
Chapter 3
Information Source Detection in Social
Networks

3.1 Introduction

The rising popularity of online social networks has made information generating
and sharing much easier than ever before, due to the ability to publish content to
large, targeted audiences. Such networks enable their participants to simultaneously
become both consumers and producers of content, shifting the role of information
broker from a few dedicated entities to a diverse and distributed group of individuals.
While this fundamental change allows information propagating at an unprecedented
rate [166], it also enables unreliable or unverified information spreading among
people, such as rumors [47].

Rumor has been a research subject in psychology and social cognition for a
long time [50]. It is often viewed as an unverified account or explanation of events
circulating from person to person and pertaining to an object, event, or issue in
public concern [152]. Bordia et al. [23] propose that transmission of rumor is
probably reflective of a “collective explanation process.” Since there is often not
enough resource to manually identify rumors or misinformation from the huge
volume of fast evolving data, it has become a critical problem to design systems
that can automatically detect misinformation and disinformation. Microblogging
services, like Twitter, allow small pieces of information to spread quickly to large
audiences, allowing rumors to be created and spread in new ways [108].

Current media environment is suitable to the emergence and propagation of
rumors that are not limited to insignificant subjects: Rumors can have major
consequences on political, strategic, or economical decisions. Increasingly, they are
triggered off on purpose for various reasons: campaigns can be carried out in order
to discredit a company, endanger strategic choices, or question political decisions.
Therefore research on rumor detection has great significance on Web security issues
[140].

In recent times, many Web based systems have been developed to detect and
evaluate the rumors in social networks. Examples are (1) TwitterTrails.com [133], a
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system which permits users to determine the features of propagated rumors and its
falsification, (2) TweedCred [80], an instantaneous system to judge trustworthiness
of posts on Twitter, (3) Hoaxy [174], a platform for tracking the misinformation
in a social network, (4) Emergent.info [189], a real-time rumor follower that
focused on rising tales on the Internet and observes their faithfulness, and (5)
Snopes.com [181] and factcheck.org [60], admired websites archiving memes and
urban myths. The reality checking abilities of these rumor detection systems validate
the authentication of rumors on Web and vary from entirely automatic to semi-
automatic. But, these systems do not track or observe the diffusion progress and do
not detect all possible source(s).

Rumor Detection using Machine Learning Social network analysis about study-
ing rumors often focuses on machine learning techniques such as building classi-
fiers, sentiment analysis, Twitter data mining, and so on. Work in this area includes
[59, 116, 158, 160]. Leskovec et al. use the evolution of quotes reproduced online
to identify memes and track their spread overtime [116]. Ratkiewicz et al. [160]
created the Truthy system, identifying misleading political memes on Twitter using
tweet features, including hashtags, links, and mentions. Other projects focus on
highlighting disputed claims on the Internet using pattern matching techniques [59].
Qazvinian et al. [158] explore the effectiveness of three categories of features: con-
tent based, network based, and microblog specific memes for correctly identifying
rumors in microblogs. In these introduced research work, a complete set of social
conversations (e.g., tweets) that are actually about the rumor need to be retrieved
first.

There have appeared some studies on analyzing rumors and information cred-
ibility on Twitter, the world’s largest microblogging platform. Castillo et al. [34]
focus on automatically assessing the credibility of a given set of tweets. They
analyze the collected microblogs that are related to “trending topics,” and use
a supervised learning method (decision tree) to classify them as credible or not
credible. Qazvinian et al. [158] focus on two tasks: The first task is classifying those
rumor-related tweets that match the regular expression of the keyword query used to
collect tweets on Twitter monitor. The second task is analyzing the users’ believing
behavior about those rumor-related tweets. They build different Bayesian classifiers
on various subsets of features and then learn a linear function of these classifiers for
retrieval of those two sets. Mendoza et al. [132] use tweets to analyze the behavior
of Twitter users under bombshell events such as the Chile earthquake in 2010. They
analyze users’ retweeting topology network and find the difference in the rumor
diffusion pattern on Twitter environment than on traditional news platforms.

Rumor Source Detection Based on Information Spreading Many studies on
the problem of information propagation are inspired from the more common issue
of contagion and generally use models for viral epidemics in populations such
as the susceptible-infected-recovered (SIR) model. On this subject, research has
focused on the effects of the topological properties of the network on inferring
the source of a rumor in a network. Shah and Zaman [171–173] were the first to
study systematically the problem of infection sources estimation which consider
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an susceptible-infected (SI) model, in which there is a single infection source, and
susceptible nodes are those with at least one infected neighbor, while infected nodes
do not recover. Subsequently, [123, 126] consider the multiple sources estimation
problem under an SI model; [211] studies the single source estimation problem
for the susceptible-infected-recovered (SIR) model, where an infected node may
recover but can never be infected again; and [125] considers the single source
estimation problem for the susceptible-infected-susceptible (SIS) model, where a
recovered node is susceptible to be infected again.

Although all the works listed above answer some fundamental questions about
information source detection in large-scale networks, they assume that a complete
snapshot of the network is given while in reality a complete snapshot, which may
have hundreds of millions of nodes, is expensive to obtain. Furthermore, these works
assume homogeneous infection across links and homogeneous recovery across
nodes, but in reality, most networks are heterogeneous. For example, people close to
each other are more likely to share rumors and epidemics are more infectious in the
regions with poor medical care systems. Therefore, it is important to take sparse
observations and network heterogeneity into account when locating information
sources. In [124, 170, 212], detecting information sources with partial observations
in which only a fraction of nodes (observers) can be observed has been investigated.
The work in [154] assumes that for each of the observers, the knowledge of the
first infected time and from which neighbor the infection is received are given.
This assumption is impractical in some cases. For example, it is usually hard to
know from which neighbor the infection is coming from in a contagious disease
spreading within a community. In [54], the authors have considered the detection
rate of the rumor centrality estimator when a priori distribution of the source node
is given. Several other source locating algorithms have also been proposed recently,
including an eigenvalue based estimator [157], a fast Monte Carlo algorithm [2],
and a dynamic message-passing algorithm under the SIR model [2].

Source detection is very significant in various application domains such as
medical (to find the source of epidemic), security (to detect the source of virus),
large interconnected network (to detect the flaws in power grid network, gas or
water pipeline network), social network (to identify the culprits who spread wrong
information), financial network (for checking the reasons of cascade failures), etc.
Due to its wide scope in different applications, past two decades observed large
improvements in source detection techniques. Major research has been done for
source identification in different application areas like finding the first patient to
control an epidemic of disease [9], source of virus [171], gas leakage source in
wireless sensor network [177], propagation sources in complex networks [90], and
source of rumor or misinformation in a social network [148, 175, 206, 210] which
are directly or indirectly related to rumor source detection.

