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Abstract. The present work accommodates active matrix completion to
generate cheap and informative incomplete algorithm selection datasets.
Algorithm selection is being used to detect the best possible algorithm(s)
for a given problem (∼ instance). Although its success has been shown
in varying problem domains, the performance of an algorithm selection
technique heavily depends on the quality of the existing dataset. One
critical and likely to be the most expensive part of an algorithm selec-
tion dataset is its performance data. Performance data involves the per-
formance of a group of algorithms on a set of instance of a particular
problem. Thus, matrix completion [1] has been studied to be able to
perform algorithm selection when the performance data is incomplete.
The focus of this study is to come up with a strategy to generate/sample
low-cost, incomplete performance data that can lead to effective comple-
tion results. For this purpose, a number of matrix completion methods
are utilized in the form of active matrix completion. The empirical analy-
sis carried out on a set of algorithm selection datasets revealed significant
gains in terms of the computation time, required to produce the relevant
performance data.

1 Introduction

The experimental studies comparing different algorithms on a set of problem
instances usually report that while a particular algorithm works well on a
group of instances, it fails to outperform the competing algorithms on the other
instances. In other words, there is no one algorithm that always perform the
best, as also referred in the No Free Lunch (NFL) theorem [2]. Algorithm Selec-
tion [3] is an automated way of aiming at choosing the (near-) best algorithm(s)
for solving a given problem instance. Thus, the target instances can be solved
with the help of multiple algorithms rather than just one. In that respect, algo-
rithm selection can offer an opportunity of defeating any given problem specific
algorithm designed by the domain experts, as in the SAT competitions1.

1 http://www.satcompetition.org/.
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A traditional algorithm selection approach derives performance prediction
models [4] that can tell the performance of a given set of algorithms on a new
problem instance. For generating such models, the performance of these algo-
rithms on a suite of training instances should be known. Besides, a set of features
that can effectively characterize the target problem’s instances is essential. Then,
an algorithm selection model can simply map these instance features to the algo-
rithms’ performance. However, it can be challenging to generate the performance
data in the first place. Finding representative instance features can also be com-
plicated depending on the available problem domain expertise. Regarding the
performance data, the main issue is the cost of generating it. Especially, if the
computational resources are limited, it could take days, months, even years [5] to
generate a single algorithm selection dataset. This drawback can restrict the use
of algorithm selection by anyone who would like to perform algorithm selection
on a new problem domain.

A collaborative filtering based algorithm selection technique, i.e. ALORS [1],
was introduced to resolve this issue to a certain extent. Collaborative filtering
[6] is a popular field of recommender systems to predict the interest of a user
on an item such as a book or a movie, s/he haven’t seen yet. The prediction
process particularly relies on the user’s preferences on multiple items, such as
the scores given by her/him on these items. By taking all the other users’ par-
tial preferences into account, the existing partial preference information of this
user can be utilized to determine whether s/he will like those items. From this
perspective, if two users share similar preferences, their preferences on the unob-
served items are also expected to be similar. The ALORS’ collaborative filtering
capability comes from the use of matrix completion, which is the performance
data in this context. As its name suggests, matrix completion is about filling the
unavailable entries of an incomplete matrix. In relation to the matrix comple-
tion task, ALORS showed that it can outperform the single best algorithm on
varying problems with up to the 90% sparsity. Its matrix completion component
also showed success in process mining [7].

The present study focuses on incorporating Active Matrix Completion
(AMC) [8,9] into algorithm selection considering the data generation cost and
quality. The AMC problem is defined as: for a given matrix M with unobserved
entries, determine new entries to be queried, Q so that M′ = M∪Q carries suf-
ficient information for successful completion compared to M. Minimizing | Q |
can also be targeted during querying. AMC is practical to determine the most
profitable entries to add into a matrix for improved matrix completion. For this
purpose, I apply various matrix completion techniques and together as ensem-
bles (Ensemble Matrix Completion) in the form of AMC to specify the most
suitable instance-algorithm entries to be sampled. In [10], a matrix completion
method was used to perform both sampling and completion in ALORS. This
study extends [10] by considering a set of existing matrix completion meth-
ods while examining their combined power as AMC ensembles. For analysis, a
series of experiments is performed on the Algorithm Selection library (ASlib)2

[5] datasets.

