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Abstract. The method of objects probabilistic search is developed based on the
necessary proximity conditions in a Euclidean space, which were previously
proved for the Levenshtein’s metric. The method is based on a random selection
of k pivots in Euclidean space among the original objects, projecting all source
objects in a k-dimensional Euclidean space, filling special hash data structures,
and fast search facilities, similar to the desired, based on proven necessary
conditions for the objects proximity in Euclidean space. Experimental studies of
the proposed method show the higher speed in comparison with the known
method.
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1 Problem Statement

Recent decades in the artificial intelligence sphere there are developed and used a set of
“nearest neighbor” search methods for objects arrangement and clustering [1–3].
Nevertheless, the problem of the high-performance methods development in circum-
stances when calculation of distances between objects still take the certain search time
is still actual. The method based upon the necessary proximity conditions, which is a
generalization of the conditions previously proved for Levenshtein’s metric, is devel-
oped, experimentally tested and described in [4, 5].

In common, the problem statement is the following. Assume that an edit distance d
between objects of a certain class Cl satisfies the conditions:

dðX; YÞ� 0;
dðX;XÞ ¼ 0;

dðX; YÞ ¼ dðY ;XÞ;
dðX; ZÞ� dðX; YÞþ dðY ; ZÞ:

8>><
>>:

ð1Þ

A certain object rt of a class Cl and a set of objects ET ¼ et1; et2; . . .; etnð Þ of the
same class are given. It is required to find all eti of the set ET , such that the distance d
between eti and rt is not greater than a given positive integer k. Formally required to find
ETs ¼ fets1; ets2; . . .; etslg, such that 8etsi 2 ETs � ET : dðetsi; rtÞ� k; k 2 N; l� n.

The proposed method consists of two steps. 1st step. k elements
o1; o2; . . .; ok; k� n are randomly selected from the ET set. These elements are
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considered as k pivots in a k-dimensional Euclidean space Ek. After that each element
eti of the ET set is associated with Ek point coordinates which are equal to the distances
to the pivots, i.e. PðetiÞj ¼ dðeti; ojÞ; i ¼ 1; n; j ¼ 1; k. 2nd step. The rt object is

associated in space Ek with the point coordinates PðrtÞj ¼ dðrt; ojÞ; j ¼ 1; k. Distances
are calculated only between the object rt and those objects, whose corresponding points
in space Ek are located closest to the point PðrtÞ.

To determine points closeness in Euclidean space it is necessary introduce the
proximity conditions for a given objects X, Y and Z of class Cl.

Proposition 1. For a given object X, Y and Z of a class Cl the distance d between them
satisfies the conditions (1) and the following inequality 8X; Y ; Z dðX; YÞ� jdðX; ZÞ �
dðZ; YÞj is true.
Proof. Consider two of the triangle inequality: dðX; ZÞ� dðX; YÞþ dðY ; ZÞ; dðY ; ZÞ
� dðY ;XÞþ dðX; ZÞ. From the first inequality it is followed dðX; ZÞ � dðY ; ZÞ�
dðX; YÞ, from the second - dðY ; ZÞ � dðX; ZÞ� dðY ;XÞ. By combining both expres-
sions and using the symmetry property, we obtain the system of inequalities:
dðX; YÞ� dðX; ZÞ � dðZ; YÞ;
dðX; YÞ� dðZ; YÞ � dðX; ZÞ;

�
or, as follows, dðX;YÞ� jdðX; ZÞ � dðZ; YÞj Q.E.D.

Proposition 2. For a given objects eti and etj of a class Cl, distance d between which
satisfies conditions (1) and does not exceed a threshold k, corresponding points PðetiÞ
and PðetjÞ it space Ek are situated on a distance of no more than k

ffiffiffi
k

p
, i.e. 8i8j 6¼ i d

ðeti; etjÞ� k: qðPðetiÞ;PðetjÞÞ� k
ffiffiffi
k

p
.

Proof. From the definition of the metric Ek follows: qðPðetiÞ;PðetjÞÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPðetiÞ1 � PðetjÞ1Þ2 þðPðetiÞ2 � PðetjÞ2Þ2 þ . . .þðPðetiÞk � PðetjÞkÞ2

q
. According to

Proposition 1: dðeti; o1Þ � dðetj; o1Þ
�� ��� dðeti; etjÞ. . .; dðeti; okÞ � dðetj; okÞ

�� ��� d eti; etj
� �

.
Hence, transitively: jPðetiÞ1 � PðetjÞ1j � k. . .; jPðetiÞk � PðetjÞkj � k and, therefore:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPðetiÞ1 � PðetjÞ1Þ2 þ . . .þðPðetiÞk � PðetjÞkÞ2
q

�
ffiffiffiffiffiffiffi
k2k

p
¼ k

ffiffiffi
k

p
, Q.E.D.

