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Abstract. This paper proposes a multiobjective Cartesian Genetic Pro-
gramming with an adaptive population size to design approximate digi-
tal circuits via evolutionary algorithms, analyzing the trade-off between
the most often used objectives: error, area, power dissipation, and delay.
Combinational digital circuits such as adders, multipliers, and arithmetic
logic units (ALUs) with up to 16 inputs and 370 logic gates are consid-
ered in the computational experiments. The proposed method was able
to produce approximate circuits with good operational characteristics
when compared with other methods from the literature.

Keywords: Combinational circuits · Multi-objective optimization ·
Cartesian Genetic Programming

1 Introduction

The design of electronic circuits is usually a complex task which requires knowl-
edge of specific methodologies. The use of evolutionary algorithms (EAs) to
design digital systems gave rise to the Evolvable Hardware (EH) field [9]. The
reasons which brought EH to the spotlight of hardware development are its abil-
ity to [9]: (i) reach novel architectures which the conventional methods would
hardly provide due to their non-flexible nature, (ii) find fair solutions for prob-
lems where the specifications are incomplete, (iii) deliver fair solutions in sce-
narios where there is not a perfect solution, (iv) achieve fault tolerance at the
hardware level, and (v) to make the design less dependent on the expert.

EH has provided good results as in [4,7,9], but EH faces issues such as the
representation of solutions, as long chromosomes are usually required to encode
complex circuits which lead to large search spaces and, consequently, increased
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difficulty in solving the problem. In addition, in the design of combinational
digital circuits (CDCs), the processing time grows exponentially with the number
of circuit inputs, and EH also uses techniques which are very time consuming [7].

Addressing the design of CDCs, energy efficiency, complexity and delay are
features of digital circuits to be analyzed during the manufacturing process once
people desire faster, simpler and energetically efficient devices. Approximate
Computing (AC), a new paradigm in electronic projects, explores systems which
could tolerate loss (i.e. precision) in order to reduce complexity, costs, delay and
to increase the energy efficiency of the systems [4,5]. AC can be found in inher-
ently error resilient situations [10], such as multimedia [5], machine learning [11],
approximate arithmetic circuits [4], and FIR and IIR approximate filters [9].

The usage of AC and EH in the context of evolutionary design has gained
attention as these approaches may lead to the conception of circuit architectures
which are different and might be superior to the designs created by specialists [9].
In this scenario, digital circuits obtained via AC are classified as approximate
digital circuits (ADCs) [10]. Their requirements are relaxed aiming at achieving
savings in energy consumption, delay, and complexity. As it may be necessary
to increase the complexity of a target circuit to reduce errors, energy efficiency
and delay would probably be degraded as these quantities are conflicting. Thus,
a multiobjective optimization problem arises [4]. A variety of trade-offs between
error, delay, and energy efficiency can be found by a multiobjective approach,
enabling the design of a vast number of ADCs. Applying the evolutionary app-
roach in the scenario of intrinsic evolutionary design (e.i. in which the evolution-
ary process is conducted in the target device) could bring new possibilities as
the final solution is already implemented in hardware.

Cartesian Genetic Programming (CGP) [7] is a genetic programming method
in which programs are expressed as directed acyclic graphs (DAGs) with their
nodes organized in a matrix [7]. CGP allows for a convenient representation
when several inputs and outputs are required and, consequently, has become the
most popular method in the evolutionary design of CDCs [7].

Here, we propose a technique to design approximate combinational digital
circuits (ACDC) based on CGP where the size of the population varies accord-
ing to the number of non-dominated solutions. One candidate solution starts
the search process, the population is allowed to grow up to a maximum number
of non-dominated solutions, and, when the population size exceeds a predefined
threshold, the candidate solutions with the lowest crowding distances [3] are elim-
inated. We study here the trade-off between the delay, output error, and power
dissipation when designing approximate digital arithmetic circuits. In particular,
8-bit adder (A8) and 8-bit multiplier (M8) are commonly used in the context
of AC and EH [4]. Thus, we included them in computational experiments. In
addition, the Arithmetic Logic Unit (ALU) is considered here. The results found
are compared to those obtained by other methods from the literature.
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2 Related Work

Vasicek et al. [10] developed ADCs in which the requirements on functional
equivalences between the specifications and implementations were relaxed lead-
ing to gains in the speed of computation, area occupied on a chip, and energy
consumption. That approach can also be used in multimedia and image com-
pression applications. For instance, most users would not notice variations in the
brightness degree in some pixels of an image [5].

