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Preface

Social computing is an emerging research field that studies the computational
aspects of social networks. Social influence specifically studies the behaviors of
individuals and the influence diffusion among them in a social network, which
involves interdisciplinary fields such as mathematics, sociology, psychology, com-
puter science, business, and public safety.

This book is a collection of chapters illustrating optimal social influence. It
focuses on recent and practical applications, models, algorithms, and open topics for
future research. The main topics cover characteristics of social networks, modeling
of social influence propagation, popular research problems in social influence
analysis such as influence maximization, rumor blocking, rumor source detection,
and multiple social influence competing. The authors present some of the latest
social computing research and illustrate how to understand and manipulate social
influence for knowledge discovery by applying various data mining techniques in
the real-world scenarios.

There are a total of five chapters, which form a complete series of optimal
social influence, and meanwhile, are self-contained to provide the greatest reading
flexibility. Chapter 1 introduces basic concepts on how to characterize both social
networks and social influence. Chapter 2 illustrates diffusion of influence in social
networks. Chapter 3 presents a practical application: rumor source detection in
social networks. In Chap. 4, we show current research on how to block rumor
propagation efficiently in social networks. In the last chapter, we focus on modeling
multiple social influence competing in a network.

The target audience of this book includes but not limited to researchers, scholars,
graduate students, and developers who are interested in social influence research.
The book also aims to serve as a textbook for graduate courses such as computa-
tional social networks. We gratefully acknowledge the support, encouragement, and
patience of Professor Ding-Zhu Du.

Denton, TX, USA Wen Xu
Dallas, TX, USA Weili Wu
October 2019
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Chapter 1
Introduction of Social Influence Analysis

1.1 Introduction

With the emergence and rapid proliferation of social applications and media, such
as instant messaging (e.g., WhatsApp, Viber, WeChat, Snapchat, Line, Facebook
Messenger, and Google Hangouts), sharing sites (e.g., Flickr, YouTube, and Yelp),
blogs (e.g., WordPress and LiveJournal), wikis (e.g., Wikipedia and PBWiki),
microblogs (e.g., Twitter and Weibo), social networks (e.g., Facebook), and collab-
oration networks (e.g., DBLP), there is little doubt that social influence is becoming
a prevalent, complex, and subtle force that governs the dynamics of all social
networks. Therefore, social influence study has started to attract intense attention
due to many important applications.

Social influence occurs when one’s opinions, emotions, or behaviors are affected
by others, intentionally or unintentionally. Generally there are two alternative
models of influence resulting from behavior in response to referrals: normative
influence where recipient behavior is based on interpreting the information provided
by the influencer as an implied expectation to conform, or informational influence
where recipient behavior is based on a personal evaluation of the information
provided by the influencer. For instance, a friend recommends strongly a new
restaurant that you have never heard of before and then you tried it. This is called
informational social influence since you get new information from others. Another
example, all your friends are using social applications such as Twitter or Facebook.
Although you are not a fan of social applications, you still use it to keep connections
with all the friends. This is called normative social influence, which is to conform
to the positive expectations of others.

In the context of normative influence, the mechanisms influencing actions are
identification and compliance. Recipient behavior is driven by the desire to maintain
the relationship with the influencer and/or be associated with a referent group by
fitting in in order to evoke a favorable response from the group. The recipient’s
willingness to conform is stronger when recipient behavior is observable to the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
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2 1 Introduction of Social Influence Analysis

influencer and to others in the social network. In contrast, the mechanism underlying
informational influence is internalization, where behavior occurs only when such
action is congruent with the recipient’s value system and by a personal evaluation
of the benefits. Such compliance involves independent information processing by
recipients with the goal of maximizing outcomes for themselves.

Overall, behaviors linked to normative influence are driven by recipients’ desire
to comply, and direct benefits from the action for recipients are often a secondary
consideration. In contrast, behavior linked to informational influence arises from an
evaluation of the direct benefits to the recipient. While behavior linked to normative
influence is often discontinued when recipient action is not observable or salient
to the influencer or the group, behavior in response to informational influence is
usually sustained and incorporated into habitual actions of respondents over time.

Three Degrees of Social Influence Three degrees of influence is a theory in the
realm of social networks, proposed by Nicholas A. Christakis and James H. Fowler
in 2007 [43]. Christakis and Fowler found that social networks have great influence
on individuals’ behavior. But social influence does not end with the people to whom
a person is directly tied. We influence our friends who in their turn influence their
friends, meaning that our actions can influence people we have never met. They
posit that “everything we do or say tends to ripple through our network, having an
impact on our friends (one degree), our friends’ friends (two degrees), and even
our friends’ friends’ friends (three degrees). Our influence gradually dissipates and
ceases to have a noticeable effect on people beyond three degrees of separation”.
This argument is basically that peer effects need not stop at one degree, and that, if
we can affect our friends, then we can (in many cases) affect our friends’ friends,
and so on.

Studies by Christakis and Fowler suggested that a variety of attributes—like
obesity [43], smoking [44], and happiness [68]—rather than being individualistic,
are casually correlated by contagion mechanisms that transmit these behaviors over
long distances within social networks. The three degrees of influence property has
also been observed in criminal networks [203]. This applies to many aspects of life,
from public health to economics. For instance, it might be preferable to immunize
individuals located in network’s center more than peripheral individuals. Or, it might
be much more effective to motivate clusters or people to avoid criminal behavior
than to act upon individuals or than to punish each criminal separately.

If people are connected to everyone by six degrees of separation[134] and
influence those up to three degrees [68], then people can reach halfway to anyone
in the world. The strength of social influence depends on many factors such as
the strength of relationships between people in the networks, the network distance
between users, temporal effects, characteristics of networks and individuals in the
network. Also, nodes (users, entities) are influenced by others for various reasons.
For example, the colleagues have strong influence on one’s work, while the friends
have strong influence on one’s daily life. How to prove theoretically or empirically
that social influence does exist? How to quantify the strength of those social
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influences? What kind of factors decides the strength of social influence in real
large networks?

In this chapter, we focus on computational aspect of social influence analysis
and describe the measures and algorithms related to it. In Sect. 1.2, we introduce
fundamental concepts about modeling social networks, which are deeply related to
the importance or influence of nodes or edges in the networks. In Sects. 1.3 and 1.4,
we aim at qualitatively or quantitatively measuring the influence levels of nodes and
edges in the network.

1.2 Characteristics of Social Networks

A clear understanding of social influence in social networks cannot be achieved
without a clear understanding of characteristics of social networks. Therefore, in this
section, we give an overview about social networks identifying its significance and
characteristics. Although levels of analysis are not necessarily mutually exclusive,
there are three general levels into which networks may fall: micro-level, meso-level,
and macro-level.

At the micro-level, social network analysis typically emphasizes on social
relationship between social actors instead of the attributes of social actors. It studies
a small group of individuals in a particular social context such as dyads and triads,
where a dyad is a social relationship between two individuals and a triad is social
relationships among three individuals. For an overview of basic social network
analysis techniques, we refer the reader to the book by Wasserman and Faust [199].
There are many interesting properties about social networks that have been studied
by sociologists. In 1967, Milgram [134] shows that the average path length between
two Americans is six hops. By way of introduction, from any other person in the
world, so that a chain of “a friend of a friend” statements can be made to connect
any two people in a maximum of six steps, which is called “six degree of separation”
theory. In 2003, Columbia University conducted an analogous experiment on social
connectedness among Internet email users, which kind of confirmed Milgram’s
theory. In 2013 [121], Lou et al. predict reciprocity and triadic closure in social
networks by proposing a triad factor graph (TriFG) model, which incorporates social
theories into a semi-supervised learning method. On a large Twitter network, they
show that with the proposed factor graph model it is possible to accurately infer
90% of reciprocal relationships in a dynamic network.

At the meso-level, research begins with a population size that falls between
the micro- and macro-levels. As a type of complex network, social network has
some well-known theoretical properties such as power-law degree distributions, the
small-world property, and the scale-free property. Power-law distribution means that
the probability that a node has degree k is proportional to k−γ , for large k and
γ > 1. The parameter γ is called the power-law coefficient. Researchers have
shown that many real-world networks are power-law networks, including power
grids [153], neural networks [27], Internet topologies [61], the Web [15, 106], and
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social networks [1]. Scale-free networks are a class of power-law networks where
the high-degree nodes tend to be connected to other high degree nodes. Scale-
free graphs are discussed in detail by Li et al. [117], and they propose a metric
to measure the scale-freeness of graphs. Small-world networks mean a class of
network in which most nodes are not neighbors of one another, but most nodes can
be reached from every other by a small number of hops or steps, which generally
have a small diameter and exhibit high clustering. Studies have shown that the Web
[4, 29], scientific collaboration on research papers [143], film actors [6], and general
social networks [1] have small-world properties. Pool and Kochen [155] provide an
analysis of the small-world effect. The influential paper by Granovetter [77] argues
that a social network can be partitioned into strong and weak ties, and that the
strong ties are tightly clustered. Kleinberg [99, 100] proposes a model to explain the
small-world phenomenon in offline social networks and also examines navigability
in these networks.

A prominent study of the Web link structure [29] shows that the Web has a bow-
tie shape, consisting of a single large strongly connected component (SCC), and
other groups of nodes that can either reach the SCC or can be reached from the
SCC. Online social networks have a similar large component, but that its relative
size is much larger than that of the Web’s SCC. Faloutsos et al. [61] show that the
degree distribution of the Internet follows a power-law. Siganos et al. demonstrate
that the high-level structure of the Internet resembles a jellyfish [178]. Kleinberg
[102] demonstrates that high-degree pages in the Web can be identified by their
function as either hubs (containing useful references on a subject) or authorities
(containing relevant information on a subject). Kleinberg also presents an algorithm
[101] for inferring which pages function as hubs and which as authorities. The well-
known PageRank algorithm [150] uses the Web structure to determine pages that
contain authoritative information.

As online social networks are gaining popularity, sociologists and computer
scientists are beginning to investigate their properties. Adamic et al. [1] study
an early online social network at Stanford University, and find that the network
exhibits small-world behavior, as well as significant local clustering. Liben-Nowell
et al. [118] find a strong correlation between friendship and geographic location in
social networks by using data from LiveJournal. Kumar et al. [107] analyze two
online social networks and discover that both possess a large strongly connected
component. Girvan and Newman observe that users in online social networks tend
to form tightly knit groups, which is also called communities [72]. Backstrom et al.
[12] examine snapshots of group membership in LiveJournal and present models for
the growth of user groups over time.

At the macro-level, there are many recent research works that focus on large-
scale social networks and big data analysis. Social networks especially online
social networks have become good platforms for generating and collecting large
volume of user data. Driven by real-world applications in e-commerce, market
intelligence, e-government, healthcare, and security [42], initialized by national
funding agencies, managing and mining big data have shown to be a challenging
yet very compelling task. In 2014, Wu et al. [204] present a HACE theorem
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that characterizes a conceptual view of the big data processing framework, which
includes three levels: data, model, and system. With big data technologies, we
will hopefully be able to provide most relevant and most accurate social sensing
feedback to better understand our society at real-time.

To summarize, these are the following important structural properties of social
networks:

• The degree distributions in social networks follow a power-law, and the power-
law coefficients for both in-degree and outdegree are similar. Nodes with high
in-degree also tend to have high outdegree.

• Social networks appear to be composed of a large number of highly connected
clusters consisting of relatively low-degree nodes. These clusters connect to each
other via a relatively small number of high-degree nodes. As a consequence, the
clustering coefficient is inversely proportional to node degree.

• Social networks are small-world networks containing large, densely connected
cores. Overall, the network is held together by about 10% of the nodes with
highest degree. As a result, path lengths are short, but almost all shortest paths of
sufficient length traverse the highly connected core.

• Online social networks, which contain rich customer opinion and behavioral
information, have become highly scalable ecommerce platforms and product
recommendation systems. Most recent research focuses on social networks as
large-volume, heterogeneous, autonomous sources with distributed and decen-
tralized control, and seeks to explore complex and evolving relationships among
data.

The measurements indicate that online social networks have a high degree of
reciprocity, contain tight cores that consist of high-degree nodes, and provide good
platforms for collecting various types of data. These findings are likely applicable
to many different applications, especially on information dissemination, search, and
influence inference.

1.3 Measuring Social Influence

In this book, a social network is modeled as a graph G = {V,E}, where V is the set
of nodes representing individuals, and E is the set of edges corresponding to social
relationships. We next classify metrics of social influence into three types, edge
based metrics, node based metrics, and user action based metrics. For edge based
metrics, social influence is a directional effect from node u to node v and is related
to the edge strength from u to v. In terms of node based metrics, some nodes can
have intrinsically higher influence than others due to the network structure. There
are also works capturing social influence according to the user actions and historical
data.
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1.3.1 Edge Based Metrics

Edge measures study the simple influence-related processes and interactions
between individuals.

Tie Strength According to Granovetter’s seminal work [77], the tie strength
between two nodes depends on the overlap of their neighborhoods. In particular,
the more common neighbors that a pair of nodes have, the stronger the tie between
them. If the overlap of neighborhoods between two nodes, say A and B, is large, we
consider A and B have a strong tie. Otherwise, they are considered to have a weak
tie. We formally define the strength S(A,B) in terms of their Jaccard coefficient.

S(A,B) = nA

⋂
nB

nA

⋃
nB

(1.1)

where nA and nB indicate the neighborhoods of A and B, respectively. Sometimes,
the tie strength is defined under a different name called embeddedness.The embed-
dedness of an edge is high if two nodes incident on the edge have a high overlap
of neighborhoods. When two individuals are connected by an embedded edge, it
makes it easier for them to trust one another, because it is easier to find out dishonest
behavior through mutual friends [79]. On the other end, when embeddedness is zero,
two end nodes have no mutual friends. Therefore, it is riskier for them to trust each
other because there are no mutual friends for behavioral verification.

A corollary from the tie strength is the hypothesis of triadic closure. This relates
to the nature of the ties between sets of three nodes A, B, and C. If strong ties
connect A to B and A to C, then B and C are likely to be connected by a strong
tie as well. Conversely, if A − B and A − C are weak ties, B and C are less likely
to have a strong tie. Triadic closure is measured by the clustering coefficient of the
network[200]. The clustering coefficient of a node A is defined as the probability
that two randomly selected friends of A are friends with each other. In other words,
it is the fraction of pairs of friends of A that are linked to one another. This is
naturally related to the problem of triangle counting problem in a network. Let nΔ

be the number of triangles in the network and |E| be the number of edges. The
clustering coefficient is formally defined as follows:

C = 6nΔ

|E| (1.2)

The naive way of counting the number of triangles nΔ is expensive. An interest-
ing connection between n? and the eigenvalues of the network was discovered by
Tsourakakis [193]. This work shows that nΔ is approximately equal to the third-
moment of the eigenvalues (or

∑
λ3

i , where λi is the ith eigenvalue). Given the
skewed distribution of eigenvalues, the triangle counts can be approximated by
computing the third-moment of only a small number of the top eigenvalues. This
also provides an efficient way for computing the clustering coefficient.
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Weak Ties When the overlap of the neighborhoods of A and B is small, the
connection A − B is considered to be a weak tie. When there is no overlap, the
connection A − B is a local bridge. In the extreme case, the removal of A − B

may result in the disconnection of the connected component containing A and B.
In such a case, the connection A − B may be considered a global bridge. It may
be argued that in real networks, global bridges occur rarely as compared to local
bridges. However, the effect of local and global bridges is quite similar.

Edge Betweenness Another important measure is the edge betweenness, which
measures the total amount of flow across the edge. Here, we assume that the
information flow between A and B is evenly distributed on the shortest paths
between A and B. Freeman [70] first articulated the concept of betweenness in
the context of sociology. One application of edge betweenness is that of graph
partitioning. The idea is to gradually remove edges of high betweenness scores to
turn the network into a hierarchy of disconnected components. These disconnected
components will be the clusters of nodes in the network. More detailed studies on
clustering methods are presented in the work by Girvan and Newman [72].

1.3.2 Node Based Metrics

One node based metric measuring the importance of a node in a network is
centrality. Centrality has attracted a lot of attention as a tool for studying social
networks. A node with high centrality score is usually considered more highly
influential than other nodes in the network.

Many centrality measures have been proposed based on the specific definition
of influence. The main principle to categorize the centrality measures is the type
of random walk computation involved. In particular, the centrality measures can
be grouped into two categories: radial and medial measures [24]. Radial measures
assess random walks that start or end from a given node. On the other hand, medial
measures assess random walks that pass through a given node. The radial measures
are further separated into volume measures and length measures based on the type
of random walks. Volume measures fix the length of walks and find the volume
(or number) of the walks limited by the length. Length measures fix the volume of
the target nodes and find the length of walks to reach the target volume. Next we
introduce some popular centrality measures based on these categories.

Degree Centrality The first group of the centrality measures is that of the radial
and volume based measures. The simplest and most popular measure in this category
is that of degree centrality. Let A be the adjacency matrix of a network, and deg(i)

be the degree of node i. The degree centrality cDEG
i of node i is defined to be the

degree of the node:

cDEG
i = deg(i) (1.3)
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One way of interpreting the degree centrality is that it counts the number of paths
of length 1 that starts from a node. A natural generalization from this perspective
is the K-path centrality which is the number of paths of length at most k that start
from a node.

Another class of measures are based on the diffusion behavior in the network.
The Katz centrality [92] counts the number of walks starting from a node, while
penalizing longer walks. More formally, the Katz centrality cKAT Z

i of node i is
defined as follows:

cKAT Z
i = eT

i (

∞∑

j=1

(βA)j )1 (1.4)

Here, ei is a column vector whose ith element is 1, and all other elements are 0.
The value of β is a positive penalty constant between 0 and 1.

Closeness Centrality The second group of the centrality measures is that of the
radial and length based measures. Unlike the volume based measures, the length
based measures count the length of the walks. The most popular centrality measure
in this group is the Freeman’s closeness centrality [70]. It measures the centrality
by computing the average of the shortest distances to all other nodes. Then, the
closeness centrality cCLO

i of node i is defined as follows:

cCLO
i = eT

i S1 (1.5)

Here S be the matrix whose (i, j)th element contains the length of the shortest
path from node i to j and 1 is the all one vector.

Node Betweenness As is the case for edges of high betweenness, nodes of high
betweenness occupy critical positions in the network structure, and are therefore
able to play critical roles. This is often enabled by a large amount of flow, which
is carried by nodes which occupy a position at the interface of tightly knit groups.
Such nodes are considered to have high betweenness. The concept of betweenness
is related to nodes that span structural holes in a social network. We will discuss
more on this point slightly later.

Another popular group of the centrality measures is that of medial measures. It
is called “medial” since all the walks passing through a node are considered. The
most well-known centrality in this group is the Freeman’s betweenness centrality
[69]. It measures how much a given node lies in the shortest paths of other nodes.
The betweenness centrality cBET

i of node i is defined as follows:

cBET
i =

∑

j,k

bjik

bjk

(1.6)

Here bjk is the number of shortest paths from node j to k, and bjik be the number
of shortest paths from node j to k that pass through node i.
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The naive algorithm for computing the betweenness involves all-pair shortest
paths. This requires T (n3) time and T (n2) storage. Brandes [28] designed a faster
algorithm with the use of n single-source-shortest-path algorithms. This requires
O(n + m) space and runs in O(nm) and O(nm + n2logn) time, where n is the
number of nodes and m is the number of edges.

Newman [144] proposed an alternative betweenness centrality measure based on
random walks on the graph. The main idea is that instead of considering shortest
paths, it considers all possible walks and computes the betweenness from these
different walks. Then, the Newman’s betweenness centrality cNBE

i of node i is
defined as follows:

cNBE
i =

∑

j �=i �=k

R
(i)
jk (1.7)

Here R(i) be the matrix whose (j, k)th element R
(i)
jk contains the probability of a

random walk from j to k, which contains i as an intermediate node.

Structural Holes In a network, we call a node a structural hole if it is connected
to multiple local bridges. A canonical example is that a person’s success within
a company or organization often depends on their access to local bridges [31]. By
removing such a person, an “empty space” will occur in the network. This is referred
to as a structural hole. The person who serves as a structural hole can interconnect
information originating from multiple noninteracting parties. Therefore, this person
is structurally important to the communication between the actor representing a
structural hole and the organization that may not be aligned. For the organization,
accelerating the information flow between groups could be beneficial, which
requires building of bridges. However, this building of bridges would come at
the expense of structural hole’s latent power of regulating information flow at the
boundaries of these groups.

1.3.3 User Behavior Based Metrics

The aforementioned metrics concentrate on the structure of the network rather than
the behavior of nodes and their interactions. However, influence is usually reflected
in changes in social action patterns (user behavior) in the social network. Some
researchers consider other aspects of analysis such as analysis of users’ behavior in
a network. Recent work [75, 205] has studied the problem of learning the influence
degree from historical user actions, while some other work [169, 184] investigates
how social actions evolve in the context of the network, and how such actions are
affected by social influence factors. Before introducing these methods, we will first
define the time-varying attribute-augmented networks with user actions:

Definition 1.1 Time-varying attribute-action augmented network: The time-
varying attribute-action augmented network is denoted as Gt = (Vt , Et ,Xt , Yt ),
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where Vt is the set of users and Et is the set of links between users at time t , Xt

represents the attribute matrix of all users in the network at time t , and Yt represents
the set of actions of all users at time t .

For all actions, they define a set of action tuples as Y = (v, y, t), where v ∈ Vt ,
t ∈ 1, . . . , T , and y ∈ Yt .

Goyal et al. [75] study the problem of learning the influence probabilities from a
historic log of user actions. They present the concept of user influential probability
and action influential probability. The assumption is that if user vi performs an
action y at time t and later (t ′ > t) his friend vj also performs the action, then
there is an influence from vi on vj . The goal of learning influence probabilities is
to find a (static of dynamic) model to best capture the user influence and action
influence in the network. They give a general user influence probability and action
influence probability definitions as follows:

User influence probability

inf (vi) = |y|∃v,�t : prop(a, vi, vj ,�t)
∧

0 ≤ �t |
Yvi

(1.8)

Action influence probability

inf (y) = |vi |∃vj ,�t : prop(a, vj , vi,�t)
∧

0 ≤ �t |
numberof usersperf ormingy

(1.9)

where �t = tj − ti represents the difference between the time when user vj

performing the action and the time when user vi performing the action, given
eij = 1; prop(a, vi, vj ,�t) represents the action propagation score.

Goyal et al. [75] propose three methods to approximate the action propagation
prop(a, vi, vj ,�t): (1) static model based on Bernoulli distribution, Jaccard index
and partial credits, (2) continuous time (CT) model, and (3) discrete time (DT)
model. The model can be learned with a two-stage algorithm. Finally, the learned
influence probabilities have been applied to action prediction and the experiments
show that the continuous time (CT) model can achieve a better performance than
other models on the Flickr social network with the action of “joining a group.”

Meeyoung Cha et al. [36] studied the measurement of influence in Twitter based
on the following three metrics:

1. In-degree: is the number of followers of a user. In-degree represents the
popularity of a user in a social network.

2. Retweets: which is defined as the number of times that followers of a specific
node pass-along a posting from a tweeter. Retweeting causes propagation of
a posting or news in a network. This metric is important as it shows how an
advertisement can propagate across the network using influential users.
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3. Mentions: this means the number of times that the name of a user is mentioned
in his followers’ postings. This metric has been observed to follow a power-law
distribution.

Meeyoung Cha et al. [36] used Spearman’s rank correlation coefficient for
comparing users’ influence. The research compared the three measures mentioned
above to analyze topics of the most influential people in Twitter according to the
aforementioned analysis and retweets.

Afrasiabi and Benyoucef [159] studied influence as a combination of link
strength and incoming and outgoing clustering value defined for each node in the
network. The link strength is measured according to the volume of interactions
among users while the clustering value is measured by the closeness of a node
to highly interconnected communities. They filter the spam and inactive nodes
according to their activities and their interaction with other users.

Dynamic graph analysis has been studied by Khrabrov and Cybenko [95] in
which the number of daily mentions for each user is considered as an indicator
for computing different ranks such as PageRank, drank, and starrank for influence
analysis of each node in a network. For example, starrank considers user importance
with respect to his or her neighborhoods. These researchers used several primitive
indices in combination, such as Contiguous Longest Increasing Subsequences
(CLIS) and GrowFall for analysis of influence ranks during a period of time. These
indices show how the influence rank of a user changes with time. Khrabrov and
Cybenko also analyzed the rate of increase in the number of mentions for influencing
users in a network for consecutive days.

About this topic, readers may further refer to [82, 182], which present excellent
surveys on how to measure social influence. Here we included their methods and
further improve them on the completeness.

1.4 Identifying Social Influence

A central problem for social influence is to understand the interplay between simi-
larity and social ties. A lot of research has tried to identify influence and correlation
in social networks from many different aspects: social similarity and influence
[7, 48]; marketing through social influence [53, 161], influence maximization [93];
social influence model and practice through conformity, compliance and obedience
[46, 58], and social influence in virtual worlds [57].

1.4.1 Homophily

Homophily [112] is one of the most fundamental principle that governs the structure
of social networks—which means that, an actor in the social network tends to be
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similar to his connected neighbors or “friends.” This is a natural result, because
the friends or neighbors of a given actor in the social network are not a random
sample of the underlying population. The neighbors of a given actor in the social
network are often similar to that actor along many different dimensions including
racial and ethnic dimensions, age, their occupations, and their interests and beliefs.
Singla et al. [179] have conducted a large-scale experiment of homophily on real
social networks, which includes data from user interactions in the MSN Messenger
network and a subset of Microsoft Web search data collected in the summer of 2006.
They observe that the similarities between two friends are significantly larger than a
random selected pairwise sample, especially in attributes such as age, location, and
query category. This experiment confirms the existence of homophily at a global
scale in large online social networks.

The phenomenon of homophily can originate from many different mechanisms:

Social Influence This indicates that people tend to follow the behaviors of their
friends. The social influence effect leads people to adopt behaviors exhibited by
their neighbors.

Selection This indicates that people tend to create relationships with other people
who are already similar to them.

Confounding Variables Other unknown variables exist, which may cause friends
to behave similarly with one another.

These three factors are often intertwined in real social networks, and the overall
effect is to provide a strong support for the homophily phenomenon. Intuitively,
the effects of selection and social influence lead to different applications in mining
social network data. In particular, recommendation systems are based on the
selection/social similarity, while viral marketing [161] is based on social influence.
To model these different factors, several models have been proposed [48, 88].

Generative Models for Selection and Influence Holme and Newman [88] pro-
posed a generative model to balance the effects of selection and influence. The
idea is to initially place the M edges of the network uniformly at random between
vertex pairs and also assign opinions to vertices uniformly at random. With this
initialization, an influence and selection based dynamic is simulated. Each step of
the simulation either moves an edge to lie between two individuals whose opinions
agree (selection process), or we change the opinion of an individual to agree with
one of their neighbors (influence process). The results of their simulation confirmed
that the selection tend to generate a large number of small clusters, while social
influence will generate large coherent clusters. Thus, this interesting model suggests
that these two factors both support clusters in the network, though the nature of such
clusters is quite different.

Every vertex in the Holme-Newman model [88] at a given time can only have
one opinion. This may be an oversimplification of real social networks. To address
this limitation, Crandall et al. [48] introduced multidimensional opinion vectors to
better model complex social networks. In particular, they assumed that there is a
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set of m possible activities in the social network. Each node v at time t has an m-
dimensional vector v(t), where the ith coordinate of v(t) represents the extent to
which person v is engaging in activity i. They use cosine similarity to compute the
similarity between two people. Similar to the Holme-Newman model, Crandall et
al. also propose a more comprehensive generative model which samples a person’s
activities based on their own history, their neighbors’ history, and a background
distribution. Crandall’s model is arguably more powerful, but also requires more
parameters. Therefore more data is required in order to learn the parameters. Finally,
they applied their model and conducted a predictive modeling study on Wikipedia
and live journal datasets. The benefit of the proposed similarity model is still
inconclusive.

Quantifying Influence and Selection Subsequent to the work in [48], Scripps
et al. [169] proposed the formal computational definitions of selection and influence.
We formally define selection and influence as follows:

Selection = p(at
ij = 1|at−1

ij = 0,< xt−1
i , xt−1

j >> ε)

p(at
ij = 1|at−1

ij = 0)
(1.10)

Here, the denominator is the conditional probability that an unlinked pair will
become linked and the numerator is the same probability for unlinked pairs whose
similarity exceeds the threshold ε. Values greater than one indicate the presence of
selection.

Inf luence = p(< xt
i , x

t
j >>< xt−1

i , xt−1
j > |at−1

ij = 0, at
ij = 1)

p(< xt
i , x

t
j >>< xt−1

i , xt−1
j > |at−1

ij = 0)
(1.11)

Here, the numerator is the conditional probability that similarity increases from
time t − 1 to t between two nodes that became linked at time t and the denominator
is the probability that the similarity increases from time t −1 to t between two nodes
that were not linked at time t −1. As with selection, values greater than one indicate
the presence of influence.

