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Abstract. The problem of induction is a central problem in philoso-
phy of science and concerns whether it is sound or not to extract laws
from observational data. Nowadays, this issue is more relevant than ever
given the pervasive and growing role of the data discovery process in all
sciences. If on one hand induction is routinely employed by automatic
machine learning techniques, on the other most of the philosophical work
criticises induction as if an alternative could exist. But is there indeed
a reliable alternative to induction? Is it possible to discover or predict
something in a non inductive manner?

This paper formalises the question on the basis of statistical notions
(bias, variance, mean squared error) borrowed from estimation theory
and statistical machine learning. The result is a justification of induc-
tion as rational behaviour. In a decision-making process a behaviour is
rational if it is based on making choices that result in the most optimal
level of benefit or utility. If we measure utility in a prediction context in
terms of expected accuracy, it follows that induction is the rational way
of conduct.

1 Introduction

The process of extraction of scientific laws from observational data has interested
the philosophy of science during the last two centuries. Though not definitely
settled, the debate is more relevant than ever given the pervasive and growing
role of data discovery in all sciences. The entire science, if not the entire human
intellectual activity, is becoming data driven. Data science, or the procedure
of extracting regularities from data on the basis of inductive machine learning
procedures [3], is nowadays a key ingredient of the most successful research and
applied technological enterprises.

This may appear paradoxical if we consider that the process of induction,
from Hume’s [4] work on, has been accused of having no rational foundation.
Induction is the inferential process in which one takes the past as grounds for
beliefs about the future, or the observed data as grounds for beliefs about the
unobserved. In an inductive inference, where the premises are the data (or obser-
vations) and the conclusions are referred to as hypothesis (or models), three main
properties hold [1]:
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1. The conclusions follow non-monotonically from the premises. The addition of
an extra premise (i.e. more data) might change the conclusion even when the
extra premise does not contradict any of the other premises. In other terms
D1 ⊂ D2 �⇒ (h(D2) ⇒ h(D1)) where h(D) is the inductive consequence of D.

2. The truth of the premises is not enough to guarantee the truth of the con-
clusion as there is no correspondent to the notion of deductive validity.

3. There is an information gain in induction since a hypothesis asserts more
than data alone.

In other words an inductive inference is ampliative, i.e. it has more content
in the conclusion than in the premises, and contrasts with the mathematical
and logical reasoning which is deductive and non ampliative. As a consequence,
inductive inference is unsafe: no conclusion is a guaranteed truth and so it can
dissolve even if no premise is removed.

According to Hume all reasonings concerning nature are founded on experi-
ence, and all reasonings from experience are founded on the supposition that the
course of nature will continue uniformly the same or in other words that the
future will be like the past. Any attempt to show, based on experience, that a
regularity that has held in the past will or must continue to hold in the future
will be circular. It follows that the entire knowledge discovery process from data
is relying on shaky foundations. This is well known as the Hume’s problem and
the philosopher C. D. Broad’s defined induction as “the glory of science and
the scandal of philosophy”. The serious consequences of such result was clear to
Hume himself who never discouraged scientists from inductive practices. In fact,
in absence of a justification, he provided an explanation which was more psycho-
logical than methodological. According to Hume, we, humans, expect the future
will be like the past since this is part of our nature: we have inborn inductive
habits (or instincts) but we cannot justify them. The principle of uniformity
of nature is not a priori true, nor it can be proved empirically, and there is
no reason beyond induction to justify inductive reasoning. Thus, Hume offers
a naturalistic explanation of the psychological mechanism by which empirical
predictions are made without any rational justification for this practice.

The discussion about the justification of induction started in the late 19th
century. A detailed analysis of the responses to the Hume problem are contained
in the Howson book [4]. Let us review some of the most interesting arguments.

First, the Darwinian argument which claims that the inductive habit was
inherited as a product of evolutionary pressures. This explanation is a sort of
“naturalized epistemology” but can be accused of circularity since we assume
inductive science to justify induction in science.

Bertrand Russell suggests instead to accept the insolubility of the problem
and proposes to create an “inductive principle” that should be accepted as sound
ground for justifying induction.

Another well known argument is “Rule-circularity” which states: “Most of
the inductive inferences humans made in the past were reliable. Therefore the
majority of inductive inferences are right”. Cleve insisted that the use of induc-
tion to prove induction is rule circular but not premise circular and, as such,
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acceptable. Criticisms about this argument, considered to be anyway question-
begging, are detailed in [4].

