
Data Vault Mappings to Dimensional Model
Using Schema Matching

Mikko Puonti1,2(&) and Timo Raitalaakso1,2

1 Solita Ltd., Åkerlundinkatu 11, 33100 Tampere, Finland
{puonti,timo.raitalaakso}@iki.fi

https://www.solita.fi/en/
2 Tampere University, Kalevantie 4, 33100 Tampere, Finland

Abstract. In data warehousing, business driven development defines data
requirements to fulfill reporting needs. A data warehouse stores current and
historical data in one single place. Data warehouse architecture consists of
several layers and each has its own purpose. A staging layer is a data storage
area to assists data loadings, a data vault modelled layer is the persistent storage
that integrates data and stores the history, whereas publish layer presents data
using a vocabulary that is familiar to the information users. By following the
process which is driven by business requirements and starts with publish layer
structure, this creates a situation where manual work requires a specialist, who
knows the data vault model. Our goal is to reduce the number of entities that can
be selected in a transformation so that the individual developer does not need to
know the whole solution, but can focus on a subset of entities (partial schema).
In this paper, we present two different schema matchers, one based on attribute
names, and another based on data flow mapping information. Schema matching
based on data flow mappings is a novel addition to current schema matching
literature. Through the example of Northwind, we show how these two different
matchers affect the formation of a partial schema for transformation source
entities. Based on our experiment with Northwind we conclude that combining
schema matching algorithms produces correct entities in the partial schema.

Keywords: Schema matching � Data flow � Data warehouse � Data vault �
Dimensional model

1 Introduction

In a data warehouse, whereas several data sources are integrated as one data set,
mapping information is crucial. Most commonly used in data warehouse implemen-
tation is Extract-Transform and Load (ETL) process [6].

Business driven development defines data requirements to fulfill reporting needs.
These reporting needs are typically modelled with a dimensional modeling [7] tech-
nique. To enable parallel work with data transformation (ETL) creation and reporting
tools we have created a dimensional model as a prerequisite for actual implementation
[11]. Reporting tools need a dimensional model populated with a sample data set.
Populating a sample data set to a dimensional model creates data flow mapping

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
P. Doucek et al. (Eds.): CONFENIS 2019, LNBIP 375, pp. 55–64, 2019.
https://doi.org/10.1007/978-3-030-37632-1_5

http://orcid.org/0000-0001-6579-0224
http://orcid.org/0000-0002-7094-7203
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37632-1_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37632-1_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37632-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-37632-1_5

information at attribute level, whereas one or many attributes are mapped to one target
attribute. As a new interface is introduced to a data warehouse, it is created first to
staging layer. A sample data set is mapped from staging layer to the publish layer
(Fig. 1B). Mapping may be implemented as a database view or a ETL-transformation
that populates tables. In this paper, we are referring to these views and tables as entities.

A data warehouse stores current and historical data in one single place. A data vault
model [8] is used for storing history. When the data vault model exists, the transfor-
mations implementation between staging layer and data vault is automated by using the
process presented in our earlier research [12].

By following the process which is driven by business requirements and start with
designing a dimensional model with data, continuing with transformation implemen-
tation from a staging layer to a data vault model. The transformation graph forms a data
flow. This creates a situation where we have in a place publish layer structure, data
vault model and transformation mapping between a staging layer and a publish layer
together with a data vault (Fig. 1C). Transformation mapping between a data vault and
a publish layer is missing. When producing a durable implementation, a target is to
create transformation to the publish layer based on the data vault model. Currently, this
is manual work and it requires a specialist who knows the data vault model. A large
data warehouse may consist of several hundred entities. Our research is focused on how
to help this transformation mapping creation. How may we use the data flow mapping
information, which is generated in earlier phases? Is there any particular schema
mapping technique useful to solve this manual work and at least partially automate
tasks in the current situation? Our goal is easing up the developers work. This is
accomplished with finding candidates to be used in schema mappings. We are also
finding ways to prune parts of a big data model to be used.

2 Related Work

Ontology matching is a wider research area than our schema matching. We are using
ontology matching a name based technique where strings are identical [4]. Our
ontologies are database schemas, even when the actual implementation not include a
database schemas there are structures where tables (relation) contain attributes.

