
Chapter 2
Diffusion of Information

In this chapter, we outline the techniques used in optimizing or facilitating infor-
mation diffusion in social networks. We identify two problem definitions through
which a broad survey of techniques in recent research is provided. Namely, we
explore the problems of maximizing the spread of influence and minimizing the
spread of misinformation in social networks. As different as these problems are
in terms of the motivation behind them, they both rely on sub-problems that are
very similar. Through our study of these two problems, we delve into more detail
about the sub-problems: Sect. 2.2 model formation, Sect. 2.3 problem optimization,
Sect. 2.4 large-scale data analysis, and Sect. 2.5 research trends.

2.1 Introduction

Diffusion of influence refers to circumstances where a point of view or behavior is
widely spread in specific structures of propagation channels [35]. A diffusion can be
associated with topological properties, such as scale, range, and temporal properties.
This concept has been widely researched in the field of epidemiology, sociology, and
marketing.

In early time, biology and epidemiology have conducted in-depth study on
diffusion of virus within the group [8], and two classical models: SIS and SIR are
proposed. In sociology and marketing area, research on diffusion focuses on the
problems of innovation diffusion. In the early twentieth century, Schumpeter et al.
[168] created innovative theory. Then the BASS model [3] opened up new research
directions for this research area and derived a series of related models. Westerman
et al. [202] studied the effect of system generated reports of connectedness on
credibility and showed that there are curvilinear effects for the number of followers
exist, such that having too many or too few connections results in lower judgments
of expertise and trustworthiness. Lopez-Pintado et al. [120] studied the product
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22 2 Diffusion of Information

diffusion in complex social networks. He considered the mutual influence among
individuals on the micro-level into the propagation equation based on mean-field
theory and found out that innovation diffusion in complex networks has a threshold
which is closely related to the degree distribution and propagation functions of the
network.

Understanding, capturing, and being able to predict influence diffusion can be
helpful for several areas such as viral marketing, cyber security, and Web search.
For instance, if we consider the case of marketing, it may be useful to know which
are the features that control the process of diffusing information when it is created to,
e.g., better advertise a product or to better protect it against attacks on the network.
The marketing may also benefit from information such as how many initial users to
start with in a marketing campaign (budget optimization), how much time to wait
between actions, etc. In the case of security, criminal investigators generally need to
understand the information flow between, e.g., members of a given community to
extract hints regarding possible guilt or innocence of a person or a group of persons.
This is clearly an observation phase where the user wants to understand the route that
information took and possible links. Finally, as Web search evolves, if we consider
the case of subscriptions to feeds, a propagation prediction model may be useful
for the user to, e.g., subscribe to the most interesting topic according to its expected
growth (in addition to his interests). This reflects a more active usage of the diffusion
prediction.

2.2 Model Formation

Central to optimization problems relating to information diffusion is the problem of
identifying the right diffusion model. Therefore, we provide a survey of available
models and address the following questions: What are the necessary and sufficient
parameters of an accurate model? How can we validate the use of a specific model?
How can one obtain data about the parameters? Given the intricacy of human
interactions, finding the right diffusion model is still an open problem, even in the
presence of the large datasets available today. In this section, we give an overview
of the most common propagation models, including epidemic models [78, 85],
the “Bass” model [16] for product adoption, and basic diffusion models such as
independent cascade (IC) and linear threshold (LT) [56]. The goal is also to learn
about fundamental properties of such processes in a variety of settings.

2.2.1 Epidemic Models

Infectious agents have had decisive influences on the history of mankind. Fourteenth
century Black Death has taken lives of about a third of Europe’s population at
the time. The first major epidemic in the USA was yellow fever epidemic in
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Philadelphia in 1793, in which 5000 people died out of a population of 50,000.
This epidemic has had a major impact on the life and politics of the country.
Thucydides describes the Plague of Athens (430–428 BC): 1050 of 4000 soldiers on
an expedition died of a disease. Thucydides gives a detailed account of symptoms:
some so horrendous that the last one—amnesia—seems a blessing. An interesting
feature of this account is that there is no mention of person-to-person contagion,
which we now suspect with most new diseases. It was not until the nineteenth
century that the person-to-person contagion on was beginning to be discussed. In
this book, we will mostly be interested in modeling infectious diseases, where the
major means of disease spread comes from the person-to-person interaction.

