithm is very
time-consuming, requires a large memory, and is not applicable in large data sets. In
addition, clustering algorithms based on the dynamic programming [159, 244] and
branch and bound techniques [84, 186] are applicable only in small data sets [140].

Metaheuristic algorithms are well-known optimization tools for global optimiza-
tion. They can handle both discrete and continuous variables, and they have been
widely applied for solving clustering problems. In this chapter, we consider both
single point-based and population-based—also known as evolutionary algorithms—
metaheuristics.

The single point-based metaheuristics applied to solve clustering problems
include tabu search and simulated annealing. These algorithms start from an initial
solution, use some probabilities to escape from local solutions, and keep record on
the best solution obtained. The tabu search and simulated annealing algorithms for
clustering are described in Sects. 6.2 and 6.3, respectively.

In the rest of this chapter, we consider evolutionary algorithms. These algorithms
are population-based metaheuristics. That is instead of just one initial solution,
we have a set of initial solutions. Among the evolutionary algorithms, the genetic
algorithm, the artificial bee colony optimization, the particle swarm optimization,

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_6

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_6

166 6 Metaheuristic Clustering Algorithms

and the ant colony optimization algorithms are frequently used in clustering. The
descriptions of these algorithms for clustering are given in Sects. 6.4–6.7.

Evolutionary algorithms are easy to implement and well suited for clustering.
These algorithms have both local and global search abilities. The evolutionary
algorithms are based on optimization of an objective function (fitness function) that
guides the evolutionary search. In the case of clustering, different fitness functions
can be formulated using various models of the clustering problems.

Evolutionary algorithms can be applied either directly to the clustering problem,
considering it as a global optimization problem or in combination with other
clustering algorithms to improve the quality of solutions obtained by the latter
algorithms. However, the evolutionary clustering algorithms become inaccurate
and may require large computational effort in large data sets. In these cases, they
can still be applied to generate good starting cluster centers to be used by other
clustering algorithms which may lead to a design of efficient and accurate clustering
algorithms also for large data sets.

The comparison of clustering algorithms based on different metaheuristics is
presented in [11]. Survey of these algorithms can be found, for instance, in
[148, 252]. The description of metaheuristics for clustering not included in this book
can be found, for example, in [74, 125, 137, 138, 276]. The theoretical issues of
convergence of evolutionary algorithms are discussed in [107].

6.2 Tabu Search Clustering Algorithm

Tabu search (TS) is a metaheuristic algorithm that explores the solution space
beyond the local optimality and is not trapped in local solutions. The TS method
was introduced in 1986 [118] and then modified in 1989 by Glover [119–122]. It
can handle both discrete and continuous variables and, therefore, it is applicable to
solve combinatorial optimization problems. The TS based clustering algorithm was
first developed in 1995 [9], and then it was extended to solve the fuzzy clustering
problem in 1997 [10]. The basic idea of the TS clustering algorithm is given in
Fig. 6.1.

The TS algorithm includes the following elements. It starts from a single starting
point. A move is a procedure which generates a new trial point using the current
point. The set of all possible moves out of the current point constitutes the set of
candidate moves. It is possible to make a move out of the current iteration point to
a point where the value of the objective function is greater (or equal) than its value
at the current point. This property of the TS method makes it suitable for solving
nonconvex clustering problems. The tabu restrictions are certain conditions imposed
on the set of candidate moves to make some of them forbidden. All such moves
constitute the tabu list. On the other hand, aspiration criteria are rules that override
tabu restrictions, that is, if a certain move is on the tabu list, then the aspiration
criterion, when satisfied, can make this move allowable.

Thus, the TS (clustering) algorithm starts with an initial point and computes the
value of the objective function at this point. Then, it generates a set of possible

6.2 Tabu Search Clustering Algorithm 167

Fig. 6.1 Tabu search clustering algorithm

moves and their tabu list. If the best of these moves is not tabu—or if the best is
tabu, but satisfies the aspiration criterion—then the algorithm uses that move to
determine a new point. Otherwise, the algorithm selects the best move which is not
on the tabu list and finds a new point using it. The algorithm repeats this procedure
until the number of iterations reaches its maximum value. Then the best solution
obtained so far is accepted as the solution for the clustering problem.

The move picked at a given iteration is added to the tabu list to avoid possible
reverse moves. The maximum number of moves in the tabu list is restricted above,
and when this number is reached the first move is removed from the list. Usually,
the objective function value is used to define the aspiration criterion. For instance,
if a tabu move leads to a better solution than the best solution so far, the aspiration
criterion is satisfied and the tabu restriction is overridden.

168 6 Metaheuristic Clustering Algorithms

The TS clustering algorithm uses the mixed integer formulation (4.2) with the
squared Euclidean distance d2 as an objective function. Therefore, the centroids xj

can be computed as

xj =
∑m

i=1 wij ai∑m
i=1 wij

, j = 1, . . . , k,

where wij = 1 if the data point ai is allocated to the cluster Aj and wij = 0,
otherwise.

Next, we give the step by step form of the TS clustering algorithm. In what
follows the current iteration point, trial point, and the best solution are denoted
by xc, xt , and xb, respectively. Consequently, ζ c

k , ζ t
k , and ζ b

k are the values of the
objective function ζk at these points.

Algorithm 6.1 Tabu search clustering algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) Select the length of the tabu list ntl, the number of trial points n̄, the probability
threshold P and the maximum number of iterations jmax.

2: Select an arbitrary starting cluster center xc
1 = (xc

1,1, . . . , xc
1,k) and compute the value ζ c

k,1 of

the objective function ζk at xc
1. Set xb = xc

1 and ζ b
k = ζ c

k,1. Set the initial value for the length
of the tabu list ttl = 0 and j = 1.

3: (Set of candidate moves) Using xc
j and P randomly generate n̄ trial points xt

1, . . . , xt
n̄ (see

Remark 6.1). Compute the values ζ t
k,1, . . . , ζ

t
k,n̄ of the objective function ζk at these points.

4: Arrange these values in an ascending order. Denote this order as ζ t
[1], . . . , ζ

t[n̄] and their
corresponding points as xt

[1], . . . , xt[n̄].
5: (Tabu restrictions and aspiration rule) If the trial point corresponding to the value ζ t

[1] is not

on the tabu list or it is on the tabu list but ζ t
[1] < ζb

k , then set xc
j+1 = xt

[1], ζ c
k,j+1 = ζ t

[1] and
go to Step 7.

6: Select l, l ∈ {1, . . . , n̄} such that ζ t
[l] is the best objective function value which is not on the

tabu list. If all ζ t
[1], . . . , ζ

t[n̄] are on the tabu list, then go to Step 3. Otherwise, set xc
j+1 =

xt
[l], ζ c

k,j+1 = ζ t
[l].

7: Add xc
j+1 to the bottom of the tabu list and set ttl = ttl + 1. If ttl > ntl, then delete the first

element from the tabu list and set ttl = ttl − 1. If ζ b
k > ζ c

k,j+1, then set xb = xc
j+1 and

ζ b
k = ζ c

k,j+1.

8: (Stopping criterion) If j = jmax, then stop. xb is the best solution found and ζ b
k is the

corresponding best value. Otherwise, set j = j + 1 and go to Step 3.

Remark 6.1 Different strategies can be used to generate points xt
1, . . . , xt

n̄ in Step 3
of Algorithm 6.1. One strategy is as follows. Let A be an array of dimension m

whose ith element Ai is an index j representing the cluster Aj , j = 1, . . . , k to
which ai is allocated. Clearly, we have wij = 1, if Ai = j and 0, otherwise. Denote

6.3 Simulated Annealing Clustering Algorithm 169

by Ac the current solution and by At the trial point. For all i = 1, . . . , m generate
a random number u from the uniform distribution U [0, 1]. If u < P , then set At

i =
Ac

i . Otherwise, draw randomly an integer l̄ from the set
{
l : l ∈ {1, . . . , k}, l �= Ac

i

}

and set At
i = l̄. Generate a new trial point xt and repeat the process n̄ times.

6.3 Simulated Annealing Clustering Algorithm

Simulated annealing (SA) is a well-known stochastic technique for approximating
the global optimum of a given function in a large search space. Its name and
inspiration come from the annealing process in metallurgy. Annealing is the process
of heating up a solid to a high temperature followed by slow cooling achieved by
decreasing of the temperature. This process consists of several steps, and at each
step the temperature is kept a constant for a period of time sufficient to reach the
thermal equilibrium. At equilibrium the solid may have many configurations, each
corresponding to a specific energy level.

The SA method for optimization was introduced in 1983 by Kirkpatrick et.al.
[178] and then modified in 1985 by Cerny [65] for solving discrete optimization
problems. Later, it was extended to solve global optimization problems with
continuous variables [1]. Under some mild conditions it is proved that the SA
method converges to the global solution with the probability one [1, 201].

The SA method is well suited for solving clustering problems. In this context
it was first introduced in 1991 by Selim and Al-Sultan [262] (see also [182]) for
solving the MSSC problems using their integer programming model. Later, different
versions of the SA clustering method are developed, for instance, in [54, 275]. The
basic idea of the SA clustering algorithm is given in Fig. 6.2.

Next, we describe the SA clustering algorithm in more detail. We use the
nonsmooth nonconvex optimization model of the clustering problem (4.3) with
the squared Euclidean distance d2. The SA clustering algorithm randomly selects
an initial solution xc ∈ R

nk consisting of k cluster centers. This algorithm is
designed to escape from solutions which are only local minima of the objective
function. This is achieved by accepting—with some probability—a new solution
with a lower quality. The probability of acceptance is governed by a parameter called
the temperature.

The SA clustering algorithm consists of inner and outer iterations. The outer
iterations can be considered as a global search phase of the method whereas the inner
iterations are its local search phase. In the outer iteration the temperature T , which
is analogous to the temperature in the physical process of annealing, is updated.
With this aim, an arbitrary initial value T1 for the temperature and a temperature
multiplier r ∈ (0, 1) are taken, and the temperature is updated by the formula
Tj+1 = rTj , j = 1, 2, Thus, the temperature starts with its highest value at
the first iteration and reduces to its final value at the last iteration.

170 6 Metaheuristic Clustering Algorithms

Fig. 6.2 Simulated annealing clustering algorithm

In the inner iteration, the current solution xc is modified to generate a new trial
solution xt . If the trial solution reduces the value of the objective, then it is accepted
as the new solution. If it increases the value of the objective, then the trial solution
can still be accepted with an acceptance probability

Pac = min
{

1, exp
(fk(xc) − fk(xt)

T

)}
.

6.3 Simulated Annealing Clustering Algorithm 171

More precisely, a random number u from the uniform distribution U [0, 1] is
generated. If Pac ≥ u, then the trial solution is accepted as a new solution; otherwise
the inner iterations are repeated. The SA clustering algorithm keeps record on
the best solution xb obtained so far and the corresponding value of the objective
function f b

k .

Remark 6.2 There are various ways for generating points xt from some neighbor-
hood of the point xc in Step 3 of Algorithm 6.2. Nevertheless, it is worth of noting
that after few iterations of the algorithm, it can be expected that the current solution
xc will provide much lower objective function value than a random point from the
search space. Therefore, as a general rule, the trial points should be skewed toward
the current solution as the solution process proceeds.

Algorithm 6.2 Simulated annealing clustering algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) Select the initial value T1 and the final value Tmin < T1 of the temperature, a
multiplier r ∈ (0, 1) for scheduling the temperature, and the maximum number jmax of steps
for each inner iteration.

2: Select an arbitrary starting cluster center xc = (xc
1, . . . , xc

k) ∈ R
nk and compute the value f c

k

of the objective function fk at xc. Set xb = xc, f b
k = f c

k , T = T1 and j = 1.

3: Randomly generate a trial point xt in some neighborhood of the current iteration point xc, and
compute the value f t

k of the function fk at this point.

4: If f t
k ≥ f c

k , then go to Step 5. Otherwise, set xc = xt and f c
k = f t

k . If f t
k ≥ f b

k , then set
j = j + 1 and go to Step 7. Otherwise, set xb = xt , f b

k = f t
k , j = 1 and go to Step 3.

5: Generate a random number u from U [0, 1] and compute

Pac = min
{

1, exp
(f c

k − f t
k

T

)}
.

If Pac ≥ u, then set xc = xt and f c
k = f t

k .

6: Set j = j + 1.

7: (Inner iteration termination) If j ≤ jmax, then go to Step 3.

8: (Outer iteration termination) Set T = rT . If T < Tmin, then stop with xb. Otherwise go to
Step 3.

The choice of parameters in the SA clustering algorithm is very important to
obtain high quality solutions. These parameters include the initial value T1 of the
temperature, the temperature multiplier r ∈ (0, 1), and the maximum number jmax
of steps in inner iterations. The parameter T1 is usually chosen large in order to
accept many solutions at the early stage of the solution process and to explore the
search space. The number r should not be very close to 1 to avoid the large number
of outer iterations. For instance, r = 0.5 can be a reasonably good choice. Finally,
the number jmax should be large enough to allow the method to intensively explore

172 6 Metaheuristic Clustering Algorithms

the neighborhood of the current solution. This number depends on the number n of
decision variables and jmax = 2n is a reasonable choice.

6.4 Genetic Algorithm for Clustering

Among all evolutionary algorithms the genetic algorithm (GA) has been most
widely applied to design clustering algorithms [72, 102, 148, 199, 209, 224, 242,
252]. The GA was introduced by Goldberg in 1980s [123], although, some of its
ideas appeared already in 1970s [146]. The GA is based on the Darwin theory
rule: “the strongest species that survives” and “the survival of an organism can be
maintained through the process of reproduction, crossover and mutation”.

The GA uses a number of approaches, known as evolutionary approaches, which
are motivated by the ideas of natural selection and evolution. An important compo-
nent of the GA is a fitness function. This function is used to measure the suitability of
a solution generated by the GA. In most cases the fitness function may coincide with
the objective function of an optimization problem under consideration. Evolutionary
approaches include operators such as selection, recombination, and mutation on a
population—usually encoded as chromosomes—to obtain a global solution to an
optimization problem [115, 123, 124].

The GA starts by generating an initial population. The solutions in this
population—chromosomes (individuals) made up from genes—are represented
as strings using binary, integer, or real encodings. The selection operator propagates
solutions from a generation to the next one based on their fitness. The selection
usually uses a probabilistic scheme where chromosomes with higher fitness have
a higher probability of being reproduced in the next generation. The crossover
operator as a form of recombination exchanges subsequences of the bit strings
between parents and is effective at exploring the search space. Finally, the mutation
acts as a fine tuning for the exploration process. This means that the population is
evolving toward better solutions.

When applying the GA to clustering, the population consists of different
partitions to the clustering problem (chromosomes), and each chromosome consists
of the cluster representatives (genes). The general scheme of the GA for clustering
is given in Fig. 6.3.

The GA for clustering starts with the initialization of the starting population—
a set of candidate solutions (partitions) to the clustering problem. This population
can be generated both deterministically and randomly, or as a combination of these
two. The size of the population (i.e., the number of chromosomes) depends on the
number of clusters, the number of data points, and other characteristics of a data
set. However, this number cannot be chosen very large as this may make solving the
clustering problem very time-consuming. Then by using the current population the
algorithm applies the selection, crossover, and mutation operations to generate the
next population. At the same time, the algorithm stores the best solution found so
far and injects it into the population after each operation. This procedure is called

6.4 Genetic Algorithm for Clustering 173

Fig. 6.3 Genetic algorithm for clustering

the elitism and it guarantees that the solution quality obtained by the GA will not
decrease from a generation to the next one. The algorithm terminates when the
number of iterations reaches its maximum value.

The GA can be applied to solve different types of clustering problems such
as centroid based and medoid based clustering. Depending on the type of the
clustering problem, different fitness functions can be used in the GA. For example,
for the medoid based clustering problem we can use the nonsmooth clustering
function (4.4) with the squared Euclidean distance d2 and restrict the genes to be
data points (i.e., possible medoids). On the other hand, for the MSSC problem the
same fitness function can be used with no such a restriction.

The GA is able to solve clustering problems in data sets with both numeric and
categorial attributes [69]. In some versions of the GA for clustering the number of
clusters needs to be given and fixed beforehand, while some other versions define
this number during the solution process.

In many cases the GA performs better than the k-means algorithm and its
variations. Unlike most traditional clustering algorithms, the GA for clustering
performs a global search and theoretically is able to find a global solution. Thus, we
could expect that the GA for clustering is more accurate than the most traditional
algorithms. However, this is not always the case as we need to restrict the number
of iterations as well as the size of the initial population. This means that the GA for

174 6 Metaheuristic Clustering Algorithms

clustering may find suboptimal solutions to clustering problems, especially in large
data sets.

Another challenge when using the GA for clustering is the representation of the
problem using the bit strings. There are various approaches [48, 162, 241] to this
representation and also to address crossover problems. Such difficulties restrict the
use of the GA for clustering to a small number of clusters. The other drawback of
the GA for clustering is its sensitivity to the selection of the population size, and the
mutation and crossover probabilities. Parameters of the GA need to be fine-tuned
for each specific clustering problem type and, to some extent, to a data set. This task
has been studied, for instance, in [127]; however, there are still difficulties and open
questions to be answered in order to achieve good results on specific problems.

In addition to using the GA for solving entire clustering problem, it can be
applied together with some local search clustering algorithms. In [162], it is shown
that the hybrid GA incorporating problem specific heuristics is good for clustering.
For instance, one approach is to use the GA to generate good initial cluster centers
and then to apply the k-means algorithm to find the final partition [16]. Another
approach is to apply the GA to identify both the number of clusters and the high
quality initial cluster centers which can be used by the k-means algorithm [242].

6.5 Artificial Bee Colony Clustering Algorithm

Artificial bee colony (ABC) algorithm is a metaheuristic for solving global opti-
mization problems. It was first introduced in 2005 by Karaboga [44, 164] and then
modified and improved in [165]. The ABC algorithm can be used to solve both
unconstrained and constrained optimization problems.

The ABC algorithm simulates the intelligent foraging behavior of honey bee
swarms. In the artificial bee swarm there are three types of bees: employed bees,
onlookers, and scouts. Onlookers and scouts are also called the unemployed bees.
An employed bee takes a particular food source to exploit and shares its information
with onlookers in the nest. An onlooker waits in the nest and evaluates a food source
using the information shared by the employed bee. Finally, a scout looks for a new
food source in the search space. A food source means a possible solution for the
optimization problem. Therefore, in the ABC algorithm it is important to estimate
the quality (fitness)—the nectar amount—of a food source. In the algorithm, the
employed bees and onlookers implement the exploitation process while the scouts
execute the exploration process.

It is assumed in the ABC algorithm that for each food source there is only one
employed bee and, thus, the number of employed bees is the same as the number
of food sources around the hive. In addition, the number of onlookers is the same
as the number of employed bees. An employed bee generates an alteration on the
position of the food source in her memory and checks the nectar amount of the new
source. If this amount is higher than that of the previous one, the bee memorizes the

6.5 Artificial Bee Colony Clustering Algorithm 175

new position and disregards the old one. Otherwise, she holds the previous position
in her memory.

An onlooker bee evaluates the nectar information obtained from all employed
bees and selects a food source with a probability depending on its nectar amount.
When the nectar of a food source is exhausted it is abandoned. Then the corre-
sponding employed bee becomes a scout and starts for the search of a new food
source.

Applying these principles one can construct the ABC clustering algorithm. The
ABC based clustering algorithms are developed in [160, 166, 311]. First, we present
the general scheme of the ABC clustering algorithm in Fig. 6.4. Then we describe it
in detail and give its step by step algorithm.

Let s be the size of the population (number of food sources), M be the maximum
number of cycles, and L be the limit for abandonment. First, an initial population
of food sources ui , i = 1, . . . , s, is randomly generated. Each food source ui is
an nk-dimensional vector, where n is the number of attributes in the data set A.
These food sources can be considered as candidate solutions for the cluster partition.
The population is subjected to repeat the cycles for iC = 1, . . . ,M of the search
processes of the employed bees, onlookers, and scouts, respectively. Note that the
cluster partition is considered as the food source.

In order to formulate the fitness function in the ABC clustering algorithm, we
use the clustering objective function fk of the nonsmooth optimization model given
in (4.4). Then the fitness function can be defined as

Fk(ui) = 1

1 + fk(ui)
. (6.1)

The value of this function corresponds to the nectar amount in the food source ui .
An onlooker bee selects the ith food source ui with the probability Pi defined as

Pi = Fk(ui)∑s
l=1 Fk(ul)

, i = 1, . . . , s. (6.2)

Therefore, the more nectar amount at the ui th food source means the higher
probability of selecting this source. A candidate food source, based on the old one
in the memory, is computed as

vij = uij + cij (uij − ulj), (6.3)

where l ∈ {1, . . . , s} and j ∈ {1, . . . , nk} are randomly chosen indices. Never-
theless, the number l should be different from i. The numbers cij are randomly
generated from [−1, 1].

If a food source ui cannot be improved in L cycles, then it is abandoned and the
scout discovers a new food source to replace it. Assume that the abandoned source is
ui and j ∈ {1, , . . . , nk} are the indices of the elements of the food source vector. In
order to generate the new food source vi , the maximum and minimum values umax,j

176 6 Metaheuristic Clustering Algorithms

Fig. 6.4 Artificial bee colony clustering algorithm

and umin,j for each j ∈ {1, . . . , nk} over the current population are computed. Then
the new food source is defined as

vij = umin,j + λij (umax,j − umin,j). (6.4)

Here, λij is a random number from (0, 1). After its calculation the fitness of vi is
compared with that of ui . If the new food source has an equal or better nectar than
the old source, it replaces the old one. Otherwise, the old one is retained. One can see

6.6 Particle Swarm Optimization Clustering Algorithm 177

that the local search in the ABC algorithm is performed by employed and onlooker
bees whereas the global search is performed by scouts.

Algorithm 6.3 Artificial bee colony clustering algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) Select the number of food sources (solution candidates) s. Generate (randomly)
the initial population ui , i = 1, . . . , s of food sources and set ei = 0 for all i = 1, . . . , s.
Select the maximum number of cycles M and the limit for abandonment L, and set iC = 0.

2: Evaluate the nectar amount (fitness) Fk(ui) of the food sources using (6.1) (i = 1, . . . , s).

3: Set iC = iC + 1.

4: For each employed bee

(i) produce a new solution vi using (6.3) and set ei = ei + 1;
(ii) calculate the value of Fk(vi);

(iii) if Fk(vi) > Fk(ui), then the current solution ui is replaced with vi and we set ei = 0.
Otherwise, the current solution ui is retained;

(iv) calculate probabilities Pi for each ui by applying (6.2).

5: For each onlooker bee

(i) choose a solution ui using probabilities Pi ;
(ii) generate a new solution vi and set ei = ei + 1;

(iii) calculate the value of Fk(vi);
(iv) if Fk(vi) > Fk(ui), then the current solution ui is replaced with vi and we set ei = 0.

Otherwise, the current solution ui is retained;
(v) update the probability for each solution using (6.2).

6: For each food source ui , i = 1, . . . , s, if the exploitation number ei > L, this food source is
abandoned, and the corresponding employed bee becomes a scout.

7: For each scout

(i) replace the abandoned food source ui , i = 1, . . . , s by vi using (6.4);
(ii) set ei = 0;

(iii) calculate the value of Fk(vi);
(iv) if Fk(vi) > Fk(ui), then the current solution ui is replaced with vi . Otherwise, the current

solution ui is retained.

8: Memorize the best solution.

9: (Stopping criterion) If iC < M , then go to Step 3. Otherwise, accept the best solution as the
solution to the clustering problem and stop.

6.6 Particle Swarm Optimization Clustering Algorithm

Particle swarm optimization (PSO) is a population-based evolutionary algorithm
designed to solve general optimization problems. It was developed by Eberhart and
Kennedy in 1995 [175]. This algorithm simulates social behavior of bird flocking or

178 6 Metaheuristic Clustering Algorithms

fish schooling. Details of the PSO algorithm can be found in [95] (see also, [39]).
The PSO based clustering algorithms are introduced in [73, 163, 287]. The basic
idea of these algorithms is given in Fig. 6.5.

In comparison with other evolutionary algorithms, the PSO algorithm is easy to
implement and has only few parameters to adjust. In this algorithm, the population
is called a swarm. Therefore, the swarm consists of a set of potential solutions to the
optimization (or clustering) problem. Each candidate solution in the swarm is called
a particle. In the clustering framework this means that each particle is a different
cluster distribution. The particles move (or fly) in the search space following the
current optimal particle. They have memory and are able to retain part of their
previous state.

Fig. 6.5 Particle swarm optimization clustering algorithm

6.6 Particle Swarm Optimization Clustering Algorithm 179

A fitness function, which is problem specific, is used to evaluate fitness values of
particles. Here, the nonsmooth clustering function (4.4) with the squared Euclidean
distance d2 is used. This formulation of the clustering problem has an advantage that
it leads to the unconstrained optimization problem. Other clustering models involve
some constraints and in order to utilize them the PSO clustering algorithms should
contain some mechanisms to take into account these constraints.

In the PSO based clustering algorithm particles are cluster centers, that is, each
particle has the representation xq = (xq

1 , . . . , xq
k), where xq

j ∈ R
n, j = 1, . . . , k,

q = 1, . . . ,M , and M is the size of the swarm. The qth particle at the t th iteration is
associated by its current position xq

t , the personal best position zq
t , and the velocity

vq
t . The new position xq

t+1 of this particle is computed as

xq

t+1 = xq
t + vq

t+1, (6.5)

where the ith component of the velocity vector vq

t+1 is given by

v
q

t+1,i = wv
q
t,i + c1r1i

(
z
q
t,i − x

q
t,i

)+ c2r2i

(
z̄t,i − x

q
t,i

)
. (6.6)

Here, w is the inertia weight, c1 and c2 are the acceleration constants, r1i and r2i are
random numbers from U [0, 1], and z̄t is the best position. It follows from (6.6)
that the velocity of the qth particle is calculated based on the following three
contributions:

• a fraction of the previous velocity;
• a difference between the best and the current personal positions of the qth particle

(the cognitive component); and
• a difference between the best particle found so far (the best of the personal bests)

and the current personal position of the qth particle.

If f (xq

t+1) < f (zq
t), then the new best position is updated as zq

t+1 = xq

t+1,
otherwise the best position is not updated. In (6.6), the best position z̄t can be
used in two different ways: in the first case the position is determined using the
whole swarm—the gbest (global best) version—and in the second case the swarm
is divided into overlapping neighborhoods, and the best particle is determined for
each neighborhood—the lbest (local best) version. In the latter case, the third term
in (6.6) is rewritten in the form

c2r2i

(
z̄s
t,i − x

q
t,i

)
,

where z̄s
t is the best particle in the sth neighborhood to which the qth particle

belongs.
The PSO algorithm starts with the randomly generated initial swarm and

apply (6.5) and (6.6) to update particles. At each iteration, the personal best for each
particle and the global (or local) best for the whole swarm are stored. The algorithm
proceeds until a predefined stopping criterion is met. In the literature two different
stopping criteria have been used: one criterion is to define the maximum number

180 6 Metaheuristic Clustering Algorithms

tmax of iterations and to terminate the algorithm when the number of iterations
exceeds tmax. Alternatively, the algorithm can be terminated when the difference
between the velocity values in two successive iterations or over several successive
iterations is close to zero.

Here, we present the version of the PSO clustering algorithm with the gbest. The
algorithm with the lbest version can be described in a similar way.

Algorithm 6.4 Particle swarm optimization clustering algorithm

Input: Data set A and the number k of clusters to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) Select the size of the swarm M and the maximum number of iterations
tmax. Randomly generate the initial population (swarm) X1 containing particles xq

1 =
(xq

1,1, . . . , xq

1,k) ∈ R
nk, q = 1, . . . , M . Set t = 1.

2: For each particle from the population Xt compute the corresponding cluster distribution.

3: Evaluate the fitness function fk for all particles from Xt using their corresponding cluster
distributions.

4: Update the best position zq
t for all particles xq

t from Xt .

5: Update the best solution z̄t over the whole swarm Xt .

6: Update the velocity by applying (6.6) and positions of all particles by applying (6.5).

7: (Stopping criterion) Set t = t + 1. If t ≤ tmax, then go to Step 2. Otherwise, accept the best
solution z̄t−1 as the solution to the clustering problem and stop.

6.7 Ant Colony Optimization Clustering Algorithm

Ant colony optimization (ACO) was introduced by Dorigo and Maniezzo in 1996
[89]. The ACO algorithm was originally designed to solve some challenging prob-
lems in optimization such as the traveling salesman and the asymmetric traveling
salesman as well as the quadratic assignment and the job-shop scheduling problems
[88, 90]. The ACO algorithm is a population-based metaheuristics. The idea of this
algorithm comes from mimicking the behavior of real ants in the search of food.

Individually, each ant is blind and its perceptive capabilities are very limited.
However, cooperating the colony of ants is capable of finding the shortest path from
the nest to the food source and back. This is achieved by laying down a special
substance called pheromones during the search for food. The concentration of the
pheromone on the paths helps to direct the colony to the food sources. Furthermore,
an increase in the concentration of pheromones in a trail attracts more ants to it.

Ants use the following three mechanisms to build pheromone trails along the
shortest path:

• ants move randomly, but prefer locations with higher pheromone concentrations;
• depending on the length of the trail ants deposit a certain amount of pheromones

on their trails, the shorter the trail, the more pheromones are deposited; and

6.7 Ant Colony Optimization Clustering Algorithm 181

• the pheromones evaporate over time, hence those paths that were preferred earlier
can be abandoned if the amount of pheromones decreases significantly.

Therefore, pheromone trails are used for communication between ants. Using
this communication they exchange information about the path which should be
followed. Ants moving in the shorter path return to the nest earlier than those
moving in the longer path. Thus, the amount of pheromone deposited in the shorter
path is always more than that of in the longer path. This, in turn, means that the
probability of choosing the shorter path by other ants is greater than that of the
longer path. As the number of ants following a given path increases, the path
becomes more attractive and, consequently, more ants follow this path and deposit
their pheromones. This cooperative behavior results in finding the shortest path and
forms the intelligent swarm behavior.

Similar to the most other evolutionary algorithms, the fitness function in the
ACO algorithm is problem specific. As far as the clustering problem is concerned
the fitness function can be defined as the objective function in the mixed integer
formulation of the clustering problem (4.2) or as the nonsmooth nonconvex
clustering function (4.4). The use of the latter function allows us to avoid the
application of special techniques for handling constraints.

Next, we give the flowchart of the ACO clustering algorithm in Fig. 6.6 and
describe the algorithm in detail.

Let M be the number of ants in the population. In the ACO clustering algorithm,
each ant represents one clustering solution, that is, each ant is represented as
x = (x1, . . . , xk) ∈ R

nk . In order to update cluster centers, one needs to define
the pheromone trail matrix as

τ = [τij], i = 1, . . . , m, j = 1, . . . , k.

At the iteration t + 1, the following formula is used to update τij :

τ t+1
ij = (1 − u) τ t

ij +
M∑

l=1

Δτl
ij . (6.7)

Here, u ∈ (0, 1) is the persistence of the trail while 1 − u is the evaporation rate.
If u is close to 1, then the past information is forgotten faster. The amount Δτl

ij is
defined as

Δτl
ij = 1

f l
k

for all l = 1, . . . ,M, (6.8)

where f l
k is the value of the clustering function fk at the solution provided by the lth

ant. This means that ants update the pheromone according to the objective function
value at the solution they generate.

The assignment of a data point ai to the cluster Aj is determined according to
the amount of pheromone using the probability Pij :

182 6 Metaheuristic Clustering Algorithms

Fig. 6.6 Ant colony optimization clustering algorithm

Pij = τij
∑k

q=1 τiq

for all i = 1, . . . , m, j = 1, . . . , k. (6.9)

The ith point is assigned to the cluster Aj̄ , j̄ ∈ {1, . . . , k} if we have

j̄ ∈ Argmax
{
Pij : j ∈ {1, . . . , k}}.

If there are several such indices j̄ , we can choose one of them.
Now we are ready to give the ACO clustering algorithm in its step by step form.

6.7 Ant Colony Optimization Clustering Algorithm 183

Algorithm 6.5 Ant colony optimization clustering algorithm

Input: Data set A and the number of clusters k to be computed.
Output: Solution to the k-partition problem.

1: (Initialization) Select the maximum number of iterations tmax, the persistence of the trail u ∈
(0, 1) and the number M of ants in the population.

2: Randomly generate the initial population X1 containing M ants. Initialize the pheromone
matrix τ and set t = 1.

3: Calculate the cluster distribution using probabilities Pij , defined in (6.9), and calculate cluster
centers for each solution from Xt .

4: (Global search) Compute the best solution providing the least value of the clustering function.

5: (Local search) Perform a local search to improve current solutions and to generate a new
population Xt+1.

6: Update the pheromone matrix by applying (6.7) and (6.8).

7: (Stopping criterion) Set t = t + 1. If t ≤ tmax, then go to Step 3. Otherwise, accept the best
solution found so far as the solution to the clustering problem and stop.

Most ACO algorithms contain local search component which is used to improve
the solution obtained by the global (ACO) search algorithm. One such local search
algorithm, introduced in [266], proceeds as follows.

Algorithm 6.6 Local search algorithm for ant colony optimization clustering

Input: Set of partitions {Âl , l = 1, . . . , M} and the probability threshold Pt ∈ [0, 1].
Output: Set of improved partitions {Āl , l = 1, . . . , M}.
1: (Initialization) Set t = 1.

2: Compute the clustering objective function value f̂ t
k associated with the partition Ât .

3: For each ai ∈ Ât , i = 1, . . . , m, draw a random number r from U [0, 1]. If r ≤ Pt , randomly
select an integer j between 1 and k such that ai /∈ Â

j
t . Reassign ai to Â

j
t and denote the new

partition with this assignment by Ãt .

4: Calculate new cluster centers and the objective function value f̃ t
k associated with Ãt . If f̃ t

k <

f̂ t
k , then set Āt = Ãt . Otherwise, set Āt = Ât .

5: (Stopping criterion) Set t = t + 1. If t ≤ M , then go to Step 2. Otherwise stop.

Note that here, Âl is the set Âl = {Â1
l , . . . , Â

k
l }.

Different versions of the ant colony optimization clustering algorithm can be
found in [111, 152, 198, 253].

Chapter 7
Incremental Clustering Algorithms

7.1 Introduction

As we mentioned in Chap. 4, the clustering problem (4.3) is a nonsmooth global
optimization problem and may have many local minimizers. Applying the conven-
tional global optimization techniques is not always a good choice since they are
time-consuming for solving such problems, particularly in large data sets. The local
methods are fast, however, depending on the choice of starting cluster centers they
may end up at the closest local minimizer. Therefore, the success of these methods
in solving clustering problems heavily depends on the choice of initial centers.

Since the second half of 1980s, several algorithms have been introduced to
choose favorable starting cluster centers for local search clustering algorithms,
especially for the k-means algorithm [4, 14, 16, 19, 64, 190, 197]. In some of
these algorithms, starting points are generated randomly using certain procedures.
The use of the incremental approach allows us to choose good starting points in a
deterministic way from different parts of the search space. The paper [106] is among
the first introducing the incremental algorithm.

The existing incremental algorithms in cluster analysis can be divided, without
any loss of generality, into the following classes:

• algorithms where new data points are added at each iteration and cluster centers
are refined accordingly. Such algorithms are called single pass incremental
clustering algorithms; and

• algorithms where clusters are built incrementally adding one cluster center at a
time. This type of algorithms are called sequential clustering algorithms.

In the single pass incremental algorithms, new data points are presented as a
sequence of items and can be examined only in a few passes (usually just one). At
each iteration of these algorithms clusters are updated according to newly arrived

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_7

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_7

186 7 Incremental Clustering Algorithms

data. These algorithms require limited memory and also limited processing time per
item (see [130] and references therein).

In the second type of incremental algorithms, the data set is considered as static
and clusters are computed incrementally. Such algorithms compute clusters step by
step starting with one cluster for the whole data set and gradually adding one cluster
center at each iteration [19, 26, 29, 142, 197]. In this book, we consider this type of
incremental clustering algorithms.

There are following three optimization problems to be solved at each iteration of
incremental clustering algorithms [229]:

• problem of finding a center of one cluster;
• auxiliary clustering problem, defined in (4.29), to obtain starting points for

cluster centers; and
• clustering problem, given in (4.3), to determine all cluster centers.

In this chapter, we discuss different approaches for solving each of these problems.
In Sect. 7.2, we describe how a center of one cluster can be found. The general
incremental clustering algorithm is given in Sect. 7.3. This algorithm involves
solving of the auxiliary clustering problem (4.29).

Since both the cluster and the auxiliary cluster functions are nonconvex they may
have a large number of local minimizers. Therefore, having favorable starting points
will help us to obtain either global or nearly global solutions to clustering problems.
We describe the algorithm for finding such starting points for cluster centers in
Sect. 7.4. This algorithm generates a set of starting points for the cluster centers,
where the points guarantee the decrease of the cluster function at each iteration
of the incremental algorithm. Section 7.5 presents the multi-start incremental
clustering algorithm. This algorithm is an improvement of the general incremental
algorithm that applies the algorithm for finding a set of starting cluster centers.

Finally, the incremental k-medians algorithm and the discussion on the decrease
of its computational complexity are given in Sect. 7.6. This algorithm is a modifica-
tion of the k-medians algorithm, where the latter algorithm is used at each iteration
of the multi-start incremental algorithm to solve the clustering problem (4.3).

7.2 Finding a Center of One Cluster

In Chap. 5, the problem of finding a center of a cluster is formulated as an
optimization problem. Considering a cluster C, the problem of finding its center
x ∈ R

n can be reformulated as follows:

{
minimize ϕ(x)

subject to x ∈ R
n,

(7.1)

where

7.3 General Incremental Clustering Algorithm 187

ϕ(x) = 1

|C|
∑

c∈C

dp(x, c).

If the similarity measure d2 is used, then the centroid of the cluster C is the solution
to the problem (7.1) which can be easily computed. If the distance function d1 is
applied, then according to Proposition 5.2 the median of the set C is a solution to
this problem. This means that there is no need to solve the problem (7.1) when the
similarity functions d1 and d2 are applied in the clustering problem.

Next, we consider the problem (7.1) when the function d∞ is used. Unlike the
functions d1 and d2, there is no explicit formula for finding a solution to this problem
with the function d∞, and one needs to apply some optimization methods to solve
it. In this case, we have

ϕ(x) = 1

|C|
∑

c∈C

d∞(x, c),

and the subdifferential of the function ϕ at x ∈ R
n is

∂ϕ(x) = 1

|C|
∑

c∈C

∂d∞(x, c),

where the subdifferential ∂d∞(x, c) is given in (4.10) and (4.11). Recall that the
necessary and sufficient condition for a point x to be a minimum is 000 ∈ ∂ϕ(x).

For a moderately large number of points in the set C, the subdifferential ∂ϕ(x)

may have a huge number of extreme points and therefore, the computation of the
whole subdifferential is not an easy task. To solve the problem (7.1) in this case, we
can apply versions of the bundle method which are finite convergent for minimizing
convex piecewise linear functions [32].

Another option is to use smoothing techniques to approximate the function d∞
by the smooth functions to replace the problem (7.1) by the sequence of smooth
optimization problems. Then we can apply any smooth optimization method to solve
these problems.

7.3 General Incremental Clustering Algorithm

As we mentioned, the incremental approach provides an efficient way to generate
starting cluster centers. In this section, we describe a general scheme of the
incremental clustering algorithm (INC-CLUST) using the nonconvex nonsmooth
optimization model of the clustering problem. Recall the clustering problem (4.3)

{
minimize fk(x)

subject to x = (x1, . . . , xk) ∈ R
nk,

(7.2)

188 7 Incremental Clustering Algorithms

where the function fk , given in (4.4), is

fk(x) = 1

m

m∑

i=1

min
j=1,...,k

dp(xj , ai). (7.3)

We also recall the auxiliary clustering problem (4.29)

{
minimize f̄k(y)

subject to y ∈ R
n,

(7.4)

where the function f̄k , defined in (4.28), is

f̄k(y) = 1

m

m∑

i=1

min
{
ri
k−1, dp(y, ai)

}
, (7.5)

and ri
k−1, given in (4.27), is the distance between the data point ai , i = 1, . . . , m

and its cluster center:

ri
k−1 = min

j=1,...,k−1
dp(xj , ai). (7.6)

The general scheme of the INC-CLUST for solving the k-partition problem (7.2)
is given in Fig. 7.1 and Algorithm 7.1.

Algorithm 7.1 Incremental clustering algorithm (INC-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of the next cluster center) Find a starting point ȳ ∈ R
n for the lth cluster center

by solving the auxiliary clustering problem (7.4).