Proposition 3. For a given objects eti and etj of a class Cl the distance d between
which satisfies conditions (1) and does not exceed a threshold k, point PðetjÞ located in
the space Ek within a hypercube centered at PðetiÞ with the side equal to 2k.

Proof. According to Proposition 1 the following systems of inequalities can be con-
sequently obtained:
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jdðeti; o1Þ � dðetj; o1Þj� dðeti; etjÞ;

jdðeti; o2Þ � dðetj; o2Þj� dðeti; etjÞ;

. . .

jdðeti; okÞ � dðetj; okÞj� dðeti; etjÞ;

8>>>>>>>>>>><
>>>>>>>>>>>:

¼

PðetjÞ1 �PðetiÞ1 � k;

PðetjÞ1 �PðetiÞ1 þ k;

PðetjÞ2 �PðetiÞ2 � k;

PðetjÞ2 �PðetiÞ2 þ k;

. . .

PðetjÞk �PðetiÞk � k;

PðetjÞk �PðetiÞk þ k:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2Þ

The geometric meaning of the system of inequalities (2) is a hypercube centered at
PðetiÞ ¼ ðdðeti; o1Þ; dðeti; o2Þ; . . .; dðeti; okÞÞ with the side length 2k, Q.E.D.

Proposition 4. For a given objects eti and etj of a class Cl the distance between which
d satisfies conditions (1) and does not exceed a threshold k, absolute value of the
difference of the distances from points PðetiÞ and PðetjÞ to the origin in the space Ek

does not exceed k
ffiffiffi
k

p
, i.e. jqðPðetiÞ; 0Þ � qðPðetjÞ; 0Þj � k

ffiffiffi
k

p
.

Proof. According to the property of the Euclidean metric space (triangle inequality)
jqðPðetiÞ; 0Þ � qðPðetjÞ; 0Þj � qðPðetiÞ;PðetjÞÞ. On the other hand, according to
Proposition 2: qðPðetiÞ;PðetjÞÞ� k

ffiffiffi
k

p
. From the above it can be obtained: jqðPðetiÞ;

0Þ � qðPðetjÞ; 0Þj � qðPðetiÞ;PðetjÞÞ� k
ffiffiffi
k

p
and hence jqðPðetiÞ; 0Þ � qðPðetjÞ;

0Þj � k
ffiffiffi
k

p
, Q.E.D.

Proposition 5. Assume that u;w 2 R and u;w[ 0. Then from ½u� �w it is followed:
½u� � ½w�, where ½u�; ½w� are the whole parts of the numbers u and w respectively.

Proof. There are two cases when ½u� �w is true: ½u� ¼ ½w� and ½u�\½w�. Generalizing
both of them, we can obtained condition ½u� � ½w�. It is also obvious that assumption
½u�[ ½w� could not be true for ½u� �w, therefore what was required to prove ½u� � ½w� is
true.

Proposition 6. Assume that u; v;w 2 R and u; v;w[ 0. Then from ju� vj �w it is
followed: ½u� � ½v�j j � ½w� þ 1, where ½u�; ½v�; ½w� - the whole parts of the numbers u, v,
w respectively.

a

b c d

e f g

Fig. 1. An example of a tree as an object
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Proof. First consider the case, when u� v. Then from u�wþ v it could be obtained
½u� �wþ v, considering u� ½u�, furthermore ½u� �wþ ½v� þ 1, considering v\½v� þ 1.
Further, according to the Proposition 5 and the fact that any positive number greater
than any negative one, if ½u� � ½v� �wþ 1, then ½u� � ½v� � ½w� þ 1. Second case v[ u
could be considered the same way and obtained the next inequity:½v� � ½u� � ½w� þ 1.
Summarizing both cases: ½u� � ½v�j j � ½w� þ 1, Q.E.D.

Definition 1. A size of an object eti of a class Cl is the number of its elements and
marked as eti. For example, if eti is the string “home”, then eti ¼ 4 (line length); if eti is
the tree shown on Fig. 1, then eti ¼ 7 (the number of vertices).