The practical use of epidemic models must rely heavily on the realism put into
the models. This does not mean that a reasonable model can include all possible
effects, but rather incorporate the mechanisms in the simplest possible fashion so
as to maintain major components that influence disease propagation. Great care
should be taken before epidemic models are used for prediction of real phenomena.
However, even simple models should, and often do, pose important questions about
the underlying mechanisms of infection spread and possible means of control of the
disease or epidemic.

We begin with classical papers by Kermack and McKendrick (1927, 1932, and
1933). These papers have had a major influence on the development of mathematical
models for disease spread and are still relevant in many epidemic situations. The first
of these papers laid out a foundation for modeling infections which, after recovery,
confer complete immunity (or in case of lethal diseases—death). The population is
taken to be constant—no births or deaths other than from the disease are possible—
consistent with the course of an epidemic being short compared with the life time of
an individual. If a group of infected individuals is introduced into a large population,
a basic problem is to describe the spread of the infection within the population as
a function of time. In the course of time the epidemic may come to an end. One
of the most important questions in epidemiology is to ascertain whether this occurs
only when all of the initially susceptible individuals have contracted the disease or if
some interplay of infectivity, recovery, and mortality factors may result in epidemic
“die out” with many susceptibles still present in the unaffected population.

Mathematical modeling of infectious diseases is a tool to investigate the mecha-
nisms for outbreak and spread of diseases and to predict the future course in order
to control an epidemic. Generally there are several types of epidemic models.

First, stochastic models. The epidemic process has random nature. Stochastic
models are used to estimate the probabilistic quantities for the outcome events, such
as the probability distribution of extinction time, the probability distribution of final
epidemic size, the associate mean, and so on.

Second, deterministic compartmental models. The transition rate from one class
(compartment) to the other one is characterized by derivative mathematically. If
we assume that the population size is differentiable with respect to time, in the
limiting of large population, the time evolution of behavior of each subgroup can be
approximated by the deterministic dynamics.
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In the category of deterministic compartmental models, there are two classical
classes: SIR and SIS. In SIS and SIR epidemic models, individuals in the population
are classified according to disease status, either susceptible, infectious, or immune.
Healthy (“S” = susceptible) nodes become sick (“I” = infected) stochastically from
their infected neighbors with a probability. Alternatively, a sick node becomes
healthy (“R” = removed) and open to re-infection with a probability. These two
parameters are also referred to as the birth rate and death rate of the virus.

The tipping point, or epidemic threshold, of an SIS epidemic model is the
condition under which an infection will die out exponentially quickly irrespective
of initial infection, as opposed to spreading out, causing and epidemic. For a survey
on SIS and numerous other epidemic models, please refer to Hethcote [85].

2.2.2 Product Adoption Model

The well-known first purchase diffusion models in marketing are those of Bass [16],
Fourt and Woodlock [67], and Mansfield [129]. These early models attempted to
describe the penetration and saturation aspects of the product diffusion process.

The main impetus underlying diffusion research in marketing is the Bass model.
Subsuming the models proposed by Fourt and Woodlock [67] and Mansfield [129],
the Bass model assumes that potential adopters of an innovation are influenced by
two means of communication—mass media and word of mouth. In its development,
it further assumes that the adopters of an innovation comprise two groups. One
group is influenced only by the mass media communication (external influence)
and the other group is influenced only by the word-of-mouth communication
(internal influence). Bass termed the first group “Innovators” and the second
group “Imitators.” Unlike the Bass model, the model proposed by Fourt and
Woodlock [67] assumes that the diffusion process is driven primarily by the mass
media communication or the external influence. Similarly, the model proposed by
Mansfield [129] assumes this process is driven by word of mouth.

Figures 2.1 and 2.2 are plots of conceptual and analytical structure underlying
the Bass model. As noted in Fig. 2.1, the Bass model conceptually assumes
that “Innovators” or buyers who adopt exclusively because of the mass media
communication or the external influence are present at any stage of the diffusion
process. Figure 2.2 shows the analytical structure underlying the Bass model. As
depicted, the noncumulative adopter distribution peaks at time T ∗, which is the
point of inflection of the S-shaped cumulative adoption curve. Furthermore, the
adopter distribution assumes that an initial pm (a constant) level of adopters buy
the product at the beginning of the diffusion process. Once initiated, the adoption
process is symmetric with respect to time around the peak time T ∗ up to 2T ∗. That
is, the shape of the adoption curve from time T ∗ to 2T ∗ is the mirror image of the
shape of the adoption curve from the beginning of the diffusion fusion process up to
time T ∗. In general, the Bass model is a popular model appeared at an early stage
for product adoption. For more information, please refer to [128].
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Fig. 2.1 Adoptions due to external and internal influences in the bass model
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Fig. 2.2 Analytical structure of the bass model

2.2.3 Diffusion Models

Diffusion is the process by which information passes from neighbor to neighbor
[137]. Real-world examples include viral marketing, innovation of technologies,
and infection propagation. Diffusion models are the framework on which diffusion
occurs.