4: (Refinement of all cluster centers) Select (x1, . . . , xl−1, ȳ) as a starting point to solve the
clustering problem (7.2) and find a solution (ỹ1, . . . , ỹl).

5: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

Remark 7.1 Algorithm 7.1 in addition to the k-partition problem solves also all
intermediate l-partition problems, where l = 1, . . . , k − 1.

Steps 3 and 4 are the most important steps of Algorithm 7.1, where both the
auxiliary clustering problem (7.4) and the clustering problem (7.2) are solved. Since
these problems are nonconvex they may have a large number of local minimizers.

7.4 Computation of Set of Starting Cluster Centers 189

Fig. 7.1 Incremental clustering algorithm (INC-CLUST)

In the next section, we describe a special procedure to generate favorable starting
points for solving these problems. Such an approach allows us to find high quality
solutions to the clustering problem using local search methods.

7.4 Computation of Set of Starting Cluster Centers

In this section, first we describe an algorithm for finding starting points for solving
the auxiliary clustering problem (7.4). We assume that for some l > 1, the solution
(x1, . . . , xl−1) to the (l − 1)-clustering problem is known. Consider the sets

S̄1 = {y ∈ R
n : ra

l−1 ≤ dp(y, a) for all a ∈ A
}
, and (7.7)

S̄2 = {y ∈ R
n : ra

l−1 > dp(y, a) for some a ∈ A
}
. (7.8)

Here, ra
l−1, a ∈ A is defined by (4.27). It is obvious that cluster centers

x1, . . . , xl−1 ∈ S̄1. The set S̄2 contains all points y ∈ R
n which are not cluster

centers and attract at least one point from the data set A.
Since the number l − 1 of clusters is less than the number m of data points in

the set A all points which are not cluster centers belong to the set S̄2 (because such
points attract at least themselves) and therefore, the set S̄2 is not empty. Obviously

S̄1 ∩ S̄2 = ∅ and S̄1 ∪ S̄2 = R
n.

Figure 7.2 illustrates the sets S̄1 and S̄2 where the similarity measure d2 is applied
to find cluster centers. There are three clusters in this figure. Their centers are shown
by “red” circles. The set S̄2 consists of all points inside three balls except cluster

190 7 Incremental Clustering Algorithms

Fig. 7.2 Illustration of sets
S̄1 and S̄2

centers and the set S̄1 contains three cluster centers and the part of the space outside
balls.

Note that

f̄l(y) ≤ 1

m

∑

a∈A

ra
l−1 for all y ∈ R

n, and

f̄l(y) = fl−1(x1, . . . , xl−1) = 1

m

∑

a∈A

ra
l−1 for all y ∈ S̄1.

This means that the lth auxiliary cluster function f̄l is constant on the set S̄1, and any
point from this set is a global maximizer of this function. In general, a local search
method terminates at any of these points. Therefore, starting points for solving the
auxiliary clustering problem (7.4) should not be chosen from the set S̄1.

We introduce a special procedure which allows one to select starting points from
the set S̄2. Take any y ∈ S̄2 and consider the sets Bi(y), i = 1, 2, 3 defined in (4.30).
Then the set A can be divided into two subsets B̄12(y) and B̄3(y), where

B̄12(y) = B1(y) ∪ B2(y) and B̄3(y) = B3(y). (7.9)

The set B̄3(y) contains all data points a ∈ A which are closer to the point y than to
their cluster centers, and the set B̄12(y) contains all other data points. Since y ∈ S̄2
the set B̄3(y) �= ∅. Furthermore,

B̄12(y) ∩ B̄3(y) = ∅ and A = B̄12(y) ∪ B̄3(y).

Figure 7.3 depicts the set B̄3(y) for a given y (black ball). There are two clusters
in this data set and their centers are shown by “red” circles. The set B̄3(y) contains
all “yellow” data points and the set B̄12(y) contains the rest of the data set.

At a point y ∈ R
n using the sets B̄12(y) and B̄3(y), the lth auxiliary cluster

function f̄l can be written as

7.4 Computation of Set of Starting Cluster Centers 191

Fig. 7.3 Illustration of sets
B̄12(y) and B̄3(y)

B̄3(y)

y .

f̄l(y) = 1

m

(∑

a∈B̄12(y)

ra
l−1 +

∑

a∈B̄3(y)

dp(y, a)
)
.

The difference between the values of f̄l(y) and fl−1(x1, . . . , xl−1) is

zl(y) = 1

m

∑

a∈B̄3(y)

(
ra
l−1 − dp(y, a)

)
,

which can be rewritten as

zl(y) = 1

m

∑

a∈A

max
{

0, ra
l−1 − dp(y, a)

}
. (7.10)

The difference zl(y) shows the decrease of the value of the lth cluster function fl

comparing with the value fl−1(x1, . . . , xl−1) if the points x1, . . . , xl−1, y are chosen
as the cluster centers for the lth clustering problem.

It is reasonable to choose a point y ∈ R
n that provides the largest decrease zl(y)

of the clustering function as the starting point for minimizing the auxiliary clustering
function. Since it is not easy to choose such a point from the whole space R

n we
restrict ourselves to the data set A.

If a data point a ∈ A is a cluster center, then this point belongs to the set S̄1,
otherwise it belongs to the set S̄2. Therefore, we choose points y from the set Ā0 =
A \ S̄1. Obviously, Ā0 �= ∅. Take any y = a ∈ Ā0, compute zl(a) and define the
number

z1
max = max

a∈Ā0

zl(a). (7.11)

The number z1
max represents the largest decrease of the cluster function which can

be provided by any data point. Let γ1 ∈ [0, 1] be a given number. Compute the
following subset of Ā0:

Ā1 = {a ∈ Ā0 : zl(a) ≥ γ1z
1
max

}
. (7.12)

192 7 Incremental Clustering Algorithms

The set Ā1 contains all data points that provide the decrease of the cluster
function no less than the threshold γ1z

1
max. This set is obtained from the set Ā0 by

removing data points that do not provide sufficient decrease of the cluster function.
Apparently, Ā1 �= ∅ for any γ1 ∈ [0, 1]. If γ1 = 0, then Ā1 = Ā0 and if γ1 = 1,
then the set Ā1 contains data points providing the largest decrease z1

max.
For each point a ∈ Ā1 compute the set B̄3(a) and its center c(a). Replace the

point a by c(a) since the center c(a) is a better representative of the set B̄3(a) than
the point a. If the similarity measure dp is defined using the L2-norm, then c(a)

is the centroid of the set B̄3(a). In other cases, c(a) is found as a solution to the
problem (7.1) where

ϕ(x) = 1

|B̄3(a)|
∑

b∈B̄3(a)

dp(x, b).

Let

Ā2 = {c ∈ R
n : there exists a ∈ Ā1 such that c = c(a)

}

be the set of such solutions. It is obvious that Ā2 �= ∅. For each c ∈ Ā2, compute
the number zl(c) using (7.10) and find the number

z2
max = max

c∈Ā2

zl(c). (7.13)

The number z2
max represents the largest value of the decrease

fl−1(x1, . . . , xl−1) − fl(x1, . . . , xl−1, c)

among all centers c ∈ Ā2.
For a given number γ2 ∈ [0, 1], define the following subset of Ā2:

Ā3 = {c ∈ Ā2 : zl(c) ≥ γ2z
2
max

}
. (7.14)

The set Ā3 contains all points c ∈ Ā2 that provide the decrease of the cluster
function no less than the threshold γ2z

2
max. This set is obtained from the set Ā2

by removing centers which do not provide the sufficient decrease of the cluster
function. It is clear that the set Ā3 �= ∅ for any γ2 ∈ [0, 1]. If γ2 = 0, then Ā3 = Ā2
and if γ2 = 1, then the set Ā3 contains only centers c providing the largest decrease
of the cluster function fl .

All points from the set Ā3 are considered as starting points for solving the
auxiliary clustering problem (7.4). Since all data points are used for the computation
of the set Ā3, it contains starting points from different parts of the data set. Such a
strategy allows us to find either global or nearly global solutions to the problem (7.2)
(as well as to the problem (7.4)) using local search methods.

7.4 Computation of Set of Starting Cluster Centers 193

Applying a local search algorithm, the auxiliary clustering problem (7.4) is
solved using starting points from Ā3. A local search algorithm generates the same
number of solutions as the number of starting points. The set of these solutions is
denoted by Ā4. This set is a non-empty subset of the set of stationary points of the
auxiliary cluster function f̄l .

A local search algorithm starting from different points may arrive to the same
stationary point or stationary points which are close to each other. To identify such
stationary points we define a tolerance ε > 0. If the distance between any two points
from the set Ā4 is less than this tolerance, then we keep a point with the lower value
of the function f̄l and remove another point from the set Ā4.

Next, we define

f̄ min
l = min

y∈Ā4

f̄l(y). (7.15)

The number f̄ min
l is the lowest value of the auxiliary cluster function f̄l over the set

Ā4. Let γ3 ∈ [1,∞) be a given number. Introduce the following set:

Ā5 = {y ∈ Ā4 : f̄l(y) ≤ γ3f̄
min
l

}
. (7.16)

The set Ā5 contains all stationary points where the value of the function f̄l is no
more than the threshold γ3f̄

min
l . Note that the set Ā5 �= ∅. If γ3 = 1, then Ā5

contains the best local minimizers of the function f̄l obtained using starting points
from the set Ā3. If γ3 is sufficiently large, then Ā5 = Ā4. Points from the set Ā5 are
used as a set of starting points for the lth cluster center to solve the lth clustering
problem (7.2).

Summarizing all described above, the algorithm for finding starting points to
solve the problem (7.2) proceeds as follows [228].

Algorithm 7.2 allows us to use more than one starting point to solve the clustering
problem (7.2) in Step 4 of Algorithm 7.1. Moreover, these points always guarantee
the decrease of the cluster function value at each iteration of the incremental
algorithm and are distinct from each other in the search space. Such an approach

Algorithm 7.2 Finding set of starting points for the lth cluster center

Input: Data set A and the solution (x1, . . . , xl−1) to the (l − 1)-clustering problem, l ≥ 2.
Output: Set of starting points for the lth cluster center.

1: (Initialization) Select numbers γ1, γ2 ∈ [0, 1] and γ3 ∈ [1,∞).

2: Compute z1
max using (7.11) and the set Ā1 using (7.12).

3: Compute z2
max using (7.13) and the set Ā3 using (7.14).

4: Compute the set Ā4 of stationary points of the auxiliary clustering problem (7.4) applying a
local search algorithm and using starting points from the set Ā3.

5: Compute f̄ min
l using (7.15) and the set Ā5 using (7.16). Ā5 is the set of starting points for the

lth cluster center.

194 7 Incremental Clustering Algorithms

Algorithm 7.3 Multi-start incremental clustering algorithm (MSINC-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 7.2 to
compute the set Ā5 defined by (7.16).

4: (Computation of a set of cluster centers) For each ȳ ∈ Ā5, select (x1, . . . , xl−1, ȳ) as a starting
point to solve the lth clustering problem (7.2) and find its solution (ŷ1, . . . , ŷl). Denote by Ā6
a set of all such solutions.

5: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

6: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

allows us to apply local search methods to obtain a high quality solution to the
global optimization problem (7.2).

7.5 Multi-Start Incremental Clustering Algorithm

In this section, we present the multi-start incremental clustering algorithm (MSINC-
CLUST) for solving the problem (7.2). This algorithm is an improvement of
Algorithm 7.1 where in Step 3, Algorithm 7.2 is applied. Similar to Algorithm 7.1,
the MSINC-CLUST builds clusters dynamically adding one cluster center at a time
by solving the auxiliary clustering problem (7.4).

The MSINC-CLUST applies Algorithm 7.2 to compute a set of starting cluster
centers. Using these centers as initial points, the lth clustering problem (7.2) is
solved (l = 2, . . . , k). Then a solution with the least cluster function value, defined
in (7.3), is accepted as the solution to the clustering problem. The flowchart of the
MSINC-CLUST is given in Fig. 7.4 and its step by step description is presented in
Algorithm 7.3.

7.6 Incremental k-Medians Algorithm 195

Fig. 7.4 Multi-start incremental clustering algorithm (MSINC-CLUST)

Remark 7.2 Similar to Algorithm 7.1, this algorithm solves all intermediate l-
partition problems (l = 1, . . . , k − 1) in addition to the k-partition problem.
However, Algorithm 7.1 can find only stationary points of the clustering problem,
while Algorithm 7.3 is able to find either global or nearly global solutions.

Note that the most important steps in Algorithm 7.3 are Step 3, where the
auxiliary clustering problem (4.29) is solved to find starting points, and Step 4,
where the clustering problem (7.2) is solved for each starting point. To solve
these problems, we will introduce different algorithms in this and the following
two chapters.

7.6 Incremental k-Medians Algorithm

In this section, we design the incremental k-medians algorithm (IKMED) as an
application of Algorithm 7.3. The k-medians algorithm (Algorithm 5.4), presented
in Chap. 5, is simple and easy to implement. However, this algorithm is sensitive to
the choice of starting points and finds only local solutions that can be significantly
different from the global solution in large data sets. The IKMED overcomes these

196 7 Incremental Clustering Algorithms

Fig. 7.5 Incremental k-medians algorithm (IKMED)

drawbacks by applying Algorithm 7.2. Characteristically for k-medians, the distance
function d1 is used to define the similarity measure in the IKMED. Fig. 7.5 illustrates
the flowchart of this algorithm.

The IKMED first calculates the center of the whole data set as its median. Then
it applies Algorithm 7.2 to compute the set of initial cluster centers by solving the
auxiliary clustering problem (7.4). Using these centers, the clustering problem (7.2)
is solved. Note that Algorithm 5.4 is utilized to solve both problems (7.2) and (7.3).

7.6 Incremental k-Medians Algorithm 197

The following algorithm describes the IKMED in step by step.

Algorithm 7.4 Incremental k-medians algorithm (IKMED)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply
Algorithm 7.2 to compute the set Ā3 of starting points for solving the auxiliary clustering
problem (7.4).

4: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 5.4 to
solve the auxiliary clustering problem (7.4) starting from each point y ∈ Ā3. This algorithm
generates a set Ā5 of starting points for the lth cluster center.

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 5.4 for k = l to
solve the clustering problem (7.2) starting from the point (x1, . . . , xl−1, ȳ) and find its solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

In Step 4 of Algorithm 7.4 one can apply the modified version of the k-medians
Algorithm 5.4 to solve the auxiliary clustering problem and to find starting points
for the lth cluster center. In this version, cluster centers x1, . . . , xl−1 are fixed and
the algorithm updates only the lth center. Therefore, we call it the partial k-medians
algorithm. The description of this algorithm is given below.

We use the sets S̄2 and B̄3(y), y ∈ R
n, defined in (7.8) and (7.9), respectively.

Note that we employ the distance function d1 in computing these sets.

198 7 Incremental Clustering Algorithms

Algorithm 7.5 Partial k-medians algorithm

Input: Data set A and the solution (x1, . . . , xl−1) ∈ R
n(l−1) to the (l − 1)-partition problem.

Output: Solution ȳ ∈ R
n to the auxiliary clustering problem (7.4).

1: (Initialization) Select a starting point y1 ∈ S̄2. Set h = 1.

2: Compute the set B̄3(yh).

3: (Stopping criterion) If B̄3(yh) = B̄3(yh−1) for h > 1, then stop with the solution ȳ = yh to
the auxiliary clustering problem.

4: Find a center c̄ of the set B̄3(yh) by computing its coordinates as the medians of the
corresponding attributes.

5: Set yh+1 = c̄, h = h + 1 and go to Step 2.

Remark 7.3 The set S̄2 contains all data points a ∈ A which are not cluster centers
and therefore, in Step 1 one can choose the point y1 among such data points.
More specifically, we can choose y1 ∈ A \ S̄1 where the set S̄1 is given in (7.7).
Furthermore, since for any y ∈ S̄2 the set B̄3(y) is not empty and the value of the
auxiliary cluster function decreases at each iteration h the problem of finding the
center of the sets B̄3(yh), h ≥ 1 in Step 4 is well defined.

Note that the stopping criterion in Step 3 means that the algorithm terminates
when no data point changes its cluster.

The most time-consuming steps in Algorithm 7.4 are Steps 3, 4, and 5. To
reduce the computational effort required in these steps, we discuss three different
approaches as follows:

1. Reduction of the number of starting cluster centers. As mentioned above, starting
points for solving the auxiliary clustering problem (7.4) can be chosen from the
set A \ S̄1. At the lth iteration (l ≥ 2) of Algorithm 7.4, we can remove points
that are close to cluster centers x1, . . . , xl−1. For each cluster Aq, 1 ≤ q ≤ l−1,
compute its average radius

r
q
av = 1

|Aq |
∑

a∈Aq

d1(xq, a),

and define the subset Âq ⊆ Aq as

Âq = {a ∈ Aq : r
q
av ≤ d1(xq, a)

}
.

Note that if the cluster Aq is not empty, then the set Âq is also non-empty.
Consider the following subset of the set A:

Â =
l−1⋃

q=1

Âq .

7.6 Incremental k-Medians Algorithm 199

Replacing the set A \ S̄1 by the set Â \ S̄1 allows us to reduce—in some cases
significantly—the number of starting cluster centers and to remove those points
which do not provide the sufficient decrease of the cluster function.

2. Exclusion of some stationary points of the auxiliary clustering problem (7.4). If
any two stationary points from the set Ā4 are close to each other with respect
to some predefined tolerance, then one of them is removed while another one is
kept. In order to do so we define a tolerance ε = f̂1/ml, where f̂1 is the optimal
value of the cluster function f1. If d1(y1, y2) ≤ ε for two points y1, y2 ∈ Ā4, then
the point with the lowest value of the auxiliary cluster function is kept in Ā4 and
another point is removed.

3. Use of the triangle inequality to reduce the number of distance calculations.
Since d1 is the distance function it satisfies the triangle inequality. This can be
used to reduce the number of distance function calculations of Algorithm 5.4
in solving both the clustering and the auxiliary clustering problems. First, we
consider the auxiliary clustering problem (7.4). Assume that (x1, . . . , xl−1) is
the solution to the (l − 1)-partition problem. Recall that the distance between the
data point a ∈ A and its cluster center is denoted by

ra
l−1 = min

j=1,...,l−1
d1(xj , a).

Let ȳ be a current approximation to the solution of the problem (7.4). Compute
distances d1(ȳ, xj), j = 1, . . . , l − 1. Assume that a ∈ Aj for some j ∈
{1, . . . , l − 1}. According to the triangle inequality we have

d1(ȳ, xj) ≤ d1(a, ȳ) + d1(a, xj) = d1(a, ȳ) + ra
l−1, or

d1(a, ȳ) ≥ d1(ȳ, xj) − ra
l−1.

This means that if d1(ȳ, xj) > 2ra
l−1, then d1(a, ȳ) > ra

l−1 and therefore, there
is no need to calculate the distance d1(a, ȳ) as the point a does not belong to the
cluster with the center ȳ.

Similar approach can be considered for the clustering problem (7.2). Let
(x̄1, . . . , x̄l) be a current approximation to the solution of the lth partition
problem. Compute distances d1(x̄i , x̄j) for i, j = 1, . . . , l. Assume that for a
given point a ∈ A, the distances d1(a, x̄i), i = 1, . . . , j have been calculated or
estimated for some j ∈ {1, . . . , l − 1}. Let x̃ ∈ {x̄1, . . . , x̄j } be such that

d1(a, x̃) = min
i=1,...,j

d1(a, x̄i).

200 7 Incremental Clustering Algorithms

According to the triangle inequality we have

d1(x̃, x̄j+1) ≤ d1(a, x̃) + d1(a, x̄j+1), or

d1(a, x̄j+1) ≥ d1(x̃, x̄j+1) − d1(a, x̃).

If d1(x̃, x̄j+1) > 2d1(a, x̃), then there is no need to calculate the distance
d1(a, x̄j+1) as the point a does not belong to the cluster Aj+1 with the center
x̄j+1. The last approach allows us to significantly reduce the number of distance
function evaluations as the number of clusters increases.

Chapter 8
Nonsmooth Optimization Based
Clustering Algorithms

8.1 Introduction

In Chap. 4, we formulated different optimization models of the clustering problem.
Using these models, one can apply various heuristics or optimization methods
to solve clustering problems. Algorithms considered in this chapter are based on
the NSO model of these problems. More specifically, we consider incremental
clustering algorithms where at each iteration the clustering and the auxiliary
clustering problems are solved by applying either heuristics like the k-means or
NSO algorithms [19, 22, 24, 26, 29, 33, 36, 170, 171].

We start with the description of the modified global k-means algorithm in
Sect. 8.2. This algorithm is an improvement of the GKM. The main difference
between these two algorithms is that the GKM uses only data points to find starting
cluster centers whereas the modified global k-means algorithm solves the auxiliary
clustering problem to compute them. In Sect. 8.3, we describe a further improvement
of the modified global k-means algorithm called the fast modified global k-means
algorithm. In addition, we discuss various procedures to reduce the computational
complexity of the modified global k-means algorithm.

Then, we introduce three incremental clustering algorithms where the LMBM,
the DGM, and the HSM are used to solve the clustering and the auxiliary clustering
problems. More precisely, the limited memory bundle method for clustering is
described in Sect. 8.4; the discrete gradient clustering algorithm is presented in
Sect. 8.5; and the smooth incremental clustering algorithm is given in Sect. 8.6.

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_8

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_8

202 8 Nonsmooth Optimization Based Clustering Algorithms

8.2 Modified Global k-Means Algorithm

In this section, we present the modified global k-means algorithm (MGKM) to solve
the clustering problem (7.2) where the similarity measure d2 is used [19, 21]. The
algorithm is the modified version of the GKM, and it is based on the incremental
approach. The flowchart of the MGKM is illustrated in Fig. 8.1.

Fig. 8.1 Modified global k-means algorithm (MGKM)

8.2 Modified Global k-Means Algorithm 203

The MGKM starts with the computation of the centroid of the whole data set.
Then a new cluster center is added at each iteration. More precisely, the auxiliary
clustering problem (7.4) is solved to compute a starting point for the lth center. The
new center together with the previous l−1 cluster centers is taken as a starting point
for solving the lth partition problem. The k-means Algorithm 5.1 is applied starting
from this point to find the lth partition of the data set.

Assume that (x1, . . . , xl−1), l ≥ 2, be a solution to the (l − 1)th clustering
problem. Let p = 2. Recall the sets S̄1 and S̄2 defined in (7.7) and (7.8), respectively.
Take any y ∈ S̄2 and consider the sets B̄12(y) and B̄3(y) given in (7.9). The algorithm
for finding a starting point for the lth cluster center involves Algorithm 5.1 and
proceeds as follows.

Algorithm 8.1 Finding a starting point

Input: Data set A and the solution (x1, . . . , xl−1) to the (l − 1)th clustering problem, l ≥ 2.
Output: Starting point for the lth cluster center.

1: For each a ∈ S̄2 ∩ A, compute the set B̄3(a), its center c and the value f̄l,a = f̄l (c) of the
auxiliary cluster function f̄l at the point c.

2: Compute

f̄l,min = min
a∈S̄2∩A

f̄l,a, ā = argmin
a∈S̄2∩A

f̄l,a,

and select the corresponding center c̄.

3: Compute the set B̄3(c̄) and its center.

4: Reassign data points and update the center of the set B̄3(c̄) until no more points escape or
return to this set. Let ȳ be the final value of c̄. Then ȳ is a starting point for the lth cluster
center.

In Steps 1 and 2 of Algorithm 8.1, a starting point is found to minimize the
auxiliary cluster function f̄l , given in (7.5). This point is chosen among all data
points that can attract at least one data point (see Step 1). For each such data point a,
the set B̄3(a) and its center are computed. Then the function f̄l is evaluated at these
centers, and the center that provides the lowest value of the function f̄l is selected
as a starting point to minimize the function f̄l .

In Step 4 of Algorithm 8.1, we apply Algorithm 5.1 to minimize the auxiliary
cluster function f̄l . In this case the first l − 1 cluster centers are fixed and only the
lth cluster center is updated at each iteration.

Remark 8.1 Algorithm 8.1 is a special case of Algorithm 7.2 when we select γ1 = 0
and γ2 = 1.

Proposition 8.1 Let ȳ be a cluster center generated by Algorithm 8.1. Then this
point is a local minimizer of the auxiliary cluster function f̄l .

204 8 Nonsmooth Optimization Based Clustering Algorithms

Proof Recall the sets Bi(y), i = 1, 2, 3 defined in (4.30). Since ȳ is a cluster center
we have B2(ȳ) = ∅. This is due to the fact that in the hard clustering problem, each
data point belongs to only one cluster. Then the function (7.5) can be rewritten as

f̄l(ȳ) = 1

m

⎛

⎝
∑

a∈B1(ȳ)

ra
l−1 +

∑

a∈B3(ȳ)

d2(ȳ, a)

⎞

⎠ .

It is clear that ȳ is a minimum point of the convex function

ϕ(x) = 1

m

∑

a∈B3(ȳ)

d2(x, a),

that is ϕ(ȳ) ≤ ϕ(x) for all x ∈ R
n. There exists ε > 0 such that

d2(y, a) > ra
l−1 for all a ∈ B1(ȳ) and for all y ∈ B(ȳ; ε), and

d2(y, a) < ra
l−1 for all a ∈ B3(ȳ) and for all y ∈ B(ȳ; ε).

Then for any y ∈ B(ȳ; ε) we have

f̄l(y) = 1

m

⎛

⎝
∑

a∈B1(ȳ)

ra
l−1 +

∑

a∈B3(ȳ)

d2(y, a)

⎞

⎠

= 1

m

∑

a∈B1(ȳ)

ra
l−1 + ϕ(y)

≥ 1

m

∑

a∈B1(ȳ)

ra
l−1 + ϕ(ȳ)

= f̄l(ȳ).

Therefore, f̄l(y) ≥ f̄l(ȳ) for all y ∈ B(ȳ; ε). This completes the proof. ��

8.2 Modified Global k-Means Algorithm 205

Next, we give the step by step form of the MGKM.

Algorithm 8.2 Modified global k-means algorithm (MGKM)

Input: Data set A, the number of clusters k to be computed and a tolerance ε ≥ 0.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Let f1 be the corresponding value of

the clustering function (7.3). Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of the next cluster center) Let x1, . . . , xl−1 be the cluster centers for the (l−1)th
partition problem. Apply Algorithm 8.1 to find a starting point ȳ ∈ R

n for the lth cluster center.

4: (Refinement of all cluster centers) Select (x1, . . . , xl−1, ȳ) as a new starting point, apply the
k-means Algorithm 5.1 to solve the clustering problem (7.2) for k = l. Let (ỹ1, . . . , ỹl) be a
solution to this problem and fl be the corresponding value of the clustering function.

5: (Stopping criterion) If

fl−1 − fl

f1
≤ ε,

then stop, otherwise set xj = ỹj , j = 1, . . . , l and go to Step 2.

Algorithm 8.2 has two stopping criteria. The algorithm stops when either it solves
all l-partition problems, l = 1, . . . , k or the stopping criterion in Step 5 is satisfied.
Note that f ∗

l = inf{fl(x), x ∈ R
nk} ≥ 0 for all l ≥ 1 and the sequence {f ∗

l } is
decreasing, that is,

f ∗
l+1 ≤ f ∗

l for all l ≥ 1.

This means that the stopping criterion in Step 5 will be satisfied after a finite number
of iterations and therefore, Algorithm 8.2 computes as many clusters as the data set
A contains with respect to the tolerance ε > 0. Note that the choice of this tolerance
is crucial for Algorithm 8.2: large values of ε can result in the appearance of large
clusters whereas small values can lead to small and artificial clusters.

In Step 3 of Algorithm 8.2, a starting point for the lth cluster center is computed.
This is done by applying Algorithm 8.1 and minimizing the auxiliary cluster
function. This algorithm requires the calculation of the distance or affinity matrix of
the data set A. The matrix can be computed before the application of Algorithm 8.1
in small and medium sized data sets. However, it cannot be done for large data sets
as such a matrix is too big to be stored in the memory of a computer. This means that
in the latter case, the affinity matrix is computed at each iteration of the MGKM.

206 8 Nonsmooth Optimization Based Clustering Algorithms

8.3 Fast Modified Global k-Means Algorithm

Algorithm 8.2 is time-consuming in large data sets as it requires the computation
of the affinity matrix at each iteration. The fast modified global k-means algorithm
(FMGKM) [29] is an improved version of Algorithm 8.2 and does not rely on the
affinity matrix to compute starting points. Instead, the FMGKM uses some weights
within the auxiliary cluster function for generating starting points from different
parts of the data set. This leads to the elimination of computing or sorting the
whole affinity matrix and therefore, to the reduction of computational effort and
the memory usage. The flowchart of the FMGKM is similar to that of the MGKM
given in Fig. 8.1.

Next, we describe the FMGKM. Let

U = {u1, . . . , us}

be a finite set of positive numbers. For u ∈ U , the auxiliary cluster function f̄l ,
given in (7.5), is modified as follows:

f̄ u
l (y) = 1

m

∑

a∈A

min
{
ra
l−1, u d2(y, a)

}
. (8.1)

If u = 1, then f̄ u
l (y) = f̄l(y) for all y ∈ R

n. Take u ∈ U and define the set

S̃u
2 = {y ∈ R

n : ra
l−1 > u d2(y, a) for some a ∈ A

}
,

and for any y ∈ S̃u
2 consider the set

B̃u
3 (y) = {a ∈ A : ra

l−1 > u d2(y, a)
}
.

The set S̃u
2 is similar to the set S̄2 defined in (7.8) and the set B̃u

3 (y) is similar to the
set B̄3(y) described in (7.9). The set B̃u

3 (y) contains all data points attracted by the
point y ∈ S̃u

2 with a given weight u > 0.
The following algorithm is a modified version of Algorithm 8.1 and computes a

starting point for the lth cluster center.

8.3 Fast Modified Global k-Means Algorithm 207

Algorithm 8.3 Finding a starting point

Input: Data set A, the solution (x1, . . . , xl−1) to the (l − 1)th clustering problem, l ≥ 2 and the
set U = {u1, . . . , us}.
Output: Starting point for the lth cluster center.

1: Set t = 1.

2: Take ut ∈ U . For each a ∈ S̃
ut

2 ∩ A compute the set B̃
ut

3 (a), its center c and the value
f̄

ut

l,a = f̄
ut

l (c) of the function f̄
ut

l at the point c.

3: Compute

f̄
ut

l,min = min
a∈S̃

ut
2 ∩A

f̄
ut

l,a and ā = argmin
a∈S̃

ut
2 ∩A

f̄
ut

l,a,

and select the corresponding center c̄t .

4: Compute the set B̃
ut

3 (c̄t) and its center.
5: Reassign data points until no more points escape or return to this set. Let ȳ(ut) be the final

value for the center c̄t . Compute the value f̄l,t of the auxiliary function f̄l , given in (7.5), at
the point ȳ(ut).

6: Set t = t + 1. If t ≤ s, then go to Step 2.

7: Compute

f̄l,min = min
t=1,...,s

f̄l,t ,

and let

f̄l,t0 = f̄l,min for t0 ∈ {1, . . . , s}.

Set ȳ = ȳ(ut0) as a starting point for the lth cluster center.

In order to solve the auxiliary clustering problem (7.4) in Step 5 of Algorithm 8.3,
we apply Algorithm 5.1. Here, only one cluster center is updated, other cluster
centers are known from previous iterations and they are fixed. Since Algorithm 5.1
is only able to find local solutions to this problem more than one starting points are
used to compute high quality solutions.

Starting points are computed using the function (8.1) with different values of
u. If u is sufficiently small, then the starting point will be close to other cluster
centers, most likely near the center of the largest cluster. If u = 1, then we get the
same starting point as in the case of Algorithm 8.1. As the value of u is increased
the starting points become more isolated data points. This leads to the finding of
starting points from different parts of the data set.

208 8 Nonsmooth Optimization Based Clustering Algorithms

The FMGKM is presented in step by step form as follows.

Algorithm 8.4 Fast modified global k-means algorithm (FMGKM)

Input: Data set A, the number of clusters k to be computed and a tolerance ε > 0.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Let f1 be the corresponding value of

the clustering function (7.3). Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of the next cluster center) Let x1, . . . , xl−1 be the cluster centers for the (l−1)th
partition problem. Apply Algorithm 8.3 to find a starting point ȳ ∈ R

n for the lth cluster center.

4: (Refinement of all cluster centers) Select (x1, . . . , xl−1, ȳ) as a new starting point, apply
Algorithm 5.1 to solve the clustering problem (7.2) for k = l. Let (ỹ1, . . . , ỹl) be a solution to
this problem and fl be the corresponding value of the clustering function.

5: (Stopping criterion) If

fl−1 − fl

f1
< ε,

then stop, otherwise set xj = ỹj , j = 1, . . . , l and go to Step 2.

The most time-consuming step in Algorithm 8.4 is Step 3, where Algorithm 8.3
is applied to minimize the auxiliary cluster function (8.1) for different u ∈ U and to
find the starting point for the lth cluster center. In its turn, Step 2 of Algorithm 8.3
is time-consuming as in this step, clusters are computed for each data point a ∈
S̃

ut

2 ∩ A. This requires the partial computation of the affinity matrix. In addition,
centers of those clusters and values of the function f̄ u

l at these centers need to be
computed. Since for each data point only one center is obtained the complexity of
the computation of the function f̄ u

l is the same as the complexity of the computation
of the affinity matrix.

In [29], two different approaches are introduced to reduce the computational
complexity of Step 2 in Algorithm 8.3. Both approaches exploit the incremental
nature of the algorithm. In these approaches a matrix, consisting of the distances
between data points and cluster centers is used instead of the affinity matrix. Since
the number of clusters is significantly less than the number of data points the former
matrix is much smaller than the latter one. More precisely, in these approaches data
points which are close to cluster centers from the (l − 1)th partition are excluded.
Therefore, these data points are removed from the list of points which can attract
large clusters and also from the list of points which can be attracted by non-excluded
data points.

8.3 Fast Modified Global k-Means Algorithm 209

Let x1, . . . , xl−1, l ≥ 2 be known cluster centers. Assume viq is the squared
Euclidean distance between the data point ai , i = 1, . . . , m and the cluster center
xq, q = 1, . . . , l − 1, that is

viq = d2(ai , xq).

Let vq = (v1q, . . . , vmq

) ∈ R
m, q = 1, . . . , l − 1. Consider a matrix V of the size

m × (l − 1), whose columns are vectors vq, q = 1, . . . , l − 1:

V = [viq], i = 1, . . . , m, q = 1, . . . , l − 1.

Let also r = (r1
l−1, . . . , r

m
l−1) be a vector of m components where ri

l−1 is the squared
Euclidean distance between the data point ai and its cluster center in the (l − 1)th
partition (see (7.6)). Note that the matrix V and the vector r are available after the
(l − 1)th iteration of the incremental clustering algorithm.

Now, we are ready to describe the following two approaches to reduce the
computational complexity of Step 2 of Algorithm 8.3.

1. Reduction of the number of pairwise distance computations. Let a data point
aj ∈ A be given and xq(j) be its cluster center. Here q(j) ∈ {1, . . . , l − 1}. For a
given u ∈ U and the data point ai if

(
1 + 1√

u

)2
r
j

l−1 ≤ viq(j),

then aj �∈ B̃u
3 (ai). Indeed, we have

‖ai − aj‖ ≥ ‖ai − xq(j)‖ − ‖aj − xq(j)‖ ≥ (1/
√

u)‖aj − xq(j)‖.

Thus, we get ud2(ai , aj) ≥ r
j

l−1, and therefore aj �∈ B̃u
3 (ai). This condition

allows us to reduce the number of pairwise distance computations. This reduction
becomes substantial as the number of clusters increases. Define the set

R̃u(ai) =
{

aj ∈ A :
(

1 + 1√
u

)2
r
j

l−1 > viq(j)

}
.

It is clear that

B̃u
3 (ai) ⊆ R̃u(ai).

The set R̃u(ai) can be used instead of the set A to compute the value of the
function f̄ u

l in Step 2 of Algorithm 8.3. In this case, one may not get the exact
value of this function; however, it gives a good approximation to the exact value.
Furthermore, take

210 8 Nonsmooth Optimization Based Clustering Algorithms

w ∈
(

1,
(

1 + 1√
u

)2]
,

and consider the set

R̃u
w(ai) =

{
aj ∈ A : wr

j

l−1 > d2(ai , aj)
}
.

Then replace A by R̃u
w(ai) for the computation of the function f̄ u

l . This will
further reduce the amount of computations in Step 2 of Algorithm 8.3.

2. Reduction of the number of starting cluster centers. This approach is similar to
that of considered in Algorithm 7.4. More specifically, data points which are very
close to previous cluster centers are not considered for being starting points to
minimize the auxiliary cluster function (8.1). At the (l − 1)th iteration a squared
averaged radius

d̄
q
av = 1

|Aq |
∑

a∈Aq

d2(xq, a),

and a squared maximum radius

d̄
q
max = max

a∈Aq
d2(xq, a)

of each cluster Aq, q = 1, . . . , l − 1 are computed. Consider the numbers

αq = d̄
q
max

d̄
q
av

≥ 1 and βq = ε(αq − 1),

where ε > 0 is a sufficiently small number. Let

γql = 1 + βq(l − 1), q = 1, . . . , l − 1.

It is clear that γql ≥ 1, q = 1, . . . , l − 1. Define the following subset of the
cluster Aq :

Āq = {a ∈ Aq : γql d̄
q
av ≤ d2(xq, a)

}
.

In other words, the set Āq is obtained from the cluster Aq by removing all points
for which d2(xq, a) < γqd̄

q
av . Since in the incremental approach the clusters are

becoming more stable as the number l increases it follows that the numbers γql

are increased as l increases. Define the set

Ā =
l−1⋃

q=1

Āq,

8.4 Limited Memory Bundle Method for Clustering 211

and consider only data points a ∈ Ā as the candidates to be starting points for
minimizing the auxiliary cluster function f̄l .

Summarizing, Steps 2 and 3 of Algorithm 8.3 can be rewritten as follows:

2’: for each a ∈ S̃
ut

2 ∩ Ā compute the set B̃
ut

3 (a), its center c, and the value f̄
ut

l,a =
f̄

ut

l (c) of the function f̄
ut

l at the point c over the set R̃u
w(a).

3’: compute

f̄
ut

l,min = min
a∈S̃

ut
2 ∩Ā

f̄
ut

l,a and ā = argmin
a∈S̃

ut
2 ∩Ā

f̄
ut

l,a,

and the corresponding center c̄.

The use of these two schemes allows us to significantly reduce the computational
complexity of Algorithm 8.4 and accelerate its convergence.

8.4 Limited Memory Bundle Method for Clustering

In this section, we present the limited memory bundle method for clustering
(LMB-CLUST) [171]. The LMB-CLUST has been developed specifically to solve
clustering problems in large data sets. The algorithm combines two different
approaches to solve the clustering problem when the squared Euclidian distance d2
is used as a similarity measure. The MSINC-CLUST is used to solve the clustering
problem globally and the LMBM is applied at each iteration of the algorithm to
solve both the clustering problem (7.2) and the auxiliary clustering problem (7.4).
The flowchart of the LMB-CLUST is given in Fig. 8.2.

The LMBM, given in Fig. 3.5, is originally developed for solving general large-
scale nonconvex NSO problems. Here, this method is slightly modified to be better
suited for solving the clustering and the auxiliary clustering problems. In particular,
a nonmonotone line search is used to find step sizes thL and thR . In addition, different
stopping tolerances are utilized for different problems. That is, the tolerance ε is set
to be relatively large for the auxiliary clustering problem (7.4)—since this problem
need not to be solved very accurately—and smaller for the clustering problem (7.2).

Next, we give the modified version of the LMBM in its step by step form. We use
x1 for the starting point; εc > 0 for the stopping tolerance; εL and εR for line search
parameters; γ for the distance measure parameter; m̂c for the maximum number
of stored correction vectors used to form limited memory matrix updates; tmax is an
upper bound for serious steps; C is a control parameter for the length of the direction
vector. We also use itype to show the type of the problem, that is:

• itype = 0: the auxiliary clustering problem (7.4); and
• itype = 1: the clustering problem (7.2).

212 8 Nonsmooth Optimization Based Clustering Algorithms

Fig. 8.2 Limited memory bundle method for clustering (LMB-CLUST)

In both cases, the objective function is denoted by f and the number of variables in
the optimization problem is denoted by n. Hence f = f̄l and n = n for the auxiliary
clustering problem and f = fl and n = nl for the lth clustering problem.

8.4 Limited Memory Bundle Method for Clustering 213

Algorithm 8.5 Modified limited memory bundle algorithm

Input: x1 ∈ R
n, εc > 0, εL ∈ (0, 1/2), εR ∈ (εL, 1/2), tmax > 1, γ > 0, C > 0, m̂c ≥ 3 and

itype ∈ {0, 1}.
Output: Clarke stationary point xh.