In Sect. 3.2, we introduce a monitor based approach to detect single rumor source
in online social networks and define a probability-score function, named as rumor
quantifier, for ranking how likely nodes are the actual rumor source [206]. Given a
weighted social graph, we propose a polynomial time algorithm to detect the rumor
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source with respect to the popular independent cascade (IC) model in online social
networks. Since real social networks are getting bigger with millions of nodes, our
algorithm can scale well on real large datasets.

In Sect. 3.3, we consider detecting multiple rumors from a deterministic point
of view by modeling it as the set resolving set (SRS) problem [210]. Let G be an
undirected graph on n vertices. A vertex subset K of G is SRS of G if any different
detectable node sets are distinguishable by K . The problem of multiple rumor
source detection (MRSD) will be defined as finding an SRS K with the smallest
cardinality in G. Using an analysis framework of submodular functions, we propose
a highly efficient greedy algorithm for MRSD problem on general graphs, which is
polynomial time under some reasonable constraints, that is, there is a constant upper
bound r for the number of sources. Moreover, we show that our natural greedy
algorithm correctly computes an SRS with provable approximation ratio of at most
(1 + r ln n+ ln log2 γ ), given that γ is the maximum number of equivalence classes
divided by one node-pair. This is the first work providing explicit approximation
ratio for the algorithm solving minimum SRS. Therefore the introduced framework
suggests a robust approach for MRSD independent of diffusion models in networks.

In the last section, we will summarize our work of rumor source detection and
future work in this field will also be discussed.

3.2 Single Source Detection

This section studies the problem of identifying source location of single rumor
in online social networks in which the spread of information follows the popular
independent cascade (IC) model. In the absence of text information, we develop a
monitor based approach to evaluate how likely that a piece of information is actually
a rumor. Given the underlying social network structure, a number of monitor nodes
are injected into the network whose job is to report the data they receive. Based
on observing which of monitors received the information and which did not, we
propose a polynomial time algorithm to compute rumor quantifier, a reachability
based score for ranking the importance of nodes as the rumor source. Extensive
simulation results have shown that, with a reasonable number of monitor nodes
and appropriate monitor deployment, our rumor source detection algorithm can
recognize rumor source effectively and efficiently.

3.2.1 Problem Formulation

We first introduce the propagation model of rumors, then present the formal problem
formulation. Opinion dynamics in a social network can be modeled in some cases
using independent cascade (IC) Model, which is a classical model in influence
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spreading. A individual on Twitter may be influenced by the opinion or posting
of someone she is following, thereby becoming “infected” with the same opinion.

Independent Cascade Model A social network is modeled as a directed graph
G = (V ,E) where V is the set of users and E is the set of edges where each edge
represents relationship between two individuals. Let u ∈ V be a rumor source form
which a rumor starts spreading at time, say t . As basic independent cascade (IC)
model operates, the cascade of rumor spreads in the graph. Specifically, u is given
a single chance to activate each currently inactive neighbor v; it succeeds with a
probability p(u, v)—a parameter of the system—independently of the history. (If u

has multiple inactive neighbors, its attempts are sequenced in an arbitrary order.) If
u succeeds, then v will become active in step t+1. Again, the process runs until no
more activations are possible. In this model, once a node is infected with the rumor,
it retains it forever.

Note that cascades in IC model are necessarily trees since if a node, say s, gets
infected multiple times knowing the node that infected s first is sufficient. Thus, the
influence structure of a cascade is given by a directed tree T , which is contained in
the directed graph G, i.e., the graph over which the cascade propagates.

Problem Definition Given the above spreading model, the goal of rumor source
detection is to identify the rumor source based on the input weighted social graph.

Monitor We assume that a set of k pre-selected nodes M (M ∈ V ) are our monitors.
For rumor investigation purposes, given a specific piece of information (cascade),
monitors report whether they have received it or not. We denote the set of monitor
nodes who have received the rumor by M+, and the set of monitor nodes who have
not received it by M− (where M+,M− ∈ M). We call the former set positive
monitors and the latter negative monitors.

Social Influence Probability Social influence from node u to v, denoted by p(u, v),
is a numerical weight associated with the edge e ∈ E. In most cases, the social
influence score is asymmetric, i.e., p(u, v) �= p(u, v). Furthermore, the social
influence from node u to v will vary on different types of networks.

Thus based on the above concepts, we can define the tasks of rumor source
detection. In this paper, we only discuss the case that there is only one rumor
source. Given a weighted social network G = (V ;E;p), a propagation model, and
a monitor set, the goal is to identify the source node that starts the rumor cascade.
The problem definition is as follows.

Problem 3.1 (Single Rumor Source Detection) Given an cascade model m, we
observe the rumor infected graph G = (V ,E, p) at some time t > 0. We do not
know the value of t or the realization of the spreading times on edges e ∈ E; we
only know positive monitors M+ ⊆ V and negative monitors M− ⊆ V . The goal is
to find the rumor source r ∈ V given G.
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3.2.2 Monitor Based Approach

Our main idea is to leverage monitors for rumor source detection. Firstly, we
introduce a rumor quantifier Q(r), a probability-score function, for ranking the
importance of nodes as the rumor source. Let Q(r) denote how likely that a node
r ∈ V is actually the rumor source. Identifying the rumor source will be formulated
as finding a node r ∈ V that maximizes the rumor quantifier Q(r), which is written
as follows:

Max Q(r) (3.1)

To identify the source of a rumor, we use the intuition that information will
spread more quickly from the source to the positive monitors but more slowly to the
negative monitors. Since our model is probabilistic and dynamic, in other words,
the cascade must be easier to propagate from the source to positive monitors while
harder to propagate from the source to negative monitors. Based on this idea, the
equation of Q(·) can be defined as follows:

Q(r) = �(p(r,M+), p(r,M−)) (3.2)

where p(r,M+) denotes the probability that a cascade spreads from node r to the
positive monitor set M+, and p(r,M−) denotes the probability that the cascade
spreads from node r to the negative monitor set M−.

The function � demonstrates that the quantifier Q(r) of a node r is affected by
two factors: both p(r,M+) and p(r,M−). For each node r ∈ V , the quantifier
first considers how likely that a cascade spreads from it to the positive monitor set,
p(r,M+). In specific, the larger of the probability of p(r,M+), the larger of the
value of Q(r). In other word, the value of our quantifier is proportional to the value
of p(r,M+). Also, the smaller of the value of p(r,M−), the larger of the value
of Q(·). Thus, the node with maximum rumor quantifier Q(·) has the maximum
likelihood estimation in the context of independent cascade model. The details of
the function � will be further depicted in the section of algorithm.