“The No-Miracles” argument states: “If an hypothesis h predicts indepen-
dently a sufficiently large and precise body of data, it would be a miracle that
it would be false then we can reasonably infer the approximate truth of the
hypothesis”. Though this argument has been often raised in philosophy of sci-
ence, common wisdom in machine learning may be used to refute it [3]. It is not
the degree of fitting of an hypothesis to historical data which makes it true. There
is nothing extraordinary (in fact no miracle at all) in predicting a large body of
data if the hypothesis is complex enough and built ad hoc. A well know exam-
ple is an overfitting hypothesis, i.e. a too complex hypothesis which interpolates
past data yet without any generalization power. The quality of an hypothesis
derives from the quality of the learning procedure used to build it and from the
correctness of its implicit assumption, not from the fact of predicting correctly
a large (or very large) number of outcomes. This is made explicit in statistical
learning by the notions of bias and variance of an estimator [2] which we will
use later to establish our argument.

Popper’s [9] reaction to Hume’s problem was to simply deny induction.
According to him, humans or scientists do not make inductions, they make con-
jectures (or hypothesis) and test them (or their logical consequences obtained by
deduction). If the test is successful the conjecture is corroborated but never ver-
ified or proven. Confirmation is a myth. No theory or belief about the world can
be proven: it can be only submitted to test for falsification and, in the best case,
be confirmed by the evidence for the time being. Though the argument of Popper
got an immense credit among scientists, it is so strict to close any prospect of
automatic induction. If induction does not exist and the hypothesis generation
is exclusively a human creative process, any automatic and human independent
inductive procedure (like the ones underlying all the successful applications in
data science) should be nonsense or at least ineffective. As data scientists who
are assisting to an incredible success of inductive practices in any sort of predic-
tive task, we reject the denial of induction and we intend to use arguments from
statistical machine learning to justify its use in science.

Let us assume that induction is a goal-directed activity, whose goal is to
generalise from observational data. As Howson stresses [4] there are two ways to
justify its usage: an internal and an external way. The internal way consists in
showing that the structure of the procedures itself inevitably leads to the goal,
in other words that the goal (here the hypothesis) necessarily follows from the
input (the data). As stressed by Hume and confirmed by well-known results in
machine learning (notably the “no free lunch” theorems [14]), induction does not
necessary entail truth. There is no gold procedure that given the data returns
necessarily the optimal or the best generalization.

The second way is to show that the inductive procedure achieves the goal most
of the time, but the success or not of the enterprise depends on factors external
to it. There, though there is no necessity in the achievement of the objective, the
aim is to show that the inductive procedure is the least incorrect one.
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This paper takes this second approach by getting inspiration from the Hans
Reichenbach’s vindication of induction [10], where it is argued that if predictive
success is possible, only inductive methods will be able to pursue it. Conse-
quently we have everything to gain and nothing to lose by employing inductive
methods [11]. In this paper we take a similar pragmatic approach to justify induc-
tion as the most rational practice in front of experimental observations. In detail,
we extend and formalize the Reichenbach argument by adopting notation and
results from the estimation theory in order to assess and measure the quality of
an estimator, or more in a general, of any inductive algorithm. Note that in our
approach we replace the long-run approach of Reichenbach, which was criticized
in terms of limiting values, by a short run or finite sample approach which quan-
tifies the generalization accuracy of any inductive practice using a finite number
of observations. What emerges is that, though no guarantee of correct prediction
is associated to inductive practices, induction is the most rational choice (in the
sense of lowest generalization error) if we have to choose between an inductive
or a non inductive approach.

Note that our decision theory arguments differs form the “rule-circularity”
argument since we make no assumption that past successes of induction neces-
sarily extrapolate to future ones. Each application domain is different and there
is no guarantee that what worked in other contexts (or times) will be useful
in our, too. In our argument induction is not perfect, but it is the lesser evil
and it has to be preferred whatever is the degree of regularity of the natural
phenomenon: in other words if a regularity exists, induction is less error prone
than non induction while, in absence of regularity, induction is as weak as non
induction.

Another aspect of our approach is that it applies whatever is the adopted
inductive procedure (e.g. regression, classification, prediction). This allows us to
extend the conventional discourse about induction to other domains than simply
induction by enumeration. Finally this paper aims to corroborate the idea that
the interaction between machine learning and philosophy of science can play a
beneficial role in improving the grasp of the induction process (see [6,12] and
other papers in the same special issue).