Hrbacek et al. [4] proposed a multiobjective approach to design ADCs using
CGP to represent candidate circuits, and the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) [3] to explore the search space by analyzing the trade-off
between error, delay and power dissipation. The initial population was composed
of fully functional circuits, instead of random circuits, and approximate versions
of M8 and S8 were designed with significant power consumption savings.

Kaufmann et al. [6] proposed a local search algorithm called hybrid evo-
lutionary strategy (hES) based on the evolutionary strategy and the concepts
of Pareto dominance. The hES method uses the Fast non-dominated sort and
Crowding-distance of NSGA-II [3], and alternates its evolutionary process using
global and local search. That method and its periodization with NSGA-II was
compared with Strength Pareto Evolutionary Algorithm 2 (SPEA2) and NSGA-
II when designing 2-bit multiplier and adder. CGP’s representation was adopted,
the functional quality of the solutions was treated as a constraint, and circuit
area and delay were the objectives. The authors concluded that for the evolu-
tion of digital circuits which uses CGP as a representation model, hES and its
periodization are significantly better than NSGA-II and SPEA2.

Fig. 1. Illustration of the representation used in CGP (extracted from [4]).

3 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [7], is an evolutionary technique where a
circuit is represented by a grid of nr ×nc interconnected nodes, as in Fig. 1. The
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processing elements, represented by F , can be either elementary gates (e.g. AND,
OR, XOR) or functional level components (e.g. adders, comparators, shifters,
and multipliers). Nodes inputs can be connected either to one of the ni primary
inputs or to a node located in the previous l columns; l is defined as “levels-
back”, which controls the connectivity of the graphs. Each node has a fixed
number of inputs, Nni, and outputs, Nno. The nodes are able to perform one of
the functions from the set Γ (F ∈ Γ ). Each one of the no primary outputs can be
connected either to a primary input or to an output of a node. A candidate circuit
represented by CGP is described by a sequence of integers which represents the
functions and the connections between the nodes. The encoding of a chromosome
consists of nr×nc triplets (i1, i2, F ). Thus, for the case considered here where the
gates have two inputs, it is possible to represent a node with its input indices i1
and i2 (other nodes), and a function ψ. The last part of GP’s encoding contains
no integers which specify the primary output nodes of the circuit.

In the standard CGP, the population consists of a fixed number of individuals,
commonly, randomly initialized. Also, some previous knowledge of the problem
can be used. The optimization process when designing circuits is normally an
evolutionary strategy (1+λ)-ES, where λ offspring are created by the application
of a point mutation (i.e. μr% of genes are modified) to the current solution. These
1+λ individuals are evaluated and the best one survives to the next generation.
The process is repeated until a stop criterion is reached.

3.1 Objective Functions

Four objectives (to be minimized) are often considered in the design: area, error,
power dissipation, and propagation delay. They are described in the sequence.

Area. Analyzing the area of a digital circuit is relevant as it affects the manu-
facturing cost. The larger the circuit c, the larger the area of the printed circuit
board necessary for its implementation. The area occupied by c can be esti-
mated by counting its processing elements (e.g., transistors, elementary ports,
functional level components). Here, the area of c is defined as its number of
gates.

Error Functions. The Hamming distance between two binary words is often
adopted as the error measure in the evolutionary design of digital circuits [4]. Let
O

(i)
orig and O

(i)
app denote, respectively, the output binary word of a fully functional

digital circuit and that of an ADC generated for the input vector i. The Hamming
distance is defined as dh =

∑
∀i(O

(i)
orig ⊕O

(i)
app), where ⊕ is XOR, i.e., the number

of positions in which the bits of the two binary words differ from each other.

Power Dissipation. The main sources of power dissipation of a digital circuit
are [2]: switching component of power (Pswitching), short-circuit component of
power (Pshort−circuit), and the leakage current component of power (Pleakage).
The power dissipation is then computed by P = a0→1.CL.fclk.V

2
dd + Isc.Vdd +

Ileakage.Vdd, where CL is the load capacitance, fclk is the clock frequency, a0→1

is the node transition activity factor, Isc is the short circuit current, Ileakage is
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the leakage current, and Vdd is the supply voltage. The node transition factor
quantifies the average number of times a logic gate makes a state transition that
dissipates power within a period of clock. It can be defined as a0→1 = p0.p1 =
p0.(1 − p0).