Proposition 7. If the absolute value of the difference between the sizes of objects eti
and etj of a class Cl, distance d between which satisfies conditions (1), is greater than k,
then the distance between these objects is also greater than k, i.e. ð eti � etj

�� ��[ kÞ )
ðdðeti; etjÞ[ kÞ.
Proof. This proposition is obvious and follows from the fact that if the objects sizes
differ on k, then to convert an object eti into object etj or vice versa, it is should be
completed at least k element deletions in the best case and more – in the other cases.

After necessary objects proximity conditions have been proved, the essence of the
proposed method could be described more detailed.

On the first step, after the random k pivots from a set ET selection and the points
coordinates PðetiÞ calculation, distance by the points PðetiÞ to the origin in space Ek

could be obtained as: qðPðetiÞ; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðetiÞ21 þPðetiÞ22 þ . . .þPðetiÞ2k

q
.

In addition, we form a matrix D, which is distribution of distances in space Ek by
points PðetiÞ to the origin. To do this, the set W ¼ f½qðPðet1Þ; 0Þ�; ½qðP
ðet2Þ; 0Þ�; . . .; ½qðPðetnÞ; 0Þ�g ¼ fw1;w2; . . .;wzg; z� n is introduced, where
½qðPðetiÞ; 0Þ� means the integer part of qðPðetiÞ; 0Þ.

Each index wi 2 W deals with a set of integers INDi ¼ findi1; indi2; . . .; indiwg,
which are the objects indexes with the distance from the origin equal to wi. In this case,
the following condition is true: 8q 2 f1; . . .;wg ; indiq 2 f1; . . .; ng; 9 qðP½
ðetindiqÞ; 0Þ� ¼ wi. Considered matrix D has dimension maxðWÞ �minðWÞþ 1ð Þ �
maxfjIND1j; . . .;ð jINDzjgÞ. Using auxiliary set INDi, there is assigned: Dwiq ¼ indiq,
what means, that raw wi of the matrix D contains the indices of the objects, for which
an integer part of the distance in space Ek to the origin is equal to wi.

For the target object rt it is required to find row with index ½qðPðrtÞ; 0Þ� in the matrix
D. After that, according to Propositions 4 and 6, it is need to review the neighbor rows
of the matrix D with the indices from the set W1 ¼ q P rtð Þ; 0ð Þ½ � � k

ffiffiffi
k

p� �� 1;
	

½qðPðrtÞ; 0Þ� � ½k ffiffiffi
k

p �; . . .; ½qðPðrtÞ; 0Þ� � 1; ½qðPðrtÞ; 0Þ�; ½qðPðrtÞ; 0Þ� þ 1; . . .;
½qðPðrtÞ; 0Þ� þ ½k ffiffiffi

k
p �; ½qðPðrtÞ; 0Þ� þ ½k ffiffiffi

k
p �þ 1g¼ fw11;w12; . . .;w1vg, and W1 	 W.

v� z.
Then, when viewing the element rows of the matrix D with index w1t, i.e. Dw1tq ,

further screening “candidates” can be find out among the proximate objects: first, by
checking the conditions from the Proposition 7: eti � etj

�� ��[ k, and second, by
checking the condition of the Proposition 3: does the PðetDw1tq

Þ lie in a hypercube
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centered at the point PðrtÞ and side of 2k. Finally, if PðetDw1tq
Þ is within the hypercube,

then the distance dðrt; etDw1tq
Þ between the objects rt and etDw1tq

is calculated.

2 Method Instantiation

There are considered two cases: (1) Class Cl objects are ordered m-ary trees, m 2 N;
(2) class Cl objects are strings.

1st Case. Objects of class Cl are ordered m-ary trees. Then the statement of the
problem is as follows. A tree rt and a set of trees ET ¼ et1; et2; . . .; etnð Þ, i ¼ 1; n are
given. It is required to find all the trees eti, such that the distance d rt; etið Þ is not greater
than a given positive integer k.

In this case, one of the metrics for d can be chosen. The metric used in [7] and the
metric from [234, 235] can be considered as reasonable alternatives. Differences
between these two metrics are in the set of valid tree editing operations: each metric
permits rename operation, removal and insertion of tree nodes, but the first one con-
sider the last two operations as applicable to the tree leaves only, i.e. to the vertices
with no descendants, whereas the second one applies them to any tree node.