2 The Machine Learning Argument

We define first what we intend by inductive process and more specifically how
we can assess in a quantitative manner its accuracy. In what follows we will
represent variability by having recourse to a stochastic notation. We will use the
bold notation to denote random variables and the normal font to denote their
value. So by x we denote the random variable while by x we refer to a single
realization of the r.v. x. We will have resort to the terminology of the estimation
theory [7] where an estimator is defined as any algorithm taking as input a finite
dataset Dtr made of Ntr samples and returning as output an estimation (or
prediction) θ̂N of an unknown quantity θ. Note that this definition is extremely
general since it encompasses many statistical modeling procedures as well as
plenty of supervised machine learning and data mining algorithms.
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Suppose we are interested in some phenomena characterized by a set of vari-
ables for which we have a set of historical records. In particular our interest
concerns some properties of these variables, like a parameter of the distribution,
correlation or more in general their dependency. We use the target quantity θ to
design the object of our estimation. For instance in regression θ could denote the
expected value of y for an observed value x while, in case of binary classification,
θ could design the probability that y = 1 for a given x.

Since induction looks for regularity, but there is no logical necessity for reg-
ularity in nature, we should assess the benefits of induction (with respect to no
induction) by taking into account that either regular or irregular phenomena
can occur. We assume that the observed data are samples of a generative model
characterized by a parametric probability distribution with parameter θ where
the parameter is random, and no assumption is made about the nature of the
distribution. For the sake of simplicity, we will assume that θ is scalar and with
variance V, though the results may be generalized to the multivariate case.

We distinguish between two settings: regularity (or uniformity of nature)
and irregularity. A regular phenomenon is described by a distribution where the
parameter θtr is unknown but constant. An irregular phenomenon is described
by a distribution where the parameter is random. In this paper the degree of
randomness of θ is used to denote the degree of irregularity of the phenomenon.

In a regular setting two subsequent observations (or datasets) are i.i.d realiza-
tions of the same probability distribution, i.e. characterized by the same param-
eter θtr) In an irregular setting two subsequent observations are realizations of
two different distributions, for example a training one with parameter θtr and a
test one with parameter θts.

Hence after, θ will denote both the parameter of the data distribution and
the target of the prediction: for instance θ could be the conditional mean (in a
regression task) or the a posteriori probability (in a classification task).

Machine learning decomposes the induction process into three major steps:
the collection of a finite dataset Dtr made of N samples, the generation of a
family E of estimators (or hypothesis) and the model selection1. We call estima-
tor [7] any algorithm2 taking as input a training set Dtr and returning as output
an estimation (or prediction) θ̂tr of the target quantity θtr.

An estimator is then the main ingredient of any inductive process, since it
makes explicit the mapping θ̂tr = θ̂(Dtr) between data and estimation. Since
data are variable (or more formally the dataset Dtr is random), the output of
the estimation process is the random variable θ̂tr. It follows that we cannot
talk about the accuracy of an inductive process without taking into account this
variability. This is the reason why, if the goal is to predict θ we cannot assess
the quality of an estimator (or more in general of any inductive procedure) in
terms of a single prediction but more properly in terms of statistical average of
the prediction error.

1 for simplicity we will not consider here the case of combining estimators.
2 here we will consider only deterministic algorithms.
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The accuracy of θ̂tr ∈ E may be expressed in terms of the Mean Squared
Error

MSE(θ̂tr) = Eθ̂tr
[(θtr − θ̂tr)2]

which can be notoriously decomposed in the sum

(Eθ̂tr
[θ̂tr] − θtr)2 + Var

[
θ̂tr

]
= B2

tr + Vtr

where Btr and Vtr denote the bias and the variance, respectively. While the
bias is a sort of systematic error, typically due to the family of estimators taken
into consideration, the variance measures the sensitivity of the estimator to the
training dataset and decreases with the increase of the number N of observations.

What is remarkable here is that those quantities formalize the reliability and
the accuracy of any inductive process. On one hand they show that it does not
make sense to assume a perfect induction since any induction depends on data
and, being data variable, induction is variable too. On the other hand, though
perfect induction is illusory, it is possible to have degree of reliability according
to the property of the target quantity, of the observed data and the estimator.
In what follows we will use these quantities to show that no rational alternative
to induction exists if our aim is to perform prediction or more in general extract
information from data.

Let
θ̂

∗
= arg min

θ̂tr∈E
MSE(θ̂tr) (1)

be the estimator in the family E with the lowest mean-squared-error. The aim
of the selection step is to assess the MSE of each estimator in the family E and
return the one with the lowest value, i.e.