Propagation Delay. The delay of a digital circuit c, the time spent for
the changes in the input cause any effects in the output, is defined here as
Dc and is calculated as the delay of the longest path according to Dc =
max∀p∈path

∑
ci∈p td(ci), where td is the delay of a cell ci and td is normally

provided by the manufacturers.

4 Non-dominated Sorting Genetic Algorithm II

Most of the multiobjective EAs (MOEA) are based on the Pareto dominance
concept which states that a solution x1 dominates a solution x2 if: (i) x1 is
no worse than x2 in all objectives; and (ii) x1 is strictly better than x2 in at
least one objective. NSGA-II [3] has two main features: non-dominated ranking
and crowding distance. In the non-dominated ranking, the individuals in the set
Rt –parent population (Pt) plus offspring population (Qt)– are sorted according
to their dominance. All Pareto optimal solutions, which are the feasible non-
dominated solutions, form the first front F1. The non-dominated solutions from
Rt \ F1

1 compose the second front F2, and so on. A rank corresponding to the
front index is assigned to each individual, i.e., i is given to the solutions in Fi.
The individuals in the first fronts form Pt+1.

However, as the parent population size is |Rt|/2, where | · | denotes the cardi-
nality of a set, one can determine i such that |F1 ∪ F2 ∪ · · · ∪ Fi−1| ≤ |Rt|/2 and
|F1 ∪ F2 ∪ · · · ∪ Fi| > |Rt|/2. Thus, some individuals in Fi can not be included
in the next population, as the population size is fixed. The crowding-distance
is calculated as the semi-perimeter of the hyperrectangle formed by the values
of adjacent neighbor of each candidate solution in the objectives space and it is
adopted by NSGA-II to select the candidate solutions in less populated regions.

5 The Proposed Method

The idea here is to design ACDC, considering multiple objectives, using CGP.
Most of the MOEAs, such as NSGA-II, maintain a population of fixed size
during the evolutionary process; the larger the population, the larger the number
of trade-offs between the different objectives analyzed, as a larger population
allows for better coverage of the search space. As a consequence, the chances
of premature convergence is reduced. However, the computational cost for each
iteration of the method associated with this population may be significant. In
contrast, a small population leads to a coarser coverage, which can result in the
non-exploration of promising areas of the search space increasing the probability

1 The symbol “\” represents the operator of set difference.
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that the algorithm gets stuck at a local optimum [8]. An attractive alternative is
thus to permit that the size of the population varies during the search process.
For this, we propose here the variation of the number of individuals in the
population from one to a (user defined) maximum value. The proposed approach
uses CGP to represent the candidate circuits, builds a set of Pareto solutions
observing the trade-off between key circuit parameters and, when the population
size becomes larger than Tam Max, the crowding distance from NSGA-II [3] is
applied to select individuals. Algorithm1 presents a pseudocode of the proposal.

Algorithm 1. Pseudocode of the proposed technique.

1 t = 0;
2 Pt ← Initialize-Population(Pt);
3 Qt ← ∅;
4 while Circuit-Evaluation ≤ N do
5 Rt ← Pt ∪ Qt;
6 F1 ← Non-dominated-Individuals(Rt);
7 Pt ← F1;
8 if |Pt| > Tam Max then
9 Crowding-distance(Pt);

10 Crowded-comparison-operator-sort(Pt,≺n);
11 Pt ← Pt[1 : Tam Max];

12 end
13 for i ← 1 to |Pt| do
14 Qi ← Mutate(Pi);
15 end
16 t = t + 1;

17 end

Initially, the population of parents (Pt) is initialized with a single (randomly
generated) individual and the population of offspring (Qt) is empty. The pro-
posal evolves the candidate circuits while the stop criterion is not met. During
the search, the parent and offspring populations are combined into a single pop-
ulation Rt = Pt ∪ Qt. Then, the non-dominated individuals from Rt, F1, are
selected to compose the population Pt. Thus, the size of the population Pt is
not fixed, as the number of non dominated solutions may vary. Crowding dis-
tance [3] is applied when the population size is larger than a user-defined thresh-
old (Tam Max). This is used in order to avoid the population size to become
very large. Crowding distance can be used to preserve the diversity of the solu-
tions and is calculated as half of the perimeter of the cuboid formed by the
nearest neighbor with respect to the objective function values. The individuals
are sorted in descending order (Crowded-comparison-operator-sort) and the first
ones are selected to compose Pt. Finally, new candidate circuits are generated
using point mutation (Mutate(P i)), the most commonly used mutation operator
in CGP [7]. In this context, one allele of a gene is randomly selected and its
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value is replaced by another valid value chosen randomly. The point mutation
rate (μr%) is a parameter that affects the number of genes mutated.