We are using existing data flow mapping information to generate new replacing
transformation mappings together with more commonly researched schema matching
methods. The data flow forms an directed acyclic graph. It may be considered form a
computer program. It describes the dependencies between all entities in a system. Frank
Tip is writing about using program slicing in program integration [14, Chap. 5.2]. We
are using such slicing to generate subgraphs assisting transformation generation.

Villányi describes schema matching techniques in service-oriented enterprise
application integration in his dissertation [15]. In a hybrid matcher Villányi combine a
vocabulary matcher and a structural matcher, where structural matcher uses a neigh-
borhood level structural similarity.

Atzeni et al. introduce meta-mappings as a formalism that describes transformations
between generic data structures [2]. This enables mapping reuse, when similar

56 M. Puonti and T. Raitalaakso

information is located in several schemas, whereas our reuse is use data flow mapping
for creating new transformation between schemas where transformation is not yet
defined.

Golfarelli et al. [5] introduce a starry vault approach to generate a dimensional
model automatically from a data vault model. In their paper there are formal definitions
of data vault and multi dimensional schemas introduced. Their paper is aiming to find a
multi dimensional model from data vault structures. Our approach is to match and
generate data flow between two predefined models.

Human effort is needed in schema matching scenarios as existing matching algo-
rithm results are not perfect. Nguyen et al. concentrate on minimizing human effort in
reconciling match networks [10]. They stress that after matching there is still a need for
a post-matching phase, which is manual correction. Their reconciliation process is an
iterative process, whereas our solution is to offer a partition schema for transformation
as a selection. Many authors agree that mapping can not totally automate, there is a
need for manual corrections [1, 2, 5, 10, 15].

3 Schema Matching and Experiments

In a data warehouse data is in relational form [3], even when NoSQL techniques are
used in implementation. A relational database consists of tables and attributes.

A set of tables is grouped together with a schema. Schema is used as an imple-
mentation of data warehouse layers, each layer in Fig. 1 is a separate schema. Now we
can refine our research question “how to help transformation mapping generation” to
form a match schema between a data vault and a publish layer schema.

Fig. 1. Transformation stack evolution

Data Vault Mappings to Dimensional Model Using Schema Matching 57

3.1 Matching Workflow

In a matching workflow, we are using phases introduced Rahm [13]. First phase is
preprocessing, where metadata information is extracted from a relational database
(Fig. 2a). Relational schema offer metadata: a table name, an attribute name, the
attribute data type, additional information for data type and a description field for
attribute.

Matching is an execution of a matching algorithm, whereas it can contain several
matching steps. These matching can be sequential, parallel or mixing both of those
principals.

A combination of matcher results is combining different matcher algorithm values
and possibly calculation aggregated value of those values. In a sequential matching a
matcher can use earlier matcher values in an algorithm.

A selection of correspondences is in our case a human work phase, which we aim to
help with offering matching results in use. If there is a tool built based on our article, it
could suggest good matches and human work would be only accept suggestions and
creating more complex mappings.

3.2 Schema Matching Based on Attribute Names

A matcher compares every attribute name of a data vault with every attribute in a
publish layer target attribute. This cross join operation can be easily quite large and this
is reason why we suggest to do this few publish layer entities at a time. The preprocess
phase in Fig. 3 target subset is chosen. In matcher first pruning is to feed only a partial
entity set from the publish layer entities, this may be interpreted as a partition of a
second schema [13].

A result of the attribute name matcher is a set of data vault entities, which has
common attribute naming compared between data vault and target entities.

Fig. 2. General match workflow (copied from [13])

58 M. Puonti and T. Raitalaakso

3.3 Schema Matching Based on Data Flow Mapping

Publish layer entities have data flow mapping for a sample data set. This mapping can
be implemented from the data vault or the staging area, nevertheless there is data flow
mapping information as presented in Fig. 1B.

Data flow mappings are expressed at attribute level between source and target
schemas. Depending on technology used it may be a challenging process to extract that
attribute level mapping information, or even worse manually create this mapping
information. We suggest expressing data flow information between source and target
schema entities, this information is useful and it is easier to extract from ETL-tool or
database view metadata information.

The target publish layer entities are chosen as an end point of the subgraph slice.
A result of data flow mapping is data vault (source schema) entities, which have
corresponding data flow to a publish layer (target schema) entities.

