
Chapter 9
Machine Learning and the Philosophical
Problems of Induction

Davor Lauc

Abstract This chapter provides an analysis of the relationship of the traditional
problems of justifying inductive inferences to the field of machine learning. After
the summary of the philosophical problems of induction, text focus on the two philo-
sophical problems relevant to the supervised and unsupervised machine learning.
The former is a famous new riddle of induction devised by N. Goodman. The author
argues that remarkable results in the theory of machine learning, no-free-lunch the-
orems are a formalisation of this traditional philosophical problem. Consequently,
lengthy philosophical discussions on this problem are relevant to these results and
vice versa. The later problem is the problem of similarity, as identified by N. Good-
man and W. V. Quine. It is claimed that those discussions can help practitioners of
unsupervised learning to be aware of its limitations.

Keywords Machine learning · New riddle of induction · No-free-lunch
theorems · Problem of similarity · Philosophy of computing

9.1 Introduction

Human knowledge is tightly tiedwith inference and, arguably, all knowledge is based
on some kind of inference. Consequently, an artificial system that poses knowledge
or intelligence is also based on some mode of inference. Traditionally, all inference
is partitioned into deduction and induction.

The former, deduction, has a special status. In well-formed deductive reasoning,
the conclusion necessarily follows from the premises. A deduction can be seen as a
truth-preserving machine, provide the true statement and it will yield the truth. The
deductive inference is also very familiar to the computer science community, not
only through mathematics and deductive systems but also through correspondence
between programs and proofs, the famous Curry–Howard isomorphism.
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However, the price that we pay for this special status of deduction, of its infalli-
bility, is enormous. Although some deductive inferences such as mathematical proof
took years or even centuries to be completed, the deduction does not yield any
new information in an absolute sense. As it can be easily demonstrated within the
framework of semantic information theory [6], the conclusion of a deductively valid
argument never contains more information than the premises. In the philosophical
jargon, this result is usually called the scandal of deduction.

Thus, to get new knowledge in an absolute sense, we need the following form,
the non-deductive forms of inference. In the modern sense, all of the non-deductive
reasoning is considered as a form of inductive reasoning. The standard definition,
complementary to the definition of deduction, is that inductive inference is the one
where it is possible to get a false conclusion from the true premises. Naturally, this
definition covers a wide range of inferences.

In the philosophical context, it is useful to distinguish two groups of the problem
related to inductive inference. The first group is related to developing methods of
induction or at least method of distinguishing better fromworse inductive inferences.
Although there is still a debate in the philosophy of developing such inductive logic,
it seems that the leading role in this area has been overtaken by other disciplines. The
science of statistics, and even machine learning, can be considered as an endeavour
to develop such inductive inference.

The other group of problems belongs to the more hardcore philosophical issue,
the challenge of justifying the inductive inference. To some extent, statistics tackle
the problem of justification, and fields like formal learning theory are concerned
with such justification. However, those problems are still mainly in the realm of
philosophy. It is beneficial to contrast those two groups using the recent theory of
human reasoning developed by psychologists HugoMercier and Dan Sperber, which
is depicted in Fig. 9.1 (Mercier and Sperber, 2017).

If their theory is empirically adequate, the reasoning is deeply embedded in several
categories of inference, and the justification of reason is just one part of it. Even if
this theory is not an adequate description of the way humans infer and reason, in
this context, it is a restatement of well-known Reichenbach distinction between the
context of discovery and the context of justification. We will ignore how a human
or an artificial reasoner comes to inductive inferences. Our focus will be on the
philosophical problem of how we can justify such conclusions, and if it is possible
at all.

9.2 What Are the Philosophical Problems of Induction?

As the problem of induction is one of the most significant philosophical issues in the
last few hundred years, consequently, tons of literature about it has been created. So,
it is entirely beyond the scope of this text to provide a comprehensive review of it.
We will focus on a bird’s eye review from the perspective of machine learning of the
three most pressing problems of induction, which are related but distinct.
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Fig. 9.1 Mercier and Sperber embedding of reason

The problem of induction, or the classical formulation of the problem, is also
called the Hume’s problem of induction. David Hume formulated it in the seven-
teenth century, and in modern terminology it can be shortly reformulated as follows.
He poses the question of how we can justify inductive inference, how we can con-
clude from the observed to the unobserved. There are two ways, demonstrative and
probable in Hume’s terminology, that is deductive or inductive. If we take the first
way, we would need to presuppose as a premise that unobserved will be similar to
observed, but this is what we are trying to prove precisely. If we take the second way,
we are using the principles of reasoning we are trying to justify. So, we are using
unacceptable circular reasoning. As that exhaust all possibilities of justifying the
inductive inference, we must conclude that it is unjustifiable. It is vital to notice that
Hume does not deny prevalence or importance of such reasoning; he is only stating
its unjustifiability.