Definition 2.1 A diffusion model is a graph G = V,E along with a collection of
activation functions F = (fv)v∈V , where fv is a {∅, {v}} valued function on 2|V |.

The output of a function fv is a random variable based on the activation function.
Vertices on this graph are usually individuals and the activation function models

the influence individuals exert on others. The activation function usually depends
only on the neighbors of v, denoted N(v). This means that fv(S) = fv(N(v)

⋂
S).

Definition 2.2 Diffusion is the process on a diffusion model M , S = (St )
n−1
t=0

started at S ⊆ V :

1. set S0 = S

2. for t > 1 set St = f (St−1) = def
⋃

v∈V fv(St−1)
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The set of nodes activated at the end of diffusion is denoted as σ(S) = ⋃n
t=0(St ).

Diffusion occurs in time steps t . At each time step, all previously activated
nodes remain activated and individuals are either activated or deactivated based
on the activation functions. Diffusion can run on a fixed number of time steps or
indefinitely. Diffusion is said to have stopped when the set of activated nodes in
time step tk is the same as the set in time step tk+n for all n ≥ 1.

One class of diffusion models, namely threshold model, adds an influence
threshold to each individual, which, when overcome, triggers the individual to be
activated. There is a cumulative effect of these models, as it takes a critical number
of influential neighbors to activate an individual.

2.2.3.1 General Threshold Model

This model was defined by Kempe et al. [94] and Mossel and Roch [136].

Definition 2.3 The general threshold model is a diffusion model with

1. A set of threshold values (θv)v∈V , where θv is in the range [0, 1].
2. Node v being activated if fv(S) ≥ θv , where S is the set of neighbors of v.

The activation function on the general threshold model depends on the activated
neighbors of v. There is an assumption of monotonicity on this model made to
reflect that adding active neighbors to a node increases likelihood of the node being
activated.

Definition 2.4 A function f : 2V → R is monotone if f (S) ≤ f (T ) for all
S ⊆ T ⊆ V .

This property captures that activating more nodes will always have an increasing
effect on the nodes that will be activated at a future time.

2.2.3.2 Linear Threshold Model

The linear threshold model is a specialized form of general threshold models. The
linear threshold model, LT model in short, is more often used in marketing research.

Definition 2.5 The linear threshold model is a diffusion model with all of the
properties of the general threshold model with

1. A set of weights (p(u, v))(u,v)∈E with the property Σu∈N(v)p(u, v) ≤ 1.
2. Activation function of the form fv(S) = ∑

u∈N(v) p(v, u) with f (∅) = 0.

Cascade models of diffusion give each individual the ability to influence their
neighbors as soon as they are activated. This is opposed to the threshold models
that rely on a cumulative effect. This model has the property that the more nodes
that have attempted to influence a node, the less likely the node is to be activated.
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Here we give a definition of a specialized cascade model, namely the independent
cascade model, IC model in short.

Definition 2.6 The independent cascade model is a diffusion model with the
following properties:

1. Each arc (u, v) has associated the probability p(u, v) of u influencing v.
2. Time unfolds in discrete steps.
3. At time t , nodes that became active at t − 1 try to active their inactive neighbors

and succeed according to p(u, v).

Note that the probability of a node u influencing a node v is independent of the
set of nodes S that has attempted to influence v.

There is an assumption of monotonicity on this model made to reflect that adding
active neighbors to a node increases likelihood of the node being activated.

2.2.3.3 History-Sensitive Cascade Model

The history-sensitive cascade model, designed by Foster and Potter, is essentially a
reformat of the linear threshold model and is not a different diffusion model itself. In
their research into the spread of influence, Foster and Potter propose the idea that the
probability of a node being activated increases the longer the node is in contact with
other activated nodes. Since at every time step more neighbors can be added, while
the combined influence never goes down, the probability that any node is activated
increases with each new neighbor added. This reflects the monotonic property of the
linear threshold model.