2 http://aslib.net.

http://aslib.net
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In the remainder of the paper, Sect. 2 gives background information both on
algorithm selection and matrix completion. The proposed approach is detailed
in Sect. 3. Section 4 provides an empirical analysis through the computational
results. The paper is finalized with a summary and discussion in Sect. 5.

2 Background

2.1 Algorithm Selection

Algorithm Selection has been applied to various domains such as Boolean Sat-
isfiability [11], Constraint Satisfaction [12], Combinatorial Optimization [13],
Machine Learning [14] and Game Playing [15]. The majority of the methods
called algorithm selection is considered working Offline. This means that the
selection process is being performed before the target problem (∼ instance) is
being solved. This study is related to the Offline algorithm selection. Among
the existing offline algorithm selection studies, SATZilla [11] is known as one
of the premier works. It incorporates pre-solvers and backup solvers to address
easy and hard instances, respectively. A rather traditional runtime prediction
strategy is utilized to determine the best possible algorithm on the remaining
instances. Instance features are used together with the performance data are
used to generate the prediction models. SATZilla was further extended [16] with
cost-sensitive models, as also in [17]. In [18], a collaborative filtering based rec-
ommender system, i.e. [19], was accommodated for AS. Hydra [20], inspired from
ISAC [21], was developed to apply parameter tuning for generating algorithm
portfolios/diverse algorithm sets, using a single algorithm. 3S [22] was stud-
ied particularly to offer algorithm schedules for determining which algorithm to
run how long on each target problem instance. For this purpose, the resource
constrained set covering problem with column generation was solved. In [23],
deep learning was applied for algorithm selection when the instance features
are unavailable. The corresponding instance files are converted into images for
directly being used with the deep learning’s feature extraction capabilities. As
a high level strategy on algorithm selection, AutoFolio [24] was introduced to
perform parameter tuning to come up with the best possible algorithm selection
setting. Some of these AS systems as well as a variety of new designs were com-
peted in the two AS competitions [25], took place in 2015 [26] and 20173 [27].
Algorithm scheduling was particularly critical for the successful AS designs like
ASAP [28].

AS has been also studied as the Online operating methods for choosing algo-
rithms on-the-fly while a problem instance is being solved. Thus, it is particularly
suitable for optimization. Selection hyper-heuristics [29] mainly cover this field
by combining selection with additional mechanisms. Adaptive Operator Selec-
tion (AOS) [30] has been additionally referred purely for Online selection.

3 https://www.coseal.net/open-algorithm-selection-challenge-2017-oasc/.

https://www.coseal.net/open-algorithm-selection-challenge-2017-oasc/
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2.2 Matrix Completion

Although data might be present in different ways, it is usually not perfect. The
being perfect relates to quality and availability. Referring to the data quality,
the data at hand might be enough in terms of size yet misleading or involving
limited useful information. For availability, some data entries might be missing,
requiring to have complete data. Thus, in reality, the systems focusing on data
might be required to deal with both issues. In recommender systems, the latter
issue is mainly approached as the matrix completion problem, for collaborative
filtering [6]. The Netflix challenge4 [31] was the primary venue made collaborative
filtering popular. In the challenge, the goal was to predict missing 99% data from
1% observed entries of a large group of the user scores on many movies. The data
was involving the scores regarding the preferences of the users on the target
movies. In the literature, the methods addressing this problem are categorized
as the memory-based (neighbourhood methods) and model-based (latent factor
models) approaches. The memory-based approaches solely depend the available
incomplete data to fill the missing entries. The model-based approaches look for
ways to generate models that can perform matrix completion. The model-based
approaches are known to be effective especially for the high incompleteness cases.

Matrix factorization [32] has been widely handled by the model-based
approaches in collaborative filtering. It has been used to extract latent (hid-
den) factors that can characterize the given incomplete data such that the miss-
ing entries could be effectively predicted. A Probabilistic Matrix Factorization
(PMF) method [33] that scales linearly with the number of observations was
introduced. CofiRank [34] was devised as a matrix factorization method optimiz-
ing an upper-bound on the Normalized Discounted Cumulative Gain (NDCG)
criterion for given rank matrices. ListRank-MF [35] was offered as an exten-
sion of matrix factorization with a list-wise learning-to-rank algorithm. In [36],
matrix completion was studied to show its capabilities under noise. As a grow-
ing research direction in matrix factorization, non-negative matrix factorization
[37,38] has been studied mainly to deliver meaningful and interpretable factors.