1: (Initialization) Set y1 = x1 and β1 = 0. Compute f1 = f (x1) and ξ1 ∈ ∂f (x1). If itype = 1,
then set ε = εc. Otherwise, set ε = 103εc. Set h = 1.

2: (Serious step initialization) Set ξ̃h = ξh, β̃h = 0 and m = h.

3: (Direction finding) If h = 1, set d1 = −ξ1. Otherwise, compute

dh = −Dhξ̃h

by the L-BFGS update if m = h (use m̂h = min{h − 1, m̂c} correction vectors in Uh and Sh)
and by the L-SR1 update, otherwise.

4: (Stopping criterion) Compute wh = −ξ̃
T

h dh + 2β̃h. If wh < ε, then stop with xh as the final
solution.

5: (Line search) Set the scaling parameter θh for the length of the direction vector as θh =
min { 1, C/‖dh‖ }. Use a nonmonotone line search to determine the step sizes thR ∈ (0, tmax]
and thL ∈ [0, thR] and set the corresponding values

xh+1 = xh + thLθhdh, fh+1 = f (xh+1), and

yh+1 = xh + thRθhdh, ξh+1 ∈ ∂f (yh+1).

Set uh = ξh+1 − ξm and sh = yh+1 − xh = thRθhdh and append these values to Uh and Sh. If
the modified serious step condition

thR = thL > 0 and f (yh+1) ≤ max
i∈M

f (xi) − εLthRwh,

where M ⊆ {l : xl+1 = xl + t lRθldl} such that M contains at most the ten greatest indices l,
is satisfied, then set βh+1 = 0, h = h + 1 and go to Step 2. Otherwise, calculate the locality
measure βh+1 by

βh+1 = max
{
|f (xh) − f (yh+1) + ξT

h+1(yh+1 − xh)|, γ ‖yh+1 − xh‖2
}
.

6: (Aggregation) Determine multipliers λh
i ≥ 0 for all i ∈ {1, 2, 3},∑3

i=1 λh
i = 1 that minimize

the function ϕ(λ1, λ2, λ3) given in (3.9), where Dh is calculated by the same updating formula
as in Step 3. Compute ξ̃h+1 and β̃h+1 as

ξ̃h+1 = λh
1ξm + λh

2ξh+1 + λh
3 ξ̃h and β̃h+1 = λh

2βh+1 + λh
3 β̃h.

Set h = h + 1 and go to Step 3.

The convergence properties of the LMBM are given in Sect. 3.4. Here, we
recall the most important results in light of the clustering problem. Note that

214 8 Nonsmooth Optimization Based Clustering Algorithms

Assumptions 3.1–3.3, needed to prove the global convergence of the LMBM, are
trivially satisfied for both the clustering and the auxiliary clustering problems.

Proposition 8.2 Assume that εc = 0. If the LMBM terminates after a finite number
of iterations, say at the iteration h, then the point xh is a Clarke stationary point of
the (auxiliary) clustering problem.

Proposition 8.3 Assume that εc = 0. Every accumulation point x̄ generated by the
LMBM is a Clarke stationary point of the (auxiliary) clustering problem.

Remark 8.2 The LMBM terminates in a finite number of steps if we choose εc > 0.

Next, we describe the LMB-CLUST and give its step by step algorithm. Since the
problem (7.2) is nonconvex it is important to select favorable starting points before
applying a local search method like the LMBM to solve it. The LMB-CLUST uses
the MSINC-CLUST for solving the clustering problem globally and the LMBM
is applied at each iteration of the MSINC-CLUST to solve both the problems (7.2)
and (7.4).

Algorithm 8.6 Limited memory bundle method for clustering (LMB-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 ⊂ R

n of starting points for the auxiliary clustering problem (7.4).

4: (Computation of a set of starting points for the clustering problem) For each y ∈ Ā3 apply
Algorithm 8.5 with itype = 0 to solve the auxiliary clustering problem (7.4) and find Ā5, a set
of starting points for the lth partition problem (7.2).

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 8.5 with itype = 1 to
solve the clustering problem (7.2) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

8.5 Discrete Gradient Clustering Algorithm 215

8.5 Discrete Gradient Clustering Algorithm

In this section, we describe the discrete gradient clustering algorithm (DG-CLUST)
to solve the clustering problem (7.2). As mentioned in Sect. 3.8, the underlying
optimization solver DGM is a semi-derivative free method for solving nonconvex
NSO problems. The DGM does not use subgradients or their approximations but
only at the end of the solution process and thus, it can be used to solve problems
which are not subdifferentially regular. Therefore, the clustering algorithm based on
the DGM can be used to solve clustering problems with the similarity measures d1
and d∞, in addition to d2 based clustering problems.

The flowchart of the DG-CLUST is given in Fig. 8.3. Similar to other opti-
mization based clustering algorithms, the DG-CLUST uses the MSINC-CLUST for
solving the clustering problem globally and the DGM is applied at each iteration of
the MSINC-CLUST to solve both the problems (7.2) and (7.4).

The flowchart of the DGM with a more detailed description is given in Sect. 3.8.
Here, we give this method in its step by step form. Note that we use x1 for the
starting point; ε > 0 for the stopping tolerance; and εL and εR for line search
parameters.

As before, we use the following notations: the objective function is denoted by f

and n stands for the size of the optimization problem. That is, f = f̄l and n = n for
the auxiliary clustering problem and f = fl and n = nl for the l-partition problem.

216 8 Nonsmooth Optimization Based Clustering Algorithms

Fig. 8.3 Discrete gradient clustering algorithm (DG-CLUST)

8.5 Discrete Gradient Clustering Algorithm 217

Algorithm 8.7 Discrete gradient method

Input: x1 ∈ R
n, ε > 0, λ1 > 0, δ1 > 0, α ∈ (0, 1], εL ∈ (0, 1] and εR ∈ (0, εL].

Output: Final solution xh.

1: (Outer iteration initialization) Set h = 1.

2: (Inner iteration initialization) Set s = 1 and xhs = xh. Choose any g ∈ Ss, w ∈ G. Compute
a discrete gradient vhs = Γ i (xhs , g, w, λh, α). Set D̄(xhs) = {vhs }.

3: (Stopping criterion) If λh < ε and δh < ε, then stop with xh as a final solution.
4: (Minimum norm). Compute the vector

v̄hs = argmin
v∈D̄(xhs)

‖v‖2.

5: (Inner iteration termination) If ‖v̄hs ‖ ≤ δh, then update λh+1 and δh+1. Set xh+1 = xhs , h =
h + 1 and go to Step 2.

6: (Search direction) Compute the search direction

dhs = − v̄hs

‖v̄hs ‖
.

7: If f (xhs + λhdhs) − f (xhs) > −εLλh‖v̄hs ‖, then go to Step 9.

8: (Serious step) Construct xhs+1 = xhs + ths dhs , where the step size ths is computed as

ths = argmax
{
t ≥ 0 : f (xhs + tdhs) − f (xhs) ≤ −εRt‖v̄hs ‖

}
.

Compute a new discrete gradient vhs+1 using xhs+1 and any g ∈ S1:

vhs+1 = Γ i (xhs+1 , g, w, λh, α).

Set D̄(xhs+1) = {vhs+1 }, s = s + 1 and go to Step 4.

9: (Null step) Compute a new discrete gradient vhs+1 using xhs and dhs :

vhs+1 = Γ i (xhs , dhs , w, λh, α).

Update the set

D̄(xhs+1) = conv
{
D̄(xhs) ∪ {vhs+1 }

}
.

Set xhs+1 = xhs , s = s + 1 and go to Step 4.

The global convergence of Algorithm 8.7 has been studied in Sect. 3.8. Note that
assumptions needed to get its convergence are satisfied for both the cluster and the
auxiliary cluster functions. Next, we present the step by step description of the DG-
CLUST.

218 8 Nonsmooth Optimization Based Clustering Algorithms

Algorithm 8.8 Discrete gradient clustering algorithm (DG-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 ⊂ R

n of starting points for solving the auxiliary clustering
problem (7.4).

4: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 8.7 to
solve the auxiliary clustering problem (7.4) starting from each point y ∈ Ā3. This algorithm
generates a set Ā5 of starting points for the lth cluster center.

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 8.7 to solve
the clustering problem (7.2) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the l-partition
problem and go to Step 2.

Note that the DGM uses only discrete gradients to find an approximate solution
to both the clustering and the auxiliary clustering problems. The calculation of
discrete gradients can be simplified using a special structure of a problem such as
the piecewise separability or piecewise partial separability of the objective functions
(see Sect. 2.6.3).

It is proved in Propositions 4.5 and 4.12 that both the cluster function (7.3)
and the auxiliary cluster function (7.5) are piecewise separable with the similarity
measures d1, d2, and d∞. Therefore, we can simplify the calculations of discrete
gradients for both the cluster and the auxiliary cluster functions.

First, we consider the computation of discrete gradients of the cluster function
fk . This function is the special case of the function f , defined in (2.21) as

f (x) =
m∑

i=1

max
h∈Hi

min
j∈Jh

fihj (x).

The cluster function fk does not depend on the index h and the sets Hi , i =
1, . . . , m are all singletons. Therefore, for all h ∈ Hi we have Jh = {1, . . . , k}
and

fk(x) = 1

m

m∑

i=1

min
l=1,...,k

fil(xl),

8.5 Discrete Gradient Clustering Algorithm 219

where fil(xl) = dp(xl , ai), l = 1, . . . , k.

Then the term functions are

(xlt − ait)
2 for p = 2, and

|xlt − ait | for p = 1,∞.

Here, t = 1, . . . , n, l = 1, . . . , k, i = 1, . . . , m, and therefore, the total number of
such term functions is mnk. Since the function fk has nk number of variables one
needs nk + 1 evaluations of this function to compute its one discrete gradient. Then
the total number of evaluations of term functions to compute one discrete gradient
of fk is Nt = mnk(nk + 1).

According to the definition of the discrete gradients for a given i ∈ {1, . . . , nk}
we compute values of the function fk at the following nk + 1 points:

x, x0, x1, . . . , xi−1, xi+1, . . . , xnk.

We need the full evaluation of the function fk only at two points: at x and x0 which
requires 2mnk calculations of the term functions. Other points from this sequence
are obtained from the previous point by changing only one coordinate which is the
coordinate of only one cluster center. This means that we need to update only m

term functions at points x1, . . . , xi−1, xi+1, . . . , xnk and the number of evaluations
of the term functions at these points is m(nk − 1). Therefore, the total number
of evaluations of term functions for computation of one discrete gradient is N̄t =
m(3nk − 1).

Thus, in order to calculate one discrete gradient of the function fk at the point x
the following simplified scheme can be used. We compute the values of the function
fk at the points x and x0. Then we store values of all term functions calculated at
x0. In order to calculate the value of fk at x1 we update only those term functions
which contain the first coordinate and keep all other term functions as they are. We
repeat this scheme for all other coordinates. Note that we compute the function fk

at the point x when we compute the first discrete gradient at this point. The use
of this scheme allows us to reduce the number of term functions evaluations for
computation of the first discrete gradient

Nt

N̄t

= mnk(nk + 1)

m(3nk − 1)
≈ nk + 1

3

times and approximately (nk + 1)/2 times for the computation of all other discrete
gradients at x. This reduction becomes very significant as the number of clusters k

increases.
The similar scheme can be designed to compute discrete gradients of the

auxiliary cluster function f̄k . Here, the total number of term functions is mn. The
function f̄k has n variables and therefore, one needs n+1 evaluations of this function
to compute its one discrete gradient. This means that the total number of evaluations
of term functions to compute one discrete gradient of f̄k is Nt = mn(n + 1).

220 8 Nonsmooth Optimization Based Clustering Algorithms

For a given i ∈ {1, . . . , n}, we compute values of the function f̄k at the following
n + 1 points:

x, x0, x1, . . . , xi−1, xi+1, . . . , xn.

The full evaluation of the function f̄k at points x and x0 requires 2mn calculations of
the term functions. Other points from this sequence are obtained from the previous
point by changing only one coordinate. This means that we need to update only m

term functions at points x1, . . . , xi−1, xi+1, . . . , xn and therefore, the total number
of evaluations of the term functions for calculating of f̄k at these points is m(n−1).
The total number of evaluations of term functions for computation of one discrete
gradient is N̄t = m(3n − 1).

Therefore, we can apply the following simplified scheme to compute one discrete
gradient of the f̄k at the point x. We compute the function f̄k at the points x and x0

and store the values of all term functions calculated at x0. In order to calculate
the value of f̄k at x1 for each data point we update only the first term function
and keep all other term functions as they are. This scheme is repeated for all other
coordinates. Applying this scheme leads to the reduction of the number of term
functions evaluations to compute the first discrete gradient

Nt

N̄t

= mn(n + 1)

m(3n − 1)
≈ n + 1

3

times and approximately (n + 1)/2 times for the computation of all other discrete
gradients at x.

8.6 Smooth Incremental Clustering Algorithm

In this section, we describe the smooth incremental clustering algorithm (IS-
CLUST) where the objective functions in both the clustering and the auxiliary
clustering problems are approximated by smooth functions [33]. To approximate
objective functions, we apply the HSM, described in Sect. 3.9. The hyperbolic
smoothings of the cluster function fk and the auxiliary cluster function f̄k are
given in Sects. 4.7.2 and 4.7.3, respectively. For convenience, we recall these smooth
functions for any l = 2, . . . , k:

Φl,τ (x, t) = − 1

m

m∑

i=1

⎛

⎝ti +
l∑

j=1

−dp(xj , ai) − ti +
√

(dp(xj , ai) + ti)2 + τ 2

2

⎞

⎠

= 1

m

m∑

i=1

⎛

⎝−ti +
l∑

j=1

ti + dp(xj , ai) −
√

(dp(xj , ai) + ti)2 + τ 2

2

⎞

⎠ ,

8.6 Smooth Incremental Clustering Algorithm 221

and

Φ̄l,τ (y) = 1

m

m∑

i=1

ri
l−1

− 1

m

m∑

i=1

ri
l−1 − dp(y, ai) +

√
(ri

l−1 − dp(y, ai))2 + τ 2

2

= 1

m

m∑

i=1

ri
l−1 + dp(y, ai) −

√
(ri

l−1 − dp(y, ai))2 + τ 2

2
,

where x = (x1, . . . , xl) ∈ R
nl, y ∈ R

n and t = (t1, . . . , tm), such that

ti = − min
j=1,...,l

dp(xj , ai), i = 1, . . . , m.

As mentioned before, if the function dp is defined using the squared Euclidean
norm, then the functions Φl,τ and Φ̄l,τ are both smooth since d2 is differentiable.
However, the other two functions d1 and d∞ are nonsmooth, and we need to reapply
the hyperbolic smoothing technique to these functions to approximate them with the
smooth functions. These results are presented in Sect. 4.7.

Take any sequence {τh} such that τh ↓ 0 as h → ∞, then the clustering and the
auxiliary clustering problems (7.2) and (7.4) can be replaced by the sequence of the
following smooth problems, respectively:

{
minimize Φl,τh

(x, t)

subject to x = (x1, . . . , xl) ∈ R
nl,

(8.2)

and

{
minimize Φ̄l,τh

(y)

subject to y ∈ R
n.

(8.3)

The IS-CLUST solves the clustering problem by combining the MSINC-CLUST

and an optimization method. The IS-CLUST applies the MSINC-CLUST to solve
the clustering problem globally. Since the clustering and the auxiliary clustering
problems (8.2) and (8.3) are smooth problems the IS-CLUST can utilize any smooth
optimization method to solve them. The flowchart of the IS-CLUST is presented in
Fig. 8.4.

222 8 Nonsmooth Optimization Based Clustering Algorithms

Fig. 8.4 Smooth incremental clustering algorithm (IS-CLUST)

8.6 Smooth Incremental Clustering Algorithm 223

The IS-CLUST is given in its step by step description as follows.

Algorithm 8.9 Smooth incremental clustering algorithm (IS-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the next cluster center) Apply Algorithm 7.2 and
by solving the smooth auxiliary clustering problem (8.3), compute the set Ā5.

4: (Computation of a set of cluster centers) For each ȳ ∈ Ā5, take (x1, . . . , xl−1, ȳ) as a starting
point and solve the smooth clustering problem (8.2) and find a solution (ŷ1, . . . , ŷl). Denote
by Ā6 a set of all such solutions.

5: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

6: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

Note that in Step 3 of this algorithm when we apply Algorithm 7.2 to compute
the set of starting points Ā5, the auxiliary cluster function f̄l is approximated by the
smooth function Φ̄l,τ .

Chapter 9
DC Optimization Based Clustering
Algorithms

9.1 Introduction

This chapter presents the clustering algorithms based on the DC optimization
approaches. In Chap. 4, the clustering problems are formulated using the DC
representation of their objective functions. Using this representation we describe
three different DC optimization algorithms.

For simplicity we use the following unconstrained DC programming problem to
represent both the clustering and the auxiliary clustering problems (4.20) and (4.34):

{
minimize f (x) = f1(x) − f2(x)

subject to x ∈ R
n,

(9.1)

where both f1 and f2 are finite valued convex functions on R
n. As mentioned before,

if the squared Euclidean norm is used to define the similarity measure, then the
function f1 is smooth and the function f2 is, in general, nonsmooth. However, with
other two similarity measures d1 and d∞, both functions are nonsmooth. In this
chapter, we only consider the first case and present three different algorithms to
solve the clustering problem (9.1).

We start with the incremental nonsmooth DC clustering algorithm [36]. This
algorithm combines the MSINC-CLUST with the algorithm for finding inf-stationary
points given in Fig. 3.7. The latter algorithm, in its turn, applies the NDCM
presented in Fig. 3.8.

Then we present the DC diagonal bundle clustering algorithm [170]. Similar
to the incremental DC clustering algorithm, the DC diagonal bundle clustering
algorithm is a combination of the MSINC-CLUST and the NSO methods. However,
here we apply the DCD-Bundle given in Fig. 3.6 instead of the NDCM.

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_9

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_9

226 9 DC Optimization Based Clustering Algorithms

Finally, we describe the incremental DCA for clustering [20]. The algorithm is a
combination of the DCA (see Fig. 3.9) and the MSINC-CLUST.

9.2 Incremental Nonsmooth DC Clustering Algorithm

The incremental nonsmooth DC clustering algorithm (NDC-CLUST) is a combina-
tion of three different algorithms. The MSINC-CLUST is used to solve the clustering
problem globally. At each iteration of this algorithm the algorithm for finding inf-
stationary points is applied to solve both the clustering and the auxiliary clustering
problems. In its turn, the later algorithm uses the NDCM to find Clarke stationary
points of these problems. The flowchart of NDC-CLUST is given in Fig. 9.1.

Next, we present a detailed description of the NDC-CLUST. For a given point
x ∈ R

n and a number λ > 0, consider the set

Q1(x, λ) = conv
{∇f1(x + λg) : g ∈ S1

}
,

where S1 is the sphere of the unit ball. It is obvious that the set Q1(x, λ) is convex
and since the function f1 is smooth it is also compact for any x ∈ R

n and λ > 0.
Recall that a point x∗ ∈ R

n is called (λ, δ)-inf-stationary of the problem (9.1) if
and only if

∂f2(x∗) ⊂ Q1(x∗, λ) + B(000; δ),

and (λ, δ)-stationary if there exists ξ2 ∈ ∂f2(x∗) such that

ξ2 ∈ Q1(x∗, λ) + B(000; δ).

If a point x ∈ R
n is not a (λ, δ)-stationary point, then ‖ξ2 − z‖ ≥ δ for all

ξ2 ∈ ∂f2(x) and z ∈ Q1(x, λ). Take any ξ2 ∈ ∂f2(x) and construct the set

Q̃(x, λ, ξ2) = Q1(x, λ) − ξ2,

then we have

f (x + λu) − f (x) ≤ λ max
z∈Q̃(x,λ,ξ2)

zT u for all u ∈ R
n.

It is shown in Proposition 3.9 that if the point x is not a (λ, δ)-stationary, then
the set Q̃(x, λ, ξ2) can be used to find a direction of sufficient decrease of the
function f at x. However, the computation of this set is not always possible. Next,
we give a step by step algorithm which uses a finite number of elements from
Q̃(x, λ, ξ2) to compute descent directions, (λ, δ)-stationary points, and eventually
Clarke stationary points of the problem (9.1). The flowchart and the more detailed

9.2 Incremental Nonsmooth DC Clustering Algorithm 227

Fig. 9.1 Incremental nonsmooth DC clustering algorithm (NDC-CLUST)

228 9 DC Optimization Based Clustering Algorithms

description of this method (NDCM) are given in Sect. 3.6. Here, we use x1 for
the starting point; ε > 0 for the stopping tolerance; εL and εR for line search
parameters.

The convergence results for Algorithm 9.1 are given in Sect. 3.6. The next two
propositions recall the most important results in light of the clustering problem.

Proposition 9.1 Algorithm 9.1 finds (λ, δ)-stationary points of the clustering and
the auxiliary clustering problems in at most hmax iterations where

hmax =
⌈

f (x1)

λδεR

⌉
.

Proof The proof follows from Proposition 3.10 and the fact that f ∗ =
inf{f (x), x ∈ R

n} > 0 for both the clustering and the auxiliary clustering problems.
��

Proposition 9.2 Assume that ε = 0. Then all limit points of the sequence {xh}
generated by Algorithm 9.1 are Clarke stationary points of the clustering or the
auxiliary clustering problems.

An algorithm for finding inf-stationary points of the problem (9.1) is presented
next (see also Fig. 3.7). Assume that x∗ is a Clarke stationary point found by
Algorithm 9.1. If the subdifferential ∂f2(x∗) is a singleton, then according to
Proposition 3.7 the point is also an inf-stationary point.

9.2 Incremental Nonsmooth DC Clustering Algorithm 229

Algorithm 9.1 Nonsmooth DC algorithm

Input: x1 ∈ R
n, ε > 0, λ1 > 0, δ1 > 0, εL ∈ (0, 1) and εR ∈ (0, εL].

Output: Approximate Clarke stationary point xh.

1: (Outer iteration initialization) Set h = 1.

2: (Inner iteration initialization) Set s = 1 and xhs = xh. Choose any g ∈ S1 and compute
∇f1(xhs + λhg) and ξ2,hs

∈ ∂f2(xhs). Set

Q̄s
h = {∇f1(xhs + λhg) − ξ2,hs

}
.

3: (Stopping criterion) If λh < ε and δh < ε, then stop with xh as a final solution.
4: (Minimum norm) Compute

zhs = argmin
z∈Q̄s

h

‖z‖2.

5: (Inner iteration termination) If ‖zhs ‖ ≤ δh, then update λh+1 and δh+1. Set xh+1 = xhs , h =
h + 1 and go to Step 2.

6: (Search direction) Compute the search direction

dhs = − zhs

‖zhs ‖
.

7: If f (xhs + λhdhs) − f (xhs) > −εLλh‖zhs ‖, then go to Step 9.

8: (Serious step) Construct xhs+1 = xhs + ths dhs , where the step size ths is computed as

ths = argmax
{
t ≥ 0 : f (xhs + tdhs) − f (xhs) ≤ −εRt‖zhs ‖

}
.

Choose any g ∈ S1 and compute ∇f1(xhs+1 + λhg) and ξ2,hs+1
∈ ∂f2(xhs+1). Set

Q̄s+1
h =

{
∇f1(xhs+1 + λhg) − ξ2,hs+1

}
,

s = s + 1 and go to Step 4.

9: (Null step) Compute ∇f1(xhs + λhdhs). Update the set

Q̄s+1
h = conv

{
Q̄s

h ∪ {∇f1(xhs + λhdhs) − ξ2,hs

}}
.

Set xhs+1 = xhs , s = s + 1 and go to Step 4.

If the subdifferential ∂f2(x∗) is not a singleton, Corollary 3.3 implies that the
point x∗ is not inf-stationary. Then according to Proposition 3.6 a descent direction
from this point can be computed which in turn allows us to find a new starting point
for Algorithm 9.1.

230 9 DC Optimization Based Clustering Algorithms

Algorithm 9.2 Finding inf-stationary points of clustering problems

Input: x1 ∈ R
n, εA > 0 and εT ∈ (0, 1/2].

Output: Approximate inf-stationary point xj .

1: (Initialization) Set j = 1.

2: (Clarke stationary point) Apply Algorithm 9.1 starting from the point xj to find Clarke
stationary point x∗ with the optimality tolerance εA.

3: (Stopping criterion) If

∂f2(x∗) ⊂ {∇f1(x∗)
}+ B(000; εA),

then stop: x∗ is an approximate inf-stationary point.

4: (Descent direction) Compute subgradients ξ1
2, ξ

2
2 ∈ ∂f2(x∗) such that

r = max
i=1,2

‖ξ i
2 − ∇f1(x∗)‖ ≥ εA,

and the direction uj = −v/‖v‖ at x∗, where

v = argmax
i=1,2

{
‖∇f1(x∗) − ξ i

2‖
}
.

5: (Step size) Compute xj+1 = x∗ + tj uj where

tj = argmax
{
t ≥ 0 : f (x∗ + tuj) − f (x∗) ≤ −εT tr

}
.

Set j = j + 1 and go to Step 2.

Note that if the subdifferential ∂f2(x) is not singleton, then the two subgradients
ξ1

2, ξ
2
2 ∈ ∂f2(x), such that ξ1

2 �= ξ2
2 can be computed as described in Remarks 4.2

and 4.6. In addition, the following Lemmas show that the gradients of functions f̄k1
and fk1, given respectively in (4.33) and (4.19), satisfy Lipschitz condition.

Lemma 9.1 The gradient of the function f̄k1 satisfies Lipschitz condition on R
n

with the constant L = 2.

Proof Recall that the gradient of the function f̄k1 at a point y ∈ R
n is

∇f̄k1(y) = 2

m

∑

a∈A

(y − a).

Then for any y1, y2 ∈ R
n we get

∇f̄k1(y1) − ∇f̄k1(y2) = 2(y1 − y2).

Therefore,

‖∇f̄k1(y1) − ∇f̄k1(y2)‖ = 2‖y1 − y2‖,

9.2 Incremental Nonsmooth DC Clustering Algorithm 231

that is the gradient ∇f̄k1 satisfies the Lipschitz condition on R
n with the constant

L = 2. ��

Lemma 9.2 The gradient of the function fk1 satisfies Lipschitz condition on R
nk

with the constant L = 2.

Proof The proof is similar to that of Lemma 9.1. ��
Considering clustering problems we can now get the following result.

Proposition 9.3 Algorithm 9.2 terminates after the finite number of iterations at an
approximate inf-stationary point of the (auxiliary) clustering problem.

Proof The proof follows directly from Proposition 3.8 and Lemmas 9.1 and 9.2. ��
Now we are ready to give the NDC-CLUST for solving the problem (9.1). The

NDC-CLUST first uses Algorithm 7.2 to generate a set of promising starting points
for the auxiliary clustering problem. In addition, Algorithm 9.2 is utilized to solve
both the clustering and the auxiliary clustering problems. This algorithm, in its turn,
applies Algorithm 9.1 to find Clarke stationary points of the clustering problems.
The NDC-CLUST is described in Algorithm 9.3.

Algorithm 9.3 Incremental nonsmooth DC clustering algorithm (NDC-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l+1. If l > k, then stop. The k-partition problem has been solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 ⊂ R

n of starting points for solving the auxiliary clustering
problem (4.34).

4: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 9.2 to
solve the auxiliary clustering problem (4.34) starting from each point y ∈ Ā3. This algorithm
generates a set Ā5 of starting points for the lth cluster center.

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 9.2 to solve
the clustering problem (4.20) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

232 9 DC Optimization Based Clustering Algorithms

Remark 9.1 Algorithm 9.3 can be used to solve clustering problems with the
distance functions d1 and d∞ if we apply the partial smoothing to the functions fk

and f̄k , described in Sects. 4.7.4 and 4.7.5, respectively (see [23]). More specifically,
if we approximate the first component of the (auxiliary) cluster function by applying
a smoothing technique then Algorithm 9.3 becomes applicable to solve clustering
problems with the distance functions d1 and d∞.

9.3 DC Diagonal Bundle Clustering Algorithm

In this section, we describe the DC diagonal bundle clustering algorithm (DCDB-
CLUST) for solving the problem (9.1) in large data sets [170]. The algorithm is a
combination of three different algorithms. The MSINC-CLUST is used to solve the
clustering problem globally. At each iteration of this algorithm a modified version
of the algorithm for finding inf-stationary points (Algorithm 9.2) is applied to solve
both the clustering and the auxiliary clustering problems. The later algorithm uses
the DCD-BUNDLE to find Clarke stationary points of these problems. The flowchart
of DCDB-CLUST is given in Fig. 9.2.

The DCD-BUNDLE is developed specifically to solve the clustering problems
that are formulated as the nonsmooth DC optimization problem. The flowchart and
more details of this method are given in Sect. 3.5. Here, we give the algorithm
in its step by step form. We use x1 for the starting point; εc > 0 for the stopping

9.3 DC Diagonal Bundle Clustering Algorithm 233

Fig. 9.2 DC diagonal bundle clustering algorithm (DCDB-CLUST)

234 9 DC Optimization Based Clustering Algorithms

Algorithm 9.4 DC diagonal bundle algorithm

Input: x1 ∈ R
n, εc > 0, εL ∈ (0, 1/2), εR ∈ (εL, 1), m̂c ≥ 1 and itype ∈ {0, 1}.

Output: Clarke stationary point xh.

1: (Initialization) Set D1,1 = I . Compute f (x1), ∇f1,1 = ∇f1(x1) and ξ2,1 ∈ ∂f2(x1). If
itype = 1, set ε = εc. Otherwise, set ε = 103εc. Set h = 1.

2: (Serious step initialization) Set ξ̃h = ξh = ∇f1,h − ξ2,h and β̃h = 0. Set m = h.

3: (Convex direction) Compute dh = −D1,hξ̃h.

4: (Stopping criterion) Calculate wh = ξ̃
T

h D1,hξ̃h + 2β̃h. If wh < ε, then stop with xh as a final
solution.

5: (Auxiliary step) Evaluate

yh+1 = xh + dh, ∇f1,h+1 = ∇f1(yh+1) and ξ2,h+1 ∈ ∂f2(yh+1).

Set sh = dh , u1,h = ∇f1,h+1 − ∇f1,m, uh = ξ2,h+1 − ξ2,m, and add these values to the
correction matrices Sh, U1,h, and U2,h (delete the earliest values if |Sh| = |U1,h| = |U2,h| >

m̂c).

6: (Serious step) If

f (yh+1) − f (xh) ≤ −εLwh,

then compute D1,h+1 using Sh and U1,h. Set xh+1 = yh+1, f (xh+1) = f (yh+1) and go to
Step 2.

7: (Aggregation) Compute

αh+1 = f (xh) − f (yh+1) + (∇f1,h+1 − ξ2,h+1)
T dh,

and t ∈ (0, 1] such that ξ t
h+1 ∈ ∂f (xh + tdh) satisfies the condition

−βh+1 + (ξ t
h+1)

T dh ≥ −εRwh,

with βh+1 given in (3.19). Determine multipliers λk
i ≥ 0 for all i ∈ {1, 2, 3}, ∑3

i=1 λh
i = 1

that minimize the function

ϕ(λ1, λ2, λ3) = (λ1ξm + λ2ξ
t
h+1 + λ3ξ̃h)T D1,h(λ1ξm + λ2ξ

t
h+1 + λ3ξ̃h)

+ 2(λ2βh+1 + λ3β̃h).

Set ξ̃
t

h+1 = λh
1ξm + λh

2ξ t
h+1 + λh

3 ξ̃h and β̃h+1 = λh
2βh+1 + λh

3 β̃h.

8: (Null step) If m = h, then compute D1,h+1 using Sh and U1,h. Otherwise, set D1,h+1 = D1,h.
Two cases can occur.

(i) (Convex Null Step) If αh+1 ≥ 0, then set xh+1 = xh, h = h + 1 and go to Step 3.
(ii) (Concave Null Step) If αh+1 < 0, then compute D2,h+1 using Sh and U2,h. Set xh+1 =

xh, h = h + 1.

9: (Concave direction) Compute the smallest q ∈ (0, 1) such that the matrix qD1,h −(1−q)D2,h

remains positive semidefinite. Compute

dh = − (qD1,h − (1 − q)D2,h

)
ξ̃h

and go to Step 4.

9.3 DC Diagonal Bundle Clustering Algorithm 235

tolerance; εL and εR for line search parameters; γ for the distance measure
parameter; m̂c for the maximum number of stored correction vectors used to form
diagonal updates. We also use itype to show the type of the problem, that is:

• itype = 0: the auxiliary clustering problem (7.4);
• itype = 1: the clustering problem (7.2).

The convergence properties of the DCD-BUNDLE are studied in Sect. 3.5.
Here, we recall the most important results for clustering problems. Note that
Assumptions 3.5–3.6 are trivially satisfied for both the cluster and the auxiliary
cluster functions.

Proposition 9.4 Assume εc = 0. If Algorithm 9.4 terminates at the hth iteration,
then the point xh is a Clarke stationary point of the (auxiliary) clustering problem.

Proposition 9.5 Assume εc = 0. Every accumulation point of the sequence {xh}
generated by Algorithm 9.4 is a Clarke stationary of the (auxiliary) clustering
problem.

If the function f2 in the problem (9.1) is smooth, then the point found by Algo-
rithm 9.4 is also inf-stationary. Otherwise, a slight modification of Algorithm 9.2 is
applied to find an inf-stationary point of the problem. This modification is given in
Algorithm 9.5.

Algorithm 9.5 Finding inf-stationary points of clustering problems

Input: x1 ∈ R
n, εA > 0 and εT ∈ (0, 1/2].

Output: Approximate inf-stationary point x∗.

1: (Initialization) Set j = 1.

2: (Clarke stationary point) Apply Algorithm 9.4 starting from the point xj to find the Clarke
stationary point x∗ with the optimality tolerance εA.

3: (Stopping criterion) If

∂f2(x∗) ⊂ {∇f1(x∗)
}+ B(000; εA),

then stop: x∗ is an approximate inf-stationary point.

4: (Descent direction) Compute subgradients ξ1
2, ξ

2
2 ∈ ∂f2(x∗) such that

r = max
i=1,2

‖ξ i
2 − ∇f1(x∗)‖ ≥ εA,

and the direction uj = −v/‖v‖ at x∗, where

v = argmax
i=1,2

‖∇f1(x∗) − ξ i
2‖.

5: (Step size) Compute xj+1 = x∗ + tj uj where

tj = argmax
{
t ≥ 0 : f (x∗ + tuj) − f (x∗) ≤ −εT tr

}
.

Set j = j + 1 and go to Step 2.

236 9 DC Optimization Based Clustering Algorithms

If the subdifferential ∂f2(x) is not a singleton, then we can compute two different
subgradients ξ1

2, ξ
2
2 ∈ ∂f2(x) in Step 4 of Algorithm 9.5 (see Remarks 4.2 and 4.6).

In addition, in Lemmas 9.1 and 9.2, we proved that the gradients of functions f̄k1
and fk1 (see (4.20) and (4.34)) satisfy the Lipschitz condition. Then we get the
following convergence result for clustering problems.

Proposition 9.6 Algorithm 9.5 terminates after finite number of iterations at an
approximate inf-stationary point of the (auxiliary) clustering problem.

Proof The proof follows directly from Proposition 3.8 and Lemmas 9.1 and 9.2. ��
Next, we give the step by step description of the DCDB-CLUST.

Algorithm 9.6 DC diagonal bundle clustering algorithm (DCDB-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 ⊂ R

n of starting points for the auxiliary clustering problem (4.34).

4: (Computation of a set of starting points for the clustering problem) For each y ∈ Ā3 apply
Algorithm 9.5 to solve the auxiliary clustering problem (4.34) and find Ā5, a set of starting
points for the lth cluster center in the lth clustering problem (4.20).

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 9.5 to solve
the clustering problem (4.20) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

Remark 9.2 Similar to Algorithm 9.3, Algorithm 9.6 can be applied to solve
clustering problems with the distance functions d1 and d∞ if we apply the partial
smoothing to the cluster function fk and the auxiliary cluster function f̄k .

9.4 Incremental DCA for Clustering 237

9.4 Incremental DCA for Clustering

In this section, we describe an incremental DCA for clustering (IDCA-CLUST) to
solve the clustering problem (9.1) [20]. The IDCA-CLUST is based on the MSINC-
CLUST and the DCA, where the latter algorithm is utilized at each iteration of
the MSINC-CLUST to solve the clustering and the auxiliary clustering problems.
Figure 9.3 illustrates the flowchart of the IDCA-CLUST.

First, we recall the DCA for solving the unconstrained DC programming
problem (9.1) when the first DC component f1 is continuously differentiable.

Algorithm 9.7 DC algorithm

Input: Starting point x1 ∈ R
n.

Output: Critical point xh.

1: (Initialization) Set h = 1.

2: Compute ξ2,h ∈ ∂f2(xh).

3: (Stopping criterion) If ξ2,h = ∇f1(xh), then stop.

4: Find the solution xh+1 to the convex optimization problem

{
minimize f1(x) − ξT

2,h(x − xh)

subject to x ∈ R
n.

(9.2)

5: Set h = h + 1 and go to Step 2.

Next, we explain how this algorithm can be applied to solve the clustering and
the auxiliary clustering problems (9.1). We start with the clustering problem. Let
xh = (xh,1, . . . , xh,k) ∈ R

nk be a vector of cluster centers at the iteration h and
A1, . . . , Ak be the cluster partition of the data set A provided by these centers.

We discussed the subdifferentials of the functions f1 and f2 in Sect. 4.4. Here,
we recall them when the similarity measure d2 is used in these functions. In this
case, the function f1 is continuously differentiable and we have

∇fk1(x) = 2(x − ã), x ∈ R
nk,

where ã = (ā, . . . , ā) and ā = 1
m

∑m
i=1 ai .

For the subdifferential of the function f2, recall the function ϕa(x) and the set
R̃a(x), x ∈ R

nk , defined in (4.22) and (4.23), respectively:

ϕa(x) = max
j=1,...,k

k∑

s=1,s �=j

d2(xs , a),

238 9 DC Optimization Based Clustering Algorithms

Fig. 9.3 Incremental DCA for clustering (IDCA-CLUST)

9.4 Incremental DCA for Clustering 239

and

R̃a(x) =
{
j ∈ {1, . . . , k} :

k∑

s=1,s �=j

d2(xs , a) = ϕa(x)
}
.

Then we have

∂ϕa(x) = conv
{

2
(
x1 − a, . . . , xj−1 − a,000, xj+1 − a, . . . , xk − a

)
,

j ∈ R̃a(x)
}
,

and

∂fk2(x) = 1

m

∑

a∈A

∂ϕa(x).

Applying these formulas for subdifferentials, the subgradient ξ2,h ∈ ∂f2(xh) in
Step 2 of Algorithm 9.7 is

ξ2,h = 2

m

(∑

a∈A\A1

(xh,1 − a), . . . ,
∑

a∈A\Ak

(xh,k − a)
)

= 2

m

(
(m − |A1|)xh,1 − (mā − |A1|ā1), . . . ,

(m − |Ak|)xh,k − (mā − |Ak|āk)
)
,

where āl is the center of the cluster Al, l = 1, . . . , k and ā is the center of the whole
set A. In addition, the solution xh+1 = (xh+1,1, . . . , xh+1,k) to the problem (9.2) in
Step 4 of Algorithm 9.7 is

xh+1,t =
(

1 − |At |
m

)
xh,t + |At |

m
āt , t = 1, . . . , k,

and the stopping criterion in Step 3 of this algorithm can be given as

xh,t =
(

1 − |At |
m

)
xh,t + |At |

m
āt , t = 1, . . . , k.

In order to apply Algorithm 9.7 for solving the auxiliary clustering problem,
recall the sets Bi(y), i = 1, 2, 3, defined in (4.30) for p = 2 and y = xh ∈ R

n:

B1(xh) = {a ∈ A : ra
l−1 < d2(xh, a)

}
,

B2(xh) = {a ∈ A : ra
l−1 = d2(xh, a)

}
, and

240 9 DC Optimization Based Clustering Algorithms

B3(xh) = {a ∈ A : ra
l−1 > d2(xh, a)

}
.

Then the subgradient ξ2,h ∈ ∂f2(xh) in Step 2 of Algorithm 9.7 is computed as

ξ2,h = 2

m

∑

a∈B1(xh)

(xh − a), xh ∈ R
n.

Furthermore, the solution xh+1 to the problem (9.2) in Step 4 is

xh+1 = 1

m

⎛

⎝|B1(xh)|xh +
∑

a∈B2(xh)∪B3(xh)

a

⎞

⎠ .