For a cascade, we will first specify the influence probability p(u, v) that
describes how likely that node u spreads the cascade to node v. Then we will
describe the probability p(r,M+) which specifies the probability that the cascade
propagates from node r to the positive monitor set M+. Similarly, we also define
p(r,M−), which describes how likely cascade propagates from node r to the
negative monitor set M− in the network G.

For a path P =< p1, p2, . . . pi, . . . , pm >, we define the propagation probabil-
ity of the path P as,

p(P ) =
m−1∏

i=1

(pi, pi+1) (3.3)
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where the product is over the edges of path P . Intuitively the probability that u

activates v through path P is p(P ), because it needs to activate all nodes along the
path. Here, the edges of the path P simply specify how the cascade spreads, i.e.,
every node gets influenced by its parent.

To approximate the actual expected influence within the social network, we
propose to use the maximum influence path (MIP) to estimate the influence from one
node to another. Let PG(u, v) denote the set of all paths from u to v in a graph G.

Definition 3.1 (Maximum Influence Path (MIP)) For a social graph G, we define
the Maximum Influence Path MIP(u, v) from u to v in G as

MIP(u, v) = argmaxP {p(P )|P ∈ PG(u, v)}.

Ties are broken in a predetermined and consistent way, such that MIP(u, v) is
always unique, and any subpath in MIP(u, v) from x to y is also the MIP(x, y).
If PG(u, v) = �, we denote MIP(u, v) = �.

For any two nodes u, v ∈ V , if there exists no path connecting from u to v, then
p(u, v) = 0 since they cannot influence each other. Otherwise suppose there exists
multiple paths connecting from u to v, we define p(u, v) according to maximum
influence path as follows.

p(u, v) = MIP(u, v) (3.4)

Now that we have specified the probability p(u, v) for any two nodes u, v ∈ V ,
next we define the probability of observing cascade propagating from a node r to a
monitor set M in a particular tree structure T as

pT (r,M) = φmi∈M+p(r,mi) (3.5)

A typical way of function φ is to summarize p(r,mi) for all the nodes mi ∈ M .
Suppose |M| = n, we provide a heuristic in our experiment for function φ, as
demonstrated in Eq. (3.6) such that p(u,M) will not exceed 1.

φmi∈Mp(r,mi) = 1 −
i=n∏

i=1

(1 − p(r,mi)) (3.6)

Here we will use a specific example to illustrate Eq. (3.6). Figure 3.1 shows the
propagation tree form root node u to the monitor set, say M+, which has three
nodes: m1,m2,m3. The influence probabilities among nodes are given. According
to Eq. (3.6), P(u,M+) = 1 − (1 − 0.8 ∗ 0.8 ∗ 0.3)(1 − 0.8 ∗ 0.6)(1 − 0.5) = 0.790.

In this section, we have introduced the rumor quantifier Q(·) for ranking the
probability that a node is the rumor source and how to compute it. In the following
section, we will develop efficient algorithms to detect the rumor source.
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Fig. 3.1 An example of
propagation tree from root
node u to monitor node set
{m1,m2,m3}. The influence
probabilities are given as
edge weights

Algorithm 1 Maximum propagation tree identification
Input: Root Node r , Leaf Nodes mi ∈ M , Weighted Social Graph G = (V ,E, p).
Output: Maximum Propagation Tree T

Set p′ = −lnp.
G′ = (V ,E, P ′).
for all node mi ∈ M do

Find the shortest path h from r to mi in G′.
end for
return all the paths h.

3.2.3 Proposed Algorithm

Given a node r and a monitor node set M , there are more than one propagation trees
satisfying the condition that the root is r and the leaf node set is M . To reduce the
computation complexity, instead of searching all the possible propagation trees, we
only consider the most likely propagation tree from r to M . Here we give a formal
definition of the most likely propagation tree, named as maximum propagation tree.

Definition 3.2 (Maximum Propagation Tree (MPT)) Given a weighted social
graph G = (V ,E, p), a root node r , a monitor node set M , a maximum propagation
tree (MPT (r,M)) consists of all the maximum influence paths from root node r to
each node in the set M .

In order to find the maximum propagation tree given a root node, leaf nodes
(the monitor set) and the underlying graph structure, we propose a polynomial time
solution, as demonstrated in Algorithm 1. The general idea is to find all the shortest
paths from the root node to all the leaf nodes.

Next we will give a proof that why Algorithm 1 can find the desired maximum
propagation tree.

Proof Let G = (V ,E, p) be a weighted social graph. In terms of problem definition
of MPT, the maximum propagation tree for G is a tree, say T ⊆ G, which consists
of all the maximum influence paths from root node r to each node in the set M .
In Algorithm 1, all the weights p is updated to p′ = −lnp. For each node mi ∈
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M+, if a shortest path from r to mi is found, then p′(r,mi) = −lnp is minimized.
Since p(r,mi) ∈ (0, 1) (influence probability), lnp(r,mi) < 0, p′ = −lnp > 0,
thus, p(r,mi) = ∏

(i,j)∈edgeconnectingr,mi
(i, j) is maximized. In other word, the

maximum influence path from root node r to mi ∈ M+ is actually the shortest path
between them.

To detect the hidden rumor source, our algorithm is to, for every mode u ∈
V , first calculate the rumor quantifier Q(u), that is p(u,M+) in our settings here.
Rank nodes according to the value of rumor quantifier decreasingly. The node with
maximum Q(u) is most likely to be the rumor source. The detailed algorithm is
described in Algorithm 2. Given a weighted social graph G in which the weight
denote the influence probability between individuals, and monitor sets M+,M−,
for each node u, we want to find a maximum propagation tree T ∈ G such that the
root is set as node u, while the leafs of the tree are predefined as positive monitors
(line 2). Based on the found maximum propagation tree, the algorithm computes
probabilities p(u,M+) (line 3). The reason why such tree exists is that, if a node
u is the rumor source, u must have paths to all the monitors in M+. Otherwise u

cannot be a rumor source. When it comes to a special case that several nodes cannot
be distinguished by positive monitor set (say, nodes have the same probability of
p(v,M+)) (line 5), the quantifier will consider how likely the cascade spread from
them to negative monitor set (line 6). In this case, the node with lower probability
of p(v,M−) will be ranked higher. Therefore, our rumor quantifier relies mainly
on the positive monitor set while at the same time it does not neglect the effect of
negative monitor set.