Further the essence of the insertion and deletion of tree nodes in a second metric
will be review in details. As a result of the insert operation, some or all descendants of
the parent node for the inserted node transform into inserted node descendants. After
the delete operation all deleted node descendants transform into the descendants of its
parent node. Consider concrete examples.

Example 1. Two ordered binary trees X and Y are represented on Figs. 2 and 3. The
edit distance between X and Y in the Selkow metric [7] is 6.

The minimal set of editing operations which convert X to Y includes operations:

(1) replace the node “a” with index 0 with the name «b»;
(2) replace the node “b” with index 1 with the name “c”;
(3) delete the leaf node “e” with index 4;

b[0]

d[2]

c [1]

e [3]

Fig. 3. Ordered binary tree Y

a [0]

b[1]

d[3]

c [2]

e[4]

Fig. 2. Ordered binary tree X
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(4) delete the leaf node “d” with index 3;
(5) replace the name node “c” with index 2 with the name “d”;
(6) insert a right child “e” to the node “b” with index 1;

For metric used in [7, 8], the edit distance between X and Y will be equal to 1, as for
converting Y to X it is necessary to delete node “a” with index 0.

Example 2. Two ordered ternary tree X1 and Y1 are represented on Figs. 4 and 5.

According to Selkow metric [7] edit distance between X1 and Y1 is equal to 7. The
minimal set of editing operations which convert X to Y includes operations:

(1) insert a child “a” to node “a” with index 0;
(2) insert a child “b” to node “a” with index 0;
(3) insert a child “b” to the newly inserted node «a»;
(4) delete the leaf “b” with index 3;
(5) delete the leaf “b” with index 4;
(6) delete the leaf “b” with index 5;
(7) replace the name node “a” with index 2 with the name “b”.

For the second metric the distance between X1 and Y1 is equal to 3, as to convert
X1 to Y1 it is necessary to perform operations:

(1) remove the node “a” with index 0;
(2) insert a child “b” to the node “b” with the index 4;
(3) replace the name node “b” with index 4 with the name “a”.

As follow from the above examples, trees are more proximate if the second metric is
used. In common, the metric selection criteria should be determined depending on the
specific practical problem.

2nd Case. Class Cl objects of are the strings. For this case using the Levenshtein
distance, which is a minimal number of string edit operations for its conversion into
another, is the best choice. That was proved theoretically and empirically in [4, 5],
where the problem of finding similar strings is considered.

a[0]

a[1]

b[2] b[4]

b[5]a[3]

Fig. 5. Ordered ternary trees Y1

a[0]

a[1]

b[3]

a[2] b[4] b[5]

Fig. 4. Ordered ternary tree X1
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3 Experimental Research of the Method

Experimental studies of this method were carried out for the metric Zhang and Shasha
[8]. To compare the results method described in [1] was chosen, where the condition
formulated in Proposition 7 was also embedded to exclude a series of extra “expensive”
tree edit distance calculations.

For randomly generated trees in every method time spent on the edit distance
calculation was excluded from the overall time of the second search stage. The results
of experimental research of the lists of 10, 100 and 1000 trees are shown on Figs. 6, 7
and 8.

Fig. 6. The experimental results for the list of 10 trees

Fig. 7. The experimental results for the list of 100 trees
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In the experiments shown on Figs. 6 and 7, the first 10 trees from the original list
were target, and in experiment on Fig. 8 search target were first 50 trees, that are noted
on the horizontal axis. As following from the figures, the proposed search method
(Nearest Hash) is better than known ones (Basic and Modified) by performance 1.71
and 1.67 times – in the first experiment, 1.66 and 1.69 times – in the second experiment
and 2.30 and 3.80 times – in the third experiment. Thus theoretical performance
increase due to exclude extra objects on the first step and hash matrix constructing on
the second is proved empirically.

4 Summary

Concluded, the improved method of proximity objects probabilistic search is repre-
sented with the introduction of the necessary theoretically proved the proximity objects
conditions, which allow improving search performance. Proposed method can be used
for the fast and precise search in Intelligent Search Systems, Big Data technology as
well as in Intelligent Tutoring Systems to solve the problems of knowledge clustering
and trainee answers analysis for effective pedagogical feedback.

Further research will focus on new experimental research obtained by the method:
comparison with other known methods, the choice of the pivots number, the rational
selection of specific pivots, as well as various applications of the method in practical
tasks.

Fig. 8. The experimental results for the list of 1,000 trees
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