Inside data vault there might exist layers. A raw data vault that is populated straight
from staging area. Business data vault [9] is a layer that enriches the data vault model
and uses other data vault entities as a source. This piles up the transformation stack and
makes the data flow graph deeper. We are using this depth as an indicator of enriched
information. Giving a better ranking for business vault entities to be used in the
suggested mappings.

3.4 Schema Matching Combination of Attribute Names and Data Flow
Mapping

Last phase of our algorithm is a combination of earlier matchers results. Noteworth,
these matchers have result sets at different level of granularity. This is presented in
Fig. 3 combination of matcher results.

As we are aiming to match schemas between the data vault and the publish layer,
this algorithm is for helping creating transformations between these schemas. For
human decision, we are presenting potential entities for transformation creation. The
earlier matchers enable us to use the following strategy:

• Present all potential entities in order where first is the most prominent candidate
• Present only potential entities, which are common in both matcher result set.

Fig. 3. Match workflow

Data Vault Mappings to Dimensional Model Using Schema Matching 59

As the data flow information is not always available, our suggested strategy is to
present all potential entities in relevant order.

The algorithm to create this ordering for candidate entities.

1. Count at entity level how many attributes is in an attribute name matcher result set.
2. Add a depth value for each entity, which is in a data flow matcher result set.
3. Summarise these result sets.
4. Order the result set according to the value of each entity.

3.5 Northwind Example

As a demonstration of our approach, we use Northwind1 source data model. We
modeled a publish layer schema of order fact and dimensions. The ORDER_F refer-
ences to CUSTOMER_D, EMPLOYEE_D, ORDER_D and SHIPPER_D. After data
vault modeling and transformation population at the phase (Fig. 1C) we get sugges-
tions to new (Fig. 1D) phase transformations as described in (Tables 1 and 2).

CUSTOMER D gets side different false positives from both suggestions but
CUSTOMER_H and CUSTOMER_S are found in both sets to be considered as source
for mappings. The number of common columns in naming suggestion is higher for
these and gets prioritized based on the naming match. Adding the second suggestion set
from data flows the results become more convincing. SHIPPER_D gets assurance that
CUSTOMER_H and CUSTOMER_S should not be considered as source for mapping.
ORDER_F gets suggestions from either ORDER_L or ORDER_BV_L. Data vault
model is layered. ORDER_L represent a raw data vault layer and ORDER_BV_L is an
entity of business data vault layer. ORDER_BV_L uses another data vault entities as a
source for it data. This dependency graph depth is visible in (Table 2) ORDER_BV_L
- ORDER_F suggestion row. It is used together with higher score from naming sug-
gestion to choose correct mappings to be implemented.

3.6 Observations from Northwind Example

Both our matchers return side hits - false positives. Attribute naming return overlapping
from irrelevant similarity matches. The data flow matcher raises other potential map-
ping candidates. As the data flow subgraph from used staging entities contains trans-
formations to other data vault entities that are not needed in the desired resulting
mapping for a specific target publish layer entity.

With combing results from both approaches we get more precise suggestion for the
new data vault publish layer transformations. With our experiments, the false positive
groups are some what differing. So exclusion of false positive mapping candidates
becomes more convincing. This minimizes the needed human effort while creating the
end results.

1 https://github.com/dshifflet/NorthwindOracle_DDL.

60 M. Puonti and T. Raitalaakso

https://github.com/dshifflet/NorthwindOracle_DDL

4 Discussion and Future Work

In our experimentation, we created a target schema as a database views from the
staging layer. The data flow based matcher used this information at an entity level.
There are possibilities to extract this data flow mapping information at an attribute
level, one option is to use a tool like Queryscope2. This would open possibility to create
more fine tuned result of the combined matcher described in this paper.

In this paper, we introduce two schema matcher. By adding more schema matchers,
it is possible to improve the suggestions. A structural matcher might be beneficial. Link
and fact granularities might be used. Link granularity, calculated based on the number
of hubs it references, and fact cardinality, how many dimensions it references, could be
compared.