To deal with constrained problems, the proposed method uses the Con-
strained NSGA-II approach [3]. In this context, it is said that a solution x1

dominates a solution x2 if any of the following conditions is true: (i) x1 is feasi-
ble and x2 is not; (ii) x1 and x2 are both infeasible, but x1 has a smaller overall
constraint violation; and (iii) x1 and x2 are both feasible and x1 dominates x2.

6 Computational Experiments

The experiments were conducted in the extrinsic evolutionary scenario (search
occurs in software) using the truth tables of w-bit (w = 2, 8) adder and mul-
tiplier, and an ALU circuits. The problems are labeled here as Aw and Mw,
respectively, for adder and multiplier circuits, and they can be used to construct
filtering structures, such as Finite Impulse Response Filter (FIR filter) and Infi-
nite Impulse Response Filter (IIR Filter). These filters are quite important in
digital signal processing such as image processing, video processing, audio pro-
cessing, and wireless communication systems [5]. Also, adders and multipliers are
used in circuits dedicated to calculate hyperbolic and trigonometric functions,
such as the Coordinate Rotation Digital Computer (CORDIC) [1]. The Rip-
ple Carry Adder and Ripple Carry Array Multiplier were adopted as reference
architectures for the 2- and 8-bit adder and multiplier, respectively. Finally, the
architecture of ALU is important for digital signal processing, and it is present
in all computing devices such as microprocessors, computers and embedded sys-
tems. The SN54/74LS181 architecture2, a 4-bit ALU which can perform 16 logic
operations and also a diversity of arithmetic operations, was adopted here. The
output is encoded by a 8-bit word, 4 bits are reserved for each variable, and 6 bits
are used as controllers (logical/arithmetical operator). The data provided by a
current manufacturer of digital devices is used to calculate power dissipation and
delay (Vdd, CL and td in Sect. 3.1). Nexperia3 was selected as its gates have low
td values. The gates are: 74LVC1G08 (AND), 74LVC1G08 (NAND), 74LVC1G32
(OR), 74LVC1G86 (XOR), 74LVC1G02 (NOR), HEF4077B (XNOR). These cir-
cuits are important but simples, as we conducted the experiments as a prelimi-
nary evaluation of the proposed approach.

The proposed CGPMO+APS4 was compared to hES and its variant with
periodization (hn10) [6], and the CGP combined with NSGA-II [4]. The exper-
iments were divided into three scenarios: (i) constrained multiobjective opti-
mization (no domain information added), (ii) the design of ACDCs, (no domain
information added); and (iii) the design of ACDCs with information from the
domain specialist.

2 http://pdf1.alldatasheet.com/datasheet-pdf/view/5671/MOTOROLA/SN54LS181.
html.

3 http://www.nexperia.com/products/logic/gates.
4 The source-code of CGPMO+APS is available at https://github.com/ciml.

http://pdf1.alldatasheet.com/datasheet-pdf/view/5671/MOTOROLA/SN54LS181.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/5671/MOTOROLA/SN54LS181.html
http://www.nexperia.com/products/logic/gates
https://github.com/ciml
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6.1 Scenario 1 – Constrained Multiobjective Optimization

Here, S2 and M2 are the problems, the Hamming distance is the measure of
functional quality (a constraint in this scenario), and the area and delay are
the objective functions to be minimized. The computational experiments were
conducted as in [6], and the results obtained by the proposed CGPMO+APS
are compared to those found by hES and hn10. The initial population of
the CGPMO+APS is composed by 1 individual randomly generated, Γ =
{0, 1, a, b, a, b, a.b, a.b, a.b, a.b, a ⊕ b, a ⊕ b, a + b, a + b, a + b, a + b, a.c + b.c, a.c +
b.c, a.c + b.c, a.c + b.c} is the set of Boolean functions that can be executed by
processing nodes, μr = 5%, nr = 1, nc = 200, l = 200, 400.000 fitness evalua-
tions were allowed for S2, and 1.600.000 fitness evaluations for M2. Finally, 20
independent runs were performed.