Based on this definition, Scripps et al. [169] present a matrix alignment frame-
work by incorporating the temporal information to learn the weight of different
attributes for establishing relationships between users. This can be done by optimiz-
ing (minimizing) the following objective function:

minW

T∑

t−1

‖At − Xt−1WX(t−1)T ‖2
F (1.12)

where the diagonal elements of W correspond to the vector of weights of attributes
and ‖ · ‖F denotes the Frobenius norm. Solving the objective function (Eq. (1.12))
is equivalent to the problem of finding the weights of different attributes associated
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with users. A distortion distance function is used to measure the degree of influence
and selection.

The above method can be used to analyze influence and selection. However,
several theories in sociology [77] show that the effect of the social influence
from different angles (topics) may be different. To differentiate the influence from
different angles (topics), Tang et al. [186] propose a topical factor graph (TFG)
model to formalize the topic-level social influence analysis into a unified graphical
model and present topical affinity propagation (TAP) for model learning.

1.4.2 Existential Test

Identifying social influence in networks is critical to understanding how behaviors
spread. Ugandera et al. [196] study who influenced us and it shows that our behavior
is influenced by the “structural diversity” (the number of connected components in
our ego network) instead of the number of our friends. Anagnostopoulos et al. [7]
try to differentiate social influence from homophily or confounding variables by
proposing the shuffle test and edge-reversal test. The idea of shuffle test is that if
social influence does not play a role, even though an agent’s probability of activation
could depend on her friends, the timing of such an activation should be independent
of the timing of other agents. Therefore, the data distribution and characteristics
will not change even if the exact time of occurrence is shuffled around. The idea
of edge-reversal test is that other forms of social correlation (than social influence)
are only based on the fact that two friends often share common characteristics or
are affected by the same external variables and are independent of which of these
two individuals has named the other as a friend. Thus, reversing the edges will
not change our estimate of the social correlation significantly. On the other hand,
social influence spreads in the direction specified by the edges of the graph, and
hence reversing the edges should intuitively change the estimate of the correlation.
Anagnostopoulos et al. [7] test their models using tagging data from Flickr and
validate social influence as a source of correlation between the actions of individuals
with social ties.

The proposed tests in [7] assume a static network, which is true in many real
social networks. LaFond and Neville [65] propose a different randomization test
with the use of a relational autoregression model. More specifically, they propose
to model the social network as a time-evolving graph Gt = (V ,Et ) where V is the
set of all nodes and Et is the set of all edges at time t . Besides Gt , the nodes have
some attribute at time t denoted by Xt . The main idea is that selection and social
influence can be differentiated through the autocorrelation between Xt and Gt . On
the one hand, the selection process can be represented as a causal relationship from
Xt−1 to Gt , which means the node attributes at time t −1, i.e., Xt−1, determines the
social network at Gt . On the other hand, the social influence can be represented as
the causal relation from Gt−1 to Xt , which means the social network at time t , i.e.,
Gt , determines the node attributes at time t , i.e., Xt .
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Aral et al. [11] propose a diffusion model for differentiating selection and
social influence. In particular, their intuition is that although the diffusion patterns
created by peer influence-driven contagions and homophilous diffusion are similar,
the effects are likely to result in significantly different dynamics. Influence-driven
contagions are self-reinforcing and display rapid, exponential, and less predictable
diffusion as they evolve, whereas selection-driven diffusion processes are governed
by the distributions of characteristics over nodes. In [11], they develop a matched
sample estimation framework to distinguish influence and homophily effects in
dynamic networks.

Social Influence in Healthcare Christakis and Fowler studied the effect of social
influence on health related issues including alcohol consumption [163], obesity [43],
smoking [44], trouble sleep [131], loneliness [32], and happiness [68]. In these
studies, they use longitudinal data covering roughly 12,000 people and correlate
health status and social network structure over a 32-year period. They found clusters
of nodes with similar health status in the network. In other words, people tend to be
more similar in health status to their friends than in a random graph. The main
focus of all these studies is to explain why homophily of health status is present.
The analysis in Christakis and Fowler argues that, even accounting for effects
of selection and confounding variables, there is significant evidence for social
influence as well. The evidence suggests that health status can be influenced by the
health status of the neighbors. For example, their obesity study [43] suggests that
obesity may exhibit some amount of “contagion” in the social network. Although
people do not necessarily catch it as the way one catches the flu, it can spread
through the underlying social network via the mechanism of social influence.
Similar observations of their study on alcohol consumption [163] discover that
clusters of drinkers and abstainers were present in the network at all time points,
and the clusters extended to three degrees of separation through the social network.
These clusters were not only due to selective formation of social ties among drinkers
but also seem to reflect social influence. Changes in the alcohol consumption
behavior of a person’s social network had a statistically significant effect on that
person’s subsequent alcohol consumption behavior. The behaviors of immediate
neighbors and co-workers were not significantly associated with a person’s drinking
behavior, but the behavior of relatives and friends was.

Social Influence in Political Mobilization Human behavior is thought to spread
through face-to-face social networks, but it is difficult to identify social influence
effects in observational studies, and it is unknown whether online social networks
operate in the same way. In 2012, Bond et al. [22] conduct a randomized controlled
trial of political mobilization messages delivered to 61 million Facebook users
during the 2010 US congressional elections.

The experimental objects (users) were divided into three groups: social message
group in which users were shown with message that indicates one’s friends who
have made the votes; informational message group, in which users were shown
with message that indicates how many of his friends have voted; the last group,
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control group, in which users did not receive any message. Three groups of users
are compared according to their votes.

The results show that the messages directly influenced political self-expression,
information seeking, and real-world voting behavior of millions of people. Further-
more, the messages not only influenced the users who received them but also the
users’ friends and friends of friends. The effect of social transmission on real-world
voting was greater than the direct effect of the messages themselves, and nearly all
the transmission occurred between “close friends” who were more likely to have a
face-to-face relationship. These results suggest that strong ties are instrumental for
spreading both online and real-world behavior in human social networks.

1.4.3 Influence-Related Topics

Influence and Interaction Besides the attribute and user actions, influence can
be also reflected by the interactions between users. Typically, online communities
contain ancillary interaction information about users. For example, a Facebook user
has a Wall page, where her friends can post messages. Based on the messages posted
on the Wall, one can infer which friends are close and which are acquaintances
only. Similarly, one can use follower and following members on Twitter to infer the
strength of a relationship.

Xiang et al. [205] propose a latent variable model to infer relationship strength
based on profile similarity and interaction activity, with the goal of automatically
distinguishing strong relationships from weak ones. The model attempts to rep-
resent the intrinsic causality of social interactions via statistical dependencies. It
distinguishes interaction activity from user profile data and integrates two types of
information by considering the relationship strength to be the hidden effect of user
profile similarities, as well as the hidden cause of the interactions between users.

The input to the problem can be considered an attribute-augmented network
G = (V ,E,X) with interaction information mij ⊂ M between users, where
mij is a set of different interactions between users vi and vj . The model also uses
continuous latent variable z, but for each link rather than action. The latent variable
can be further treated as the strength of the social influence. There are some methods
aiming to model social influence using a link analysis method. The basic idea is
similar to the concept of random walks. Java et al. [89] employ such a method to
model the influence in online social networks.

While converting a blog network into an influence graph, a link from u to v

indicates that u is influenced by v. The edges in the influence graph are the reverse of
the blog graph to indicate this influence. Multiple edges indicate stronger influence
and are weighted higher. In the influence graph, the direction of edges is opposite as
the blog graph. And the influence weight can be calculated by Wu,v = Cu,v/dv .

Based on the influence graph, they proposed several typical applications, such as
spam detection and node selection. The classical PageRank and HITS algorithms
can be also employed here.
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Influential Verse Susceptible In 2012, Aral et al. [10] present a method that
uses in vivo randomized experimentation to identify influence and susceptibility
in networks while avoiding the biases inherent in traditional estimates of social
contagion. Estimation in a representative sample of 1.3 million Facebook users
showed that younger users are more susceptible to influence than older users, men
are more influential than women, women influence men more than they influence
other women, and married individuals are the least susceptible to influence in
the decision to adopt the product offered. Analysis of influence and susceptibility
together with network structure revealed that influential individuals are less suscep-
tible to influence than noninfluential individuals and that they cluster in the network
while susceptible individuals do not, which suggests that influential people with
influential friends may be instrumental in the spread of this product in the network.

Influence and Friendship Drift Sarkar et al. [167] study the problem of friend-
ships drifting over time. They explore two aspects of social network modeling by
the use of a latent space model. First, they generalize a static model of relationships
into a dynamic model that accounts for friendships drifting over time. Second,
they show how to make it tractable to learn such models from data, even as the
number of entities n gets large. The generalized model associates each entity with
a point in p-dimensional Euclidean latent space. The points can move as time
progresses but large moves in latent space are improbable. Observed links between
entities are more likely if the entities are close in latent space. They show how to
make such a model tractable (subquadratic in the number of entities) by the use
of the following characteristics: (a) appropriate kernel functions for similarity in
latent space; (b) the use of low dimensional KD-trees; (c) a new efficient dynamic
adaptation of multidimensional scaling for a first pass of approximate projection
of entities into latent space; and (d) an efficient conjugate gradient update rule for
non-linear local optimization in which amortized time per entity during an update
is O(logn). They use both synthetic and real data on up to 11,000 entities which
indicate near-linear scaling in computation time and improved performance over
four alternative approaches. We also illustrate the system operating on 12 years of
NIPS co-authorship data.

Influence and Autocorrelation Autocorrelation refers to correlation between
values of the same variable (e.g., action or attribute) associated with linked nodes
(users) [142]. More formally, autocorrelation in social networks, and in particular
for influence analysis, can be defined with respect to a set of linked users eij = 1,
eij ∈ E, and an attribute matrix X associated with these uses, as the correlation
between the values of X on these instance pairs.

Neville et al. provide an overview of research on autocorrelation in a number
of fields with an emphasis on implications for relational learning, and outline a
number of challenges and opportunities for model learning and inference [142].
Social phenomena such as social influence, diffusion processes, and the principle of
homophily give rise to autocorrelated observations as well, through their influence
on social interactions that govern the data generation process.



18 1 Introduction of Social Influence Analysis

Another related topic is referred to as collective behavior in social networks.
Essentially, collective behavior modeling is to understand the behavior correlation
in the social network. For this purpose, much work has been done. For example,
Tang and Liu [185] aim to predict collective behaviors in social media. In particular,
they try to answer the question: given information about some individuals, how can
we infer the behavior of unobserved individuals in the same network?

They attempt to utilize the behavior correlation presented in a social network to
predict the collective behavior in social media. The input of their problem is the
same as Definition 1.1. They propose a framework called SocDim [184], which
is composed of two steps, which are those of social dimension extraction and
discriminative learning, respectively. In the instantiation of the framework SocDim,
modularity maximization is adopted to extract social dimensions. There are several
concerns about the scalability of SocDim:

(a) The social dimensions extracted according to modularity maximization are
dense.

(b) The modularity maximization requires the computation of the top eigenvectors
of a modularity matrix which will become a daunting task when the network
scales to millions of node.

(c) Networks in social media tend to evolve which entails efficient update of the
model for collective behavior prediction.

Influence and Grouping Behavior Grouping behavior, e.g., user’s participation
behavior into a forum, is an important action in the social network. The point
of influence and grouping behavior is to study how different factors influence the
dynamics of grouping behaviors.

Shi et al. investigated the user participation behavior in diverse online forums
[176]. In that paper, they are mainly focused on three central questions:

(a) What are the factors in online forums that potentially influence people’s
behavior in joining communities and what is the corresponding impact?

(b) What are the relationships between these factors, i.e., which ones are more
effective in predicting the user joining behavior, and which ones carry supple-
mentary information?

(c) What are the similarities and differences of user grouping behavior in forums of
different types (such as news forums versus technology forums)?

In order to answer the first question, they analyze four features that can usually
be obtained from a forum dataset:

1. Friends of Reply Relationship. Use this feature to describe how users are
influenced by the numbers of neighbors with whom they have ever had any reply
relationship.

2. Community Sizes. Use community size as the measurement to quantify the
“popularity” of information.
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3. Average Ratings of Top Posts. Aside from the popularity of information, we are
also interested in how the authority or interestingness of information impacts user
behavior.

4. Similarities of Users. This is the only feature with dependency: if two users are
“similar” in a certain way, what is the correlation of the sets of communities they
join?

Their first discovery is that, despite the relative randomness, the diffusion curve
of influence from users of reply relationships has very similar diffusion patterns.
However, the reasons that people are linked together are very different. They also
investigate the influence of the features associated with communities, which include
the size of communities and the authority or the interestingness of the information
in the communities. They find that their corresponding information diffusion curves
show some strong regularities of user joining behavior as well, and these curves
are very different from those of reply relationships. Furthermore, they analyze the
effects of similarity of users on the communities they join and find two users who
communicate more frequently or have more common friends are more likely to be
in the same set of communities.

In order to answer the second question, they construct a bipartite graph, whose
two sets of nodes are users and communities, to encompass all the features and their
relationships in this problem. Based on the bipartite graph, they build a bipartite
Markov random field (BiMRF) model to quantitatively evaluate how much each
feature affects the grouping behavior in online forums, as well as their relationships
with each other. BiMRF is a Markov random graph with edges and two-stars as
its configuration and incorporates the node-level features we have described as in a
social selection model. The most significant advantage of using the BiMRF model
is that it can explicitly incorporate the dependency between different users’ joining
behavior, i.e., how a user’s joining behavior is affected by her friends’ joining
behavior. The results of this quantitative analysis show that different features have
different effectiveness of prediction in news forums versus technology forums.

Backstrom et al. [13] also explore a large corpus of thriving online communities.
These groups vary widely in size, moderation, and privacy and cover an equally
diverse set of subject matter. They present a number of descriptive statistics of
these groups. Using metadata from groups, members, and individual messages,
they identify users who post and are replied to frequently by multiple group
members. They classify these high-engagement users based on the longevity of
their engagements. Their results show that users who will go on to become long-
lived, highly engaged user experience significantly better treatment than other users
from the moment they join the group, well before there is an opportunity for them
to develop a long-standing relationship with members of the group. They also
present a simple model explaining long-term heavy engagement as a combination
of user-dependent and group-dependent factors. Using this model as an analytical
tool, they show that properties of the user alone are sufficient to explain 95% of
all memberships, but introducing a small amount of group-specific information
dramatically improves our ability to model users belonging to multiple groups.
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1.5 Summary

Social influence analysis aims at qualitatively and quantitatively measuring the
influence of one person on others. As social networking becomes more prevalent
in the activities of millions of people on a day-to-day basis, both research study
and practical applications on social influence will continue to grow. Furthermore,
the size of the networks on which the underlying applications need to be used
also continues to grow over time. Therefore, effective and efficient social influence
methods are in high demand.

In this chapter, we focus on the computational aspects of social influence analysis
and describe different methods and algorithms for calculating and identifying
social influence-related measures. First, we cover the basic statistical measure of
social influence such as centrality, closeness, betweenness, and user behavior based
methods; second, we present the models of identifying social influence. These
covers the fundamental concepts on influence.

In the future, an important and challenging research area is to develop efficient,
effective, and quantifiable social influence mechanisms to enable various appli-
cations in social networks and social media. This area lies in the intersection of
computer science, business intelligence, cyber security, sociology, etc. In particular,
scalable and parallel data mining algorithms and scalable database and web
technology have been changing how sociologists approach this problem. In the
next chapter, we will focus on discussing diffusion of social influence and influence
maximization in viral marketing.



Chapter 2
Diffusion of Information

In this chapter, we outline the techniques used in optimizing or facilitating infor-
mation diffusion in social networks. We identify two problem definitions through
which a broad survey of techniques in recent research is provided. Namely, we
explore the problems of maximizing the spread of influence and minimizing the
spread of misinformation in social networks. As different as these problems are
in terms of the motivation behind them, they both rely on sub-problems that are
very similar. Through our study of these two problems, we delve into more detail
about the sub-problems: Sect. 2.2 model formation, Sect. 2.3 problem optimization,
Sect. 2.4 large-scale data analysis, and Sect. 2.5 research trends.

2.1 Introduction

Diffusion of influence refers to circumstances where a point of view or behavior is
widely spread in specific structures of propagation channels [35]. A diffusion can be
associated with topological properties, such as scale, range, and temporal properties.
This concept has been widely researched in the field of epidemiology, sociology, and
marketing.

In early time, biology and epidemiology have conducted in-depth study on
diffusion of virus within the group [8], and two classical models: SIS and SIR are
proposed. In sociology and marketing area, research on diffusion focuses on the
problems of innovation diffusion. In the early twentieth century, Schumpeter et al.
[168] created innovative theory. Then the BASS model [3] opened up new research
directions for this research area and derived a series of related models. Westerman
et al. [202] studied the effect of system generated reports of connectedness on
credibility and showed that there are curvilinear effects for the number of followers
exist, such that having too many or too few connections results in lower judgments
of expertise and trustworthiness. Lopez-Pintado et al. [120] studied the product
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diffusion in complex social networks. He considered the mutual influence among
individuals on the micro-level into the propagation equation based on mean-field
theory and found out that innovation diffusion in complex networks has a threshold
which is closely related to the degree distribution and propagation functions of the
network.

Understanding, capturing, and being able to predict influence diffusion can be
helpful for several areas such as viral marketing, cyber security, and Web search.
For instance, if we consider the case of marketing, it may be useful to know which
are the features that control the process of diffusing information when it is created to,
e.g., better advertise a product or to better protect it against attacks on the network.
The marketing may also benefit from information such as how many initial users to
start with in a marketing campaign (budget optimization), how much time to wait
between actions, etc. In the case of security, criminal investigators generally need to
understand the information flow between, e.g., members of a given community to
extract hints regarding possible guilt or innocence of a person or a group of persons.
This is clearly an observation phase where the user wants to understand the route that
information took and possible links. Finally, as Web search evolves, if we consider
the case of subscriptions to feeds, a propagation prediction model may be useful
for the user to, e.g., subscribe to the most interesting topic according to its expected
growth (in addition to his interests). This reflects a more active usage of the diffusion
prediction.

2.2 Model Formation

Central to optimization problems relating to information diffusion is the problem of
identifying the right diffusion model. Therefore, we provide a survey of available
models and address the following questions: What are the necessary and sufficient
parameters of an accurate model? How can we validate the use of a specific model?
How can one obtain data about the parameters? Given the intricacy of human
interactions, finding the right diffusion model is still an open problem, even in the
presence of the large datasets available today. In this section, we give an overview
of the most common propagation models, including epidemic models [78, 85],
the “Bass” model [16] for product adoption, and basic diffusion models such as
independent cascade (IC) and linear threshold (LT) [56]. The goal is also to learn
about fundamental properties of such processes in a variety of settings.

2.2.1 Epidemic Models

Infectious agents have had decisive influences on the history of mankind. Fourteenth
century Black Death has taken lives of about a third of Europe’s population at
the time. The first major epidemic in the USA was yellow fever epidemic in
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Philadelphia in 1793, in which 5000 people died out of a population of 50,000.
This epidemic has had a major impact on the life and politics of the country.
Thucydides describes the Plague of Athens (430–428 BC): 1050 of 4000 soldiers on
an expedition died of a disease. Thucydides gives a detailed account of symptoms:
some so horrendous that the last one—amnesia—seems a blessing. An interesting
feature of this account is that there is no mention of person-to-person contagion,
which we now suspect with most new diseases. It was not until the nineteenth
century that the person-to-person contagion on was beginning to be discussed. In
this book, we will mostly be interested in modeling infectious diseases, where the
major means of disease spread comes from the person-to-person interaction.

The practical use of epidemic models must rely heavily on the realism put into
the models. This does not mean that a reasonable model can include all possible
effects, but rather incorporate the mechanisms in the simplest possible fashion so
as to maintain major components that influence disease propagation. Great care
should be taken before epidemic models are used for prediction of real phenomena.
However, even simple models should, and often do, pose important questions about
the underlying mechanisms of infection spread and possible means of control of the
disease or epidemic.

We begin with classical papers by Kermack and McKendrick (1927, 1932, and
1933). These papers have had a major influence on the development of mathematical
models for disease spread and are still relevant in many epidemic situations. The first
of these papers laid out a foundation for modeling infections which, after recovery,
confer complete immunity (or in case of lethal diseases—death). The population is
taken to be constant—no births or deaths other than from the disease are possible—
consistent with the course of an epidemic being short compared with the life time of
an individual. If a group of infected individuals is introduced into a large population,
a basic problem is to describe the spread of the infection within the population as
a function of time. In the course of time the epidemic may come to an end. One
of the most important questions in epidemiology is to ascertain whether this occurs
only when all of the initially susceptible individuals have contracted the disease or if
some interplay of infectivity, recovery, and mortality factors may result in epidemic
“die out” with many susceptibles still present in the unaffected population.

Mathematical modeling of infectious diseases is a tool to investigate the mecha-
nisms for outbreak and spread of diseases and to predict the future course in order
to control an epidemic. Generally there are several types of epidemic models.

First, stochastic models. The epidemic process has random nature. Stochastic
models are used to estimate the probabilistic quantities for the outcome events, such
as the probability distribution of extinction time, the probability distribution of final
epidemic size, the associate mean, and so on.

Second, deterministic compartmental models. The transition rate from one class
(compartment) to the other one is characterized by derivative mathematically. If
we assume that the population size is differentiable with respect to time, in the
limiting of large population, the time evolution of behavior of each subgroup can be
approximated by the deterministic dynamics.
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In the category of deterministic compartmental models, there are two classical
classes: SIR and SIS. In SIS and SIR epidemic models, individuals in the population
are classified according to disease status, either susceptible, infectious, or immune.
Healthy (“S” = susceptible) nodes become sick (“I” = infected) stochastically from
their infected neighbors with a probability. Alternatively, a sick node becomes
healthy (“R” = removed) and open to re-infection with a probability. These two
parameters are also referred to as the birth rate and death rate of the virus.

The tipping point, or epidemic threshold, of an SIS epidemic model is the
condition under which an infection will die out exponentially quickly irrespective
of initial infection, as opposed to spreading out, causing and epidemic. For a survey
on SIS and numerous other epidemic models, please refer to Hethcote [85].

2.2.2 Product Adoption Model

The well-known first purchase diffusion models in marketing are those of Bass [16],
Fourt and Woodlock [67], and Mansfield [129]. These early models attempted to
describe the penetration and saturation aspects of the product diffusion process.

The main impetus underlying diffusion research in marketing is the Bass model.
Subsuming the models proposed by Fourt and Woodlock [67] and Mansfield [129],
the Bass model assumes that potential adopters of an innovation are influenced by
two means of communication—mass media and word of mouth. In its development,
it further assumes that the adopters of an innovation comprise two groups. One
group is influenced only by the mass media communication (external influence)
and the other group is influenced only by the word-of-mouth communication
(internal influence). Bass termed the first group “Innovators” and the second
group “Imitators.” Unlike the Bass model, the model proposed by Fourt and
Woodlock [67] assumes that the diffusion process is driven primarily by the mass
media communication or the external influence. Similarly, the model proposed by
Mansfield [129] assumes this process is driven by word of mouth.

Figures 2.1 and 2.2 are plots of conceptual and analytical structure underlying
the Bass model. As noted in Fig. 2.1, the Bass model conceptually assumes
that “Innovators” or buyers who adopt exclusively because of the mass media
communication or the external influence are present at any stage of the diffusion
process. Figure 2.2 shows the analytical structure underlying the Bass model. As
depicted, the noncumulative adopter distribution peaks at time T ∗, which is the
point of inflection of the S-shaped cumulative adoption curve. Furthermore, the
adopter distribution assumes that an initial pm (a constant) level of adopters buy
the product at the beginning of the diffusion process. Once initiated, the adoption
process is symmetric with respect to time around the peak time T ∗ up to 2T ∗. That
is, the shape of the adoption curve from time T ∗ to 2T ∗ is the mirror image of the
shape of the adoption curve from the beginning of the diffusion fusion process up to
time T ∗. In general, the Bass model is a popular model appeared at an early stage
for product adoption. For more information, please refer to [128].
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2.2.3 Diffusion Models

Diffusion is the process by which information passes from neighbor to neighbor
[137]. Real-world examples include viral marketing, innovation of technologies,
and infection propagation. Diffusion models are the framework on which diffusion
occurs.

Definition 2.1 A diffusion model is a graph G = V,E along with a collection of
activation functions F = (fv)v∈V , where fv is a {∅, {v}} valued function on 2|V |.

The output of a function fv is a random variable based on the activation function.
Vertices on this graph are usually individuals and the activation function models

the influence individuals exert on others. The activation function usually depends
only on the neighbors of v, denoted N(v). This means that fv(S) = fv(N(v)

⋂
S).

Definition 2.2 Diffusion is the process on a diffusion model M , S = (St )
n−1
t=0

started at S ⊆ V :

1. set S0 = S

2. for t > 1 set St = f (St−1) = def
⋃

v∈V fv(St−1)
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The set of nodes activated at the end of diffusion is denoted as σ(S) = ⋃n
t=0(St ).

Diffusion occurs in time steps t . At each time step, all previously activated
nodes remain activated and individuals are either activated or deactivated based
on the activation functions. Diffusion can run on a fixed number of time steps or
indefinitely. Diffusion is said to have stopped when the set of activated nodes in
time step tk is the same as the set in time step tk+n for all n ≥ 1.

One class of diffusion models, namely threshold model, adds an influence
threshold to each individual, which, when overcome, triggers the individual to be
activated. There is a cumulative effect of these models, as it takes a critical number
of influential neighbors to activate an individual.

2.2.3.1 General Threshold Model

This model was defined by Kempe et al. [94] and Mossel and Roch [136].

Definition 2.3 The general threshold model is a diffusion model with

1. A set of threshold values (θv)v∈V , where θv is in the range [0, 1].
2. Node v being activated if fv(S) ≥ θv , where S is the set of neighbors of v.

The activation function on the general threshold model depends on the activated
neighbors of v. There is an assumption of monotonicity on this model made to
reflect that adding active neighbors to a node increases likelihood of the node being
activated.

Definition 2.4 A function f : 2V → R is monotone if f (S) ≤ f (T ) for all
S ⊆ T ⊆ V .

This property captures that activating more nodes will always have an increasing
effect on the nodes that will be activated at a future time.

2.2.3.2 Linear Threshold Model

The linear threshold model is a specialized form of general threshold models. The
linear threshold model, LT model in short, is more often used in marketing research.

Definition 2.5 The linear threshold model is a diffusion model with all of the
properties of the general threshold model with

1. A set of weights (p(u, v))(u,v)∈E with the property Σu∈N(v)p(u, v) ≤ 1.
2. Activation function of the form fv(S) = ∑

u∈N(v) p(v, u) with f (∅) = 0.

Cascade models of diffusion give each individual the ability to influence their
neighbors as soon as they are activated. This is opposed to the threshold models
that rely on a cumulative effect. This model has the property that the more nodes
that have attempted to influence a node, the less likely the node is to be activated.
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Here we give a definition of a specialized cascade model, namely the independent
cascade model, IC model in short.

Definition 2.6 The independent cascade model is a diffusion model with the
following properties:

1. Each arc (u, v) has associated the probability p(u, v) of u influencing v.
2. Time unfolds in discrete steps.
3. At time t , nodes that became active at t − 1 try to active their inactive neighbors

and succeed according to p(u, v).

Note that the probability of a node u influencing a node v is independent of the
set of nodes S that has attempted to influence v.

There is an assumption of monotonicity on this model made to reflect that adding
active neighbors to a node increases likelihood of the node being activated.

2.2.3.3 History-Sensitive Cascade Model

The history-sensitive cascade model, designed by Foster and Potter, is essentially a
reformat of the linear threshold model and is not a different diffusion model itself. In
their research into the spread of influence, Foster and Potter propose the idea that the
probability of a node being activated increases the longer the node is in contact with
other activated nodes. Since at every time step more neighbors can be added, while
the combined influence never goes down, the probability that any node is activated
increases with each new neighbor added. This reflects the monotonic property of the
linear threshold model.

Foster and Potter studied the exact effects of diffusion over time on the
probability that any node would be activated at time step k. They studied this effect
on tree-structure graphs and also on general graphs and proposed algorithms for
determining these probabilities. To attain the probability of a node being activated
at any given time step, a Markov chain model is used.

Definition 2.7 A Markov chain is a sequence of random variables X1, X2, X3, with
the property that Pr(Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn).

