
Chapter 4
Rumor Blocking in Social Networks

4.1 Overview

Online social networks have many benefits as a medium for fast, widespread
information dissemination. They provide fast access to large scale news data,
sometimes even before the mass media. They also serve as a medium to collectively
achieve a social goal. For instance with the use of group and event pages in
Facebook, events such as Day of Action protests reached thousands of protestors
[71]. While the ease of information propagation in social networks can be very
beneficial, it can also have disruptive effects. One such example was observed in
August, 2012, thousands of people in Ghazni province left their houses in the middle
of the night in panic after the rumor of earthquake [127]. Another example is the fast
spread of misinformation in twitter that the president of Syria is dead, leading to a
sharp, quick increase in the price of oil [208]. There are lots of similar examples.
Although social networks are the main source of news for many people today, they
are not considered reliable due to such problems.

Clearly, in order for social networks to serve as a reliable platform for dis-
seminating critical information, it is necessary to have tools to limit the effect
of misinformation or rumors. Existing work in controlling rumor spread includes
[30, 62, 63, 84, 98, 147]. In [98], Kimura et al. proposed to block a certain number
of links in a network to reduce the bad effects of rumors. In the presence of a
misinformation cascade, [30, 62, 63, 84, 147] aim to find a near-optimal way of
disseminating good information that will minimize the devastating effects of a
misinformation campaign. For instance, [84] seeks ways of making sure that most
of the users of the social network hear about the correct information before the bad
one, making social networks a more trustworthy or reliable source of information.

Related Work The identification of influential users in a social network is a
problem that has received significant attention in recent research. For the influence
maximization problem, given a probabilistic model of information diffusion such
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as the independent cascade model, a network graph, and a budget k, the objective
is to select a set S of size k for initial activation so that the expected value
of f (S) (size of cascade created by selecting seed set A) is maximized [37–
39, 96, 97, 122, 139, 197, 207]. For learning more about this topic, please refer
to our related book chapter of influence maximization.

In contrast to influence maximization problem which studies single-cascade
influence propagation (only one kind of influence diffuses in a social network),
there is a series of work that focus on multiple-cascade influence diffusion in social
networks. Bharathi et al. [19] explored the multiple-cascade influence diffusion
under the extension of the independent cascade (IC) model. In [26], Borodin et
al. studied the multiple-cascade influence diffusion in several different models
generated from the linear threshold (LT) model. In [190], Trpevski et al. proposed
a two-cascade influence diffusion model based on the SIS (susceptible-infected-
susceptible) model. Kostka et al. [104] considered the two-cascade influence
diffusion problem from a game-theory aspect, where each cascade tries to maximize
their influence among the social network. Then they studied it under a more
restricted model than the IC model and the LT model. To learn more about the
study in game-theoretic models where multiple decision-makers try to maximize
their own objectives at the same time, interested readers are referred to [5, 33, 147,
191, 192, 195].

Among multiple-cascade influence diffusion, there is a special kind, rumor
control related problem, in which there are only two kinds of cascades, one is called
positive cascade, while the other is called negative cascade. The goal is to use the
positive cascade diffusion to fight against the negative cascade diffusion. Budak et
al. [30] and He et al. [84] focused on the problem: given a set of initial “bad” seeds,
how to optimally choose the initial set of “good” seeds to limit the diffusion of their
influence? In [30], the authors proved the NP-hardness of this optimization problem
under the generalized IC model. They also established the submodularity of the
objective function and therefore, the greedy algorithm was used as a constant-factor
approximation algorithm. In [84], He et al. proposed a competitive linear threshold
(CLT) model. They proved that the objective function is submodular and obtained a
(1−1/e)-approximation ratio. To overcome the inefficiency of the greedy algorithm,
they designed a heuristic algorithm which uses the local structure of the network.

Extending both the IC and LT models to two-cascade information diffusion
model with a time deadline, Nguyen et al. in [147] studied the following problem:
given bad influence sources, how to select the least number of nodes as good
influence sources to limit bad influence propagation in the entire network, such that
after T steps, the expected number of infected nodes is at most 1 − β. The authors
demonstrated several hardness results and proposed effective greedy algorithms and
heuristic algorithms.

In this chapter, we will introduce two recent works about rumor blocking or
rumor control in detail, including Community-Based Least Cost Rumor Blocking
(Sect. 4.2) [63] and Rumor Blocking Maximization with Constrained Time (Sect. 4.3)
[62].
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To efficiently decontaminate the wide spread of rumors in a network, in Sect. 4.2,
attention is drawn to exploiting communities, i.e., confine the rumor diffusion to
its own community. In this work, we propose to initiate protectors to fight against
rumors in social networks. That is, we select some individuals as initial protectors,
let them spread true or credible information. Correspondingly, some individuals will
be protected from rumors. In specific, we focus on protecting bridge ends using
certain number of protectors. Here, bridge ends are boundary nodes of communities,
which have relations with members in rumor community, and can be reached by
rumors at an earlier stage.

In Sect. 4.3, we investigate the problem: given the number of initial protectors
and deadline, how to select initial protectors such that the number of “really”
protected members in social networks is maximized within deadline. We propose
two models to capture competitive influence diffusion process, namely the Rumor-
Protector Independent Cascade model with Meeting events (RPIC-M) model and the
Rumor-Protector Linear Threshold model with Meeting events (RPLT-M) model.
Three features are included in these two models: a time deadline, random time delay
between information exchange, and personal interests regarding the acceptance of
information. Under these two models, we study the Rumor Containment maximiza-
tion with the constraints: time Deadline, Meeting events, and Personal interests
(RC-DMP problem). We prove that the problem under these two models is both
NP-hard. Moreover, we demonstrate that the objective functions for the problem
under the two different models are both monotone and submodular. Therefore,
we apply the greedy algorithm as a constant-factor approximation algorithm with
performance guarantee ratio of 1 − 1

e
.

In the last section, we will summarize our work of rumor blocking and future
work in this field will also be discussed.

4.2 Community-Based Least Cost Rumor Blocking

We assume that rumors and protectors start diffusing at the same time, and also
follow a same diffusion mechanism. Each node can only be in one of the three
statuses: protected, infected, or inactive. When the two cascades, namely cascade
P for protector and cascade R for rumor, arrive a node at the same time, we say
that cascade P has priority over cascade R, in other words, the node is protected. By
considering the community property of a social network, we identify certain kinds of
nodes, which are located in boundaries of communities, as protection targets. Then
the goal of the Rumor Control (RC) problem is to find the minimal number of initial
protectors to protect certain fraction of these nodes. This is a novel perspective in
constraining rumor dissemination.

The authors in [21] found that a social network is composed of a set of
disjoint communities, and members in a same community have similar interests.
Furthermore, we have the common knowledge that most of the time, rumors
originate from individuals with similar interests. Therefore, we assume that rumors
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originate from a same community of a social network. According to the community
property that connections among individuals in a same community are denser than
that across different communities, we know that influence spreads faster within a
same community, while slower across different communities.

To simplify the description, we name the community that contains rumors as
rumor community and a neighbor community of rumor community as a R-neighbor
community. Considering the number of nodes that we can protect and the number
of nodes that we need to use as initial protectors, it is practical for us to protect
the members in R-neighbor communities. We focus on those nodes that exist in R-
neighbor communities, and also can be reached first when cascade R arrives in their
own communities. We name them as bridge ends.