In [6], the Additive Epsilon Indicator (AEI) and the Kruskal-Wallis non-
parametric test were used. Here we do not present a statistical comparison using
the results of CGPMO+APS as the results of each independent run were not
provided in [6]. However, the capacity of generating feasible circuits with various
combinations of area and delay was analyzed in [6]. Thus, we provide here a
comparison in terms of feasible circuits generated by the techniques considered
and these values are presented in Table 1. In this scenario we analyze the number
of independent runs which resulted in functionally correct solutions. The results
indicate that the proposed CGPMO+APS obtained better results in terms of
fully functional circuits when compared to the other methods, as it is the only
technique which found functionally correct circuits in all 20 independent runs.

Table 1. Number of independent runs with functionally correct solutions.

Method S2 M2 #correct circuits S2 #correct circuits M2

hES 12 15 – –

hn10 11 14 – –

CGPMO+APS 20 20 26 24

6.2 Scenario 2 – Approximate Design of CLCs from Scratch

The present set of experiments is composed of three objective functions com-
monly employed when designing ADCs in the context of EH: (i) Hamming dis-
tance, (ii) delay, and (iii) power dissipation. The circuits S8, M8, and ALU were
used as problems to be solved. The approach proposed in [4], labeled here as
CGP+NSGA-II, was implemented and its results are used in the comparative
analysis. Both CGP+NSGA-II and the proposed CGPMO+APS used the same
parameter settings: Γ = {AND, NAND, OR, XOR, NOR, XNOR}, μr = 5%,
nr = 1. The number of columns were l = nc = 300, 200, 1000 for the ALU, S8,
and M8, respectively, and these values are those used in [4]. Also, the population
size of CGP+NSGA-II is equal to 50.
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Table 2. Parameters of circuits with the lowest error values when the popula-
tion is randomly initialized and 30 × 106 circuit evaluations are allowed. The refer-
ence models (with error= 0) are the ALU SN54/74LS181 with delay = 22.22 ns and
power= 1.14 mW, the Ripple Carry Adder with delay = 25.70 ns and power= 0.50 mW,
and the Ripple Carry Array Multiplier with delay = 74.30 ns and power= 3.21 mW.
Here, error is the percentage of incorrect outputs values, and delay and power are
the ratio of the values observed in the circuits generated and those of the reference
architecture.

CGPMO+APS CGP+NSGA-II

Error (%) Delay
(% ns)

Power
(% mW)

Error (%) Delay
(% ns)

Power
(% mW)