A Markov chain is a collection of states with transitions between states such that
the probability of transitioning to any state from any other state depends only on the
current state. Foster and Potter use a Markov chain model that encode sets of active
nodes in binary strings and then create a transition matrix that maps the probability
of transitioning from any set of activated nodes to any other set. By iterating over
this transition matrix, it is possible to find the exact probability of any node being
activated at any time step for any arbitrary graph.
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2.2.3.4 Cascade Models

Cascade models of diffusion give each individual the ability to influence their
neighbors as soon as they are activated. This is opposed to the threshold models
that rely on a cumulative effect. This model has the property that the more nodes
that have attempted to influence a node, the less likely the node is to be activated.

2.2.3.5 General Cascade Model

This model was designed by Kempe et al. [94] as a general form of the cascade
model. This model has the property that the more nodes that have attempted to
influence a node, the less likely the node is to be activated.

Definition 2.8 The general cascade model is a diffusion model with the following
properties:

1. nodes are live at time t if they were activated in time t − 1.
2. a collection of probability functions P = pv, v ∈ V where pv is a [0, 1]-valued

function on 2V .
3. activation function of the form

fv(W) =
{

1 with probability pv(W)

0 otherwise

where W ⊆ S and every w ∈ W is live at time t .
4. node v being activated in time t if fv(W) = 1, where W is the set of neighbors

of v live at time t .
5. the order-independence property, defined below.

Note that each of the following definitions use pv as an element of P and are
defined over all v ∈ V . Likewise for fv as an element of F defined over all v ∈ V .

Definition 2.9 The order-independence property states that when σ : 1, . . . , r →
1, . . . , r is a permutation function and u1, . . . , ur and uσ1 , . . . , uσr are two permu-
tations of T , and Ti = u1, . . . , ui−1 and T ′

i = uσ1 , . . . , uσi−1 , then

r∏

i=1

(1 − pv(ui

⋃
S

⋃
Ti)) =

r∏

i=1

(1 − pv(uσi

⋃
S

⋃
T ′

i ))

for all sets S disjoint from T .

The probability of a node u influencing a node v depends on the set S of
nodes that has already attempted to influence v. However, the ordering dependence
property states that the probability of u activating v does not depend on the order of
nodes in the set S that have previously attempted to activate v.
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2.2.3.6 General Cascade and General Threshold Equivalence

The general cascade model has been shown to be equivalent to the general threshold
model [94] under the following mapping:

1. for the probability function in the general cascade model:

pu(u
⋃

S) = fv(S
⋃

u) − fv(S)

1 − fv(S)

2. for the activation function in the general threshold model:

fv(S) = 1 −
r∏

i=1

(1 − pv(ui)
⋃

Si−1)

where S = u1, . . . , ur and Si = u1, . . . , ui .

This effectively says that by choosing the edge weights in either model, an
instance of the general threshold model may be transformed into an instance of
the general cascade model. This mapping ties the two models together and shows
that diffusion is an equally hard problem on either model. Therefore, conclusions
on one model also apply to the other model.

2.2.3.7 Decreasing Cascade Model

The decreasing cascade model was also defined by Kempe et al. [94] and is an
extension of the general cascade model with the property that the more nodes that
have attempted to activate a node, the less probability there is that the node becomes
activated.

Definition 2.10 The decreasing cascade model is a diffusion model with all of
the properties of the general cascade model with the additional property where
pv(u

⋃
S) ≥ pv(u

⋃
T ) whenever S ⊆ T .

2.2.3.8 Independent Cascade Model

This model was initially investigated by Goldenberg et al. in the context of
marketing [73] and was defined by Kempe et al. [93]. Along with the linear threshold
model, this model is classically used for studying diffusion on networks. It exists as
a special case of the decreasing cascade model.

Definition 2.11 The independent cascade model is a diffusion model with all of
the properties of the decreasing cascade model with the additional property that the
pv(u

⋃
S) = pv(u) for all sets S ⊆ V .
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This means that the probability of a node u influencing a node v is independent
of the set of nodes S that has attempted to influence v. Since we will be using this
model for the remainder of our research, it is helpful to define some shorthand. We
can look at this model as a set of edge probabilities on a graph.

Definition 2.12 On the independent cascade model, an edge probability, bu,v is the
probability that a node u has to infect v whenever u is infected.

Note that bu,v does not necessarily equal bv,u and in fact, it will be the case in
certain situations in our research that if bu,v is non-zero, that bv,u is 0.

It should be noted that the independent cascade model has the property that a
node has exactly one time step in which it is infected to infect other nodes. That is,
each node is infectious for exactly one time step and then can no longer be infected,
nor can it infect any other nodes.

2.3 Problem Optimization

To better understand the underlying ideas behind diffusion and social networks,
we study the formulations and optimizations for two important problems in social
networks: (1) maximizing the spread of influence and (2) limiting the spread of
misinformation, which is also called rumor blocking in some related work.

To begin with, we will cover some basic knowledge of social network. Social
network is modeled as a directed graph G = (V ;E) with vertices in V modeling
the individuals and edges in E modeling the relationship between individuals. For
example, in co-authorship graphs, vertices are authors of academic papers and two
vertices have an edge if the two corresponding authors have coauthored a paper.

2.3.1 Influence Maximization

An intensively studied problem in viral marketing is that, by picking a small group
of influential individuals in a social network—say, convincing them to adopt a
product—it will trigger the largest cascade of influence by which many users will
try the product ultimately. Domingos and Richardson [53] are the first to pose it as
a algorithmic problem and solve it as a probabilistic model of interaction. In [93],
Kempe et al. formalize it as the problem of influence maximization.

A social network is modeled as a directed graph G = (V ,E) with vertices
in V modeling the individuals and edges in E modeling the relationship between
individuals. For example, in co-authorship graphs, vertices are authors of academic
papers and two vertices have an edge if the two corresponding authors have
coauthored a paper. Let p denote the influence probabilities between two vertices.
The influence is propagated in the network according to a diffusion model m. Let S

be the subset of vertices selected to initiate the influence propagation, which is also
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called seed set. Let σm(S) be the expected number of influenced nodes at the end
of propagation process. The formal definition of influence maximization problem is
given as follows:

Problem 2.1 (Influence Maximization) Given a directed and edge-weighted
social graph G = (V ,E, p), a propagation model m, and an integer k ≤ |V |,
find a seed set S ⊂ V , |S| = k, such that the expected influence σm(S) is maximum.

This problem is also referred to as the identification of influential users or opinion
leaders in a social network. This problem under both independent cascade (IC)
and linear threshold (LT) propagation models is shown to be NP-hard [94], and
so attempts have been made at approximating the value of σm(S).

For a diffusion model with a non-negative, monotone submodular activation
function, a greedy hill-climbing algorithm approximates the optimum within a
factor of (1 − 1/e) − ε for any real number ε, as shown by Kempe et al. [93]. By
greedy hill-climbing algorithm we mean an algorithm which, at every step, adds to
the output set the node that currently has the highest influence spread. The challenge
of the greedy algorithm rises when selecting a new vertex ν that provides the largest
marginal gain σm(S + ν) − σm(S) compared to the influence spread of current seed
set S. Computing the expected spread given a seed set turns out to be a difficult task
under both the IC model and the LT model. Instead of finding an exact algorithm,
Kempe et al. run Monte Carlo simulations of the propagation model for sufficiently
many times (10,000 trials) to obtain an accurate estimate of the influence spread,
leading to a very long computation time.

A vast number of papers have studied improving the efficiency and availability
of the influence maximization [25, 37, 39, 130, 149, 183, 187, 188]. In [37], Chen
et al. also propose a degree discount heuristics with influence spreads and combines
a Cost-Effective Lazy Forward (CELF) scheme to further improve the greedy
algorithm. In [39], Chen et al. propose a scalable heuristic called DAGs (local
directed acyclic graphs) for the linear threshold model. They construct local DAGs
for each node and computing the expected spread over DAGs can be done in linear
time while over general graphs it is #P-hard. In [130], Mathioudakis et al. simplified
the network to accelerate the speed of finding seeds. However, these heuristics
lack of theoretical guarantees. At this front, the state of the art is the reverse
influence sampling (RIS) approach [25, 188]. These methods attempt to generate a
a1 − 1/ − ε approximation solution with minimal number of RIS samples. And the
IMM algorithm [188] is among the most competitive ones so far. In [149], Nguyen
et al. generalize the RIS sampling methods into sampling frameworks and optimize
it by an innovative stop and share strategy. Their method uses minimum number of
samples while meeting strict theoretical thresholds for the influence maximization
problem.

Another issue for Kempe’s method is that it assumes a weighted social graph as
input and does not address the problem of learning influence probabilities. In [164],
Saito et al. study how to learn the probabilities of the IC model from a set of past
propagations by formalizing this as a likelihood maximization problem and then
applying the expectation maximization (EM) algorithm to solve it; Goyal et al. [75,
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76] propose a credit model for learning influence probability from pure historical
action logs which takes the temporal nature of influence into account. In [207], Xu et
al. first present a method to identify influential entities in large social networks based
on a weighted maximum cut framework which is totally separate from traditional
method of greedy strategy while maintaining high efficiency. Moreover, they have
developed a new method of learning influence strength by analyzing both social
network structure and historical user data.

Some variations are proposed to handle different real-world requirements, such
as looking at communities, competitive and complementary influence maximiza-
tion. Leskovec et al. [115, 183] optimized placements for a set of social sensors such
that the propagation of information or virus can be effectively detected in a social
network. Lappas et al. [111] discover a set of key mediators which determine the
bottlenecks of influence propagation if seed nodes try to activate some target nodes.
Sun et al. [183] study the multi-round influence maximization problem, where
influence propagates in multiple rounds independently from possibly different seed
sets.

A characteristic common to the studies discussed so far is the assumption that
information cascades of campaigns happen in isolation. Next we introduce a group
of problem formulations that capture the notion of competing campaigns in a
social network [19, 26, 33, 40, 104, 190]. This scenario will frequently arise in
the real world: multiple companies with comparable products will vie for sales
with competing word-of-mouth cascades; similarly, many innovations face active
opposition also spreading by word of mouth. Carnes et al. [33] study the strategies
of a company that wishes to invade an existing market and persuade people to buy
their product. This turns the problem into a Stackelberg game where in the first
player (leader) chooses a strategy in the first stage, which takes into account the
likely reaction of the second players (followers). In the second stage, the followers
choose their own strategies having observed the Stackelberg leader decision, i.e.,
they react to the leader’s strategy. Carnes et al. use models similar to the ones
proposed in [93] and show that the second player faces an NP-hard problem if
aiming at selecting an optimal strategy. Furthermore, the authors prove that a greedy
hill-climbing algorithms leads to a (1 − 1/e − ε)-approximation.

Around the same time, Bharathi et al. [19] introduce roughly the same model for
competing rumors and they also show that there exists an efficient approximation
algorithm for the second player. Moreover they present an FPTAS for the single
player problem on trees. Kostka et al. [104] considered the rumors diffusion as a
game theoretical problem under a much more restricted model compared with IC
and LT. They showed that the first player did not always obtain benefit although
he/she started earlier. Trpevski et al. [190] propose a competitive rumors spreading
model based on SIS model in epidemic domain, but they did not address the issue of
influence maximization or rumor blocking. Borodin et al. in [26] study competitive
influence diffusion in several different models extended from LT. Chen et al. [40]
address positive influence maximization under an extension of the IC model with
negative opinions about the product or service quality.
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2.3.2 Misinformation Minimization

While the ease of information propagation in social networks can be very beneficial,
it can also have disruptive effects. A number of examples of this sort are the spread
of misinformation on swine flu in Twitter [135], exaggerated reports on a bomb
attack in Grand Central, and celebrities that are falsely claimed as being dead [86].
We specifically focus on the study that addresses the problem of influence limitation
[30] where a bad campaign starts propagating from a certain node in the network
and use the notion of limiting campaigns to counteract the effect of misinformation.
The problem of misinformation minimization can also be called as rumor blocking
problem or influence limitation problem. Its definition is defined as follows.

Problem 2.2 (Misinformation Minimization) Given a graph G = (V ;E;p),
where p represents its positive and negative edge weights, a negative seed set
N0, and a positive integer k, the goal is to find a positive seed set S of size at
most k such that the expected number of negatively activated nodes is minimized,
or equivalently, the reduction in the number of negatively activated nodes is
maximized.

Kimura et al. in [98] deal with influence limitation problem through blocking
a certain number of links in a network. The most recent works regarded with this
problem include [30, 84, 147]. In [30], Budak et al. study the controlling of negative
information in social networks, that is, when negative information is diffused in
networks, how to select some nodes to implant positive information in order to
correct the information attitude in the whole network to a maximizing extent. They
prove that under an extension of the IC model, the eventual influence limitation
(EIL) problem is NP-hard. They also examine a more realistic problem of influence
limitation in the presence of missing information and introduced an algorithm called
predictive hill-climbing approach which has good performance.

In [84], He et al. propose a competitive linear threshold (CLT) model to address
the influence blocking maximization (IBM) problem, which is an extension to the
classic linear threshold model. They prove that this problem under CLT model was
submodular and theoretically obtained a (1 − 1/e)-approximation ratio by a greedy
strategy. To improve the efficiency, they further propose the CLDAG algorithm that
is similar to the LDAG algorithm in [39]. In [147], a βI

T -Node Protector problem is
proposed by Nguyen et al., which is actually the extensions of the misinformation
minimization problem under LT and IC models. The goal is to find the smallest
set of highly influential nodes that can limit the viral spread of misinformation
originated from set I to a desired rate (1 − β) (β ∈ [0, 1]) in T time steps. They
present a greedy viral stopper (GVS) algorithm that greedily adds nodes with the
best influence gain for β Node Protectors to the current solution. They also apply
GVS to the network restricted to T -hop neighbors of the initial set I and reached a
slightly better bound for βI

T -Node Protector problems. Besides, a community based
algorithm which returns a good selection of nodes to decontaminate in a timely
manner is proposed.
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2.4 Large-Scale Data Analysis

No matter which technique is used in studying information diffusion, large-scale
data analysis is a significant aspect of study as well as being a significant challenge.
In this part, we will introduce several representative data analysis techniques used in
the social influence analysis. With the increase of studies in social networks, there
are a number of datasets available to researchers [109, 113, 146].

As data grows, data mining and machine learning applications start to embrace
the Map-Reduce paradigm, e.g., news personalization with Map-Reduce EM algo-
rithm [49], Map-Reduce of several machine learning algorithms on multicore
architecture [45]. For the networking data, graphical probabilistic models are often
employed to describe the dependencies between observation data. Markov random
field [180], factor graph [105], restricted Boltzmann machine (RBM) [201], and
many others are widely used graphical models. In [186], Tang et al. proposed
a topical factor graph (TFG) model, for quantitatively analyzing the topic based
social influences. Compared with the existing work, the TFG can incorporate
the correlation between topics. They also proposed a very efficient algorithm for
learning the TFG model. In particular, a distributed learning algorithm has been
implemented under the Map-Reduce programming model.

The techniques used in Web community discovery can also be applied in social
influence analysis. The problem of detecting such communities within networks has
been well studied. Early approaches such as spectral partitioning, the Kernighan-Lin
algorithm, hierarchical clustering, and G-N algorithm work well for specific types
of problems (particularly graph bisection), but perform poorly in real networks.
Recently, most works focus on graph partitioning approaches. The most popular
partition technique in the literature is k-means clustering, which aims to separate
the nodes in k clusters such to maximize/minimize a given cost function based
on distances between nodes and/or from nodes to centroids. In [209], Q. Yan et
al. proposed a two-phase method that combines community detection with naive
greedy algorithm to improve time efficiency of influence maximizing problem with
multiple spread model. In the first phase, they use efficient clustering algorithm
such as kernel k-means to partition graph nodes into k clusters, with the parameter k

related to the number of influential nodes. In the second phase, in each community,
they apply techniques in social influence maximization to find influential nodes in
each cluster. Similar work has [48].

2.5 Research Trends

Social networks provide large-scale information infrastructures for people to discuss
and exchange ideas about different topics. The general problem of network influence
analysis represents a new and interesting research direction in social network
mining. There are many potential future directions of this work. Even though the
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influence diffusion in social networks has been intensively studied, we note that
there are three essential dimensions emerging from the analysis we performed,
which could be of great benefits for future researchers.

2.5.1 Learn Influence Probabilities of Diffusion Models

In social network analysis, two information diffusion models: the independent
cascade (IC) and the linear threshold (LT) are widely used to solve such problems as
the influence maximization problem and the misinformation minimization problem.
These two models focus on different information diffusion aspects. The IC model
is sender-centered (push type) and each active node independently influences its
inactive neighbors with given diffusion probabilities. The LT model is receiver-
centered (pull type) and a node is influenced by its active neighbors if their total
weight exceeds the threshold for the node. What is important to note is that both
models have parameters that need be specified in advance: diffusion probabilities
for the IC model, and weights for the LT model. However, their true values are not
known in practice. This poses yet another problem of estimating them from a set
of information diffusion results that are observed as time sequences of influenced
(activated) nodes. This falls in a well-defined parameter estimation problem in
machine learning framework.

In [165], K. Saito et al. extended both IC and LT models to be able to simulate
asynchronous time delay. They learned the dependency of the diffusion probability
and the time delay parameter on the node attributes by solving a formulated
problem named as the maximum likelihood estimation problem, and an efficient
parameter update algorithm that guarantees the convergence is derived. Other efforts
of learning parameters of the influence graph from history data include the work
[75, 162]. In [75], A. Goyal et al. proposed both static and time-dependent models
for capturing influence. Moreover, they presented optimized algorithms for learning
the parameters of the various models based on social networks and historical action
logs.

2.5.2 Learn the Speed of Influence Spread in Networks

It has been observed that information spreads extremely fast in social networks.
There has been some but not enough theoretical results about the analysis of
influence spread speed. In [52], B. Doerr et al. have shown that for preferential
attachment graphs the classic push-pull strategy needs Θ(logn) rounds to inform all
vertices. The slightly improved version which avoids that a vertex contacts the same
neighbor twice in a row only needs Θ(logn/loglogn) rounds, which is best possible
since the diameter is of the same order of magnitude. In [66], N. Fountoulakis et al.
establishes for a class of random graphs ultrafast time bounds on the running time of
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the synchronous push-pull protocol that is needed until the majority of the vertices
are informed. They present the first theoretical analysis of this protocol on random
graphs that have a power-law degree distribution with an arbitrary exponent β > 2.
Their main findings reveal a striking dichotomy in the performance of the protocol
that depends on the exponent of the power law. More specifically, it is shown that if
2 < β < 3, then the rumor spreads to almost all nodes in Θ(loglogn) rounds with
high probability. On the other hand, if β > 3, then Θ(logn) rounds are necessary.

2.5.3 Study Variations of Influence Maximization

Traditional diffusion models including IC and LT do not fully incorporate important
temporal aspects that have been well observed in the dynamics of influence
propagation. Firstly, the propagation of influence from one person to another may
incur a certain amount of time delay, which is obvious from recent studies by
statistical physicists on empirical social networks. Secondly, the spread of influence
may be time-critical in practice. In a certain viral marketing campaign, a company
might wish to trigger a large cascade of product adoption in a fairly short time
frame, e.g., a 3-day sale. Therefore it is very meaningful to extend the influence
maximization problem to have a time constraint.

Chen et al. [41] proposed the time-critical influence maximization problem, in
which one wants to maximize influence spread within a given deadline. In their
model influence delays are constrained to follow the geometric distribution. In
[119], B. Liu et al. proposed a new problem of the time constrained influence
maximization in social networks based on a latency aware independent cascade
model. They also proposed to use influence spreading paths to quickly and
effectively approximate the time constrained influence spread for a given seed set.
Sun et al. [183] propose to study multi-round influence maximization problem,
which models the viral marketing scenarios in which advertisers conduct multiple
rounds of viral marketing to promote one product.



Chapter 3
Information Source Detection in Social
Networks

3.1 Introduction

The rising popularity of online social networks has made information generating
and sharing much easier than ever before, due to the ability to publish content to
large, targeted audiences. Such networks enable their participants to simultaneously
become both consumers and producers of content, shifting the role of information
broker from a few dedicated entities to a diverse and distributed group of individuals.
While this fundamental change allows information propagating at an unprecedented
rate [166], it also enables unreliable or unverified information spreading among
people, such as rumors [47].

Rumor has been a research subject in psychology and social cognition for a
long time [50]. It is often viewed as an unverified account or explanation of events
circulating from person to person and pertaining to an object, event, or issue in
public concern [152]. Bordia et al. [23] propose that transmission of rumor is
probably reflective of a “collective explanation process.” Since there is often not
enough resource to manually identify rumors or misinformation from the huge
volume of fast evolving data, it has become a critical problem to design systems
that can automatically detect misinformation and disinformation. Microblogging
services, like Twitter, allow small pieces of information to spread quickly to large
audiences, allowing rumors to be created and spread in new ways [108].

Current media environment is suitable to the emergence and propagation of
rumors that are not limited to insignificant subjects: Rumors can have major
consequences on political, strategic, or economical decisions. Increasingly, they are
triggered off on purpose for various reasons: campaigns can be carried out in order
to discredit a company, endanger strategic choices, or question political decisions.
Therefore research on rumor detection has great significance on Web security issues
[140].

In recent times, many Web based systems have been developed to detect and
evaluate the rumors in social networks. Examples are (1) TwitterTrails.com [133], a
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system which permits users to determine the features of propagated rumors and its
falsification, (2) TweedCred [80], an instantaneous system to judge trustworthiness
of posts on Twitter, (3) Hoaxy [174], a platform for tracking the misinformation
in a social network, (4) Emergent.info [189], a real-time rumor follower that
focused on rising tales on the Internet and observes their faithfulness, and (5)
Snopes.com [181] and factcheck.org [60], admired websites archiving memes and
urban myths. The reality checking abilities of these rumor detection systems validate
the authentication of rumors on Web and vary from entirely automatic to semi-
automatic. But, these systems do not track or observe the diffusion progress and do
not detect all possible source(s).

Rumor Detection using Machine Learning Social network analysis about study-
ing rumors often focuses on machine learning techniques such as building classi-
fiers, sentiment analysis, Twitter data mining, and so on. Work in this area includes
[59, 116, 158, 160]. Leskovec et al. use the evolution of quotes reproduced online
to identify memes and track their spread overtime [116]. Ratkiewicz et al. [160]
created the Truthy system, identifying misleading political memes on Twitter using
tweet features, including hashtags, links, and mentions. Other projects focus on
highlighting disputed claims on the Internet using pattern matching techniques [59].
Qazvinian et al. [158] explore the effectiveness of three categories of features: con-
tent based, network based, and microblog specific memes for correctly identifying
rumors in microblogs. In these introduced research work, a complete set of social
conversations (e.g., tweets) that are actually about the rumor need to be retrieved
first.

There have appeared some studies on analyzing rumors and information cred-
ibility on Twitter, the world’s largest microblogging platform. Castillo et al. [34]
focus on automatically assessing the credibility of a given set of tweets. They
analyze the collected microblogs that are related to “trending topics,” and use
a supervised learning method (decision tree) to classify them as credible or not
credible. Qazvinian et al. [158] focus on two tasks: The first task is classifying those
rumor-related tweets that match the regular expression of the keyword query used to
collect tweets on Twitter monitor. The second task is analyzing the users’ believing
behavior about those rumor-related tweets. They build different Bayesian classifiers
on various subsets of features and then learn a linear function of these classifiers for
retrieval of those two sets. Mendoza et al. [132] use tweets to analyze the behavior
of Twitter users under bombshell events such as the Chile earthquake in 2010. They
analyze users’ retweeting topology network and find the difference in the rumor
diffusion pattern on Twitter environment than on traditional news platforms.

Rumor Source Detection Based on Information Spreading Many studies on
the problem of information propagation are inspired from the more common issue
of contagion and generally use models for viral epidemics in populations such
as the susceptible-infected-recovered (SIR) model. On this subject, research has
focused on the effects of the topological properties of the network on inferring
the source of a rumor in a network. Shah and Zaman [171–173] were the first to
study systematically the problem of infection sources estimation which consider
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an susceptible-infected (SI) model, in which there is a single infection source, and
susceptible nodes are those with at least one infected neighbor, while infected nodes
do not recover. Subsequently, [123, 126] consider the multiple sources estimation
problem under an SI model; [211] studies the single source estimation problem
for the susceptible-infected-recovered (SIR) model, where an infected node may
recover but can never be infected again; and [125] considers the single source
estimation problem for the susceptible-infected-susceptible (SIS) model, where a
recovered node is susceptible to be infected again.

Although all the works listed above answer some fundamental questions about
information source detection in large-scale networks, they assume that a complete
snapshot of the network is given while in reality a complete snapshot, which may
have hundreds of millions of nodes, is expensive to obtain. Furthermore, these works
assume homogeneous infection across links and homogeneous recovery across
nodes, but in reality, most networks are heterogeneous. For example, people close to
each other are more likely to share rumors and epidemics are more infectious in the
regions with poor medical care systems. Therefore, it is important to take sparse
observations and network heterogeneity into account when locating information
sources. In [124, 170, 212], detecting information sources with partial observations
in which only a fraction of nodes (observers) can be observed has been investigated.
The work in [154] assumes that for each of the observers, the knowledge of the
first infected time and from which neighbor the infection is received are given.
This assumption is impractical in some cases. For example, it is usually hard to
know from which neighbor the infection is coming from in a contagious disease
spreading within a community. In [54], the authors have considered the detection
rate of the rumor centrality estimator when a priori distribution of the source node
is given. Several other source locating algorithms have also been proposed recently,
including an eigenvalue based estimator [157], a fast Monte Carlo algorithm [2],
and a dynamic message-passing algorithm under the SIR model [2].

Source detection is very significant in various application domains such as
medical (to find the source of epidemic), security (to detect the source of virus),
large interconnected network (to detect the flaws in power grid network, gas or
water pipeline network), social network (to identify the culprits who spread wrong
information), financial network (for checking the reasons of cascade failures), etc.
Due to its wide scope in different applications, past two decades observed large
improvements in source detection techniques. Major research has been done for
source identification in different application areas like finding the first patient to
control an epidemic of disease [9], source of virus [171], gas leakage source in
wireless sensor network [177], propagation sources in complex networks [90], and
source of rumor or misinformation in a social network [148, 175, 206, 210] which
are directly or indirectly related to rumor source detection.

In Sect. 3.2, we introduce a monitor based approach to detect single rumor source
in online social networks and define a probability-score function, named as rumor
quantifier, for ranking how likely nodes are the actual rumor source [206]. Given a
weighted social graph, we propose a polynomial time algorithm to detect the rumor
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source with respect to the popular independent cascade (IC) model in online social
networks. Since real social networks are getting bigger with millions of nodes, our
algorithm can scale well on real large datasets.

In Sect. 3.3, we consider detecting multiple rumors from a deterministic point
of view by modeling it as the set resolving set (SRS) problem [210]. Let G be an
undirected graph on n vertices. A vertex subset K of G is SRS of G if any different
detectable node sets are distinguishable by K . The problem of multiple rumor
source detection (MRSD) will be defined as finding an SRS K with the smallest
cardinality in G. Using an analysis framework of submodular functions, we propose
a highly efficient greedy algorithm for MRSD problem on general graphs, which is
polynomial time under some reasonable constraints, that is, there is a constant upper
bound r for the number of sources. Moreover, we show that our natural greedy
algorithm correctly computes an SRS with provable approximation ratio of at most
(1 + r ln n+ ln log2 γ ), given that γ is the maximum number of equivalence classes
divided by one node-pair. This is the first work providing explicit approximation
ratio for the algorithm solving minimum SRS. Therefore the introduced framework
suggests a robust approach for MRSD independent of diffusion models in networks.

In the last section, we will summarize our work of rumor source detection and
future work in this field will also be discussed.

3.2 Single Source Detection

This section studies the problem of identifying source location of single rumor
in online social networks in which the spread of information follows the popular
independent cascade (IC) model. In the absence of text information, we develop a
monitor based approach to evaluate how likely that a piece of information is actually
a rumor. Given the underlying social network structure, a number of monitor nodes
are injected into the network whose job is to report the data they receive. Based
on observing which of monitors received the information and which did not, we
propose a polynomial time algorithm to compute rumor quantifier, a reachability
based score for ranking the importance of nodes as the rumor source. Extensive
simulation results have shown that, with a reasonable number of monitor nodes
and appropriate monitor deployment, our rumor source detection algorithm can
recognize rumor source effectively and efficiently.

3.2.1 Problem Formulation

We first introduce the propagation model of rumors, then present the formal problem
formulation. Opinion dynamics in a social network can be modeled in some cases
using independent cascade (IC) Model, which is a classical model in influence
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spreading. A individual on Twitter may be influenced by the opinion or posting
of someone she is following, thereby becoming “infected” with the same opinion.