3.2.4 Experiments

To test our monitor based method to identify the rumor source, we run our RSD
(Rumor Source Detection) algorithm on graphs of a real online social network.
We are interested in understanding its behavior in practice and comparing its

Algorithm 2 Rumor source detection
Input: Monitor set M+,M−, weighted social Graph G = (V ,E, p).
Output: Rumor Source node.

for all node u ∈ V do
T = Maximum Propagation Tree Identification (u,M+,G);
Compute the probability p(u,M+) based on T ;

end for
for nodes v ∈ V with the same probability of p(v,M+) do

Rank them by p(v,M−) increasingly;
end for
return the node ranking first.
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performance under various monitor deployment. We find that our RSD algorithm
achieves significant accuracy (up to 87%) over real datasets of social networks.

3.2.4.1 Dataset

At September 2010, Twitter reports that its users publish nearly 95 million tweets
per day [194]. This makes Twitter an excellent case to analyze rumors in social
media. In our experiment, we extracted a social graph structure from Twitter using
Twitter search API as testbed. The data we collect has 38,484 nodes, 1,364,322
edges where the nodes represent users, the edges represent the friendship or
followership among the users. Besides the topology, we also calculated Retweet
probability of each edge x → y as the ratio of x’s tweets retweeted by y to all tweets
of x. Calculated retweet probabilities were used to simulate independent cascade
propagation of rumors.

3.2.4.2 Experimental Evaluation

The goal of the experiments on synthetic data is to understand how the underlying
network structure and monitor deployment affect the performance of our algorithm.
In general, we proceed experiments as follows: (1) given a weighted social graph
extracted from Twitter, we simulate a cascade (a random rumor source is selected);
(2) using the retweet probability of each edge, the rumor is propagated according to
IC diffusion model; (3) if the rumor fails to reach 1% of all nodes, it is viewed as a
negligible rumor and this rumor propagation is discarded. A new rumor is selected
and the same process is repeated. For each rumor propagation (cascade), we try
to identify the rumor source using our RSD algorithm with different number of
monitors. To compute average precision of the algorithm, we simulate cascades 200
times.

For best accuracy, it is important to choose monitors wisely. In this paper, we
compare the following three monitor selection methods.

Random Random selection method selects k monitors randomly. This means that,
for any node x ∈ V , the probability that x is selected as a monitor is k/ | V |.
Incoming Degree (ID) In this method, the number of incoming edges of each node
is counted. Then, the top k nodes which have largest counts are chosen as monitors.

Betweenness Centrality (BC) This method calculates betweenness centrality
[145] for each node v, which is defined as

C(v)
∑

s �=t �=v∈V

σst (v)

σst
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Fig. 3.2 Average rank of the actual rumor source in the output (out of 38,484 nodes)

where σst is the number of shortest paths from s to t and pass through v. Then, the
k nodes which have the largest betweenness centrality are chosen as monitors.

3.2.4.3 Experimental Results

Using the method presented in Sect. 3.3, all nodes are sorted in the likelihood that
they are the actual rumor source. Figure 3.2 shows the average rank of the actual
source in the output. In the ideal case, the rank should be one which means that
the top suspect is actually the rumor source. Note that, regardless of the monitor
selection method, the rank of the true source generally decreases (i.e., improves
by becoming closer to 1) as the number of monitors increases. Here the monitor
numbers are set increasingly as [30, 60, 120, 240, 480, 960, 1920, 3840, 7680]. At
first when the number of monitor nodes is small, Random performs worst, but it
improves as more monitors are added. In contrast, Incoming Degree (ID) performs
quite well when there are small number of nodes but is not satisfactory when the
number of monitors is very large. The performance of betweenness centrality (BC)
lies in between.

Figure 3.3 shows the distance between the top suspect and the actual source of
all monitor selection methods. Note that no matter how many monitors are chosen,
the average distance is smaller than three steps. In the ideal case, the distance should
be zero, meaning the top suspect is the source. Figure 3.3 shows a similar tendency
as Fig. 3.2. The distance decreases as more monitors are added. Random has large
distances with a small number of monitors, but the distance decreases drastically as
the number of monitors increase. BC and ID generally show the smallest distance
between the top suspect and the actual source.

We also observe the details of monitors except the number and deployment.
Figure 3.4 shows the ratio of experiments in which no monitor received the rumor.
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Fig. 3.3 Average distance between the found rumor source and the actual rumor source
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Fig. 3.4 Ratio of experiments in which no monitor receives a rumor (out of 200 cascades)

In all monitor selection methods, the ratio decreases as the number of monitors
increases. Among the three methods compared, the Random selection method has
the highest ratio. When the number is monitors is small, Random tends to choose
nodes loosely scattered on the boundary of the graph. Therefore, monitors selected
by Random have low probability of hearing rumors. The Random selection method
also has a high ratio of negative monitors when the number of monitors is small. The
other methods (ID, BC) have small ratio compared to Random. When no monitor
hears the rumor, it is very hard to find the source accurately as shown in Fig. 3.2
(Random when the number of monitors is 30, for example).

Now we take a detailed look about the accuracy of our RSD algorithm. As
Fig. 3.5 demonstrates, the precision of our algorithm increases with the monitor
number increases. The precision is defined as the number of experiments when the
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Fig. 3.5 Average precision of RSD algorithm in finding the actual rumor source (out of four
hundreds of experiments). The monitor numbers are set as 50 and 2000

top suspect is the actual rumor source divided by the total number of experiments.
When the monitor are randomly chosen, the precision of RSD increases from 18%
(monitor number: 50) up to 87% (monitor number: 2000), the latter of which is quite
effective in practice. This series of experiments also suggest that when the number
of monitor is small, in order to identify rumor source accurately, the monitor can be
chosen using ID (with precision 45%, monitor number: 50). In contrast, when the
number of monitor is large, random is the best way to choose monitors while at the
same maintains high accuracy.

3.3 Detecting Multiple Rumor Sources in Networks with
Partial Observations

Suppose there are more than one rumor sources in the network; the problem is how
to detect all of them based on limited information about network structure and the
rumor infected nodes. If each rumor source initiates a different rumor, then the
problem can be decoupled to the detection of each rumor source independently.
Thus, we assume that one rumor is initiated at a lot of different locations. We
place some nodes v ∈ K ⊆ V as the observers which has a clock that can
record the time at which the state of v is changed (e.g., knowing a rumor, being
infected or contaminated). Typically, the time when the single source originates is
unknown. The monitors/observers can only report the times when they receive the
information, but no information about senders (i.e., we do not know who infects
whom in epidemic networks or who influences whom in social networks). The
information is diffused from the sources to any vertex through shortest paths in the
network, i.e., as soon as a vertex receives the information, it sends the information
to all its neighbors simultaneously, which takes one time unit. Our goal is to select a
subset K of vertices with minimum cardinality such that the source can be uniquely
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located by the infected times of vertices in K and network structure. This problem
is equivalent to finding a minimum set resolving set (SRS) in networks defined in
our models.