Foster and Potter studied the exact effects of diffusion over time on the
probability that any node would be activated at time step k. They studied this effect
on tree-structure graphs and also on general graphs and proposed algorithms for
determining these probabilities. To attain the probability of a node being activated
at any given time step, a Markov chain model is used.

Definition 2.7 A Markov chain is a sequence of random variables X1, X2, X3, with
the property that Pr(Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn).

A Markov chain is a collection of states with transitions between states such that
the probability of transitioning to any state from any other state depends only on the
current state. Foster and Potter use a Markov chain model that encode sets of active
nodes in binary strings and then create a transition matrix that maps the probability
of transitioning from any set of activated nodes to any other set. By iterating over
this transition matrix, it is possible to find the exact probability of any node being
activated at any time step for any arbitrary graph.
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2.2.3.4 Cascade Models

Cascade models of diffusion give each individual the ability to influence their
neighbors as soon as they are activated. This is opposed to the threshold models
that rely on a cumulative effect. This model has the property that the more nodes
that have attempted to influence a node, the less likely the node is to be activated.

2.2.3.5 General Cascade Model

This model was designed by Kempe et al. [94] as a general form of the cascade
model. This model has the property that the more nodes that have attempted to
influence a node, the less likely the node is to be activated.

Definition 2.8 The general cascade model is a diffusion model with the following
properties:

1. nodes are live at time t if they were activated in time t − 1.
2. a collection of probability functions P = pv, v ∈ V where pv is a [0, 1]-valued

function on 2V .
3. activation function of the form

fv(W) =
{

1 with probability pv(W)

0 otherwise

where W ⊆ S and every w ∈ W is live at time t .
4. node v being activated in time t if fv(W) = 1, where W is the set of neighbors

of v live at time t .
5. the order-independence property, defined below.

Note that each of the following definitions use pv as an element of P and are
defined over all v ∈ V . Likewise for fv as an element of F defined over all v ∈ V .

Definition 2.9 The order-independence property states that when σ : 1, . . . , r →
1, . . . , r is a permutation function and u1, . . . , ur and uσ1 , . . . , uσr are two permu-
tations of T , and Ti = u1, . . . , ui−1 and T ′

i = uσ1 , . . . , uσi−1 , then

r∏

i=1

(1 − pv(ui

⋃
S

⋃
Ti)) =

r∏

i=1

(1 − pv(uσi

⋃
S

⋃
T ′

i ))

for all sets S disjoint from T .

The probability of a node u influencing a node v depends on the set S of
nodes that has already attempted to influence v. However, the ordering dependence
property states that the probability of u activating v does not depend on the order of
nodes in the set S that have previously attempted to activate v.
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2.2.3.6 General Cascade and General Threshold Equivalence

The general cascade model has been shown to be equivalent to the general threshold
model [94] under the following mapping:

1. for the probability function in the general cascade model:

pu(u
⋃

S) = fv(S
⋃

u) − fv(S)

1 − fv(S)

2. for the activation function in the general threshold model:

fv(S) = 1 −
r∏

i=1

(1 − pv(ui)
⋃

Si−1)

where S = u1, . . . , ur and Si = u1, . . . , ui .

This effectively says that by choosing the edge weights in either model, an
instance of the general threshold model may be transformed into an instance of
the general cascade model. This mapping ties the two models together and shows
that diffusion is an equally hard problem on either model. Therefore, conclusions
on one model also apply to the other model.

2.2.3.7 Decreasing Cascade Model

The decreasing cascade model was also defined by Kempe et al. [94] and is an
extension of the general cascade model with the property that the more nodes that
have attempted to activate a node, the less probability there is that the node becomes
activated.

Definition 2.10 The decreasing cascade model is a diffusion model with all of
the properties of the general cascade model with the additional property where
pv(u

⋃
S) ≥ pv(u

⋃
T ) whenever S ⊆ T .

2.2.3.8 Independent Cascade Model

This model was initially investigated by Goldenberg et al. in the context of
marketing [73] and was defined by Kempe et al. [93]. Along with the linear threshold
model, this model is classically used for studying diffusion on networks. It exists as
a special case of the decreasing cascade model.