We study the RC problem under an influence diffusion model: the Deterministic
One-Activate-Many (DOAM) model. Considering the budget for launching the
initial protectors, in the DOAM model, we focus on the RC-D problem, where we
need to protect all the bridge ends.

Through proving the equivalence between the RC-D problem and the Set Cover
(SC) problem, we propose the Set Cover Based Greedy (SCBG) algorithm. Then we
demonstrate that there is no polynomial time o(ln n)-approximation for the RC-D
problem unless P = NP , and get a O(ln n)-approximation ratio solution. Finally,
we collect real-world data to validate our algorithms, and the experimental reports
demonstrate that both the Greedy algorithm and the SCBG algorithm outperform
the other two heuristics, respectively.

The rest of this section is organized as follows: in Sect. 4.2.1, we propose an
influence diffusion models, namely, the DOAM model. In Sect. 4.2.2, we formulate
the RC-D problem under the proposed model. In Sect. 4.2.3, as for the DOAM
model, we prove that there is no polynomial time o(ln n)-approximation for the RC-
D problem unless P = NP , and propose the SCBG algorithm. In Sect. 4.2.4, we
compare our algorithms with other heuristics and analyze the experimental results.

4.2.1 Deterministic One-Activate-Many (DOAM) Propagation
Model

A social network can be modeled as a directed graph G = (V ,E), in which V

denotes the node set and E denotes the edge set. In the context of influence diffusion,
V represents the individuals in this network and E represents the relationships
among these individuals. Furthermore, a node u ∈ V is an in-neighbor of a node
v ∈ V if there exists an edge euv ∈ E (i.e., the edge from u to v exists in graph
G). A node v is called an out-neighbor of u if u is an in-neighbor of v. Based on
this special structure, influence can diffuse among individuals in social networks.
Since under different situations, influence spreads with different mechanisms. In
our paper, we introduce a new influence diffusion model.
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Here, we first introduce some denotations and three properties of the model.
Let R represent rumor cascade and P denote protector cascade. A node is said to
be infected (protected) if it is influenced by rumors (protectors) either initially or
sequentially from one of its neighbors, or inactive otherwise. We also denote the
initial set of infected (protected) nodes for R (P ) as Sr (Sp).

Right now, we introduce three properties of the proposed model: (1) There are
two kinds of cascades R (for rumor) and P (for protector); (2) when R and P reach a
node u at the same time, P has the priority to influence u, meaning u will always be
protected; (3) R or P diffuses progressively, that is, nodes can switch from inactive
to infected or protected, but cannot switch in the other direction, that is, once an
inactive node is infected or protected, it will never change its status. Property (1)
makes sense since it happens in reality. Property (2) is reasonable since people are
likely to believe in the truth. Property (3) originates from [93].

In the following, we describe the proposed model in detail.
Given the initial rumor set Sr , an initial protector set Sp is selected and protected

at step t = 0. At any step t ≥ 1, when a node u first becomes infected (protected),
it will infect (protect) all of its currently inactive out-neighbors successfully. And u

only has one chance to influence its out-neighbors, that is, at step t + 1, u will not
influence its out-neighbors. This influence diffuses in discrete time and continues
until no new inactive nodes become protected or infected.

This influence propagation process is actually the information broadcast (one-to-
many) phenomenon in social networks, under which situation, each person is able to
spread the information to many persons simultaneously. Obviously, the information
diffusion speed under the DOAM model is very fast.

4.2.2 Rumor Control Problem

In this section, we define the Rumor Control (RC) problem in social networks.
It is known that a social network is composed of individuals and connections
between individuals. We notice that social networks have community property,
that is, they divide into groups of members, where connections within the same
group are dense while across different groups are sparse. It is common sense that
individuals form communities based on their common interests, and they are more
likely to communicate with members in their own communities than with members
in other communities. Therefore, the connections within the same communities are
dense while across different communities are sparse. Thus, it is impossible that
information can spread fast from one community to other communities.

Based on the community property, to efficiently control the wide spread of
rumors originated from one community, we try to prevent them from spreading
out to other communities. To realize it, we only need to protect all the members
in R-neighbor communities. Bridge ends are the nodes that exist in R-neighbor
communities and can be reached first when cascade R arrives in their own
communities. Therefore, to protect all the members in R-neighbor communities,
it is enough to protect all the bridge ends.
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In the following, we give some problem-related definitions and the formal
definitions of our problems.

Definition 4.1 A social network is a directed graph G(V,E,C), where each node
vi ∈ V denotes an individual in the network, and a directed edge (vi, vj ) ∈ E

denotes the event that individual vi has influence on individual vj . Here C =
{C1, C2, · · · , Ck} is a set of disjoint communities that form the network, satisfying⋃k

r=1 V (Cr) = V , where V (Cr) denotes the individuals in community Cr .

Definition 4.2 Rumor Control (RC) problem: Given a community Ck in
G(V,E,C), an initial rumor set Sr ⊆ V (Ck) (Ck ∈ C is the rumor community and
is predetermined), and bridge ends B, our goal is to select a least number of nodes
as the initial protectors, such that at least α (0 ≤ α ≤ 1) fraction of the bridge ends
are protected in the end of influence diffusion.

Considering the influence propagation speed under the DOAM model, we
introduce the RC-D problem for the DOAM model. It is because under the DOAM
model, rumors propagate very fast in a social network. In other words, within
short time, rumors can infect a large amount of individuals in a social network.
Considering the budget in launching the initial protectors, the goal of the problem
requires to protect all the bridge ends.

Definition 4.3 The RC-D problem: Given a community Ck in G(V,E,C), an ini-
tial rumor set Sr ⊆ V (Ck) (Ck ∈ C is the rumor community and is predetermined),
and bridge ends B, under the DOAM model, our goal is to select a least number
of nodes as the initial protectors, such that all the bridge ends (α = 1 in the RC
problem.) are protected in the end of influence diffusion.

Since the Set Cover (SC) problem will be used in the RC-D problem, here we
give its definition below.

Definition 4.4 Set Cover (SC) Problem: Given a set of elements U =
{v1, v2, · · · , vn} and a set of m subsets of U , called S = {S1, S2, · · · , Sm}, find a
“least cost” (minimum size) collection C of sets from S such that C covers all the
elements in U . That is,

⋃
Si∈C Si = U .

4.2.3 Set Cover Based Greedy Algorithm for DOAM Model

In this section, we first prove that under the DOAM model, the RC-D problem is
equivalent to the SC problem. Following the seminal result of [64] that the SC
problem is NP -hard, we propose an approximation algorithm called Set Cover
Based Greedy (SCBG) algorithm for the RC-D problem.

In the following, we show the equivalence between the RC-D problem and the
SC problem under the DOAM model, and subsequently, we propose the SCBG
algorithm for the RC-D problem.
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4.2.3.1 Performance for the RC-D Problem

Theorem 4.1 ([64]) There is a polynomial time O(ln n)-approximation algorithm
for the RC-D problem, where n is the number of bridge ends B.

Proof Assume that we have an input of RC-D instance A . For each vertex vi of B,
use BFS (Breadth First Search) method to find all vertices that can reach vi before
vi is infected, this can be done in polynomial time. Assume we have a candidate
root set S, for each vertex rj in S, use BFS method to find all vertices of B that are
reachable from rj before they are infected. Obviously, each root can protect a subset
of vertices of B, then the problem becomes a SC problem, i.e., use the least number
of roots to cover all vertices of B. Therefore, it has a polynomial time O(ln n)-factor
approximation, where n is the number of nodes in B.