Table 1. Transformation suggestions based on naming

MAINENTITY SOURCEENTITY TARGETENTITY C

CUSTOMER_H CUSTOMER_H CUSTOMER_D 2
CUSTOMER_H CUSTOMER_S CUSTOMER_D 2
SHIPPER_H SHIPPER_H CUSTOMER_D 1
SHIPPER_H SHIPPER_S CUSTOMER_D 1
EMPLOYEE_H EMPLOYEE_H EMPLOYEE_D 2
EMPLOYEE_H EMPLOYEE_S EMPLOYEE_D 2
ORDER_H ORDER_H EMPLOYEE_D 1
ORDER_H ORDER_S EMPLOYEE_D 1
ORDER_H ORDER_H ORDER_D 2
ORDER_H ORDER_S ORDER_D 2
CUSTOMER_ID_CUSTOMER_L CUSTOMER_H ORDER_F 1
CUSTOMER_ID_CUSTOMER_L CUSTOMER_ID_CUSTOMER_L ORDER_F 1
CUSTOMER_ID_CUSTOMER_L CUSTOMER_ID_H ORDER_F 1
ORDER_BV_L CUSTOMER_H ORDER_F 4
ORDER_BV_L EMPLOYEE_H ORDER_F 4
ORDER_BV_L ORDER_BV_L ORDER_F 4
ORDER_BV_L ORDER_H ORDER_F 4
ORDER_BV_L SHIPPER_H ORDER_F 4
ORDER_L CUSTOMER_ID_H ORDER_F 3
ORDER_L EMPLOYEE_H ORDER_F 3
ORDER_L ORDER_H ORDER_F 3
ORDER_L ORDER_L ORDER_F 3
ORDER_L SHIPPER_H ORDER_F 3
CUSTOMER_H CUSTOMER_H SHIPPER_D 1
CUSTOMER_H CUSTOMER_S SHIPPER_D 1
SHIPPER_H SHIPPER_H SHIPPER_D 2
SHIPPER_H SHIPPER_S SHIPPER_D 2

2 https://app.sqldep.com/demo/.

Data Vault Mappings to Dimensional Model Using Schema Matching 61

https://app.sqldep.com/demo/

Future work would be to suggest transformations between source schema (data
vault) and target schema (publish layer) entities. At least the result set from the attribute
name matcher is re-usable for creating transformation where is one-to-one mapping
between source and target attribute. Our target is to reducing manual work by offering a
subset of source schema entities for creating transformations, not actually create that
data flow.

This paper is talking about a process of creating new or extending an existing data
warehouse. A similar approach may be used when replacing an existing direct star
schema publish layer data flows by adding data vault modeled enterprise data ware-
house layer between a staging and a publish layer. Replacing old ETL tool imple-
mentation. Benefits of data vault methodology such as history in satellites and better
agile development enablement. The process described in (Fig. 1) fits as is also on such
replacement process. Phase (A) Use existing staging and star schema model.
(B) Reverse engineer data flow transformation dependencies from old ETL imple-
mentation. (C) and (D) phases as described in this paper.

It is inevitable that the data vault model does not have a perfect match for source
mapping at some point in data warehouse evolution. These pruned partial matcher

Table 2. Transformation suggestions based on data flows

SOURCEENTITY TARGETENTITY SCORE

CUSTOMER_H CUSTOMER_D 1
CUSTOMER_ID_CUSTOMER_L CUSTOMER_D 1
CUSTOMER_ID_H CUSTOMER_D 1
CUSTOMER_S CUSTOMER_D 1
ORDER_BV_L CUSTOMER_D 2
EMPLOYEE_H EMPLOYEE_D 1
EMPLOYEE_S EMPLOYEE_D 1
CUSTOMER_ID_H ORDER_D 1
EMPLOYEE_H ORDER_D 1
ORDER_BV_L ORDER_D 2
ORDER_H ORDER_D 1
ORDER_L ORDER_D 1
ORDER_S ORDER_D 1
SHIPPER_H ORDER_D 1
CUSTOMER_ID_H ORDER_F 1
EMPLOYEE_H ORDER_F 1
ORDER_BV_L ORDER_F 2
ORDER_H ORDER_F 1
ORDER_L ORDER_F 1
ORDER_S ORDER_F 1
SHIPPER_H ORDER_F 1
SHIPPER_H SHIPPER_D 1
SHIPPER_S SHIPPER_D 1

62 M. Puonti and T. Raitalaakso

results could be used to be a base for new business vault entities. The knowledge of a
developer and an access path suggestor3 could be used to generate links and bridges
that satisfy publish layer source information needs.

5 Conclusion

Our research is focused on helping transformation creation between a data vault and a
publish layer. For each publish layer entities we create a set of source entity candidates
from a data vault schema entities.

