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Abstract. The operation of air coolers of railway air conditioning (AC) sys-
tems is characterized by considerable variations in current heat loads according
to actual climatic conditions on the route lines. This causes increased changes of
refrigerant flows. Over filling the air cooler coils by liquid refrigerant recircu-
lation enables excluding a decrease in heat flux within variations in current heat
loads and provides increasing the heat efficiency of air coolers compared with
conventional air coolers with complete refrigerant evaporation and superheated
vapor at the exit. Thus a larger deviation of current heat load on railway route
lines are permited without falling air cooler heat efficiency. The method to
determine the rational design heat load on air coolers of railway AC systems,
providing closed to maximum refrigeration output generation over considered
time period, was developed.

Keywords: Railway air conditioner � Changeable heat load � Liquid refrigerant
recirculation

1 Introduction

The performance of railway AC systems is characterized by considerable variations in
current heat loads on their air coolers according to actual climatic conditions on the
route line. So, the problem is to determine the rational design heat load on air coolers of
railway conditioners, providing closed to maximum refrigeration output generation
over considered time period.

The system of over filling the air cooler coils by liquid refrigerant recirculation
enables a large deviation of current heat loads from their rational design value without
considerable falling air cooler heat efficiency. The system of refrigerant circulation in air
coolers by injector that enables excluding the final dry-out stage of refrigerant evapo-
ration with extremely low intensity of heat transfer and as result provides increasing the
heat efficiency of air coolers (overall heat flux) by 20–30% compared with conventional
air coolers with complete refrigerant evaporation and superheated vapor at the exit might
be proposed [1]. The injector uses a potential energy of high pressure liquid refrigerant,
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leaving a condenser, which is conventionally lost while it throttling to evaporation
pressure in expansion valve.

2 Literature Review

A lot of researches deal with improving the performance of AC systems by intensifi-
cation of heat transfer processes in heat exchangers [1–3], application of differ
refrigerant circulation schemes [4–7], waste heat recovery technics [8–11], modern
methods of modelling, experimental, monitoring and statistical methods [12–14].

As modern trend in AC systems the application of Variable Refrigerant Flow
(VRF) system is considered to modulate heat load by varying refrigerant feed to air
coolers [15–17]. The VRF system maintains the zone comfort by supplying adequate
amount of refrigerant to air coils to meet cooling duties. The performance evaluations
showed that the VRF system reduced energy consumption by 40% to 60% compared to
that of central AC systems [18]. But the problem of inefficient operation of air coolers
in VRF system caused by dry-out of inner walls at the final stage of inside tube
refrigerant evaporation followed by dropping the intensity of heat transfer remains
unsolved.

As alternative approach of the heat load modulation in AC systems the concept of
incomplete refrigerant evaporation [1, 19] with overfilling air coils that leads to
excluding a dry-out of inner surface of air coils is developed through liquid refrigerant
recirculation by injector (jet pump).

Considerable changes in the current heat loads q0 on the air cooler need choosing
its rational design value, providing maximum refrigeration output generation over
considered time period [20–22].

The basic approaches to determine a design heat load on air coolers of AC system
with taking into account the currentchangeable climatic conditions were developed in
[24–26] and quite acceptable small deviations of current heat loads from adesign heat
load value was shown to prove the results [25] as well as expedience of over filling the
air coolers by liquidrefrigerant recirculation [1] that enables large current cooling load
fluctuations on railway route lines without considerablefalling air cooler heat efficiency
as in present investigation.

The aim of the study is to develop the method to determine the rational design heat
load on the air coolers of railway AC systems, providing closed to maximum refrig-
eration capacity generation under changeable actual heat loads during railway routs.

3 Research Methodology

The operation of railway AC systems is characterized by considerable changes in the
current heat loads Q0 on the route lines and in corresponding specific heat loads i.e.
specific cooling capacity – related to the unit of air mass flow: q0 = Q0/Ga, were Ga –

ambient air mass flow in air cooler, kg/s. The specific cooling capacity is calculated as
q0 = n ∙ ca ∙ (tamb – ta2), kJ/kg, were n – coefficient of water vapor condensation heat,
determined as ratio of the overall heat, removed from the air being cooled, including
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the latent heat of water vapor condensed from the wet ambient air, to the sensible heat
removed; tamb – ambient air temperature, ta2 – air temperature at the air cooler outlet, ca
– specific heat of ambient humid air.

The current heat loads are calculated according to varying actual ambient air
parameters on the route lines with using the Meteomanz program [23] or others.

So as the efficiency of AC systems and their refrigeration machine performance
depends on their cooling loading (current cooling capacities) q0 and a duration s of
their operation, the summarised refrigeration capacity

P
(q0 ∙ s) generated during

railway routes over the most hot month, might be considered as a primary criterion for
the choice of a rational design cooling load of AC system. For this the current
refrigeration capacities, generated by the refrigeration machine in response to the
cooling duties for cooling ambient air to the target leaving air temperature, have been
summarized over the summer month to determine the rational design cooling load of
AC system.