Theorem 4.2 If the RC-D problem has an approximation algorithm with ratio k(n)

if and only if the SC problem has an approximation algorithm with ratio k(n).

Proof Assume S1, · · · , Sm is the list of sets for the SC problem and
S1

⋃
S2

⋃ · · · ⋃ Sm = {a1, · · · , an}, we construct a social network as follows.

1. For each set Si , create a vertex ui . For each aj , create a vertex vj , add directed
edges from ui to vj if aj ∈ Si . An edge from ui to vj means vj can be protected
by ui .

2. Create a social network with a constant number of individuals and an infected
node r , add directed edges from r to v1, v2, · · · , vn.

3. Let B be the set of bridge ends including vertices v1, v2, · · · , vn that need to be
protected.

4. The SC problem is converted into the RC-D problem. Thus, it is reasonable to
point out that the RC-D problem has a k(n)-approximation if and only if the SC
problem has a k(n)-approximation.

Corollary 4.1 There is no polynomial time o(ln n)-approximation for the RC-D
problem unless P = NP .

Proof It follows from Theorem 4.2 and the well-known inapproximability result for
the SC problem [64].

4.2.3.2 The SCBG Algorithm

Now we introduce the SCBG algorithm described in Algorithm 2. The main idea
is that we first convert the RC-D problem into the SC problem, then, we apply the
greedy algorithm used for the SC problem to obtain the initial protectors for our
problem.

The brief description is as follows: given the initial rumor set Sr and bridge
end set B. For each node v ∈ B, by using BFS method, we construct v’s Bridge
End Backward Search Tree (BBST) Tv , in which v is the root of the tree. Denote
by T1, T2, · · · , T|B| the BBSTs for corresponding bridge ends. Here 1, 2, · · · , |B|
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represent the roots of these Tvs, respectively. For u ∈ Ti\(Sr

⋃i−1
k=0 Tk), define

T0 = ∅, search Ti+1, · · · , T|B| to find the ones that contain u, and record all their
corresponding roots and i’s corresponding root in the set T Ru. Finally, we apply
Algorithm 1 to select sets from T Ru’s to cover all the nodes in B, and for all these
selected sets T Rvs, all these v’s form the solution to the RC-D problem.

To simplify our expression, here we define the ith level out-neighbors of a node
u: let N0(u) = u, and Ni(u) = N(Ni−1(u)). Since we know the first level out-
neighbors of a node, we can easily get the ith level out-neighbors of a node.

Algorithm 1 Greedy algorithm in SCBG algorithm

Input: B, Ti and T Rj , where i = 1, · · · , |B|, j = 1, · · · , | ⋃|B|
k=1 Tk \ Sr |

Output: Sp .
Initialize L = ∅ and Sp = ∅
while |L| < |B| do

Select u = arg max
v∈⋃|B|

k=1 Tk\Sr
|T Rv \ L|

Sp = Sp ∪ {u} and L = L ∪ T Ru

end while
return Sp .

Algorithm 2 SCBG algorithm-select initial protectors
Input: A directed graph G = (V ,E,C), a given community Cm and a set of initial rumors Sr =
{r1, r2, · · · , rM } ⊆ V (Cm);
Output: Initial protectors Sp ⊆ V ;

for all r ∈ Sr do
construct Rumor Forward Search Tree (RFST) by BFS method to find all bridge ends in G,
which are the leaves of the RFSTs, and denote them by a set B;

end for
for all node v ∈ B do

construct Bridge End Backward Search Tree (BBST) by BFS method to find all the protector
candidates,
record all the in-neighbors x ∈ Ni(v) of v, where i is determined by the value of the shortest
paths between v and any node y ∈ Sr ,
Denote all the nodes in this tree as a set Tv ;

end for
List all Tvs as T1, · · · , T|B|.
for all u ∈ Ti\(Sr

⋃i−1
k=0 Tk) do

define T0 = ∅,
search Ti+1, · · · , T|B| to find the ones that contain u,
record all their corresponding roots and i’s corresponding root in the set T Ru;

end for
Apply Algorithm 1 on T Rus to cover B;
return Output of Algorithm 1.
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Fig. 4.1 (a) Rumor
community and its
R-neighbor communities, red
nodes are rumors and green
nodes are bridge ends; (b)
Initial protectors v1 and R1
for bridge ends in R-neighbor
communities C1 and C2

(a)

(b)

We use Fig. 4.1 to show the bridge ends and the corresponding initial protectors
for them. In Fig. 4.1a, the red nodes r1 and r2 are initial rumors. All green nodes
are bridge ends. In Fig. 4.1b, for simplification, we only illustrate an optimal initial
protectors for R-neighbor communities C1 and C2, respectively, which are black
vertices R1 and v1. As seen from Fig. 4.1b, among rumor community and its two
R-neighbor communities C1 and C2, the green edges form the paths generated by
cascade P (R1 and v1 are the initial protectors), while the red edges form the paths
generated by cascade R (r1 and r2 are the initial rumors). Figure 4.2a is Forward
search tree for rumor r1 with respect to Fig. 4.1a, and Fig. 4.2b is Backward search
tree for bridge end p2 with respect to Fig. 4.1a.
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(a) (b)

Fig. 4.2 (a) Forward search tree for rumor r1 with respect to Fig. 4.1a, and bridge ends are
p1, p2, p3; (b) Backward search tree for bridge end p2 with respect to Fig. 4.1a, all nodes in
this tree except r1 and r2 can protect p2

4.2.4 Experiment Setup and Evaluation

We execute experiments on our algorithms as well as two heuristics in two
real-world networks. Our experiments aim at valuating our algorithms from the
following aspects: (a) effectiveness with respect to different network density, where
network density means the average node degree; (b) effectiveness with respect to
different community size, where community size denotes the number of nodes in
this community; (c) effectiveness with respect to different number of initial rumors.

4.2.4.1 Datasets

We obtain data from two real-world networks. One network, namely Enron Email
communication network, is the same as used in [103, 116]. The other is a
collaboration network, which is used in the experimental study in [114], and this
network has been shown to capture many key features of social networks in [143].

Enron Email Communication Network

This network covers all the email communications within a dataset of around half
million emails. Nodes of the graph represent email addresses and a directed edge
from i to j means i sends at least one email to j . This dataset contains 36,692 nodes
connected by 367,662 edges with an average node degree of 10.0.
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Collaboration Network

Hep collaboration network is extracted from the e-print arXiv, and covers scientific
collaborations between authors with papers submitted to High Energy Physics. In
this network, nodes stand for authors and an undirected edge between i and j

implies that i co-authors a paper with j . Since our problems are based on directed
graph, we represent each undirected edge (i, j) by two directed edges (i, j) and
(j, i). This dataset contains 15,233 nodes connected by 58,891 edges with an
average node degree of 7.73.

To run our experiments, first, we need to obtain the community structure of a
social network, since the community partition problem is not a main point in our
work, we use a community partition approach proposed by Blondel et al. in [21],
and the performance of this approach has been verified in [110]. After obtaining the
community structure of a network, we choose different sizes of rumor communities
and compute the number of corresponding bridge ends from the two networks.
From the Enron Email network, we select two communities, one with 2631 nodes
and 2250 bridge ends, and the other with 80 nodes and 135 bridge ends. From the
collaboration network, we select a community with 308 nodes and 387 bridge ends.