ALU 29.72 560.81 51.24 36.64 701.80 51.65

29.81 517.57 41.41 37.35 685.14 48.87

29.86 866.22 40.74 37.57 685.14 37.30

29.91 371.62 27.81 37.67 685.14 36.70

30.21 371.17 25.00 37.92 684.23 33.31

30.38 327.93 25.76 38.14 383.33 50.62

30.48 326.13 24.93 38.30 669.37 27.60

30.52 326.13 21.49 38.32 373.87 32.45

30.60 309.91 25.21 38.57 358.11 24.22

30.79 317.12 21.42 38.96 358.11 23.19

S8 15.49 570.82 79.63 13.89 592.22 95.11

15.54 570.82 73.98 14.18 578.21 90.20

16.58 570.82 73.00 14.70 605.45 74.73

16.63 564.20 64.86 14.87 578.21 87.25

17.08 309.73 69.81 15.10 571.60 91.39

17.32 564.20 64.27 15.44 591.05 70.79

17.35 571.21 59.36 15.92 570.82 81.49

17.60 296.50 68.99 16.49 310.12 97.90

17.70 564.20 60.14 16.66 591.44 67.47

17.95 296.50 63.68 16.88 302.72 77.83

M8 38.87 504.04 52.12 42.14 414.27 64.27

38.92 504.04 32.81 42.36 317.50 56.22

38.97 311.57 40.60 42.39 316.42 62.08

38.98 308.88 38.06 42.79 411.44 47.87

38.99 311.57 33.66 42.87 309.56 81.27

39.02 308.88 33.67 42.91 409.15 49.12

39.23 304.71 37.07 42.96 306.46 68.29

39.25 219.11 47.72 42.99 411.31 39.85

39.27 306.59 36.50 43.09 409.15 46.55

39.28 219.11 46.86 43.17 299.87 69.49
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Here we analyze the results obtained by CGPMO+APS and CGP+NSGA-
II when the initial population was randomly generated and 30 × 106 objective
function evaluations were allowed. Table 2 presents the operational character-
istics of 10 candidate solutions for ALU, S8, and M8 with the smallest errors
considering all independent runs. The techniques analyzed here were not able to
design fully functional ALUs, S8, and M8 from scratch. It can also be noticed
that no circuits reached delay values lower than or equal to the delay of the
reference circuits. The ALU models obtained by CGPMO+APS show a smaller
level of error than those found by CGP+NSGA-II. The (10) ALUs designed by
CGPMO+APS and presented in Table 2 dissipate less power and have a smaller
delay than those (10) obtained by CGP+NSGA-II. Regarding S8, the circuits
generated dissipate less power than the reference architecture. Among the S8
circuits, that with the largest power dissipation (79.63% of the power dissipated
by the reference architecture) was found by CGPMO+APS and it is superior,
in terms of energy efficiency, to all 10 circuits that present the lowest error
values found by CGP+NSGA-II. The error values of the S8 circuits obtained
by CGPMO+APS and CGP+NSGA-II are similar. It is noted that the 10 M8
models with the smallest error values obtained by both approaches dissipate less
power than the Ripple Carry Array Multiplier. Also, the M8 circuits found by
CGPMO+APS dissipate less power and have smaller delay than those obtained
by CGP+NSGA-II.

Table 3 presents the hypervolume found by CGPMO+APS and
CGP+NSGA-II, and the p-values of the Kruskal-Wallis tests. CGPMO+APS
presented the highest mean hypervolume values for all circuits analyzed. Accord-
ing to the Kruskal-Wallis test, the results found by the proposed CGPMO+APS
are statistically different from those obtained by CGP+NSGA-II for S8 and
ALU.

6.3 Scenario 3 – Approximate CLCs Using Conventional Models

Besides the design of ADCs from scratch, CGPMO+APS and CGP+NSGA-II
were also applied to optimize conventional architectures by observing the trade-
off between error, power, and delay. As a result, the techniques provide a set of
ADCs to the specialist, who can choose the best for his/her application. Also,
30 × 106 circuit evaluations are allowed here.

The operational features of 10 circuits with the smallest errors for ALUs, S8,
and M8 are shown in Table 4. CGPMO+APS and CGP+NSGA-II were able to
obtain fully functional circuits in terms of error, and these circuits dissipate less
power or present lower delay values than those of the base architecture for all the
cases tested (ALU, S8, and M8). CGPMO+APS generated an ALU with lower
values of delay and power dissipation than those of the conventional architecture.
Also, with respect to S8 and M8, the fully functional circuits generated by the
proposed method are better in delay or power dissipation. The results obtained
by CGPMO+APS are, in general, better than those found by CGP+NSGA-II.
This advantage is specifically large with respect to the delay values of ALU.
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Table 3. Hypervolume values. The reference points are the highest values obtained
for each objective function: (0.5221, 192.3000, 0.5861), (0.4722, 291.7000, 0.4865), and
(0.5257, 374.5000, 2.6115), respectively, for ALU, S8, M8. Kruskal-Wallis test is applied
and the p-values are also presented.

Circuit Method Best Median Mean STD Worst p-value

ALU CGPMO+APS 0.3532 0.3049 0.2965 0.0438 0.2276 3.76 × 10−7

CGP+NSGA-II 0.3366 0.2720 0.2700 0.0449 0.1464

S8 CGPMO+APS 0.4059 0.3439 0.3475 0.0314 0.2935 9.77 × 10−4

CGP+NSGA-II 0.3770 0.3041 0.3049 0.0456 0.2388

M8 CGPMO+APS 0.3192 0.1524 0.1615 0.0873 0.0218 6.90 × 10−2

CGP+NSGA-II 0.1873 0.1475 0.1406 0.0384 0.0418

Table 5 presents the hypervolume found by CGPMO+APS and
CGP+NSGA-II. CGPMO+TP presented the highest mean values of hypervol-
ume for all circuits analyzed. According to the Kruskal-Wallis test, the results
of CGPMO+APS are statistically better than those of CGP+NSGA-II for all
the tested circuits.

Table 4. Parameters of circuits with the lowest error values when the population is
initialized with a conventional architecture and 30×106 circuit evaluations are allowed.
The reference models (with error = 0) are those in the caption of Table 2.