Related to the present work, active learning has been incorporated into
matrix factorization [8]. An AMC framework was proposed and tested with
various techniques in [8]. In [39], AMC was studied to address the completion
problem for the low-rank matrices. An AMC method called Order&Extend was
introduced to perform both sampling and completion together.

3 Method

A simple data sampling approach for algorithm selection, exemplified in Fig. 1,
was investigated in [10]. The idea is to apply matrix completion to predict both
cheap and informative unobserved entries. As detailed in Algorithm 1, a given
completion method θ is first applied. Then, for each instance (matrix row), at
most n number of entries to be sampled are determined. n is set for maintaining

4 http://www.netflixprize.com.

http://www.netflixprize.com
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balanced sampling between the instances. This step is basically performed by
running the algorithms on the corresponding instances based on their expected
performance. The top n, expectedly, the best missing entries are chosen for this
purpose. Considering the target dataset with the performance metric of run-
time, the best entries here also mean that the ones requiring the least computa-
tion effort for sampling. After running those selected algorithms for their target
instances, a partial matrix is delivered, assuming that some entries are initially
available.

Fig. 1. An active matrix completion example

For evaluation, the matrix is needed to be completely filled, following this active
matrix completion sampling step. As in [1,10], the completion is carried out using
the basic cosine-similarity approach, commonly used in collaborative filtering.
The completed matrix can then be utilized to determine the best/strong algo-
rithm on each instance that is partially known through the incomplete, observed
entries. Besides that, it can also be used to perform traditional algorithm selec-
tion which additionally requires instance features. The instance features are
ignored as the focus here is solely on generating sufficiently informative algo-
rithm selection datasets.

Algorithm 1. Active Matrix Completion for Algorithm Selection
Input: An incomplete performance matrix M of I instances and J algorithms,

Matrix completion method θ, Number of samples to be added: N
1 Matrix Completion: θ(M) → ̂M
2 Per Instance Sample Size: n = N/ | I |
3 foreach ̂Mi where i ∈ I do

4 arg min
J′

( ̂Mi, n) where Mi,j = NaN, | J ′ |≤ n

5 foreach j ∈ J ′ do
6 Mi,j ← run algorithm j on instance i

end

end
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The same completion approach is followed yet with different matrix com-
pletion methods as the sampling strategies, as listed in Table 1. The first five
algorithms5 (ϑ) perform rather simple and very cheap completion. Referring to
[1], more complex approaches, in particular the model-based ones or the ones
performing heavy optimization, are avoided. Besides these methods, three sim-
ple ensemble based approaches, i.e. MeanE, MedianE and MinE using ϑ, are
implemented. Finally, pure random sampling (Random) from [1] and the matrix
completion method (MC) [10] used in the same study are utilized for comparison.

Table 1. Matrix completion algorithms, θ (all in ϑ with their default values from
fancyimpute 0.1.0, ϑ = {SimpleFill, KNN, SoftImpute, IterativeSVD, MICE})

Name Type

SimpleFill Column mean

KNN k-nearest neighbour (k = 5)

SoftImpute [40] Iterative soft thresholding of SVD

IterativeSVD [41] Iterative low-rank SVD

MICE [42] Multiple imputation by chained equations

MeanE
∑n

i ϑi(M)/n for n =| ϑ |
MedianE μ1/2ϑi(M) for ∀i

MinE min ϑi(M) for ∀i

Random [1] Random sampling

MC [10] Row-based cosine similarity

4 Computational Results

The computational experiments are performed on 13 Algorithm Selection library
(ASlib)6 [5] (Table 2) datasets. The performance data of each ASlib dataset is
converted into a rank form as in [1]. For each dataset, AMC is utilized to sam-
ple data for the decreasing incompleteness levels, from 90% incompleteness to
10% incompleteness. As the starting point, AMC is applied to each dataset after
randomly picking the first 10% of its entries. AMC is tested by gradually sam-
pling new 10% data. For the sake of randomness, initial 10% random sampling
is repeated 10 times on each dataset.