Finally, the stopping criterion in Step 3 of Algorithm 9.7 can be given by

∑

a∈B2(xh)∪B3(xh)

(xh − a) = 0.

These results demonstrate that there is no need to apply any optimization
algorithm to solve the problem (9.2) for both the DC clustering and the DC auxiliary
clustering problems. In both cases solutions can be expressed explicitly.

Proposition 9.7 All accumulation points of the sequence {xh} generated by Algo-
rithm 9.7 are Clarke stationary points of the problem (9.1) when d2 is used as a
similarity measure.

Proof Since the function f1 in the problem (9.1) with the similarity measure d2
is smooth the sets of critical points and Clarke stationary points of this problem
coincide (see Theorem 2.27 and Fig. 2.9). ��

Now, we are ready to design an IDCA-CLUST. This algorithm is based on
the MSINC-CLUST and the DCA. The IDCA-CLUST applies the MSINC-CLUST

for solving the clustering problem globally and the DCA is utilized at each
iteration of the MSINC-CLUST to solve both the clustering and the auxiliary
clustering problems. The step by step description of the IDCA-CLUST is given in
Algorithm 9.8.

Remark 9.3 Similar to Algorithms 9.3 and 9.6, we can apply Algorithm 9.2 in
Steps 4 and 5 of Algorithm 9.8. Then we obtain inf-stationary points of both the
clustering and the auxiliary clustering problems.

9.4 Incremental DCA for Clustering 241

Algorithm 9.8 Incremental DCA for clustering (IDCA-CLUST)

Input: Data set A and the number of clusters k to be computed.
Output: The l-partition of the set A with l = 1, . . . , k.

1: (Initialization) Compute the center x1 ∈ R
n of the set A. Set l = 1.

2: (Stopping criterion) Set l = l + 1. If l > k, then stop—the k-partition problem has been
solved.

3: (Computation of a set of starting points for the auxiliary clustering problem) Apply Algo-
rithm 7.2 to find the set Ā3 of starting points for solving the auxiliary clustering problem (4.34).

4: (Computation of a set of starting points for the lth cluster center) Apply Algorithm 9.7 to
solve the auxiliary clustering problem (4.34) starting from each point y ∈ Ā3. This algorithm
generates a set Ā5 of starting points for the lth cluster center.

5: (Computation of a set of cluster centers) For each ȳ ∈ Ā5 apply Algorithm 9.7 to solve
the clustering problem (4.20) starting from the point (x1, . . . , xl−1, ȳ) and find a solution
(ŷ1, . . . , ŷl). Denote by Ā6 a set of all such solutions.

6: (Computation of the best solution) Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
,

and the collection of cluster centers (ỹ1, . . . , ỹl) such that

fl(ỹ1, . . . , ỹl) = f min
l .

7: (Solution to the lth partition problem) Set xj = ỹj , j = 1, . . . , l as a solution to the lth
partition problem and go to Step 2.

Part III
Implementations and Evaluations of

Clustering Algorithms

Chapter 10
Performance and Evaluation Measures

10.1 Introduction

In cluster analysis it is important to apply special evaluation and performance mea-
sures to assess the quality of clustering solutions and to compare the performance of
different clustering algorithms. Here, we differentiate evaluation and performance
measures. Evaluation measures are predominantly used to judge the quality of
clustering solutions whereas performance measures are applied to compare the
efficiency of the algorithms using the computational time and/or the number of the
objective and constraint functions evaluations.

A good clustering algorithm is able to find a true number of clusters and to
compute well-separated clusters which are compact and connected. Nevertheless,
quantifying and measuring these objectives are not a trivial task. In some applica-
tions when a data set contains a small number of instances and a very few attributes,
it might be possible to intuitively evaluate clustering results. However, such an
evaluation is not possible in large and medium sized data sets or even in small data
sets with several attributes.

The objectives of clustering—separability, connectivity, and compactness—are
defined as follows:

• separability of clusters means that they are pairwise separable: that is, for each
pair of clusters there exists a hyperplane separating them in the n-dimensional
space. Roughly speaking in this case, data points from different clusters are away
from each other;

• connectivity is the degree to which neighboring data points are placed in the
same cluster [137]. This degree is defined by a neighborhood algorithm. The
most commonly used neighborhood construction algorithms are the k-nearest

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_10

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_10

246 10 Performance and Evaluation Measures

neighbors, the ε-neighborhood [99], and the NC algorithm [151]. In general, the
connectivity decreases when the number of clusters increases;

• compactness of clusters is characterized by the degree of density of data points
around cluster centers. The compactness improves when the number of clusters
increases.

The quality of clustering results can be evaluated by the cluster validity
indices. In general, validation criteria can be divided into two groups: the internal
validation—that is based on the information intrinsic to data, and the external
validation—that is based on the previous knowledge of data. For instance, such
knowledge can be a class distribution of a data set. In this case, the known class
distributions in data sets can be used to compare the quality of solutions obtained by
clustering algorithms. More precisely, cluster distributions are matched with class
distributions and for example, the notion of purity is used to compare clustering
algorithms.

In this chapter, we describe some evaluation measures including various cluster
validity indices, silhouette coefficients, Rand index, purity, normalized mutual
information, and F -score to mention but a few. Among these measures, the last
three are external criteria. The Rand index and its modification can be used both as
an internal and an external criteria. All other evaluation measures considered in this
chapter are internal criteria.

Clustering algorithms can be compared using their accuracy, the required
computational time, and the number of distance function evaluations. Using these
three measures, we introduce performance profiles for clustering and apply them to
compare the clustering algorithms.

10.2 Optimal Number of Clusters

Determining the optimal number of clusters is among the most challenging prob-
lems in cluster analysis. Various cluster validity indices can be used to find the
optimal number. The values of these indices are calculated for different number of
clusters and a curve of the index values with respect to the number of clusters is
drawn. With most cluster validity indices, the optimal number corresponds to the
global (or local) minimum or maximum of a cluster validity index. The following
algorithm describes the necessary steps to find the optimal number of clusters with
respect to a given validity index.

10.3 Cluster Validity Indices 247

Algorithm 10.1 Finding optimal number of clusters

Input: Minimum and maximum number of clusters, kmin and kmax, respectively.
Output: An optimal number of clusters k ∈ [kmin, kmax

]
.

1: (Initialization) Set j = kmin.

2: Run a clustering algorithm with j clusters.

3: Compute the cluster distribution Ā = {A1, . . . , Aj } and the corresponding cluster centers
x = (x1, . . . , xj) ∈ R

nj . Calculate the index value for the j th partition.

4: (Stopping criterion) If j < kmax, then set j = j + 1 and go to Step 2.

5: Select j ∈ [kmin, kmax] for which the partition provides the best result according to some
criteria (minimum or maximum) as the optimal number of clusters. Set k = j and stop.

Remark 10.1 The value of kmin is usually chosen to be 2.

Remark 10.2 In the case of the incremental clustering algorithms, it is sufficient
to select only kmax and there is no need to apply this algorithm repeatedly as it
calculates clusters incrementally.

As mentioned above, the optimal number of clusters usually corresponds to
optimizers of cluster validity indices. However, it is not always the case as some
indices may monotonously decrease (or increase) depending on the number of
clusters or indices may have several local maximum or minimum values if kmax
is very large. Therefore, it may be more appropriate to use “knee” points to find the
optimal number of clusters. In the univariate case knee is a point where the index
curve is best approximated by a pair of lines. Although the knee point on the index
curve may indicate the optimal number of clusters, locating it is not an easy task.

One way to find the knee point is to use the difference between successive values
of indices. If the difference is significant, then the previous value of the index can be
accepted as the knee point. This type of detection uses only local information and
does not reflect the global trend of the index curve. Another way is to apply the L-
method that examines the boundary between the pair of straight lines in which they
most closely fit the index curve in hierarchical/segmentation clustering (see [256]
for more details).

10.3 Cluster Validity Indices

Finding the optimal number of clusters usually relies on the notion of the cluster
validity index as mentioned in the previous section. In addition, cluster validity
indices can be applied to evaluate the quality of cluster solutions and also can be
used as objective functions in clustering problems. Cluster validity indices have
been widely studied and applied in cluster analysis [134, 135, 155, 214, 303, 314].
Most of them assume certain geometrical shapes for clusters. When these assump-
tions are not met, then such indices may fail. Therefore, there is no universal cluster

248 10 Performance and Evaluation Measures

validity index applicable to all data sets and different indices should be tried in order
to decide about the true cluster structure of a data set.

Let k ≥ 2 and Ā = {A1, . . . , Ak} be the cluster distribution of the data set A and
x1, . . . , xk be its cluster centers. Let also mj = |Aj | be the number of points in the
cluster Aj , j = 1, . . . , k. Two important numbers are used in most cluster validity
indices. The first one is the sum of squares within the clusters (intra-cluster) defined
as

Wk =
k∑

j=1

∑

a∈Aj

d2(xj , a). (10.1)

Note that Wk is the value of the clustering objective function multiplied by the
number of points in the set A. It can be rewritten as

Wk =
∑

a∈A

min
j=1,...,k

d2(xj , a). (10.2)

The second number is the sum of squares between each cluster center and the
center of the entire set A—called the (inter-cluster)—defined as

Bk =
k∑

j=1

mjd2(xj , x̄), (10.3)

where x̄ ∈ R
n is the center of the set A.

Note that Wk is used to measure the compactness of clusters whereas Bk is
considered as a measure of separation of clusters.

10.3.1 Optimal Value of Objective Function

An optimal value of the objective function in the clustering problem can be used
to find the optimal number of clusters. There are different optimization models
of clustering problems, and the aim in these models is to minimize the objective
function by attaining a high intra-cluster and a low inter-cluster similarity. This
means that the clustering objective function is an internal criterion for the quality
of clustering and we can get compact and in some cases well-separated clusters
by minimizing the objective. However, this aim may not be achieved always. The
main reason is that clustering is a global optimization problem—it has many local
solutions and only global or nearly global ones provide a good quality cluster
solutions. Nevertheless, most clustering algorithms are local search methods. They
start from any initial solution and find the closest local solution which might be far
away from the global one.

10.3 Cluster Validity Indices 249

The optimal value of the clustering function found by a clustering algorithm
decreases usually as the number of clusters increases. However, this is not always
the case. For example, optimal values may not decrease when the k-means or the
k-medians algorithms are applied. In these cases, the use of such values may lead to
an erroneous decision on the number of clusters as these values may be generated
by unexpected local minimizers.

The use of the incremental approach helps us to avoid such undesirable sit-
uations. The optimal value of the clustering function found by an incremental
clustering algorithm monotonously decreases as the number of clusters increases.
Monotonicity of these values with respect to the number of clusters means that there
are no (local) minimizers and the knee points should be used to estimate the optimal
number of clusters. The following approach can be used to estimate the optimal
number of clusters. Let ε > 0 be a given tolerance. For the clustering problem, if

Wk − Wk+1

W1
≤ ε,

then k is accepted as the optimal number of clusters (Wk is defined in (10.1)). The
number W1 is used to define the relative error as this number is a characteristic of
the whole data set.

Note that the optimal value of the cluster function alone may not provide an
accurate optimal number of clusters and additional measures are needed. In what
follows, we introduce cluster validity indices using the similarity measure d2;
however, most of them can also be given for the similarity measures d1 and d∞.

10.3.2 Davies–Bouldin Index

Davies–Bouldin (DB) index [75] is a function of the ratio of the sum of within-
cluster scatter to between-cluster separation. For the k-partition problem consider

S(Aj) = 1

mj

∑

a∈Aj

d2(xj , a),

which is the average squared Euclidean distance of all data points from the cluster
Aj to their cluster center xj , j = 1, . . . , k. Let d2(xl , xj) be the squared Euclidean
distance between cluster centers xl and xj , l, j = 1, . . . , k, j �= l. Introduce the
following two numbers:

Rlj = S(Al) + S(Aj)

d2(xl , xj)
, and

R̄j = max
l=1,...,k

Rlj , j = 1, . . . , k.

250 10 Performance and Evaluation Measures

The small value of Rlj means that the lth and j th clusters are separated, and the
small value of R̄j indicates that the j th cluster is separated from all other clusters.
The DB index is defined as

DBk = 1

k

k∑

j=1

R̄j .

Note that the DB index is small if the clusters are compact and well-separated.
Consequently, the DB index will have a small value for a good clustering. More
specifically, the optimal number of clusters can be identified using local minimizers
of the DB index.

10.3.3 Dunn Index

Dunn (Dn) index was introduced in [93, 94]. For k ≥ 2, consider the k-partition
problem. Let

dist(Aj ,Al) = min
a∈Aj , b∈Al

d2(a, b)

be a squared Euclidean distance between the lth and j th clusters, j, l =
1, . . . , k, j �= l. The squared diameter of the cluster Aj is given by

diam(Aj) = max
a,b∈Aj

d2(a, b).

Let

Δk = max
j=1,...,k

diam(Aj).

Then the Dn index is defined as

Dnk = 1

Δk

min
j=1,...,k

min
l=1,...,k, l �=j

dist(Aj ,Al).

The Dn index maximizes the inter-cluster distances and minimizes the intra-
cluster distances. This index measures the minimum separation to maximum
compactness ratio, so the higher the Dn index value is the better clustering is.
Therefore, the number of clusters that maximizes Dnk can be chosen as the optimal
number of clusters. Some generalizations of the Dn index have been proposed, for
instance, in [255].

It should be noted that the squared distance between clusters can be defined in
many different ways. Here, we define it by calculating pairwise squared distances
between points from clusters. However, cluster centers can be used to define this

10.3 Cluster Validity Indices 251

distance. Note that the similarity measures d1 and d∞ can also be utilized to define
the Dn index.

10.3.4 Hartigan Index

Hartigan (H) index is one of the first cluster validity indices introduced in [143].
The H index is defined as

Hk =
(Wk

Wk+1
− 1
)
(m − k − 1). (10.4)

Another expression for this index is

Hk = log
Bk

Wk

,

where Wk and Bk are defined in (10.1) and (10.3), respectively.
Let us consider the first definition of the H index. We assume that Wk+1 ≤ Wk

for all k ≥ 1. However, the difference between two successive values of Wk becomes
smaller and smaller as the number k of clusters increases. This means that the
first term in (10.4) is nonnegative and approaches to 0 as the number of clusters
increases. The second term decreases as the number of clusters increases. Therefore,
the maximum value of the H index may correspond to the optimal number of
clusters.

The second expression for the H index is based on the compactness and the
separation of clusters. For a good clustering, the value of Bk is expected to be as
large as possible and the value of Wk to be as small as possible. This means that the
(local) maximum of the H index corresponds to a good clustering distribution. Note
that different similarity measures can be used to define the H index.

10.3.5 Krzanowski–Lai Index

Krzanowski–Lai (KL) index was introduced in [187] and is defined as

KLk = |vk|
|vk+1| , k > 1.

Here

vk = (k − 1
) 2

n Wk−1 − k
2
n Wk,

and n is the number of attributes in the data set A.

252 10 Performance and Evaluation Measures

If the set A contains a large number of attributes, then vk ≈ Wk−1 − Wk and the
optimal number of clusters may coincide with a local maximizer of KLk or with its
knee point. On the other hand, when the number of attributes is very small (say for
example, less than six), then the optimal number of clusters can be identified using
knee points of the KL index curve.

10.3.6 Ball & Hall Index

Ball & Hall (BH) index was introduced in [40]. This index is very simple and can
be easily calculated as

BHk = Wk

k
.

Since one can expect that Wk+1 ≤ Wk for all k > 1 it follows that the BH

index decreases as k increases. Therefore, in general, it is not expected that BHk

has a local minimizer or maximizer. This is always true for incremental clustering
algorithms for which BHk decreases monotonously. In this case, we can define a
tolerance ε > 0. If

BHk − BHk+1 ≤ ε for some k ≥ 2,

then k can be accepted as the optimal number of clusters. Alternatively, the optimal
number of clusters can be determined using knee points on the BH index curve.

10.3.7 Bayesian Information Criterion

Bayesian information criterion (BIC) was introduced in [315]. The BIC is defined
as

BICk = Lm − 1

2
k
(
n + 1

) k∑

j=1

log
(
mj

)
,

where L > 0 is a log-likelihood in the BIC, mj is the number of data points in
the j th cluster, j = 1, . . . , k, and n is the number of attributes in the data set A.
Note that knee points of the BIC can be considered as a possible optimal number
of clusters.

10.3 Cluster Validity Indices 253

10.3.8 WB Index

The sum-of-squares based index, called the WB index was introduced in [316] and
its modifications are studied in [314]. The WB index is defined as

WBk = kWk

Bk

,

where Wk and Bk are defined in (10.1) and (10.3), respectively. The name of this
index originates from notations used for these two numbers.

As mentioned before, the smaller the value of Wk is the better compactness of
clusters and the larger value of Bk is the better separated clusters. Therefore, the
minimum of WBk corresponds to the optimal number of clusters.

10.3.9 Xu Index

Xu index [304] is defined as

Xuk = n

2
log
(Wk

nm2

)
+ log(k).

Since for a good clustering the values of Wk are expected to be as small as possible it
follows that the optimal number of clusters can be identified using local minimizers
of the Xu index.

10.3.10 Xie-Beni Index

Xie-Beni (XB) index [303] is applicable to fuzzy clustering problems. Nevertheless,
it can also be applied to hard clustering problems with some slight modifications.

Let wij be a membership degree of the ith data point ai to the cluster Aj , i =
1, . . . , m, j = 1, . . . , k. Introduce the following numbers:

Uk =
m∑

i=1

k∑

j=1

w2
ij d2(xj , ai), and

Ũk = min
j=1,...,k

min
t=j+1,...,k

d2(xj , xt).

Here, Uk is the clustering objective function value on the fuzzy clustering problem
multiplied by the number of data points. The value of Ũk indicates how far cluster
centers lie from each other. Then the XB index is defined as

254 10 Performance and Evaluation Measures

XBk = Uk

mŨk

.

It is clear that the smaller value of Uk means more compact clusters. The larger
value of Ũk indicates well-separated clusters. Therefore, the minimum value of the
XB index corresponds to the optimal number of clusters.

To make the XB index applicable to hard clustering problems, Uk needs to be
modified as follows:

Uk =
k∑

j=1

∑

a∈Aj

d2(xj , a), or

Uk =
m∑

i=1

min
j=1,...,k

d2(xj , ai).

In this case, Uk coincides with Wk defined in (10.1). The similarity measures d1 and
d∞ can also be used to define the XB index.

10.3.11 Sym Index

Sym (Sm) index [42] is used to measure the overall average symmetry with respect
to cluster centers. Take any cluster Â from the k-partition Ā = {A1, . . . , Ak} and
denote its center by x̂. Let ȳ ∈ Â. Compute 2x̂ − ȳ which reflects the point ȳ with
respect to the center x̂. Denote the reflected point by ŷ. Assume that kN nearest
neighbors yi , i = 1, . . . , kN of ŷ are at the squared Euclidean distances d2(ŷ, yi).
Compute the symmetry measure ds of ȳ with respect to x̂ as

ds(ȳ, x̂) =
∑kN

i=1 d2(ŷ, yi)

kN

.

Then the point symmetry based distance dps(ȳ, x̂) between ȳ and x̂ is computed as

dps(ȳ, x̂) = ds(ȳ, x̂) · d2(ȳ, x̂).

Note that the number of neighbor points kN cannot be 1. Otherwise, the point ŷ
is in a data set and dps(ȳ, x̂) = 0 and therefore, the impact of the Euclidean distance
is ignored. On the other hand, large values of kN may reduce the symmetry property
of a point with respect to a particular cluster center. In practice, kN is a user defined
number and can be chosen as 2.

The maximum separation between a pair of clusters over all possible pairs of
clusters is defined by

10.3 Cluster Validity Indices 255

Dk = max
i=1,...,k

max
j=1,...,k

‖x̂i − x̂j‖. (10.5)

For each cluster Aj , j = 1, . . . , k compute

Ej =
∑

a∈Aj

dps(a, x̂j), and

Ek =
k∑

j=1

Ej .

Then the Sm index is defined as

Smk = Dk

kEk

.

The Sm index should be maximized in order to obtain the optimal number of
clusters. This index can also be extended to use the similarity measures d1 and d∞.

10.3.12 I Index

I index [8, 208] is defined as

Ik =
(1

k
× F1

Fk

× Dk

)q

,

where Dk is given in (10.5) and q is any positive integer—usually q = 2. The
number Fk is defined as the value of clustering function multiplied by the number
of data points. That is

Fk =
∑

a∈A

min
j=1,...,k

d2(a, xj).

It is obvious that F1 corresponds to Fk when k = 1.
There are three factors in the definition of the I index: the first one is the

reciprocal of the number of clusters and it decreases as the number of clusters
increases; the second factor is the ratio of F1 and Fk . Here, F1 is a constant for
a given data set. Since, in general, with an increase of k the value of Fk will be
decreased this factor ensures the formation of more compact clusters; the third
factor, Dk generally increases as k increases. Due to the complementary nature of
these three factors, it is guaranteed that the I index is able to determine the optimal
partitioning. It is clear that the I index is maximized to obtain the optimal number
of clusters.

256 10 Performance and Evaluation Measures

10.3.13 Calinski–Harabasz Index

Calinski–Harabasz (CH) index [57] is defined using the sum of squares within
the clusters and the sum of squares between the clusters. The CH index for the
k-partition problem with k ≥ 2 is given by

CHk = (m − k)Bk

(k − 1)Wk

, (10.6)

where Wk and Bk are defined in (10.1) and (10.3), respectively.
The CH index can be expressed with a different formulation. Let dA be the

general mean of all squared distances between points ai , aj ∈ A:

dA = 2
∑m

i=1
∑m

j=i+1 d2(ai , aj)

m(m − 1)
,

and dj be the mean value for each cluster Aj , j = 1, . . . , k:

dj = 2
∑

a∈Aj

∑
b∈Aj d2(a, b)

mj (mj − 1)
.

Then the sum of squares within the clusters can be alternatively computed as
(cf. (10.1))

Wk = 1

2

(k∑

j=1

(mj − 1)dj

)
,

and the sum of squares between the clusters is alternatively defined as (cf. (10.3))

Bk = 1

2

(
(k − 1)dA + (m − k)Qk

)
.

Here, Qk is a weighted mean of the differences between the general and the within-
cluster mean squared distances, that is

Qk = 1

m − k

k∑

j=1

(mj − 1)(dA − dj).

Then the CH index, given in (10.6), can be reformulated as

CHk = dA + (m−k
k−1

)
Qk

dA − Qk

.

10.4 Silhouette Coefficients and Plots 257

If the distances between all pairs of points are equal, then Qk = 0 and we get
CHk = 1. Since dA is a constant for a data set A it follows that the minimum value
of Wk maximizes Qk for a given k.

The parameter Qk can also be used to compare partitions obtained for different
number of clusters: the difference Qk − Qk−1 indicates an average gain in the
compactness of clusters resulting from the change from k − 1 to k clusters. Hence,
the behavior of Qk depending on k may be sensitive to the existence of such clusters.
Let

qk = Qk

dA

.

It is clear that qk ∈ [0, 1]. The case qk = 0 means that all distances between pairs
of data points are equal while qk = 1 implies k = m.

Then the CH index can be rewritten as

CHk = 1 + (m−k
k−1

)
qk

1 − qk

.

If data points are grouped into k clusters with a small within-cluster variation, then
the change from k −1 to k causes a considerable increase in qk . This in turn leads to
a rapid increase of the CH index. Therefore, this index can be applied to identify the
optimal number of clusters. It is suggested in [57] to choose the value of k for which
the CH index has a (local) maximum or at least a comparatively rapid increase. The
latter point can be considered as a knee point on the CH index curve. If there are
several such local maxima or knee points, then the smallest corresponding value of
k can be chosen. In practice, this means that the computation can be stopped when
the first local maximum or the knee point is found.

10.4 Silhouette Coefficients and Plots

The aim of the silhouette plot is to identify compact and well-separated clusters
[251] (see, also [174]). More precisely, the silhouette plot is used to interpret and
validate consistency within clusters. It provides a concise graphical representation
of how well each data point lies within its cluster.

Silhouettes are constructed using the k-partition Ā = {A1, . . . , Ak}, its cluster
centers x1, . . . , xk , and the collection of all proximities between data points. Take
any point a ∈ A and denote by Aj , j ∈ {1, . . . , k} the cluster to which this point
belongs. Assuming that this cluster contains other data points apart from a, compute

d̄a = 1

mj − 1

∑

b∈Aj ,b �=a

d2(a, b).

258 10 Performance and Evaluation Measures

Here, d̄a is the average dissimilarity of the point a to all other points of the cluster
Aj . Choose any t ∈ {1, . . . , k}, t �= j and compute

d̄t,a = 1

mt

∑

b∈At

d2(a, b),

which is the average dissimilarity of the point a to points from the cluster At .
Calculate the minimum average dissimilarity

d̂a = min
t=1,...,k, t �=j

d̄t,a.

Let d̄t0,a = d̂a, t0 ∈ {1, . . . , k}, t0 �= j . The cluster At0 is called the neighbor
cluster of the data point a. For each point a ∈ A, calculate the silhouette coefficient
s(a) using the following formula:

s(a) =
⎧
⎨

⎩

1 − d̄a/d̂a, if d̄a < d̂a,

0, if d̄a = d̂a,

d̂a/d̄a − 1, if d̄a > d̂a.

This formula can be rewritten as

s(a) = d̂a − d̄a

max{d̄a, d̂a}
.

It is clear that s(a) ∈ [−1, 1] for all a ∈ A. When s(a) is close to 1, the
within dissimilarity d̄a is much smaller than the smallest between dissimilarity d̂a.
Therefore, we can say that a is well-clustered as it seems that a is assigned to an
appropriate cluster and the second best choice At0 is not nearly as close as the actual
choice Aj . If s(a) = 0 or it is close to 0, then d̄a and d̂a are approximately equal.
This means that the point a lies equally far away from Aj and At0 , and it is not clear
which cluster it should be assigned. In this case, the data point can be considered
as an intermediate case. When s(a) is close to −1, d̄a is much larger than d̂a. This
means that on the average a is much closer to At0 than Aj . Hence, it would be more
natural to assign a to At0 than to Aj and we can conclude that a is misclassified. To
conclude, s(a) measures how well the data point a matches with the clustering at
hand, that is, how well the point has been assigned.

The numbers s(a) can be used to draw the silhouette plot. The silhouette of the
cluster Aj is a plot of s(a) ranked in a decreasing order for all points a in Aj . The
silhouette plot shows which data points lie well within the cluster and which ones
are merely somewhere in between clusters. A wide silhouette indicates large s(a)

values and hence a pronounced cluster. The other dimension of the silhouette plot is
its height which simply equals the number of objects in Aj .

10.5 Rand Index 259

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 10.1 Illustration of silhouette plot for ten clusters

Combining the silhouette of different clusters we can draw a single silhouette plot
for the whole data set A. This allows us to distinguish clear-cut clusters from the
weak (not well-separated) ones. In addition, the number of objects in each cluster
Aj can be detected by using the height of the silhouette of the cluster Aj .

To illustrate silhouette plots we consider the 10-partition of image segmentation
data set obtained using the MGKM. The silhouette plot of the 10-partition is given
in Fig. 10.1. It is depicted using the R package available from https://cran.r-project.
org/web/packages/clues/clues.pdf (see [290], for details). In this figure, clusters
are shown using different colors. The height and area of the cluster depend on
the number of its data points. The very narrow “pink” cluster is the smallest and
the “blue” cluster is the largest one. If any cluster has data points with negative
silhouettes, then this cluster is not well-separated. The absence of such points
means that the cluster is considered as well-separated. The top “black,” “green,”
“light blue,” “yellow” and the bottom “red” clusters are not well-separated from
other clusters. The “blue” cluster contains a very few “misclassified” points. The
remaining four clusters are considered as separable from other clusters. The right
hand side of clusters reflects the number of data points well lying inside their own
clusters. The top “red,” “blue,” and the bottom “black” clusters contain more such
points than any other cluster.

10.5 Rand Index

Rand (Rn) index [243] measures similarity between two different cluster distribu-
tions of the same data set (see, also [215, 257]). Let Ā1 and Ā2 be two cluster
distributions of the data set A:

https://cran.r-project.org/web/packages/clues/clues.pdf
https://cran.r-project.org/web/packages/clues/clues.pdf

260 10 Performance and Evaluation Measures

Table 10.1 Contingency
table for comparing partitions
Ā1 and Ā2

Ā2

Partition Clusters A1
2 A2

2 . . . A
k2
2 Total

Ā1 A1
1 n11 n12 . . . n1k2 s1

A2
1 n21 n22 . . . n2k2 s2

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

A
k1
1 nk11 nk12 . . . nk1k2 sk1

Total r1 r2 . . . rk2 m

Ā1 = {A1
1, . . . , A

k1
1 }, k1 > 1, and (10.7)

Ā2 = {A1
2, . . . , A

k2
2 }, k2 > 1. (10.8)

Denote the elements of the k1 × k2 matrix by nij , where nij represents the number
of data points belonging to the ith cluster Ai

1 of the cluster partition Ā1 and the
j th cluster of the cluster partition Ā2, i = 1, . . . , k1, j = 1, . . . , k2. Then the
contingency table for distributions Ā1 and Ā2 can be formed as in Table 10.1. In
this table, the entry si indicates the number of data points in the ith cluster of the
cluster partition Ā1 and rj shows the number of data points in the j th cluster of the
cluster partition Ā2.

Let C(m, 2) be the number of 2-combinations from m data points. Among all
possible combinations of pairs C(m, 2), there are the following different types of
pairs:

• data points in a pair belong to the same cluster in Ā1 and to the same cluster in
Ā2. Denote the number of such pairs by N1;

• data points in a pair belong to the same cluster in Ā1 and to different clusters in
Ā2. Denote the number of such pairs by N2;

• data points in a pair belong to the same cluster in Ā2 and to different clusters in
Ā1. Denote the number of such pairs by N3; and

• data points in a pair belong to different clusters in Ā1 and to different clusters in
Ā2. Denote the number of such pairs by N4.

The values of N1, N2, N3, and N4 can be calculated using entries from Table 10.1:

N1 =
k1∑

i=1

k2∑

j=1

C(nij , 2) = 1

2

⎛

⎝
k1∑

i=1

k2∑

j=1

n2
ij − m

⎞

⎠ ,

N2 =
k1∑

i=1

C(si, 2) − N1 = 1

2

⎛

⎝
k1∑

i=1

s2
i −

k1∑

i=1

k2∑

j=1

n2
ij

⎞

⎠ ,

N3 =
k2∑

j=1

C(rj , 2) − N1 = 1

2

⎛

⎝
k2∑

j=1

r2
j −

k1∑

i=1

k2∑

j=1

n2
ij

⎞

⎠ , and

10.6 Adjusted Rand Index 261

N4 = C(m, 2) − N1 − N2 − N3 = 1

2

⎛

⎝
k1∑

i=1

k2∑

j=1

n2
ij + m2 −

k1∑

i=1

s2
i −

k2∑

j=1

r2
j

⎞

⎠ .

Then the Rn index can be calculated as

Rn = N1 + N4

N1 + N2 + N3 + N4
.

Note that the Rn index is ranging from 0 to 1. If Rn = 0, then two cluster
distributions have no similarity, and if Rn = 1, then they are identical.

The Rn index can also be used to measure the similarity between a cluster
distribution and a class distribution in data sets with class outputs. In this case, we
can replace one of cluster distributions above by the class distribution. Therefore,
the Rn index is both an internal and an external index.

10.6 Adjusted Rand Index

The Rn index of two random cluster distributions may not have a constant value (say
zero) or it may approach its upper limit of unity as the number of clusters increases.
To overcome these limitations several other measures have been introduced, for
example, the Fowlkes–Mallows index proposed in [109]. Another example of such
measures is the Adjusted Rand (ARn) index which is an improvement of the Rn

index [150]. This index is considered as one of the successful cluster validation
indices [215].

Recall the cluster distributions Ā1 and Ā2, given in (10.7) and (10.8), for the data
set A. Then the ARn index is

ARn =
C(m, 2)(N1 + N4) −

(
(N1 + N2)(N1 + N3) + (N2 + N4)(N3 + N4)

)

(
C(m, 2)

)2 −
(
(N1 + N2)(N1 + N3) + (N2 + N4)(N3 + N4)

) ,

or

ARn =
C(m, 2)

∑
i

∑
j C(nij , 2) −

(∑
i C(si, 2)

∑
j C(rj , 2)

)

1
2C(m, 2)

(∑
i C(si, 2) +∑j C(rj , 2)

)
−
(∑

i C(si, 2)
∑

j C(rj , 2)
) ,

where, nij , si , rj are values from Table 10.1.
The ARn index can be used both as an internal and an external index. In the latter

case it is assumed that the data set A has class outputs and its cluster distribution is
compared with the class distribution.

262 10 Performance and Evaluation Measures

10.7 Purity

Purity measures the quality of clustering in data sets with class outputs [83]. More
precisely, it shows how well the cluster distribution obtained by a certain clustering
algorithm reflects the existing class structure of a data set. Therefore, the purity is
applicable when a data set has a class label, that is, the purity is an external criterion.
The purity can be computed for each cluster Aj , j = 1, . . . , k and the whole data
set A.

Let Ā = {A1, . . . , Ak} be the cluster distribution of the set A obtained by a
clustering algorithm. It is assumed that k ≥ 2 and Aj �= ∅, j = 1, . . . , k. Let also
C̄ = {C1, . . . , Cl} be the set of true classes of the set A. The cluster Aj may contain
different number of points from classes Ct , t = 1, . . . , l. Denote by ntj the number
of points from the t th class belonging to the j th cluster. For this cluster compute

m̄j = max
t=1,...,l

ntj , j = 1, . . . , k.

Then the purity of the cluster Aj is defined as

Pu(Aj) = m̄j

mj

,

where mj is the number of points in the cluster Aj . Usually the purity is expressed
in percentage, hence this formula can be rewritten as

Pu(Aj) = m̄j

mj

× 100%.

The purity for the cluster distribution Ā is

Pu(Ā) =
∑k

j=1 m̄j

m
× 100%.

The purity is 1 (100%) if each cluster contains data points only from one class.
Note that increasing the number of clusters, in general, will increase the purity.
In particular, if each cluster has only one data point, then the purity is equal to
1 (100%). This implies that the purity cannot be used to evaluate the trade-off
between the quality and the number of clusters.

10.8 Normalized Mutual Information 263

10.8 Normalized Mutual Information

Normalized mutual information (NMI) is a combination of the mutual information
and the entropy [189]. The mutual information is used to measure how well the
computed clusters and the true classes predict one another. The entropy is used to
measure the amount of information inherent in both the cluster distribution and the
true classes. The entropy is also used to normalize the mutual information which
allows us to evaluate the trade-off between the quality and the number of clusters.
The NMI is an external criterion to evaluate the quality of clusters.

Recall that Ā is the cluster distribution obtained by a clustering algorithm for the
data set A and C̄ is the set of its true classes. Let ntj be the number of points from
the t th class belonging to the j th cluster, nt be the number of points in the class Ct ,
and mj be the number of points in the cluster Aj .

The estimation P̄j of probability for a data point being in the j th cluster is P̄j =
mj/m, j = 1, . . . , k, the estimation P̂t of probability for a data point being in the
t th class is P̂t = nt/m and finally, the estimation P̄tj of probability for a data point
being in the intersection Aj ∩ Ct is P̄tj = ntj /m. Then the mutual information
I (Ā, C̄) between the cluster distribution Ā and the class distribution C̄ is defined as

I (Ā, C̄) =
k∑

j=1

l∑

t=1

P̄tj log
(P̄tj

P̄j P̂t

)

=
k∑

j=1

l∑

t=1

ntj

m
log
(mntj

mjnt

)
.

The estimation H(Ā) for the entropy of the cluster distribution Ā is computed as

H(Ā) = −
k∑

j=1

P̄j log P̄j

= −
k∑

j=1

mj

m
log
(mj

m

)

and the estimation H(C̄) for the entropy of the class distribution C̄ is

H(C̄) = −
l∑

t=1

P̂t log P̂t

= −
l∑

t=1

nt

m
log
(nt

m

)
.

264 10 Performance and Evaluation Measures

Then the NMI is calculated by

NMI(Ā, C̄) = 2I (Ā, C̄)

H(Ā) + H(C̄)
.

It is clear that NMI(Ā, C̄) ∈ [0, 1]. NMI(Ā, C̄) = 1 means that the cluster
distribution Ā and the class distribution C̄ of the data set A are identical, that is
the cluster distribution obtained by a clustering algorithm has a high quality.

10.9 F -Score

F -score (known also as F -measure) is an external validity index to evaluate the
quality of clustering solutions [191]. The introduction of this index is inspired by
the information retrieval metric known as the F -measure. We describe the F -score
using notations from the previous section.

The F -score combines the concepts of precision (Pr) and recall (Re). For the
cluster Aj , j = 1, . . . , k and the class Ct , t = 1, . . . , l, Pr and Re are defined as

Pr(Aj , Ct) = ntj

nt

, and

Re(Aj , Ct) = ntj

mj

.

Then the F-score of the cluster Aj and the class Ct is given by

F(Aj , Ct) = 2Pr(Aj , Ct) × Re(Aj , Ct)

P r(Aj , Ct) + Re(Aj , Ct)
.

Note that F(Aj , Ct) ∈ [0, 1], t = 1, . . . , l, j = 1, . . . , k. The total F -score Ft is
computed as

Ft = 1

m

k∑

j=1

mj max
t=1,...,l

F (Aj , Ct).

It is obvious that Ft ∈ [0, 1]. The higher the F -score is, the better the clustering
solution is. This measure has an advantage over the purity since it measures both
the homogeneity and the completeness of a clustering solution. The homogeneity of
a clustering solution means that all its clusters contain only data points which are
members of a single class. The completeness of a clustering solution means that data
points that are members of a given class are elements of the same cluster.

10.10 Performance Profiles in Cluster Analysis 265

10.10 Performance Profiles in Cluster Analysis

Performance profiles, introduced in [86], are widely used to compare optimization
algorithms. Such profiles have been introduced for comparison of (sub)gradient-
based and derivative free optimization algorithms. The number of function (and
gradient) evaluations and the computational time are usually used to compute these
profiles.

Clustering is a global optimization problem and the ability of a clustering
algorithm to find global or nearly global solutions is important as such solutions
provide the best cluster structure of a data set with the least number of clusters.
Therefore, here we introduce performance profiles for comparison of clustering
algorithms. The profiles are defined using three parameters: the accuracy, the
number of distance function evaluations, and the computational time.

10.10.1 Accuracy

Accuracy of clustering algorithms can be determined using the known global
solutions or the best known solutions of clustering problems. Consider the k-
partition problem in a data set A. Assume that f ∗

k > 0 is the best known value
of the objective function in the k-partition problem and f̄k is the lowest value of this
function obtained by a clustering algorithm Υ . Then the accuracy (or error) EΥ of
the algorithm Υ for solving the k-partition problem is defined as

Ek
Υ = f̄k − f ∗

k

f ∗
k

. (10.9)

In some cases, it is convenient to present the error (or accuracy) in %, therefore the
error can be defined as

Ek
Υ = f̄k − f ∗

k

f ∗
k

× 100%. (10.10)

We describe performance profiles using the percentage representation of the error.
Assume that the algorithm Υ is applied to solve the l-clustering problems for l =
2, . . . , k in t data sets. Then the total number of clustering problems is t (k − 1).
Denote by E

l,q
Υ the error of the solution obtained by the algorithm Υ for solving the

l-clustering problem in the qth data set, where l ∈ {2, . . . , k} and q ∈ {1, . . . , t}.
Let τ ≥ 0 be any given number. For the algorithm Υ , define the set

σΥ (τ) = {(l, q) : E
l,q
Υ ≤ τ

}
.

266 10 Performance and Evaluation Measures

It is clear that the set σΥ (0) contains only those indices (l, q) in which the algorithm
Υ finds the best known solutions. Furthermore, for sufficiently large τ we have

σΥ (τ) = {(l, q) : l ∈ {2, . . . , k}, q ∈ {1, . . . , t}}.

Then the probability that the algorithm Υ solves the collection of clustering
problems with the accuracy τ ≥ 0 is given as

PΥ (τ) = |σΥ (τ)|
t (k − 1)

.

Define a threshold τ0 > 0. An algorithm Υ is unsuccessful in solving the l-
clustering problem in the qth data set if E

l,q
Υ > τ0 (l ∈ {2, . . . , k}, q ∈ {1, . . . , t}).

This allows us to draw the graph of the function PΥ (τ) in the interval [0, τ0].
Note that the higher the graph on the left hand side is more accurate the algorithm

is in finding the best known solutions than other algorithms. The higher on the right
hand side means that the algorithm is more robust in finding the nearly best known
solutions than the other algorithms.