Independent Cascade Model A social network is modeled as a directed graph
G = (V ,E) where V is the set of users and E is the set of edges where each edge
represents relationship between two individuals. Let u ∈ V be a rumor source form
which a rumor starts spreading at time, say t . As basic independent cascade (IC)
model operates, the cascade of rumor spreads in the graph. Specifically, u is given
a single chance to activate each currently inactive neighbor v; it succeeds with a
probability p(u, v)—a parameter of the system—independently of the history. (If u

has multiple inactive neighbors, its attempts are sequenced in an arbitrary order.) If
u succeeds, then v will become active in step t+1. Again, the process runs until no
more activations are possible. In this model, once a node is infected with the rumor,
it retains it forever.

Note that cascades in IC model are necessarily trees since if a node, say s, gets
infected multiple times knowing the node that infected s first is sufficient. Thus, the
influence structure of a cascade is given by a directed tree T , which is contained in
the directed graph G, i.e., the graph over which the cascade propagates.

Problem Definition Given the above spreading model, the goal of rumor source
detection is to identify the rumor source based on the input weighted social graph.

Monitor We assume that a set of k pre-selected nodes M (M ∈ V ) are our monitors.
For rumor investigation purposes, given a specific piece of information (cascade),
monitors report whether they have received it or not. We denote the set of monitor
nodes who have received the rumor by M+, and the set of monitor nodes who have
not received it by M− (where M+,M− ∈ M). We call the former set positive
monitors and the latter negative monitors.

Social Influence Probability Social influence from node u to v, denoted by p(u, v),
is a numerical weight associated with the edge e ∈ E. In most cases, the social
influence score is asymmetric, i.e., p(u, v) �= p(u, v). Furthermore, the social
influence from node u to v will vary on different types of networks.

Thus based on the above concepts, we can define the tasks of rumor source
detection. In this paper, we only discuss the case that there is only one rumor
source. Given a weighted social network G = (V ;E;p), a propagation model, and
a monitor set, the goal is to identify the source node that starts the rumor cascade.
The problem definition is as follows.

Problem 3.1 (Single Rumor Source Detection) Given an cascade model m, we
observe the rumor infected graph G = (V ,E, p) at some time t > 0. We do not
know the value of t or the realization of the spreading times on edges e ∈ E; we
only know positive monitors M+ ⊆ V and negative monitors M− ⊆ V . The goal is
to find the rumor source r ∈ V given G.
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3.2.2 Monitor Based Approach

Our main idea is to leverage monitors for rumor source detection. Firstly, we
introduce a rumor quantifier Q(r), a probability-score function, for ranking the
importance of nodes as the rumor source. Let Q(r) denote how likely that a node
r ∈ V is actually the rumor source. Identifying the rumor source will be formulated
as finding a node r ∈ V that maximizes the rumor quantifier Q(r), which is written
as follows:

Max Q(r) (3.1)

To identify the source of a rumor, we use the intuition that information will
spread more quickly from the source to the positive monitors but more slowly to the
negative monitors. Since our model is probabilistic and dynamic, in other words,
the cascade must be easier to propagate from the source to positive monitors while
harder to propagate from the source to negative monitors. Based on this idea, the
equation of Q(·) can be defined as follows:

Q(r) = �(p(r,M+), p(r,M−)) (3.2)

where p(r,M+) denotes the probability that a cascade spreads from node r to the
positive monitor set M+, and p(r,M−) denotes the probability that the cascade
spreads from node r to the negative monitor set M−.

The function � demonstrates that the quantifier Q(r) of a node r is affected by
two factors: both p(r,M+) and p(r,M−). For each node r ∈ V , the quantifier
first considers how likely that a cascade spreads from it to the positive monitor set,
p(r,M+). In specific, the larger of the probability of p(r,M+), the larger of the
value of Q(r). In other word, the value of our quantifier is proportional to the value
of p(r,M+). Also, the smaller of the value of p(r,M−), the larger of the value
of Q(·). Thus, the node with maximum rumor quantifier Q(·) has the maximum
likelihood estimation in the context of independent cascade model. The details of
the function � will be further depicted in the section of algorithm.

For a cascade, we will first specify the influence probability p(u, v) that
describes how likely that node u spreads the cascade to node v. Then we will
describe the probability p(r,M+) which specifies the probability that the cascade
propagates from node r to the positive monitor set M+. Similarly, we also define
p(r,M−), which describes how likely cascade propagates from node r to the
negative monitor set M− in the network G.

For a path P =< p1, p2, . . . pi, . . . , pm >, we define the propagation probabil-
ity of the path P as,

p(P ) =
m−1∏

i=1

(pi, pi+1) (3.3)
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where the product is over the edges of path P . Intuitively the probability that u

activates v through path P is p(P ), because it needs to activate all nodes along the
path. Here, the edges of the path P simply specify how the cascade spreads, i.e.,
every node gets influenced by its parent.

To approximate the actual expected influence within the social network, we
propose to use the maximum influence path (MIP) to estimate the influence from one
node to another. Let PG(u, v) denote the set of all paths from u to v in a graph G.

Definition 3.1 (Maximum Influence Path (MIP)) For a social graph G, we define
the Maximum Influence Path MIP(u, v) from u to v in G as

MIP(u, v) = argmaxP {p(P )|P ∈ PG(u, v)}.

Ties are broken in a predetermined and consistent way, such that MIP(u, v) is
always unique, and any subpath in MIP(u, v) from x to y is also the MIP(x, y).
If PG(u, v) = �, we denote MIP(u, v) = �.

For any two nodes u, v ∈ V , if there exists no path connecting from u to v, then
p(u, v) = 0 since they cannot influence each other. Otherwise suppose there exists
multiple paths connecting from u to v, we define p(u, v) according to maximum
influence path as follows.

p(u, v) = MIP(u, v) (3.4)

Now that we have specified the probability p(u, v) for any two nodes u, v ∈ V ,
next we define the probability of observing cascade propagating from a node r to a
monitor set M in a particular tree structure T as

pT (r,M) = φmi∈M+p(r,mi) (3.5)

A typical way of function φ is to summarize p(r,mi) for all the nodes mi ∈ M .
Suppose |M| = n, we provide a heuristic in our experiment for function φ, as
demonstrated in Eq. (3.6) such that p(u,M) will not exceed 1.

φmi∈Mp(r,mi) = 1 −
i=n∏

i=1

(1 − p(r,mi)) (3.6)

Here we will use a specific example to illustrate Eq. (3.6). Figure 3.1 shows the
propagation tree form root node u to the monitor set, say M+, which has three
nodes: m1,m2,m3. The influence probabilities among nodes are given. According
to Eq. (3.6), P(u,M+) = 1 − (1 − 0.8 ∗ 0.8 ∗ 0.3)(1 − 0.8 ∗ 0.6)(1 − 0.5) = 0.790.

In this section, we have introduced the rumor quantifier Q(·) for ranking the
probability that a node is the rumor source and how to compute it. In the following
section, we will develop efficient algorithms to detect the rumor source.
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Fig. 3.1 An example of
propagation tree from root
node u to monitor node set
{m1,m2,m3}. The influence
probabilities are given as
edge weights

Algorithm 1 Maximum propagation tree identification
Input: Root Node r , Leaf Nodes mi ∈ M , Weighted Social Graph G = (V ,E, p).
Output: Maximum Propagation Tree T

Set p′ = −lnp.
G′ = (V ,E, P ′).
for all node mi ∈ M do

Find the shortest path h from r to mi in G′.
end for
return all the paths h.

3.2.3 Proposed Algorithm

Given a node r and a monitor node set M , there are more than one propagation trees
satisfying the condition that the root is r and the leaf node set is M . To reduce the
computation complexity, instead of searching all the possible propagation trees, we
only consider the most likely propagation tree from r to M . Here we give a formal
definition of the most likely propagation tree, named as maximum propagation tree.

Definition 3.2 (Maximum Propagation Tree (MPT)) Given a weighted social
graph G = (V ,E, p), a root node r , a monitor node set M , a maximum propagation
tree (MPT (r,M)) consists of all the maximum influence paths from root node r to
each node in the set M .

In order to find the maximum propagation tree given a root node, leaf nodes
(the monitor set) and the underlying graph structure, we propose a polynomial time
solution, as demonstrated in Algorithm 1. The general idea is to find all the shortest
paths from the root node to all the leaf nodes.

Next we will give a proof that why Algorithm 1 can find the desired maximum
propagation tree.

Proof Let G = (V ,E, p) be a weighted social graph. In terms of problem definition
of MPT, the maximum propagation tree for G is a tree, say T ⊆ G, which consists
of all the maximum influence paths from root node r to each node in the set M .
In Algorithm 1, all the weights p is updated to p′ = −lnp. For each node mi ∈
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M+, if a shortest path from r to mi is found, then p′(r,mi) = −lnp is minimized.
Since p(r,mi) ∈ (0, 1) (influence probability), lnp(r,mi) < 0, p′ = −lnp > 0,
thus, p(r,mi) = ∏

(i,j)∈edgeconnectingr,mi
(i, j) is maximized. In other word, the

maximum influence path from root node r to mi ∈ M+ is actually the shortest path
between them.

To detect the hidden rumor source, our algorithm is to, for every mode u ∈
V , first calculate the rumor quantifier Q(u), that is p(u,M+) in our settings here.
Rank nodes according to the value of rumor quantifier decreasingly. The node with
maximum Q(u) is most likely to be the rumor source. The detailed algorithm is
described in Algorithm 2. Given a weighted social graph G in which the weight
denote the influence probability between individuals, and monitor sets M+,M−,
for each node u, we want to find a maximum propagation tree T ∈ G such that the
root is set as node u, while the leafs of the tree are predefined as positive monitors
(line 2). Based on the found maximum propagation tree, the algorithm computes
probabilities p(u,M+) (line 3). The reason why such tree exists is that, if a node
u is the rumor source, u must have paths to all the monitors in M+. Otherwise u

cannot be a rumor source. When it comes to a special case that several nodes cannot
be distinguished by positive monitor set (say, nodes have the same probability of
p(v,M+)) (line 5), the quantifier will consider how likely the cascade spread from
them to negative monitor set (line 6). In this case, the node with lower probability
of p(v,M−) will be ranked higher. Therefore, our rumor quantifier relies mainly
on the positive monitor set while at the same time it does not neglect the effect of
negative monitor set.

3.2.4 Experiments

To test our monitor based method to identify the rumor source, we run our RSD
(Rumor Source Detection) algorithm on graphs of a real online social network.
We are interested in understanding its behavior in practice and comparing its

Algorithm 2 Rumor source detection
Input: Monitor set M+,M−, weighted social Graph G = (V ,E, p).
Output: Rumor Source node.

for all node u ∈ V do
T = Maximum Propagation Tree Identification (u,M+,G);
Compute the probability p(u,M+) based on T ;

end for
for nodes v ∈ V with the same probability of p(v,M+) do

Rank them by p(v,M−) increasingly;
end for
return the node ranking first.
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performance under various monitor deployment. We find that our RSD algorithm
achieves significant accuracy (up to 87%) over real datasets of social networks.

3.2.4.1 Dataset

At September 2010, Twitter reports that its users publish nearly 95 million tweets
per day [194]. This makes Twitter an excellent case to analyze rumors in social
media. In our experiment, we extracted a social graph structure from Twitter using
Twitter search API as testbed. The data we collect has 38,484 nodes, 1,364,322
edges where the nodes represent users, the edges represent the friendship or
followership among the users. Besides the topology, we also calculated Retweet
probability of each edge x → y as the ratio of x’s tweets retweeted by y to all tweets
of x. Calculated retweet probabilities were used to simulate independent cascade
propagation of rumors.

3.2.4.2 Experimental Evaluation

The goal of the experiments on synthetic data is to understand how the underlying
network structure and monitor deployment affect the performance of our algorithm.
In general, we proceed experiments as follows: (1) given a weighted social graph
extracted from Twitter, we simulate a cascade (a random rumor source is selected);
(2) using the retweet probability of each edge, the rumor is propagated according to
IC diffusion model; (3) if the rumor fails to reach 1% of all nodes, it is viewed as a
negligible rumor and this rumor propagation is discarded. A new rumor is selected
and the same process is repeated. For each rumor propagation (cascade), we try
to identify the rumor source using our RSD algorithm with different number of
monitors. To compute average precision of the algorithm, we simulate cascades 200
times.

For best accuracy, it is important to choose monitors wisely. In this paper, we
compare the following three monitor selection methods.

Random Random selection method selects k monitors randomly. This means that,
for any node x ∈ V , the probability that x is selected as a monitor is k/ | V |.
Incoming Degree (ID) In this method, the number of incoming edges of each node
is counted. Then, the top k nodes which have largest counts are chosen as monitors.

Betweenness Centrality (BC) This method calculates betweenness centrality
[145] for each node v, which is defined as

C(v)
∑

s �=t �=v∈V

σst (v)

σst
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Fig. 3.2 Average rank of the actual rumor source in the output (out of 38,484 nodes)

where σst is the number of shortest paths from s to t and pass through v. Then, the
k nodes which have the largest betweenness centrality are chosen as monitors.

3.2.4.3 Experimental Results

Using the method presented in Sect. 3.3, all nodes are sorted in the likelihood that
they are the actual rumor source. Figure 3.2 shows the average rank of the actual
source in the output. In the ideal case, the rank should be one which means that
the top suspect is actually the rumor source. Note that, regardless of the monitor
selection method, the rank of the true source generally decreases (i.e., improves
by becoming closer to 1) as the number of monitors increases. Here the monitor
numbers are set increasingly as [30, 60, 120, 240, 480, 960, 1920, 3840, 7680]. At
first when the number of monitor nodes is small, Random performs worst, but it
improves as more monitors are added. In contrast, Incoming Degree (ID) performs
quite well when there are small number of nodes but is not satisfactory when the
number of monitors is very large. The performance of betweenness centrality (BC)
lies in between.

Figure 3.3 shows the distance between the top suspect and the actual source of
all monitor selection methods. Note that no matter how many monitors are chosen,
the average distance is smaller than three steps. In the ideal case, the distance should
be zero, meaning the top suspect is the source. Figure 3.3 shows a similar tendency
as Fig. 3.2. The distance decreases as more monitors are added. Random has large
distances with a small number of monitors, but the distance decreases drastically as
the number of monitors increase. BC and ID generally show the smallest distance
between the top suspect and the actual source.

We also observe the details of monitors except the number and deployment.
Figure 3.4 shows the ratio of experiments in which no monitor received the rumor.
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Fig. 3.3 Average distance between the found rumor source and the actual rumor source
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Fig. 3.4 Ratio of experiments in which no monitor receives a rumor (out of 200 cascades)

In all monitor selection methods, the ratio decreases as the number of monitors
increases. Among the three methods compared, the Random selection method has
the highest ratio. When the number is monitors is small, Random tends to choose
nodes loosely scattered on the boundary of the graph. Therefore, monitors selected
by Random have low probability of hearing rumors. The Random selection method
also has a high ratio of negative monitors when the number of monitors is small. The
other methods (ID, BC) have small ratio compared to Random. When no monitor
hears the rumor, it is very hard to find the source accurately as shown in Fig. 3.2
(Random when the number of monitors is 30, for example).

Now we take a detailed look about the accuracy of our RSD algorithm. As
Fig. 3.5 demonstrates, the precision of our algorithm increases with the monitor
number increases. The precision is defined as the number of experiments when the



3.3 Detecting Multiple Rumor Sources in Networks with Partial Observations 49

(a) Monitor #: 50 (b) Monitor #: 2000
0

10

20

30

40

50

60

70

80

90

P
re

ci
si

on
 (

%
)

Random
ID
BC

Fig. 3.5 Average precision of RSD algorithm in finding the actual rumor source (out of four
hundreds of experiments). The monitor numbers are set as 50 and 2000

top suspect is the actual rumor source divided by the total number of experiments.
When the monitor are randomly chosen, the precision of RSD increases from 18%
(monitor number: 50) up to 87% (monitor number: 2000), the latter of which is quite
effective in practice. This series of experiments also suggest that when the number
of monitor is small, in order to identify rumor source accurately, the monitor can be
chosen using ID (with precision 45%, monitor number: 50). In contrast, when the
number of monitor is large, random is the best way to choose monitors while at the
same maintains high accuracy.

3.3 Detecting Multiple Rumor Sources in Networks with
Partial Observations

Suppose there are more than one rumor sources in the network; the problem is how
to detect all of them based on limited information about network structure and the
rumor infected nodes. If each rumor source initiates a different rumor, then the
problem can be decoupled to the detection of each rumor source independently.
Thus, we assume that one rumor is initiated at a lot of different locations. We
place some nodes v ∈ K ⊆ V as the observers which has a clock that can
record the time at which the state of v is changed (e.g., knowing a rumor, being
infected or contaminated). Typically, the time when the single source originates is
unknown. The monitors/observers can only report the times when they receive the
information, but no information about senders (i.e., we do not know who infects
whom in epidemic networks or who influences whom in social networks). The
information is diffused from the sources to any vertex through shortest paths in the
network, i.e., as soon as a vertex receives the information, it sends the information
to all its neighbors simultaneously, which takes one time unit. Our goal is to select a
subset K of vertices with minimum cardinality such that the source can be uniquely
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located by the infected times of vertices in K and network structure. This problem
is equivalent to finding a minimum set resolving set (SRS) in networks defined in
our models.

In this section, we originally propose the concept of set resolving set (SRS)
problem and give the formal definition of it. Based on SRS, we then present a
novel approach for locating multiple information sources on general graphs with
partial observations of the set of infected nodes at the observation time, without
knowing the neighbors from which the infection is received. Our method is robust
to network heterogeneity and the number of observed infected nodes. To the best of
our knowledge, this paper is the first work to study multiple rumor source detection
(MRSD) problem via SRS.

Moreover, we show that our objective function for detecting multiple rumor
sources in networks is monotone and submodular. By exploiting the submodularity
of the objective, we develop an efficient greedy approximation for MRSD problem,
which is theoretically proved to have a (1+r ln n+ln log2 γ )-approximation ratio in
real world, given that γ is the maximum number of equivalence classes divided by
one node-pair. These guarantees are important in practice, since selecting nodes is
expensive, and we desire solutions which are not too far from the optimal solution.

The following section is organized as follows. In Sect. 3.3.1, we present the SRS
based model and give a formal problem formulation. In Sect. 3.3.2, we then develop
a greedy algorithm, and prove its approximation ratio. To confirm the effectiveness
of our algorithm, in Sect. 3.3.3, the performance of our algorithm is evaluated in
networks which exemplify different structures.

3.3.1 The Model

We start by describing the model and problem statement of multi-rumor-source
detection. In the process, we will give the definition of set resolving set (SRS),
which is the basis of the model.

If a node u is a rumor source, then we use s(u) to denote the time that it initiates
the rumor. If u is not a rumor source, then s(u) = ∞. For two nodes u and v, the
distance between them is denoted as d(u, v). The time that a rumor initiated at node
u is received by node v is ru(v) = s(u)+d(u, v). For a set of rumor sources A ⊆ V ,
the time that the rumor from A is received by node v is rA(v) = min{ru(v) : u ∈ A}.
Definition 3.3 (Set Resolving Set (SRS)) Let K be a node subset of V . Two node
set A,B ⊆ V are distinguishable by K if there exist two nodes x, y ∈ K such that

rA(x) − rA(y) �= rB(x) − rB(y)

For a node set A ⊆ V , a node x ∈ A is detectable if A and A\{x} are distinguishable
by V . Node set A is detectable if every node in A is detectable. Let D be the family
of detectable node sets. Node set K ⊆ V is an SRS if any different detectable node
sets A,B ∈ D are distinguishable by K .
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Multi-Rumor-Source Detection problem (MRSD): find an SRS K with the smallest
cardinality.

The following theorem characterizes the condition under which a node set is
detectable. The idea behind the condition is as follows: when a rumor is initiated at
a node x after x can receive the same rumor from some other nodes, then one cannot
tell whether the rumor is initiated by x or x merely relays the rumor.

Theorem 3.1 A node set A is detectable if and only if for every node x ∈ A,

s(x) < rA\{x}(x) (3.7)

Proof Suppose there is a node x ∈ A such that s(x) ≥ rA\{x}(x). Then, there is a
node z ∈ A \ {x} such that s(x) ≥ rz(x) = s(z) + d(z, x). For any node y ∈ V ,
rx(y) = s(x) + d(x, y) ≥ s(z) + d(z, x) + d(x, y) ≥ s(z) + d(z, y) = rz(y).

Hence, rA(y) = min{rx(y), rA\{x}(y)} = rA\{x}(y). It follows that rA(y1) −
rA(y2) = rA\{x}(y1) − rA\{x}(y2) for any nodes y1, y2 ∈ V , and thus A and A \ {x}
are not distinguishable by V . This finishes the proof for the necessity.

To show the sufficiency, notice that s(x) < rA\{x}(x) implies that

rA(x) = min{rx(x), rA\{x}(x)} = min{s(x), rA\{x}(x)}
= s(x) < rA\{x}(x)

(3.8)

For any node y1 ∈ A, choose y2 ∈ A such that s(y2) = miny∈A\{y1}{s(y)}. Then

rA\{y1}(y2) = s(y2) = rA(y2) (3.9)

This is because of property (3.8) and the observation s(y2) = ry2(y2) ≥
rA\{y1}(y2) = miny∈A\{y1}{s(y) + d(y, y2)} ≥ miny∈A\{y1}{s(y)} = s(y2). Also
by (3.8), we have

rA(y1) < rA\{y1}(y1) (3.10)

Combining (3.9) and (3.10), we have

rA(y1) − rA(y2) < rA\{y1}(y1) − rA\{y1}(y2)

So, A and A \ {y1} are distinguishable by y1 and y2. The sufficiency follows from
the arbitrariness of y1.

Remark 3.1 If the starting time for all nodes is a constant, then condition (3.7) is
satisfied at all nodes. So, this condition does occur in the real world.

Lemma 3.1 Let A,B be two detectable node sets with A \ B �= ∅. Then for any
node x ∈ A \ B and any node y ∈ B, node sets A and B are distinguishable by x

and y.
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Proof Suppose the lemma is not true, then there exists a node x ∈ A\B and a node
y ∈ B such that

rA(x) − rA(y) = rB(x) − rB(y) (3.11)

Since both A and B are detectable, we see from property (3.8) that

rA(x) = s(x) and rB(y) = s(y)

Combining these with (3.11), we have

s(x) − rA(y) = rB(x) − s(y) ≤ ry(x) − s(y) = d(y, x) (3.12)

Then,

rx(y) = s(x) + d(y, x) ≤ rA(y) ≤ rx(y) (3.13)

It follows that the inequalities in (3.12) and (3.13) become equalities, that is,

rA(y) = rx(y) and rB(x) = ry(x)

But then,

rA(x)−rA(y) = s(x)−rx(y) = −d(x, y) < d(y, x) = ry(x)−s(y) = rB(x)−rB(y)

contradicting (3.11). The lemma is proved.

As a consequence of Lemma 3.1, we have the following theorem.

Theorem 3.2 Node set V is an SRS.

Theorem 3.2 shows that V is a trivial solution to the MRSD problem. In next
section, we shall present an approximation algorithm for the problem.

3.3.2 The Algorithm

In this section, we present a greedy algorithm for MRSD. The algorithm starts from
T = ∅, and iteratively adds into T node-pairs with the highest efficiency (which
will be defined later) until all sets can be distinguished by some node-pair in T .
The output of the algorithm is K = ⋃

T ∈T T .
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3.3.2.1 Potential Function

The efficiency of a node-pair is related with a potential function f defined as
follows. Two detectable node sets A and B are equivalent under T , denoted as
A ≡T B, if A and B are not distinguishable by any node-pair in T . Under ≡T ,
detectable node sets F is divided into equivalence classes. The equivalence class
containing detectable node set A is denoted as [A]T . Suppose the equivalence
classes under ≡T are F1, . . . ,Fk . Define π(T ) = ∏k

i=1 |Fi |! and

f (T ) = − log2 π(T ) (3.14)

For a node-pair T = {x, y}, let

ΔT f (T ) = f (T ∪ {T }) − f (T )

We shall show that f is monotone increasing and submodular. The proof idea
is similar to the one in [17] which studies group testing. The difference is that in
[17], only elements need to be distinguished. While in this paper, distinguishing sets
needs more technical details. The following is a technical result of combinatorics
(see Fig. 3.6a for an illustration of its conditions).

Lemma 3.2 Suppose {hij }j=1,...,q

i=1,...,p is a set of non-negative integers. For i =
1, . . . , p, ai = ∑q

j=1 hij . For j = 1, . . . , q, bj = ∑p

i=1 hij . Furthermore,
∑p

i=1 ai = ∑q

j=1 bj = g. Then

g!
∏q

j=1 bj !
≥

∏p

i=1 ai !
∏p

i=1

∏q

j=1 hij !
(3.15)

Fig. 3.6 (a) Illustration for the conditions in Lemma 3.2. (b) Refinement of equivalence class Fi

by adding S and T
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Proof Consider the expansion of the following multi-variable polynomial:

(x11 + · · · + x1q)a1 · · · (xp1 + · · · + xpq)ap

=
⎛

⎝
∑

a11+···+a1q=a1

a1!
∏q

j=1 a1j !
x

a11
11 · · · xa1q

1q

⎞

⎠ · · ·
⎛

⎝
∑

ap1+···+apq=ap

ap!
∏q

j=1 apj !
x

ap1
p1 · · · xapq

pq

⎞

⎠

=
∑

∏p

i=1 ai !
∏p

i=1

∏q

j=1 aij !
x

a11
11 · · · xa1q

1q · · · xap1
p1 · · · xapq

pq

where the sum is over all non-negative integers {aij }j=1,...,q

i=1,...,p satisfying
∑q

j=1 aij =
ai for i = 1, . . . , p. Setting x1j = · · · = xpj = xj for j = 1, . . . , q in the above
equation, we have

(x1 + · · · xq)a1+···+ap

=
∑

∏p

i=1 ai !
∏p

i=1

∏q

j=1 aij !
x

a11+···+ap1
1 · · · xa1q+···+apq

q

(3.16)

On the other hand,

(x1 + · · · xq)a1+···+ap

= (x1 + · · · xq)g =
∑

r1+···rq=g

g!
∏q

j=1 rj !
x

r1
1 · · · xrq

q
(3.17)

Comparing the coefficients of x
b1
1 · · · xbq

q in (3.16) and (3.17), we have

g!
∏q

j=1 bj !
=

∑
∏q

i=1 ap!
∏p

i=1

∏q

j=1 aij !
(3.18)

where the sum is over all non-negative integers {aij }j=1,...,q

i=1,...,p satisfying
∑q

j=1 aij =
ai for i = 1, . . . , p and

∑p

i=1 aij = bj for j = 1, . . . , q. Since {hij }j=1,...,q

i=1,...,p satisfy
these restrictions, the right-hand side of (3.15) is one term contained in the right-
hand side of (3.18). Then, the Lemma follows.

We shall use the following characterization of monotonicity and submodularity.
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Lemma 3.3 ([55, Lemma 2.25]) Let f be a function defined on all subsets of a set
U . Then f is submodular and monotone increasing if and only if for any two subsets
R ⊆ S ⊆ U and any element x ∈ U ,

Δxf (R) ≥ Δxf (S)

Lemma 3.4 The function f defined in (3.14) is submodular and monotone increas-
ing.

Proof To use Lemma 3.3, we are to show that for any families of node-pairs T1 ⊆
T2 and any node-pair T ,

ΔT f (T1) ≥ ΔT f (T2) (3.19)

In fact, it suffices to prove (3.19) for the case that |T2 \ T1| = 1. Then, induction
argument will yield the result for the general case. So, in the following, we assume
that T2 = T1 ∪ {S}, where S is a node-pair. In this case, (3.19) is equivalent to

π(T1)

π(T1 ∪ {T }) ≥ π(T1 ∪ {S})
π(T1 ∪ {S, T }) (3.20)

Suppose the equivalence classes under ≡T are F1, . . . ,Fk . Notice that for any
detectable node set A, [A]T ∪{S} ⊆ [A]T , that is, adding one node-pair results in a
refinement of equivalence classes. Also notice that for any detectable node set A,

[A]T ∪{S,T } = [A]T ∪{S} ∩ [A]T ∪{T }

Hence we may assume (see Fig. 3.6b for an illustration) that for each i = 1, . . . , k,

(a) equivalence classes under T ∪ {S, T } which are contained in Fi are
{F (i)

s,t }t=1,...,mi

s=1,...,li
;

(b) For s = 1, . . . , li , let FS (i)
s = ⋃mi

t=1 F
(i)
s,t . Equivalence classes under ≡T ∪{S}

contained in Fi are {FS (i)
s }lis=1;

(c) For t = 1, . . . , mi , let FT (i)
t = ⋃li

s=1 F
(i)
s,t . Equivalence classes under

≡T ∪{T } contained in Fi are {FT (i)
t }mi

t=1.

Taking al = |FS (i)
l |, bj = |FT (i)

j |, hlj = |F (i)
lj |, and g = |Fi |, the

conditions of Lemma 3.2 are satisfied, and thus

|Fi |!
∏q

j=1 |FT (i)
j |!