Finally, we evaluate the performance of our algorithms in comparison with two
heuristics: MaxDegree and Proximity. The experimental results are shown in two
aspects: (1) Number of selected protectors under the DOAM model; (2) Number of
infected nodes under the DOAM model.

We compared the following algorithms to confirm the effectiveness of our
algorithms.

MaxDegree A basic algorithm, which simply chooses the nodes according to the
decreasing order of node degree as the initial protectors.

Proximity A simple heuristic algorithm, in which the direct out-neighbors of
rumors are chosen as the initial protectors.

We do not include the random algorithm due to its poor performance. Instead, a
NoBlocking line is included to reflect the performances of these algorithms.

4.2.4.2 Experimental Results

To simplify our presentation, we denote by |R| the number of the initial rumors,
|P | the number of the initial protectors, |C| the number of nodes in the rumor
community, |B| the number of the bridge ends, |N | the number of nodes in the
entire network. To show the simulation results clearly, we adopt the log-time chart.
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Table 4.1 Comparison results under the DOAM model

Dataset/|N |/|C| |R| SCBG Proximity MaxDegree

Hep/15233/308 1%|C| 32.9 25.3 140.6

5%|C| 42.1 74.3 147.8

10%|C| 48.9 133.8 152.6

Email/36692/80 5%|C| 6.2 43.7 72.7

10%|C| 8.2 46.9 79.3

20%|C| 13.8 62.9 91.1

Email/36692/2631 1%|C| 20.4 289.3 1208.8

5%|C| 50.9 1067.6 1350.2

10%|C| 68.4 1422.6 1683.8

Number of Selected Protectors Under the DOAM Model

In Table 4.1, for each rumor community and fixed number of initial rumors (selected
randomly), each decimal represents the average number of initial protectors selected
by each algorithm (we randomly choose initial rumors for several times and each
time we can get a solution). You can see that our SCBG algorithm almost selects
the least number of initial protectors no matter where the community is selected and
how many initial rumors in it. There is only one exception, in which the rumor
community is selected from the Hep network, and has 308 nodes with 3 initial
rumors. The reason is that the average node degree is low in Hep network. When
the number of initial rumors is pretty small, only a few initial protectors are needed
to control the spread of these rumors. Therefore, choosing the direct neighbors of
initial rumors is an efficient strategy, that is, Proximity is a good choice.

Furthermore, we also notice that Proximity always performs better than MaxDe-
gree, it is because that Proximity pay attention to the location of initial rumors,
thus it can control rumor propagation before they infect a large number of nodes;
while MaxDegree only focuses on current influential nodes (nodes having high
degree) regardless of the initial rumors. Therefore, it has to choose more initial
protectors than Proximity under regular situations. Meanwhile, we also observe
that the performance difference among these three algorithms varies under different
situations.

Note that among these three communities, the number of initial protectors
selected by our algorithms varies much less than that in the other two heuristics.
Particularly, in the third community, which is selected from the email network, and
has 2631 nodes, when the number of initial rumors increases from 27 (1%|C|) to
132, the number of initial protectors selected by our algorithm increases from 20.4
to 50.9 (average value), with the absolute change of 30.5. However, the change in
the number of initial protectors is 778.3 and 141.4 for Proximity and MaxDegree,
respectively. The results in this community clearly shows that the SCBG algorithm
significantly outperforms both Proximity and MaxDegree in networks with large
number of nodes and high average node degree.
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Number of Infected Nodes Under the DOAM Model

In this part, we focus on testing the effectiveness of these algorithms in protecting
nodes in the entire social networks. In other words, for the same number of initial
protectors, we want to evaluate the performance of these algorithms. To do this,
firstly, for different test cases (different community sizes with different initial
rumor sizes), we determine the numbers of initial protectors, respectively, and these
numbers are slightly larger than those selected by the SCBG algorithm. Then, for
each test, from corresponding solutions, we randomly choose predetermined size of
nodes as initial protectors. Thirdly, we run the three algorithms using selected initial
protectors. Since each predetermined number is larger than the number of nodes
selected by our algorithm, besides using the nodes in its solution, our algorithm also
has to use some randomly selected nodes. From Figs. 4.3, 4.4, and 4.5, we observe
that rumors propagate very fast within the first four steps while after the fourth step,
almost no new nodes are infected over all test cases.
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Fig. 4.3 Infected nodes under the DOAM model on Hep collaboration network with |N | =
15,233, |C| = 308, |B| = 387. (a) |R| = 1%|C|, |P | = 34. (b) |R| = 5%|C|, |P | = 44. (c)
|R| = 10%|C|, |P | = 55
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Fig. 4.4 Infected nodes under the DOAM model on Enron Email network with |N | = 36,692,
|C| = 80, |B| = 135. (a) |R| = 5%|C|, |P | = 8. (b) |R| = 10%|C|, |P | = 11. (c) |R| =
20%C, |P | = 14

Except Fig. 4.3a, in which the Proximity protects one more node than the SCBG
algorithm due to small size of initial rumors and low network density, the SCBG
algorithm always protects the most number of nodes in comparison with the other
two heuristics. Therefore, we believe that our algorithm can be applied to those
problems that aim at either protecting targeted nodes with least number of protectors
or reducing the number of nodes infected in the entire networks at the end of cascade
diffusion, or both of them.

We also notice that Proximity outperforms MaxDegree for different sizes of
initial rumors in Figs. 4.3 and 4.4. However, we can see in Fig. 4.5, MaxDegree
performs better than Proximity. The reason is that this network has much higher
average node degree.
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Fig. 4.5 Infected nodes under the DOAM model on Enron Email network with |N | =
36,692, |C| = 2631, |B| = 2250. (a) |R| = 1%|C|, |P | = 21. (b) |R| = 5%|C|, |P | = 52. (c)
|R| = 10%|C|, |P | = 69

4.3 Rumor Blocking Maximization with Constrained Time

In this section, we seek effective strategy to stop the diffusion of rumor in a network
considering the following three factors:

1. A constraint on how much time we can use to control the spread of rumor in the
network.

2. There is usually a random time delay in influencing a friend when a person
accepts new information.

3. Individuals make decisions based on relationships with their informed friends,
but also on their personal judgement about the piece of information that is being
diffused.

Here we propose two general models to capture diffusion of rumor and truth
(protector) in a social network and formally define the rumor containment problem
under these two models as two optimization problems. NP-hardness results are
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established for these two optimization problems. We prove the submodularity of
the objective functions in these two problems. This enables us to use the greedy
algorithm as a constant-factor approximation algorithm (for both problems) with a
performance guarantee 1 − 1

e
.

The rest of this chapter is organized as follows: Sect. 4.3.1 presents the two
propagation models. In Sect. 4.3.2, we define the rumor blocking maximization
problem formally, prove its NP-hardness under the two models, and establish the
submodularity of the objective functions. Section 4.3.3 gives the formal description
of the greedy algorithm.

4.3.1 Propagation Models

Social network can be modeled as a directed graph G = (V ,E), where V is the
node set and E is the edge set. In the context of influence diffusion, V represents
the individuals in this network and E represents the relationships among these
individuals. Furthermore, a node v ∈ V is an out-neighbor of a node u ∈ V if
there exists an edge euv ∈ E (i.e., the edge from node u to node v exists in graph
G). A node u is called an in-neighbor of v if v is an out-neighbor of u.