10.10.2 Number of Distance Function Evaluations

Most optimization based clustering algorithms use values and subgradients (or
gradients) of the cluster function to solve clustering problems. To compute them,
we need to calculate distance functions and also apply minimum operations for
each data point. Recall that the data set A has m data points and n attributes.
It is expected that, in average, the number of distance function evaluations in a
clustering algorithm depends linearly or almost linearly on the number of clusters.
At each iteration, the number of such evaluations is O(mk), where k is the number
of clusters.

Assume that a clustering algorithm uses M iterations to solve the k-clustering
problem. Then the expected value for the number of distance function evaluations
required by the algorithm is

N(m, k) = cMmk. (10.11)

Here, c > 0 is a given constant. The number N can be used as a benchmark to
evaluate the performance of clustering algorithms. Note that unlike the performance
profiles usually used in optimization [86], this benchmark does not depend on any
solver. Therefore, we can use it to rank clustering algorithms both in the sense of
efficiency and robustness.

First, we define when one can consider the performance of an algorithm as
success or failure. Since clustering is a global optimization problem we consider any
run of a clustering algorithm Υ as success if it finds either global (or best known) or

10.10 Performance Profiles in Cluster Analysis 267

nearly global (or nearly best known) solution. Thus, we can define some threshold
τ > 0 (in %). If the error Ek

Υ ≤ τ , then the algorithm Υ is considered to be
successful otherwise, it fails to solve the clustering problem.

Assume that v clustering solvers Υ1, . . . , Υv are applied to solve the l-clustering
problems for l = 2, . . . , k in t data sets. Let N(l, q) be a benchmark number
computed using (10.11) for the qth data set with l clusters. For each solver Υs, s =
1, . . . , v, denote by Qs the set of clustering problems successfully solved applying
this solver:

Qs ⊆ {(l, q) : q ∈ {1, . . . , t}; l ∈ {2, . . . , k}}. (10.12)

Let

V = {s ∈ {1, . . . , v} : Qs �= ∅}, (10.13)

and take any s ∈ V . Define the number

σs(l, q) = Ns
lq

N(l, q)
,

where Ns
lq is the number of distance function evaluations used by the solver Υs for

solving the l-clustering problem in the qth data set.
Compute the number

τmax = max
s∈V

max
(l,q)∈Qs

σs(l, q).

For any s ∈ V and a number τ ∈ (0, τmax] consider the set

Xs(τ) = {(l, q) ∈ Qs : σs(l, q) ≤ τ
}
.

Then the performance profiles for the solver Υs, s ∈ V can be defined as

ρs(τ) = |Xs(τ)|
t (k − 1)

.

For other solvers Υs, s /∈ V we set ρs(τ) = 0 for all τ ≥ 0.

10.10.3 Computational Time

Performance profiles using the computational time can be obtained in a similar
way to those using the distance function evaluations. The number of operations
for one evaluation of the squared Euclidean distance function is 3n − 1, where n is

268 10 Performance and Evaluation Measures

the number of attributes in the data set A. Consider the k-clustering problem. The
number of distance function evaluations for one iteration of an algorithm and the
total number of operations are estimated by O(mk) and O(nmk), respectively.

Assume that a clustering algorithm uses about M iterations to solve the k-
clustering problem. Then we get a number

T (m, k) = c̄Mnmk (10.14)

as an expected value for the number of operations, where c̄ > 0 is a given constant.
Dividing T by 109 (this number depends on characteristics of a computer), we
get the expected value T for the computational time. This number is used as
a benchmark to evaluate the performance of clustering algorithms based on the
computational time.

As in the case of the number of distance function evaluations, we introduce a
threshold τ > 0 (in %) to define whether an algorithm fails or succeeds to solve
the clustering problem. Assume that v clustering solvers Υ1, . . . , Υv are applied
to solve the l-clustering problems for l = 2, . . . , k in t data sets. For each solver
Υs, s = 1, . . . , v define the set Qs using (10.12) and the set V by applying (10.13).

Take any s ∈ V and compute

βs(l, q) = T s
lq

T (l, q)
,

where T s
lq is the computational time used by the solver Υs for solving the l-clustering

problem in the qth data set. Calculate the number

τmax = max
s∈V

max
(l,q)∈Qs

βs(l, q).

For any s ∈ V and a number τ ∈ (0, τmax], consider the set

Xs(τ) = {(l, q) ∈ Qs : βs(l, q) ≤ τ
}
.

For each solver Υs, s ∈ V , we can define the performance profiles as follows:

ρs(τ) = |Xs(τ)|
t (k − 1)

.

For other solvers Υs, s /∈ V we set ρs(τ) = 0 for all τ ≥ 0.

Chapter 11
Implementations and Data Sets

11.1 Introduction

We discuss the implementations of various incremental clustering algorithms and
provide some recommendations on the choice of their parameters. These algorithms
are designed by combining the multi-start incremental algorithm with either NSO
methods or variants of the k-means algorithm. All the NSO based incremental
clustering algorithms involve the algorithm for finding initial cluster centers. Using
numerical results, we discuss the choice of parameters for the latter algorithm.
In addition, we describe some real-world data sets that are used to evaluate the
clustering algorithms.

We start this chapter by introducing the algorithms applied in our numerical
experiments and by providing details of their implementations. Then, in Sect. 11.3
we present data sets used in our experiments. Finally, in Sect. 11.4 we discuss the
parameters selection for the algorithm that is used to find initial cluster centers (i.e.,
Algorithm 7.2 given in Sect. 7.4).

11.2 Implementations of Clustering Algorithms

We use the following algorithms in our numerical experiments:

• MS-KM—multi-start k-means algorithm;
• GKM—global k-means algorithm (Sect. 5.2.3);
• MGKM—modified global k-means algorithm (Sect. 8.2);
• LMB-CLUST—limited memory bundle method for clustering (Sect. 8.4);
• DG-CLUST—discrete gradient clustering algorithm (Sect. 8.5);
• IS-CLUST—smooth incremental clustering algorithm (Sect. 8.6);
• NDC-CLUST—incremental nonsmooth DC clustering algorithm (Sect. 9.2);

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_11

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_11

270 11 Implementations and Data Sets

• DCDB-CLUST—DC diagonal bundle clustering algorithm (Sect. 9.3);
• IDCA-CLUST—incremental DCA for clustering (Sect. 9.4).

The source codes (Fortran77 or Fortran95) of these algorithms are available at
https://github.com/SnTa2019/Clustering-via-Nonsmooth-Optimization and also at
http://napsu.karmitsa.fi/clustering/.

In the first three clustering algorithms, MS-KM, GKM, and MGKM, the
underlying solver is the k-means algorithm (see Sect. 5.2). We use the standard
implementation of the k-means algorithm in our experiments. The stopping criterion
in this algorithm is formulated using the maximum number of data points which are
allowed to change their clusters. More specifically, for some δ ≥ 0 the number
mc = δm is defined, where m is the number of points in a data set. If the number of
points changing their clusters is less than or equal to mc, then the k-means algorithm
terminates. In extra small, small, and medium sized data sets we set δ = 0 and for
large and very large data sets we use δ = 10−3.

Unlike other clustering algorithms listed above, the MS-KM is not an incremental
algorithm and starting points for the clustering problem are generated using a
simple multi-start randomized scheme. Note that, this algorithm does not provide
any intermediate solutions for 1 < l < k and therefore, several runs need
to be performed with different number of clusters. We denote by MS-KM the
implementation of the MS-KM and set the maximum number of starting points in
MS-KM to 1000.

GKM is an implementation of the incremental algorithm with the k-means
algorithm, where each data point is used as a starting point for the kth cluster
center and no auxiliary clustering problem is utilized. The original GKM utilizes the
mixed integer programming formulation (4.2) of the clustering problem, however,
the NSO formulation (4.3) of this problem can also be used. In its original design,
GKM is only suitable for clustering relatively small data sets. In the implementation,
we use only one starting point for the kth cluster center. More specifically, a data
point which provides the largest decrease of the cluster function is utilized. This
allows us to apply GKM to large data sets. Furthermore, we consider two different
implementations of the GKM as follows:

• the affinity (or distance) matrix of a data set is computed before the application
of the GKM. This implementation is applicable to small and medium sized data
sets as the affinity matrix for large data sets cannot be stored in the memory of a
computer and

• the affinity matrix is computed at each iteration. We can apply this implementa-
tion to large data sets.

Similar to other incremental clustering algorithms, GKM solves all the intermedi-
ate l-partition problems where l = 1, . . . , k.

MGKM is an implementation of the MGKM. This is an incremental algorithm
which utilizes the auxiliary clustering problem and the algorithm for finding starting
cluster centers. For the parameters of the latter one, we refer to Sect. 11.4. At each
iteration of the MGKM, the clustering problem is solved by applying the k-means

https://github.com/SnTa2019/Clustering-via-Nonsmooth-Optimization
http://napsu.karmitsa.fi/clustering/

11.2 Implementations of Clustering Algorithms 271

algorithm and the auxiliary clustering problem is solved by utilizing the partial k-
means algorithm where all cluster centers are fixed but one. We use the stopping
tolerance ε = 0 (see Algorithm 8.2 in Sect. 8.2) and therefore, MGKM always
computes up to the maximum number of clusters provided by the user.

LMB-Clust is an implementation of the LMB-CLUST specifically developed
for solving clustering problems in large and very large data sets. In our experiments,
we use the stopping tolerance εc = 10−3. For small and medium sized data sets,
the stopping tolerance should be set smaller than 10−3. In addition, we apply the
modified version of the underlying optimization solver LMBM with the initial
number of stored correction pairs (used to form the variable metric update) equal
to 7 and the maximum number of stored correction pairs equal to 15. Otherwise, the
default values of parameters of the LMBM are used.

DG-Clust is an implementation of the DG-CLUST. As mentioned before, the
DG-CLUST exploits piecewise separability of the cluster and auxiliary cluster func-
tions. It does not utilize the subgradients of the objective cluster functions, instead
it approximates them using values of the objective functions. Thus DG-Clust
is suitable also for solving clustering problems with the similarity measures d1
and d∞. The simplified scheme, described in Sect. 8.5, is applied to compute
discrete gradients of the cluster and the auxiliary cluster functions which allows
us to significantly reduce the number of distance function evaluations. The most
important parameter in DG-Clust is λ > 0 for approximation of the subgradients.
Its initial value is chosen λ1 = 1 and at the hth (h > 1) iteration it is updated as
λh = μλh−1 where μ = 0.2. Other parameters are chosen as δh = 10−7 for all h,
ε = 10−6 and α = 1.

IS-Clust is an implementation of the IS-CLUST. The smoothing (or precision)
parameter is chosen as τh = μτh−1, h > 1 where τ1 = 1 and μ = 0.1. To solve the
smooth optimization problems, IS-Clust applies the Quasi-Newton method with
the BFGS update.

NDC-Clust is an implementation of the NDC-CLUST. This algorithm takes into
account the DC representation of the objective cluster function. The main parameter
in NDC-Clust is the step λ > 0 used to approximate the first DC component. This
parameter is chosen as λh = μλh−1, h > 1, where μ = 0.1 and λ1 = 1. Otherwise,
the default parameters of the underlying optimization solver are used. In particular,
δh = 10−7 for all h, and ε = 10−6.

DCDB-Clust is an implementation of the DCDB-CLUST, where the DC
structure of the clustering and the auxiliary clustering problems are utilized. This
method is designed for solving clustering problems in large data sets. In our
experiments, we use the stopping tolerance εc = 10−3. Similar to LMB-Clust,
the stopping tolerance should be set smaller for small and medium sized data sets.
The underlying optimization solver DCD-BUNDLE uses seven correction pairs to
form the diagonal updates. In addition, the default values of other parameters of the
optimization solver are used.

IDCA-Clust is an implementation of the IDCA-CLUST. Since the objective
functions in the subproblem (9.2) of the IDCA-CLUST are convex quadratic

272 11 Implementations and Data Sets

functions with the simple structure their unique minima can be calculated explicitly
without involving any optimization procedure or tuneable parameters.

All computational experiments were carried out in a PC with the CPU Intel(R)
Core(TM) i5-8250U 1.60 GHz and RAM 8 GB working under Windows 10.

11.3 Data Sets

Data sets can be classified based on different parameters. Such parameters include
the number of data points, the number of attributes, the number of classes if they
are available (binary or multi-class), types of attributes (numeric, categorical, or
mixture of both), completeness or incompleteness of data, in particular, absence of
values of some attributes in some data points (missing values). We will use data sets
with numeric attributes and no missing values.

The definition of the complexity of a data set is a problem and a model dependent.
For instance, the complexity of a data set may be different from the perspective of
the supervised data classification and clustering. Different models of a clustering
problem contain different types and numbers of variables. Some of these models
have constraints. Therefore, the complexity of a data set with respect to each of
these models might be different. It is also not an easy task to determine how the
complexity of a data set affects the time complexity of an algorithm. If a data set has
well-separated clusters, then most clustering algorithms may require significantly
less iterations than in data sets with not well-separated clusters.

In most optimization based clustering algorithms, considered in this book,
optimization algorithms require the calculation of the value of the cluster functions
and their one subgradient at each point. In the case of the MSSC problems, the
objective is piecewise quadratic and quadratic functions can be represented as a
sum of the squared Euclidean distances. In the case of the similarity measures d1
and d∞, the objective cluster function is piecewise linear. For such functions, the
complexity of calculation of their values and subgradients depends on the number
of points and attributes in a data set. This means that the complexity depends on the
number of entries in a data set. Therefore, we use the number of entries to classify
data sets as extra small, small, medium sized, large, and very large data sets.

11.3.1 Extra Small Data Sets

We group those data sets that contain no more than 3000 entries as extra small. The
brief description of these data sets, used in our numerical experiments, and their
references are given in Table 11.1.

11.3 Data Sets 273

Table 11.1 Brief description of extra small data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

German towns 59 2 – 116 [272]

Bavaria postal 1 84 3 – 252 [272]

Bavaria postal 2 84 4 – 336 [272]

Iris plant 150 3 3 450 [91]

TSPLIB1060 1060 2 – 2120 [246]

Liver disorder 356 6 2 2136 [91]

Table 11.2 Brief description of small data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

Heart disease 297 13 2 3861 [91]

TSPLIB3038 3038 2 – 6076 [246]

Pima Indians diabetes 768 8 2 6144 [91]

Breast cancer Wisconsin 683 9 2 6147 [91]

Ionosphere 351 34 2 11,934 [91]

Vehicle silhouettes 846 18 4 15,228 [91]

Table 11.3 Brief description of medium sized data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

D15112 15,112 2 – 30,224 [246]

Image segmentation 2310 19 7 43,890 [91]

Page blocks 5473 10 5 54,730 [91]

Pla85900 85,900 2 – 171,800 [246]

Pen-based recognition 10,992 16 10 175,872 [91]

of handwritten digits

11.3.2 Small Data Sets

The data sets containing more than 3000 but less than 20,000 entries are classified
as small. The brief description of such data sets, including their references, is given
in Table 11.2.

11.3.3 Medium Sized Data Sets

Medium sized data sets are those containing more than 20,000 but less than 2.0 ×
105 entries. These data sets are presented in Table 11.3 with their corresponding
references.

274 11 Implementations and Data Sets

11.3.4 Large Data Sets

We group the data sets containing more than 2 × 105 but less than 2 × 106 entries
as large. The brief description of these data sets, including their corresponding
references, is given in Table 11.4.

11.3.5 Very Large Data Sets

Very large data sets are those containing more than 2×106 entries. We give the brief
description of these data sets and their corresponding references in Table 11.5.

Table 11.4 Brief description of large data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

EEG eye state 14,980 14 2 209,720 [91]

Landsat satellite 6435 36 6 231,660 [91]

Letter recognition 20,000 16 26 320,000 [91]

Optical recognition 5620 64 10 359,680 [91]

of handwritten digits [91]

Person activity 164,860 3 11 494,580 [91]

Shuttle control 58,000 9 7 522,000 [91]

Skin segmentation 245,057 3 2 735,171 [91]

KEGG metabolic 53,413 20 – 1,068,260 [91]

relation network [91]

3D road network 434,874 3 – 1,304,622 [91]

Gas sensor array drift 13,910 128 6 1,780,480 [91]

Table 11.5 Brief description of very large data sets

Number of Number of Number of Number of
Data sets instances attributes classes entries Refs.

Online news popularity 39,644 58 2 2,299,352 [91]

Sensorless drive diagnosis 58,509 48 11 2,866,941 [91]

ISOLET 7797 616 26 4,802,952 [91]

Covertype 581,012 10 7 5,810,012 [91]

MiniBooNE particle 130,064 50 2 6,503,200 [91]

identification [91]

Gisette 13,500 5000 – 67,500,000 [91]

11.4 Parameters Selection in Finding Starting Cluster Centers 275

11.4 Parameters Selection in Finding Starting Cluster
Centers

One of the most important components of the incremental clustering algorithms
is the procedure for finding starting cluster centers. This procedure is given in
Algorithm 7.2. It contains three parameters γ1, γ2 ∈ [0, 1], and γ3 ∈ [1,∞) whose
optimal values depend on the size of a data set. More precisely, they depend more
on the number of data points than on the number of attributes.

Assume that l ≥ 2 and the solution to the (l − 1)-clustering problem is known.
Algorithm 7.2 consists of the following three main steps:

• first, each data point is considered as a candidate starting cluster center together
with the solution of the previous (l − 1)-clustering problem obtained by
some incremental clustering algorithm. A data point which provides the largest
decrease of the clustering function is determined. Then a threshold is computed
by multiplying this maximum decrease by the parameter γ1 ∈ [0, 1]. The data
points which provide the decrease of the clustering function greater than this
threshold are selected as potential starting cluster centers while the rest of the
data points are removed;

• second, the selected data points are replaced by the centers of clusters around
them, and the decrease of the clustering function is calculated using these
centers. Similar to the previous step, a threshold is computed using the maximum
decrease with the parameter γ2 ∈ [0, 1], and the centers providing the decrease
greater than this threshold are kept as potential starting cluster centers; and

• in the last step, the auxiliary clustering problem is solved starting from each point
left in the list of potential starting cluster centers, and the values of the auxiliary
clustering function are computed at each (local) solution obtained. Then using the
smallest value of this function, one more threshold parameter—γ3 ∈ [1,∞)—is
defined. Solutions of the auxiliary clustering problem with the function values
less than this threshold are included to the final list of starting cluster centers.
Together with the solution of the previous (l − 1)-clustering problem this list is
used as a set of starting points for solving the l-clustering problem.

Note that there is no theoretical result which would help us to find exact values of
the parameters γ1, γ2, and γ3. We use numerical experiments on some data sets with
different sizes to provide some recommendations on the values of these parameters.
Let us denote by Ā1(γ1), the set Ā1 obtained from (7.12) using γ1 ∈ [0, 1];
by Ā3(γ1, γ2), the set Ā3 obtained from (7.14) using γ1, γ2 ∈ [0, 1]; and by
Ā5(γ1, γ2, γ3), the set Ā5 obtained from (7.16) using γ1, γ2 ∈ [0, 1], γ3 ∈ [1,∞).
It is clear that for all γ1 ≤ μ1, γ2 ≤ μ2, γ3 ≥ μ3 we have

Ā1(μ1) ⊆ Ā1(γ1),

Ā3(μ1, μ2) ⊆ Ā3(γ1, γ2), and (11.1)

Ā5(μ1, μ2, μ3) ⊆ Ā5(γ1, γ2, γ3).

276 11 Implementations and Data Sets

Notice that the set Ā1(0) contains all data points which are not cluster centers.
This means that if γ1 = γ2 = 0 and γ3 is sufficiently large, then the number of
starting points in Step 5 of Algorithm 7.2 is the number of data points which are
not cluster centers. This is the largest number of starting points for the clustering
problem which can be obtained. The least number of starting points is obtained
when γ1 = γ2 = γ3 = 1.

The inclusions in (11.1) imply that an incremental clustering algorithm obtains
its best solution when γ1 = γ2 = 0 and γ3 is sufficiently large, and this solution
cannot be improved using any other values of γ1, γ2 ∈ [0, 1] and γ3 ∈ [1,∞).
Nevertheless, computational effort required by any incremental clustering algorithm
reduces as parameters γ1 and γ2 increase and the parameter γ3 decreases. Therefore,
for a given data set we are interested in finding the largest values of γ1 and γ2, and
the smallest value of γ3 such that an incremental clustering algorithm can still obtain
its best solution to the clustering problem and further increase of γ1, γ2 or decrease
of γ3 deteriorates the solution.

Let us denote by f̃k(γ1, γ2, γ3) the value of the cluster function fk , given in (4.4),
obtained by an incremental clustering algorithm for the given values of γ1, γ2, γ3,
and k clusters. First, we set γ1 = γ2 = 0 and γ3 = 10 (assuming that this value is
sufficiently large) and find f̃k(0, 0, 10). This means that we compute the largest
possible sets Ā1 and Ā3 and find the best possible solution by the incremental
algorithm. Then we calculate f̃k(γ1, γ2, γ3) for

γ1, γ2 = 0.05i, i = 1, . . . , 20, and

γ3 = 1 + 0.01(i − 1), i = 1, . . . , 101.

The largest values of γ1, γ2 and the smallest value of γ3 satisfying the condition

f̃k(γ1, γ2, γ3) − f̃k(0, 0, 10)

f̃k(0, 0, 10)
≤ ε (11.2)

are accepted as an estimation of the optimal values of parameters γj , j = 1, 2, 3.
Here, ε ≥ 0 is a given tolerance.

Next, we demonstrate how to find estimations for the optimal values of γj , j =
1, 2, 3. For this aim, we apply IS-Clust on data sets Iris plant and the Breast
cancer Wisconsin (see Tables 11.1 and 11.2 for details of these data sets). The results
with different values of parameters are presented in Tables 11.6 and 11.7. We give
first the results with γ1 = γ2 = 0 and γ3 = 10, and then the results with the largest
values of γ1, γ2 and the smallest value of γ3 that satisfy condition (11.2). Finally,
we present results with nondecreasing values of γ1 and γ2. In these tables, we use
the following notations:

• k—the number of clusters;
• E—the error in % computed using (10.9); and
• α—the parameter defined by

11.4 Parameters Selection in Finding Starting Cluster Centers 277

α = Nd(γ1, γ2, γ3)

Nd(0, 0, 10)
,

where Nd(γ1, γ2, γ3) is the number of distance function evaluations by the incre-
mental algorithm for given values of γ1, γ2, γ3. It is clear that Nd(0, 0, 10) is the
number of distance function evaluations by the same algorithm when γ1 = γ2 = 0
and γ3 = 10. The parameter α reflects the ratio of computational effort for given
γ1, γ2 ∈ [0, 1] and γ3 ≥ 1 with respect to that of for γ1 = γ2 = 0 and γ3 = 10.

Since the data set Iris plant is extra small we take ε = 0 for it. From Table 11.6,
we see that the largest values of γ1, γ2 and the smallest value of γ3 satisfying the
condition (11.2) are: γ1 = 0.50, γ2 = 0.55, γ3 = 1.10. Results show that any
increase of γ1, γ2 and any decrease of γ3 deteriorate the best solution. It can also be
observed that values of γ2 < γ1 does not improve the accuracy of the algorithm.
Results given in columns at the bottom right corner of Table 11.6 confirm this
claim. Results for the parameter α demonstrate that the selection of optimal values
of γj , j = 1, 2, 3 allows us to significantly reduce the computational effort without
deteriorating the clustering solution.

For the data set Breast cancer Wisconsin, we take ε = 0.01. The largest values
of γ1, γ2 and the smallest value of γ3 satisfying the condition (11.2) are: γ1 =
0.60, γ2 = 0.80, γ3 = 1.01. Results in Table 11.7 show that any increase of γ1, γ2 or

Table 11.6 Results for different values of (γ1, γ2, γ3): Iris plant

k E α E α E α E α

(0.00, 0.00, 10.00) (0.50, 0.55, 1.10) (0.50, 0.55, 1.05) (0.55, 0.55, 1.10)

2 0.00 1.00 0.00 0.11 0.00 0.11 0.00 0.09

3 0.00 1.00 0.00 0.34 0.00 0.34 0.00 0.30

4 0.00 1.00 0.00 0.32 0.00 0.31 0.00 0.28

5 0.00 1.00 0.00 0.28 0.00 0.25 0.00 0.23

6 0.00 1.00 0.00 0.36 0.00 0.33 0.00 0.31

7 0.00 1.00 0.00 0.28 0.01 0.26 0.01 0.24

8 0.00 1.00 0.00 0.20 0.25 0.19 0.25 0.17

9 0.00 1.00 0.00 0.17 0.27 0.17 0.27 0.15

10 0.00 1.00 0.00 0.15 0.00 0.16 0.00 0.14

(0.55, 0.55, 2.00) (0.50, 0.60, 1.10) (0.50, 0.60, 2.00) (0.55, 0.00, 2.00)

2 0.00 0.38 0.00 0.11 0.00 0.48 0.00 0.38

3 0.00 0.39 0.00 0.34 0.00 0.45 0.00 0.39

4 0.00 0.33 0.00 0.32 0.00 0.39 0.00 0.33

5 0.00 0.26 0.00 0.27 0.00 0.32 0.00 0.26

6 0.00 0.26 0.00 0.26 0.00 0.29 0.00 0.26

7 0.01 0.25 0.01 0.25 0.01 0.28 0.01 0.25

8 0.25 0.21 0.25 0.22 0.25 0.24 0.25 0.21

9 0.27 0.21 0.27 0.23 0.27 0.24 0.27 0.21

10 0.00 0.23 0.00 0.25 0.00 0.26 0.00 0.23

278 11 Implementations and Data Sets

Table 11.7 Results for different values of (γ1, γ2, γ3): Breast cancer Wisconsin

k E α E α E α E α

(0.00, 0.00, 10.00) (0.60, 0.80, 1.01) (0.60, 0.80, 2.00) (0.60, 0.80, 1.00)

2 0.00 1.00 0.00 0.34 0.00 0.34 0.00 0.06

5 0.00 1.00 0.00 0.16 0.00 0.16 0.61 0.02

10 0.00 1.00 0.00 0.08 0.00 0.08 0.03 0.01

15 0.00 1.00 0.85 0.06 0.85 0.06 1.22 0.01

20 0.00 1.00 0.76 0.06 0.76 0.06 0.70 0.01

25 0.00 1.00 0.00 0.06 0.00 0.06 1.22 0.01

(0.65, 0.80, 1.01) (0.65, 0.80, 2.00) (0.60, 0.85, 1.01) (0.60, 0.85, 2.00)

2 0.00 0.27 0.00 0.27 0.00 0.34 0.00 0.34

5 0.00 0.13 0.00 0.13 0.00 0.14 0.00 0.14

10 0.00 0.07 0.00 0.07 0.00 0.06 0.00 0.06

15 1.03 0.06 1.03 0.05 1.02 0.05 1.02 0.05

20 0.99 0.05 0.99 0.05 0.80 0.04 0.80 0.04

25 0.00 0.05 0.00 0.05 0.22 0.04 0.00 0.04

any decrease of γ3 slightly deteriorates the best solution obtained by the incremental
algorithm. Results for the parameter α demonstrate that the selection of estimations
of the optimal values of γj , j = 1, 2, 3 allows us to significantly reduce the number
of distance function evaluations in comparison with those required by the algorithm
when γ1 = γ2 = 0 and γ3 = 10. We can see that values of γ1 and γ2 are larger and
γ3 is smaller for this data set comparing to those for Iris plant.

Results presented in Tables 11.6 and 11.7, in general, lead to the following
observations:

• the optimal values of γ1, γ2 ∈ [0, 1] increase and the optimal value of γ3 ≥ 1
decreases as the size of a data set increases;

• we can select γ2 ∈ [γ1, 1];
• the optimal value of γ3 seems to be close to 1. This means that the solutions found

by solving the auxiliary clustering problem are very close to the local minimizers
of the clustering problem; and

• the values of α demonstrate that the use of the optimal values (or their
estimations) of parameters leads to a significant decrease in computational effort.
This decrease becomes even more significant as the number of clusters and the
size of a data set increase.

To conclude, small values of γ1, γ2 and large values of γ3 will increase
computational time considerably in large data sets without any significant improve-
ment in the quality of the solution to the clustering problem. Therefore, in the
implementations of incremental clustering algorithms, we recommend to select the
parameters γj , j = 1, 2, 3 as follows:

• for small and extra small data sets: γ1 and γ2 lie in the interval [0.4, 0.6] while
γ3 ∈ [1.1, 2];

11.4 Parameters Selection in Finding Starting Cluster Centers 279

• for medium sized data sets: we can set γ1 ∈ [0.55, 0.65], γ2 ∈ [0.75, 0.85], and
γ3 ∈ [1.01, 1.05];

• for large data sets: we set γ1 ∈ [0.90, 0.95], γ2 ∈ [0.925, 0.975], and γ3 ∈
[1.005, 1.0075]; and

• for extra large data sets: we set γ1 ∈ [0.975, 0.995], γ2 ∈ [0.99, 0.999], and
γ3 = 1.001.

Note that these values are not optimal and can only be considered as recommended
values.

Chapter 12
Numerical Experiments

12.1 Introduction

This chapter is primarily devoted to the study of the performance of optimization
based incremental clustering algorithms. Since the procedure of finding starting
cluster centers is an important part of all these algorithms we start the chapter with
discussing on the impact of this procedure to the solution obtained by a clustering
algorithm.

Then, we demonstrate the performance of the clustering algorithms using data
sets with different number of data points and attributes described in Chap. 11: extra
small, small, medium sized, large, and very large. The performance profiles are used
to evaluate the accuracy of clustering solutions, the number of distance function
evaluations and CPU time. In addition, we apply the DB index, the purity, the
NMI index and silhouettes to compare different clustering algorithms. In all these
algorithms, we consider the MSSC problem. To compare the performance of the
incremental clustering algorithms when different similarity measures—d1, d2 and
d∞—are used in their objective functions, we apply DG-Clust on three real-world
data sets given in Chap. 11: German towns, TSPLIB1060 and TSPLIB3038. We use
the Voronoi diagrams for this purpose.

12.2 Importance of Procedure for Finding Starting Cluster
Centers

In this section, we study the contribution of the procedure for generating starting
cluster centers to the quality of the final clustering solutions and also to the
overall performance of an incremental clustering algorithm. For this aim, we use
three data sets with different number of entries: Ionosphere (small size), Image

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_12

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_12

282 12 Numerical Experiments

segmentation (medium sized) and KEGG metabolic network (large scale). The
number of attributes in these data sets ranges from 19 to 34. This choice of data
sets allows us to clearly demonstrate the importance of this procedure.

In our experiments, we apply MGKM with and without the procedure for generat-
ing starting cluster centers. The performance of this solver with different procedures
is compared using three performance measures: accuracy, the number of distance
function calculations, and CPU time. The accuracy (or the error) is defined using
the formula (10.10).

Consider the k-clustering problem with k ≥ 2 and recall Algorithm 7.2—the
procedure for finding starting cluster centers. This procedure has the following
steps:

1: using radii of clusters from the previous iteration determine the list of data points
which are candidates to be a starting point;

2: consider each point as the kth cluster center and compute the decrease of the
cluster function fk , defined in (4.4), in comparison with the optimal value f ∗

k−1
for the (k − 1)-clustering problem;

3: remove some data points from the list using a threshold for the decrease;

4: for each point from the list compute the cluster around it and replace this data
point with the corresponding cluster center;

5: solve the auxiliary clustering problem starting from each of these centers.

Steps 1, 2 and 3 use only data points where the preliminary list of candidate
starting points is determined. Our aim is to demonstrate that Steps 4 and 5 are very
important and make a significant contribution to the quality of the final solution in
clustering. Therefore, we consider the following versions of MGKM:

• V 0 : MGKM0—the version where both Steps 4 and 5 are excluded;
• V 1 : MGKM4—the version where only Step 4 is used and Step 5 is excluded;
• V 2 : MGKM5—the version where Step 5 is used and Step 4 is excluded;
• V 3 : MGKM45—the full version with Steps 4 and 5.

The results are presented in Table 12.1, where as before k stands for the number
of clusters. In our experiments, we use 5 hours time limit in all versions, that is if
the algorithm exceeds this time limit, then its performance is considered as a failure
(denoted by “fail” in the table). To avoid writing very large numbers for distance
function evaluations (denoted by “distance function evals”) in the table, we include
a number after the name of each data set in brackets and to get the correct values,
numbers in distance function evaluations columns should be multiplied by these
numbers.

Results show that accuracies of all versions are comparable and differences
between them are not significant. Furthermore, as the size of a data set increases
the differences become even more insignificant. Regarding the number of distance
function evaluations, we can see that the use of the full version V 3 leads to a
significant reduction of the number in all cases. Results for versions V 2 and V 3
imply that the use of the auxiliary clustering problem in the procedure allows

12.2 Importance of Procedure for Finding Starting Cluster Centers 283

Table 12.1 Results with and without the procedure for finding starting points

Accuracy Distance function evals CPU time

k V0 V1 V2 V3 V0 V1 V2 V3 V0 V1 V2 V3

Ionosphere (×106)

2 0.00 0.00 0.00 0.00 1.28 0.55 0.71 0.44 0.33 0.11 0.11 0.06

3 0.03 0.03 0.03 0.03 2.77 1.15 1.24 0.81 0.67 0.22 0.22 0.11

5 0.06 0.07 0.11 0.11 6.28 2.12 2.22 1.51 1.38 0.36 0.36 0.20

7 0.05 0.00 0.10 0.52 10.69 3.40 3.47 2.28 2.14 0.55 0.56 0.30

10 0.27 0.30 0.53 0.28 17.84 5.27 4.91 3.42 3.28 0.81 0.80 0.45

15 0.84 0.65 0.95 2.10 26.07 8.05 6.65 5.05 4.50 1.17 1.06 0.64

20 1.31 1.22 1.54 3.32 34.07 10.34 8.39 6.72 5.70 1.45 1.33 0.86

22 1.50 1.31 1.21 2.80 36.73 11.30 9.05 7.32 6.11 1.59 1.44 0.94

25 1.58 2.00 1.38 3.03 42.81 12.89 9.96 8.42 7.03 1.81 1.56 1.08

Image segmentation (×106)

2 0.00 0.00 0.00 0.00 0.29 0.22 0.14 0.19 0.27 0.08 0.06 0.05

3 0.00 0.00 0.00 0.00 0.77 0.60 0.36 0.42 0.56 0.22 0.13 0.08

5 0.00 0.00 0.00 0.00 5.38 2.51 2.10 1.28 2.45 0.83 0.48 0.17

7 0.00 2.31 2.30 2.30 12.20 3.92 3.40 2.17 4.41 1.09 0.72 0.30

10 0.00 1.75 1.75 1.75 21.10 7.86 4.82 3.54 6.05 1.81 0.92 0.44

15 0.49 0.49 0.48 1.90 42.58 14.50 8.79 6.61 8.91 2.59 1.45 0.73

20 0.61 0.76 0.79 0.62 92.14 24.05 14.71 11.16 14.94 3.61 2.16 1.14

22 0.64 0.83 0.85 0.66 118.05 29.38 17.93 13.03 17.94 4.16 2.52 1.30

25 0.43 0.86 0.84 0.65 161.32 36.15 23.14 16.95 22.72 4.83 3.14 1.64

KEGG metabolic network (×107)

2 0.00 0.00 0.00 0.00 0.44 0.35 0.28 0.35 285.28 9.72 10.30 10.28

3 0.00 0.00 0.00 0.00 2.92 1.29 0.79 1.04 4097.22 398.09 201.55 51.69

5 fail 0.07 0.07 0.07 Fail 2.61 1.83 2.19 Fail 794.25 593.31 234.08

7 fail 0.18 0.18 0.18 Fail 3.41 2.55 2.78 Fail 1096.13 842.88 298.98

10 fail 0.01 0.01 0.01 Fail 5.03 4.07 4.10 Fail 1658.86 1311.27 583.70

15 fail 2.96 2.98 2.98 Fail 7.89 6.38 6.48 Fail 1996.03 1514.92 682.95

20 fail 1.26 1.42 1.18 Fail 11.99 10.43 10.48 Fail 2087.19 1677.55 760.66

22 fail 1.74 2.01 1.74 Fail 13.81 12.06 12.33 Fail 2113.00 1698.78 787.09

25 fail 0.21 0.04 1.74 Fail 17.79 15.99 16.10 Fail 2236.72 1936.06 867.17

us to significantly reduce the number of distance function evaluations without
deteriorating the final solution. This is due to the fact that the solution obtained
by solving the auxiliary clustering problem is close to the solutions of the clustering
problem and the k-means algorithm requires a limited number of iterations to obtain
them. Similar observations are true also for the required CPU time. Here, we can see
that the use of the version V 3 allows us to significantly decrease the CPU time even
in comparison with the versions V 1 and V 2.

These results clearly show that regardless of the size of the data sets, the use
of the procedure for finding starting cluster centers allows us to significantly reduce

284 12 Numerical Experiments

the computational effort while preserving almost the same accuracy for the obtained
clustering solutions. Furthermore, the auxiliary clustering problem is an important
component of the incremental clustering algorithms.

12.3 Performance Results of Incremental Clustering
Algorithms

In this section, we present results on the performance of the incremental clustering
algorithms as well as results obtained by the MS-KM. We include the latter algo-
rithm for the comparison purpose. In MS-KM, the number of randomly generated
starting points is limited by 1000, however, we also applied the time limit which is
twice of the CPU time required by MGKM. We do not present results of MS-KM based
on performance profiles using the CPU time and the number of distance function
evaluations as the CPU time and also in some sense the number of distance function
evaluations are fixed for this algorithm.

We present the results of our experiments for each class of data sets separately.
The best known value of the cluster function for a given k is denoted by fbest. Note
that, in all tables in order to find the true best values of the cluster function, numbers
given in the fbest column should be multiplied by the number given after the names
of data sets.

The error E of a given solution is computed using (10.10). We say that an
algorithm finds the best known solutions to the clustering problem if its error
0 ≤ E ≤ 0.1. If 0.1 < E ≤ 1, then an algorithm finds nearly the best known
solution. For performance profiles, we select in (10.11) and (10.14) the constants
c = c̄ = 1 and the number of iterations to solve a clustering problem M = 100.

12.3.1 Results for Extra Small Data Sets

We apply GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust, and
MS-KM to extra small data sets. Other algorithms are not best suited for such data
sets. Up to ten clusters are computed in all data sets. Results for accuracy are given
in Table 12.2. Note that the best known solutions for all data sets, but Liver disorder
data set, are also known to be the global solutions to the corresponding clustering
problems.

Results presented in Table 12.2 demonstrate that MS-KM cannot be considered as
an alternative to any other algorithm. It is able to find the best known solutions only
when the number of clusters is small. Otherwise, MS-KM fails to find a good quality
solution. Other algorithms show the good performance in finding accurate solutions.
Nevertheless, most algorithms, except IS-Clust, failed to find solutions with high
accuracy in Bavaria postal two data set.