≥
∏p

l=1 |FS (i)
l |!

∏p

l=1

∏q

j=1 |F (i)
lj |!

which is exactly the desired inequality (3.20).
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Lemma 3.5 Suppose node-pair T divides F into k equivalence classes. Then

ΔT f (∅) ≤ |F | log2 k

Proof Suppose the equivalence classes under ≡T have cardinalities n1, . . . , nk ,
respectively. Then

ΔT f (∅) = f ({T }) − f (∅) = log2

(
|F |!

∏k
i=1 ni !

)

≤ log2

(
k|F |) = |F | log2 k

where the inequality can be seen by setting x1 = · · · = xk = 1 in the following
equation:

(x1 + · · · + xk)
|F | =

∑

n1+···+nk=n

|F |!
∏k

i=1 ni !
x

n1
1 . . . x

nk

k

The lemma is proved.

3.3.2.2 The Algorithm and Its Approximation Ratio

As stated at the beginning of Sect. 3.3.2, an SRS will be derived from a family T
of node-pairs such that

node-pairs in T can distinguish all detectable node sets. (3.21)

Call any family of node-pairs as a test family, and call a test family satisfying
condition (3.21) as a valid test family.

Lemma 3.6 Suppose T is a valid test family. Let K = ⋃
T ∈T T and x be an

arbitrary node in K . Then T̃ = {(x, y) : y ∈ K \ {x}} is also a valid text family.

Proof Observe that if two detectable node sets A,B are distinguished by {y, z} ∈
T , then they can be distinguished by either {x, y} or {x, z}. The lemma follows.

Notice that all node-pairs in T̃ have a common element. We call such a test
family as a canonical test family. Notice that

⋃
T ∈T T = ⋃

T ∈T̃ T = K . Hence T
and T̃ are equivalent in the sense that they produce a same SRS. As a consequence,
to find an SRS, it suffices to consider canonical test families, that is, to find a node
x and a valid test family Tx ⊆ Px = {{x, y} : y ∈ V \ {x}}.

In order to analyze the approximation ratio, we have to compare the size of the
approximation solution with that of an optimal one. Since we do not know which
node is in an optimal solution, we have to “guess.” To be more concrete, for each
node x ∈ V , the algorithm finds a valid test family Tx ⊆ Px . Let Kx = ⋃

T ∈Tx
T .
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Algorithm 3 Greedy algorithm for MRSD
Input: A graph G = (V ,E).
Output: A node set K which is an SRS.

for all x ∈ V do
Set Tx ← ∅.
while there exists a node-pair T ∈ Px such that ΔT f (Tx) > 0 do

select node-pair T ∈ Px with the maximum ΔT f (Tx).
Tx ← Tx ∪ {T }.

end while
Kx = ⋃

T ∈Tx
T .

end for
Output K ← arg min{|Kx | : x ∈ V }.

The final output of the algorithm is K = arg minx∈V |Kx |. The details of the
algorithm for MRSD is described in Algorithm 3.

Lemma 3.7 A test family T is valid if and only if ΔT f (T ) = 0 for any node-
pair T .

Proof First, we make some observation. Suppose the equivalence classes under
T are F1, . . . ,Fk . For each i = 1, . . . , k, Fi is refined under T ∪ {T } into
equivalence classes F (i)

1 , . . . ,F (i)
li

. Then

ΔT f (T ) = log2

⎛

⎝

∏k
i=1 |Fi |

∏k
i=1

∏li
j=1 |F (i)

j |

⎞

⎠

= log2

⎛

⎝
k∏

i=1

|Fi |
∏li

j=1 |F (i)
j |

⎞

⎠

(3.22)

Notice that |Fi |/∏li
j=1 |F (i)

j | is the number of ways to put |Fi | balls into li

labeled boxes such that the j -th box contains |F (i)
j | balls (j = 1, . . . , li). So,

|Fi |/
li∏

j=1

|F (i)
j |

is a positive integer which equals 1 if and only if li = 1.

(3.23)

Notice that li = 1 implies that adding node-pair T into T does not incur a strict
refinement of Fi .

If T is a valid test family, then every equivalence class has cardinality 1, and
thus f (T ) = 0. Combining this with the fact that f is a non-positive monotone
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increasing function, we see that the maximum value of f is zero and thus ΔT (T ) =
0 holds for any node-pair T .

If T is not a valid test family, then there exist two different detectable node sets
A,B which cannot be distinguished by T . Since A �= B, we may assume that
A \ B �= ∅. By Lemma 3.1, A,B can be distinguished by a node-pair {y, z} with
y ∈ A\B and z ∈ B. Then by Lemma 3.6, A,B can be distinguished by T = {x, y}
or {x, z}. In this case, at least one equivalence class under T is refined by adding
T . In other words, there is an i ∈ {1, . . . , k} such that |Fi |/∏li

j=1 |F (i)
j | > 1. Then

by (3.22), ΔT (T ) > 0. The lemma is proved.

Theorem 3.3 Suppose γ is the maximum number of equivalence classes divided by
one node-pair. Then, Algorithm 3 correctly computes an SRS with approximation
ratio at most 1 + ln

(|F | log2 γ
)
.

Proof By Lemma 3.7, we see that every Tx computed in the algorithm is a valid
test family. The correctness follows.

To analyze the approximation ratio, suppose K∗ is an optimal solution to MRSD
and x is a node in K∗. Let T ∗ = {{x, y} : y ∈ K∗ \ {x}}.

Consider the test family Tx produced by the greedy algorithm for node x. We
claim that every node-pair T chosen in the algorithm satisfies

ΔT f (Tx) ≥ 1 (3.24)

By expression (3.22), this is equivalent to show

k∏

i=1

|Fi |
∏li

j=1 |F (i)
j |

≥ 2 (3.25)

Since every T taken in the algorithm has ΔT f (Tx) > 0, which is equivalent to
∏k

i=1
|Fi |

∏li
j=1 |F (i)

j | > 1, we see that at least one |Fi |/∏li
j=1 |F (i)

j | is greater than 1,

and thus is at least 2. Inequality (3.25) follows from this observation and property
(3.23). Claim (3.24) is proved.

We shall use Theorem 3.7 in [55], which says, using terminologies here, that as
long as (3.24) is true, then

|Tx | ≤
(

1 + ln
f (T ∗) − f (∅)

|T ∗|
)

· |T ∗| (3.26)

By a property of submodular function (see [55, Lemma 2.23]),

∑

T ∈T ∗
ΔT f (∅) ≥ ΔT ∗f (∅) = f (T ∗) − f (∅)
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Combining this with Lemma 3.5,

f (T ∗) − f (∅)

|T ∗|

≤
∑

T ∈T ∗ ΔT f (∅)

|T ∗| ≤ max
T ∈T ∗{ΔT f (∅)} ≤ |F | log2 γ

(3.27)

Combining (3.26), (3.27) with |Kx | = |Tx | − 1 and |K∗| = |T ∗| − 1, we have

|Kx | ≤ (
1 + ln

(|F | log2 γ
))

(|K∗| − 1) + 1 ≤ (
1 + ln

(|F | log2 γ
)) |K∗|

The approximation ratio follows since the algorithm chooses a node x0 with
|Kx0 | = miny∈V |Ky | ≤ |Kx |.
Remark 3.2 Notice that in a worst case, the number of detectable node sets is
Θ(2n). In fact, if the starting time for all nodes is a constant, then by Remark 3.1,
every nonempty node set is detectable, and thus |F | = 2n − 1. In such a case,
the approximation ratio is (1 + n ln 2 + ln log2 γ ), which is no better than a trivial
bound n. However, in the real world, it is reasonable to assume that the number
of rumor sources is at most a constant number r , and only those detectable node
sets of cardinality at most r are considered. In this case, |F | = O(nr), and the
approximation ratio is (1 + r ln n + ln log2 γ ).

Remark 3.3 Notice that γ ≤ 2D + 1, where D is the diameter of the graph. To
see this, suppose T = {x, y} is a node-pair, A is a node set, and rA(x) − rA(y) =
c, then a node set B belongs to equivalence class [A]{T } if and only if rB(x) −
rB(y) = c. Notice that c has at most 2D + 1 different values, namely, {−D,−(D −
1), . . . ,−1, 0, 1, . . . ,D − 1,D}. So, one node-pair divides F into at most 2D + 1
equivalence classes. In a social network, D is a small constant. So, the third term
ln log2 γ in the above approximation ratio is not large.

3.3.3 Simulation Results

In this section we experimentally evaluate our greedy algorithm for MRSD, in
particular its effectiveness in finding rumor sources—how many sources it identifies,
whether it correctly identifies and its scalability.

As discussed in the introduction, the existing proposals for identifying rumor
sources consider significantly different problems settings than we do. The rumor
centrality of Shah and Zaman [171, 173] can only discover one rumor source, while
estimators proposed in [123] consider a completely different infection model from
ours. As such it is not meaningful to compare performances, and therefore here we
only consider the greedy algorithm for MRSD.
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In our study we conduct simulations on synthetic networks exemplifying differ-
ent types of structure—including geometric trees, regular trees, and small-world
networks. In general, we set the rumor sources, simulate diffusion process, and
record the times of monitors when they received the rumors. Then, given the times
and network structure, we try to infer the number rumor sources and where they are.

As described in Sect. 3.3.1, the diffusion model is implemented as a discrete
event in Java. Each hop takes one time unit. Note that the cascade starts from all
rumor sources at the same time stamp. The number of rumor sources is set as k. For
each k, we perform large number of simulation runs to get high precession.

3.3.3.1 Effectiveness of Greedy in Identifying How Many

The number of infection sources k are chosen to be 1, 2, 3, and 4. For each type
of network and each number of infection sources, we perform 1000 simulation runs
with 500 monitors. The estimation results for the number of infection sources in
different scenarios are shown in Fig. 3.7. It can be seen that our algorithm correctly
finds the number of infection sources more than 95% of the time for geometric
trees, and more than 86% of the time for regular trees. The accuracy of about 79%
for small-world networks is slightly lower than that for the tree networks, as the
node-pair for a small-world network is estimated based on the BFS heuristics, thus
additional errors are introduced into the procedure. It also shows the power of our
approach, as we can easily identify the true number of seeds for most cases using a
principled approach.
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Fig. 3.7 Estimating the number of rumor sources
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Fig. 3.8 Estimating the average error distance between the identified source and the actual source

3.3.3.2 Effectiveness of Greedy in Identifying Which Ones

To quantify the performance of identified rumor sources, we propose error distance.
Error distance is defined as the average distances between the estimates and the
respective rumor sources. To be specific, we match the estimated source nodes with
the actual sources so that the sum of the error distances between each estimated
source and its match is minimized. If we have incorrectly estimated the number of
infection sources, we neglect the extra number of found nodes since here we only
focus on the error distance between correct sources. In Fig. 3.8, we see that the
proposed algorithm finds rumor sources that have small error distance on average.
Note that the reported results here are also based on 1000 trials. For geometric trees,
the average error distance lies between 1.4 and 0.6 hop. For regular trees, the error
distance decreases from 1.2 to 0.65 hops. For small-world networks, the value is
between 1.6 and 0.8. In general, the average error distance is less than two hops.
Moreover, as the number of monitors increases, error distance will start to drop.

3.3.3.3 Scalability

Figure 3.9 demonstrates the average computation time of greedy after running it on
increasingly larger infected graphs (as the complexity depends on the size of the
monitors). We use small-world network graph with k = 2. The statistics of running
time is based on 10 runs for each graph. As we can see, the running time is linear on
the number of edges of the infected graph. Thus, overall our algorithm scales well
with high performance in solution quality.
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Fig. 3.9 Wall-clock computation time (in seconds) by our greedy algorithm for increasingly larger
infected graphs. k = 2. Each point average of 10 runs

3.4 Conclusion

In this chapter, we have studied the rumor source detection problem under different
scenarios. In Sect. 3.2, we have investigated the problem of rumor source detection
in online social networks when lacking of text information. We formalize the
problem and define rumor quantifier, a probability based score for ranking how
likely a node is going to be the actual rumor source. The idea behind it is simple:
a cascade is more likely to spread from a rumor source to the monitors who have
received the information but less likely to those who have not. To compute the rumor
quantifier of each node, we developed a scalable algorithm, RSD, to detect the rumor
source and differentiate the rumors.

We evaluated various monitor deployment on real online social network—
Twitter—with rumor propagating according to the popular independent cascade
model, and showed that our algorithm, RSD is able to accurately identify the
rumor source from a large network when there are reasonable number of monitors.
Our future work includes two aspects: first, discuss the situation when there are
multiple rumor sources spreading in the network. Second, we will try to develop
both structure and content combined method to identify rumor sources.

In Sect. 3.3 we discussed finding multiple rumor sources, the challenging
problem of identifying the nodes from which an infection in a graph started to
spread. We first gave the definition of set resolving set(SRS) and proposed to employ
minimum SRS for identifying the set of rumor sources from which the rest of nodes
in the graph can be distinguished correctly. In this framework, the inference is based
only on knowledge of the infected monitors and the underlying network structure.
We have designed a highly efficient greedy algorithm using submodularity analysis
and theoretically proved the performance ratio to be 1 + ln

(|F | log2 γ
)
, given that

γ is the maximum number of equivalence classes divided by one node-pair.
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Several improvements and future directions are possible. One direction is to
extend our methodology to different applications, including influence maximization,
rumor blocking, etc. and see how the proposed methodology leads to deeper
insights. Another promising direction is to tackle the MRSD problem in different
diffusion models, such as models with transmission probabilities between nodes
considered or models without submodularity property.



Chapter 4
Rumor Blocking in Social Networks

4.1 Overview

Online social networks have many benefits as a medium for fast, widespread
information dissemination. They provide fast access to large scale news data,
sometimes even before the mass media. They also serve as a medium to collectively
achieve a social goal. For instance with the use of group and event pages in
Facebook, events such as Day of Action protests reached thousands of protestors
[71]. While the ease of information propagation in social networks can be very
beneficial, it can also have disruptive effects. One such example was observed in
August, 2012, thousands of people in Ghazni province left their houses in the middle
of the night in panic after the rumor of earthquake [127]. Another example is the fast
spread of misinformation in twitter that the president of Syria is dead, leading to a
sharp, quick increase in the price of oil [208]. There are lots of similar examples.
Although social networks are the main source of news for many people today, they
are not considered reliable due to such problems.

Clearly, in order for social networks to serve as a reliable platform for dis-
seminating critical information, it is necessary to have tools to limit the effect
of misinformation or rumors. Existing work in controlling rumor spread includes
[30, 62, 63, 84, 98, 147]. In [98], Kimura et al. proposed to block a certain number
of links in a network to reduce the bad effects of rumors. In the presence of a
misinformation cascade, [30, 62, 63, 84, 147] aim to find a near-optimal way of
disseminating good information that will minimize the devastating effects of a
misinformation campaign. For instance, [84] seeks ways of making sure that most
of the users of the social network hear about the correct information before the bad
one, making social networks a more trustworthy or reliable source of information.

Related Work The identification of influential users in a social network is a
problem that has received significant attention in recent research. For the influence
maximization problem, given a probabilistic model of information diffusion such
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as the independent cascade model, a network graph, and a budget k, the objective
is to select a set S of size k for initial activation so that the expected value
of f (S) (size of cascade created by selecting seed set A) is maximized [37–
39, 96, 97, 122, 139, 197, 207]. For learning more about this topic, please refer
to our related book chapter of influence maximization.

In contrast to influence maximization problem which studies single-cascade
influence propagation (only one kind of influence diffuses in a social network),
there is a series of work that focus on multiple-cascade influence diffusion in social
networks. Bharathi et al. [19] explored the multiple-cascade influence diffusion
under the extension of the independent cascade (IC) model. In [26], Borodin et
al. studied the multiple-cascade influence diffusion in several different models
generated from the linear threshold (LT) model. In [190], Trpevski et al. proposed
a two-cascade influence diffusion model based on the SIS (susceptible-infected-
susceptible) model. Kostka et al. [104] considered the two-cascade influence
diffusion problem from a game-theory aspect, where each cascade tries to maximize
their influence among the social network. Then they studied it under a more
restricted model than the IC model and the LT model. To learn more about the
study in game-theoretic models where multiple decision-makers try to maximize
their own objectives at the same time, interested readers are referred to [5, 33, 147,
191, 192, 195].

Among multiple-cascade influence diffusion, there is a special kind, rumor
control related problem, in which there are only two kinds of cascades, one is called
positive cascade, while the other is called negative cascade. The goal is to use the
positive cascade diffusion to fight against the negative cascade diffusion. Budak et
al. [30] and He et al. [84] focused on the problem: given a set of initial “bad” seeds,
how to optimally choose the initial set of “good” seeds to limit the diffusion of their
influence? In [30], the authors proved the NP-hardness of this optimization problem
under the generalized IC model. They also established the submodularity of the
objective function and therefore, the greedy algorithm was used as a constant-factor
approximation algorithm. In [84], He et al. proposed a competitive linear threshold
(CLT) model. They proved that the objective function is submodular and obtained a
(1−1/e)-approximation ratio. To overcome the inefficiency of the greedy algorithm,
they designed a heuristic algorithm which uses the local structure of the network.

Extending both the IC and LT models to two-cascade information diffusion
model with a time deadline, Nguyen et al. in [147] studied the following problem:
given bad influence sources, how to select the least number of nodes as good
influence sources to limit bad influence propagation in the entire network, such that
after T steps, the expected number of infected nodes is at most 1 − β. The authors
demonstrated several hardness results and proposed effective greedy algorithms and
heuristic algorithms.

In this chapter, we will introduce two recent works about rumor blocking or
rumor control in detail, including Community-Based Least Cost Rumor Blocking
(Sect. 4.2) [63] and Rumor Blocking Maximization with Constrained Time (Sect. 4.3)
[62].
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To efficiently decontaminate the wide spread of rumors in a network, in Sect. 4.2,
attention is drawn to exploiting communities, i.e., confine the rumor diffusion to
its own community. In this work, we propose to initiate protectors to fight against
rumors in social networks. That is, we select some individuals as initial protectors,
let them spread true or credible information. Correspondingly, some individuals will
be protected from rumors. In specific, we focus on protecting bridge ends using
certain number of protectors. Here, bridge ends are boundary nodes of communities,
which have relations with members in rumor community, and can be reached by
rumors at an earlier stage.

In Sect. 4.3, we investigate the problem: given the number of initial protectors
and deadline, how to select initial protectors such that the number of “really”
protected members in social networks is maximized within deadline. We propose
two models to capture competitive influence diffusion process, namely the Rumor-
Protector Independent Cascade model with Meeting events (RPIC-M) model and the
Rumor-Protector Linear Threshold model with Meeting events (RPLT-M) model.
Three features are included in these two models: a time deadline, random time delay
between information exchange, and personal interests regarding the acceptance of
information. Under these two models, we study the Rumor Containment maximiza-
tion with the constraints: time Deadline, Meeting events, and Personal interests
(RC-DMP problem). We prove that the problem under these two models is both
NP-hard. Moreover, we demonstrate that the objective functions for the problem
under the two different models are both monotone and submodular. Therefore,
we apply the greedy algorithm as a constant-factor approximation algorithm with
performance guarantee ratio of 1 − 1

e
.

In the last section, we will summarize our work of rumor blocking and future
work in this field will also be discussed.

4.2 Community-Based Least Cost Rumor Blocking

We assume that rumors and protectors start diffusing at the same time, and also
follow a same diffusion mechanism. Each node can only be in one of the three
statuses: protected, infected, or inactive. When the two cascades, namely cascade
P for protector and cascade R for rumor, arrive a node at the same time, we say
that cascade P has priority over cascade R, in other words, the node is protected. By
considering the community property of a social network, we identify certain kinds of
nodes, which are located in boundaries of communities, as protection targets. Then
the goal of the Rumor Control (RC) problem is to find the minimal number of initial
protectors to protect certain fraction of these nodes. This is a novel perspective in
constraining rumor dissemination.

The authors in [21] found that a social network is composed of a set of
disjoint communities, and members in a same community have similar interests.
Furthermore, we have the common knowledge that most of the time, rumors
originate from individuals with similar interests. Therefore, we assume that rumors
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originate from a same community of a social network. According to the community
property that connections among individuals in a same community are denser than
that across different communities, we know that influence spreads faster within a
same community, while slower across different communities.

To simplify the description, we name the community that contains rumors as
rumor community and a neighbor community of rumor community as a R-neighbor
community. Considering the number of nodes that we can protect and the number
of nodes that we need to use as initial protectors, it is practical for us to protect
the members in R-neighbor communities. We focus on those nodes that exist in R-
neighbor communities, and also can be reached first when cascade R arrives in their
own communities. We name them as bridge ends.

We study the RC problem under an influence diffusion model: the Deterministic
One-Activate-Many (DOAM) model. Considering the budget for launching the
initial protectors, in the DOAM model, we focus on the RC-D problem, where we
need to protect all the bridge ends.

Through proving the equivalence between the RC-D problem and the Set Cover
(SC) problem, we propose the Set Cover Based Greedy (SCBG) algorithm. Then we
demonstrate that there is no polynomial time o(ln n)-approximation for the RC-D
problem unless P = NP , and get a O(ln n)-approximation ratio solution. Finally,
we collect real-world data to validate our algorithms, and the experimental reports
demonstrate that both the Greedy algorithm and the SCBG algorithm outperform
the other two heuristics, respectively.

The rest of this section is organized as follows: in Sect. 4.2.1, we propose an
influence diffusion models, namely, the DOAM model. In Sect. 4.2.2, we formulate
the RC-D problem under the proposed model. In Sect. 4.2.3, as for the DOAM
model, we prove that there is no polynomial time o(ln n)-approximation for the RC-
D problem unless P = NP , and propose the SCBG algorithm. In Sect. 4.2.4, we
compare our algorithms with other heuristics and analyze the experimental results.

4.2.1 Deterministic One-Activate-Many (DOAM) Propagation
Model

A social network can be modeled as a directed graph G = (V ,E), in which V

denotes the node set and E denotes the edge set. In the context of influence diffusion,
V represents the individuals in this network and E represents the relationships
among these individuals. Furthermore, a node u ∈ V is an in-neighbor of a node
v ∈ V if there exists an edge euv ∈ E (i.e., the edge from u to v exists in graph
G). A node v is called an out-neighbor of u if u is an in-neighbor of v. Based on
this special structure, influence can diffuse among individuals in social networks.
Since under different situations, influence spreads with different mechanisms. In
our paper, we introduce a new influence diffusion model.
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Here, we first introduce some denotations and three properties of the model.
Let R represent rumor cascade and P denote protector cascade. A node is said to
be infected (protected) if it is influenced by rumors (protectors) either initially or
sequentially from one of its neighbors, or inactive otherwise. We also denote the
initial set of infected (protected) nodes for R (P ) as Sr (Sp).

Right now, we introduce three properties of the proposed model: (1) There are
two kinds of cascades R (for rumor) and P (for protector); (2) when R and P reach a
node u at the same time, P has the priority to influence u, meaning u will always be
protected; (3) R or P diffuses progressively, that is, nodes can switch from inactive
to infected or protected, but cannot switch in the other direction, that is, once an
inactive node is infected or protected, it will never change its status. Property (1)
makes sense since it happens in reality. Property (2) is reasonable since people are
likely to believe in the truth. Property (3) originates from [93].

In the following, we describe the proposed model in detail.
Given the initial rumor set Sr , an initial protector set Sp is selected and protected

at step t = 0. At any step t ≥ 1, when a node u first becomes infected (protected),
it will infect (protect) all of its currently inactive out-neighbors successfully. And u

only has one chance to influence its out-neighbors, that is, at step t + 1, u will not
influence its out-neighbors. This influence diffuses in discrete time and continues
until no new inactive nodes become protected or infected.

This influence propagation process is actually the information broadcast (one-to-
many) phenomenon in social networks, under which situation, each person is able to
spread the information to many persons simultaneously. Obviously, the information
diffusion speed under the DOAM model is very fast.

4.2.2 Rumor Control Problem

In this section, we define the Rumor Control (RC) problem in social networks.
It is known that a social network is composed of individuals and connections
between individuals. We notice that social networks have community property,
that is, they divide into groups of members, where connections within the same
group are dense while across different groups are sparse. It is common sense that
individuals form communities based on their common interests, and they are more
likely to communicate with members in their own communities than with members
in other communities. Therefore, the connections within the same communities are
dense while across different communities are sparse. Thus, it is impossible that
information can spread fast from one community to other communities.

Based on the community property, to efficiently control the wide spread of
rumors originated from one community, we try to prevent them from spreading
out to other communities. To realize it, we only need to protect all the members
in R-neighbor communities. Bridge ends are the nodes that exist in R-neighbor
communities and can be reached first when cascade R arrives in their own
communities. Therefore, to protect all the members in R-neighbor communities,
it is enough to protect all the bridge ends.
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In the following, we give some problem-related definitions and the formal
definitions of our problems.

Definition 4.1 A social network is a directed graph G(V,E,C), where each node
vi ∈ V denotes an individual in the network, and a directed edge (vi, vj ) ∈ E

denotes the event that individual vi has influence on individual vj . Here C =
{C1, C2, · · · , Ck} is a set of disjoint communities that form the network, satisfying⋃k

r=1 V (Cr) = V , where V (Cr) denotes the individuals in community Cr .

Definition 4.2 Rumor Control (RC) problem: Given a community Ck in
G(V,E,C), an initial rumor set Sr ⊆ V (Ck) (Ck ∈ C is the rumor community and
is predetermined), and bridge ends B, our goal is to select a least number of nodes
as the initial protectors, such that at least α (0 ≤ α ≤ 1) fraction of the bridge ends
are protected in the end of influence diffusion.

Considering the influence propagation speed under the DOAM model, we
introduce the RC-D problem for the DOAM model. It is because under the DOAM
model, rumors propagate very fast in a social network. In other words, within
short time, rumors can infect a large amount of individuals in a social network.
Considering the budget in launching the initial protectors, the goal of the problem
requires to protect all the bridge ends.

Definition 4.3 The RC-D problem: Given a community Ck in G(V,E,C), an ini-
tial rumor set Sr ⊆ V (Ck) (Ck ∈ C is the rumor community and is predetermined),
and bridge ends B, under the DOAM model, our goal is to select a least number
of nodes as the initial protectors, such that all the bridge ends (α = 1 in the RC
problem.) are protected in the end of influence diffusion.

Since the Set Cover (SC) problem will be used in the RC-D problem, here we
give its definition below.

Definition 4.4 Set Cover (SC) Problem: Given a set of elements U =
{v1, v2, · · · , vn} and a set of m subsets of U , called S = {S1, S2, · · · , Sm}, find a
“least cost” (minimum size) collection C of sets from S such that C covers all the
elements in U . That is,

⋃
Si∈C Si = U .

4.2.3 Set Cover Based Greedy Algorithm for DOAM Model

In this section, we first prove that under the DOAM model, the RC-D problem is
equivalent to the SC problem. Following the seminal result of [64] that the SC
problem is NP -hard, we propose an approximation algorithm called Set Cover
Based Greedy (SCBG) algorithm for the RC-D problem.

In the following, we show the equivalence between the RC-D problem and the
SC problem under the DOAM model, and subsequently, we propose the SCBG
algorithm for the RC-D problem.
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4.2.3.1 Performance for the RC-D Problem

Theorem 4.1 ([64]) There is a polynomial time O(ln n)-approximation algorithm
for the RC-D problem, where n is the number of bridge ends B.

Proof Assume that we have an input of RC-D instance A . For each vertex vi of B,
use BFS (Breadth First Search) method to find all vertices that can reach vi before
vi is infected, this can be done in polynomial time. Assume we have a candidate
root set S, for each vertex rj in S, use BFS method to find all vertices of B that are
reachable from rj before they are infected. Obviously, each root can protect a subset
of vertices of B, then the problem becomes a SC problem, i.e., use the least number
of roots to cover all vertices of B. Therefore, it has a polynomial time O(ln n)-factor
approximation, where n is the number of nodes in B.

Theorem 4.2 If the RC-D problem has an approximation algorithm with ratio k(n)

if and only if the SC problem has an approximation algorithm with ratio k(n).

Proof Assume S1, · · · , Sm is the list of sets for the SC problem and
S1

⋃
S2

⋃ · · · ⋃ Sm = {a1, · · · , an}, we construct a social network as follows.

1. For each set Si , create a vertex ui . For each aj , create a vertex vj , add directed
edges from ui to vj if aj ∈ Si . An edge from ui to vj means vj can be protected
by ui .

2. Create a social network with a constant number of individuals and an infected
node r , add directed edges from r to v1, v2, · · · , vn.

3. Let B be the set of bridge ends including vertices v1, v2, · · · , vn that need to be
protected.

4. The SC problem is converted into the RC-D problem. Thus, it is reasonable to
point out that the RC-D problem has a k(n)-approximation if and only if the SC
problem has a k(n)-approximation.