θ̂
∗
tr = arg min

θ̂tr∈E
̂MSE(θ̂tr) (2)

where ̂MSE is the estimation of MSE returned by validation procedures (e.g.
cross-validation, leave-one-out or bootstrap).

In order to compare inductive with non inductive practice we need to specify
what we mean by alternative to induction. In qualitative terms, as illustrated
by Salmon [11], we might make wild guesses, consult a crystal gazer or believe
what is found in Chinese fortune cookies. In our estimation framework, a non
inductive practice corresponds to a special kind of estimator which on purpose
uses no data (i.e. N = 0), i.e. is data independent.

Let us now quantify the expected error of inductive and no-inductive proce-
dures in the two contexts: regularity and no regularity.

Let us first consider the regular setting (denoted by the superscript (r)) where
the training and test datasets are i.i.d. samples of the θ = θtr distribution. The
error of the non inductive process is

MSE(r)
0 = Eθ̂0

[(θ − θ̂0)2] = B2
0 + V0
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where B0 and V0 denote the bias and the variance of the non inductive estimator
θ̂0. According to (2) the error of the inductive process is MSE(r)

I = MSE(θ̂
∗
tr).

Now, if we consider that a non inductive procedure is just a specific instance
of estimator which is using no data, we can include θ̂0 in the family E by default3.
It follows that the probability that MSEI is bigger than MSE0 amounts to the
probability of wrong selection of θ̂

∗
due to the error in estimating the MSE

terms . Since it is well known that this probability can be made arbitrarily small
by increasing the number N of samples, we can conclude that the an inductive
process cannot be outperformed by a non inductive one in the regular setting.

In the irregular setting the training set and the test set are generated by
two different distributions with parameters θtr and θts. In particular we assume
that θts is a realization of θts whose mean is θtr and whose variance is V. The
Mean Squared Error of the inductive process is now obtained by averaging over
all possible training sets and test parameters:

MSE(irr)
I = Eθ̂

∗
tr,θts

[(θts − θ̂
∗
tr)

2]

= Eθ̂
∗
tr,θts

[(θts − θtr + θtr − θ̂
∗
tr)

2]

= Eθts
[(θts − θtr)2] − 2Eθ̂

∗
tr,θts

[(θts − θtr)(θ̂
∗
tr − θtr)] + Eθ̂

∗
tr

[(θtr − θ̂
∗
tr)

2]

= V − 2Γ + Eθ̂
∗
tr

[(θtr − θ̂
∗
tr)

2] = V − 2Γ + MSE(r)
I (3)

In the equation above V quantifies the variability (or irregularity) of the
phenomenon and

Γ = Eθ̂
∗
tr,θts

[(θts − θtr)(θ̂
∗
tr − θtr)] (4)

denotes the covariance between the estimator and θts. This term can be different
from zero only if the learning procedure incorporates some knowledge (also called
inductive bias) about the θts distribution. If no knowledge about θts is available,
Γ = 0.

Note that the Eq. (3) decomposes the testing error in an irregular setting
into three terms: a term depending on the variability of phenomenon, a term
representing the impact of inductive bias and a term denoting the MSE estimated
on the basis of the training set only.

Analogously, for the non inductive case, we have

MSE(irr)
0 = V + MSE(r)

0 (5)

Since model selection ensures MSE(r)
I ≤ MSE(r)

0 for every θtr, from (3)
and (5) we obtain that the error of the inductive process is not larger than
the non inductive one. So in the irregular setting too, the inductive approach
cannot be outperformed by the non inductive one. Though in the irregular case
the resulting error is definitely much larger than in the regular case (notably if

3 it is indeed a common practice to add random predictors in machine learning
pipelines and to use them as null hypothesis against which the generalization power
of more complex candidate algorithms is benchmarked.
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V is large), it still holds that an inductive approach is on average more accurate
that a non inductive one. This can be explained by the fact that an irregular
setting is analogous to an estimation task where a single observation (in this
case θtr, or better its proxy θ̂∗

tr) is available about the target distribution (i.e.
θ). Though a single sample is not much for returning an accurate estimation, it
is nevertheless recommended to use it rather than discard it. A rational agent is
therefore encouraged to choose, whatever is its assumption about the reality, an
inductive technique to take into account the observed data.

Table 1. MSE for induction and non inductive processes in the case of regular and
irregular nature.