Figure 2 reports the performance of each active matrix completion method
in terms of time which is the data generation cost. Time (tC) is normalized
w.r.t. picking out the least costly (tCbest

) and the most costly (tCworst
) samples

for the given incompleteness levels, as in tC−tCbest

tCworst−tCbest
. For the SAT12 datasets,

all the methods can significantly improve the performance of random sampling
(Random) by choosing less costly instance-algorithm samples. For instance,
5 From fancyimpute 0.1.0: https://pypi.python.org/pypi/fancyimpute.
6 http://aslib.net.

https://pypi.python.org/pypi/fancyimpute
http://aslib.net
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adding the 10% performance data after the initially selected 10% for SAT12-
RAND with MICE can save ∼565 CPU hours (∼24 days) compared to Random.
The time gain can reach to ∼1967 CPU hours (∼82 days) (Table 3), on
PROTEUS-2014. Significant performance difference is also achieved for the
SAT11 and ASP-POTASSCO datasets.

Table 2. The ASlib benchmarks, with the number of CPU days required to generate

Dataset #Instances #Algorithms #CPU

ASP-POTASSCO 1294 11 25

CSP-2010 2024 2 52

MAXSAT12-PMS 876 6 56

PRE.-ASTAR-2015 527 4 28

PROTEUS-2014 4021 22 596

QBF-2011 1368 5 163

SAT11-HAND 296 15 168

SAT11-INDU 300 18 128

SAT11-RAND 600 9 158

SAT12-ALL 1614 31 415

SAT12-HAND 767 31 234

SAT12-INDU 1167 31 284

SAT12-RAND 1362 31 447

Table 3. Average time gain achieved in hours by MICE compared to Random (0.9 is
ignored since it is the initial random sampling for both methods)

Dataset Incompleteness levels

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASP-POTASSCO 33 30 33 39 40 31 19 6

CSP-2010 −107 −21 −78 −83 −60 −31 −1 12

MAXSAT12-PMS −21 37 28 60 72 53 32 −27

PRE.-ASTAR-2015 −95 −58 −26 −55 −55 −46 −67 −58

PROTEUS-2014 −516 242 1106 1702 1967 1932 1634 1095

QBF-2011 −169 −101 −74 −53 −41 −94 −118 −160

SAT11-HAND 74 108 135 127 125 122 67 6

SAT11-INDU 76 98 103 108 72 58 11 1

SAT11-RAND 47 134 156 169 170 113 80 1

SAT12-ALL 140 526 964 1156 1177 1096 817 403

SAT12-HAND 97 202 313 345 322 277 185 67

SAT12-INDU 138 507 910 1005 886 712 481 225

SAT12-RAND 137 313 560 801 1004 1160 1008 565
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For PROTEUS-2014, MC, SimpleFill and KNN start choosing costly samples
after the observed entries exceed 60% of the whole dataset. The remaining
algorithms show similar behavior when the observed entries reaches 80%. For
MAXSAT12-PMS, only SimpleFill, MICE and MeanE are able to detect cheap
entries while the rest consistently picks the costly entries. On CSP-2010, PRE.-
ASTAR-2015 and QBF-2011, the methods query the costly instance-algorithm
pairs. The common characteristic between these three datasets is having a lim-
ited number of algorithms: 2, 4 and 5. The reason behind this issue is that for
matrix completion, having high-dimensional matrices can increase the chance
of high quality completion. For instance, in the aforementioned Netflix chal-
lenge, the dataset is composed of ∼480K users and ∼18K movies. Since both
dimensions of the user-movie matrix are large, having only 1% of the complete
data can be more practical in terms of matrix completion than a small scale
matrix. Still, choosing costly entries can be helpful for the quality of the com-
pletion due to having misleading observed entries. Referring to the performance
of the ensemble methods, despite the success of MeanE, MinE delivers poor
performance while MedianE achieves average quality performance compared to
the rest. The performance of MC, as the method of running the exact same
completion method for both sampling and completion, it comes with the best
performance on SAT12-INDU and SAT12-RAND together with the other matrix
completion methods. However, it shows average performance on the remaining
datasets except CSP-2010 where it delivers the worst performance.