Definition 2.11 The independent cascade model is a diffusion model with all of
the properties of the decreasing cascade model with the additional property that the
pv(u

⋃
S) = pv(u) for all sets S ⊆ V .
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This means that the probability of a node u influencing a node v is independent
of the set of nodes S that has attempted to influence v. Since we will be using this
model for the remainder of our research, it is helpful to define some shorthand. We
can look at this model as a set of edge probabilities on a graph.

Definition 2.12 On the independent cascade model, an edge probability, bu,v is the
probability that a node u has to infect v whenever u is infected.

Note that bu,v does not necessarily equal bv,u and in fact, it will be the case in
certain situations in our research that if bu,v is non-zero, that bv,u is 0.

It should be noted that the independent cascade model has the property that a
node has exactly one time step in which it is infected to infect other nodes. That is,
each node is infectious for exactly one time step and then can no longer be infected,
nor can it infect any other nodes.

2.3 Problem Optimization

To better understand the underlying ideas behind diffusion and social networks,
we study the formulations and optimizations for two important problems in social
networks: (1) maximizing the spread of influence and (2) limiting the spread of
misinformation, which is also called rumor blocking in some related work.

To begin with, we will cover some basic knowledge of social network. Social
network is modeled as a directed graph G = (V ;E) with vertices in V modeling
the individuals and edges in E modeling the relationship between individuals. For
example, in co-authorship graphs, vertices are authors of academic papers and two
vertices have an edge if the two corresponding authors have coauthored a paper.

2.3.1 Influence Maximization

An intensively studied problem in viral marketing is that, by picking a small group
of influential individuals in a social network—say, convincing them to adopt a
product—it will trigger the largest cascade of influence by which many users will
try the product ultimately. Domingos and Richardson [53] are the first to pose it as
a algorithmic problem and solve it as a probabilistic model of interaction. In [93],
Kempe et al. formalize it as the problem of influence maximization.

A social network is modeled as a directed graph G = (V ,E) with vertices
in V modeling the individuals and edges in E modeling the relationship between
individuals. For example, in co-authorship graphs, vertices are authors of academic
papers and two vertices have an edge if the two corresponding authors have
coauthored a paper. Let p denote the influence probabilities between two vertices.
The influence is propagated in the network according to a diffusion model m. Let S

be the subset of vertices selected to initiate the influence propagation, which is also
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called seed set. Let σm(S) be the expected number of influenced nodes at the end
of propagation process. The formal definition of influence maximization problem is
given as follows:

Problem 2.1 (Influence Maximization) Given a directed and edge-weighted
social graph G = (V ,E, p), a propagation model m, and an integer k ≤ |V |,
find a seed set S ⊂ V , |S| = k, such that the expected influence σm(S) is maximum.

This problem is also referred to as the identification of influential users or opinion
leaders in a social network. This problem under both independent cascade (IC)
and linear threshold (LT) propagation models is shown to be NP-hard [94], and
so attempts have been made at approximating the value of σm(S).

For a diffusion model with a non-negative, monotone submodular activation
function, a greedy hill-climbing algorithm approximates the optimum within a
factor of (1 − 1/e) − ε for any real number ε, as shown by Kempe et al. [93]. By
greedy hill-climbing algorithm we mean an algorithm which, at every step, adds to
the output set the node that currently has the highest influence spread. The challenge
of the greedy algorithm rises when selecting a new vertex ν that provides the largest
marginal gain σm(S + ν) − σm(S) compared to the influence spread of current seed
set S. Computing the expected spread given a seed set turns out to be a difficult task
under both the IC model and the LT model. Instead of finding an exact algorithm,
Kempe et al. run Monte Carlo simulations of the propagation model for sufficiently
many times (10,000 trials) to obtain an accurate estimate of the influence spread,
leading to a very long computation time.

A vast number of papers have studied improving the efficiency and availability
of the influence maximization [25, 37, 39, 130, 149, 183, 187, 188]. In [37], Chen
et al. also propose a degree discount heuristics with influence spreads and combines
a Cost-Effective Lazy Forward (CELF) scheme to further improve the greedy
algorithm. In [39], Chen et al. propose a scalable heuristic called DAGs (local
directed acyclic graphs) for the linear threshold model. They construct local DAGs
for each node and computing the expected spread over DAGs can be done in linear
time while over general graphs it is #P-hard. In [130], Mathioudakis et al. simplified
the network to accelerate the speed of finding seeds. However, these heuristics
lack of theoretical guarantees. At this front, the state of the art is the reverse
influence sampling (RIS) approach [25, 188]. These methods attempt to generate a
a1 − 1/ − ε approximation solution with minimal number of RIS samples. And the
IMM algorithm [188] is among the most competitive ones so far. In [149], Nguyen
et al. generalize the RIS sampling methods into sampling frameworks and optimize
it by an innovative stop and share strategy. Their method uses minimum number of
samples while meeting strict theoretical thresholds for the influence maximization
problem.