MSE Regular setting θ = θtr Irregular setting θ

Inductive process minE [B2
tr + Vtr] V + [minE [B2

tr + Vtr]]

Non inductive process B2
0 + V0 V + [B2

0 + V0]

The reasoning is summarized in Table 1 which is on purpose remindful of
Table I in [11]. We extended the “nothing to lose” vindicationist argument pre-
sented by Reichenbach by using the notion of mean-squared error to quantify
the short-run prediction accuracy. Given the impossibility of assured success in
obtaining knowledge from data, it is nevertheless possible to show quantitatively
that inductive policies are preferable to any competitor. Induction is preferable
to soothsaying since it will work if anything will.

2.1 Example

In order to illustrate the result (3) let us consider a simple task where the goal is
to learn the expectation of a distribution. Let us suppose that we are in an irreg-
ular setting and that θts is distributed according to a Normal distribution with
mean θtr and variance V = 1. Suppose that we can observe a dataset DN of size
N = 50 distributed according to a Normal distribution with mean θtr and vari-
ance 1. Let us compare an inductive approach which simply computes a simple
average (θ̂∗

tr =
∑N

i=1 zi

N ) with a number of noninductive strategies θ̂0 which differ
in term of inductive bias (or a priori knowledge), since θ̂0 is distributed according
to a Normal distribution with mean zero and standard deviation σ0 ∈ [0.05, 2].
Figure 1 illustrates MSE(irr)

I (upper dotted horizontal line) and MSE(irr)
0 for

different values of σ2
0 . It appears that for all values of σ2

0 the inductive approach
outperforms (i.e. lower generalization error) the non inductive one. As far as the
a priori becomes less informative, the accuracy of the non inductive approach
deteriorates due to the increasing of MSE(irr)

0 (continuous increasing line).
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Fig. 1. Generalization error in the irregular setting for inductive and non inductive
case: x-axis represents the amount of variance of the noninductive estimator. The hor-
izontal line represents MSE

(irr)
I while the increasing line represent MSE

(irr)
0 .

3 Discussion

The results of the previous section leave open a set of issues which are worth to
be discussed.

– Practical relevance: though the results discussed in the above section appear
of no immediate application, there is a very hot domain in machine learning
which could take advantage of such reasoning. This is the domain of transfer
learning [8] whose aim is to transfer the learning of a source model θtr to a tar-
get model θts, e.g. by using a small amount of target labeled data to leverage
the source data. The transfer setting may be addressed in the derivation (3)
by making the hypothesis that the distribution of θts is no more centered on
θtr but on a value T + θtr where T denotes the transfer from the source to
the target. In this case the result (3) becomes

MSE(irr)
I = V + T 2 − 2T Btr − 2Γ + MSE(r)

I

The difficulty of generalization is made then harder by the presence of addi-
tional terms depending on the transfer T . At the same time this setting
confirms the superiority of an inductive approach. The availability of a (how-
ever small) number of samples about θts can be used to estimate the T term
and then reduce the error of a data driven approach with respect to a non
inductive practice which would have no manner of accounting for the transfer.

– Bayesianism: the Bayesian formalism has been more and more used in the last
decades by philosophers of science to have a formal and quantitative inter-
pretation of the induction process. If one hand, Bayesian reasoning shed light
on some famous riddles of induction (see [5]), on the other hand Wolpert [13]
showed that conventional Bayesian formalism fails to distinguish target func-
tions from hypothesis functions, and is then incapable of addressing the gener-
alization issue. This limitation is also present in the conventional estimation
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formalism which implicitly makes the assumption of a constant invariable
target behind the observations (like in the conventional definition of Mean
Squared Error). In order to overcome this limitations Wolpert introduces the
Extended Bayesian Formalism (EBF). Our work is inspired to Wolpert results
and can be seen as a sort of Extended Frequentist Formalism (EFF) aiming
to stress the impact on the generalization error of uncoupling the distribution
of the estimator and the one of the target.

– The distinction between regular and irregular settings: for the sake of the
presentation we put regular and irregular settings in two distinct classes.
However as it appears from Table 1, there is a continuum between the two
situations. The larger is the randomness of the target (i.e. the larger V) the
least accurate is the accuracy of the inductive estimation.