In this section, we originally propose the concept of set resolving set (SRS)
problem and give the formal definition of it. Based on SRS, we then present a
novel approach for locating multiple information sources on general graphs with
partial observations of the set of infected nodes at the observation time, without
knowing the neighbors from which the infection is received. Our method is robust
to network heterogeneity and the number of observed infected nodes. To the best of
our knowledge, this paper is the first work to study multiple rumor source detection
(MRSD) problem via SRS.

Moreover, we show that our objective function for detecting multiple rumor
sources in networks is monotone and submodular. By exploiting the submodularity
of the objective, we develop an efficient greedy approximation for MRSD problem,
which is theoretically proved to have a (1+r ln n+ln log2 γ )-approximation ratio in
real world, given that γ is the maximum number of equivalence classes divided by
one node-pair. These guarantees are important in practice, since selecting nodes is
expensive, and we desire solutions which are not too far from the optimal solution.

The following section is organized as follows. In Sect. 3.3.1, we present the SRS
based model and give a formal problem formulation. In Sect. 3.3.2, we then develop
a greedy algorithm, and prove its approximation ratio. To confirm the effectiveness
of our algorithm, in Sect. 3.3.3, the performance of our algorithm is evaluated in
networks which exemplify different structures.

3.3.1 The Model

We start by describing the model and problem statement of multi-rumor-source
detection. In the process, we will give the definition of set resolving set (SRS),
which is the basis of the model.

If a node u is a rumor source, then we use s(u) to denote the time that it initiates
the rumor. If u is not a rumor source, then s(u) = ∞. For two nodes u and v, the
distance between them is denoted as d(u, v). The time that a rumor initiated at node
u is received by node v is ru(v) = s(u)+d(u, v). For a set of rumor sources A ⊆ V ,
the time that the rumor from A is received by node v is rA(v) = min{ru(v) : u ∈ A}.
Definition 3.3 (Set Resolving Set (SRS)) Let K be a node subset of V . Two node
set A,B ⊆ V are distinguishable by K if there exist two nodes x, y ∈ K such that

rA(x) − rA(y) �= rB(x) − rB(y)

For a node set A ⊆ V , a node x ∈ A is detectable if A and A\{x} are distinguishable
by V . Node set A is detectable if every node in A is detectable. Let D be the family
of detectable node sets. Node set K ⊆ V is an SRS if any different detectable node
sets A,B ∈ D are distinguishable by K .
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Multi-Rumor-Source Detection problem (MRSD): find an SRS K with the smallest
cardinality.

The following theorem characterizes the condition under which a node set is
detectable. The idea behind the condition is as follows: when a rumor is initiated at
a node x after x can receive the same rumor from some other nodes, then one cannot
tell whether the rumor is initiated by x or x merely relays the rumor.

Theorem 3.1 A node set A is detectable if and only if for every node x ∈ A,

s(x) < rA\{x}(x) (3.7)

Proof Suppose there is a node x ∈ A such that s(x) ≥ rA\{x}(x). Then, there is a
node z ∈ A \ {x} such that s(x) ≥ rz(x) = s(z) + d(z, x). For any node y ∈ V ,
rx(y) = s(x) + d(x, y) ≥ s(z) + d(z, x) + d(x, y) ≥ s(z) + d(z, y) = rz(y).

Hence, rA(y) = min{rx(y), rA\{x}(y)} = rA\{x}(y). It follows that rA(y1) −
rA(y2) = rA\{x}(y1) − rA\{x}(y2) for any nodes y1, y2 ∈ V , and thus A and A \ {x}
are not distinguishable by V . This finishes the proof for the necessity.

To show the sufficiency, notice that s(x) < rA\{x}(x) implies that

rA(x) = min{rx(x), rA\{x}(x)} = min{s(x), rA\{x}(x)}
= s(x) < rA\{x}(x)

(3.8)

For any node y1 ∈ A, choose y2 ∈ A such that s(y2) = miny∈A\{y1}{s(y)}. Then

rA\{y1}(y2) = s(y2) = rA(y2) (3.9)

This is because of property (3.8) and the observation s(y2) = ry2(y2) ≥
rA\{y1}(y2) = miny∈A\{y1}{s(y) + d(y, y2)} ≥ miny∈A\{y1}{s(y)} = s(y2). Also
by (3.8), we have

rA(y1) < rA\{y1}(y1) (3.10)

Combining (3.9) and (3.10), we have

rA(y1) − rA(y2) < rA\{y1}(y1) − rA\{y1}(y2)

So, A and A \ {y1} are distinguishable by y1 and y2. The sufficiency follows from
the arbitrariness of y1.

Remark 3.1 If the starting time for all nodes is a constant, then condition (3.7) is
satisfied at all nodes. So, this condition does occur in the real world.

Lemma 3.1 Let A,B be two detectable node sets with A \ B �= ∅. Then for any
node x ∈ A \ B and any node y ∈ B, node sets A and B are distinguishable by x

and y.
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Proof Suppose the lemma is not true, then there exists a node x ∈ A\B and a node
y ∈ B such that

rA(x) − rA(y) = rB(x) − rB(y) (3.11)

Since both A and B are detectable, we see from property (3.8) that

rA(x) = s(x) and rB(y) = s(y)

Combining these with (3.11), we have

s(x) − rA(y) = rB(x) − s(y) ≤ ry(x) − s(y) = d(y, x) (3.12)

Then,

rx(y) = s(x) + d(y, x) ≤ rA(y) ≤ rx(y) (3.13)

It follows that the inequalities in (3.12) and (3.13) become equalities, that is,

rA(y) = rx(y) and rB(x) = ry(x)

But then,

rA(x)−rA(y) = s(x)−rx(y) = −d(x, y) < d(y, x) = ry(x)−s(y) = rB(x)−rB(y)

contradicting (3.11). The lemma is proved.

As a consequence of Lemma 3.1, we have the following theorem.

Theorem 3.2 Node set V is an SRS.

Theorem 3.2 shows that V is a trivial solution to the MRSD problem. In next
section, we shall present an approximation algorithm for the problem.