In reality, two individuals in a network may not interact/exchange information
every day. If someone gets influenced by a certain event, then her friends may
learn about this fact several days later, and get influenced also. In other words,
there is a random time delay between the influence friends have on each other. In
this paper, we model this phenomenon using the meeting probability among two
nodes in the graph: the meeting action between a node u and its neighbor v happens
stochastically at any time step with probability muv , independent of everything else.
Moreover, each edge euv is assigned an influence weight (probability) IWuv . In the
following two models, we will explain this influence weight separately in detail.

4.3.1.1 Rumor-Protector Independent Cascade Model with Meeting
Events (RPIC-M)

We first describe one of the most basic and well-studied diffusion models in [93],
namely the independent cascade (IC) model. Then, we describe a generalized model
which models the following additional features: competitive influence diffusion,
meeting events, and personal interest.

In the IC model, a network is considered as a directed graph G = (V ,E),
where V denotes individuals in the network and E denotes the relationship between
individuals. Each edge euv ∈ E is assigned an influence probability puv , indicating
the possibility that node u influences node v successfully. For euv /∈ E, let puv = 0.
Each node can only be in one the following two statuses: inactive or active. Once a
node becomes active, it will remain active forever. The diffusion process unfolds in
discrete time steps. Starting with an initial set of active nodes A0, at any step t ≥ 1,
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when node u first becomes active in step t , it has a single chance to activate any of its
currently inactive neighbors. For neighbor node v, it succeeds with probability puv .
If u succeeds in activating v, then v will become active in steps t + 1, and if u fails
in activating v, then v will remain inactive. Regardless of the activation outcome, u

cannot make any further attempts to activate v in all subsequent rounds. The process
continues until no more activations are possible. If multiple newly activated nodes
are in-neighbors of the same inactive node, then their attempts are sequenced in an
arbitrary order.

We now describe our new model that incorporates competitive influence (the
influence of protector and rumor) diffusion, as well as meeting events and personal
interest. This model extends the models proposed in [30]. We denote it by RPIC-
M (Rumor-Protector Independent Cascade model with Meeting events). Let P (for
“protector”) and R (for “rumor”) denote the two cascades. The initial set of protected
(resp., infected) nodes is denoted by Ap and (resp., Ar ). Each node u has personal
interests in the information (PIu). This parameter PIu is a probability and plays an
role in activating node u. Each node is either inactive, infected, or protected. Each
edge euv is associated with a meeting probability muv and an influence probability
puv (if euv /∈ E,muv = 0 and puv = 0 ).

Given rumor seed set Ar , as in the IC model, a protector seed set Ap is selected
and activated at step t = 0. At any step t ≥ 1, a protected (resp., infected) node
u meets any of its currently inactive neighbors v independently with probability
m(u, v). Since u’s activation, if a meeting event happens between u and v for the
first time, then u has a single chance to try protecting (resp., infecting) v with an
influence probability min{1, puv + PIv}, given that no other neighbor of v tries
protecting or infecting v at the same step.

If the attempt from u succeeds, v becomes influenced (protected or infected) at
step t and will start influencing (protect or infect) its inactive neighbors from time
t + 1 onwards. If there are two or more nodes trying to influence v simultaneously,
at most one of them can succeed. The attempts from the same cascade are ordered
arbitrarily. As for the attempts from different cascades (P and R), we assume that all
the attempts in R have priority over P. Once a node becomes protected or infected,
it will never change its status. The diffusion process continues until no more nodes
can be protected or infected.

4.3.1.2 Rumor-Protector Linear Threshold Model with Meeting Events
(RPLT-M)

Again, we first describe another basic and well-studied diffusion models in [93],
namely the linear threshold (LT) model. Next, we describe a generalized model
which models the following additional features: competitive influence diffusion,
meeting events, and personal interest.

In the LT model, a social network is viewed as a directed graph G = (V ,E),
where V denotes individuals in the network and E denotes the relationship between
individuals. Each edge euv ∈ E is assigned a non-negative weight wuv , which
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represents the impact that node u has on node v. For euv /∈ E, let wuv = 0. For
each v ∈ V ,

∑
u∈V wuv ≤ 1. Each node v is associated with a random threshold

θv , which is drawn independently from a uniform distribution with support [0, 1].
Each node is either active or inactive. Once a node becomes active, it remains active
forever. The diffusion process unfolds in discrete time steps. Starting with an initial
set of active nodes A0, at any step t ≥ 1, a node v will become active if and only
if the total weight coming from its active in-neighbors exceeds its threshold θv , i.e.,∑

u∈At−1
wuv ≥ θv , where At−1 is the set of active nodes by time step t − 1. This

diffusion process continues until no more nodes can be activated.
We now describe our new model that incorporates competitive influence (the

influence of protector and rumor) diffusion, as well as meeting events and personal
interest. This model extends the models proposed in [84]. We denote it by RPLT-
M (Rumor-Protector Linear Threshold model with Meeting events). Let P (for
“protector”) and R (for “rumor”) denote the two cascades. The initial set of protected
(resp., infected) nodes is denoted by Ap and (resp., Ar ). Each node v has personal
interests in the information from protector (PIpv) and rumor (PIrv). These two
parameters are probabilities and play a role in activating node v. Each node is
either inactive, infected, or protected. Each edge euv is associated with a meeting
probabilities muv as well as two weights wuv,p and wuv,r (if euv /∈ E,muv = 0 and
wuv,p = wuv,r = 0). We assume that for all node v ∈ V ,

∑
u∈V wuv,p + PIpv ≤ 1

and
∑

u∈V wuv,r + PIrv ≤ 1. Each node u chooses two independent thresholds,
namely θpu (for P) and θru (for R) randomly from the uniform distribution with
support [0, 1].

Given rumor seed set Ar , as in the LT model, a protector seed set Ap is selected
and activated at step t = 0. At any step t ≥ 1, a protected (resp., infected) node u

keeps its status and meets any of its currently inactive neighbors v with probability
m(u, v). Since u’s activation, if a meeting event happens between u and v for the
first time, then we say that u’s influence (protect or infect) to v is valid. An inactive
node v is protected (resp., infected) if the total valid weight from its protected (resp.,
infected) in-neighbors plus its own interest PIpv (resp., PIrv) exceeds its threshold
θpv (resp., θrv), given that v has not been activated (infected or protected) yet. If
at step t , v is both successfully influenced by P and R, then the diffusion of R has
priority over that of P, and v becomes protected. Once a node becomes protected
or infected, it will never change its status. The diffusion process continues until no
more nodes can be protected or infected.

4.3.2 Rumor Containment with Constraints

In Sect. 4.3.2.1, we define the problem of Rumor Containment maximization with
the following additional constraints: time Deadline, Meeting events, and Personal
interests (RC-DMP). Subsequently in Sect. 4.3.2.1, we show that RC-DMP under
the RPIC-M and RPLT-M models are both NP-hard. Finally in Sect. 4.3.2.1, we
prove that the objective functions of RCM-DM under the above-mentioned two
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models are monotone and submodular. Following the seminal result of [141], the
greedy algorithm is a constant-ratio approximation algorithm for RC-DMP with
performance guarantee 1 − 1

e
.

4.3.2.1 Problem Definition

We note that previous research on rumor blocking (see, e.g., [30, 62, 84, 147]) fails
to address the following additional features:

1. there is often a time deadline on how long the diffusion process can last.
2. people do not interact with each other (influence each other) every day (i.e., the

influence between individuals happens randomly, instead of deterministically at
every time step).