– How to build an estimator: in the previous sections we introduced and dis-
cussed the properties of an estimator, intended as a mapping between a
dataset and an estimation. An open issue remains however: how to build
such mapping? Are there better ways to build this mapping? All depends on
the (unknown) relation between the target and the dataset. Typically there
are two approaches in statistics: a parametric approach where it is assumed
the knowledge of the parametric link between the target and the dataset dis-
tribution and a nonparametric approach where no parametric assumption is
made. However, it is worth to remark that though nonparametric approaches
are distribution free, they are dependent on a set of hyperparameters (e.g.
the kernel bandwidth or number of neighbors in nearest neighbour) whose
optimal value, unknown a priori, depends on the data distribution. In other
words any rule for creating estimators introduce a bias (in parametric or non
parametric form) which has a major impact on the final accuracy. This aspect
reconciles our vision with the denial of induction made by Popper. It is indeed
the case that there is no tabula rasa way of making induction and that each
induction procedure has its own bias [1]. Choosing a family of estimators is in
some sense an arbitrary act of creation which can be loosely justified a priori
and that can only be assessed by data. Machine learning techniques however
found a way to escape this indeterminacy by implementing an automatic ver-
sion of the hypotetico-deductionist approach where a number of alternative
(nevertheless predefined) families of estimators are generated, then assessed
and eventually ranked. This is accomplished by the model selection step whose
goal is (i) to assess alternatives on the basis of data driven procedures (e.g.
cross-validation or bootstrap), (ii) prune weak hypothesis and (iii) preserve
the least erroneous ones.

– Why is inductive machine learning successful? the results of the previous
section aim to show that the inductive process is not necessarily correct
but necessarily better than non inductive alternatives. Its degree of success
depends on the degree of regularity of the nature. Each time we are in front of
regular phenomena, or better we formulate prediction problems which have
some degree of regularity, machine learning can be effective. At the same time,
there are plenty of examples where machine learning and prediction have very
low reliability or whose accuracy is slightly better than random guess: this
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is the case of long term prediction of chaotic phenomena (e.g. weather fore-
casting), nonstationary and nonlinear financial/economical problems as well
as prediction tasks whose number of features is much larger than the number
of samples (notably bioinformatics).

– Undetermination of theory by evidence: the bias/variance formulation of the
induction problem supports the empiricist thesis of “undetermination of the-
ory by evidence”, i.e. the data do not by themselves choose among competing
scientific theories. The bias/variance decomposition shows that it is possi-
ble to attain similar prediction accuracy with very different estimators: for
instance a low bias large variance estimator could be as accurate as a large bias
but low variance one. It is then possible that different machine learning algo-
rithms generate alternative estimators which are compatible with the actual
evidence yet for which prediction accuracy provides no empirical ground for
the choice. In practice, other (non predictive) criteria can help in disambiguat-
ing the situation: think for instance to criteria related to the computational
or storage cost as well as criteria related to the interpretability of the model
(e.g. decision trees vs. neural networks).

– Practical relevance of those results: though the results discussed in the above
section appear of no practical use, there is a very hot domain in machine
learning which could take advantage of this reasoning. It is the domain of
transfer learning where the issue is indeed to transfer the learning of a source
model θtr to a target model θts, for instance thanks to few samples char-
acterizing the target tasks. This aspect could be taken into account in the
derivation (3) by making the hypothesis that the distribution of θts is not
centered on θtr but on a value T + θtr where T denotes the transfer from the
source to the target. This setting it appears

4 Conclusion

Machine learning aims to extract predictive knowledge from data and as such it
is intimately linked to the problem of induction. Its everyday usage in theoretical
and applied sciences raises additional pragmatic evidence in favour of induction.
But as Hume stressed, past successes of machine learning are no guarantee for
the future. Hume’s arguments have been for more than 250 years treated as argu-
ments for skepticism about empirical science. However, Hume himself considered
that inductive arguments were reasonable. His attitude was that he had not yet
found the right justification for induction, not that there was no justification
for it.

Reichenbach agreed with Hume that it is impossible to prove that induction
will always yield true conclusions (validation). However, a pragmatic attitude is
possible by showing that induction is well suited to the achievement of our aim
(vindication).

This paper extends the “nothing to lose” vindicationist argument presented
by Reichenbach, by using the notion of mean-squared error to quantify the
short-run prediction accuracy and by claiming the rationality of induction in a
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decision making perspective. Given the impossibility of assured success in obtain-
ing knowledge from data, it is nevertheless possible to show quantitatively that
inductive policies are preferable to any competitor. Induction is preferable to
soothsaying since it will work if anything will.

Humans are confronted from the very first day to an incessant stream of
data. They have only two options: make use of them or discard them. Neglecting
data in no way can be better than using data. Inductive learning from data has
therefore no logical guarantee of success but it is nonetheless the only rational
behavior we can afford. Paraphrasing G. Box, induction is wrong but sometimes
it is useful.
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