12.3 Performance Results of Incremental Clustering Algorithms 285

Table 12.2 Accuracy results for extra small data sets

k fbest GKM MGKM DG-Clust NDC-Clust IDCA-Clust IS-Clust MS-KM

German towns (×105)

2 1.21426 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.77009 1.45 0.00 0.00 0.00 0.00 0.00 0.00

4 0.49601 0.72 0.00 0.00 0.00 0.00 0.00 0.00

5 0.38716 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.30535 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.24433 0.09 0.09 0.00 0.09 0.09 0.00 0.00

8 0.21483 1.33 0.69 0.00 0.69 0.69 0.59 3.61

9 0.18669 1.48 1.48 0.00 1.48 1.48 1.37 8.66

10 0.16427 1.06 1.06 0.00 1.06 1.06 0.00 7.70

Bavaria postal 1 (×1010)

2 60.25472 7.75 0.00 0.00 0.00 0.00 0.00 7.75

3 29.45066 0.00 0.00 0.00 0.00 0.00 0.00 20.02

4 10.44747 0.00 0.00 0.00 0.00 0.00 0.00 0.08

5 5.97615 0.00 0.00 0.00 0.00 0.00 0.00 23.58

6 3.59085 0.00 28.02 27.79 27.65 28.02 27.65 28.02

7 2.19832 1.50 69.39 0.00 0.00 69.39 69.39 98.03

8 1.33854 0.00 141.13 0.00 0.00 141.13 0.00 225.23

9 0.84237 0.00 259.69 0.00 0.00 259.69 1.44 416.79

10 0.64465 0.00 350.66 0.00 0.00 350.66 0.00 452.52

Bavaria postal 2 (×1010)

2 1.99080 162.17 144.28 144.28 144.28 144.28 144.28 144.28

3 1.73988 0.00 0.00 0.00 0.00 0.00 0.00 106.79

4 0.75591 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.53429 1.86 1.14 1.14 1.14 1.14 0.00 1.14

6 0.31876 1.21 39.04 39.04 39.04 39.04 0.00 39.04

7 0.22159 0.50 77.07 76.94 76.94 77.07 0.00 95.00

8 0.17045 0.73 113.22 112.22 112.22 113.21 0.00 153.50

9 0.14011 0.14 142.69 142.48 142.48 142.69 0.00 208.41

10 0.11908 0.16 170.46 169.65 169.65 170.46 0.00 240.56

Iris plant(×102)

2 1.52348 0.00 0.00 0.00 0.00 0.01 0.00 0.00

3 0.78851 0.01 0.00 0.01 0.01 0.01 0.00 0.00

4 0.57228 0.05 0.05 0.00 0.00 0.02 0.00 0.00

5 0.46446 0.54 0.06 0.00 0.00 0.09 0.00 0.06

6 0.39040 1.44 0.07 0.00 0.00 0.10 0.00 0.07

7 0.34298 3.17 0.00 0.00 0.00 0.03 0.00 13.90

8 0.29989 1.71 0.09 0.00 0.00 0.29 0.00 30.27

9 0.27786 2.85 0.10 0.00 0.00 0.40 0.00 40.60

10 0.25834 3.56 0.51 0.00 0.50 0.34 0.06 42.70

(continued)

286 12 Numerical Experiments

Table 12.2 (continued)

k fbest GKM MGKM DG-Clust NDC-Clust IDCA-Clust IS-Clust MS-KM

TSPLIB1060 (×1010)

2 0.98319 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.67058 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.47520 0.01 0.01 0.00 0.00 0.01 0.00 0.00

5 0.37910 0.01 0.01 0.01 0.01 0.06 0.00 0.00

6 0.31770 0.06 0.06 0.06 0.06 0.06 0.06 0.00

7 0.27042 0.02 0.02 0.02 0.00 0.02 0.03 0.01

8 0.22643 0.00 0.00 0.00 0.00 0.00 0.02 19.44

9 0.19910 0.30 0.30 0.14 0.00 0.30 0.02 35.81

10 0.17548 0.23 0.04 0.03 0.04 0.23 0.04 28.97

Liver disorders (×106)

2 0.42398 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.32271 0.71 0.71 0.71 0.88 0.88 0.00 0.00

4 0.26066 0.49 0.49 0.11 0.22 0.48 0.22 0.00

5 0.21826 0.08 0.08 0.00 0.07 0.07 0.08 0.01

6 0.18709 0.97 0.05 0.00 0.00 0.14 0.00 0.28

7 0.16420 0.72 0.34 0.00 0.00 0.37 0.00 14.26

8 0.14778 0.41 0.41 0.00 0.00 0.29 0.01 26.95

9 0.13734 0.83 0.00 0.31 0.20 0.31 0.33 36.10

10 0.12742 0.21 0.01 0.00 0.15 0.29 0.00 16.76

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5

Pr
ob

le
m

s
%

Relative errors %

GKM
MGKM
DG-CLUST
IS-CLUST
NDC-CLUST
IDCA-CLUST

MS-KM

0

10

20

30

40

50

60

0 1 2 3 4 5 6

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
0

10

20

30

40

50

60

0 1 2 3 4 5 6

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST

a b c

t t

Fig. 12.1 Performance profiles for extra small data sets. (a) Relative errors. (b) Distance function
evals. (c) CPU time

Performance profiles for extra small data sets are illustrated in Fig. 12.1.
IS-Clust is the most successful in finding the best known solutions and GKM
is the most successful in solving clustering problems with the error no more than
5%. MS-KM has the worst performance while GKM requires the least number of
distance function evaluations and CPU time. On the other hand, NDC-Clust uses
more distance function evaluations and DG-Clust requires more CPU time than
any other algorithm.

In Fig. 12.2 graphs for three indices (DB, purity and NMI) and in Fig. 12.3
silhouette plots for k = 2, 3, 5 and ten clusters are illustrated using results obtained

12.3 Performance Results of Incremental Clustering Algorithms 287

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8

D
av

ie
s-

Bo
ul

di
n

in
de

x

No.Clusters

0

20

40

60

80

100

0 2 4 6 8 1010

Pu
rit

y

No.Clusters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

No.Clusters

a b c

Fig. 12.2 Results for Iris Plant data set using different indices. (a) DB index. (b) Purity. (c) NMI

index

C
lu

st
er

s

C
lu

st
er

s

C
lu

st
er

s
C

lu
st

er
s

0.0 0.2 0.8 1.00.4 0.6 0.0 0.2 0.8 1.00.4 0.6
Silhouette width si

0.0 0.2 0.8 1.00.4 0.6
Silhouette width si

0.0 0.2 0.8 1.00.4 0.6
Silhouette width si

Silhouette width si

a b

c d

Fig. 12.3 Silhouette plots for Iris plant data set. (a) k = 2. (b) k = 3. (c) k = 5. (d) k = 10

288 12 Numerical Experiments

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

a b c

0 2 4 6 8 10

D
av

ie
s-

Bo
ul

di
n

in
de

x

No.Clusters

0

10

20

30

40

50

60

70

0 2 4 6 8 10

Pu
rit

y

0

0.005

0.01

0.015

0.02

0.025

0 2 4 6 8 10N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

No.ClustersNo.Clusters

Fig. 12.4 Results for Liver disorder data set using different indices. (a) DB index. (b) Purity. (c)
NMI index

by the IS-CLUST in Iris plant data set. The DB index has several knee points at k =
3, 4, 5, 6 and one local minimizer at k = 9. In general, the purity increases as the
number of clusters increases; however, at k = 3 it has a local maximizer. The NMI

index gets its highest value at k = 3. Finally, silhouette plots show that clusters are
well-separated when k = 3. These results demonstrate a good consistency of the
class and the cluster (with k = 3) distributions in Iris Plant data set.

In Fig. 12.4 graphs for the three indices and in Fig. 12.5 silhouette plots for
k = 2, 3, 5 and ten clusters are given based on results obtained by IS-Clust
in Liver disorder data set. Here, the DB index has three distinct local minimizers
at k = 5, 7 and k = 9. The purity increases as the number of clusters increases;
however, this increase is not significant. The NMI index is close to 0 for k < 3
and silhouette plots show that clusters are not compact and not well-separated for
k = 2, 3, 5, 10. Summarizing these results we can conclude that the class and the
cluster distributions in Liver disorder data set are incompatible.

12.3.2 Results for Small Data Sets

We apply GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust, and
MS-KM to small data sets. Other algorithms are not well suited for these data sets.
Up to 25 clusters are computed in these data sets.

Results for accuracy are given in Table 12.3. The results show that MS-KM can
reach the best solutions only when the number of clusters is small. Otherwise,
this algorithm fails to find high quality solutions. Other algorithms are, in general,
successful in finding accurate solutions.

Performance profiles for small data sets are presented in Fig. 12.6. IS-Clust is
the most successful in finding the best known solutions and in solving clustering
problems with the error no more than 5%. As before, MS-KM has the worst
performance while GKM requires the least number of distance function evaluations
and CPU time. In addition, NDC-Clust uses more distance function evaluations
and DG-Clust requires more CPU time than any other algorithm.

12.3 Performance Results of Incremental Clustering Algorithms 289

C
lu

st
er

s
C

lu
st

er
s

C
lu

st
er

s
C

lu
st

er
s

−0.2 0.0 0.6 0.8 1.00.2 0.4 −0.2 0.0 0.6 0.8 1.00.2 0.4
Silhouette width si Silhouette width si

−0.2 0.0 0.6 0.8 1.00.2 0.4
Silhouette width si

−0.2 0.0 0.6 0.8 1.00.2 0.4
Silhouette width si

−0.4

a b

c d

Fig. 12.5 Silhouette plots for Liver disorder data set. (a) k = 2. (b) k = 3. (c) k = 5. (d) k = 10

In Fig. 12.7, the graph of the DB index is given using the results obtained by
IS-Clust in TSPLIB3038 data set. Note that the purity and the NMI index
require the existence of the class labels and since this data set has no classes we
only present the DB index in Fig. 12.7. The silhouette plots for TSPLIB3038 data
set with k = 2, 3, 5 and ten clusters are given in Fig. 12.8. From Fig. 12.7, it can be
observed that the DB index has local minimizers at k = 5, 7, 11, 15, 20. Silhouette
plots show that in the 10-partition of the data set six clusters are compact and
well-separated and other clusters contain some “misclassified” points. The similar
observation is true for the k-partitions of the data set with k = 2, 3 and 5.

In Fig. 12.9 graphs for the three indices and in Fig. 12.10 silhouette plots for
k = 2, 3, 5, 10, and 25 clusters are given using results obtained by IS-Clust in
Vehicle silhouettes data set. The DB index has the distinct local minimizers at k =
4, 7, 11, 14 and k = 19. The purity increases as the number of clusters increases;
however, even for 25 clusters it is only about 55%. The largest value for the NMI

290 12 Numerical Experiments

Table 12.3 Accuracy results for small data sets

k fbest GKM MGKM DG-Clust NDC-Clust IDCA-Clust IS-Clust MS-KM

Heart disease (×105)

2 5.98899 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 4.67508 5.02 3.96 5.14 5.14 5.14 4.67 0.00

5 3.27965 0.52 0.53 0.00 0.01 0.53 0.44 0.03

7 2.64942 2.59 0.00 0.32 0.02 0.00 0.32 4.44

10 2.00558 0.83 0.19 0.00 0.00 0.19 0.03 20.82

15 1.46895 0.55 0.18 0.13 0.18 0.43 0.00 25.37

20 1.16993 0.67 0.00 0.52 0.36 0.51 0.49 37.96

22 1.09199 2.45 0.08 0.40 0.00 0.94 0.23 47.81

25 0.99314 3.33 1.36 0.00 1.13 1.31 0.06 62.52

TSPLIB3038 (×109)

2 3.16880 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 2.17634 3.43 3.43 3.43 3.43 3.43 3.43 0.00

5 1.19820 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.83967 1.87 1.73 1.85 1.73 1.73 1.73 0.00

10 0.56025 2.78 0.58 0.57 0.58 0.58 0.00 0.00

15 0.35604 0.07 0.05 0.00 0.00 0.07 0.06 0.00

20 0.26681 2.00 0.43 0.14 0.20 0.43 0.16 0.17

22 0.24295 1.64 0.54 0.02 0.00 0.55 0.03 1.19

25 0.21450 0.78 0.43 0.43 0.56 0.43 0.00 1.56

Pima Indians diabetes (×106)

2 5.14238 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 2.91332 1.23 1.23 1.23 1.23 1.23 1.23 0.00

5 1.73687 0.15 0.15 0.00 0.15 0.15 0.01 0.01

7 1.30315 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.93066 1.84 0.06 0.00 1.66 0.06 1.12 12.66

15 0.69579 0.21 0.00 1.06 0.23 0.05 1.37 34.14

20 0.57278 0.28 0.00 0.18 0.10 0.35 0.27 47.39

22 0.53501 0.55 0.34 0.33 0.00 0.38 0.14 55.16

25 0.48874 0.38 0.38 0.35 0.00 0.43 0.17 67.21

Breast cancer Wisconsin (×104)

2 1.93232 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 1.62555 0.01 0.01 0.00 0.00 0.01 0.00 0.00

5 1.37047 2.28 0.01 0.02 0.00 0.02 0.00 0.00

7 1.20497 1.44 0.12 0.00 0.02 0.10 0.00 6.27

10 1.01996 0.16 0.32 0.04 0.13 0.27 0.00 17.41

15 0.86928 1.02 0.58 0.55 0.68 0.97 0.00 23.39

20 0.76651 3.40 0.69 0.68 0.53 1.42 0.00 31.34

22 0.72906 5.37 2.12 0.48 1.35 2.42 0.00 32.59

25 0.69446 4.48 0.35 0.00 1.12 2.41 0.38 32.68

(continued)

12.3 Performance Results of Incremental Clustering Algorithms 291

Table 12.3 (continued)

k fbest GKM MGKM DG-Clust NDC-Clust IDCA-Clust IS-Clust MS-KM

Ionosphere (×104)

2 0.24194 0.00 0.00 0.00 0.00 0.00 0.00 2.75

3 0.21933 0.96 0.03 0.89 0.02 0.03 0.00 2.45

5 0.18908 0.11 0.11 0.00 0.10 0.11 0.13 2.20

7 0.17382 0.46 0.53 0.00 0.38 0.53 0.03 3.28

10 0.15540 2.74 0.27 0.00 0.22 0.32 0.12 5.11

15 0.13729 6.48 2.10 0.92 1.61 1.43 0.00 6.47

20 0.12307 9.23 3.32 2.09 2.79 2.73 0.00 13.52

22 0.11839 9.70 2.80 1.62 2.00 2.92 0.00 15.27

25 0.11147 10.00 3.03 1.38 1.86 2.98 0.00 21.06

Vehicle silhouettes (×106)

2 7.29088 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 4.87412 0.02 0.02 0.00 0.00 0.02 0.02 0.00

5 2.36484 0.00 0.00 0.00 0.04 0.00 0.00 0.00

7 1.71738 1.08 0.00 0.00 0.00 0.00 0.00 1.72

10 1.25217 0.68 0.04 0.52 0.01 0.22 0.00 21.48

15 0.89095 1.03 0.02 0.00 0.07 0.08 0.00 24.49

20 0.74221 1.17 0.26 0.09 0.00 0.28 0.12 15.44

22 0.69630 0.68 0.09 0.00 0.02 0.09 0.03 20.05

25 0.63106 1.10 0.07 0.00 0.03 0.08 0.01 31.18

0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5

Pr
ob

le
m

s
%

Relative errors %

GKM
MGKM
DG-CLUST
IS-CLUST
NDC-CLUST
IDCA-CLUST

MS-KM

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST

a b c

t t

Fig. 12.6 Performance profiles for small data sets. (a) Relative errors. (b) Distance function evals.
(c) CPU time

index is about 0.22 for k = 5 and k = 7. Silhouette plots show that not all clusters
are well-separated in k-partitions with k = 2, 3, 5, 10 and 25. For instance, five
clusters are not well-separated when k = 25. These results demonstrate that in
vehicle silhouettes data set the class and the cluster distributions are not consistent.

292 12 Numerical Experiments

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

D
av

ie
s-

Bo
ul

di
n

in
de

x

No.Clusters

Fig. 12.7 DB index for TSPLIB3038 data set

12.3.3 Results for Medium Sized Data Sets

GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust, LMB-Clust
and DCDB-Clust are applied to medium sized data sets. Results for accuracy are
given in Table 12.4. These results demonstrate that, overall, all algorithms, except
DCDB-Clust, are able to find the best known solutions.

Performance profiles for medium sized data sets are depicted in Fig. 12.11.
They show that IS-Clust is the most successful algorithm in finding the
best known solutions and GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust
and IS-Clust are all successful in solving clustering problems with the error
no more than 5%. DCDB-Clust has the worst performance both in terms of
errors and distance function calls. MGKM requires the least number of distance
function evaluations whereas LMB-Clust requires the least CPU time among all
algorithms. Finally, GKM uses more CPU time than other algorithms.

In Fig. 12.12 graphs of the three indices and in Fig. 12.13 silhouette plots for k =
2, 3, 5, 10 and 25 clusters are illustrated using results obtained by IS-Clust in
Image segmentation data set. The DB index has local minimizers at k = 3, 7, 16, 21
and k = 3 is a global minimizer. Overall, the purity shows the steady increase as the
number of clusters increases; however, it becomes almost a constant after k = 16.
The NMI index has the large value at k = 7 and the largest value at k = 14. Note
that the number of classes in this data set is 7. Results for silhouettes demonstrate
that a large portion of clusters are not well-separated. Summarizing, we can say
that in this data set there is some compatibility between the class and the cluster
distributions but it is not very high.

The graph of the DB index for Pla85900 data set is depicted in Fig. 12.14. The
DB index has local minimizers at k = 4, 8, 11, 13 and k = 21. Among them k = 4,

12.3 Performance Results of Incremental Clustering Algorithms 293

C
lu

st
er

s

C
lu

st
er

s

C
lu

st
er

s
C

lu
st

er
s

0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width si

a b

c d

Fig. 12.8 Silhouette plots for TSPLIB3038 data set. (a) k = 2. (b) k = 3. (c) k = 5. (d) k = 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 5 10 15 20 25

D
av

ie
s-

Bo
ul

di
n

in
de

x

No.Clusters

0

10

20

30

40

50

60

0 5 10 15 20 25

Pu
rit

y

No.Clusters

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

No.Clusters

a b c

Fig. 12.9 Results for Vehicle silhouettes data set using different indices. (a) DB index. (b) Purity.
(c) NMI index

294 12 Numerical Experiments

C
lu

st
er

s
C

lu
st

er
s

C
lu

st
er

s
C

lu
st

er
s

0.0 0.2 0.6 0.8 1.00.4
Silhouette width si

Silhouette width si Silhouette width si

Silhouette width si

0.0 0.2 0.6 0.8 1.00.4

0.0 0.2 0.6 0.8 1.00.4 0.0 0.2 0.6 0.8 1.00.4

a b

c d

e

C
l u

s t
er

s

0.0 0.2 0.6 0.8 1.00.4
Silhouette width si

Fig. 12.10 Silhouette plots for Vehicle silhouettes data set. (a) k = 2. (b) k = 3. (c) k = 5. (d)
k = 10. (e) k = 25

12.3 Performance Results of Incremental Clustering Algorithms 295

Ta
bl

e
12

.4
A

cc
ur

ac
y

re
su

lts
fo

r
m

ed
iu

m
si

ze
d

da
ta

se
ts

k
f

be
st

G
K
M

M
G
K
M

D
G
-
C
l
u
s
t

N
D
C
-
C
l
u
s
t

I
D
C
A
-
C
l
u
s
t

I
S
-
C
l
u
s
t

L
M
B
-
C
l
u
s
t

D
C
D
B
-
C
l
u
s
t

D
C

15
11

2
(×

10
11

)

2
3.

68
40

3
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
2.

53
24

0
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
1.

32
70

7
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

7
0.

93
20

8
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

10
0.

64
49

1
1.

41
1.

41
1.

41
1.

41
1.

41
1.

41
1.

41
1.

41

15
0.

43
13

6
0.

26
0.

26
0.

00
0.

24
0.

25
0.

24
0.

23
0.

00

20
0.

32
17

8
0.

24
0.

24
0.

24
0.

24
0.

24
0.

24
0.

24
0.

00

22
0.

28
99

5
0.

73
0.

20
0.

20
0.

00
0.

20
0.

00
0.

00
0.

00

25
0.

25
42

8
0.

01
0.

01
0.

01
0.

00
0.

01
0.

18
0.

00
0.

01

Im
ag

e
se

gm
en

ta
tio

n
(×

10
7
)

2
3.

56
05

7
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

03

3
2.

74
16

3
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

76

5
1.

71
42

9
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

7
1.

34
04

3
2.

30
2.

30
2.

30
2.

30
2.

31
1.

79
2.

62
5.

26

10
0.

97
95

5
1.

75
1.

75
1.

75
1.

75
1.

75
1.

15
1.

75
6.

50

15
0.

65
55

4
0.

10
1.

91
1.

89
1.

89
1.

90
1.

72
1.

90
11

.9
8

20
0.

51
30

0
0.

06
0.

63
0.

65
0.

65
0.

64
0.

02
0.

00
15

.6
6

22
0.

47
11

2
0.

06
0.

67
0.

71
0.

67
0.

70
0.

00
0.

39
23

.1
4

25
0.

41
60

5
0.

11
0.

82
0.

80
0.

80
0.

82
0.

05
0.

00
9.

54

Pa
ge

bl
oc

ks
(×

10
10

)

2
5.

79
36

8
0.

24
0.

00
0.

00
0.

00
0.

00
0.

00
0.

24
0.

00

3
3.

31
33

7
0.

00
0.

00
0.

01
0.

00
0.

00
0.

00
0.

00
0.

00

5
1.

32
18

4
0.

00
0.

00
0.

00
0.

03
0.

00
0.

19
0.

00
0.

25

7
0.

82
93

4
0.

18
0.

18
0.

18
0.

16
0.

18
0.

00
0.

03
0.

19

(c
on

tin
ue

d)

296 12 Numerical Experiments

Ta
bl

e
12

.4
(c

on
tin

ue
d)

k
f

be
st

G
K
M

M
G
K
M

D
G
-
C
l
u
s
t

N
D
C
-
C
l
u
s
t

I
D
C
A
-
C
l
u
s
t

I
S
-
C
l
u
s
t

L
M
B
-
C
l
u
s
t

D
C
D
B
-
C
l
u
s
t

10
0.

45
33

0
1.

53
1.

53
1.

51
1.

54
1.

53
1.

51
1.

47
0.

68

15
0.

24
93

6
1.

02
1.

87
1.

65
1.

72
1.

65
1.

84
4.

57
4.

84

20
0.

17
13

9
0.

00
1.

54
2.

11
2.

11
2.

11
1.

54
4.

47
3.

73

22
0.

14
98

8
0.

75
0.

79
0.

93
0.

93
0.

79
0.

80
3.

58
0.

00

25
0.

12
03

4
2.

64
2.

01
2.

08
2.

09
2.

01
2.

02
4.

89
0.

00

Pl
a8

59
00

(×
10

15
)

2
3.

74
90

8
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
1.

44
0.

00

3
2.

28
05

7
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
1.

33
97

2
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
2.

77
0.

00

7
0.

97
11

0
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

10
0.

68
29

4
0.

00
1.

03
0.

00
0.

00
0.

00
0.

00
0.

40
0.

00

15
0.

46
02

9
0.

51
0.

98
0.

51
0.

51
0.

98
0.

02
0.

92
0.

48

20
0.

34
98

6
0.

29
0.

29
0.

52
0.

52
0.

52
0.

52
0.

95
0.

52

22
0.

31
94

2
0.

10
0.

09
0.

00
0.

19
0.

19
0.

17
0.

47
0.

46

25
0.

28
22

3
1.

09
0.

14
0.

13
0.

30
0.

30
0.

00
0.

30
0.

30

Pe
n-

ba
se

d
re

co
gn

iti
on

of
ha

nd
w

ri
tte

n
di

gi
ts

(×
10

8
)

2
1.

28
11

9
0.

39
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

39

3
1.

01
59

4
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
0.

75
30

4
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
1.

17

7
0.

59
99

3
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

10
0.

49
30

2
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
2.

63
0.

00

15
0.

39
06

7
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
1.

75
0.

00

20
0.

34
12

3
0.

00
0.

17
0.

16
0.

17
0.

17
0.

17
0.

94
0.

17

22
0.

32
31

2
0.

00
0.

01
0.

00
0.

00
0.

00
0.

00
1.

17
0.

55

25
0.

30
10

9
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

87
0.

00

12.3 Performance Results of Incremental Clustering Algorithms 297

0
10
20
30
40
50
60
70
80
90

100

0 1 4 5

Pr
ob

le
m

s
%

2 3
Relative errors %

GKM
MGKM
DG-CLUST
IS-CLUST
NDC-CLUST
IDCA-CLUST
DCDB-CLUST
LMB-CLUST

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
DCDB-CLUST

LMB-CLUST
0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
DCDB-CLUST

LMB-CLUST

t t

Fig. 12.11 Performance profiles for medium sized data sets. (a) Relative errors. (b) Distance
function evals. (c) CPU time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 5 10 15 20 25

D
av

ie
s-

Bo
ul

di
n

in
de

x

No.Clusters

0

20

40

60

80

0 5 10 15 20 25

Pu
rit

y

No.Clusters

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

No.Clusters

a b c

Fig. 12.12 Results for Image segmentation data set using different indices. (a) DB index. (b)
Purity. (c) NMI index

k = 8 and k = 21 are global minimizers or nearly global minimizers. The deep
global minimizer is located at k = 4.

12.3.4 Results for Large Data Sets

We apply GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust,
LMB-Clust, and DCDB-Clust to large data sets. Results for accuracy are given
in Tables 12.5 and 12.6. Note that in these tables the values of fbest are the
best values obtained by algorithms used in our numerical experiments. Results
demonstrate that all algorithms are successful in finding best known solutions.

Performance profiles for large data sets are presented in Fig. 12.15. As before,
IS-Clust is the most successful in finding the best solutions, and DG-Clust,
IS-Clust, NDC-Clust, IDCA-Clust are successful in solving clustering
problems with the error no more than 5%. LMB-Clust requires the least and
GKM the largest number of distance function evaluations. In addition, LMB-Clust
requires the least CPU time among all algorithms. GKM uses more CPU time than
other algorithms.

298 12 Numerical Experiments

C
lu

st
er

s
C

lu
st

er
s

C
lu

st
er

s

C
lu

st
er

s

C
lu

st
er

s

0.0 0.2 0.6 0.8 1.00.4
Silhouette width si Silhouette width si

−0.2 0.0 0.6 0.8 1.00.2 0.4

Silhouette width si

−0.2 0.0 0.6 0.8 1.00.2 0.4
Silhouette width si

−0.2−0.4 0.0 0.6 0.8 1.00.2 0.4

Silhouette width si

−0.2−0.4 0.0 0.6 0.8 1.00.2 0.4

a b

c d

e

Fig. 12.13 Silhouette plots for Image segmentation data set. (a) k = 2. (b) k = 3. (c) k = 5. (d)
k = 10. (e) k = 25

12.3 Performance Results of Incremental Clustering Algorithms 299

Ta
bl

e
12

.5
A

cc
ur

ac
y

re
su

lts
fo

r
la

rg
e

da
ta

se
ts

k
f

be
st

G
K
M

M
G
K
M

D
G
-
C
l
u
s
t

N
D
C
-
C
l
u
s
t

I
D
C
A
-
C
l
u
s
t

I
S
-
C
l
u
s
t

L
M
B
-
C
l
u
s
t

D
C
D
B
-
C
l
u
s
t

L
an

ds
at

sa
te

lli
te

(×
10

7
)

2
5.

12
68

6
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

01

3
2.

50
60

3
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

01

5
1.

82
66

1
0.

00
1.

70
1.

69
1.

70
1.

70
1.

69
1.

70
1.

70

7
1.

50
12

1
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

02

10
1.

23
42

8
0.

00
2.

03
2.

02
2.

02
2.

02
2.

02
1.

74
2.

06

15
1.

02
26

5
0.

06
0.

10
0.

07
0.

00
0.

08
0.

88
0.

88
0.

00

20
0.

91
25

4
0.

90
0.

02
0.

00
0.

82
0.

01
0.

82
1.

93
0.

90

22
0.

87
95

2
0.

11
0.

27
0.

24
0.

22
0.

26
0.

00
0.

26
1.

25

25
0.

83
69

0
0.

10
0.

05
0.

03
0.

06
0.

07
0.

00
0.

66
0.

74

O
pt

ic
al

re
co

gn
iti

on
of

ha
nd

w
ri

tte
n

di
gi

ts
(×

10
7
)

2
0.

60
04

2
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

63
0.

01

3
0.

54
58

2
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

75
0.

01

5
0.

47
14

0
0.

56
1.

01
1.

00
0.

00
1.

01
0.

00
0.

82
0.

56

7
0.

41
60

1
0.

00
0.

00
0.

00
0.

88
0.

00
0.

89
0.

86
0.

08

10
0.

36
77

7
0.

00
0.

80
0.

79
0.

60
0.

79
0.

79
0.

60
0.

00

15
0.

32
52

2
0.

92
0.

90
0.

90
0.

90
0.

90
0.

00
1.

86
0.

90

20
0.

30
03

0
0.

78
0.

01
0.

00
0.

00
0.

00
0.

00
1.

04
0.

32

22
0.

29
37

6
0.

00
0.

18
0.

16
0.

16
0.

17
0.

16
0.

19
0.

17

25
0.

28
42

7
0.

23
0.

07
0.

03
0.

03
0.

07
0.

02
0.

19
0.

00

(c
on

tin
ue

d)

300 12 Numerical Experiments

Ta
bl

e
12

.5
(c

on
tin

ue
d)

k
f

be
st

G
K
M

M
G
K
M

D
G
-
C
l
u
s
t

N
D
C
-
C
l
u
s
t

I
D
C
A
-
C
l
u
s
t

I
S
-
C
l
u
s
t

L
M
B
-
C
l
u
s
t

D
C
D
B
-
C
l
u
s
t

L
et

te
rs

re
co

gn
iti

on
(×

10
6
)

2
1.

38
18

9
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

04

3
1.

25
05

8
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
4.

19
0.

20

5
1.

08
65

2
1.

06
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
1.

06

7
0.

97
24

0
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

49

10
0.

85
75

0
0.

00
0.

19
0.

18
0.

19
0.

19
0.

00
1.

10
0.

21

15
0.

74
76

1
0.

08
0.

09
0.

39
0.

07
0.

09
0.

00
0.

30
0.

00

20
0.

67
60

1
0.

22
0.

03
0.

00
0.

03
0.

04
0.

02
1.

13
0.

31

22
0.

65
35

5
1.

02
0.

84
0.

00
0.

48
0.

84
0.

00
0.

84
0.

42

25
0.

62
33

8
1.

39
0.

41
0.

00
0.

36
0.

41
0.

41
0.

65
0.

89

E
E

G
ey

e
st

at
e

(×
10

8
)

2
81

78
.1

4
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
18

33
.8

8
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
1.

33
85

8
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

7
0.

67
71

4
0.

00
0.

00
0.

00
0.

00
0.

00
0.

01
0.

00
0.

01

10
0.

45
66

9
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

15
0.

34
65

3
0.

00
1.

09
0.

69
0.

69
1.

09
0.

93
0.

05
0.

28

20
0.

28
98

5
0.

01
1.

32
0.

09
0.

96
1.

32
0.

00
0.

00
1.

54

22
0.

27
62

2
0.

28
0.

78
1.

02
0.

69
0.

75
0.

00
0.

29
0.

81

25
0.

25
97

9
0.

67
0.

00
0.

24
0.

31
0.

75
0.

23
0.

20
0.

08

12.3 Performance Results of Incremental Clustering Algorithms 301

Sh
ut

tle
co

nt
ro

l(
×1

08
)

2
21

.3
43

29
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
10

.8
54

15
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
7.

24
47

9
0.

00
0.

00
0.

00
0.

07
0.

01
0.

00
0.

09
5.

39

7
4.

33
84

0
0.

01
0.

00
0.

00
0.

52
0.

00
0.

00
0.

37
0.

65

10
2.

83
16

6
0.

02
0.

00
0.

00
0.

59
0.

01
0.

00
0.

57
0.

85

15
1.

53
15

4
0.

00
0.

00
0.

00
3.

16
0.

02
0.

00
0.

02
7.

48

20
1.

06
01

2
0.

00
0.

00
0.

15
1.

32
0.

02
0.

00
0.

03
4.

33

22
0.

94
08

1
0.

16
0.

08
0.

16
2.

49
0.

02
0.

00
0.

03
5.

85

25
0.

77
97

8
2.

48
2.

48
2.

47
2.

05
2.

52
2.

48
0.

00
10

.1
2

Pe
rs

on
ac

tiv
ity

(×
10

5
)

2
1.

03
71

5
0.

00
0.

00
0.

00
0.

00
0.

02
0.

00
0.

00
1.

50

3
0.

77
22

8
0.

00
0.

00
0.

00
0.

00
0.

03
0.

00
0.

00
4.

29

5
0.

56
01

8
0.

00
0.

00
0.

00
0.

00
0.

10
0.

00
0.

00
2.

30

7
0.

44
51

4
0.

00
0.

00
0.

00
0.

00
0.

15
0.

00
1.

20
1.

10

10
0.

33
41

2
0.

00
7.

02
5.

46
7.

02
7.

33
7.

57
7.

02
0.

00

15
0.

26
15

1
0.

54
1.

09
0.

00
0.

00
2.

05
0.

00
0.

00
0.

00

20
0.

21
79

1
1.

00
1.

00
0.

83
0.

83
1.

83
0.

83
0.

83
0.

00

22
0.

20
57

3
0.

01
1.

22
1.

32
1.

32
1.

38
0.

00
1.

15
0.

70

25
0.

18
89

0
0.

00
0.

00
0.

00
0.

00
1.

80
0.

00
2.

84
0.

71 (c
on

tin
ue

d)

302 12 Numerical Experiments

Ta
bl

e
12

.5
(c

on
tin

ue
d)

k
f

be
st

G
K
M

M
G
K
M

D
G
-
C
l
u
s
t

N
D
C
-
C
l
u
s
t

I
D
C
A
-
C
l
u
s
t

I
S
-
C
l
u
s
t

L
M
B
-
C
l
u
s
t

D
C
D
B
-
C
l
u
s
t

K
E

G
G

m
et

ab
ol

ic
re

la
tio

n
ne

tw
or

k
(×

10
8
)

2
11

.3
85

30
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
4.

90
06

0
0.

01
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
1.

88
36

7
0.

07
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

07

7
1.

19
63

0
0.

19
0.

03
0.

08
0.

82
0.

06
0.

00
2.

20
1.

69

10
0.

63
51

5
0.

01
0.

00
0.

01
0.

32
0.

00
0.

00
0.

00
1.

01

15
0.

35
12

2
3.

41
4.

34
1.

04
1.

04
1.

03
0.

00
1.

48
2.

21

20
0.

24
98

4
1.

21
1.

78
2.

12
1.

34
2.

08
0.

00
3.

50
0.

40

22
0.

22
36

5
1.

00
0.

00
1.

00
0.

29
1.

00
2.

03
4.

95
3.

53

25
0.

19
28

9
0.

53
0.

51
0.

01
1.

53
0.

00
1.

68
1.

64
4.

02

Sk
in

se
gm

en
ta

tio
n

(×
10

9
)

2
1.

32
23

6
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
0.

89
36

2
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
0.

50
20

3
0.

00
0.

00
0.

00
0.

00
0.

00
1.

65
0.

00
0.

00

7
0.

36
30

8
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
11

.4
3

0.
00

10
0.

25
12

2
0.

01
4.

25
4.

25
4.

25
4.

25
4.

25
13

.3
7

0.
00

15
0.

16
96

3
0.

02
0.

19
0.

00
0.

00
0.

00
0.

05
3.

84
0.

00

20
0.

12
61

5
Fa

il
0.

00
1.

70
1.

70
1.

71
0.

21
4.

50
1.

20

22
0.

11
65

4
Fa

il
0.

57
0.

73
0.

73
0.

75
0.

00
6.

36
0.

75

25
0.

10
22

8
Fa

il
0.

00
0.

70
0.

70
0.

70
0.

00
5.

79
0.

70

12.3 Performance Results of Incremental Clustering Algorithms 303

3D
R

oa
d

ne
tw

or
k

(×
10

6
)

2
49

.1
32

98
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
22

.7
78

18
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

03

5
8.

82
57

4
Fa

il
0.

00
0.

00
0.

00
0.

01
0.

00
0.

00
0.

00

7
4.

84
74

4
Fa

il
0.

00
0.

00
0.

01
0.

04
0.

00
0.

00
0.

94

10
2.

56
66

2
Fa

il
Fa

il
0.

01
0.

02
0.

23
0.

00
0.

00
0.

02

15
1.

27
06

9
Fa

il
Fa

il
0.

00
0.

01
0.

62
0.

00
0.

00
0.

98

20
0.

80
86

5
Fa

il
Fa

il
0.

00
0.

01
0.

48
0.

00
0.

00
0.

03

22
0.

70
32

8
Fa

il
Fa

il
0.

00
0.

00
0.

42
0.

00
0.

00
4.

14

25
0.

59
25

8
Fa

il
Fa

il
1.

94
3.

79
2.

39
1.

94
0.

00
0.

30

G
as

se
ns

or
ar

ra
y

dr
if

t(
×1

013
)

2
7.

91
18

2
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
5.

02
40

9
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
3.

22
39

5
0.

10
0.

10
0.

10
0.

10
0.

10
0.

10
0.

00
0.

10

7
2.

25
01

0
0.

00
0.

05
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

10
1.

65
22

8
0.

18
0.

18
0.

18
0.

18
0.

18
0.

00
0.

18
0.

18

15
1.

14
21

2
0.

00
0.

00
0.

00
0.

00
0.

00
0.

15
0.

00
1.

25

20
0.

87
87

8
0.

67
1.

58
0.

01
0.

01
1.

58
0.

00
2.

74
1.

54

22
0.

80
88

2
1.

12
3.

22
0.

00
0.

00
3.

21
0.

27
3.

49
1.

37

25
0.

72
21

1
0.

65
2.

58
0.

16
0.

16
2.

53
0.

00
3.

05
0.

66

304 12 Numerical Experiments

Ta
bl

e
12

.6
A

cc
ur

ac
y

re
su

lts
fo

r
ve

ry
la

rg
e

da
ta

se
ts

k
f

be
st

G
K
M

M
G
K
M

D
G
-
C
l
u
s
t

N
D
C
-
C
l
u
s
t

I
D
C
A
-
C
l
u
s
t

I
S
-
C
l
u
s
t

L
M
B
-
C
l
u
s
t

D
C
D
B
-
C
l
u
s
t

Is
ol

et
(×

10
6
)

2
0.

72
19

4
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
0.

67
87

8
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

69

5
0.

61
36

5
2.

44
1.

04
0.

39
1.

04
1.

04
1.

04
0.

00
0.

00

7
0.

57
02

9
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

22

10
0.

53
47

8
1.

64
0.

12
0.

12
0.

12
0.

12
0.

14
1.

64
0.

00

15
0.

48
73

9
0.

10
0.

00
0.

00
0.

00
0.

00
0.

55
0.

54
0.

10

20
0.

46
04

5
0.

04
0.

03
0.

00
0.

00
0.

03
0.

17
0.

12
0.

16

22
0.

45
45

9
0.

00
0.

60
0.

04
0.

04
0.

57
0.

74
0.

09
0.

11

25
0.

44
38

9
0.

23
0.

18
0.

15
0.

14
0.

15
3.

16
0.

40
0.

00

O
nl

in
e

ne
w

s
po

pu
la

ri
ty

(×
10

14
)

2
9.

53
91

3
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
5.

91
07

7
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
3.

09
88

5
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

7
1.

79
52

6
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

10
1.

17
24

7
0.

00
0.

00
0.

02
0.

00
0.

00
0.

00
2.

57
0.

00

15
0.

77
63

7
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
14

.7
7

0.
00

20
0.

59
81

2
0.

02
0.

11
0.

12
0.

10
0.

11
0.

00
7.

40
0.

11

22
0.

55
26

6
0.

61
2.

24
2.

24
0.

11
0.

11
0.

00
5.

26
0.

69

25
0.

49
61

5
0.

13
0.

26
0.

25
0.

13
0.

13
0.

00
7.

01
0.

99

12.3 Performance Results of Incremental Clustering Algorithms 305

Se
ns

or
le

ss
dr

iv
e

di
ag

no
si

s
(×

10
7
)

2
3.

88
11

6
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
2.

91
31

3
0.

00
0.

00
0.

00
0.

02
0.

17
0.

00
0.

00
8.

31

5
1.

93
65

2
0.

01
0.

01
0.

00
0.

03
0.

23
0.

00
5.

32
10

.6
7

7
1.

53
48

8
0.

01
0.

01
0.

00
0.

03
0.

27
0.

00
0.

00
4.

18

10
0.

96
09

1
0.

00
0.

00
0.

14
3.

82
0.

44
0.

00
4.

41
12

.6
2

15
0.

62
81

6
0.

00
0.

00
0.

11
2.

83
0.

46
0.

00
0.

00
3.

69

20
0.

49
98

9
0.

00
3.

92
6.

83
5.

63
4.

25
3.

89
0.

80
5.

29

22
0.

46
91

5
3.

36
3.

53
13

.8
3

4.
53

3.
57

3.
30

0.
00

4.
93

25
0.

42
23

2
14

.8
2

6.
22

26
.4

5
7.

16
6.

42
6.

18
0.

00
2.

85

C
ov

er
ty

pe
(×

10
11

)

2
1.

34
18

8
Fa

il
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
0.

95
28

7
Fa

il
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

5
0.

58
97

7
Fa

il
Fa

il
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

7
0.

44
82

8
Fa

il
Fa

il
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

10
0.

33
87

8
Fa

il
Fa

il
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

15
0.

24
66

9
Fa

il
Fa

il
0.

00
0.

00
0.

87
0.

87
0.

00
0.

87

20
0.

20
39

5
Fa

il
Fa

il
0.

00
0.

00
0.

00
0.

00
0.

05
Fa

il

22
0.

18
95

1
Fa

il
Fa

il
0.

00
0.

00
3.

58
0.

00
1.

55
Fa

il

25
0.

17
36

2
Fa

il
Fa

il
0.

12
0.