As we are following the process which is driven by business requirements, there is
a publish layer entity populated with a sample data. This sample data population
construct a data flow to the target schema entity.

We examine whether schema matching is based on attribute names enough to
suggest correct entities from a data vault schema. Schema matching based on attribute
names finds correct entities from a source schema, but still there is room for
improvement.

By adding a schema matcher based on data flow mapping we get a result set to
enrich an attribute name based matching. Combining the results from these two
matchers we may present potential transformation source entity candidates in order
where the most prominent one is at first.

This combined algorithm is suitable for building a tool to help transformation
mapping creation between a data vault and a publish layer. The result set from algo-
rithm offer correct source entities for transformation mapping sources.

After choosing source entities for transformation mapping, we could additionally
suggest mappings from schema matching based on attribute names as a base for that
transformation where a specialist could continue with additional mappings and with the
complex mappings.

References

1. Alexe, B., Ten Cate, B., Kolaitis, P.G., Tan, W.C.: Designing and refining schema mappings
via data examples. In: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pp. 133–144. ACM (2011)

2. Atzeni, P., Bellomarini, L., Papotti, P., Torlone, R.: Meta-mappings for schema mapping
reuse. Proc. VLDB Endow. 12(5), 557–569 (2019)

3. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),
377–387 (1970)

4. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38721-0

5. Golfarelli, M., Graziani, S., Rizzi, S.: Starry vault: automating multidimensional modeling
from data vaults. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds.) ADBIS 2016.
LNCS, vol. 9809, pp. 137–151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44039-2_10

3 http://rafudb.blogspot.com/2019/01/access-path-suggestor.html.

Data Vault Mappings to Dimensional Model Using Schema Matching 63

http://dx.doi.org/10.1007/978-3-642-38721-0
http://dx.doi.org/10.1007/978-3-642-38721-0
http://dx.doi.org/10.1007/978-3-319-44039-2_10
http://dx.doi.org/10.1007/978-3-319-44039-2_10
http://rafudb.blogspot.com/2019/01/access-path-suggestor.html

6. Kimball, R., Caserta, J.: The Data Warehouse ETL Toolkit: Practical Techniques for
Extracting, Cleaning, Conforming and Delivering Data. Wiley, Hoboken (2004)

7. Kimball, R., Ross, M.: The Data Warehouse Toolkit: the Complete Guide to Dimensional
Modeling. Wiley, Hoboken (2011)

8. Linstedt, D.: Data Vault Series 1–Data Vault Overview. The Data Administration
Newsletter, Baltimore (2002)

9. Linstedt, D., Graziano, K., Hultgren, H.: The new business supermodel, the business of data
vault modeling. Lulu.com (2008)

10. Quoc Viet Nguyen, H., et al.: Minimizing human effort in reconciling match networks. In:
Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 212–226.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_19

11. Puonti, M., Lehtonen, T., Luoto, A., Aaltonen, T., Aho, T.: Towards agile enterprise data
warehousing. In: ICSEA 2016, p. 241 (2016)

12. Puonti, M., Raitalaakso, T., Aho, T., Mikkonen, T.: Automating transformations in data
vault data warehouse loads. In: EJC, pp. 215–230 (2016)

13. Rahm, E.: Towards large-scale schema and ontology matching. In: Bellahsene, Z., Bonifati,
A., Rahm, E. (eds.) Schema Matching and Mapping, pp. 3–27. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-16518-4_1

14. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3, 121–189 (1995)
15. Villányi, B.J.: Schema matching techniques in service-oriented enterprise application

integration. Informatikai Tudományok Doktori Iskola (2016)

64 M. Puonti and T. Raitalaakso

http://dx.doi.org/10.1007/978-3-642-41924-9_19
http://dx.doi.org/10.1007/978-3-642-16518-4_1

	Data Vault Mappings to Dimensional Model Using Schema Matching
	Abstract
	1 Introduction
	2 Related Work
	3 Schema Matching and Experiments
	3.1 Matching Workflow
	3.2 Schema Matching Based on Attribute Names
	3.3 Schema Matching Based on Data Flow Mapping
	3.4 Schema Matching Combination of Attribute Names and Data Flow Mapping
	3.5 Northwind Example
	3.6 Observations from Northwind Example

	4 Discussion and Future Work
	5 Conclusion
	References