3.3.2 The Algorithm

In this section, we present a greedy algorithm for MRSD. The algorithm starts from
T = ∅, and iteratively adds into T node-pairs with the highest efficiency (which
will be defined later) until all sets can be distinguished by some node-pair in T .
The output of the algorithm is K = ⋃

T ∈T T .
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3.3.2.1 Potential Function

The efficiency of a node-pair is related with a potential function f defined as
follows. Two detectable node sets A and B are equivalent under T , denoted as
A ≡T B, if A and B are not distinguishable by any node-pair in T . Under ≡T ,
detectable node sets F is divided into equivalence classes. The equivalence class
containing detectable node set A is denoted as [A]T . Suppose the equivalence
classes under ≡T are F1, . . . ,Fk . Define π(T ) = ∏k

i=1 |Fi |! and

f (T ) = − log2 π(T ) (3.14)

For a node-pair T = {x, y}, let

ΔT f (T ) = f (T ∪ {T }) − f (T )

We shall show that f is monotone increasing and submodular. The proof idea
is similar to the one in [17] which studies group testing. The difference is that in
[17], only elements need to be distinguished. While in this paper, distinguishing sets
needs more technical details. The following is a technical result of combinatorics
(see Fig. 3.6a for an illustration of its conditions).

Lemma 3.2 Suppose {hij }j=1,...,q

i=1,...,p is a set of non-negative integers. For i =
1, . . . , p, ai = ∑q

j=1 hij . For j = 1, . . . , q, bj = ∑p

i=1 hij . Furthermore,
∑p

i=1 ai = ∑q

j=1 bj = g. Then

g!
∏q

j=1 bj !
≥

∏p

i=1 ai !∏p

i=1

∏q

j=1 hij !
(3.15)

Fig. 3.6 (a) Illustration for the conditions in Lemma 3.2. (b) Refinement of equivalence class Fi

by adding S and T
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Proof Consider the expansion of the following multi-variable polynomial:

(x11 + · · · + x1q)a1 · · · (xp1 + · · · + xpq)ap

=
⎛

⎝
∑

a11+···+a1q=a1

a1!∏q

j=1 a1j !
x

a11
11 · · · xa1q

1q

⎞

⎠ · · ·
⎛

⎝
∑

ap1+···+apq=ap

ap!
∏q

j=1 apj !
x

ap1
p1 · · · xapq

pq

⎞

⎠

=
∑ ∏p

i=1 ai !∏p

i=1

∏q

j=1 aij !
x

a11
11 · · · xa1q

1q · · · xap1
p1 · · · xapq

pq

where the sum is over all non-negative integers {aij }j=1,...,q

i=1,...,p satisfying
∑q

j=1 aij =
ai for i = 1, . . . , p. Setting x1j = · · · = xpj = xj for j = 1, . . . , q in the above
equation, we have

(x1 + · · · xq)a1+···+ap

=
∑ ∏p

i=1 ai !∏p

i=1

∏q

j=1 aij !
x

a11+···+ap1
1 · · · xa1q+···+apq

q

(3.16)

On the other hand,

(x1 + · · · xq)a1+···+ap

= (x1 + · · · xq)g =
∑

r1+···rq=g

g!
∏q

j=1 rj !
x

r1
1 · · · xrq

q
(3.17)

Comparing the coefficients of x
b1
1 · · · xbq

q in (3.16) and (3.17), we have

g!
∏q

j=1 bj !
=

∑ ∏q

i=1 ap!
∏p

i=1

∏q

j=1 aij !
(3.18)

where the sum is over all non-negative integers {aij }j=1,...,q

i=1,...,p satisfying
∑q

j=1 aij =
ai for i = 1, . . . , p and

∑p

i=1 aij = bj for j = 1, . . . , q. Since {hij }j=1,...,q

i=1,...,p satisfy
these restrictions, the right-hand side of (3.15) is one term contained in the right-
hand side of (3.18). Then, the Lemma follows.

We shall use the following characterization of monotonicity and submodularity.
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Lemma 3.3 ([55, Lemma 2.25]) Let f be a function defined on all subsets of a set
U . Then f is submodular and monotone increasing if and only if for any two subsets
R ⊆ S ⊆ U and any element x ∈ U ,

Δxf (R) ≥ Δxf (S)

Lemma 3.4 The function f defined in (3.14) is submodular and monotone increas-
ing.

Proof To use Lemma 3.3, we are to show that for any families of node-pairs T1 ⊆
T2 and any node-pair T ,

ΔT f (T1) ≥ ΔT f (T2) (3.19)

In fact, it suffices to prove (3.19) for the case that |T2 \ T1| = 1. Then, induction
argument will yield the result for the general case. So, in the following, we assume
that T2 = T1 ∪ {S}, where S is a node-pair. In this case, (3.19) is equivalent to

π(T1)

π(T1 ∪ {T }) ≥ π(T1 ∪ {S})
π(T1 ∪ {S, T }) (3.20)

Suppose the equivalence classes under ≡T are F1, . . . ,Fk . Notice that for any
detectable node set A, [A]T ∪{S} ⊆ [A]T , that is, adding one node-pair results in a
refinement of equivalence classes. Also notice that for any detectable node set A,

[A]T ∪{S,T } = [A]T ∪{S} ∩ [A]T ∪{T }

Hence we may assume (see Fig. 3.6b for an illustration) that for each i = 1, . . . , k,

(a) equivalence classes under T ∪ {S, T } which are contained in Fi are
{F (i)

s,t }t=1,...,mi

s=1,...,li
;

(b) For s = 1, . . . , li , let FS (i)
s = ⋃mi

t=1 F
(i)
s,t . Equivalence classes under ≡T ∪{S}

contained in Fi are {FS (i)
s }lis=1;

(c) For t = 1, . . . , mi , let FT (i)
t = ⋃li

s=1 F
(i)
s,t . Equivalence classes under

≡T ∪{T } contained in Fi are {FT (i)
t }mi

t=1.

Taking al = |FS (i)
l |, bj = |FT (i)

j |, hlj = |F (i)
lj |, and g = |Fi |, the

conditions of Lemma 3.2 are satisfied, and thus

|Fi |!
∏q

j=1 |FT (i)
j |!

≥
∏p

l=1 |FS (i)
l |!

∏p

l=1

∏q

j=1 |F (i)
lj |!

which is exactly the desired inequality (3.20).
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Lemma 3.5 Suppose node-pair T divides F into k equivalence classes. Then

ΔT f (∅) ≤ |F | log2 k

Proof Suppose the equivalence classes under ≡T have cardinalities n1, . . . , nk ,
respectively. Then

ΔT f (∅) = f ({T }) − f (∅) = log2

(
|F |!

∏k
i=1 ni !