Another issue for Kempe’s method is that it assumes a weighted social graph as
input and does not address the problem of learning influence probabilities. In [164],
Saito et al. study how to learn the probabilities of the IC model from a set of past
propagations by formalizing this as a likelihood maximization problem and then
applying the expectation maximization (EM) algorithm to solve it; Goyal et al. [75,
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76] propose a credit model for learning influence probability from pure historical
action logs which takes the temporal nature of influence into account. In [207], Xu et
al. first present a method to identify influential entities in large social networks based
on a weighted maximum cut framework which is totally separate from traditional
method of greedy strategy while maintaining high efficiency. Moreover, they have
developed a new method of learning influence strength by analyzing both social
network structure and historical user data.

Some variations are proposed to handle different real-world requirements, such
as looking at communities, competitive and complementary influence maximiza-
tion. Leskovec et al. [115, 183] optimized placements for a set of social sensors such
that the propagation of information or virus can be effectively detected in a social
network. Lappas et al. [111] discover a set of key mediators which determine the
bottlenecks of influence propagation if seed nodes try to activate some target nodes.
Sun et al. [183] study the multi-round influence maximization problem, where
influence propagates in multiple rounds independently from possibly different seed
sets.

A characteristic common to the studies discussed so far is the assumption that
information cascades of campaigns happen in isolation. Next we introduce a group
of problem formulations that capture the notion of competing campaigns in a
social network [19, 26, 33, 40, 104, 190]. This scenario will frequently arise in
the real world: multiple companies with comparable products will vie for sales
with competing word-of-mouth cascades; similarly, many innovations face active
opposition also spreading by word of mouth. Carnes et al. [33] study the strategies
of a company that wishes to invade an existing market and persuade people to buy
their product. This turns the problem into a Stackelberg game where in the first
player (leader) chooses a strategy in the first stage, which takes into account the
likely reaction of the second players (followers). In the second stage, the followers
choose their own strategies having observed the Stackelberg leader decision, i.e.,
they react to the leader’s strategy. Carnes et al. use models similar to the ones
proposed in [93] and show that the second player faces an NP-hard problem if
aiming at selecting an optimal strategy. Furthermore, the authors prove that a greedy
hill-climbing algorithms leads to a (1 − 1/e − ε)-approximation.

Around the same time, Bharathi et al. [19] introduce roughly the same model for
competing rumors and they also show that there exists an efficient approximation
algorithm for the second player. Moreover they present an FPTAS for the single
player problem on trees. Kostka et al. [104] considered the rumors diffusion as a
game theoretical problem under a much more restricted model compared with IC
and LT. They showed that the first player did not always obtain benefit although
he/she started earlier. Trpevski et al. [190] propose a competitive rumors spreading
model based on SIS model in epidemic domain, but they did not address the issue of
influence maximization or rumor blocking. Borodin et al. in [26] study competitive
influence diffusion in several different models extended from LT. Chen et al. [40]
address positive influence maximization under an extension of the IC model with
negative opinions about the product or service quality.
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2.3.2 Misinformation Minimization

While the ease of information propagation in social networks can be very beneficial,
it can also have disruptive effects. A number of examples of this sort are the spread
of misinformation on swine flu in Twitter [135], exaggerated reports on a bomb
attack in Grand Central, and celebrities that are falsely claimed as being dead [86].
We specifically focus on the study that addresses the problem of influence limitation
[30] where a bad campaign starts propagating from a certain node in the network
and use the notion of limiting campaigns to counteract the effect of misinformation.
The problem of misinformation minimization can also be called as rumor blocking
problem or influence limitation problem. Its definition is defined as follows.

Problem 2.2 (Misinformation Minimization) Given a graph G = (V ;E;p),
where p represents its positive and negative edge weights, a negative seed set
N0, and a positive integer k, the goal is to find a positive seed set S of size at
most k such that the expected number of negatively activated nodes is minimized,
or equivalently, the reduction in the number of negatively activated nodes is
maximized.