12
13

.0
6

0.
12

0.
00

Fa
il

(c
on

tin
ue

d)

306 12 Numerical Experiments

Ta
bl

e
12

.6
(c

on
tin

ue
d)

k
f

be
st

G
K
M

M
G
K
M

D
G
-
C
l
u
s
t

N
D
C
-
C
l
u
s
t

I
D
C
A
-
C
l
u
s
t

I
S
-
C
l
u
s
t

L
M
B
-
C
l
u
s
t

D
C
D
B
-
C
l
u
s
t

M
in

iB
oo

N
E

pa
rt

ic
le

id
en

tifi
ca

tio
n

(×
10

10
)

2
8.

92
23

6
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

3
5.

22
60

1
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
21

.6
8

0.
00

5
1.

82
25

2
0.

01
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

7
1.

29
36

9
Fa

il
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00

10
0.

92
40

6
Fa

il
0.

01
0.

01
2.

85
2.

85
5.

50
0.

00
0.

03

15
0.

63
50

7
Fa

il
0.

00
0.

00
0.

01
0.

00
0.

00
0.

00
0.

01

20
0.

50
87

1
Fa

il
0.

35
0.

38
0.

38
Fa

il
0.

35
1.

15
0.

00

22
0.

47
96

6
Fa

il
1.

48
Fa

il
0.

23
Fa

il
Fa

il
1.

49
0.

00

25
0.

44
42

5
Fa

il
0.

01
Fa

il
0.

04
Fa

il
Fa

il
0.

00
0.

02

G
is

et
te

(×
10

13
)

2
0.

41
99

4
Fa

il
0.

00
Fa

il
0.

00
Fa

il
Fa

il
0.

00
0.

00

3
0.

41
16

0
Fa

il
0.

00
Fa

il
0.

00
Fa

il
Fa

il
0.

00
0.

69

5
0.

40
23

2
Fa

il
0.

00
Fa

il
0.

00
Fa

il
Fa

il
0.

00
1.

34

7
0.

39
53

5
Fa

il
1.

76
Fa

il
0.

01
Fa

il
Fa

il
0.

00
2.

45

10
0.

38
84

3
Fa

il
Fa

il
Fa

il
0.

00
Fa

il
Fa

il
0.

00
2.

95

15
0.

38
17

7
Fa

il
Fa

il
Fa

il
0.

34
Fa

il
Fa

il
0.

00
Fa

il

20
0.

38
14

4
Fa

il
Fa

il
Fa

il
0.

43
Fa

il
Fa

il
0.

00
Fa

il

22
0.

37
84

3
Fa

il
Fa

il
Fa

il
1.

23
Fa

il
Fa

il
0.

00
Fa

il

25
0.

37
34

4
Fa

il
Fa

il
Fa

il
Fa

il
Fa

il
Fa

il
0.

40
Fa

il

12.3 Performance Results of Incremental Clustering Algorithms 307

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25
No.Clusters

D
av

ie
s-

Bo
ul

di
n

in
de

x

Fig. 12.14 DB index for Pla85900 data set

In Fig. 12.16 graphs of the three indices are depicted using results obtained by
IS-Clust in Gas sensor array drift data set. It can be seen that the DB index has
local minimizers at k = 4, 6, 11, 17, 24 and k = 4 is the global minimizer. The
purity increases up to about 55% as the number of clusters increases. The NMI

index has the largest values at k = 17 and k = 22, 23, 24, 25 with the value 0.34.
Note that the number of classes in this data set is 6. The results show that in this
data set the level of the compatibility between the class and the cluster distributions
is not high.

The graph of the DB index for KEGG metabolic relation network data set is
presented in Fig. 12.17. Here, the DB index has many local minimizers. Two of
them are global minimizers (k = 7 and k = 10). This means that the most compact
and well-separated clusters for this data set obtained for the 7- and 10-partitions.

12.3.5 Results for Very Large Data Sets

GKM, MGKM, DG-Clust, NDC-Clust, IDCA-Clust, IS-Clust, LMB-Clust
and DCDB-Clust are applied to very large data sets. Results for accuracy are given
in Table 12.6. Note that in these tables the values of fbest are the best values obtained
by all algorithms used in the numerical experiments.

We can see that not all algorithms are able to solve clustering problems within
the given 5 h time limit. GKM fails in three largest data sets, MGKM fails in two of
them, IDCA-Clust and IS-Clust fail in one of them. This means that these
algorithms are not always applicable to solve clustering problems in very large data
sets. However, LMB-Clust succeeds to solve all problems within the given 5 h
time limit.

Performance profiles for very large data sets are presented in Fig. 12.18. It can
be observed that LMB-Clust is the most successful in finding the best known

308 12 Numerical Experiments

0
10
20
30
40
50
60
70
80
90

100

0 1 4 5

Pr
ob

le
m

s
%

2 3
Relative errors %

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
DCDB-CLUST

LMB-CLUST
0

40

80

120

160

200

240

0 1 2 3 4 5 6 7 8

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
DCDB-CLUST

LMB-CLUST
0

40

80

120

160

200

240

0 1 2 3 4 5 6 7 8

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
DCDB-CLUST

LMB-CLUST

a b c

t t

Fig. 12.15 Performance profiles for large data sets. (a) Relative errors. (b) Distance function evals.
(c) CPU time

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25
No.Clusters

0

10

20

30

40

50

60

0 5 10 15 20 25

Pu
rit

y

No.Clusters

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 5 10 15 20 25N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

No.Clusters

D
av

ie
s-

Bo
ul

di
n

in
de

x

a b c

Fig. 12.16 Results for Gas sensor array drift data set using different indices. (a) DB index. (b)
Purity. (c) NMI index

Fig. 12.17 DB index for
KEGG metabolic relation
network data set

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25

D
av

ie
s-

Bo
ul

di
n

in
de

x

No.Clusters

12.3 Performance Results of Incremental Clustering Algorithms 309

solutions and NDC-Clust is the most successful in solving clustering problems
with the error no more than 5%. In addition, LMB-Clust has the least number of
distance function evaluations and CPU time. The results also show that GKM is not
applicable to very large data sets, it requires largest number of distance function
evaluations and CPU time among all algorithms.

In Fig. 12.19 graphs of the DB index and purity are presented based on results
obtained by IS-Clust in Covertype data set. It can be seen from the figure
that the DB index has local minimizers at k = 3, 8, 21 and k = 8 is a global
minimizer. The DB index tends to increase as the number of clusters increases.
This can be considered as an indication that according to the DB index the 8-
partition of Covertype data set has the best separated clusters among all k-partitions
(k = 2, . . . , 25).

The purity tends to increase starting from 48% up to about 52% as the number of
clusters increases from 2 to 25. This means that we should calculate a large number
of clusters to get a significant increase of the purity in Covertype data set.

0
10
20
30
40
50
60
70
80
90

100

0 1 4 5

Pr
ob

le
m

s
%

2 3
Relative errors %

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
DCDB-CLUST

LMB-CLUST
0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
DCDB-CLUST

LMB-CLUST 0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

GKM

MGKM

DG-CLUST

IS-CLUST

NDC-CLUST

IDCA-CLUST
DCDB-CLUST

LMB-CLUST

a b c

t t

Fig. 12.18 Performance profiles for very large data sets. (a) Relative errors. (b) Distance function
evals. (c) CPU time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 20

D
av

ie
s-

Bo
ul

di
n

in
de

x

15
No.Clusters

a b

25
0

10

20

30

40

50

60

0 5 10 15 20 25

Pu
rit

y

No.Clusters

Fig. 12.19 DB index and purity for Covertype data set. (a) DB index. (b) Purity

310 12 Numerical Experiments

Fig. 12.20 DB index for
Gisette data set

0

2

4

6

8

10

12

14

0 5 10 20 25

D
av

ie
s-

Bo
ul

di
n

in
de

x

15

No.Clusters

The graph of the DB index for Gisette data set is presented in Fig. 12.20. This
index has three distinct local minimizers at k = 8, 16 and k = 24. However, it tends
to decrease as the number of clusters increases. This means that we need to compute
a large number of clusters to find a cluster distribution with well-separated clusters.
This is not unexpected for Gisette data set as it has 5000 attributes and is sparse.

12.4 Comparative Results with Different Similarity
Measures

In this section, we discuss the performance of the incremental clustering algorithms
when different similarity measures—d1, d2, and d∞—are used in the clustering
functions. For this aim, we apply DG-Clust on different sizes of data sets:
Bavaria postal 1, Bavaria postal 2, Iris plant, TSPLIB1060, Breast cancer Wisconsin,
TSPLIB3038, D15112, Image segmentation, Page blocks, Pla85900, EEG eye state,
and KEGG metabolic relation network. We use the cluster function values, the CPU
time and Voronoi diagrams to compare results. The maximum number of clusters in
extra small data sets is 10, in small size data sets 15 and it is 20 in all other data sets.

12.4.1 Optimal Values for Cluster Functions

Table 12.7 presents optimal values of the cluster function fk obtained using
similarity measures d1, d2, d∞ and different number k of clusters. Note that these
values are multiplied by m—the number of points in a data set—and also by
numbers shown under names of data sets. The results show that in all cases, except

12.4 Comparative Results with Different Similarity Measures 311

Iris plant data set, the values of the cluster function with d∞ are the smallest among
all three similarity measures.

12.4.2 Computational Time

The dependence of the CPU time used by DG-Clust for similarity measures
d1, d2, and d∞ are depicted in Fig. 12.21. The following conclusions can be made
based on these results:

Table 12.7 Optimal values for cluster functions with different similarity measures

k d1 d2 d∞ d1 d2 d∞ d1 d2 d∞
Bavaria postal 1 Bavaria postal 2 Iris plant

×106 ×1010 ×106 ×106 ×1010 ×106 ×102 ×102 ×102

2 4.0249 60.2547 3.9940 1.8600 5.2192 0.9456 2.1670 1.5235 0.9715

3 2.8284 29.4507 2.7892 1.2607 1.7399 0.6594 1.5920 0.7885 0.7420

5 1.7208 5.9762 1.6948 0.7872 0.5442 0.4221 1.2460 0.4645 0.5860

7 1.0704 2.1983 1.0368 0.5659 0.2215 0.2946 1.0620 0.3430 0.4915

10 0.6037 0.6447 0.5828 0.4340 0.1181 0.2173 0.9070 0.2583 0.4245

TSPLIB1060 TSPLIB3038 Breast cancer

×107 ×109 ×106 ×106 ×109 ×106 ×104 ×104 ×104

2 0.3864 9.8319 2.6809 3.7308 3.1688 2.5651 0.6401 1.9323 0.1831

3 0.3139 6.7058 2.1508 3.0056 2.1763 2.1221 0.5702 1.6256 0.1607

5 0.2310 3.7915 1.6546 2.2551 1.1982 1.5576 0.5165 1.3707 0.1460

10 0.1563 1.7553 1.1048 1.5508 0.5634 1.0738 0.4270 1.0212 0.1278

15 0.1198 1.1219 0.8827 1.2295 0.3560 0.8592 0.3872 0.8711 0.1172

D15112 Image segmentation Page blocks

×108 ×1011 ×108 ×106 ×107 ×105 ×107 ×1010 ×106

2 0.8860 3.6840 0.6109 0.5192 3.5606 1.4929 0.8414 5.7937 4.1746

3 0.6908 2.5324 0.4896 0.4160 2.7416 1.3284 0.6747 3.3134 3.4309

5 0.4998 1.3271 0.3619 0.3400 1.7143 1.1081 0.4882 1.3218 2.4671

10 0.3618 0.6489 0.2524 0.2575 0.9967 0.8170 0.3152 0.4533 1.4446

15 0.2930 0.4324 0.2065 0.2188 0.6556 0.6966 0.2555 0.2495 1.1784

20 0.2501 0.3218 0.1768 0.1942 0.5137 0.6200 0.2200 0.1672 1.0160

Pla85900 EEG eye state KEGG metabolic

×1010 ×1015 ×1010 ×107 ×108 ×106 ×107 ×108 ×106

2 2.0656 3.7491 1.4533 0.5289 8178.1381 1.5433 0.3586 11.3853 1.9821

3 1.6262 2.2806 1.1434 0.4197 1833.8806 0.9049 0.2800 4.9006 1.5112

5 1.2587 1.3397 0.8712 0.2944 1.3386 0.5183 0.2095 1.8837 1.0549

10 0.8950 0.6829 0.6218 0.2191 0.4567 0.3947 0.1459 0.6352 0.6667

15 0.7335 0.4625 0.5082 0.1965 0.3500 0.3562 0.1231 0.3512 0.5114

20 0.6374 0.3517 0.4443 0.1827 0.2899 0.3292 0.1108 0.2654 0.4440

312 12 Numerical Experiments

• DG-Clust requires the largest CPU time with d∞ in all data sets except Bavaria
postal 1 and TSPLIB1060, and the least CPU time with d2 in all data sets. The
clustering problem with d∞ is the most complex one and DG-Clust requires
a large number of approximate subgradient evaluations to find search directions
in this problem. On the other hand, the clustering problem with d2 is the easiest

0

0.1

0.2

0.3

0.4

0.5

2 3 5 7 10

CP
U

No.Clusters
a

0

0.3

0.6

0.9

1.2

1.5

CP
U

No.Clusters

b

0

1

2

3

4

5

CP
U

No.Clusters

c

0

5

10

15

20

25

CP
U

No.Clusters

d

0

10

20

30

40

CP
U

No.Clusters

e

0

10

20

30

40

50

CP
U

No.Clusters
f

0

40

80

120

160

CP
U

No.Clusters

g

0

600

1200

1800

2400

3000

CP
U

No.Clusters

h

0

150

300

450

600

750

2 3 5 10 15 20

CP
U

No.Clusters

i

0

600

1200

1800

2400

3000

CP
U

No.Clusters

j

0

150

300

450

600

750

15 25

CP
U

No.Clusters

k

0

1000

2000

3000

4000

5000

6000

2 3 5 7 10 2 3 5 7 10

2 3 5 10 15 2 3 5 10 15 2 3 5 10 15

2 3 5 10 15 20 2 3 5 10 15 20

2 3 5 10 15 20 25 2 3 5 10 20 2 3 5 10 15 20 25

CP
U

No.Clusters

l

Fig. 12.21 CPU time with different similarity measures. (a) Bavaria postal 1. (b) Bavaria postal
2. (c) Iris plant. (d) TSPLIB1060. (e) TSPLIB3038. (f) Breast cancer. (g) D15112. (h) Image
segmentation. (i) Page blocks. (j) Pla85900. (k) EEG eye state. (l) KEGG metabolic

12.4 Comparative Results with Different Similarity Measures 313

as d2 is smooth. In this case, the optimization method does not require a large
number of approximate subgradient evaluations to find search directions;

• the CPU time required by DG-Clust depends more strongly on the number
of attributes than on the number of data points. This claim is confirmed by
comparing results for data sets with the similar number of data points and
significantly different number of attributes: Image segmentation, TSPLIB3038,
D15112, EGE eye state, Pla85900, and KEGG metabolic relation network. The
comparison shows that DG-Clust becomes time-consuming in large data sets
with the large number of attributes. In such data sets the size of the optimization
problem increases rapidly as the number of clusters increase; and

• for all similarity measures the CPU time required at each iteration of the
incremental algorithm, in general, is more than that of required at the previous
iterations. This is due to the fact that the size of the optimization problem for
finding all cluster centers increases at each iteration of the incremental algorithm.

12.4.3 Visualization of Results

Voronoi diagrams are used to visualize results obtained by DG-Clust in three data
sets: German towns, TSPLIB1060 and TSPLIB3038. We utilize the software from
[259] for this purpose. Figures 12.22, 12.23 and 12.24 present Voronoi diagrams for
these data sets with five clusters. We can see that cluster structures for similarity
measures d1, d2, and d∞ are different in all data sets, although the distributions of
cluster centers for d1 and d2 functions in TSPLIB1060 data set are similar.

Fig. 12.22 Visualization of clusters in German towns data set. (a) L1-norm. (b) L2-norm. (c)
L∞-norm

314 12 Numerical Experiments

Fig. 12.23 Visualization of clusters in TSPLIB1060 data set. (a) L1-norm. (b) L2-norm. (c) L∞-
norm

Fig. 12.24 Visualization of clusters in TSPLIB3038 data set. (a) L1-norm. (b) L2-norm. (c) L∞-
norm

Chapter 13
Concluding Remarks

Clustering is an important technique in exploratory data analysis. There are different
types of clustering and the focus in this book is on partitional hard clustering. We
considered various models of the clustering problem and demonstrated that the
nonconvex nonsmooth optimization approach provides a model with significantly
less number of decision variables than other approaches. In addition, this approach
allows us to easily examine the clustering problems with different similarity
measures, in particular, those based on the L1-, L2- and L∞-norms. Furthermore,
the use of the nonconvex nonsmooth optimization model in clustering problems
enables us to formulate the optimality conditions in a compact form.

Partitional hard clustering problems are global optimization problems. They have
many local minimizers and global or nearly global minimizers are of interest. These
minimizers provide cluster distributions where clusters are better separated and
more compact than clusters represented by any other local minimizers. However,
conventional global optimization methods are prohibitively time-consuming for
solving clustering problems in large and very large data sets with relatively large
number of clusters.

Since 1950s different algorithms have been proposed to solve partitional hard
clustering problems. Most of them aim to solve clustering problems with the
similarity measure defined using the squared Euclidean norm. Such problems are
also known as the minimum sum-of-squares clustering problems. These algorithms
are, predominantly, local search algorithms and they can obtain only local solutions.
Clustering solutions obtained by these algorithms might be significantly different
from global solutions, especially in large data sets.

To improve the quality of solutions obtained by clustering algorithms, we need
to apply a special procedure to generate the diverse set of starting cluster centers.
Most of the successful local search clustering algorithms involve such a procedure.
Usually, these procedures try to find starting clusters centers among data points

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4_13

315

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37826-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-37826-4_13

316 13 Concluding Remarks

which is reasonable as clusters centers are usually located in the dense areas of
a data set. Starting cluster centers are generated using either randomization or
deterministic schemes.

The incremental approach allows us to design efficient procedures for finding
starting cluster centers. Clustering algorithms based on this approach construct
clusters starting from one cluster, which is the whole data set, and by adding one
cluster center at each iteration of the incremental algorithm. Using this approach
we introduced the auxiliary clustering problem that is applied to generate promising
starting cluster centers from the whole search space.

We designed incremental clustering algorithms by combining the incremental
approach with the heuristic clustering algorithms such as k-means, k-medians and
also with nonsmooth optimization methods. These algorithms and methods are
applied at each iteration of the incremental algorithm to solve both the clustering
and the auxiliary clustering problems. Nonsmooth optimization methods that are
applied to solve these problems include semi-derivative-free discrete gradient
method, methods based on smoothing techniques, and bundle-type methods such
as the diagonal bundle method and the limited memory bundle method. Using the
difference of convex decomposition of the objective functions in both the clustering
and the auxiliary clustering problems two clustering algorithms: the nonsmooth
difference of convex clustering and the DCA (difference of convex algorithm)
clustering algorithms were developed.

The auxiliary clustering problem is nonsmooth and nonconvex. Its number
of decision variables is the same at all iterations of the incremental clustering
algorithm, whereas the number of variables in the clustering problem increases as
the number of clusters increases.

Results of numerical experiments show that the use of the auxiliary clustering
problem allows us to improve the quality of the clustering solutions. Solutions to
this problem are in some proximity of solutions of the clustering problem, and
therefore, the application of the auxiliary clustering problem leads to the significant
reduction of computational effort. This means that the auxiliary clustering problem
is an important step of the incremental clustering algorithms.

Results of numerical experiments also demonstrate that incremental clustering
algorithms, based on the heuristics like k-means and k-medians, are only efficient
for extra small to large data sets (containing hundreds of thousands of instances).
However, they become very time-consuming in very large data sets. At the same
time, the incremental clustering algorithms based on nonsmooth optimization tech-
niques such as the limited memory bundle method and those based on smoothing
techniques are accurate and efficient in very large data sets. These results show that
clustering algorithms utilizing special structures of the clustering problems, such as
their difference of convex decompositions and piecewise separability, are real-time
clustering algorithms in very large data sets.

13 Concluding Remarks 317

In summary, we can conclude that nonsmooth optimization approaches in
clustering provide better models and also efficient and accurate algorithms. The
results presented in this book demonstrate that clustering algorithms based on these
approaches constitute a solid basis to develop such model algorithms for solving
clustering problems in large and very large data sets when the whole data cannot be
stored in the memory of a computer.

References

1. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach
to Combinatorial Optimization and Neural Computing. Wiley Interscience Series in Discrete
Mathematics and Optimization. Wiley, New York, NY (1989)

2. Aggarwal, C.C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics in
high dimensional space. In: ICDT ’01 Proceedings of the 8th International Conference on
Database Theory, pp. 420–434 (2001)

3. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications. CRC Press,
Boca Raton (2014)

4. Al-Daoud, M.B., Roberts, S.A.: New methods for the initialisation of clusters. Pattern
Recogn. Lett. 17(5), 451–455 (1996)

5. Aliguliyev, R.M.: Performance evaluation of density-based clustering methods. Inf. Sci.
179(20), 3583–3602 (2009)

6. Aliguliyev, R.M.: Clustering of document collection: a weighting approach. Expert Syst.
Appl. 36(4), 7904–7916 (2009)

7. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares
clustering. Mach. Learn. 75(2), 245–248 (2009)

8. Alok, A.K., Saha, S., Ekbal, A.: Multi-objective semi-supervised clustering for automatic
pixel classification from remote sensing imagery. Soft Comput. 20(12), 4733–4751 (2016)

9. Al-Sultan, K.S.: A tabu search approach to the clustering problem. Pattern Recogn. 28(9),
1443–1451 (1995)

10. Al-Sultan, K.S., Fedjki, C.A.: A tabu search-based algorithm for the fuzzy clustering problem.
Pattern Recogn. 30(12), 2023–2030 (1997)

11. Al-Sultan, K.S., Khan, M.M.: Computational experience on four algorithms for the hard
clustering problem. Pattern Recogn. Lett. 17, 295–308 (1996)

12. Anderberg, M.R.: Cluster Analysis for Applications. Academic, New York, NY (1973)
13. Andritsos, P., Tsaparas, P., Miller, R.J., Servcik, K.C.: LIMBO: a linear algorithm to cluster

categorical data. Technical Report CSRG-467, Department of Computer Science, UofT
(2003)

14. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Bansal, N.,
Pruhs, K., Stein, C. (eds.) SODA ’07 Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1027–1035 (2007)

15. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in
Operations Research and Financial Engineering. Springer, Berlin (2017)

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4

319

https://doi.org/10.1007/978-3-030-37826-4

320 References

16. Babu, G.P., Murty, M.N.: A near optimal initial seed value selection in the k-meanws
algorithm using a genetic algorithm. Pattern Recogn. Lett. 14(10), 763–769 (1993)

17. Baeza-Yates, R.A.: Introduction to data structures and algorithms related to information
retrieval. In: Frakes, W.B., Baeza Yates, R. (eds.) Information Retrieval: Data Structures
and Algorithms. Prentice Hall, Upper Saddle River, NJ, pp. 13–27 (1992)

18. Bagirov, A.M.: Continuous subdifferential approximations and their applications. J. Math.
Sci. 115(5), 2567–2609 (2003)

19. Bagirov, A.M.: Modified global k-means algorithm for sum-of-squares clustering problem.
Pattern Recogn. 41, 3192–3199 (2008)

20. Bagirov, A.M.: An incremental DC algorithm for the minimum sum-of-squares clustering.
Iran. J. Oper. Res. 5(1), 1–14 (2014)

21. Bagirov, A.M., Mardaneh, K.: Modified global k-means algorithm for clustering in gene
expression data sets. In: Boden, M., Bailey, T. (eds.) Proceedings of the AI 2006 Workshop
on Intelligent Systems of Bioinformatics, pp. 23–28 (2006)

22. Bagirov, A.M., Mohebi, E.: Nonsmooth optimization based algorithms in cluster analysis. In:
Celebi, E. (ed.) Partitional Clustering Algorithms. Springer, New York, pp. 99–146 (2015)

23. Bagirov, A.M., Taheri, S.: A DC optimization algorithm for clustering problems with L1-
norm. Iran. J. Oper. Res. 8(2), 2–24 (2017)

24. Bagirov, A.M., Ugon, J.: An algorithm for minimizing clustering functions. Optimization
54(4–5), 351–368 (2005)

25. Bagirov, A.M., Ugon, J.: Piecewise partially separable functions and a derivative-free
algorithm for large scale nonsmooth optimization. J. Glob. Optim. 35(2), 163–195 (2006)

26. Bagirov, A.M., Yearwood, J.: A new nonsmooth optimization algorithm for minimum sum-
of-squares clustering problems. Eur. J. Oper. Res. 170(2), 578–596 (2006)

27. Bagirov, A.M., Rubinov, A., Soukhoroukova, N., Yearwood, J.: Unsupervised and supervised
data classification via nonsmooth and global optimization, Top 11, 1–93 (2003)

28. Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: derivative-free method
for nonsmooth optimization. J. Optim. Theory Appl. 137, 317–334 (2008)

29. Bagirov, A.M., Ugon, J., Webb, D.: Fast modified global k-means algorithm for sum-of-
squares clustering problems. Pattern Recogn. 44, 866–876 (2011)

30. Bagirov, A.M., Al Nuaimat, A., Sultanova, N.: Hyberpolic smoothing function methodfor
minimax problems. Optimization 62(6), 759–784 (2013)

31. Bagirov, A.M., Ugon, J., Mirzayeva, H.: Nonsmooth nonconvex optimization approach to
clusterwise linear regression problems. Eur. J. Oper. Res. 229(1), 132–142 (2013)

32. Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization:
Theory, Practice and Software. Springer, New York (2014)

33. Bagirov, A.M., Ordin, B., Ozturk, G., Xavier, A.: An incremental clustering algorithm based
on hyperbolic smoothing. Comput. Optim. Appl. 61(1), 219–241 (2015)

34. Bagirov, A.M., Ugon, J., Mirzayeva, H.: Nonsmooth optimization algorithm for solving
clusterwise linear regression problems. J. Optim. Theory Appl. 164(3), 755–780 (2015)

35. Bagirov, A.M., Ugon, J., Mirzayeva, H.: An algorithm for clusterwise linear regression based
on smoothing techniques. Optim. Lett. 9(2), 375–390 (2015)

36. Bagirov, A.M., Taheri, S., Ugon, J.: Nonsmooth DC programming approach to the minimum
sum-of-squares clustering problems. Pattern Recogn. 53, 12–24 (2016)

37. Bagirov, A.M., Mahmood, A., Barton, A.: Prediction of monthly rainfall in Victoria,
Australia: clusterwise linear regression approach. Atmos. Res. 188, 20–29 (2017)

38. Bagirov, A.M., Al Nuaimat, A., Sultanova, N., Taheri, S.: Solving minimax problems: local
smoothing versus global smoothing. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds.)
Numerical Analysis and Optimization. Springer Proceedings in Mathematics and Statistics,
vol. 235, pp. 23–43. Springer, Cham (2018)

39. Bai, Q.: Analysis of particle swarm optimization algorithm. Comput. Inf. Sci. 3(1), 180–184
(2010)

40. Ball, G.H., Hall, D.J.: ISODATA, a novel method of data analysis and pattern classification.
Technical Report NTIS AD 699616, Stanford Research Institute, Menlo Park, CA (1965)

References 321

41. Ball, G.H., Hall, D.J.: A clustering technique for summarizing multivariate data. Behav. Sci.
12(2), 153–155 (1967)

42. Bandyopadhyay, S., Saha, S.: A point symmetry-based clustering technique for automatic
evolution of clusters. IEEE Trans. Knowl. Data Eng. 20(11), 1441–1457 (2008)

43. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypesphere using von
Mises-Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

44. Basturk, B., Karaboga, D.: An artificial bee colony (ABC) algorithm for numeric function
optimization. In: IEEE Swarm Intelligence Symposium, pp. 12–14 (2006)

45. Baudry, J.P., Raftery, A., Celeux, G., Lo, K., Gottardo, R.G.: Combining mixture components
for clustering. J. Comput. Graph. Stat. 19(2), 332–353 (2010)

46. Bertsekas., D.P.: Convex Optimization Algorithms, 2nd edn. Athena Scientific, Belmont, MA
(2015)

47. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press,
New York (1981)

48. Bhuyan, N.J., Raghavan, V.V. Venkatesh, K.E.: Genetic algorithms for clustering with an
ordered representation. In: Proceedings of the Fourth International Conference on Genetic
Algorithms, pp. 408–415 (1991)

49. Biernacki, C., Celeux, G., Gold, E.M.: Assessing a mixture model for clustering with the
integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000)

50. Bobrowski, L., Bezdek, J.C.: c-means clustering with the L1 and L∞ norms. IEEE Trans.
Syst. Man Cybern. 21, 545–554 (1991)

51. Bock, H.H.: Probabilistic models in cluster analysis. Comput. Stat. Data Anal. 23, 5–28
(1996)

52. Bock, H.H.: Clustering and neural networks. In: Rizzi, A., Vichi, M., Bock, H.H. (eds.)
Advances in Data Science and Classification, pp. 265–277. Springer, Berlin (1998)

53. Brauksa, I.: Use of cluster analysis in exploring economic indicator differences among
regions: the case of latvia. J. Econ. Bus. Manag. 1(1), 42–45 (2013)

54. Brown, D.E., Entail, C.L.: A practical application of simulated annealing to the clustering
problem. Pattern Recogn. 25, 401–412 (1992)

55. Brown, M., Grundy, W., Lin, D., Christianini, N., Sugnet, C., Furey, T., Ares, M., Haussler, D.:
Knowledg-based analysis of microarray gene expression data using support vector machines.
Proc. Natl. Acad. Sci. 97, 262–267 (2000)

56. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-Newton matrices and their
use in limited memory methods. Math. Program. 63, 129–156 (1994)

57. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3, 1–27
(1974)

58. Cariou, C., Chehdi, K.: Unsupervised nearest neighbors clustering with application to
hyperspectral images. IEEE J. Sel. Top. Sign. Process. 9(6), 1105–1116 (2015)

59. Carmichael, J., Sneath, P.: Taxometric maps. Syst. Zool. 18, 402–415 (1969)
60. Carpenter, G.A., Grossberg, S.: A massively parallel architecture for a self-organizing neural

pattern recognition machine. Comput. Vis. Graph. Image Process. 37, 54–115 (1987)
61. Carpenter, G.A., Grossberg, S.: Art3: hierarchical search using chemical transmitters in self

organising pattern recognition architectures. Neural Netw. 3, 129–152 (1990)
62. Carpenter, G.A., Grossberg, S., Reynolds, J.H.: ARTMAP: supervised real-time learning and

classification of nonstationary data by a self-organizing neural network. Neural Netw. 4,
565–588 (1991)

63. Celebi, M.E.: Improving the performance of k-means for color quantization. Image Vis.
Comput. 29(4), 260–271 (2011)

64. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)

65. Cerny, V.: Thermodynamical approach to the travelling salesman problem: an efficient
simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)

66. Chaudhuri, B.B., Garai, G.: Grid clustering with genetic algorithm and tabu search process.
J. Pattern Recogn. Res. 4(1), 152–168 (2009)

322 References

67. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the Eighth
International Conference on Intelligent Systems for Molecular Biology, vol. 8, pp. 93–103
(2000)

68. Chipman, H., Tibshirani, R.: Hybrid hierarchical clustering with applications to microarray
data. Biostatistics 7(2), 286–301 (2006)

69. Christofor, D., Simovici, D.A.: An information theoretic approach to clustering categorical
databases using genetic algorithms. In: Second SIAM ICDM Workshop on Clustering High
Dimensional Data, pp. 37–46 (2002)

70. Clarke., F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
71. Courvisanos, J., Jain, A., Mardaneh, K.: Economic resilience of regions under crises: a study

of the Australian Economy. Reg. Stud. 50(4), 629–643 (2016)
72. Cowgill, M.C., Harvey, R.J., Watson, L.T.: A genetic algorithm approach to cluster analysis.

Comput. Math. Appl. 37, 99–108 (1999)
73. Cura, T.: A particle swarm optimization approach to clustering. Expert Syst. Appl. 39(1),

1582–1588 (2012)
74. Das, S., Abraham, A., Konar, A.: Clustering using multi-objective differential evolution

algorithms. In: Metaheuristic Clustering. Studies in Computational Intelligence, vol. 178,
pp. 213–238. Springer, Berlin/Heidelberg (2009)

75. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach.
Intell. 1(4), 224–227 (1979)

76. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood for incomplete data via the
EM algorithm (with discussion). J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

77. Demyanov., V.F.: On codifferentiable functionals. Vestn. Leningr. Univ. 2(8), 22–26 (1988)
78. Demyanov, V.F., Rubinov., A.M.: On quasidifferentiable functionals. Proc. USSR Acad. Sci.

250(1), 21–25 (1980)
79. Demyanov, V.F., Rubinov., A.M.: Constructive Nonsmooth Analysis. Verlag Peter Lang,

Frankfurt am Main (1995)
80. Demyanov, V.F., Bagirov, A.M., Rubinov, A.M.: A method of truncated codifferential with

application to some problems of cluster analysis. J. Glob. Optim. 23(1), 63–80 (2002)
81. DeSarbo, W.S., William, L.C.: A maximum likelihood methodology for clusterwise linear

regression. J. Classif. 5(2), 249–282 (1988)
82. De Souza, R.M.C.R., de Carvalho, F.A.T.: Clustering of interval data based on city-block

distances. Pattern Recogn. Lett. 25, 353–365 (2004)
83. Dhillon, I.S., Fan, J., Guan, Y.: Efficient clustering of very large document collections. In:

Kamath, C., Kumar, V., Grossman, R., Namburu, R. (eds.) Data Mining for Scientific and
Engineering Applications, Massive Computing, vol. 2, pp. 357–381. Springer, Boston, MA
(2001)

84. Diehr, G.: Evaluation of a branch and bound algorithm for clustering. SIAM J. Sci. Stat.
Comput. 6, 268–284 (1985)

85. Doherty, K.A.J., Adams, R.G., Davey, N.: Non-Euclidean norms and data normalisation. In:
Proceedings of ESANN, pp. 181–186 (2004)

86. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math.
Program. 91, 201–213 (2002)

87. Dolnicar, S.: Using cluster analysis for market segmentation - typical misconceptions,
established methodological weaknesses and some recommendations for improvement. Aus-
tralasian J. Mark. Res. 11(2), 5–12 (2003)

88. Dorigo, M., Blum, Ch.: Ant Colony optimization theory: a survey. Theor. Comput. Sci. 344,
243–278 (2005)

89. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating
agents. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

90. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif.
Life 5(2), 137–172 (1999)

91. Dua, D., Graff, C.: UCI Machine Learning Repository. School of Information and Computer
Sciences, University of California, Irvine. http://archive.ics.uci.edu/ml (2017)

http://archive.ics.uci.edu/ml

References 323

92. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)
93. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-

separated clusters. J. Cybern. 3, 32–57 (1973)
94. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104

(1974)
95. Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, Burlington (2001)
96. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of

genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863–14868 (1998)
97. Eren, K., Deveci, M., Kücüktunc, O., Catalyürek, U.V.: A comparative analysis of biclustering

algorithms for gene expression data. Brief. Bioinform. 14(3), 279–292 (2013)
98. Ermoliev, Y.M., Norkin, V.I., Wets, R.J-B.: The minimization of semicontinuous functions:

mollifier subgradients. SIAM J. Control Optim. 33, 149–167 (1995)
99. Ester, M., Kriegel, K.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters

in large spatial databases with noise. In: Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, Portland, OR, pp. 226–231 (1996)

100. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M.
(eds.) Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining, Portland, OR, pp. 226–231 (1996)

101. Evans, L.C., Gariepy, V.: Measure Theory and Fine Properties of Functions. CRC Press, Boca
Raton, FL (1992)

102. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, New York (1998)
103. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Advances in knowledge discovery and data

mining. In: American Association for Artificial Intelligence, pp. 1–34 (1996)
104. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans.

Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)
105. Finnie, G., Sun, Z.: r5 model for case-based reasoning. Knowl. Based Syst. 16, 59–65 (2003)
106. Fisher, D.: Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2,

139–172 (1987)
107. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Trans. Neural

Netw. 5(1), 3–14 (1994)
108. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of

classifications. Biometrics 21, 768–769 (1965)
109. Fowlkes, E., Mallows, C.: A method for comparing two hierarchical clusterings. J. Am. Stat.

Assoc. 78, 553–569 (1983)
110. Frismantas, V., et al.: Ex vivo drug response profiling detects recurrent sensitivity patterns in

drug-resistant acute lymphoblastic leukemia. Blood 129(11), e26–e37 (2017)
111. Fu, H.: A novel clustering algorithm with ant colony optimization. In: IEEE Pacific-Asia

Workshop on Computational Intelligence and Industrial Application, pp. 66–69 (2008)
112. Ganti, V., Gehrke, J., Ramakrishnan, R.: CACTUS: clustering categorical data using

summaries. In: Knowledge Discovery and Data Mining, pp. 73–83 (1999)
113. Gaudioso, M., Gorgone, E.: Gradient set splitting in nonconvex nonsmooth numerical

optimization. Optim. Methods Softw. 25, 59–74 (2010)
114. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A: Minimizing nonsmooth DC

functions via successive DC piecewise-affine approximations. J. Glob. Optim. 71(1), 37–55
(2018)

115. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design. Wiley, New York (1997)
116. Ghorbani, M.: Maximum entropy-based fuzzy clustering by using L1-norm space. Turk. J.

Math. 29, 431–438 (2005)
117. Gibson, D., Kleinberg, J., Raghavan, P.: Clustering categorical data: an approach based on

dynamical systems. In: Proceedings of the 24th International Conference on Very Large
Databases (VLDB), pp. 103–114 (1998)

118. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13(5), 533–549 (1986)

324 References

119. Glover, F.: Tabu search - part 1. ORSA J. Comput. 1(2), 190–206 (1989)
120. Glover, F.: Tabu search - part 2. ORSA J. Comput. 2(1), 4–32 (1990)
121. Glover, F.: Artificial intelligence, heuristic frameworks and tabu search. Manag. Decis. Econ.

11, 365–375 (1990)
122. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1997)
123. Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning. Addison-

Wesley, Boston, MA (1989)
124. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic

algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan
Kaufmann, San Mateo, CA (1991)

125. Gong, M. Zhang, L., Jiao, L., Gou, S.: Solving multi-objective clustering using animmune-
inspired algorithm. In: Proceedings of IEEE Conference on Evolutionary Computation,
pp. 15–22 (2007)

126. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comput.
Sci. 38(2–3), 293–306 (1985)

127. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst.
Man Cybern. 1, 122–128 (1986)

128. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases.
In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 73–
84. ACM Press, New York (1998)

129. Guha, S., Rastogi, R., Shim, K.: ROCK: a robust clustering algorithm for categorical
attributes. Inf. Syst. 25(5), 345–366 (2000)

130. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams:
theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528 (2003)

131. Haarala, M.: Large-Scale Nonsmooth Optimization: Variable Metric Bundle Method with
Limited Memory. PhD thesis, Department of Mathematical Information Technology,
University of Jyväskylä (2004)

132. Haarala, M., Miettinen, K., Mäkelä, M.M.: New limited memory bundle method for large-
scale nonsmooth optimization. Optim. Methods Softw. 19(6), 673–692 (2004)

133. Haarala, N., Miettinen, K., Mäkelä, M.M.: Globally convergent limited memory bundle
method for large-scale nonsmooth optimization. Math. Program. 109(1), 181–205 (2007)

134. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: part I. ACM SIGMOD
Rec. 31(2), 40–45 (2002)

135. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: part II. ACM
SIGMOD Rec. 31(3), 19–27 (2002)

136. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. The Morgan Kaufmann
Series in Data Management Systems, 3rd edn. Morgan Kaufmann, San Francisco, CA (2011)

137. Handl, J., Knowles, J.: Evolutionary multi-objective clustering. In: Proceedings of 8th
International Conference on Parallel Problem Solving from Nature, pp. 1081–1091 (2004)

138. Handl, J., Knowles, J.: An evolutionary approach to multi-objective clustering. IEEE Trans.
Evol. Comput. 11(1), 56–76 (2007)

139. Hanilci, C., Ertas, F.: Comparison of the impact of some Minkowski metrics on VQ/GMM
based speaker recognition. Comput. Electr. Eng. 37, 41–56 (2011)

140. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math. Program.
79(1–3), 191–215 (1997)

141. Hansen, P., Mladenovic, N.: J -means: a new local search heuristic for minimum sum of
squares clustering. Pattern Recogn. 34(2), 405–413 (2001)

142. Hansen, P., Ngai, E., Cheung, B., Mladenovic, N.: Analysis of global k-means, an incremental
heuristic for minimum sum of squares clustering. J. Classif. 22, 287–310 (2005)

143. Hartigan, J.A.: Clustering Algorithms. Wiley, New York, NY (1975)
144. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. R. Stat.