3. In addition to the influence coming from an individual’s friends, she has her own
personal interests/opinions about the information that is being diffused. This may
also affect how well she accepts the information.

We consider these three factors in our RC-DMP problem.
The problem is formally defined as follows: given a directed graph G = (V ,E),

a rumor seed set Ar , and two positive integers k and T , our goal is to find a protector
seed set Ap (|Ap| ≤ k) to minimize the expected number of infected nodes by the
end of time deadline T . We denote the objective function for the RC-DMP problem
by RCT (S), which is the number of nodes that will be infected within deadline T by
the diffusion of rumor, if instead of the set S, the empty set is chosen as the protector
seed set.

NP-Hardness of RC-DM
In this section, we prove that the RC-DMP problem under our two proposed models
is NP-hard.

NP-Hardness of RC-DMP Under the RPIC-M Model

Theorem 4.3 Problem RC-DMP under the RPIC-M model is NP-hard.

Proof Consider the following special case of Problem RC-DMP: The time deadline
T = +∞, all the meeting probabilities are equal to 1, all the personal interests are
0 and puv = 1 for all euv ∈ E. We note that this special case of Problem RC-DMP
is identical to the Problem LCRB-D considered in [62] except the tie-breaking rule.
A similar reduction from the Set Cover problem as that in the proof of Theorem 3
of [62] can be used to prove this result.

Next, we describe the reduction formally. Given an integer k, a ground set N =
{m1,m2, . . . , mn} and a list of subsets of N : S1, S2, . . . , Sm such that S1 ∪ S2 ∪
. . . Sm = {m1,m2, . . . , mn}, the Set Cover problem wishes to find k subsets of N

from the list, such that the union of these subsets covers the entire ground set. We
reduce the Set Cover problem to our problem by constructing a directed graph as
follows:
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1. For each subset Si, i = 1, 2, . . . , m, create a vertex ui . For each element mj , j =
1, 2, . . . , n, create a vertex vj . Add a directed edge from ui to vj if mj ∈ Si .

2. Create a rumor node r . Add directed edges from r to u1, u2, . . . , um.

Now it is easy to see that the set cover instance is a “yes” instance if and only if
in our problem we can find a S such that RCT (S) ≥ n + k. The result follows.

NP-Hardness of RC-DMP Under the RPLT-M Model

Theorem 4.4 Problem RC-DMP under the RPLT-M model is NP-hard.

Proof Consider the following special case of Problem RC-DMP: The time deadline
T = +∞, all the meeting probabilities are equal to 1, and all the personal interests
are 0. We note that this special case of Problem RC-DMP is identical to the Problem
IBM under the CLT model considered in [84], which is shown to be NP-hard. The
result follows.

Submodularity of RC-DMP A set-based function f : 2S → R is called
submodular if it has the property of diminishing marginal returns, that is, f (A ∪
{u}) − f (A) ≥ f (B ∪ {u}) − f (B), ∀A ⊆ B ⊂ S, ∀u ∈ S \ B. Furthermore,
f is monotone if it satisfies f (A) ≤ f (B) when A ⊆ B ⊂ S. In the following,
we prove that the objective functions of our RC-DMP problem under the RPIC-M
and the RPLT-M models are monotone and submodular. To maximize a non-
negative, monotone, and submodular function, we can use the well-known greedy
hill-climbing algorithm [141] to obtain a constant approximation ratio of 1 − 1

e
.

Submodularity of RC-DMP Under the RPIC-M Model

Theorem 4.5 Function RCT (·) is monotone and submodular for any instance of
RC-DMP under the RPIC-M model.

Proof Similarly to the proof in [93], we establish the “live-path” graph to demon-
strate the submodularity of our objective function. Since the cascade process under
the RPIC-M model is random, we can suppose that before the cascade starts, a
set of outcomes for all meeting events as well as the live or blocked assignment
for all edges are already determined. The “live-path” graph Glive is constructed by
combining the two outcomes. Specifically, a live edge euv is added to Glive in the
event that u is activated (infected or protected) and is meeting the inactive v for the
first time.

For each meeting event (an edge euv and a time step t in [1, T ]), we flip a coin
with bias muv to determine if u will meet v at t . Similarly, for each edge euv , we
flip a coin once with bias min{1, puv + PIv}, and we declare the edge “live” with
probability min{1, puv +PIv}, or “blocked” with probability 1−min{1, puv +PIv}.
All the two operations with coin-flips are independent.

Given an instance SM of outcomes of all meeting events (∀euv ∈ E, ∀t ∈ [1, T ]),
and also an instance SLB of live or blocked assignments for all edges, since the
process for meeting events and that of the live or blocked assignment are different,
and moreover, all flips in the two processes are independent, a possible instance S of
all the random outcomes of our problem can be obtained by combing SM and SLB .
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For a fixed S, the two cascades unfold deterministically. Let DMS
T (A) denote by the

end of time step T , the node set that will be infected if instead of A, the empty set
is chosen as the initial protector seed set. Note that by definition, we have that

RCT (A) =
∑

S

P rob(S) · |DMS
T (A)|.

In the classic IC model, given outcome S, for a live edge euv in the graph, node u

can reach node v with one hop. However, in our model with meeting events, given
outcome S, for a live edge euv in the graph, u will reach node v with tv − tu hops,
where tu is the step in which u itself is activated, and tv is the first step when u meets
v, after tu.

Hence, we say that v is reachable from a seed set A if and only if

• There exists at least one path consisting entirely of live edges (called live-path)
from some node in A to v.

• The collective number of hops along the shortest live-path from S to v is no
greater than T .

For any given outcome S, consider the graph Glive = (V ,E′), where V is the
vertex set of graph G, and E′ is the set of live edges in E (determined by S). Both
rumor and protector can propagate in this graph. Let V ′ denote the nodes that can be
reached by rumor seed set Ar via live edges within T time steps. Then we construct
another graph G′ = (V ′′, E′′), where V ′′ = {v|v ∈ V and v /∈ Ar} and E′′ =
{euv|u, v ∈ V ′′ and euv ∈ E′}. Since the rumor seed set is given and the meeting
event at each time step for pair of nodes is determined by S, we can determine the
time step tu that u ∈ V ′ is infected. Similarly, for a protector seed set Ap, we can
also determine the time step t ′u that u ∈ V ′ is protected.

To construct the protector reachability graph, we do as follows: If t ′u < tu, then
we keep the live-path from Ap to u. Otherwise, we delete the path. For all the nodes
in V ′, we determine whether there exists a live-path from Ap. Let A ⊆ B ⊆ V ′′,
consider the quantity |DMS

T (A∪{u})|−|DMS
T (A)|. This is the number of nodes that

can be reached by node u but cannot be reached by any node in set A. This is at least
as large as the number of nodes that can be reached by node u but cannot be reached
by any node in set B. In other words, |DMS

T (A ∪ {u})| − |DMS
T (A)| ≥ |DMS

T (B ∪
{u})|−|DMS

T (B)|, indicating that |DMS
T (·)| is submodular. Taking expectation over

all possible S, we conclude that the function RCT (·) is also submodular.

Submodularity of RC-DMP Under the RPLT-M Model
We follow the general idea in [93] for the proof, that is, we prove that the

influence diffusion process guided by the RPLT-M model is equivalent to the one
guided by a random live or blocked assignment process. Since we have meeting
events in our model, we need to incorporate them into the live or blocked assignment
process. We now describe the live or blocked assignment process that we use.