Kimura et al. in [98] deal with influence limitation problem through blocking
a certain number of links in a network. The most recent works regarded with this
problem include [30, 84, 147]. In [30], Budak et al. study the controlling of negative
information in social networks, that is, when negative information is diffused in
networks, how to select some nodes to implant positive information in order to
correct the information attitude in the whole network to a maximizing extent. They
prove that under an extension of the IC model, the eventual influence limitation
(EIL) problem is NP-hard. They also examine a more realistic problem of influence
limitation in the presence of missing information and introduced an algorithm called
predictive hill-climbing approach which has good performance.

In [84], He et al. propose a competitive linear threshold (CLT) model to address
the influence blocking maximization (IBM) problem, which is an extension to the
classic linear threshold model. They prove that this problem under CLT model was
submodular and theoretically obtained a (1 − 1/e)-approximation ratio by a greedy
strategy. To improve the efficiency, they further propose the CLDAG algorithm that
is similar to the LDAG algorithm in [39]. In [147], a βI

T -Node Protector problem is
proposed by Nguyen et al., which is actually the extensions of the misinformation
minimization problem under LT and IC models. The goal is to find the smallest
set of highly influential nodes that can limit the viral spread of misinformation
originated from set I to a desired rate (1 − β) (β ∈ [0, 1]) in T time steps. They
present a greedy viral stopper (GVS) algorithm that greedily adds nodes with the
best influence gain for β Node Protectors to the current solution. They also apply
GVS to the network restricted to T -hop neighbors of the initial set I and reached a
slightly better bound for βI

T -Node Protector problems. Besides, a community based
algorithm which returns a good selection of nodes to decontaminate in a timely
manner is proposed.
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2.4 Large-Scale Data Analysis

No matter which technique is used in studying information diffusion, large-scale
data analysis is a significant aspect of study as well as being a significant challenge.
In this part, we will introduce several representative data analysis techniques used in
the social influence analysis. With the increase of studies in social networks, there
are a number of datasets available to researchers [109, 113, 146].

As data grows, data mining and machine learning applications start to embrace
the Map-Reduce paradigm, e.g., news personalization with Map-Reduce EM algo-
rithm [49], Map-Reduce of several machine learning algorithms on multicore
architecture [45]. For the networking data, graphical probabilistic models are often
employed to describe the dependencies between observation data. Markov random
field [180], factor graph [105], restricted Boltzmann machine (RBM) [201], and
many others are widely used graphical models. In [186], Tang et al. proposed
a topical factor graph (TFG) model, for quantitatively analyzing the topic based
social influences. Compared with the existing work, the TFG can incorporate
the correlation between topics. They also proposed a very efficient algorithm for
learning the TFG model. In particular, a distributed learning algorithm has been
implemented under the Map-Reduce programming model.

The techniques used in Web community discovery can also be applied in social
influence analysis. The problem of detecting such communities within networks has
been well studied. Early approaches such as spectral partitioning, the Kernighan-Lin
algorithm, hierarchical clustering, and G-N algorithm work well for specific types
of problems (particularly graph bisection), but perform poorly in real networks.
Recently, most works focus on graph partitioning approaches. The most popular
partition technique in the literature is k-means clustering, which aims to separate
the nodes in k clusters such to maximize/minimize a given cost function based
on distances between nodes and/or from nodes to centroids. In [209], Q. Yan et
al. proposed a two-phase method that combines community detection with naive
greedy algorithm to improve time efficiency of influence maximizing problem with
multiple spread model. In the first phase, they use efficient clustering algorithm
such as kernel k-means to partition graph nodes into k clusters, with the parameter k

related to the number of influential nodes. In the second phase, in each community,
they apply techniques in social influence maximization to find influential nodes in
each cluster. Similar work has [48].

2.5 Research Trends

Social networks provide large-scale information infrastructures for people to discuss
and exchange ideas about different topics. The general problem of network influence
analysis represents a new and interesting research direction in social network
mining. There are many potential future directions of this work. Even though the
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influence diffusion in social networks has been intensively studied, we note that
there are three essential dimensions emerging from the analysis we performed,
which could be of great benefits for future researchers.