4 Results of Investigation

The current values of temperature tamb and relative humidity uamb of ambient air and
temperature decrease Dta within cooling ambient air from current ambient temperatures
tamb to the temperature ta2 = 15 °C and corresponding current specific refrigeration
capacity (specific heat load on the air cooler) q0, kW/(kg/s), or kJ/kg (at air mass flow
Ga = 1 kg/s), during direct route Kherson-Lviv (Kh-Lv) and return route Lviv-Kherson
(Lv-Kh) per day for 1.08–3.08. 2018 are presented in Figs. 1 and 2.

As Fig. 1 shows the behavior of the curves corresponding to current values of
specific refrigeration capacity q0 and temperature decrease Dta within cooling ambient
air to the temperature ta2 = 15 °C does not coincide because of variation in relative
humidity uamb of ambient air and corresponding latent heat.

The results of summarizing the specific refrigeration capacity values
P

(q0 ∙ s)r1 (at
air mass flow Ga = 1 kg/s) for cooling ambient air to the temperature ta2 = 15 °C
during direct Kherson-Lviv (Kh-Lv) and return Lviv-Kherson (Lv-Kh) routes and their
summarized value

P
(q0 ∙ s) for 1.08–3.08. 2018 through summarizing their valuesP

(q0 ∙ s)r1 for each route are presented in Fig. 2.
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As Fig. 2 shows, the summarized values of specific refrigeration capacity
P

(q0 ∙ s)r1
for air conditioning in direct (Kh-Lv) and return (Lv-Kh) routes are nearly the same that is
confirmed by monotonous rate of their increments

P
(q0 ∙ s) for 1.08–3.08. 2018.
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Fig. 1. Current values of temperature tamb and relative humidity uamb of ambient air,
temperature decrease Dta due to cooling ambient air to ta2 = 15 °C and corresponding current
specific refrigeration capacity q0 during direct routes Kherson-Lviv (Kh-Lv) and return routes
Lviv-Kherson (Lv-Kh) for 1.08–3.08. 2018
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Fig. 2. Current values of specific refrigeration capacity q0 and summarized values of specific
refrigeration capacity

P
(q0 ∙ s)r1 for cooling ambient air to the temperature ta2 = 15 °C within

each route (direct Kherson-Lviv (Kh-Lv) and return Lviv-Kherson (Lv-Kh) routes) and their
summarized value

P
(q0 ∙ s) for 1.08–3.08. 2018
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Considerable changes in the current heat loads q0 on the air cooler need choosing
its rational design value, providing maximum refrigeration capacity generation over
considered time period. The monthly refrigeration output in relative values

P
(q0 ∙ s)

(at air mass flow Ga = 1 kg/s) against design specific refrigeration capacity q0 = Q0/Ga

of refrigeration machine for cooling ambient air to the temperature ta2 = 15 °C and
climatic conditions on the route lines Kherson-Lviv and Lviv-Kherson for August,
2018 year, are presented in Fig. 3.

As Fig. 3 shows, the monthly (August) specific refrigeration output
P

(q0 ∙ s) for
cooling ambient air to the temperature ta2 = 15 °C at specific refrigeration capacity
q0 = 30 kJ/kg, or kW/(kg/s), is evaluated as

P
(q0 ∙ s) � 23 MJ/(kg/h) for all direct

railway routes Kherson-Lviv as well as
P

(q0 ∙ s) � 22 MJ/(kg/h) for all return rail-
way routes Lviv-Kherson in August and achieved with monotonous rate of their
monthly increments

P
(q0 ∙ s) with increasing the specific refrigeration capacity q0 up

to 30 kJ/kg.
Because of negligible rate of the monthly increments

P
(q0 ∙ s) the further increase

in specific refrigeration capacity q0 from 30 to 35 kJ/kg does not result in appreciable
increment in the monthly refrigeration output

P
(q0 ∙ s) for July, but causes oversizing

refrigeration machine, that leads to increasing its cost. Thus, the specific refrigeration
capacity q0 = 30 kJ/kg, or kW/(kg/s), is accepted as rational one to calculate a total
designed refrigeration capacity Q0 of refrigeration machine according to the total air
mass flow Ga, kg/s: Q0 = Ga ∙ q0, kW.
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Fig. 3. The monthly refrigeration output in relative values
P

(q0 ∙ s) for ambient air cooling to
the temperature ta2 = 15 °C against designed specific refrigeration capacity q0 = Q0/Ga:P

(q0 ∙ s)Kh-Lv − summarized for all direct railway routes Kherson-Lviv;
P

(q0 ∙ s)Lv-Kh –
summarized for all return railway routes Lviv-Kherson, August 2018
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5 Conclusions

The method to determine the rational design heat load on air coolers of railway AC
systems, matching current changeable climatic conditions and providing closed to
maximum refrigeration output generation over any considered time period of perfor-
mance, was developed.
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