Figure 3 presents the matrix completion performance in terms of average
ranks, following each AMC application. The average rank calculation refers to
choosing the lowest ranked algorithm for each instance w.r.t. the filled matrix,
then evaluating its true rank performance. For SAT12-RAND, all the methods
significantly outperform Random except KNN and MinE which provide similar
performance to Random. SimpleFill, IterativeSVD, MC, MICE and MeanE par-
ticularly shows superior performance compared to Random. On SAT12-INDU, the
results indicate that especially SimpleFill, MC, MICE and MeanE are able to pro-
vide significant performance. Yet, when the observed entries reach 60%, their cor-
responding rank performance starting to degrade. For SAT12-HAND, the signifi-
cant improvement in terms of time doesn’t help to reach to outperform Random.
However, IterativeSVD, MICE, MeanE and MedianE are able to deliver similar
performance to Random when the observed entries is below 50%. For the ASP-
POTASSCO, PROTEUS-2014 and SAT11 datasets, similar rank performance can
be seen for varying matrix completion methods. The majority of the methods is
able to catch the performance of Random throughout all the tested incompleteness
levels. On the CSP-2010 dataset, significantly better rank performance is achieved
compared to Random yet as mentioned above more computationally costly sam-
ples are requested. Apart from preferring the expensive entries, the results indi-
cate that these samples are able to elevate the quality of the matrix completion
process. On the remaining datasets with the relatively small algorithm sets, i.e.
PRE.-ASTAR-2015 and QBF-2011, similar performance is achieved against Ran-
dom. However, it should be noted that this average rank performance is delivered
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with more costly entries than Random. For the ensemble methods, their behavior
on the cost of generating the instance-algorithm data is reflected to their average
rank performance. Similar to the MC’s average cost saving performance on the
data generation/sampling, its rank performance is either being outperformed or
matched with the other tested matrix completion techniques.

Fig. 4. Overall rank of the matrix completion methods as AMC, based on (a) normal-
ized time ratio and (b) average rank

Figure 4 shows the overall performance of AMC across all the ASlib datasets
with the aforementioned incompleteness levels. In terms of generating cheap
performance data, MICE comes as the best approach, followed by an ensemble
method, i.e. MeanE. Random delivers the worst performance. MinE, another
ensemble method, also performs poorly together with KNN. For their average
rank performance, MICE and MeanE come as the best performing methods.
The overall rank performance of KNN and MinE are even worse than Random.
Besides that, MC performs similarly to Random.

5 Conclusion

This study applies active matrix completion (AMC) to algorithm selection for
providing high quality yet computationally cheap incomplete performance data.
The idea of algorithm selection is about automatically choosing algorithm(s) for
a given problem (∼instance). The selection process requires a set of algorithms
and a group of problem instances. Performance data concerning the success of
these algorithms on the instances plays a central role on the algorithm selec-
tion performance. However, generating this performance data could be quite
expensive. ALORS [1] applies matrix completion to perform algorithm selection
with limited/incomplete performance data. The goal of this work is deliver an
informed data sampling approach to determine how the incomplete performance
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data is to be generated with the cheap to calculate entries while maintaining the
data quality. For this purpose, a number of simple and fast matrix completion
methods is utilized. The experimental results on the algorithm selection library
(ASlib) benchmarks showed that AMC can provide substantial time gain on gen-
erating performance data for algorithm selection while delivering strong matrix
completion performance, especially for the datasets with large algorithm sets.

The follow-up research plan covers investigating the effects of matrix comple-
tion on cold start which is the traditional algorithm selection task, i.e. choosing
algorithms for unseen problem instances. Next, the problem instance features
will be utilized for further improving the AMC performance. Afterwards, algo-
rithm portfolios [43] across many AMC methods will be explored by extending
the utilized AMC techniques. Finally, AMC will be targeted as a multi-objective
optimization problem for minimizing the performance data generation time while
maximizing the commonly used algorithm selection performance metrics.

Acknowledgement. This study was partially supported by an ITC Conference Grant
from the COST Action CA15140.
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