Since the meeting event associated with each edge is random, we can determine
them for each edge euv at any time step t by pre-flipping a coin. Given an outcome
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SM of all the random meeting events, for each edge euv ∈ E, the outcome of meeting
events at each time step is determined by SM . Based on the original graph G =
(V ,E), we construct two random graphs, namely GSMR = (V ,ER) and GSMP =
(V ,EP ) for rumor diffusion and protector diffusion, respectively.

To construct GSMP , for each node v ∈ V , with probability wuv,p, only in-edge
euv is selected and marked as live. With probability PIpv , we mark all of its in-
edges as live, and with probability 1 − (

∑
u∈V wuv,p +PIpv) no in-edge is selected

as live. (Note that our live-or-blocked assignment process differs with [93] in the
sense that for a node v, multiple in-edges can be selected as live. While in [93], at
most one edge can be selected as live.)

Similarly, to obtain graph GSMR , for each node v ∈ V , with probability wuv,r ,
only in-edge euv is selected and marked as live. With probability PIrv , we mark all
of its in-edges as live, and with probability 1 − (

∑
u∈V wuv,r + PIrv) no in-edge is

selected as live.
We define the concept of an effective live edge as follows: At any step t , live edge

euv becomes effective when v meets with its selected neighbor u for the first time,
and u has been activated at some earlier step t ′ < t .

In GSMR (resp. GSMP ), given a rumor seed set Ar (resp. protector seed set Ap),
for a node v ∈ V , if its selected live edges for rumor diffusion (resp. protector
diffusion) connect some node u in Ar (resp., Ap), and in SM , u meets v before
deadline T , then edge euv becomes effective. If u is not in Ar (resp., Ap), but u has

been influenced at tru (resp., t
Ap
pu since Ap is not a fixed set), and in SM , u meets

v before deadline T , then edge euv also becomes effective. If a node u cannot be
activated by rumor diffusion (resp., protector diffusion) by the end of time step T ,

then we define tru = ∞ (resp., t
Ap
pu = ∞), meaning no effective live rumor path

(resp., protector path) exists between Ar and u. We say that a node u is protected if

t
Ap
pu , tru < ∞ and t

Ap
pu < tru, and u is infected if tru < ∞ and tru ≤ t

Ap
pu .

The following lemma states that the distribution over the final activated (pro-
tected or infected) nodes are identical for our RPLT-M and the above live or blocked
assignment process.

Lemma 4.1 For a given protector seed set Ap and rumor seed set Ar , the
distribution over the sets of nodes that are infected and protected is identical in
the following two models:

1. RPLT-M model.
2. the live or blocked assignment process.

Proof We prove this lemma by proving this equivalence under any fixed outcome
SM of the meeting events.

To proceed, we first look at the diffusion process under the RPLT-M model for a
given SM . Recall that the diffusion unfolds in discrete time steps. In each step, some
nodes change from inactive to active (protected or infected). For all t ∈ [0, T ], let
A

p
t (v) be the set of nodes that are already protected and have met v at least once

after their activation by the end of step t , and Ar
t (v) be the set of nodes that are
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already infected and have met v at least once since their activation by the end of
step t . Consider a node v that has not been activated by the end of time step t .
The probability that v becomes protected in t + 1 equals to the probability that the
incremental weight contributed by A

p
t (v) \A

p

t−1(v) pushes it over the threshold θpv

(and the incremental weight contributed by Ar
t (v) \ Ar

t−1(v) does not push it over
the threshold θrv), given that it is not activated by the end of step t . This probability
is:

∑
u∈A

p
t (v)\Ap

t−1(v) wuv,p

[
1 − ∑

u∈Ar
t (v)\Ar

t−1(v) wuv,r

]

[
1 − (

∑
u∈A

p
t−1(v) wuv,p + PIpv)

]
·
[
1 − (

∑
u∈Ar

t−1(v) wuv,r + PIrv)
] .

Similarly, the probability that node v becomes infected in t + 1 given that v is
inactive from step 0 to t is:

∑
u∈Ar

t (v)\Ar
t−1(v) wuv,r

[
1 − (

∑
u∈A

p
t−1(v) wuv,p + PIpv)

]
·
[
1 − (

∑
u∈Ar

t−1(v) wuv,r + PIrv)
] .

Next, we look at the live or blocked assignment process for the same fixed
outcome SM of the meeting events. Let B

p

0 and Br
0 denote protector seed set and

rumor seed set, respectively. For each t ∈ [1, T ], let B
p
t denote the set that contains

any v /∈ B
p

t−1 ∪ Br
t−1 such that v has one effective live in-edge from some node in

B
p

t−1 but no effective live in-edge from any node in Br
t−1. For each t ∈ [1, T ], let

Br
t denote the set containing any v /∈ B

p

t−1 ∪ Br
t−1 such that v has one effective live

in-edge from some node in Br
t−1.

According to the definition of random live or blocked assignment process, the
probability that a node v is in B

p

t+1 \ B
p
t conditioned on that v is not in B

p
t ∪ Br

t is:

∑
u∈A

p
t (v)\Ap

t−1(v) wuv,p

[
1 − ∑

u∈Ar
t (v)\Ar

t−1(v) wuv,r

]

[
1 − (

∑
u∈A

p
t−1(v) wuv,p + PIpv)

]
·
[
1 − (

∑
u∈Ar

t−1(v) wuv,r + PIrv)
] .

Similarly, the probability that a node v is in Br
t+1 \ Br

t conditioned on that v is
not in B

p
t ∪ Br

t is:

∑
u∈Ar

t (v)\Ar
t−1(v) wuv,r

[
1 − (

∑
u∈A

p
t−1(v) wuv,p + PIpv)

]
·
[
1 − (

∑
u∈Ar

t−1(v) wuv,r + PIrv)
] .

The above conditional probabilities are the same as that obtained from the RPLT-
M model. Since Ap = B

p

0 and Ar = Br
0 , we conclude our proof.

With the help of the equivalence result in Lemma 4.1, we can now prove the
monotonicity and submodularity of rumor blocking in the random live or blocked
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assignment process. Given a fixed outcome SM of the meeting events, a rumor seed
set Ar and an instance SL of the live or blocked assignment process (where the
outcomes of all the live edge selections are determined), let X = (SM, SL) and
RCX

T (A) denote the node set that will be infected if instead of A, the empty set is
chosen as the initial protector seed set. Then the objective function for our rumor
blocking problem is

RCT (A) = EX|RCX
T (A)|.

Given a graph G(V,E) and a set S ⊂ V , for a node u /∈ S, we say that there is
a unique path from S to u if there exists some path from a node in S to u. For any
two paths from any two nodes in S to u, one path must be a sub-path of the other.

Next, we establish the following lemmas to prove the submodularity of RCX
T (A).

Lemma 4.2 In an effective rumor path graph GSM
R (GSM

P ), given a protector
seed set A, for any node u, if tru < ∞ (resp., tApu < ∞), then there is a unique
effective rumor (resp., protector) path from some node in Ar (resp., A) to v.

Lemma 4.3 The sufficient and necessary condition for v ∈ RCX
T (A) is:

• There exists a unique effective rumor path from Ar to v;
• there exists at least one node u in the unique rumor path, such that a unique

effective protector path exists between A and u with tApu < tru.