)
≤ log2

(
k|F |) = |F | log2 k

where the inequality can be seen by setting x1 = · · · = xk = 1 in the following
equation:

(x1 + · · · + xk)
|F | =

∑

n1+···+nk=n

|F |!
∏k

i=1 ni !
x

n1
1 . . . x

nk

k

The lemma is proved.

3.3.2.2 The Algorithm and Its Approximation Ratio

As stated at the beginning of Sect. 3.3.2, an SRS will be derived from a family T
of node-pairs such that

node-pairs in T can distinguish all detectable node sets. (3.21)

Call any family of node-pairs as a test family, and call a test family satisfying
condition (3.21) as a valid test family.

Lemma 3.6 Suppose T is a valid test family. Let K = ⋃
T ∈T T and x be an

arbitrary node in K . Then T̃ = {(x, y) : y ∈ K \ {x}} is also a valid text family.

Proof Observe that if two detectable node sets A,B are distinguished by {y, z} ∈
T , then they can be distinguished by either {x, y} or {x, z}. The lemma follows.

Notice that all node-pairs in T̃ have a common element. We call such a test
family as a canonical test family. Notice that

⋃
T ∈T T = ⋃

T ∈T̃ T = K . Hence T
and T̃ are equivalent in the sense that they produce a same SRS. As a consequence,
to find an SRS, it suffices to consider canonical test families, that is, to find a node
x and a valid test family Tx ⊆ Px = {{x, y} : y ∈ V \ {x}}.

In order to analyze the approximation ratio, we have to compare the size of the
approximation solution with that of an optimal one. Since we do not know which
node is in an optimal solution, we have to “guess.” To be more concrete, for each
node x ∈ V , the algorithm finds a valid test family Tx ⊆ Px . Let Kx = ⋃

T ∈Tx
T .
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Algorithm 3 Greedy algorithm for MRSD
Input: A graph G = (V ,E).
Output: A node set K which is an SRS.

for all x ∈ V do
Set Tx ← ∅.
while there exists a node-pair T ∈ Px such that ΔT f (Tx) > 0 do

select node-pair T ∈ Px with the maximum ΔT f (Tx).
Tx ← Tx ∪ {T }.

end while
Kx = ⋃

T ∈Tx
T .

end for
Output K ← arg min{|Kx | : x ∈ V }.

The final output of the algorithm is K = arg minx∈V |Kx |. The details of the
algorithm for MRSD is described in Algorithm 3.

Lemma 3.7 A test family T is valid if and only if ΔT f (T ) = 0 for any node-
pair T .

Proof First, we make some observation. Suppose the equivalence classes under
T are F1, . . . ,Fk . For each i = 1, . . . , k, Fi is refined under T ∪ {T } into
equivalence classes F (i)

1 , . . . ,F (i)
li

. Then

ΔT f (T ) = log2

⎛

⎝
∏k

i=1 |Fi |
∏k

i=1
∏li

j=1 |F (i)
j |

⎞

⎠

= log2

⎛

⎝
k∏

i=1

|Fi |
∏li

j=1 |F (i)
j |

⎞

⎠

(3.22)

Notice that |Fi |/∏li
j=1 |F (i)

j | is the number of ways to put |Fi | balls into li

labeled boxes such that the j -th box contains |F (i)
j | balls (j = 1, . . . , li). So,

|Fi |/
li∏

j=1

|F (i)
j |

is a positive integer which equals 1 if and only if li = 1.

(3.23)

Notice that li = 1 implies that adding node-pair T into T does not incur a strict
refinement of Fi .

If T is a valid test family, then every equivalence class has cardinality 1, and
thus f (T ) = 0. Combining this with the fact that f is a non-positive monotone
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increasing function, we see that the maximum value of f is zero and thus ΔT (T ) =
0 holds for any node-pair T .

If T is not a valid test family, then there exist two different detectable node sets
A,B which cannot be distinguished by T . Since A �= B, we may assume that
A \ B �= ∅. By Lemma 3.1, A,B can be distinguished by a node-pair {y, z} with
y ∈ A\B and z ∈ B. Then by Lemma 3.6, A,B can be distinguished by T = {x, y}
or {x, z}. In this case, at least one equivalence class under T is refined by adding
T . In other words, there is an i ∈ {1, . . . , k} such that |Fi |/∏li

j=1 |F (i)
j | > 1. Then

by (3.22), ΔT (T ) > 0. The lemma is proved.

Theorem 3.3 Suppose γ is the maximum number of equivalence classes divided by
one node-pair. Then, Algorithm 3 correctly computes an SRS with approximation
ratio at most 1 + ln

(|F | log2 γ
)
.

Proof By Lemma 3.7, we see that every Tx computed in the algorithm is a valid
test family. The correctness follows.

To analyze the approximation ratio, suppose K∗ is an optimal solution to MRSD
and x is a node in K∗. Let T ∗ = {{x, y} : y ∈ K∗ \ {x}}.

Consider the test family Tx produced by the greedy algorithm for node x. We
claim that every node-pair T chosen in the algorithm satisfies

ΔT f (Tx) ≥ 1 (3.24)

By expression (3.22), this is equivalent to show

k∏

i=1

|Fi |
∏li

j=1 |F (i)
j |

≥ 2 (3.25)

Since every T taken in the algorithm has ΔT f (Tx) > 0, which is equivalent to∏k
i=1

|Fi |∏li
j=1 |F (i)

j | > 1, we see that at least one |Fi |/∏li
j=1 |F (i)

j | is greater than 1,

and thus is at least 2. Inequality (3.25) follows from this observation and property
(3.23). Claim (3.24) is proved.

We shall use Theorem 3.7 in [55], which says, using terminologies here, that as
long as (3.24) is true, then

|Tx | ≤
(

1 + ln
f (T ∗) − f (∅)

|T ∗|
)

· |T ∗| (3.26)

By a property of submodular function (see [55, Lemma 2.23]),

∑

T ∈T ∗
ΔT f (∅) ≥ ΔT ∗f (∅) = f (T ∗) − f (∅)
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Combining this with Lemma 3.5,

f (T ∗) − f (∅)

|T ∗|

≤
∑

T ∈T ∗ ΔT f (∅)

|T ∗| ≤ max
T ∈T ∗{ΔT f (∅)} ≤ |F | log2 γ

(3.27)

Combining (3.26), (3.27) with |Kx | = |Tx | − 1 and |K∗| = |T ∗| − 1, we have

|Kx | ≤ (
1 + ln

(|F | log2 γ
))

(|K∗| − 1) + 1 ≤ (
1 + ln

(|F | log2 γ
)) |K∗|

The approximation ratio follows since the algorithm chooses a node x0 with
|Kx0 | = miny∈V |Ky | ≤ |Kx |.
Remark 3.2 Notice that in a worst case, the number of detectable node sets is
Θ(2n). In fact, if the starting time for all nodes is a constant, then by Remark 3.1,
every nonempty node set is detectable, and thus |F | = 2n − 1. In such a case,
the approximation ratio is (1 + n ln 2 + ln log2 γ ), which is no better than a trivial
bound n. However, in the real world, it is reasonable to assume that the number
of rumor sources is at most a constant number r , and only those detectable node
sets of cardinality at most r are considered. In this case, |F | = O(nr), and the
approximation ratio is (1 + r ln n + ln log2 γ ).