Corollary 4.1 There is no polynomial time o(ln n)-approximation for the RC-D
problem unless P = NP .

Proof It follows from Theorem 4.2 and the well-known inapproximability result for
the SC problem [64].

4.2.3.2 The SCBG Algorithm

Now we introduce the SCBG algorithm described in Algorithm 2. The main idea
is that we first convert the RC-D problem into the SC problem, then, we apply the
greedy algorithm used for the SC problem to obtain the initial protectors for our
problem.

The brief description is as follows: given the initial rumor set Sr and bridge
end set B. For each node v ∈ B, by using BFS method, we construct v’s Bridge
End Backward Search Tree (BBST) Tv , in which v is the root of the tree. Denote
by T1, T2, · · · , T|B| the BBSTs for corresponding bridge ends. Here 1, 2, · · · , |B|
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represent the roots of these Tvs, respectively. For u ∈ Ti\(Sr

⋃i−1
k=0 Tk), define

T0 = ∅, search Ti+1, · · · , T|B| to find the ones that contain u, and record all their
corresponding roots and i’s corresponding root in the set T Ru. Finally, we apply
Algorithm 1 to select sets from T Ru’s to cover all the nodes in B, and for all these
selected sets T Rvs, all these v’s form the solution to the RC-D problem.

To simplify our expression, here we define the ith level out-neighbors of a node
u: let N0(u) = u, and Ni(u) = N(Ni−1(u)). Since we know the first level out-
neighbors of a node, we can easily get the ith level out-neighbors of a node.

Algorithm 1 Greedy algorithm in SCBG algorithm

Input: B, Ti and T Rj , where i = 1, · · · , |B|, j = 1, · · · , | ⋃|B|
k=1 Tk \ Sr |

Output: Sp .
Initialize L = ∅ and Sp = ∅
while |L| < |B| do

Select u = arg max
v∈⋃|B|

k=1 Tk\Sr
|T Rv \ L|

Sp = Sp ∪ {u} and L = L ∪ T Ru

end while
return Sp .

Algorithm 2 SCBG algorithm-select initial protectors
Input: A directed graph G = (V ,E,C), a given community Cm and a set of initial rumors Sr =
{r1, r2, · · · , rM } ⊆ V (Cm);
Output: Initial protectors Sp ⊆ V ;

for all r ∈ Sr do
construct Rumor Forward Search Tree (RFST) by BFS method to find all bridge ends in G,
which are the leaves of the RFSTs, and denote them by a set B;

end for
for all node v ∈ B do

construct Bridge End Backward Search Tree (BBST) by BFS method to find all the protector
candidates,
record all the in-neighbors x ∈ Ni(v) of v, where i is determined by the value of the shortest
paths between v and any node y ∈ Sr ,
Denote all the nodes in this tree as a set Tv ;

end for
List all Tvs as T1, · · · , T|B|.
for all u ∈ Ti\(Sr

⋃i−1
k=0 Tk) do

define T0 = ∅,
search Ti+1, · · · , T|B| to find the ones that contain u,
record all their corresponding roots and i’s corresponding root in the set T Ru;

end for
Apply Algorithm 1 on T Rus to cover B;
return Output of Algorithm 1.
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Fig. 4.1 (a) Rumor
community and its
R-neighbor communities, red
nodes are rumors and green
nodes are bridge ends; (b)
Initial protectors v1 and R1
for bridge ends in R-neighbor
communities C1 and C2

(a)

(b)

We use Fig. 4.1 to show the bridge ends and the corresponding initial protectors
for them. In Fig. 4.1a, the red nodes r1 and r2 are initial rumors. All green nodes
are bridge ends. In Fig. 4.1b, for simplification, we only illustrate an optimal initial
protectors for R-neighbor communities C1 and C2, respectively, which are black
vertices R1 and v1. As seen from Fig. 4.1b, among rumor community and its two
R-neighbor communities C1 and C2, the green edges form the paths generated by
cascade P (R1 and v1 are the initial protectors), while the red edges form the paths
generated by cascade R (r1 and r2 are the initial rumors). Figure 4.2a is Forward
search tree for rumor r1 with respect to Fig. 4.1a, and Fig. 4.2b is Backward search
tree for bridge end p2 with respect to Fig. 4.1a.
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(a) (b)

Fig. 4.2 (a) Forward search tree for rumor r1 with respect to Fig. 4.1a, and bridge ends are
p1, p2, p3; (b) Backward search tree for bridge end p2 with respect to Fig. 4.1a, all nodes in
this tree except r1 and r2 can protect p2

4.2.4 Experiment Setup and Evaluation

We execute experiments on our algorithms as well as two heuristics in two
real-world networks. Our experiments aim at valuating our algorithms from the
following aspects: (a) effectiveness with respect to different network density, where
network density means the average node degree; (b) effectiveness with respect to
different community size, where community size denotes the number of nodes in
this community; (c) effectiveness with respect to different number of initial rumors.

4.2.4.1 Datasets

We obtain data from two real-world networks. One network, namely Enron Email
communication network, is the same as used in [103, 116]. The other is a
collaboration network, which is used in the experimental study in [114], and this
network has been shown to capture many key features of social networks in [143].

Enron Email Communication Network

This network covers all the email communications within a dataset of around half
million emails. Nodes of the graph represent email addresses and a directed edge
from i to j means i sends at least one email to j . This dataset contains 36,692 nodes
connected by 367,662 edges with an average node degree of 10.0.
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Collaboration Network

Hep collaboration network is extracted from the e-print arXiv, and covers scientific
collaborations between authors with papers submitted to High Energy Physics. In
this network, nodes stand for authors and an undirected edge between i and j

implies that i co-authors a paper with j . Since our problems are based on directed
graph, we represent each undirected edge (i, j) by two directed edges (i, j) and
(j, i). This dataset contains 15,233 nodes connected by 58,891 edges with an
average node degree of 7.73.

To run our experiments, first, we need to obtain the community structure of a
social network, since the community partition problem is not a main point in our
work, we use a community partition approach proposed by Blondel et al. in [21],
and the performance of this approach has been verified in [110]. After obtaining the
community structure of a network, we choose different sizes of rumor communities
and compute the number of corresponding bridge ends from the two networks.
From the Enron Email network, we select two communities, one with 2631 nodes
and 2250 bridge ends, and the other with 80 nodes and 135 bridge ends. From the
collaboration network, we select a community with 308 nodes and 387 bridge ends.

Finally, we evaluate the performance of our algorithms in comparison with two
heuristics: MaxDegree and Proximity. The experimental results are shown in two
aspects: (1) Number of selected protectors under the DOAM model; (2) Number of
infected nodes under the DOAM model.

We compared the following algorithms to confirm the effectiveness of our
algorithms.

MaxDegree A basic algorithm, which simply chooses the nodes according to the
decreasing order of node degree as the initial protectors.

Proximity A simple heuristic algorithm, in which the direct out-neighbors of
rumors are chosen as the initial protectors.

We do not include the random algorithm due to its poor performance. Instead, a
NoBlocking line is included to reflect the performances of these algorithms.

4.2.4.2 Experimental Results

To simplify our presentation, we denote by |R| the number of the initial rumors,
|P | the number of the initial protectors, |C| the number of nodes in the rumor
community, |B| the number of the bridge ends, |N | the number of nodes in the
entire network. To show the simulation results clearly, we adopt the log-time chart.
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Table 4.1 Comparison results under the DOAM model

Dataset/|N |/|C| |R| SCBG Proximity MaxDegree

Hep/15233/308 1%|C| 32.9 25.3 140.6

5%|C| 42.1 74.3 147.8

10%|C| 48.9 133.8 152.6

Email/36692/80 5%|C| 6.2 43.7 72.7

10%|C| 8.2 46.9 79.3

20%|C| 13.8 62.9 91.1

Email/36692/2631 1%|C| 20.4 289.3 1208.8

5%|C| 50.9 1067.6 1350.2

10%|C| 68.4 1422.6 1683.8

Number of Selected Protectors Under the DOAM Model

In Table 4.1, for each rumor community and fixed number of initial rumors (selected
randomly), each decimal represents the average number of initial protectors selected
by each algorithm (we randomly choose initial rumors for several times and each
time we can get a solution). You can see that our SCBG algorithm almost selects
the least number of initial protectors no matter where the community is selected and
how many initial rumors in it. There is only one exception, in which the rumor
community is selected from the Hep network, and has 308 nodes with 3 initial
rumors. The reason is that the average node degree is low in Hep network. When
the number of initial rumors is pretty small, only a few initial protectors are needed
to control the spread of these rumors. Therefore, choosing the direct neighbors of
initial rumors is an efficient strategy, that is, Proximity is a good choice.

Furthermore, we also notice that Proximity always performs better than MaxDe-
gree, it is because that Proximity pay attention to the location of initial rumors,
thus it can control rumor propagation before they infect a large number of nodes;
while MaxDegree only focuses on current influential nodes (nodes having high
degree) regardless of the initial rumors. Therefore, it has to choose more initial
protectors than Proximity under regular situations. Meanwhile, we also observe
that the performance difference among these three algorithms varies under different
situations.

Note that among these three communities, the number of initial protectors
selected by our algorithms varies much less than that in the other two heuristics.
Particularly, in the third community, which is selected from the email network, and
has 2631 nodes, when the number of initial rumors increases from 27 (1%|C|) to
132, the number of initial protectors selected by our algorithm increases from 20.4
to 50.9 (average value), with the absolute change of 30.5. However, the change in
the number of initial protectors is 778.3 and 141.4 for Proximity and MaxDegree,
respectively. The results in this community clearly shows that the SCBG algorithm
significantly outperforms both Proximity and MaxDegree in networks with large
number of nodes and high average node degree.
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Number of Infected Nodes Under the DOAM Model

In this part, we focus on testing the effectiveness of these algorithms in protecting
nodes in the entire social networks. In other words, for the same number of initial
protectors, we want to evaluate the performance of these algorithms. To do this,
firstly, for different test cases (different community sizes with different initial
rumor sizes), we determine the numbers of initial protectors, respectively, and these
numbers are slightly larger than those selected by the SCBG algorithm. Then, for
each test, from corresponding solutions, we randomly choose predetermined size of
nodes as initial protectors. Thirdly, we run the three algorithms using selected initial
protectors. Since each predetermined number is larger than the number of nodes
selected by our algorithm, besides using the nodes in its solution, our algorithm also
has to use some randomly selected nodes. From Figs. 4.3, 4.4, and 4.5, we observe
that rumors propagate very fast within the first four steps while after the fourth step,
almost no new nodes are infected over all test cases.
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Fig. 4.3 Infected nodes under the DOAM model on Hep collaboration network with |N | =
15,233, |C| = 308, |B| = 387. (a) |R| = 1%|C|, |P | = 34. (b) |R| = 5%|C|, |P | = 44. (c)
|R| = 10%|C|, |P | = 55
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Fig. 4.4 Infected nodes under the DOAM model on Enron Email network with |N | = 36,692,
|C| = 80, |B| = 135. (a) |R| = 5%|C|, |P | = 8. (b) |R| = 10%|C|, |P | = 11. (c) |R| =
20%C, |P | = 14

Except Fig. 4.3a, in which the Proximity protects one more node than the SCBG
algorithm due to small size of initial rumors and low network density, the SCBG
algorithm always protects the most number of nodes in comparison with the other
two heuristics. Therefore, we believe that our algorithm can be applied to those
problems that aim at either protecting targeted nodes with least number of protectors
or reducing the number of nodes infected in the entire networks at the end of cascade
diffusion, or both of them.

We also notice that Proximity outperforms MaxDegree for different sizes of
initial rumors in Figs. 4.3 and 4.4. However, we can see in Fig. 4.5, MaxDegree
performs better than Proximity. The reason is that this network has much higher
average node degree.
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Fig. 4.5 Infected nodes under the DOAM model on Enron Email network with |N | =
36,692, |C| = 2631, |B| = 2250. (a) |R| = 1%|C|, |P | = 21. (b) |R| = 5%|C|, |P | = 52. (c)
|R| = 10%|C|, |P | = 69

4.3 Rumor Blocking Maximization with Constrained Time

In this section, we seek effective strategy to stop the diffusion of rumor in a network
considering the following three factors:

1. A constraint on how much time we can use to control the spread of rumor in the
network.

2. There is usually a random time delay in influencing a friend when a person
accepts new information.

3. Individuals make decisions based on relationships with their informed friends,
but also on their personal judgement about the piece of information that is being
diffused.

Here we propose two general models to capture diffusion of rumor and truth
(protector) in a social network and formally define the rumor containment problem
under these two models as two optimization problems. NP-hardness results are
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established for these two optimization problems. We prove the submodularity of
the objective functions in these two problems. This enables us to use the greedy
algorithm as a constant-factor approximation algorithm (for both problems) with a
performance guarantee 1 − 1

e
.

The rest of this chapter is organized as follows: Sect. 4.3.1 presents the two
propagation models. In Sect. 4.3.2, we define the rumor blocking maximization
problem formally, prove its NP-hardness under the two models, and establish the
submodularity of the objective functions. Section 4.3.3 gives the formal description
of the greedy algorithm.

4.3.1 Propagation Models

Social network can be modeled as a directed graph G = (V ,E), where V is the
node set and E is the edge set. In the context of influence diffusion, V represents
the individuals in this network and E represents the relationships among these
individuals. Furthermore, a node v ∈ V is an out-neighbor of a node u ∈ V if
there exists an edge euv ∈ E (i.e., the edge from node u to node v exists in graph
G). A node u is called an in-neighbor of v if v is an out-neighbor of u.

In reality, two individuals in a network may not interact/exchange information
every day. If someone gets influenced by a certain event, then her friends may
learn about this fact several days later, and get influenced also. In other words,
there is a random time delay between the influence friends have on each other. In
this paper, we model this phenomenon using the meeting probability among two
nodes in the graph: the meeting action between a node u and its neighbor v happens
stochastically at any time step with probability muv , independent of everything else.
Moreover, each edge euv is assigned an influence weight (probability) IWuv . In the
following two models, we will explain this influence weight separately in detail.

4.3.1.1 Rumor-Protector Independent Cascade Model with Meeting
Events (RPIC-M)

We first describe one of the most basic and well-studied diffusion models in [93],
namely the independent cascade (IC) model. Then, we describe a generalized model
which models the following additional features: competitive influence diffusion,
meeting events, and personal interest.

In the IC model, a network is considered as a directed graph G = (V ,E),
where V denotes individuals in the network and E denotes the relationship between
individuals. Each edge euv ∈ E is assigned an influence probability puv , indicating
the possibility that node u influences node v successfully. For euv /∈ E, let puv = 0.
Each node can only be in one the following two statuses: inactive or active. Once a
node becomes active, it will remain active forever. The diffusion process unfolds in
discrete time steps. Starting with an initial set of active nodes A0, at any step t ≥ 1,
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when node u first becomes active in step t , it has a single chance to activate any of its
currently inactive neighbors. For neighbor node v, it succeeds with probability puv .
If u succeeds in activating v, then v will become active in steps t + 1, and if u fails
in activating v, then v will remain inactive. Regardless of the activation outcome, u

cannot make any further attempts to activate v in all subsequent rounds. The process
continues until no more activations are possible. If multiple newly activated nodes
are in-neighbors of the same inactive node, then their attempts are sequenced in an
arbitrary order.

We now describe our new model that incorporates competitive influence (the
influence of protector and rumor) diffusion, as well as meeting events and personal
interest. This model extends the models proposed in [30]. We denote it by RPIC-
M (Rumor-Protector Independent Cascade model with Meeting events). Let P (for
“protector”) and R (for “rumor”) denote the two cascades. The initial set of protected
(resp., infected) nodes is denoted by Ap and (resp., Ar ). Each node u has personal
interests in the information (PIu). This parameter PIu is a probability and plays an
role in activating node u. Each node is either inactive, infected, or protected. Each
edge euv is associated with a meeting probability muv and an influence probability
puv (if euv /∈ E,muv = 0 and puv = 0 ).

Given rumor seed set Ar , as in the IC model, a protector seed set Ap is selected
and activated at step t = 0. At any step t ≥ 1, a protected (resp., infected) node
u meets any of its currently inactive neighbors v independently with probability
m(u, v). Since u’s activation, if a meeting event happens between u and v for the
first time, then u has a single chance to try protecting (resp., infecting) v with an
influence probability min{1, puv + PIv}, given that no other neighbor of v tries
protecting or infecting v at the same step.

If the attempt from u succeeds, v becomes influenced (protected or infected) at
step t and will start influencing (protect or infect) its inactive neighbors from time
t + 1 onwards. If there are two or more nodes trying to influence v simultaneously,
at most one of them can succeed. The attempts from the same cascade are ordered
arbitrarily. As for the attempts from different cascades (P and R), we assume that all
the attempts in R have priority over P. Once a node becomes protected or infected,
it will never change its status. The diffusion process continues until no more nodes
can be protected or infected.

4.3.1.2 Rumor-Protector Linear Threshold Model with Meeting Events
(RPLT-M)

Again, we first describe another basic and well-studied diffusion models in [93],
namely the linear threshold (LT) model. Next, we describe a generalized model
which models the following additional features: competitive influence diffusion,
meeting events, and personal interest.

In the LT model, a social network is viewed as a directed graph G = (V ,E),
where V denotes individuals in the network and E denotes the relationship between
individuals. Each edge euv ∈ E is assigned a non-negative weight wuv , which
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represents the impact that node u has on node v. For euv /∈ E, let wuv = 0. For
each v ∈ V ,

∑
u∈V wuv ≤ 1. Each node v is associated with a random threshold

θv , which is drawn independently from a uniform distribution with support [0, 1].
Each node is either active or inactive. Once a node becomes active, it remains active
forever. The diffusion process unfolds in discrete time steps. Starting with an initial
set of active nodes A0, at any step t ≥ 1, a node v will become active if and only
if the total weight coming from its active in-neighbors exceeds its threshold θv , i.e.,∑

u∈At−1
wuv ≥ θv , where At−1 is the set of active nodes by time step t − 1. This

diffusion process continues until no more nodes can be activated.
We now describe our new model that incorporates competitive influence (the

influence of protector and rumor) diffusion, as well as meeting events and personal
interest. This model extends the models proposed in [84]. We denote it by RPLT-
M (Rumor-Protector Linear Threshold model with Meeting events). Let P (for
“protector”) and R (for “rumor”) denote the two cascades. The initial set of protected
(resp., infected) nodes is denoted by Ap and (resp., Ar ). Each node v has personal
interests in the information from protector (PIpv) and rumor (PIrv). These two
parameters are probabilities and play a role in activating node v. Each node is
either inactive, infected, or protected. Each edge euv is associated with a meeting
probabilities muv as well as two weights wuv,p and wuv,r (if euv /∈ E,muv = 0 and
wuv,p = wuv,r = 0). We assume that for all node v ∈ V ,

∑
u∈V wuv,p + PIpv ≤ 1

and
∑

u∈V wuv,r + PIrv ≤ 1. Each node u chooses two independent thresholds,
namely θpu (for P) and θru (for R) randomly from the uniform distribution with
support [0, 1].

Given rumor seed set Ar , as in the LT model, a protector seed set Ap is selected
and activated at step t = 0. At any step t ≥ 1, a protected (resp., infected) node u

keeps its status and meets any of its currently inactive neighbors v with probability
m(u, v). Since u’s activation, if a meeting event happens between u and v for the
first time, then we say that u’s influence (protect or infect) to v is valid. An inactive
node v is protected (resp., infected) if the total valid weight from its protected (resp.,
infected) in-neighbors plus its own interest PIpv (resp., PIrv) exceeds its threshold
θpv (resp., θrv), given that v has not been activated (infected or protected) yet. If
at step t , v is both successfully influenced by P and R, then the diffusion of R has
priority over that of P, and v becomes protected. Once a node becomes protected
or infected, it will never change its status. The diffusion process continues until no
more nodes can be protected or infected.

4.3.2 Rumor Containment with Constraints

In Sect. 4.3.2.1, we define the problem of Rumor Containment maximization with
the following additional constraints: time Deadline, Meeting events, and Personal
interests (RC-DMP). Subsequently in Sect. 4.3.2.1, we show that RC-DMP under
the RPIC-M and RPLT-M models are both NP-hard. Finally in Sect. 4.3.2.1, we
prove that the objective functions of RCM-DM under the above-mentioned two
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models are monotone and submodular. Following the seminal result of [141], the
greedy algorithm is a constant-ratio approximation algorithm for RC-DMP with
performance guarantee 1 − 1

e
.

4.3.2.1 Problem Definition

We note that previous research on rumor blocking (see, e.g., [30, 62, 84, 147]) fails
to address the following additional features:

1. there is often a time deadline on how long the diffusion process can last.
2. people do not interact with each other (influence each other) every day (i.e., the

influence between individuals happens randomly, instead of deterministically at
every time step).

3. In addition to the influence coming from an individual’s friends, she has her own
personal interests/opinions about the information that is being diffused. This may
also affect how well she accepts the information.

We consider these three factors in our RC-DMP problem.
The problem is formally defined as follows: given a directed graph G = (V ,E),

a rumor seed set Ar , and two positive integers k and T , our goal is to find a protector
seed set Ap (|Ap| ≤ k) to minimize the expected number of infected nodes by the
end of time deadline T . We denote the objective function for the RC-DMP problem
by RCT (S), which is the number of nodes that will be infected within deadline T by
the diffusion of rumor, if instead of the set S, the empty set is chosen as the protector
seed set.

NP-Hardness of RC-DM
In this section, we prove that the RC-DMP problem under our two proposed models
is NP-hard.

NP-Hardness of RC-DMP Under the RPIC-M Model

Theorem 4.3 Problem RC-DMP under the RPIC-M model is NP-hard.

Proof Consider the following special case of Problem RC-DMP: The time deadline
T = +∞, all the meeting probabilities are equal to 1, all the personal interests are
0 and puv = 1 for all euv ∈ E. We note that this special case of Problem RC-DMP
is identical to the Problem LCRB-D considered in [62] except the tie-breaking rule.
A similar reduction from the Set Cover problem as that in the proof of Theorem 3
of [62] can be used to prove this result.

Next, we describe the reduction formally. Given an integer k, a ground set N =
{m1,m2, . . . , mn} and a list of subsets of N : S1, S2, . . . , Sm such that S1 ∪ S2 ∪
. . . Sm = {m1,m2, . . . , mn}, the Set Cover problem wishes to find k subsets of N

from the list, such that the union of these subsets covers the entire ground set. We
reduce the Set Cover problem to our problem by constructing a directed graph as
follows:
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1. For each subset Si, i = 1, 2, . . . , m, create a vertex ui . For each element mj , j =
1, 2, . . . , n, create a vertex vj . Add a directed edge from ui to vj if mj ∈ Si .

2. Create a rumor node r . Add directed edges from r to u1, u2, . . . , um.

Now it is easy to see that the set cover instance is a “yes” instance if and only if
in our problem we can find a S such that RCT (S) ≥ n + k. The result follows.

NP-Hardness of RC-DMP Under the RPLT-M Model

Theorem 4.4 Problem RC-DMP under the RPLT-M model is NP-hard.

Proof Consider the following special case of Problem RC-DMP: The time deadline
T = +∞, all the meeting probabilities are equal to 1, and all the personal interests
are 0. We note that this special case of Problem RC-DMP is identical to the Problem
IBM under the CLT model considered in [84], which is shown to be NP-hard. The
result follows.

Submodularity of RC-DMP A set-based function f : 2S → R is called
submodular if it has the property of diminishing marginal returns, that is, f (A ∪
{u}) − f (A) ≥ f (B ∪ {u}) − f (B), ∀A ⊆ B ⊂ S, ∀u ∈ S \ B. Furthermore,
f is monotone if it satisfies f (A) ≤ f (B) when A ⊆ B ⊂ S. In the following,
we prove that the objective functions of our RC-DMP problem under the RPIC-M
and the RPLT-M models are monotone and submodular. To maximize a non-
negative, monotone, and submodular function, we can use the well-known greedy
hill-climbing algorithm [141] to obtain a constant approximation ratio of 1 − 1

e
.

Submodularity of RC-DMP Under the RPIC-M Model

Theorem 4.5 Function RCT (·) is monotone and submodular for any instance of
RC-DMP under the RPIC-M model.

Proof Similarly to the proof in [93], we establish the “live-path” graph to demon-
strate the submodularity of our objective function. Since the cascade process under
the RPIC-M model is random, we can suppose that before the cascade starts, a
set of outcomes for all meeting events as well as the live or blocked assignment
for all edges are already determined. The “live-path” graph Glive is constructed by
combining the two outcomes. Specifically, a live edge euv is added to Glive in the
event that u is activated (infected or protected) and is meeting the inactive v for the
first time.

For each meeting event (an edge euv and a time step t in [1, T ]), we flip a coin
with bias muv to determine if u will meet v at t . Similarly, for each edge euv , we
flip a coin once with bias min{1, puv + PIv}, and we declare the edge “live” with
probability min{1, puv +PIv}, or “blocked” with probability 1−min{1, puv +PIv}.
All the two operations with coin-flips are independent.

Given an instance SM of outcomes of all meeting events (∀euv ∈ E, ∀t ∈ [1, T ]),
and also an instance SLB of live or blocked assignments for all edges, since the
process for meeting events and that of the live or blocked assignment are different,
and moreover, all flips in the two processes are independent, a possible instance S of
all the random outcomes of our problem can be obtained by combing SM and SLB .
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For a fixed S, the two cascades unfold deterministically. Let DMS
T (A) denote by the

end of time step T , the node set that will be infected if instead of A, the empty set
is chosen as the initial protector seed set. Note that by definition, we have that

RCT (A) =
∑

S

P rob(S) · |DMS
T (A)|.

In the classic IC model, given outcome S, for a live edge euv in the graph, node u

can reach node v with one hop. However, in our model with meeting events, given
outcome S, for a live edge euv in the graph, u will reach node v with tv − tu hops,
where tu is the step in which u itself is activated, and tv is the first step when u meets
v, after tu.

Hence, we say that v is reachable from a seed set A if and only if

• There exists at least one path consisting entirely of live edges (called live-path)
from some node in A to v.

• The collective number of hops along the shortest live-path from S to v is no
greater than T .

For any given outcome S, consider the graph Glive = (V ,E′), where V is the
vertex set of graph G, and E′ is the set of live edges in E (determined by S). Both
rumor and protector can propagate in this graph. Let V ′ denote the nodes that can be
reached by rumor seed set Ar via live edges within T time steps. Then we construct
another graph G′ = (V ′′, E′′), where V ′′ = {v|v ∈ V and v /∈ Ar} and E′′ =
{euv|u, v ∈ V ′′ and euv ∈ E′}. Since the rumor seed set is given and the meeting
event at each time step for pair of nodes is determined by S, we can determine the
time step tu that u ∈ V ′ is infected. Similarly, for a protector seed set Ap, we can
also determine the time step t ′u that u ∈ V ′ is protected.

To construct the protector reachability graph, we do as follows: If t ′u < tu, then
we keep the live-path from Ap to u. Otherwise, we delete the path. For all the nodes
in V ′, we determine whether there exists a live-path from Ap. Let A ⊆ B ⊆ V ′′,
consider the quantity |DMS

T (A∪{u})|−|DMS
T (A)|. This is the number of nodes that

can be reached by node u but cannot be reached by any node in set A. This is at least
as large as the number of nodes that can be reached by node u but cannot be reached
by any node in set B. In other words, |DMS

T (A ∪ {u})| − |DMS
T (A)| ≥ |DMS

T (B ∪
{u})|−|DMS

T (B)|, indicating that |DMS
T (·)| is submodular. Taking expectation over

all possible S, we conclude that the function RCT (·) is also submodular.

Submodularity of RC-DMP Under the RPLT-M Model
We follow the general idea in [93] for the proof, that is, we prove that the

influence diffusion process guided by the RPLT-M model is equivalent to the one
guided by a random live or blocked assignment process. Since we have meeting
events in our model, we need to incorporate them into the live or blocked assignment
process. We now describe the live or blocked assignment process that we use.

Since the meeting event associated with each edge is random, we can determine
them for each edge euv at any time step t by pre-flipping a coin. Given an outcome
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SM of all the random meeting events, for each edge euv ∈ E, the outcome of meeting
events at each time step is determined by SM . Based on the original graph G =
(V ,E), we construct two random graphs, namely GSMR = (V ,ER) and GSMP =
(V ,EP ) for rumor diffusion and protector diffusion, respectively.

To construct GSMP , for each node v ∈ V , with probability wuv,p, only in-edge
euv is selected and marked as live. With probability PIpv , we mark all of its in-
edges as live, and with probability 1 − (

∑
u∈V wuv,p +PIpv) no in-edge is selected

as live. (Note that our live-or-blocked assignment process differs with [93] in the
sense that for a node v, multiple in-edges can be selected as live. While in [93], at
most one edge can be selected as live.)