Lemma 4.4 The sufficient and necessary condition for v ∈ RCX
T (B ∪ {u}) \

RCX
T (B) is:

• There exists a unique effective rumor path from Ar to v;
• There exists at least one node w on the unique effective rumor path from Ar to

v, such that a unique effective protector path exists between B ∪ {u} and w with
t
B∪{u}
pw < trw;

• for all node x on the unique effective rumor path from Ar to v, it holds that
trx ≤ tBpx .

Lemma 4.5 The cardinality set function |RCX
T (A)| for an instance X = (SM, SL)

is monotone and submodular.

Proof First we show that |RCX
T (A)| is monotone. That is, for any node u ∈ V \

(A∪Ar) where A ⊆ V , we need to prove that |RCX
T (A)| ≤ |RCX

T (A∪{u})|, which
is equivalent to showing that RCX

T (A) ⊆ RCX
T (A ∪ {u}). Consider any node v ∈

RCX
T (A), we have that trv < ∞, meaning that there exists a node w in the unique

effective rumor path from Ar to v such that tApw < trw. We also know that t
A∪{u}
pw ≤

tApw, therefore, we have that t
A∪{u}
pw < trw. Thus, we have that v ∈ RCX

T (A ∪ {u}).
To prove the submodularity of |RCX

T (A)|, we show that for any A ⊆ B ⊆ V ,
and u ∈ V \B, we have that RCX

T (B ∪{u})\RCX
T (B) ⊆ RCX

T (A∪{u})\RCX
T (A).

That is, we only need to show that for any v ∈ RCX
T (B ∪ {u}) \ RCX

T (B), we
have v ∈ RCX

T (A ∪ {u}) \ RCX
T (A). Since we know that there exists a node w
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on the unique effective rumor path from Ar to v, and t
B∪{u}
pw < trw. And for all

node x on the effective rumor path from Ar to v, tBpx ≥ trx . Therefore, for node w,

t
B∪{u}
pw < trw ≤ tBpw, meaning that the influence from node u can reach w earlier

than all the nodes in B and Ar . Therefore, the influence from u can reach w earlier
than all the nodes in A, that is, t

A∪{u}
pw = t

B∪{u}
pw < trw. Since for any node x on

the unique effective rumor path from Ar to v, we have that tBpx ≥ trx , and A ⊆
B, it is clear that tApx ≥ tBpx , thus, tApx ≥ trx , thus, we have demonstrated that

RCX
T (B ∪ {u}) \ RCX

T (B) ⊆ RCX
T (A ∪ {u}) \ RCX

T (A).

Since taking expectation preserves submodularity, we have established the
following result.

Theorem 4.6 Function RCT (·) is monotone and submodular for any instance of
RC-DMP under the RPLT-M model.

4.3.3 Possible Solutions

From Theorems 4.3 and 4.4, we know that Problem RC-DMP is NP-hard under the
two proposed models (RPIC-M and RPLT-M). This motivates our consideration for
approximation algorithm for Problem RC-DMP. Moreover, from Theorem 4.6, we
know that the objective function RCT (·) of Problem RC-DMP under the RPIC-M
and the RPLT-M models is monotone and submodular. Furthermore, by definition,
RCT (·) is non-negative and RCT (∅) = 0. Consequently, we can apply the seminal
result in [141] and use the greedy algorithm as a constant-factor approximation
algorithm with performance guarantee ratio of 1− 1

e
. We formally present the greedy

algorithm in Algorithm 3. Note that variable R in the algorithm controls the number
of Monte Carlo simulations.

Algorithm 3 Greedy algorithm
Input: Given a graph G = (V ,E), Ar , k and T

Output: Protector seed set Ap ⊆ V .
1: Initialize Ap = ∅, R = Num_Simulations

2: for i = 1 to k do
3:
4: for all u ∈ PV \ Ap do
5: IF (u) = 0
6: end for
7: for j = 1 to R do
8: IF (u)+ = RCT (Ap ∪ {u})
9: end for

10: IF (u) = IF (u)/R

11: Ap = Ap ∪ arg maxu∈V \Ap {IF (u)}
12: end for
13: Output Ap .
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Since in our problem, rumor and protector diffuse with time deadline T , meaning
that we only need to search certain area for computation of the seed set of protectors.
Let Nin(u) denote one hop in-edge neighbors of node u, and N2

in(u) = {w|ewv ∈
E ∩ v ∈ Nin(u)} denote two hops in-edge neighbors of node u, thus Nt

in(u) are the
t hops in-edge neighbors of node u. Moreover, we denote Rt(Ar) = ⋃

u∈Ar
Nt

in(u)

and R = ⋃t=T
t=1 Rt(Ar). P t = ⋃

u∈Rt (Ar )
Nt−1

in (u), where t ∈ [1, T ], and P =
⋃t=T

t=1 P t . As a result, PV = P ∪R is the valid nodes that we only need to compute
in our objective function.

4.4 Conclusion

In this chapter we performed an extensive study of the problem of limiting the spread
of misinformation/rumors in a social network. We investigated efficient solutions to
the following question: Given a social network where a (bad) information campaign
is spreading, who are the influential people to start a counter-campaign if our goal
is to block the effect of the bad campaign efficiently?

In Sect. 4.2, we formulated the Rumor Control (RC) problem under the DOAM
model and prove that it is equivalent to the Set Cover problem. To address the
problem, Set Cover Based Greedy (SCBG) algorithm is presented, which contains
two parts: first, transfer the RC-D problem into the SC problem; second, apply the
greedy algorithm used for the SC problem to the obtained subsets for bridge ends.
The experimental reports over two real-world social networks demonstrate that the
SCBG algorithm outperforms the two heuristics: MaxDegree and Proximity.

In Sect. 4.3, we proposed two models to capture competitive influence diffusion
process, namely the RPIC-M and RPLT-M models. In these two models, two kinds
of cascades propagate: protector and rumor. These two models extends the seminal
IC and LT models [93] to the case of two-cascade influence diffusion. Furthermore,
the following three features are also included in these models: a time deadline,
random time delay between information exchange, and personal interests regarding
the acceptance of information.

Under these two models, we study the RC-DMP problem: given a directed graph
G = (V ,E), a rumor seed set Ar , and two positive integers k and T , our aim is to
find a protector seed set Ap (with |Ap| ≤ k) to minimize the expected number of
infected nodes by the end of time deadline T . We prove that the problem under the
two models is both NP-hard. Moreover, we demonstrate that the objective functions
under the two different models are both monotone and submodular. Therefore, we
are able to apply the seminal result in [141] and use the greedy algorithm as a
constant-factor approximation algorithm with performance guarantee ratio of 1− 1

e
.

About future directions, we mention several clues. First, the greedy approxima-
tion algorithm is inefficient and time-consuming as it lacks of a way to efficiently
compute the objective functions for our problem. To overcome such inefficiency, we
hope to find more efficient algorithms to compute the objective function under the
two proposed models.
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Second, we have noticed that under most situations, the spread of influence
and the meeting events occurred among individuals are in continuous time. Thus
developing continuous-time diffusion models for our problem is promising.

Third, more real-world factors such as personal interests, different influence
diffusion speed, deadline, etc., could be incorporated into current diffusion models.

Last but not the least, in society, influence diffuses in different mechanisms, as
well as in different contexts, that is, there exist various models in reality. Therefore,
it is interesting to look into our problem under other influence diffusion models.
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