Remark 3.3 Notice that γ ≤ 2D + 1, where D is the diameter of the graph. To
see this, suppose T = {x, y} is a node-pair, A is a node set, and rA(x) − rA(y) =
c, then a node set B belongs to equivalence class [A]{T } if and only if rB(x) −
rB(y) = c. Notice that c has at most 2D + 1 different values, namely, {−D,−(D −
1), . . . ,−1, 0, 1, . . . ,D − 1,D}. So, one node-pair divides F into at most 2D + 1
equivalence classes. In a social network, D is a small constant. So, the third term
ln log2 γ in the above approximation ratio is not large.

3.3.3 Simulation Results

In this section we experimentally evaluate our greedy algorithm for MRSD, in
particular its effectiveness in finding rumor sources—how many sources it identifies,
whether it correctly identifies and its scalability.

As discussed in the introduction, the existing proposals for identifying rumor
sources consider significantly different problems settings than we do. The rumor
centrality of Shah and Zaman [171, 173] can only discover one rumor source, while
estimators proposed in [123] consider a completely different infection model from
ours. As such it is not meaningful to compare performances, and therefore here we
only consider the greedy algorithm for MRSD.
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In our study we conduct simulations on synthetic networks exemplifying differ-
ent types of structure—including geometric trees, regular trees, and small-world
networks. In general, we set the rumor sources, simulate diffusion process, and
record the times of monitors when they received the rumors. Then, given the times
and network structure, we try to infer the number rumor sources and where they are.

As described in Sect. 3.3.1, the diffusion model is implemented as a discrete
event in Java. Each hop takes one time unit. Note that the cascade starts from all
rumor sources at the same time stamp. The number of rumor sources is set as k. For
each k, we perform large number of simulation runs to get high precession.

3.3.3.1 Effectiveness of Greedy in Identifying How Many

The number of infection sources k are chosen to be 1, 2, 3, and 4. For each type
of network and each number of infection sources, we perform 1000 simulation runs
with 500 monitors. The estimation results for the number of infection sources in
different scenarios are shown in Fig. 3.7. It can be seen that our algorithm correctly
finds the number of infection sources more than 95% of the time for geometric
trees, and more than 86% of the time for regular trees. The accuracy of about 79%
for small-world networks is slightly lower than that for the tree networks, as the
node-pair for a small-world network is estimated based on the BFS heuristics, thus
additional errors are introduced into the procedure. It also shows the power of our
approach, as we can easily identify the true number of seeds for most cases using a
principled approach.
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Fig. 3.7 Estimating the number of rumor sources
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Fig. 3.8 Estimating the average error distance between the identified source and the actual source

3.3.3.2 Effectiveness of Greedy in Identifying Which Ones

To quantify the performance of identified rumor sources, we propose error distance.
Error distance is defined as the average distances between the estimates and the
respective rumor sources. To be specific, we match the estimated source nodes with
the actual sources so that the sum of the error distances between each estimated
source and its match is minimized. If we have incorrectly estimated the number of
infection sources, we neglect the extra number of found nodes since here we only
focus on the error distance between correct sources. In Fig. 3.8, we see that the
proposed algorithm finds rumor sources that have small error distance on average.
Note that the reported results here are also based on 1000 trials. For geometric trees,
the average error distance lies between 1.4 and 0.6 hop. For regular trees, the error
distance decreases from 1.2 to 0.65 hops. For small-world networks, the value is
between 1.6 and 0.8. In general, the average error distance is less than two hops.
Moreover, as the number of monitors increases, error distance will start to drop.

3.3.3.3 Scalability

Figure 3.9 demonstrates the average computation time of greedy after running it on
increasingly larger infected graphs (as the complexity depends on the size of the
monitors). We use small-world network graph with k = 2. The statistics of running
time is based on 10 runs for each graph. As we can see, the running time is linear on
the number of edges of the infected graph. Thus, overall our algorithm scales well
with high performance in solution quality.
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Fig. 3.9 Wall-clock computation time (in seconds) by our greedy algorithm for increasingly larger
infected graphs. k = 2. Each point average of 10 runs

3.4 Conclusion

In this chapter, we have studied the rumor source detection problem under different
scenarios. In Sect. 3.2, we have investigated the problem of rumor source detection
in online social networks when lacking of text information. We formalize the
problem and define rumor quantifier, a probability based score for ranking how
likely a node is going to be the actual rumor source. The idea behind it is simple:
a cascade is more likely to spread from a rumor source to the monitors who have
received the information but less likely to those who have not. To compute the rumor
quantifier of each node, we developed a scalable algorithm, RSD, to detect the rumor
source and differentiate the rumors.

We evaluated various monitor deployment on real online social network—
Twitter—with rumor propagating according to the popular independent cascade
model, and showed that our algorithm, RSD is able to accurately identify the
rumor source from a large network when there are reasonable number of monitors.
Our future work includes two aspects: first, discuss the situation when there are
multiple rumor sources spreading in the network. Second, we will try to develop
both structure and content combined method to identify rumor sources.

In Sect. 3.3 we discussed finding multiple rumor sources, the challenging
problem of identifying the nodes from which an infection in a graph started to
spread. We first gave the definition of set resolving set(SRS) and proposed to employ
minimum SRS for identifying the set of rumor sources from which the rest of nodes
in the graph can be distinguished correctly. In this framework, the inference is based
only on knowledge of the infected monitors and the underlying network structure.
We have designed a highly efficient greedy algorithm using submodularity analysis
and theoretically proved the performance ratio to be 1 + ln

(|F | log2 γ
)
, given that

γ is the maximum number of equivalence classes divided by one node-pair.
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Several improvements and future directions are possible. One direction is to
extend our methodology to different applications, including influence maximization,
rumor blocking, etc. and see how the proposed methodology leads to deeper
insights. Another promising direction is to tackle the MRSD problem in different
diffusion models, such as models with transmission probabilities between nodes
considered or models without submodularity property.
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