2.5.1 Learn Influence Probabilities of Diffusion Models

In social network analysis, two information diffusion models: the independent
cascade (IC) and the linear threshold (LT) are widely used to solve such problems as
the influence maximization problem and the misinformation minimization problem.
These two models focus on different information diffusion aspects. The IC model
is sender-centered (push type) and each active node independently influences its
inactive neighbors with given diffusion probabilities. The LT model is receiver-
centered (pull type) and a node is influenced by its active neighbors if their total
weight exceeds the threshold for the node. What is important to note is that both
models have parameters that need be specified in advance: diffusion probabilities
for the IC model, and weights for the LT model. However, their true values are not
known in practice. This poses yet another problem of estimating them from a set
of information diffusion results that are observed as time sequences of influenced
(activated) nodes. This falls in a well-defined parameter estimation problem in
machine learning framework.

In [165], K. Saito et al. extended both IC and LT models to be able to simulate
asynchronous time delay. They learned the dependency of the diffusion probability
and the time delay parameter on the node attributes by solving a formulated
problem named as the maximum likelihood estimation problem, and an efficient
parameter update algorithm that guarantees the convergence is derived. Other efforts
of learning parameters of the influence graph from history data include the work
[75, 162]. In [75], A. Goyal et al. proposed both static and time-dependent models
for capturing influence. Moreover, they presented optimized algorithms for learning
the parameters of the various models based on social networks and historical action
logs.

2.5.2 Learn the Speed of Influence Spread in Networks

It has been observed that information spreads extremely fast in social networks.
There has been some but not enough theoretical results about the analysis of
influence spread speed. In [52], B. Doerr et al. have shown that for preferential
attachment graphs the classic push-pull strategy needs Θ(logn) rounds to inform all
vertices. The slightly improved version which avoids that a vertex contacts the same
neighbor twice in a row only needs Θ(logn/loglogn) rounds, which is best possible
since the diameter is of the same order of magnitude. In [66], N. Fountoulakis et al.
establishes for a class of random graphs ultrafast time bounds on the running time of
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the synchronous push-pull protocol that is needed until the majority of the vertices
are informed. They present the first theoretical analysis of this protocol on random
graphs that have a power-law degree distribution with an arbitrary exponent β > 2.
Their main findings reveal a striking dichotomy in the performance of the protocol
that depends on the exponent of the power law. More specifically, it is shown that if
2 < β < 3, then the rumor spreads to almost all nodes in Θ(loglogn) rounds with
high probability. On the other hand, if β > 3, then Θ(logn) rounds are necessary.

2.5.3 Study Variations of Influence Maximization

Traditional diffusion models including IC and LT do not fully incorporate important
temporal aspects that have been well observed in the dynamics of influence
propagation. Firstly, the propagation of influence from one person to another may
incur a certain amount of time delay, which is obvious from recent studies by
statistical physicists on empirical social networks. Secondly, the spread of influence
may be time-critical in practice. In a certain viral marketing campaign, a company
might wish to trigger a large cascade of product adoption in a fairly short time
frame, e.g., a 3-day sale. Therefore it is very meaningful to extend the influence
maximization problem to have a time constraint.

Chen et al. [41] proposed the time-critical influence maximization problem, in
which one wants to maximize influence spread within a given deadline. In their
model influence delays are constrained to follow the geometric distribution. In
[119], B. Liu et al. proposed a new problem of the time constrained influence
maximization in social networks based on a latency aware independent cascade
model. They also proposed to use influence spreading paths to quickly and
effectively approximate the time constrained influence spread for a given seed set.
Sun et al. [183] propose to study multi-round influence maximization problem,
which models the viral marketing scenarios in which advertisers conduct multiple
rounds of viral marketing to promote one product.


	2 Diffusion of Information
	2.1 Introduction
	2.2 Model Formation
	2.2.1 Epidemic Models
	2.2.2 Product Adoption Model 
	2.2.3 Diffusion Models
	2.2.3.1 General Threshold Model
	2.2.3.2 Linear Threshold Model
	2.2.3.3 History-Sensitive Cascade Model
	2.2.3.4 Cascade Models
	2.2.3.5 General Cascade Model
	2.2.3.6 General Cascade and General Threshold Equivalence
	2.2.3.7 Decreasing Cascade Model
	2.2.3.8 Independent Cascade Model


	2.3 Problem Optimization
	2.3.1 Influence Maximization
	2.3.2 Misinformation Minimization

	2.4 Large-Scale Data Analysis
	2.5 Research Trends
	2.5.1 Learn Influence Probabilities of Diffusion Models
	2.5.2 Learn the Speed of Influence Spread in Networks
	2.5.3 Study Variations of Influence Maximization