Similarly, to obtain graph GSMR , for each node v ∈ V , with probability wuv,r ,
only in-edge euv is selected and marked as live. With probability PIrv , we mark all
of its in-edges as live, and with probability 1 − (

∑
u∈V wuv,r + PIrv) no in-edge is

selected as live.
We define the concept of an effective live edge as follows: At any step t , live edge

euv becomes effective when v meets with its selected neighbor u for the first time,
and u has been activated at some earlier step t ′ < t .

In GSMR (resp. GSMP ), given a rumor seed set Ar (resp. protector seed set Ap),
for a node v ∈ V , if its selected live edges for rumor diffusion (resp. protector
diffusion) connect some node u in Ar (resp., Ap), and in SM , u meets v before
deadline T , then edge euv becomes effective. If u is not in Ar (resp., Ap), but u has

been influenced at tru (resp., t
Ap
pu since Ap is not a fixed set), and in SM , u meets

v before deadline T , then edge euv also becomes effective. If a node u cannot be
activated by rumor diffusion (resp., protector diffusion) by the end of time step T ,

then we define tru = ∞ (resp., t
Ap
pu = ∞), meaning no effective live rumor path

(resp., protector path) exists between Ar and u. We say that a node u is protected if

t
Ap
pu , tru < ∞ and t

Ap
pu < tru, and u is infected if tru < ∞ and tru ≤ t

Ap
pu .

The following lemma states that the distribution over the final activated (pro-
tected or infected) nodes are identical for our RPLT-M and the above live or blocked
assignment process.

Lemma 4.1 For a given protector seed set Ap and rumor seed set Ar , the
distribution over the sets of nodes that are infected and protected is identical in
the following two models:

1. RPLT-M model.
2. the live or blocked assignment process.

Proof We prove this lemma by proving this equivalence under any fixed outcome
SM of the meeting events.

To proceed, we first look at the diffusion process under the RPLT-M model for a
given SM . Recall that the diffusion unfolds in discrete time steps. In each step, some
nodes change from inactive to active (protected or infected). For all t ∈ [0, T ], let
A

p
t (v) be the set of nodes that are already protected and have met v at least once

after their activation by the end of step t , and Ar
t (v) be the set of nodes that are
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already infected and have met v at least once since their activation by the end of
step t . Consider a node v that has not been activated by the end of time step t .
The probability that v becomes protected in t + 1 equals to the probability that the
incremental weight contributed by A

p
t (v) \A

p

t−1(v) pushes it over the threshold θpv

(and the incremental weight contributed by Ar
t (v) \ Ar

t−1(v) does not push it over
the threshold θrv), given that it is not activated by the end of step t . This probability
is:

∑
u∈A

p
t (v)\Ap

t−1(v) wuv,p

[
1 − ∑

u∈Ar
t (v)\Ar

t−1(v) wuv,r

]

[
1 − (

∑
u∈A

p
t−1(v) wuv,p + PIpv)

]
·
[
1 − (

∑
u∈Ar

t−1(v) wuv,r + PIrv)
] .

Similarly, the probability that node v becomes infected in t + 1 given that v is
inactive from step 0 to t is:

∑
u∈Ar

t (v)\Ar
t−1(v) wuv,r

[
1 − (

∑
u∈A

p
t−1(v) wuv,p + PIpv)

]
·
[
1 − (

∑
u∈Ar

t−1(v) wuv,r + PIrv)
] .

Next, we look at the live or blocked assignment process for the same fixed
outcome SM of the meeting events. Let B

p

0 and Br
0 denote protector seed set and

rumor seed set, respectively. For each t ∈ [1, T ], let B
p
t denote the set that contains

any v /∈ B
p

t−1 ∪ Br
t−1 such that v has one effective live in-edge from some node in

B
p

t−1 but no effective live in-edge from any node in Br
t−1. For each t ∈ [1, T ], let

Br
t denote the set containing any v /∈ B

p

t−1 ∪ Br
t−1 such that v has one effective live

in-edge from some node in Br
t−1.

According to the definition of random live or blocked assignment process, the
probability that a node v is in B

p

t+1 \ B
p
t conditioned on that v is not in B

p
t ∪ Br

t is:

∑
u∈A

p
t (v)\Ap

t−1(v) wuv,p

[
1 − ∑

u∈Ar
t (v)\Ar

t−1(v) wuv,r

]

[
1 − (

∑
u∈A

p
t−1(v) wuv,p + PIpv)

]
·
[
1 − (

∑
u∈Ar

t−1(v) wuv,r + PIrv)
] .

Similarly, the probability that a node v is in Br
t+1 \ Br

t conditioned on that v is
not in B

p
t ∪ Br

t is:

∑
u∈Ar

t (v)\Ar
t−1(v) wuv,r

[
1 − (

∑
u∈A

p
t−1(v) wuv,p + PIpv)

]
·
[
1 − (

∑
u∈Ar

t−1(v) wuv,r + PIrv)
] .

The above conditional probabilities are the same as that obtained from the RPLT-
M model. Since Ap = B

p

0 and Ar = Br
0 , we conclude our proof.

With the help of the equivalence result in Lemma 4.1, we can now prove the
monotonicity and submodularity of rumor blocking in the random live or blocked
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assignment process. Given a fixed outcome SM of the meeting events, a rumor seed
set Ar and an instance SL of the live or blocked assignment process (where the
outcomes of all the live edge selections are determined), let X = (SM, SL) and
RCX

T (A) denote the node set that will be infected if instead of A, the empty set is
chosen as the initial protector seed set. Then the objective function for our rumor
blocking problem is

RCT (A) = EX|RCX
T (A)|.

Given a graph G(V,E) and a set S ⊂ V , for a node u /∈ S, we say that there is
a unique path from S to u if there exists some path from a node in S to u. For any
two paths from any two nodes in S to u, one path must be a sub-path of the other.

Next, we establish the following lemmas to prove the submodularity of RCX
T (A).

Lemma 4.2 In an effective rumor path graph GSM
R (GSM

P ), given a protector
seed set A, for any node u, if tru < ∞ (resp., tApu < ∞), then there is a unique
effective rumor (resp., protector) path from some node in Ar (resp., A) to v.

Lemma 4.3 The sufficient and necessary condition for v ∈ RCX
T (A) is:

• There exists a unique effective rumor path from Ar to v;
• there exists at least one node u in the unique rumor path, such that a unique

effective protector path exists between A and u with tApu < tru.

Lemma 4.4 The sufficient and necessary condition for v ∈ RCX
T (B ∪ {u}) \

RCX
T (B) is:

• There exists a unique effective rumor path from Ar to v;
• There exists at least one node w on the unique effective rumor path from Ar to

v, such that a unique effective protector path exists between B ∪ {u} and w with
t
B∪{u}
pw < trw;

• for all node x on the unique effective rumor path from Ar to v, it holds that
trx ≤ tBpx .

Lemma 4.5 The cardinality set function |RCX
T (A)| for an instance X = (SM, SL)

is monotone and submodular.

Proof First we show that |RCX
T (A)| is monotone. That is, for any node u ∈ V \

(A∪Ar) where A ⊆ V , we need to prove that |RCX
T (A)| ≤ |RCX

T (A∪{u})|, which
is equivalent to showing that RCX

T (A) ⊆ RCX
T (A ∪ {u}). Consider any node v ∈

RCX
T (A), we have that trv < ∞, meaning that there exists a node w in the unique

effective rumor path from Ar to v such that tApw < trw. We also know that t
A∪{u}
pw ≤

tApw, therefore, we have that t
A∪{u}
pw < trw. Thus, we have that v ∈ RCX

T (A ∪ {u}).
To prove the submodularity of |RCX

T (A)|, we show that for any A ⊆ B ⊆ V ,
and u ∈ V \B, we have that RCX

T (B ∪{u})\RCX
T (B) ⊆ RCX

T (A∪{u})\RCX
T (A).

That is, we only need to show that for any v ∈ RCX
T (B ∪ {u}) \ RCX

T (B), we
have v ∈ RCX

T (A ∪ {u}) \ RCX
T (A). Since we know that there exists a node w
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on the unique effective rumor path from Ar to v, and t
B∪{u}
pw < trw. And for all

node x on the effective rumor path from Ar to v, tBpx ≥ trx . Therefore, for node w,

t
B∪{u}
pw < trw ≤ tBpw, meaning that the influence from node u can reach w earlier

than all the nodes in B and Ar . Therefore, the influence from u can reach w earlier
than all the nodes in A, that is, t

A∪{u}
pw = t

B∪{u}
pw < trw. Since for any node x on

the unique effective rumor path from Ar to v, we have that tBpx ≥ trx , and A ⊆
B, it is clear that tApx ≥ tBpx , thus, tApx ≥ trx , thus, we have demonstrated that

RCX
T (B ∪ {u}) \ RCX

T (B) ⊆ RCX
T (A ∪ {u}) \ RCX

T (A).

Since taking expectation preserves submodularity, we have established the
following result.

Theorem 4.6 Function RCT (·) is monotone and submodular for any instance of
RC-DMP under the RPLT-M model.

4.3.3 Possible Solutions

From Theorems 4.3 and 4.4, we know that Problem RC-DMP is NP-hard under the
two proposed models (RPIC-M and RPLT-M). This motivates our consideration for
approximation algorithm for Problem RC-DMP. Moreover, from Theorem 4.6, we
know that the objective function RCT (·) of Problem RC-DMP under the RPIC-M
and the RPLT-M models is monotone and submodular. Furthermore, by definition,
RCT (·) is non-negative and RCT (∅) = 0. Consequently, we can apply the seminal
result in [141] and use the greedy algorithm as a constant-factor approximation
algorithm with performance guarantee ratio of 1− 1

e
. We formally present the greedy

algorithm in Algorithm 3. Note that variable R in the algorithm controls the number
of Monte Carlo simulations.

Algorithm 3 Greedy algorithm
Input: Given a graph G = (V ,E), Ar , k and T

Output: Protector seed set Ap ⊆ V .
1: Initialize Ap = ∅, R = Num_Simulations

2: for i = 1 to k do
3:
4: for all u ∈ PV \ Ap do
5: IF (u) = 0
6: end for
7: for j = 1 to R do
8: IF (u)+ = RCT (Ap ∪ {u})
9: end for

10: IF (u) = IF (u)/R

11: Ap = Ap ∪ arg maxu∈V \Ap {IF (u)}
12: end for
13: Output Ap .
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Since in our problem, rumor and protector diffuse with time deadline T , meaning
that we only need to search certain area for computation of the seed set of protectors.
Let Nin(u) denote one hop in-edge neighbors of node u, and N2

in(u) = {w|ewv ∈
E ∩ v ∈ Nin(u)} denote two hops in-edge neighbors of node u, thus Nt

in(u) are the
t hops in-edge neighbors of node u. Moreover, we denote Rt(Ar) = ⋃

u∈Ar
Nt

in(u)

and R = ⋃t=T
t=1 Rt(Ar). P t = ⋃

u∈Rt (Ar )
Nt−1

in (u), where t ∈ [1, T ], and P =
⋃t=T

t=1 P t . As a result, PV = P ∪R is the valid nodes that we only need to compute
in our objective function.

4.4 Conclusion

In this chapter we performed an extensive study of the problem of limiting the spread
of misinformation/rumors in a social network. We investigated efficient solutions to
the following question: Given a social network where a (bad) information campaign
is spreading, who are the influential people to start a counter-campaign if our goal
is to block the effect of the bad campaign efficiently?

In Sect. 4.2, we formulated the Rumor Control (RC) problem under the DOAM
model and prove that it is equivalent to the Set Cover problem. To address the
problem, Set Cover Based Greedy (SCBG) algorithm is presented, which contains
two parts: first, transfer the RC-D problem into the SC problem; second, apply the
greedy algorithm used for the SC problem to the obtained subsets for bridge ends.
The experimental reports over two real-world social networks demonstrate that the
SCBG algorithm outperforms the two heuristics: MaxDegree and Proximity.

In Sect. 4.3, we proposed two models to capture competitive influence diffusion
process, namely the RPIC-M and RPLT-M models. In these two models, two kinds
of cascades propagate: protector and rumor. These two models extends the seminal
IC and LT models [93] to the case of two-cascade influence diffusion. Furthermore,
the following three features are also included in these models: a time deadline,
random time delay between information exchange, and personal interests regarding
the acceptance of information.

Under these two models, we study the RC-DMP problem: given a directed graph
G = (V ,E), a rumor seed set Ar , and two positive integers k and T , our aim is to
find a protector seed set Ap (with |Ap| ≤ k) to minimize the expected number of
infected nodes by the end of time deadline T . We prove that the problem under the
two models is both NP-hard. Moreover, we demonstrate that the objective functions
under the two different models are both monotone and submodular. Therefore, we
are able to apply the seminal result in [141] and use the greedy algorithm as a
constant-factor approximation algorithm with performance guarantee ratio of 1− 1

e
.

About future directions, we mention several clues. First, the greedy approxima-
tion algorithm is inefficient and time-consuming as it lacks of a way to efficiently
compute the objective functions for our problem. To overcome such inefficiency, we
hope to find more efficient algorithms to compute the objective function under the
two proposed models.
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Second, we have noticed that under most situations, the spread of influence
and the meeting events occurred among individuals are in continuous time. Thus
developing continuous-time diffusion models for our problem is promising.

Third, more real-world factors such as personal interests, different influence
diffusion speed, deadline, etc., could be incorporated into current diffusion models.

Last but not the least, in society, influence diffuses in different mechanisms, as
well as in different contexts, that is, there exist various models in reality. Therefore,
it is interesting to look into our problem under other influence diffusion models.



Chapter 5
Multiple Social Influence:
Models and Applications

5.1 Overview

Cascading processes are models of network diffusion used to study phenomenon
concerning the spread of new trends and innovations in social networks. Each
node can be in one of two states: infected (i.e., supports an idea or a product) or
uninfected. Every infected node can infect its neighbors and thus, the infection,
formally called a cascade, propagates through the network. These processes have
been studied in many applications such as viral marketing [53], blog networks [114]
and contagion models [51].

Broadly two theoretical models of diffusion have been explored: the linear
threshold model [78] and the independent cascade model [73] (please refer to
Chap. 2). In the former, every infected neighbor for a node contributes certain
weights and if their sum is greater than a threshold, the node is infected. The weights
depend often on the edge strength between the node and its neighbors. In the latter,
each infected node is allowed one chance to infect a neighbor with some probability
generally depending on the edge strength between the nodes.

Existing literature has primarily focused on single cascade models but this
assumption breaks down in many real-world scenarios when there are many
competing products, different political messages, ideas, etc. It is also possible for
nodes’ affinities towards certain cascades to evolve with those of their neighbors.
This situation has different dynamics and requires more sophisticated models.
Research in two competitive cascades has looked at variations of the independent
cascade model (please refer to previous chapter).

In this chapter, we discuss models and applications where multiple social
cascades (n cascades) propagate in networks. In Sect. 5.2, inspired by charged
system theory in physics, Bi et al. [20] propose a novel influence model, namely
charged system influence (CSI) model, capturing how users make decisions among
multiple social influences. User behaviors in a social network are affected by
multiple factors such as personal interests, social influence, and global trends. The
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prediction of user behaviors is still in preliminary stages, but has significant potential
for understanding temporal user behavior and learning dynamic evolution of social
networks. In CSI model, it is the attraction from a specific influence makes a user
choose to spread it among multiple influences. Furthermore, an efficient algorithm
based on CSI model is presented to predict user behaviors in social networks.
Extensive experiments on three real-world datasets demonstrate that our model and
algorithm statistically outperform the state-of-the-art methods in terms of prediction
accuracy.

5.2 User Behavior Prediction

Years before, researchers believed that human behaviors such as our decision
process was mainly taken by rational thoughts. The truth, however, turned out to
be much different. Marketers now realize that human beings are quite emotional
in nature, and using a social network to propagate information can significantly
affect customer decision-making. This observation motivates research community
to incorporate social influence as part of factors in decision-making. Furthermore,
it raises a new question: since social influence affects individuals’ behaviors, is it
possible or to what extent that we can predict human behaviors by taking social
influence into account?

Previously, it was very difficult to study the behavior prediction problem due
to the lack of availability of data. Recently, with the success of many large-
scale online social networks, such as Facebook, Twitter, Pinterest, etc., many
virtual communities are loosely formed and are often based around some common
interests such as forums on a wide variety of issues ranging from product reviews
to presidential campaigns. In all of these virtual communities, the change of an
individual’s emotions, opinions, or behaviors can influence others in positive or
negative ways. This propagation of behavior changes has a profound effect on
the collective sentiments in social networks. Understanding how the dynamics of
influence propagation affects human behaviors in online social networks can provide
rich information for applications such as spread of political views, target marketing,
rumor blocking, etc.

There have been quite a few related studies have been conducted, for example,
dynamic social network analysis [167, 169], social influence analysis [53, 93, 182,
207], and group behavior analysis [176, 186]. The behavior prediction problem
addressed in this paper is very different from these works. Dynamic social network
analysis is to model how friendships drift over time using a dynamic model [167]
or to investigate how different preprocessing decisions and different network forces
such as selection and influence affect the modeling of dynamic networks [169].
Social influence analysis either aims to verify the existence of social influence
[53, 93] or tries to quantify the strength of the influence [76, 207]. Group behavior
analysis intends to study the patterns of user joining different communities [176],
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or to learn the classification patterns based on the network structure and content
information [186], etc.

It is well recognized that users’ actions in a social network are influenced by
various complex and subtle factors. Multiple influences coexist in social networks
and different influences compete or cooperate with each other. For example,
although Apple hit the marketing when it launched the iphone5 in 2012 and it has
high level on device, Samsung is still strong and has clearly established itself as
the dominant Android smartphone maker. Therefore, when it comes to influence
propagation in online social networks, it is better to consider mutual effects of
multiple influences instead of treating them independently.

In this section, a unified social influence model is built to study various features
that may influence users’ dynamic behaviors. In a physical charged system, an
electric charge will move either further or closer if the electric force from a
specific electric field changes. The electric force is related to both the charge’s
properties and the electric field’s properties, which is similar to human behavior
when they are exposed to multiple influences. Inspired by the physical phenomena,
we build a model based on charged system theory, which describes influences
change people’s behavior. Take customer’s decision for example. Traditionally in
influence propagation field, people’s buying behavior is defined as “activated” by his
friends according to a certain probability, such as recommendation. In contrast, our
model believes that people are attracted by the product and choose it on their own
initiative. Accordingly, the attraction includes multiple properties such as friends’
influence, products’ features, and people’s own characters.

There are several challenges to build our influence model, namely charged system
influence model (CSI). For instance, how to describe the features in social networks
using the characters in charged systems, how to define the relationships between
different influences, and how to represent an individual’s decision among multiple
influences. Note that once a single electric object is attracted to move, the global
stable status will be broken and other electric charges will move as well. That is
similar as the effect of “word of mouth” in marketing field. We employ Coulomb
law to simulate the attraction force and use the proposed model to predict whether
a person will be attracted by one specific influence. Our main contributions are as
follows:

Firstly, we employ physical charged system theory to build an influence model
that describes features in social networks and the progress of influence propagation.
This model studies how multiple influence spread in a network with interactions
between each other. It considers the factors that how people make decisions under
multiple influences at a microscopic scale.

Secondly, based on the proposed CSI model, an algorithm is presented which can
effectively predict whether an individual will take a target action within a predefined
tolerant time. Our framework has consequently allowed us to predict the choice of
human behaviors from multiple influences in social networks.

Thirdly, we evaluate our model and algorithm on three real-world social media
datasets. The experimental results suggest our model outperforms state-of-the-art
methods in human behavior prediction. Moreover, an evaluation based on SVM
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shows the features proposed in our model are important for predicting human
behaviors with multiple influences.

The rest of the section is organized as follows. In Sect. 5.2.1, a brief overview
of related work is introduced. Sect. 5.2.2 gives the definition of our problem. In
Sect. 5.2.3 an influence model is built which employs the charged system theory. A
new approach based on the model is proposed in Sect. 5.2.4. The simulation results
are showed in Sect. 5.2.5.

5.2.1 Related Work

There is a large portion of work focused on the single influence source maximization
problem. Kempe [93] gave the definition of that problem, which is to find a set of
initial set of users in a social network such that from this set the spread of influence
in the network can be maximized. Linear threshold (LT) model and independent
cascade (IC) model are two main approaches to formalize this problem. These two
models assume that nodes have two states, either activated or inactivated. The node
will never change its state after it had been activated. In the former, every activated
node contributes some weights to their neighbors and one node will be activated if it
received enough weights from all of its neighbors. In the IC Model, each activated
node has one chance to activate its neighbors with some probability. Wang et al.
[198] proposed a MIA model and its heuristic algorithm to address the scalability
and efficiency issues in large-scale networks.

The study of factors that lead to the influence propagation is also a hot topic in
recent years [53, 161]. Domingos et al. [53] computed customers’ probability of
buying based on Markov random fields. They valued customers’ benefit according
to their trade history combined with the discount cost of offering to them. Some
researchers studied whether there exists influence from friends such that the
influence can change people’s behavior [75, 87, 164]. Goyal et al. [75] proposed
a model that combines the social structure and action logs to predict when a user
may perform an action. Their probability based model is under a single influence
case and only to test the influence from one user to another user. Bakshy et al. [14]
used several attributes of users on Twitter as the features of a regression tree model,
to predict the influence of each user. Their model mainly focuses on finding a fair
influence measurement for each individual such that their prediction can provide
better targeting strategies in the marketing.

In recent years, there are numerous works studying social influence with
multiple influencers. Most of them studied the competitive relationship between
two influencers. Some studied this problem using game theory. Bharathi et al. [19]
formulated the influence maximization problem as a graph coloring game. Each
player selects a set of nodes as seeds to color other nodes with certain probability.
The goal of each player is to maximize the number of its colored nodes. They
proved for the last player, the greedy algorithm is within a factor (1 − 1/e) of
the best response. Goyal et al. [74] developed a game-theoretic framework for
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the study of influence maximization problem with two competitors. They built
a switching-selection model to simulate the influence spreading process. They
showed that network structure can interact in dramatic ways with the switching
and selection functions at equilibrium. Two competing influences usually applied
in health care. Karrer et al. [91] studied the behavior of two mutually exclusive
diseases. They derived the phase diagram for the system and discovered the growth
rate boundary in the system. Beutel et al. [18] studied the non-mutually competition
case and showed that weaker competitor can survive if the cross-immunity satisfies
a threshold condition. Their propagation model is based on the SIS (susceptible-
infected-susceptible) model, in which the infected and self-healing rate are given
parameters.

For the influence minimization problem with two competing campaigns, Budak
et al. [30] extended the IC model to the Multi-Campaign Independent Cas-
cade Model (MCICM) and the Campaign-Oblivious Independent Cascade Model
(COICM). The former model assumes when two campaigns try to active one node at
the same time, “good information” takes effect. While in the latter model every edge
has the same probability to spread information. They proved the problem of limiting
another campaign is NP-hard and submodular for MCIFCM. They also studied
the problem in the presence of missing the state of some nodes and a prediction
algorithm which is based on random spanning trees was proposed.

The two competing influence propagation problems also have a wide use in viral
marketing. Carnes et al. [33] studied the influence maximization problem with two
exclusive competing products in which each follower has a fixed budget. They
proposed two models in which the adopting probability on the links depends on
the number of reachable adopters. And they proved their problem is submodular
and monotone. Prakash et al. [156] used data from Google, Insights, Facebook,
and Myspace to study two competing products spreading over a given network.
They used the SIS model under different graph structures to show one virus will
completely win another one if its strength is above threshold and greater than
another.

For propagation of more than two influences, Pathak et al. [151] proposed a
linear threshold model that allows k cascades propagating. It describes the process
as Markov chain in which nodes’ states can change. Their StochColor algorithm
discovers the most likely states of the cascades’ spreading in a given graph. Myers
et al. [138] looked at multiple information diffusing through social networks. They
used data on Twitter to learn interactions between information. They built a model
to predict the contagion probability. Their experimental results showed stronger
contagion has negative effect on unrelated subject matter but has positive effect on
high related subject matter.
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5.2.2 Behavior Prediction Problem

In this section, after presenting the progress of influence propagation in the view of
each individual in the social network, we formally define the targeted problem in
this work.

5.2.2.1 Influence Propagation System

We define that the influence propagation system consists of three phases, Influence
Phase, Comparison Phase, and Action Phase. At any specific point, one individual
was exposed to multiple influences. For example, people can obtain news when
they surf on Twitter or get product information when they are in a mall. In Influence
Phase, an individual’s behavior is affected by several factors. Then they will move
to the second phase, Comparison Phase, in which they analyze, compare, and filter
these influences. At a very moment, which here we define as Action Phase, they
are willing to spread the news or purchase the product. In the marketing, this phase
usually happens when the company does the promotion or it is nearly festival.

In particular, the factors in Influence Phase are generally classified into the
following three parts.

User Interest Bias Personal interests make one person more likely to access one
specific influence source. For example, people who love sports are more likely to
pay attention to sports news and related products.

Social Structure In many previous works it has been proven that friends’ behavior
can affect people’s behavior. In this paper, our model considers the friends’
influence, but the influence spreading does not depend on these friendship links.

Global Attention People are more likely to talk about topics that most people are
talking about. For example, when there happens an earthquake most people will pay
attention to this event.

The above three factors affect people in the influence phase. We will discuss them
further in the following part.

5.2.2.2 Problem Definition

Based on the influence propagation system described above, now we formulate our
problem. Given a social graph G = (V ,E, Tg), where V is the node set representing
the users, E is the edge set which represents the social relationship between two
users, and Tg refers to the time point when we got the graph snapshot. We also
have an action log ACT, which contains multiple tuples (u, a, t), indicating that
user u takes the action a when T = t . Let the set A be the collection of all actions,
A = a1 ∪ a2 ∪ . . . ∪ an. ai can be any behavior in the social network. It can be
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Fig. 5.1 Action prediction with multiple influences

seen as adopting one kind of products under the scenario of marketing. ai can
be seen as joining a group if we consider the problem of maximizing the size of
communities. The relationship between two actions can be competitive, mutualistic,
or independent. One person can perform any kind of actions with the time series.
Our task is to predict whether an individual will perform one special action. We
define the action that we focused on is a∗. We define that once a person takes
the action a∗, he or she holds the supportive attitude to a∗, no matter what other
actions he or she does after. Since it will take some time for people to perform the
action even they have been affected by some influences, we define two tolerant time
windows Winin and Winact . We consider people’s actions in t + Winact are the
results of influences they got in t − Winin.

Problem 5.1 (Behavior Prediction with Multiple Influence) Suppose there exist
n different influences spreading in a social network G, which makes each individual
has n possible actions {a1, a2, . . . , an}. Let U contains all users who have not taken
the action a∗ by the time t , our task is to predict whether each user in U will perform
a∗ within t + Winact .

The illustration of this problem is shown in Fig. 5.1.

5.2.3 Modeling Social Influence as Electric Charged System

In this section, we first introduce the charged system in physics. Similar in the aspect
of being attracted and movement to the physical model, our CSI model represents
how an individual is affected by multiple influences and explains why an individual
will take actions with these influences.

5.2.3.1 Electric Charged System

In physical charged system, a single charge point creates an electric field which
exerts force on other charged objects around without touching. This electric force
makes a charge particle move closer or further to another. Coulomb shows that for
any two charged points i, j , the electric force between them Fij is proportional to the
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product of quantity on the two electric particles qi, qj and inversely proportional to
the square of separation distance between them [83], as described by Function 5.1.

Fij = h
qiqj

r2
ij

, (5.1)

where h is the Coulomb constant and rij is the distance between charges i and j .
Fij is a vector quantity. It appears attractive if the charges are of opposite sign and
repulsive otherwise.

Besides a single charged point, a set of charges also create electric field which
can be measured by putting a test point charged q1 at a given position. The resultant
force on q1 equals the vector sum of forces exerted by each individual charges. For
example, if two charges are present, then the resultant force exerted by particles q2
and q3 on particle q1 is

Fr = F21 + F31 = kq1(
q2

r2
12

ˆr21 + q3

r2
13

ˆr31) . (5.2)

5.2.3.2 Corresponding Features in Social Influence

Similar to charged particle in physics, each individual has its own characters and
will be attracted by the influences in the social network. Now we introduce how to
transform features in social networks into variables in electric field theory, which
forms the basis of our CSI influence model.

User Vitality (q) An individual in the social network is viewed as charged particles.
He may choose any action. For people who have not performed the target action a∗,
we assume their electrical polarity is negative. In other words, they hold negative
attitude to action a∗. Similarly, if people have taken the action a∗, their electrical
polarity is positive and they hold the positive attitude to a∗. Moreover, they will
attract other “negative” particles to perform a∗. We allow an individual to perform
other actions after it performed a∗, but we still see its electrical polarity as positive
though its positive influence to others will decay.