Soc. Ser. C (Appl. Stat.) 28, 100–108 (1979)
145. Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I and

II. Springer, Heidelberg (1993)

References 325

146. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI (1975)

147. Hruschka, H., Natter, M.: Comparing performance of feedforward neural nets and k-means
for cluster-based market segmentation. Eur. J. Oper. Res. 114(2), 346–353 (1999)

148. Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., de Carvalho, A.C.P.L.F.: A survey of
evolutionary algorithms for clustering. IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) 39,
133–155 (2009)

149. Huang, J.J., Tzeng, G.H., Ong, C.Sh.: Marketing segmentation using support vector
clustering. Expert Syst. Appl. 32(2), 313–317 (2007)

150. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
151. Inkaya, T., Kayaligil, S., Özdemirel, N.E.: An adaptive neighbourhood construction algorithm

based on density and connectivity. Pattern Recogn. Lett. 52, 17–24 (2015)
152. Inkaya, T., Kayaligil, S., Özdemirel, N.E.: Ant colony optimization based clustering

methodology. Appl. Soft Comput. 28, 301–311 (2015)
153. Ismkhan, H.: i − k-means-+: an iterative clustering algorithm based on an enhanced version

of the k-means. Pattern Recogn. 79, 402–413 (2018)
154. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666

(2010)
155. Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Upper Saddle River,

NJ (1988)
156. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3),

264–323 (1999)
157. Jajuga, K.: A clustering method based on the L1-norm. Comput. Stat. Data Anal. 5, 357–371

(1987)
158. Jardine, N., Sibson, R.: Mathematical Taxonomy. Wiley, London/New York (1971)
159. Jensen, R.E.: A dynamic programming algorithm for cluster analysis. Oper. Res. 17, 1034–

1057 (1969)
160. Ji, J., Pang, W., Zheng, Y., Wang, Z., Ma, Z.: A novel artificial bee colony based clustering

algorithm for categorical data. PLoS ONE 10(5), 1–17 (2015)
161. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method

for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28,
1892–1919 (2018)

162. Jones, D., Beltramo, M.A.: Solving partitioning problems with genetic algorithms. In:
Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 442–449
(1991)

163. Kao, Y.T., Zahara, E., Kao, I.W.: A hybridized approach to data clustering. Expert Syst. Appl.
34, 1754–1762 (2008)

164. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
(2005)

165. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function
optimization: artificial bee colony algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

166. Karaboga, D., Ozturk, C.: A novel clustering approach: artificial bee colony algorithm. Appl.
Soft Comput. 11, 652–657 (2011)

167. Karmitsa, N.: Diagonal bundle method for nonsmooth sparse optimization. J. Optim. Theory
Appl. 166(3), 889–905 (2015)

168. Karmitsa, N., Mäkelä, M.M, Ali, M.M.: Limited memory interior point bundle method for
large inequality constrained nonsmooth minimization. Appl. Math. Comput. 198(1), 382–400
(2008)

169. Karmitsa, N., Bagirov, A.M., Mäkelä, M. M.: Comparing different nonsmooth optimization
methods and software. Optim. Methods Softw. 27(1), 131–153 (2012)

170. Karmitsa, N., Bagirov, A.M., Taheri, S.: New diagonal bundle method for clustering problems
in large data sets. Eur. J. Oper. Res. 263(2), 367–379 (2017)

326 References

171. Karmitsa, N., Bagirov, A.M., Taheri, S.: Clustering in large data sets with the limited memory
bundle method. Pattern Recogn. 83, 245–259 (2018)

172. Katsavounidis, I., Kuo, C.-C.J., Zhang, Z.: A new initialization technique for generalized
Lloyd iteration. IEEE Signal Process. Lett. 1(10), 144–146 (1994)

173. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical
Data Analysis Based on the L1-Norm and Related Methods, pp. 405–416. North-Holland,
Amsterdam (1987)

174. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley Series in Probability and Statistics. Wiley, New York (1990)

175. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 1, pp. 1942–1948 (1995)

176. Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management
research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996)

177. King, B.: Step-wise clustering procedures. J. Am. Stat. Assoc. 69, 86–101 (1967)
178. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science

220(4598), 671–680 (1983)
179. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in

Mathematics, vol. 1133. Springer, Berlin (1985)
180. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimiza-

tion. Math. Program. 46(1–3), 105–122 (1990)
181. Kiwiel, K.C.: Improved convergence result for the discrete gradient and secant methods for

nonsmooth optimization. J. Optim. Theory Appl. 144(1), 69–75 (2010)
182. Klein, R.W., Dubes, R.C.: Experiments in projection and clustering by simulated annealing.

Pattern Recogn. 22, 213–220 (1989)
183. Kogan, J.: Introduction to Clustering Large and High-Dimensional Data. Cambridge

University Press, Cambridge (2007)
184. Kohonen, T.: Self-organization formation of topologically correct feature maps. Biol. Cybern.

43(1), 59–69 (1982)
185. Kohonen, T.: Self Organization and Associative Memory. Springer Information Sciences

Series, 3rd edn. Springer, Heidelberg (1989)
186. Koontz, W.L.G., Narendra, P.M., Fukunaga, K.: A branch and bound clustering algorithm.

IEEE Trans. Comput. 24(9), 908–915 (1975)
187. Krzanowski, W., Lai, Y.: A criterion for determining the number of groups in a data set using

sum-of-squares clustering. Biometrics 44(1), 23–34 (1988)
188. Kuo, R.J., Ho, L.M., Hu, C.M.: Integration of self-organizing feature map and k-means

algorithm for market segmentation. Comput. Oper. Res. 29(11), 1475–1493 (2002)
189. Kvalseth, T.O.: Entropy and correlation: some comments. IEEE Trans. Syst. Man Cybern.

17(3), 517–519 (1987)
190. Lai, J.Z.C., Huang, T.J.: Fast global k-means clustering using cluster membership and

inequality. Pattern Recogn. 43(5), 1954–1963 (2010)
191. Larsen, B., Aone, Ch.: Fast and effective text mining using linear-time document clustering.

In: Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 16–22 (1999)

192. Le-Khac, N., Cai, F., Kechadi, M.: Clustering approaches for financial data analysis: a survey.
In: Abou-Nasr, M. Arabnia, H. (eds.) Proceedings of the International Conference on Data
Mining, Las Vegas, Nevada (2012)

193. Lemaréchal, C., Strodiot, J.-J., Bihain, A.: On a bundle algorithm for nonsmooth optimiza-
tion. In: Mangasarian, O.L., Mayer, R.R., Robinson, S.M. (eds.) Nonlinear Programming,
pp. 245–281. Academic Press, New York (1981)

194. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic
problems by D.C. algorithms. J. Glob. Optim. 11(3), 253–285 (1997)

195. Le Thi, H.A., Pham Dinh, T.: The DC (differnece of convex functions) programming and
DCA revised with DC models of real world nonconvex optimization problems. Ann. Oper.
Res. 133(1–4), 23–46 (2005)

References 327

196. Li, J.: Clustering based on multi-layer mixture model. J. Comput. Graph. Stat. 14(3), 547–568
(2005)

197. Likas, A., Vlassis, M., Verbeek, J.: The global k-means clustering algorithm. Pattern Recogn.
36(2), 451–461 (2003)

198. Liu, X., Hu, F.: An effective clustering algorithm with ant colony. J. Comput. 5(4), 598–605
(2010)

199. Liu, Y., Wu, X., Shen, Y.: Automatic clustering using genetic algorithms. Appl. Math.
Comput. 218(4), 1267–1279 (2011)

200. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137
(1982)

201. Locatelli, M.: Simulated annealing algorithms for continuous global optimization: conver-
gence conditions. J. Optim. Theory Appl. 104(1), 121–133 (2000)

202. Lu, S.Y., Fu, K.S.: A sentence to sentence clustering procedure for pattern analysis. IEEE
Trans. Syst. Man Cybern. 8(5), 381–389 (1978)

203. Lukšan, L., Vlček, J.: Globally convergent variable metric method for convex nonsmooth
unconstrained minimization. J. Optim. Theory Appl. 102(3), 593–613 (1999)

204. MacQueen, J.: Some methods for classification and analysis of multivariate observations.
In: Cam, L.M.L., Neyman, J. (eds.) Proceedings of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press,
Berkeley, CA (1967)

205. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is NP-hard.
Theor. Comput. Sci. 442, 13–21 (2012)

206. Mäkelä., M.M.: Survey of bundle methods for nonsmooth optimization. Optim. Methods
Softw. 17(1), 1–29 (2002)

207. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with
Applications to Optimal Control. World Scientific, Singapore (1992)

208. Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and
validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–1654 (2002)

209. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern
Recogn. 33(9), 1455–1465 (2000)

210. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York (1997)
211. McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering.

Marcel Dekker, New York (1988)
212. Melnykov, V., Maitra, R.: Finite mixture models and model-based clustering. Stat. Surv. 4,

80–116 (2010). Digital Repository, Statistics Publications, Iowa State University
213. Mifflin, R.: A modification and an extension of Lemaréchal’s algorithm for nonsmooth

minimization. Math. Program. Stud. 17, 77–90 (1982)
214. Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of

clusters in a data set. Psychometrika 50(2), 159–179 (1985)
215. Milligan, G.W., Cooper, M.C.: A study of the comparability of external criteria for

hierarchical cluster analysis. Multivar. Behav. Res. 21, 441–458 (1986)
216. Mirkin, B.: Mathematical Classification and Clustering. Springer, Berlin/Heidelberg (1996)
217. Mohebi, E., Bagirov, A.M.: A convolutional recursive modified self organizing map for

handwritten digits recognition. Neural Netw. 60, 104–118 (2014)
218. Mohebi, E., Bagirov, A.M.: Modified self organising maps with a new topology and

initialisation algorithm. J. Exp. Theor. Artif. Intell. 27(3), 351–372 (2015)
219. Mohebi, E., Bagirov, A.M.: Constrained self organizing maps for data clusters visualization.

Neural Process. Lett. 43(3), 849–869 (2016)
220. Mordukhovich, B.: Variational Analysis and Generalized Differentiation I and II. Springer,

Heidelberg (2006)
221. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms which use

cluster centres. Comput. J. 26(4), 354–359 (1984)
222. Mustjoki, S., et al.: Discovery of novel drug sensitivities in T-PLL by high-throughput ex

vivo drug testing and mutation profiling. Leukemia 32, 774–787 (2017)

328 References

223. Nagy, G.: State of the art in pattern recognition. Proc. IEEE 56(5), 836–862 (1968)
224. Naldi, M.C., de Carvalho, A.C.P.L.F., Campello, R.J.G.B., Hruschka, E.R.: Genetic clustering

for data mining. In: Maimon, O., Rokach, L. (eds.) Soft Computing for Knowledge Discovery
and Data Mining, pp. 113–132. Springer, Berlin (2007)

225. Nappa, S.D., Wang, X., Nair, S.: A comparison of machine learning techniques for phishing
detection. In: Proceedings of the Anti-Phishing Working Groups 2nd Annual eCrime
Researchers Summit (eCrime 07), New York, pp. 60–69 (2007)

226. Newcomb, S.: A generalized theory of the combination of observations so as to obtain the
best result. Am. J. Math. 8(4), 343–366 (1886)

227. Nesterov, Y.: Smooth minimization of nonsmooth functions. Math. Program. 103(1), 127–152
(2005)

228. Ordin, B., Bagirov, A.M.: A heuristic algorithm for solving the minimum sum-of-squares
clustering problems. J. Glob. Optim. 61(2), 341–361 (2015)

229. Ordin, B., Bagirov, A.M., Mohebi, E.: An incremental nonsmooth optimization algorithm for
clustering using L1- and L∞- norms. J. Ind. Manag. Optim. Accepted for publication. http://
dx.doi.org/10.3934/jimo.2019079

230. Oyelade, J., Isewon, I., Oladipupo, F., Aromolaran, O., Uwoghiren, E. Ameh, F., Achas, M.,
Adebiyi, E.: Clustering algorithms: their application to gene expression data. Bioinf. Biol.
Insights 10, 237–253 (2016)

231. Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert Syst.
Appl. 36(2), 3336–3341 (2009)

232. Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a review. ACM
SIGKDD Explorations Newsletter - Special issue on learning from imbalanced datasets 6(1),
90–105 (2004)

233. Pearson, K.: Contribution to the mathematical theory of evolution. Philos. Trans. R. Soc. 185,
71–110 (1894)

234. Pelleg, D., Moore, A.W.: X-means: extending k-means with efficient estimation of the
number of clusters. In: Langley, P. (ed.) Proceedings of the Seventeenth International
Conference on Machine Learning, pp. 727–734. Morgan Kaufmann, San Francisco, CA
(2000)

235. Pemovska, T., et al.: Individualized systems medicine strategy to tailor treatments for patients
with chemorefractory acute myeloid leukemia. Cancer Discov. 3(12), 1416–1429 (2013)

236. Penot, J.: Variations on the theme of nonsmooth analysis: another subdifferential. In:
Demyanov, V.F, Pallaschke, D. (eds.) Nondifferentiable Optimization: Motivations and
Applications, pp. 41–54. Springer, Berlin (1985)

237. Pizzuti, C., Talia, D., Vonella, G.: A divisive initialisation method for clustering algorithms.
In: Proceedings of the 3rd European Conference on Principles and Practice of Knowledge
Discovery in Databases, pp. 484–491 (1999)

238. Poggi, J.M., Portier, B.: PM10 forecasting using clusterwise regression. Atmos. Environ.
45(38), 7005–7014 (2011)

239. Punj, G., Stewart, D.W.: Cluster analysis in marketing research: review and suggestions for
application. J. Mark. Res. 20(2), 134–148 (1983)

240. Quandt, R.E.: A new approach to estimating switching regressions. J. Am. Stat. Assoc.
67(338), 306–310 (1972)

241. Raghavan, V.V., Birchand, K.: A comparison of the stability characteristics of some graph
theoretic clustering methods. In: Proceedings of the Second international Conference on
Information Storage and Retreival, pp. 10–22 (1979)

242. Rahman, M.A., Islam, M.Z.: A hybrid clustering technique combining a novel genetic
algorithm with k-means. Knowl. Based Syst. 71, 345–365 (2014)

243. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc.
66(336), 846–850 (1971)

244. Rao, M.R.: Cluster analysis and mathematical programming. J. Am. Stat. Assoc. 66(335),
622–626 (1971)

http://dx.doi.org/10.3934/jimo.2019079
http://dx.doi.org/10.3934/jimo.2019079

References 329

245. Redmond, S.J., Heneghan, C.: A method for initialising the k-means clustering algorithm
using kd-trees. Pattern Recogn. Lett. 28(8), 965–973 (2007)

246. Reinelt, G.: TSP-LIB-A travelling salesman library. ORSA J. Comput. 3, 319–350 (1991)
247. Rezanková, H.: Cluster analysis of economic data. Statistica 94(1), 73–86 (2014)
248. Robinson, S.M.: Linear convergence of epsilon-subgradient descent methods for a class of

convex functions. Math. Program. 86(1), 41–50 (1999)
249. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)
250. Rosch, E.: Principles of Categorization. MIT Press, Cambridge (1999)
251. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis. Comput. Appl. Math. 20, 53–65 (1987)
252. Rui, X., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3),

645–678 (2005)
253. Runkler, T.A.: Ant colony optimization of clustering models. Int. J. Intell. Syst. 20(12),

1233–1251 (2005)
254. Sabo, K., Scitovski, R., Vazler, I.: One-dimensional center-based L1-clustering method.

Optim. Lett. 7(1), 5–22 (2013)
255. Saha, S., Bandyopadhyay, S.: Some connectivity-based cluster validity indices. Appl. Soft

Comput. 12(5), 1555–1565 (2012)
256. Salvador, S., Chan, P.: Determining the number of clusters/segments in hierarchical cluster-

ing/segmentation algorithms. In: Proceedings of the 16th IEEE International Conference on
Tools with Artificial Intelligence, pp. 576–584 (2004)

257. Santos, J.M., Embrechts, M.: On the use of the adjusted Rand index as a metric for evaluating
supervised classification. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds)
Artificial Neural Networks – ICANN 2009. Lecture Notes in Computer Science, vol. 5769,
pp. 175–184. Springer, Berlin/Heidelberg (2009)

258. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function:
conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152
(1992)

259. Sedgewick, R., Wayne, K.: Introduction to Programming in Java. Addison-Wesley, New York
(2007)

260. Seifollahi, S., Bagirov, A.M. Layton, R., Gondal, I.: Optimization based clustering algorithms
for authorship analysis of phishing emails. Neural Process. Lett. 46(2), 411–425 (2017)

261. Selim, S.Z.: A global algorithm for the clustering problem. In: Presentation at the
ORSA/TIMS Joint Meeting, San Diego, CA (1982)

262. Selim, S.Z., Alsultan, K.: A simulated annealing algorithm for the clustering problem. Pattern
Recogn. Lett. 24(10), 1003–1008 (1991)

263. Selim, S.Z., Ismail, M.A.: k-means-type algorithms: a generalized convergence theorem and
characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 6(1), 81–87
(1984)

264. Sethi, I., Jain, A.K. (eds.): Artificial Neural Networks and Pattern Recognition: Old and new
Connections. Elsevier, New York (1991)

265. Shang, Y., Wah, B.W.: Global optimization for neural network training. IEEE Comput. 29(3),
31–44 (1996)

266. Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: An ant colony approach for clustering. Anal.
Chim. Acta 509(2), 187–195 (2004)

267. Shor, N.Z.: Minimization Methods for Non-differentiable Functions. Springer, Berlin (1985)
268. Slonm, N., Tishby, N.: Document clustering using word clusters via the information

bottleneck method. In: Proceedings of the ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 208–215 (2000)

269. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. Freeman, London (1973)
270. Späth, H.: Algorithm 30: L1 cluster analysis. Computing 16(4), 379–387 (1976)
271. Späth, H.: Algorithm 39: clusterwise linear regression. Computing 22(4), 367–373 (1979)
272. Späth, H.: Cluster Analysis Algorithms for Data Reduction and Classification of Objects.

Computers and Their applications. Ellis Horwood Limited, Chichester (1980)

330 References

273. Späth, H.: The Cluster Dissection and Analysis Theory FORTRAN Programs Examples.
Prentice-Hall, Upper Saddle River, NJ (1985)

274. Sriperumbudur, B.K., Lanckriet, R.G.: On the convergence of the concave-convex proce-
dure. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.)
Proceedings of the 22nd International Conference on Neural Information Processing Systems,
pp. 1759–1767. Curran Associates Inc., Red Hook (2009)

275. Sun, L.X., Xie, Y.L., Song, X.H., Wang, J.H., Yu, R.Q.: Cluster analysis by simulated
annealing. Comput. Chem. 18(2), 103–108 (1994)

276. Suresh, K., Kundu, D., Ghosh, S., Das, S., Abraham, A.: Data clustering using multi-objective
differential evolution algorithms. Fund. Inform. 97(4), 381–403 (2009)

277. Steinhaus, H.: Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci. 4(12),
801–804 (1956)

278. Tao, P.D.: Duality in d.c. (difference of convex functions) optimization. Subgradient methods.
In: Hoffmann, K.H., et al. (ed.) Trends in Mathematical Optimization. International Series of
Numer Math., vol. 84. Birkhauser, Basel (1988)

279. Teboulle, M.: A unified continuous optimization framework for center-based clustering
methods. J. Mach. Learn. Res. 8, 65–102 (2007)

280. Thalamuthu, A., Mukhopadhyay, I., Zheng, X., Tseng, G.C.: Evaluation and comparison of
gene clustering methods in microarray analysis. Bioinformatics 22(19), 2405–2412 (2006)

281. Torzcon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25
(1997)

282. Tran, T.N., Wehrens, R., Buydens, L.M.C.: KNN-kernel density-based clustering for high-
dimensional multivariate data. Comput. Stat. Data Anal. 51(2), 513–525 (2006)

283. Tsai, C.Y., Chiu, C.C.: A purchase-based market segmentation methodology. Expert Syst.
Appl. 27(2), 265–276 (2004)

284. Tuy, H.: Convex Analysis and Global Optimization, 1st edn. Kluwert Academic, Dordrecht
(1998)

285. Uryasév, S.P.: New variable metric algorithms for nondifferentiable optimization problems.
J. Optim. Theory Appl. 71(2), 359–388 (1991)

286. Van der Laan, M., Pollard, K., Bryan, J.: A new partitioning around medoids algorithm. J.
Stat. Comput. Simul. 73(8), 575–584 (2003)

287. Van der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization.
In: The 2003 Congress on Evolutionary Computation, Canberra, ACT (2003)

288. Venkateswarlu, N., Raju, P.: Fast ISODATA clustering algorithms. Pattern Recogn. 25(3),
335–342 (1992)

289. Vlček, J., Lukšan, L.: Globally convergent variable metric method for nonconvex nondiffer-
entiable unconstrained minimization. J. Optim. Theory Appl. 111(2), 407–430 (2001)

290. Wang, X., Qiu, W., Zamar, R.H.: CLUES: a non-parametric clustering method based on local
shrinking. Comput. Stat. Data Anal. 52(1), 286–298 (2007)

291. Ward, J.H.: Hierarchical grouping to optimize and objective function. J. Am. Stat. Assoc.
58(301), 236–244 (1963)

292. Wedel, M., Kistemaker, C.: Consumer benefit segmentation using clusterwise linear
regression. Int. J. Res. Mark. 6(1), 45–59 (1989)

293. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnes est
minimum. Tohoku Math. J. 43, 355–386 (1937)

294. Weiszfeld, E., Plastria, F.: On the point for which the sum of the distances to n given points
is minimum. Ann. Oper. Res. 167(1), 7–41 (2009)

295. Wierzchon, S.T., Klopotek, M.A.: Modern Algorithms of Cluster Analysis. Springer, Cham
(2018)

296. Wolfe, J.H.: Pattern clustering by multivariate mixture analysis. Multivar. Behav. Res. 5(3),
329–350 (1970)

297. Wolfe, P.: A method of conjugate subgradients for minimizing nondifferentiable functions.
In: Balinski, M.L., Wolfe, P. (eds.) Nondifferentiable Optimization, pp. 145–173. Springer,
Heidelberg (1975)

References 331

298. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A.,
Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in
data mining. Knowl. Inf. Syst. 14(1), 1–37 (2007)

299. Xavier, A.E.: Penalizaćao hiperbólica. In: I Congresso Latino-Americano de Pesquisa
Operacional e Engenharia de Sistemas, 8 a 11 de Novembro, Rio de Janeiro, pp. 468–482
(1982)

300. Xavier, A.E.: The hyperbolic smoothing clustering method. Pattern Recogn. 43(3), 731–737
(2010)

301. Xavier, A.E., Oliveira, A.A.F.D.: Optimal covering of plane domains by circles via hyperbolic
smoothing. J. Glob. Optim. 31(3), 493–504 (2005)

302. Xiao, Y., Yu, B.: A truncated aggregate smoothing Newton method for minimax problems.
Appl. Math. Comput. 216(6), 1868–1879 (2010)

303. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach.
Intell. 13(8), 841–847 (1991)

304. Xu, L.: Bayesian ying-yang machine, clustering and number of clusters. Pattern Recogn.
Lett. 18(11–13), 1167–1178 (1997)

305. Xu, S.: Smoothing method for minimax problems. Comput. Optim. Appl. 20(3), 267–279
(2001)

306. Yang, M.-Sh., Hung, W.-L., Chung, T.-I.: Alternative fuzzy clustering algorithms with L1-
norm and covariance matrix. In: Blanc-Talon J., Philips W., Popescu D., Scheunders P. (eds)
Advanced Concepts for Intelligent Vision Systems, ACIVS 2006. Lecture Notes in Computer
Science, vol. 4179, pp. 654–665. Springer, Berlin/Heidelberg, (2006)

307. Ye, F., Liu, H., Zhou, Sh., Liu, S.: A smoothing trust-region Newton-CG method for minimax
problem. Appl. Math. Comput. 199(2), 581–589 (2008)

308. Yeung, K.Y., Haynor, D.R., Ruzzo, W.L.: Validating clustering for gene expression data.
Bioinformatics 17(4), 309–318 (2001)

309. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15(4), 915–936
(2003)

310. Zang, I.: A smoothing-out technique for min-max optimization. Math. Program. 19(1), 61–77
(1980)

311. Zhang, C., Ouyang, D., Ning, J.: An artificial bee colony approach for clustering. Expert
Syst. Appl. 37(7), 4761–4767 (2010)

312. Zhang, J., Peng, L., Zhao, X., Kuruoglu, E.E.: Robust data clustering by learning multi-metric
Lq -norm distances. Expert Syst. Appl. 39(1), 335–349 (2012)

313. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very
large databases. In: Proceedings of the ACM SIGMOD Conference on Management of Data,
pp. 103–114 (1996)

314. Zhao, Q., Fränti, P.: WB-index: a sum-of-squares based index for cluster validity. Data
Knowl. Eng. 92, 77–89 (2014)

315. Zhao, Q., Xu, M., Fränti, P.: Knee point detection on Bayesian information criterion. In: 20th
IEEE International Conference on Tools with Artificial Intelligence, pp. 431–438 (2008)

316. Zhao, Q., Xu, M., Fränti, P.: Sum-of-squares based cluster validity index and significance
analysis. In: Proceedings of the 17th International Conference on Adaptive and Natural
Computing Algorithms, pp. 313–322 (2009)

Index

A
Abbreviations, list, xvii
Acronyms, list, xvii
Adjusted Rand (ARn) index, 261
Ant colony optimization, 180
Artificial bee colony, 174
Association rule, 4
Attribute, 5
Auxiliary cluster function, 109, 110
Auxiliary clustering problem, 109

B
Ball & Hall (BH) index, 252
Ball and Hall’s algorithm, 141
Bayesian information criterion, 252
Big data, 316, 317

C
Calinski–Harabasz (CH) index, 256
Chain rule, 29
Clarke

directional derivative, 24
stationary point, 34
subdifferential, 25

Cluster
analysis, 5
center, 6
centroid, 6
function, 99, 101

representative, 6
starting points, 189
validity indices, 247

Clustering, 5
applications, 11
density based, 5, 10
fuzzy, 10, 154
grid based, 10
hierarchical, 5, 10
partitional, 5, 10
soft (fuzzy) partitional, 5

Clustering problem, 6, 98, 99, 105
auxiliary, 109
minimum sum-of-absolutes, 98
minimum sum-of-squares, 98
mixed integer programming model, 98
nonsmooth DC optimization model, 105
nonsmooth optimization model, 99

Clusterwise linear regression, 13
Compactness of clusters, 246
Concave-convex procedure, 83
Connectivity of clusters, 245
Continuously differentiable function, 20
Convex

combination, 16
function, 20
hull, 17
set, 16

Critical point, 43
Cutting-plane model, 55
Cybersecurity, 12

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al., Partitional Clustering via Nonsmooth Optimization,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-37826-4

333

https://doi.org/10.1007/978-3-030-37826-4

334 Index

D
Data

mining, 4
point, 5
representation, 4
set, 5, 272

Davies–Bouldin (DB) index, 249
Density based clustering, 5, 10
Descent direction, 34
Difference of convex (DC)

algorithm, 83, 84, 237
diagonal bundle clustering, 232
diagonal bundle method, 67, 68, 232
function, 42
optimality conditions, 44
optimization problem, 43

Differentiable function, 20
directionally, 21

Directional derivative, 21
generalized, 21, 24

Discrete gradient, 35
for clustering, 215
method, 86, 87, 215

Dunn index, 250

E
ε-subdifferential, 23
ε-subgradient, 23, 26
Expectation maximization, 158
External validation, 246

F
Fast modified global k-means, 206
Feature, 5

combination, 4
extraction, 4
selection, 4

Finite mixture models, 156
Flowchart

ant colony optimization for clustering, 181
artificial bee colony optimization for

clustering, 175
basic incremental clustering, 188
basic iterative method, 51
DC algorithm, 84
DC diagonal bundle clustering, 232
DC diagonal bundle method, 68
discrete gradient clustering, 215
discrete gradient method, 87
expectation maximization, 159
fuzzy c-means, 155
genetic algorithm for clustering, 172
global k-means, 144

incremental k-medians, 196
incremental DCA for clustering, 237
incremental nonsmooth DC clustering, 226
inf-stationary point, 73
k-means, 137
k-medians, 146
k-medoids, 151
limited memory bundle method, 61
limited memory bundle method for

clustering, 211
line search, 57
modified global k-means, 202
multi-start incremental clustering, 194
nonsmooth DC method, 78
particle swarm optimization for clustering,

178
proximal bundle method, 55
self organizing map, 160
simulated annealing for clustering, 169
smooth incremental clustering, 221
smoothing method, 93
subgradient method, 54
tabu search for clustering, 166

Forgy algorithm, 140
F-score, 264
Function

chained, 38
continuous, 19
continuously differentiable, 20
convex, 20
DC, 42
differentiable, 20
directionally differentiable, 21
infinitely continuously differentiable, 21
Lipschitz continuous, 20
locally Lipschitz continuous, 20
lower semicontinuous, 19
partial derivatives, 20
partially separable, 37
piecewise k-chained, 38
piecewise partially separable, 38
piecewise separable, 38
quasidifferentiable, 31
regular, 28
semicontinuous, 19
semismooth, 27
strictly differentiable, 25
term, 40
twice continuously differentiable, 21
twice differentiable, 21
upper semicontinuous, 19
weakly semismooth, 27

Fuzzy clustering, 10, 154
Fuzzy c-means, 154

Index 335

G
General incremental clustering algorithm, 187
Generalized directional derivative, 24
Genetic algorithm, 172
Global k-means, 143
Global minimum, 33
Goldstein ε-subdifferential, 26
Gradient vector, 20
Grid based clustering, 10

H
Halfspace, 18
Hard clustering problem, 5
Hartigan and Wong algorithm, 142
Hartigan index, 251
Hessian matrix, 22
Hierarchical clustering, 5, 10
Hyperbolic smoothing, 46, 48
Hyperplane, 18

separating, 18

I
I index, 255
Incremental

DCA for clustering, 237
k-medians, 195
nonsmooth DC clustering, 226

Infinitely continuously differentiable, 21
Inf-stationary point, 43, 72
Instance, 5
Internal validation, 246
ISODATA algorithm, 149

J
j -means, 142

K
k-chained function, 38
k-means, 137
k-means++, 143
k-medians, 146
k-medoids, 151
Knowledge discovery in databases, 3
Krzanowski–Lai (KL) index, 251

L
(λ, δ)-inf-stationary, 77
(λ, δ)-stationary, 77
Limited memory bundle method, 59, 212

for clustering, 211
Line search, 57

Line-segment, 16
Lipschitz continuous function, 20
Lloyd algorithm, 142
Locally Lipschitz continuous (LLC) function,

20
Local minimum, 33

M
MacQueen algorithm, 140
Market segmentation, 11
Maximin algorithm, 141
Maximum likelihood, 158
Mean-value theorem, 29
Minimax problem, 45
Minimum sum-of-absolutes clustering, 98
Minimum sum-of-squares clustering, 98
Minkowski norm, 8
Mixed integer programming model for

clustering, 98
Mixture models, 156
Modified global k-means, 202
Multi-start incremental clustering algorithm,

194

N
Necessary optimality conditions, 34
Nonsmooth

DC method, 77, 78, 228
DC optimization model for clustering, 105
function, 20
optimization, 15
optimization model for clustering, 99

Normalized mutual information, 263
Null step, 57

O
Objects, 5
Observations, 5
Optimality conditions

for DC auxiliary cluster function, 121
for DC cluster function, 116
for DC functions, 43
necessary, 34
sufficient, 34
with quasidifferential, 34

P
Partial derivatives, 20
Partial k-medians, 197
Partially separable function, 37

336 Index

Particle swarm optimization, 177
Partitional clustering, 5, 10
Partition around medoids, 152
Partition problem, 6
Performance profiles, 265
Piecewise

k-chained function, 38
partially separable function, 38
separable function, 38

Positively homogeneous function, 20
Proximal bundle method, 55
Purity, 262

Q
Quasidifferential, 31

R
Rademacher’s Theorem, 25
Rand index, 259
Real-time clustering, 316
Regression analysis, 4

S
Self organizing map, 160
Semicontinuous function, 19
Semismooth function, 27
Separability of clusters, 245
Serious step, 57
Silhouette coefficients, 257
Silhouette plots, 257
Similarity function, 7
Similarity measure, 6

Chebyshev norm, 9
L1-norm, 8
L2-norm, 8
L∞-norm, 9
Manhattan norm, 8
squared Euclidean distance, 8

Simulated annealing, 169
Smooth function, 20
Smooth incremental clustering, 220
Smoothing method, 92, 93
Soft (fuzzy) partitional clustering, 5
Starting cluster centers, 189
Strictly differentiable function, 25

Subadditive function, 20
Subderivation rules, 29

chain rule, 29
linear combination, 28
max-function, 30
mean-value theorem, 29
products, 30
quotients, 30

Subdifferential, 22, 25, 31
ε-, 23
Clarke, 25
convex, 22
Goldstein ε-, 26
nonconvex, 25

Subdifferentially regular, 28
Subgradient, 22, 25

method, 53
Subgradient method, 54
Sufficient optimality conditions, 34
Superdifferential, 31
Supervised data classification, 4
Supervised learning, 4
Symbols, list, xvii
Sym index, 254

T
Tabu search, 166
Term functions, 40
Text mining, 12
Twice continuously differentiable, 21
Twice differentiable, 21

U
Unsupervised data classification, 5
Upper semicontinuous, 25

W
WB index, 253
Weiszfeld’s algorithm, 149

X
Xie-Beni index, 253
X-means, 142, 150
Xu index, 253

	Preface
	Acknowledgments

	Introduction
	Contents
	Acronyms and Symbols
	Symbols and Notations
	Abbreviations

	Part I Preliminaries
	1 Introduction to Clustering
	1.1 Introduction
	1.2 Notations and Definitions
	1.3 Similarity Measures
	1.4 Types of Clustering Algorithms
	1.5 Applications of Clustering

	2 Theory of Nonsmooth Optimization
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Convex Sets
	2.2.2 Separating Hyperplanes
	2.2.3 Continuous, Lipschitz Continuous, and Convex Functions

	2.3 Concepts of Nonsmooth Analysis
	2.3.1 Subdifferentials of Convex Functions
	2.3.2 Nonconvex Analysis
	2.3.3 Subdifferential Calculus
	2.3.4 Quasidifferentials

	2.4 Optimality Conditions
	2.5 Discrete Gradient
	2.6 Piecewise Partially Separable Functions
	2.6.1 Piecewise Partially Separable and ChainedFunctions
	2.6.2 Properties of Piecewise Partially SeparableFunctions
	2.6.3 Calculation of Discrete Gradients

	2.7 DC Optimization
	2.8 Smoothing of Nonsmooth Functions
	2.8.1 Hyperbolic Smoothing of a Simple Maximum Function
	2.8.2 Reformulation of Minimax Problem
	2.8.3 Hyperbolic Smoothing of the Maximum Function
	2.8.4 Hyperbolic Smoothing of the Minimum Function

	3 Nonsmooth Optimization Methods
	3.1 Introduction
	3.2 Subgradient Method
	3.3 Proximal Bundle Method
	3.4 Limited Memory Bundle Method
	3.4.1 Convergence of the LMBM

	3.5 DC Diagonal Bundle Method
	3.5.1 Convergence of the DCD-Bundle

	3.6 Nonsmooth DC Method
	3.6.1 Convergence of the NDCM

	3.7 DC Algorithm
	3.7.1 Convergence of the DCA

	3.8 Discrete Gradient Method
	3.8.1 Convergence of the DGM

	3.9 Smoothing Method
	3.9.1 Convergence of the HSM

	Part II Clustering Algorithms
	4 Optimization Models in Cluster Analysis
	4.1 Introduction
	4.2 Mixed Integer Programming Model
	4.3 Nonsmooth Optimization Model
	4.4 Nonsmooth DC Optimization Model
	4.5 Auxiliary Clustering Problem
	4.5.1 DC Representation of Auxiliary Cluster Function

	4.6 Optimality Conditions
	4.6.1 Optimality Conditions for Clustering Problem
	4.6.2 Optimality Conditions for Auxiliary Clustering Problem

	4.7 Smoothing of Cluster Functions
	4.7.1 Hyperbolic Smoothing of Functions d1 and d∞
	4.7.2 Hyperbolic Smoothing of the Cluster Function
	4.7.3 Smoothing of Auxiliary Cluster Function
	4.7.4 Partial Smoothing of DC Cluster Function
	4.7.5 Partial Smoothing of DC Auxiliary ClusterFunction

	5 Heuristic Clustering Algorithms
	5.1 Introduction
	5.2 k-Means Algorithm and Its Variants
	5.2.1 k-Means Algorithm
	5.2.2 Variants of k-Means Algorithm
	5.2.3 Global k-Means Algorithm

	5.3 k-Medians Algorithm and Its Variants
	5.3.1 k-Medians Algorithm
	5.3.2 Variants of k-Medians Algorithm

	5.4 k-Medoids Algorithm
	5.5 Fuzzy c-Means Algorithm
	5.6 Clustering Algorithms Based on Mixture Models
	5.6.1 Mixture Models
	5.6.2 Maximum Likelihood Estimation
	5.6.3 Expectation Maximization Clustering Algorithm

	5.7 Self-Organizing Map Algorithm

	6 Metaheuristic Clustering Algorithms
	6.1 Introduction
	6.2 Tabu Search Clustering Algorithm
	6.3 Simulated Annealing Clustering Algorithm
	6.4 Genetic Algorithm for Clustering
	6.5 Artificial Bee Colony Clustering Algorithm
	6.6 Particle Swarm Optimization Clustering Algorithm
	6.7 Ant Colony Optimization Clustering Algorithm

	7 Incremental Clustering Algorithms
	7.1 Introduction
	7.2 Finding a Center of One Cluster
	7.3 General Incremental Clustering Algorithm
	7.4 Computation of Set of Starting Cluster Centers
	7.5 Multi-Start Incremental Clustering Algorithm
	7.6 Incremental k-Medians Algorithm

	8 Nonsmooth Optimization Based Clustering Algorithms
	8.1 Introduction
	8.2 Modified Global k-Means Algorithm
	8.3 Fast Modified Global k-Means Algorithm
	8.4 Limited Memory Bundle Method for Clustering
	8.5 Discrete Gradient Clustering Algorithm
	8.6 Smooth Incremental Clustering Algorithm

	9 DC Optimization Based Clustering Algorithms
	9.1 Introduction
	9.2 Incremental Nonsmooth DC Clustering Algorithm
	9.3 DC Diagonal Bundle Clustering Algorithm
	9.4 Incremental DCA for Clustering

	Part III Implementations and Evaluations of Clustering Algorithms
	10 Performance and Evaluation Measures
	10.1 Introduction
	10.2 Optimal Number of Clusters
	10.3 Cluster Validity Indices
	10.3.1 Optimal Value of Objective Function
	10.3.2 Davies–Bouldin Index
	10.3.3 Dunn Index
	10.3.4 Hartigan Index
	10.3.5 Krzanowski–Lai Index
	10.3.6 Ball & Hall Index
	10.3.7 Bayesian Information Criterion
	10.3.8 WB Index
	10.3.9 Xu Index
	10.3.10 Xie-Beni Index
	10.3.11 Sym Index
	10.3.12 I Index
	10.3.13 Calinski–Harabasz Index

	10.4 Silhouette Coefficients and Plots
	10.5 Rand Index
	10.6 Adjusted Rand Index
	10.7 Purity
	10.8 Normalized Mutual Information
	10.9 F-Score
	10.10 Performance Profiles in Cluster Analysis
	10.10.1 Accuracy
	10.10.2 Number of Distance Function Evaluations
	10.10.3 Computational Time

	11 Implementations and Data Sets
	11.1 Introduction
	11.2 Implementations of Clustering Algorithms
	11.3 Data Sets
	11.3.1 Extra Small Data Sets
	11.3.2 Small Data Sets
	11.3.3 Medium Sized Data Sets
	11.3.4 Large Data Sets
	11.3.5 Very Large Data Sets

	11.4 Parameters Selection in Finding Starting Cluster Centers

	12 Numerical Experiments
	12.1 Introduction
	12.2 Importance of Procedure for Finding Starting Cluster Centers
	12.3 Performance Results of Incremental Clustering Algorithms
	12.3.1 Results for Extra Small Data Sets
	12.3.2 Results for Small Data Sets
	12.3.3 Results for Medium Sized Data Sets
	12.3.4 Results for Large Data Sets
	12.3.5 Results for Very Large Data Sets

	12.4 Comparative Results with Different Similarity Measures
	12.4.1 Optimal Values for Cluster Functions
	12.4.2 Computational Time
	12.4.3 Visualization of Results

	13 Concluding Remarks

	References
	Index