CGPMO+APS CGP+NSGA-II

Error
(%)

Delay
(% ns)

Power
(% mW)

Error
(%)

Delay
(% ns)

Power
(% mW)

ALU 0.00 99.55 64.80 0.00 395.50 64.34

0.00 404.05 64.74 0.00 723.87 64.30

0.00 411.71 64.71 0.00 746.85 64.11

0.00 544.14 64.11 0.52 395.50 62.55

0.33 99.55 63.46 1.04 746.85 61.24

0.68 86.04 65.11 1.70 396.40 60.59

0.93 404.05 62.39 2.12 395.50 62.15

1.04 404.05 61.85 2.61 403.15 60.20

1.09 86.04 65.04 2.73 396.40 60.42

1.27 86.04 64.66 2.86 723.87 59.93

S8 0.00 84.82 128.18 0.00 104.28 98.54

0.00 107.39 99.28 0.00 104.67 71.58

0.00 114.01 85.39 1.39 95.72 99.61

1.37 86.77 99.05 1.40 101.56 98.43

2.02 80.93 98.75 2.02 75.88 97.45

2.60 60.31 100.74 2.28 68.48 97.71

(continued)
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Table 4. (continued)

CGPMO+APS CGP+NSGA-II

Error
(%)

Delay
(% ns)

Power
(% mW)

Error
(%)

Delay
(% ns)

Power
(% mW)

2.71 81.71 97.76 2.78 95.72 91.94

3.13 80.93 98.30 3.58 67.70 97.71

3.32 61.09 97.51 3.82 55.25 100.08

3.47 86.77 97.33 4.17 97.28 91.00

M8 0.00 100.40 99.95 0.00 100.13 99.98

0.38 100.40 99.93 0.82 98.11 99.77

0.41 98.11 99.88 2.37 98.11 99.49

0.61 98.11 99.77 5.32 110.76 98.79

1.09 98.11 99.65 5.39 98.11 99.37

1.15 100.13 99.52 5.40 98.11 99.22

1.30 95.55 99.64 5.57 100.40 98.53

1.57 95.28 99.21 6.14 97.57 98.37

2.03 93.53 98.39 6.41 93.53 98.28

3.02 99.86 97.74 6.77 93.53 98.24

Table 5. Hypervolumes values and p-values of the Kruskal-Wallis test.
The reference points are: (0.4284, 165.8000, 1.1348), (0.4722, 74.4000, 0.6369), and
(0.5353, 82.3000, 3.2135), respectively, for ALU, S8, and M8.

Circuit Method Best Median Mean STD Worst p-value

ALU CGPMO+APS 0.5354 0.4904 0.4909 0.0347 0.4340 2.8701 × 10−9

CGP+NSGA-II 0.4088 0.3397 0.3357 0.0450 0.2687

S8 CGPMO+APS 0.5025 0.4849 0.4687 0.0345 0.4192 6.7183 × 10−8

CGP+NSGA-II 0.4422 0.4016 0.3944 0.0392 0.3326

M8 CGPMO+APS 0.3730 0.3101 0.2996 0.0503 0.2028 3.1732 × 10−5

CGP+NSGA-II 0.2601 0.2204 0.2135 0.0368 0.1478

7 Concluding Remarks and Future Work

A multiobjective Cartesian Genetic Programming technique with adaptive pop-
ulation size (CGPMO+APS) was proposed here to design approximate com-
binational digital circuits (ACDCs). Three situations were considered in the
experiments: (i) constrained multiobjective optimization (no domain informa-
tion added), (ii) the design of ACDCs (no domain information added); and (iii)
the design of ACDCs with information from the domain specialist.

In (i), the results indicated that CGPMO+APS was able to design more feasi-
ble circuits than the other approaches analyzed. In (ii) and (iii), the results show
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that both CGPMO+APS and CGP+NSGA-II are not suitable for the construc-
tion of complex architectures such as ALUs, S8, and M8 without the introduction
of the knowledge of the domain expert. On the other hand, when a conventional
architecture is adopted as the initial solution, the two approaches synthesized
ALUs, S8, and M8 that do not present errors with respect to the truth table and
with improvement in delay or power dissipation when compared to the reference
architecture. Particularly, the CGPMO+APS obtained a fully functional ALU
with lower delay and power dissipation than those of the reference architecture.
Also, CGPMO+APS obtained better mean values of hypervolume than those of
CGP+NSGA-II.

The use of Binary Decision Diagrams to reduce the processing time and
solving more complex problems are relevant research avenues.
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