The quantity of a particle q refers to the activity vitality of a user. In the real
world, if one person shows up frequently in some social media, he will have more
opportunities to be influenced by others and is more likely to affect others as well.
Besides, user vitality is a feature which is independent of social structure and topic
content. Note that charged quantity is independent of electric field. User vitality (q)
is defined as charged quantity property in Function 5.3.

qi = ActNumi

n∑

i=1
ActNumi

, (5.3)
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where ActNumi is the number of user i’s activities and n is the total number of
users.

Friends Distance (r) An important variable in Function 5.1 is distance r . The
distance rij reflects the action similarity between user i and j . Note that rij may vary
with time, because users may change their actions in different time slots. Before
addressing the problem of how to define friends distance, we first need to know
several definitions.

Friends Impact Degree In previous work, the similarity between two friends is
used to measure the degree of impaction from a friend. However, in the real world
even a person has a lot of close friends, he or she may still hold his or her own
option. These “stubborn” people make Max-degree strategy lose efficacy. So when
analyzing the influence from friends, we take into account the personal feature,
Friends Impact Degree α, which measures how easy a person can be influenced
by friends’ behavior. The computation of α is given in Function 5.4.

αi = 1

|W(i)|
∑

j∈W(i)

|Ai ∩ Aj |
|Ai | (5.4)

In Function 5.4, W(i) is the friends set of user i. Ai records all the actions of
user i. When an individual has greater α value, it has more actions that are same as
its friends’ actions, which means it is easier to be influenced by its friends.

Influence Correlation Degree Assume multiple influences spread over the social
graph. The relationship between any pair of influences can be competitive, mutual-
istic, or independent. Independent is a class of relationship between two influence
sources where one influence benefits without affecting the other. It compares with
competitive, where one benefits while the other is restrained, and mutualistic, where
both two influence sources benefit. Here, benefit refers to influence propagation. We
see two influence sources as mutalistic if they appear together frequently. If one is
always absent when the other is spreading, we consider they are more likely to be
competitive. We compute the correlation degree between two actions ax and ay by
Function 5.5.

Crr(ax, ay) = |c(ax) ∩ c(ay)|
| min[c(ax), c(ay)]| (5.5)

where c(ax) is the user set who perform ax in the action log ACT , i.e. c(ax) =
{u|(u, ax, t) ∈ ACT }. Here we set a low-threshold λneg and a high-threshold λpos

to separate all actions into three classes. If Crr(ax, ay) > λpos , we say ax and ay are
mutualistic. If Crr(ax, ay) < λneg , we say ax and ay are competitive. Otherwise,
we say they are independent. For users who take action ax , if they also take action
ay at the same time, we say Crr(ax, ay) = 1.

Target Action Correlation Degree Since a∗ is the influence that we focused
on, we only need to compare other actions with a∗ and obtain their correlation
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degree. Suppose user i takes the action ax . For convenience we define the i’s action
correlation degree towards target action a∗ by Function 5.6.

δi = Crr(ax, a
∗) (5.6)

Based on the above variables, the definition of friends distance between user i

and user j during a time slot is now described in Function 5.7.

rij = disij ∗ |δi − δj | , (5.7)

where disij means the number of links from i to j . δi is the user i’s action correlation
degree towards a∗ during the time slot. Since in experiments we only consider
“immediate friends,” disij should be 1. Therefore, about the definition of friend
distance r , in addition to the link distance in the social graph, we also consider the
action similarity between two users, which reflects their attitudes difference towards
one influence.

5.2.3.3 Expansion Progress and Predication Features

In this part we use electric field theorem to explain the progress of multiple
influences propagation. Two prediction features resultant force FR and displacement
SR will be given.

Resultant Force (F) Suppose at the t th time slot, there are n influences spreading
over the social graph G, which corresponds to n kinds of actions. For a user i,
it receives the electric force exerted by other users. For users who perform action
ax , where Crr(ax, a

∗) > λpos , they have positive attraction to user i, because
their actions are all closer to target action a∗. They are positive examples for i

to perform a∗. For neighbors who perform action ax , where Crr(ax, a
∗) < λneg ,

they have negative attraction to user i, because these people lean to actions that
are competitive with a∗. For people who perform independent actions, their action
have no effect to i. To simplify our work, we assume λpos = λneg = λ, such that
there are only positive attraction and negative attraction in the view of action a∗.
As illustrated in Fig. 5.2, at the t th time slot, the user i received positive force and
negative force from its neighbors. The resultant electric force from i’s neighbors to
user i can be computed by Function 5.8.

Ft(i) =
∑

j∈W(i)

Fj→i = αi

∑

j∈W(i)

(δj − λ)
qiqj

r2
ij

(5.8)

where αi reflects how much influence user i accept from their neighbors W(i),
which can be computed by Function 5.4. The computation of qi , qj can be found in
Function 5.3. The computation of δj can be found in Function 5.5. The computation
of rij1 , rij2 can be found in Function 5.7. δj − λ guarantees that the force has
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Fig. 5.2 Resultant force
analysis

positive value when the neighbor’ action is mutualistic to a∗, while the force has
negative value when the neighbor’ action is competitive to a∗. So the resultant
force from neighbors to user i is the difference between the positive influence and
negative influence. In general Function 5.8 reflects how many influence regarding
a∗ a user can accept from its neighbors, including the user’s personal characters,
social structure, and the neighbors’ behaviors.

In the real world the influence towards a person will last for a while. As a result,
to estimate whether a user i will perform action a∗, we should consider the total
influence during a period of time, not a single time slot. We separate the time series
into several time slots. We build an influence window Winin, which contains k time
slots. For each user i, we calculate the total resultant force during these k time slots
by Function 5.9,

FR(i) =
k−1∑

m=0

e−γmFt−m(i) , (5.9)

where γ is the decay constant. e−γm shows that the influence towards user i decays
exponentially with time, which guarantees that the latest state has stronger influence
to an individual. It shows that user i was affected by positive influence during last
k time slots when FR(i) ≥ 0, which means i is more likely to perform a∗ than
users who have negative FR . FR will be considered as a prediction feature in the
algorithm part.

State Displacement (S) In the physics, a negative electric particle will move closer
to positive electric particles due to the attractive resultant force. Similarly, after
exposed to several influences in the social graph, it is possible for some users to
perform the target action a∗ when they obtain enough positive resultant force
from their neighbors. However, whether they will perform a∗ is uncertain. We see
performing the target action a∗ as the goal state. When a user i takes the action ax ,
its influence correlation degree to a∗, δi , reflects how far to the goal state. We define
S(i) as the displacement between user i’s current state and the goal state, which can
be computed by Function 5.10,

St (i) = μ1(1 − δi) + μ2αi

∑

j∈W(i)

1 − δj

rij
, (5.10)
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where δi and δj can be computed by Function 5.5. rij can be computed by
Function 5.7.

The Function 5.10 shows that the displacement has two parts. One is the user’s
own distance to the goal action, i.e., 1 − δi . If user i’s current action is closer to
a∗, S(i) is smaller which means i is more likely to perform a∗. The other part is
the distance between the actions of i’s neighbors and the target action a∗. If people
around user i all perform actions that are competitive with a∗, it will take more effect
for i to achieve the goal. Otherwise user i will have greater possibility to perform
a∗. μ1 and μ2 are the parameters which adjust the weight of these two parts in the
state displacement. In previous work, the influence must spread through the links in
the social graph, which means if one person adopts an item, there at least exists one
neighbor who already adopted this item. However, in the real world it is possible
that one person will try a new item even the neighbors have not adopted the new
item. In fact, when μ2 or αi in Function 5.10 equals to 0, the neighbors have no
effect on user i’s behavior.

Similar to FR , we define the state displacement during the influence window
Winin by Function 5.11.

SR(i) =
k−1∑

m=0

e−γmSt−m(i) (5.11)

Generally, the feature State Displacement looses the constraint that influence
must spread from an activated user to an unactivated user. SR is also considered
as a feature for predicting user’s action in the following part.

5.2.4 Algorithms

In this section, we want to use the resultant force from neighbors FR and the state
displacement SR as features to predict whether a user will take the target action
a∗ during the action window Winact . Winact includes n time slots after the current
time slot. We propose an algorithm which is named APMI (Action Prediction under
Multiple Influences) to solve this problem.

We have the sample of observed data from influence window Winin, where each
datapoint includes user’s features and its action label. We define user i’s label yi = 1
if its action is a∗. Otherwise, its label yi = 0. Since Gaussian distributions are
widely used in social sciences, we assume the observed features we obtained have
the multivariate Gaussian distributions of dimension d. The main idea of APMI is
as follows: (1) Create a mixture of two multivariate Gaussian distribution functions
based on users’ label; (2) Estimate the parameters of each multivariate Gaussian
distribution function using maximum likelihood estimation (MLE); (3) Predict
user’s action by comparing the probability of performing a∗ and the probability of
not performing a∗.
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Density Estimator We are given the sample of observed features X =
{X1, X2, . . . , Xk}, where k is the number of users in the sample. Each observation
Xi is a vector which has d components. Assume each component generates data
from a Gaussian distribution; therefore, X has the multivariate Gaussian distribution
of d dimensions. We are also given the action labels Y = {y1, y2, . . . , yk} that
correspond to the observations X. Based on the labels we have a mixture of two
multivariate Gaussian distributions with mean μi and covariance matrix Σi . One
contains observations whose labels equal to 1 and the other contains observations
whose labels equal to 0, i.e.,

{
X|(Y = 1) ∼ Nd(μ1,Σ1)

X|(Y = 0) ∼ Nd(μ0,Σ0)

From the given label data, we can compute label 1’s prior probability π1 by
counting the number of users who took the action a∗.

{
P(Y = 1) = π1

P(Y = 0) = π0 = 1 − π1

Since the observations are independent and identically distributed, the probability
of obtaining observations X and labels Y can be computed by Function 5.12.

P(X, Y |φ) =
k∏

i=1

1∑

j=0

1(yi = j)πjf (Xi;μj ,Σj ) (5.12)

where f is the probability density function of the d dimensions multivariate
Gaussian distribution. φ is the set of unknown parameters in f , i.e., φ =
(μ1, μ0,Σ1,Σ0). 1(·) is the label indicator function.

L(φ;X, Y ) =exp{
k∑

i=1

1∑

j=0

1(yi = j)[logπj − 1

2
log |Σj |

− 1

2
(Xi − μj )

�Σ−1
j (Xi − μj ) − d

2
log 2π ]}

(5.13)

Function 5.13 is the exponential family form of Function 5.12. Since log is a
monotonically increasing function, maximizing the likelihood of Function 5.13 is
the same as maximizing its log form. Function 5.14 shows the method of MLE that
selects the set of model parameters which maximize the likelihood function.
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(μj ,Σj ) = arg max
μj ,Σj

log L(φ;X, Y )

= arg max
μj ,Σj

k∑

i=1

1(yi = j){−1

2
log |Σj |

− 1

2
(Xi − μj )

�Σ−1
j (Xi − μj )}

(5.14)

To estimate φ, we take the derivatives of log L(φ;X, Y ) with respect to μj and Σj .
i.e., Function 5.15.

⎧
⎨

⎩

∂ log L(φ;X,Y )
∂μj

= 0
∂ log L(φ;X,Y )

∂Σj
= 0

(5.15)

By solving Function 5.15, we get Function 5.16.

⎧
⎪⎨

⎪⎩

μj =
∑k

i=1 1(yi=j)Xi
∑k

i=1 1(yi=j)

Σj =
∑k

i=1 1(yi=j)(Xi−μj )(Xi−μj )�
∑k

i=1 1(yi=j)

(5.16)

Let 1(yi = 1) = 1 when the user performs a∗, otherwise 1(yi = 0) = 0. Since
the labels for each user’s actions during Winin are observed, we can compute each
parameter in the Gaussian function by Function 5.16.

Action Prediction Now we have the probability density function for each predic-
tion feature without unknown parameters. We can compute all labels’ probability
under any observation Xi . Function 5.17 shows that the conditional distribution of
label Yi is determined by Bayes theorem.

P(yi = j |Xi = xi) = πjf (xi;μj ,Σj )
∑1

j=0 πjf (xi;μj ,Σj )
(5.17)

If P(yi = 1|Xi = xi) ≥ P(yi = 0|Xi = xi), we predict user i will take the target
action a∗. Otherwise, we predict i will take other actions. Algorithm 1 shows the
whole progress of prediction. Step 1 to step 8 are forming the Gaussian function for
prediction features. Step 9 to step 14 use Bayes theorem to predict the users’ action.

5.2.5 Experiment

In this section, we discuss in detail the experiments that we predict users’ behavior
using the proposed CSI model and APMI algorithm on three large real social media
datasets.
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Algorithm 1 APMI algorithm
Input: G = (V ,E) social graph
ACT action log
a∗ target action
Winin influence window
Output:action label yi for each i ∈ U/U∗.

U ← {user| user is activated in Winin};
U∗ ← {user| user performed a∗ in Winin};
for all i ∈ U/U∗ do

Compute FR(i), SR(i) by Function 5.9 and 5.11;
Create the feature vector Xi with FR(i) and SR(i) ;

end for
P(Y = 1) ← |U∗|

|U | ;
P(Y = 0) ← 1 − P(Y = 1);
Compute μ and Σ for feature vector X by Function 5.16;
Compute the probability of i performs a∗ and that of i does not perform a∗ by Function 5.17;
if P(yi=1|Xi=xi )

P (yi=0|Xi=xi )
≥ 1 then

yi = 1;
else

yi = 0;
end if
return action label yi for all i ∈ U/U∗.

5.2.5.1 Experiment Setup

1. Experimental Datasets: We carried out all our experiments on three different
social media datasets:

• Digg is a social news website that allows users to vote the posted stories. This
dataset includes 279,631 users and 2,251,171 directed friendship, where the
friendship refers to one user is watching another’s activates. There also exit
an action log which record 3,018,197 votes on 3553 popular stories made by
139,409 distinct users during a month.

• Flixster is an online social community that allows users to share movie
reviews and ratings with their friends. This dataset contains a social graph
with 922,212 users and 7,058,819 friendship links. It also contains a rating
log which has 8,196,077 votes for 48,794 movies. For convenience, we ignore
the exact score in the rating log. Instead we think once a user rates for a movie,
he or she has made an action for the influence spreading.

• Douban is a Chinese website allowing users to record information and create
content related to film, books, music and so forth. This dataset concludes
4778 users and 104,799 directed links. The directed link refers to who follows
who in Douban. There is also a review log which records 2,549,523 reviews
towards 232,160 books.

2. Evaluated Methods: Note that in our APMI algorithm, prediction feature vector
X may have d dimensions. We first employ resultant force (FR) and state
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displacement (SR) as feature separately. Then we use these two features together
to evaluate our algorithm. For baseline, we use the idea of three methods
mentioned in [138], i.e., UB, AC, and EC.

• Prior Probability + User Bias (UB). The independent cascade model
assumes that the spreading of one influence is independent with other
influences. So the prior probability of one action spreading is related to its
popularity, which can be computed simply by counting the number of users
who have taken this action. User bias refers to how frequently a user takes
an action, which is the same meaning as user vitality in Function 5.3. Thus,
popularity(a∗) = |U∗|

|U | and qi form the feature vector X in this baseline
method, where U is the total users set and U∗ is the set that contains users
who have taken action a∗.

• Best Action Correlation (AC). Including prior probability popularity(a∗)
and user bias qi , this baseline method also considers the most positive action
in the past for user i. Here most positive action refers to action which has the
highest influence correlation to a∗. Thus, this method has three attributes to
form its prediction feature vector.

• Exposure Curves (EC). The idea of exposure curves [138] is that a prob-
ability of be activated depends on the number of times when the user was
exposed to the influence. In our datasets, the opportunity of being exposed to
an influence is when the neighbors perform the corresponding action. Thus,
EC baseline counts the number of users who have taken positive actions and
takes the number as a prediction feature. Here, positive means the influence
correlation to a∗ is greater than the threshold λ.

• APMI-F (F). This method only considers FR in Function 5.9 as the prediction
feature.

• APMI-S (S). This method only considers SR in Function 5.11 as the
prediction feature.

• APMI-F&S (F&S). This method considers FR and SR as the prediction
features.

3. Default Parameters: The threshold λ determines whether an action is positive
influence or negative influence. Its default value is set as 0.4. But several
experiments by tuning the λ are presented in the following. The influence decay
constant γ is set as 1. Weight parameters μ1 and μ2 in Function 5.10 are set as
0.5, which means we treat the friends’ state and the user’s own state equally.

4. Measurement: We use three criterions: precision, recall, and F-score to evaluate
the prediction task. As mentioned before, we set a tolerate window Winact . If
we predict a user will perform a∗ and he or she does take the action a∗ during
Winact , we see this prediction is true positive.
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5.2.5.2 Experimental Results

In this subsection we report the performance of different methods for predicting
whether the user will take the target action. The action logs in the three datasets
record users’ behavior according to the time series. Since the Flixster dataset has
no exact time stamp with each action, we divide all the three data sets into ten
units, {W1, W2, . . . , W10}, such that each unit Wi has substantially equal number of
actions. Note that the divided data still keeps chronological order, i.e., the actions
in Wi take place after the actions in Wi−1. In the following part, we will show the
results from three aspects: (1) How the action tolerant window Winact affects the
prediction performance; (2) How the influence window Winin affects the prediction
performance; (3) Whether choosing different actions will affect the performance; (4)
How the parameter λ affects the results.

1. Effect of Winact . We randomly choose one action as the target action. Set the first
six data units as the influence window and change the size of the action tolerant
window Winact from 1 to 4. The results on Digg dataset are shown in Fig. 5.3,
where x axis represents the recall (%) and y axis represents the precision (%).
As expected, each method’s recall and precision value raise with the enlargement
of Winact . The lager tolerant action window improves the prediction accuracy.
For example, the precision of UB is about 18% when Winact is 1 while it
raises to 28% when Winact is 4. Compare to other three baselines, our F and
S methods perform better in both recall and precision value. For example, in
Fig. 5.3d, compare to UB, F performed almost 50% better in the precision value
while S performed almost 67% better in the recall value. The remarkable result
is that F&S significantly outperform F and S, which means the features in our
CSI model can improve the prediction performance.

2. Effect of Winin. To measure the effect of the influence window, we change
Winin size from 6 to 9 and set the first after unit as Winact . The results in Fig. 5.4
show that the enlargement of Winin improves the prediction performance, which
means our model is more fitting the datasets when the training set is larger.
The performance of F , S, and F&S is still better than those of other three
methods. Though all methods have improved their precision or recall value,
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Table 5.1 Average F-scores (%) using six algorithms and ten target actions on three datasets with
different Winin and Winact

Data set Model T6W1 T6W2 T6W3 T6W4 T7W1 T8W1 T9W1 WTL

Digg BU 19.38 25.18 25.84 27.02 26.23 26.36 28.11 0/0/7

AC 21.95 29.94 30.66 35.15 31.68 32.55 33.91 0/0/7

EC 28.07 35.08 36.32 38.01 33.63 37.10 36.38 0/0/7

F 33.26 42.23 46.28 47.23 42.33 46.40 48.67 0/0/7

S 35.31 43.38 44.61 45.82 43.32 44.18 46.50 0/0/7

F&S 41.79 53.10 57.03 60.00 54.07 57.11 59.39 7/0/0
Flixster BU 21.77 28.75 30.21 31.39 27.75 29.92 30.98 0/0/7

AC 24.95 34.90 35.35 40.62 34.14 34.53 40.52 0/0/7

EC 33.08 41.14 43.08 49.82 40.78 43.02 49.30 0/0/7

F 38.99 50.03 54.97 56.24 49.85 54.76 55.33 0/0/7

S 40.74 51.47 52.64 64.55 51.00 51.73 64.44 0/0/7

F&S 49.15 62.67 67.77 70.65 61.94 67.21 70.47 7/0/0
Douban BU 20.08 26.16 28.41 34.95 26.81 27.98 33.99 0/0/7

AC 19.83 30.35 33.52 35.51 31.84 33.33 35.56 0/0/7

EC 31.37 43.82 48.51 52.03 42.62 43.57 50.82 0/0/7

F 34.16 43.11 50.57 52.72 44.75 49.38 50.95 0/0/7

S 36.96 44.28 47.28 53.34 45.75 46.39 54.90 0/0/7

F&S 42.18 57.45 60.68 65.42 56.89 61.37 64.81 7/0/0

F&S’s improvement with Winin is remarkable. When Winin size enlarges to 9,
its precision improves to 32.6% comparing with its precision when Winin = 6.
Due to limitations of space, Figs. 5.3 and 5.4 only show the precision and recall
results on Digg. But our algorithms still perform better than baselines on other
two datasets, which can be seen in Table 5.1.

3. Different target action. A set of experiments were repeated by running all
methods with different ten target actions on three datasets with different sizes
of Winin and Winact . These 10 actions are randomly chosen from the top 20
popular actions. Final results with error bar are presented in Figs. 5.5 and 5.6,
which show that F-score is increasing with the growth of the size of Winact

and Winin. Note that EC performs better than AC and UB on all datasets
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with different Winact and Winin. This is because EC takes into account the
neighbors’ influence, while AC and UB only consider about the user’s personal
features. Compared to UB, AC has more prediction features, which probably
explains why AC has higher F-score value than UB. Similarly, though F and S

both perform better than EC, F&S which considers these two features together
has outstanding performance than other methods. For example, on the Flixster
dataset, F&S’s F-score has achieved 70% when the Winin = 6 and Winact = 4,
while EC which has the best performance in baselines, only has achieved 32%.

Tables 5.1 and 5.2 list the results about the average and standard deviations
of the F-scores (%) on three data sets with different Winin, Winact , and target
action using six different methods. The notation T 6W1 means the Winin size
is 6 and Winact size is 1. The t-test results under the significance level of 0.05
are summarized in the “WTL” column, where “WTL” (Win/Tie/Loss) represents
the numbers of datasets whose corresponding algorithm has higher/equal/lower
F-score than others’. From this item we can see that F&S achieves best results
with the varying of Winin, Winact , and target action, whose performance over
other methods are statistically significant. For instance, on the Flixster dataset,
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Table 5.2 Standard deviations of the F-scores (%) using six algorithms and ten target
actions on three datasets with different Winin and Winact

Data set Model T6W1 T6W2 T6W3 T6W4 T7W1 T8W1 T9W1 WTL

Digg BU ±2.59 ±3.02 ±3.62 ±2.68 ±3.33 ±3.87 ±2.56 0/0/7

AC ±3.91 ±2.80 ±4.31 ±2.86 ±3.09 ±4.76 ±2.68 0/0/7

EC ±3.97 ±2.67 ±2.90 ±2.46 ±2.61 ±3.23 ±2.72 0/0/7

F ±3.55 ±3.79 ±3.48 ±3.21 ±4.15 ±3.97 ±3.22 0/0/7

S ±3.70 ±3.71 ±3.78 ±3.68 ±3.80 ±3.43 ±3.38 0/0/7

F&S ±4.38 ±2.72 ±3.85 ±2.78 ±2.97 ±4.17 ±3.07 7/0/0
Flixster BU ±2.59 ±3.42 ±3.69 ±3.03 ±4.72 ±4.42 ±3.95 0/0/7

AC ±4.15 ±2.88 ±4.06 ±3.02 ±4.22 ±5.86 ±2.89 0/0/7

EC ±3.56 ±2.80 ±3.06 ±2.68 ±2.60 ±3.46 ±2.31 0/0/7

F ±3.94 ±4.27 ±3.75 ±3.29 ±2.93 ±3.70 ±4.63 0/0/7

S ±4.13 ±3.79 ±3.29 ±3.30 ±4.79 ±4.78 ±3.73 0/0/7

F&S ±4.74 ±2.70 ±4.19 ±2.49 ±4.46 ±3.49 ±2.57 7/0/0
Douban BU ±3.21 ±3.17 ±2.84 ±2.50 ±2.87 ±2.60 ±2.19 0/0/7

AC ±3.72 ±2.42 ±3.57 ±1.94 ±2.30 ±3.50 ±1.91 0/0/7

EC ±2.91 ±1.65 ±2.91 ±1.82 ±1.90 ±2.95 ±2.10 0/0/7

F ±2.84 ±3.33 ±2.39 ±2.72 ±2.85 ±2.86 ±2.69 0/0/7

S ±3.55 ±3.31 ±3.78 ±2.00 ±3.01 ±3.29 ±2.43 0/0/7

F&S ±4.00 ±1.73 ±3.56 ±3.08 ±2.21 ±3.37 ±2.79 7/0/0
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Fig. 5.7 Average precision/recall/F-score of different λs on three datasets. (a) Digg. (b) Flixster.
(c) Douban

when T = 6 and W = 4, the best performance of baseline is 49.84%, while
F&S achieves 70.65%.

4. Tuning of parameter λ. In Function 5.8, parameter λ decides whether the
influence from neighbors’ actions is positive towards the target action. It is a
threshold for assessing the effect of each action’s target action correlation degree
δi . To evaluate how λ affects the prediction accuracy of FR feature, we construct
a set of experiments by tuning λ from 0 to 0.8 on three datasets with ten different
target actions. Figure 5.7 shows the results of the experiments where Winin

concludes the first six data units and Winact is the seventh data unit. From
Fig. 5.7, we can observe that (1) precision value increases with the growth of
λ. It is small at the beginning, because when λ is small, our model thinks most
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neighbors’ actions have the positive influence to a user. So our algorithm will
predict more people to perform the target action. The predictions of people who
are expected to perform the target action, but actually not, decrease the precision;
(2) Recall value decreases with the growth of λ. The reason of that trend is that
when λ value is high, our model thinks most of neighbors have negative influence
to the user, which underestimates their positive attitude towards the target action.
As a result, it will miss some people who are actually affected by their neighbors
and performed the target action. Since F-score is a balance between precision
and recall, it will decrease when one of them has a low value; (3) On all datasets,
the curves of three measurements intersect when λ is around 4.5. Recall that λ is
related to the correlation degree to the target action. When the correlation degree
is greater than 0.5, the very action has more than half opportunity to appear
together with the target action, which means that action indicates the appearance
of the target action in some degree. Thus the experimental results suggest that
Influence Correlation Degree can reasonably represent the relationship between
two different influences.

5.2.5.3 Evaluation of Prediction Features

In Sect. 5.2.3 we provide two features FR and SR , and use them in our APMI
algorithm for predicting human behavior which show remarkable results in our
experiments. In this part we want to compare these two features with other common
prediction features in social networks and evaluate their performance under the same
algorithm. Guyon et al. [81] used the weights of a linear support vector machines
(SVMs) to produce a feature ranking. Their SVM-RFE algorithm and experimental
results show that, for a feature vector w, the larger weight wi is, the corresponding
ith feature plays a more important role in decision function.

Based on Guyon’s work, we use the weights of SVM to evaluate the effect
of several factors on predicting human behavior under multiple influences. We
choose the following ten factors to form the feature vector for SVM: (1) FR ,
(2) SR , (3) number of actions (influences), (4) number of users, (5) number of
users who perform the target action, (6) number of actions a user performed, (7)
correlation degree between the current action and the target action, (8) number of
user’s neighbors, (9) popular ratio of the target action, and (10) exposure times of
a user to the target action (number of neighbors who have already took the target
action).

We use the SVM to do the prediction on the three datasets. For each dataset we
choose ten different target actions and changing the training set from 6 units to 9
units. Then we rank the weights of the ten features above and obtain the top five
features with higher weights. The results are shown in Table 5.3, where Ratio is the
times of appearing in top five divide the total number of SVM’s training. Obviously,
our FR and SR have the highest probability to appear in the top five, which proves
that the features generated by our model are important for the prediction. # of actions
is also important because the more activities a person join, the bigger opportunity
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Table 5.3 Feature ranking

Feature F S # of actions # of executors # of friends

Ratio 97.25 91.69 81.73 69.92 57.33

to access the influence, which is also defined in our model by Function 5.3. # of
executors refers to the number of users who performed the target action. It ranks
at the fourth place, which means the popularity of the influence will affect its
propagation. The fifth important feature is the number of user’s neighbors, which
again proves the power of “word of mouth.”

5.3 Conclusion

In this chapter, we discussed a complicated case of information propagation when
multiple social influences propagate in social networks. In Sect. 5.2, the work
advances the state of the art in modeling single influence propagation. We propose
a novel influence model that studies propagation with interacting of multiple
influences. Moreover, inspired by the electric attraction in physics, our model
considers the propagation factors in microscopic way. It looses the constraints that
influence must spread via links in the social graph. An algorithm based on this
model effectively learned features to predict human behavior. Our comprehensive
experiments have demonstrated the effectiveness and accuracy of our proposed
model and algorithm. In the future, we will deal with more features in social
networks that can affect human behaviors.
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