In the context of machine learning, we can understand this classical problem as
a generalisation of the bias-variance trade-off. We can use high regularisation of the
model to keep it simple (other unjustified assumption), set hyperparameters and test
it on the held-out part of the dataset, use cross-validation and other tricks of trade and
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then hope that our model will perform well in the wild. Based on the experience of
machine-learning practitioners, using such techniques to avoid overfitting will result
in the models that will perform better on new, yet unobserved data. However, what
justifies that conclusion? A natural law that the real-life data will be similar to one in
our training dataset or the experience with the past performance of model developed
with a similar methodology? If we accept the Hume’s dichotomy, then nothing.

Another well-known problem related to induction was formulated in the 1940s
by German-American philosopher Carl Gustav Hempel, often labelled as “the raven
paradox”. In a nutshell, Hempel is concerned with the problem of confirming gener-
alised statements, like “all ravens are black”. It is natural to accept that black ravens
are confirming such generalisation while raven of any other colour will falsify it. The
issue is that, logically, such generalisation is equivalent to its contraposition, the state-
ment that “all nonblack things are nonravens”. This logical equivalence standardly
means that the two statements have the same truth conditions; the same observed
data makes both of them true and false. The “paradox” unfolds with the realisation
that any black thing or any nonravens make the previous statement right, so that, for
example, green apple confirms it.

The third problem related to inductive inference is arguably the most relevant to
machine learning. It is formulated by Nelson Goodman and is known as “the new
riddle of induction”. Goodman considered Hume’s problem as a pseudo-problem
because, in the analogy with deduction, there cannot be a justification of our inferen-
tial practices. Goodman also provided a solution to the Hempel’s paradox based on
the idea that an acceptable instance (a black raven) not only confirms the statement
but also falsifies the contrary hypothesis that none raven is black.

However, he offered a new puzzle connected with induction that somehow turns
Hume’s problems on its head. In the sense, that it is not the case that none of the
inductive inferences are justified, but that it is toomany of them. His famous example
is that, based on many observed green emeralds, and none emeralds of other colour,
we can naturally conclude that all emeralds are green. However, this is not the only
conclusion we could reach. Let us define a new property called “grue”. The property
is true of all things that are blue and observed before some point in future, for example
before the year 2100, or observed after this time point and blue. Based on the same
data, we could conclude that all emeralds are “grue”, and of course numerous other
statements generated in this fashion. Goodman challenge is to distinguish properties
we could use in inductive inference like green, from the one we cannot. He named the
former projectable and the latter non-projectable. In spite of numerous discussions
on this topic in the last 50 years there is still little agreement about how to solve his
problem.

It is worthwhile to analyse a similar argument, without the fancy neologism, made
by Goodman earlier:

Suppose we had drawn a marble from a certain bowl on each of the 99 days up to and
including VE day, and each marble drawn was red. We would expect that the marble drawn
on the following day would also be red. So far all is well. Our evidence may be expressed
by the conjunction “Ra1 & Ra2 &&& Ra99,” which well confirms the prediction “Ra100”
But increase of credibility, projection, “confirmation” in any intuitive sense, does not occur
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in the case of every predicate under similar circumstances. Let “S” be the predicate “is drawn
by VE day and is red, or is drawn later and is non-red.” The evidence of the same drawings
above assumedmay be expressed by the conjunction “Sa1&Sa2&&&Sa99.” By the theories
of confirmation in question, this well confirms the prediction “Sa100” but actually we do
not expect that the hundredth marble will be non-red. “Sa100” gains no whit of credibility
from the evidence offered hundredth marble will be non-red.

From this quotation, the relevance to machine learning is more evident. By using
different learning setups and algorithms we can reach different models that are indis-
tinguishable by our dataset. We will analyse this into more details later in the text.

9.3 Why Are the Philosophical Problems of Induction
Relevant to Machine Learning?

Leslie Gabriel Valiant, a British computer scientist, claims that “…induction is a
pervasive phenomenon exhibited by children. It is as routine and reproducible a
phenomenon as objects falling under gravity.” [27]. To extend his metaphor fur-
ther, although effects of gravitation were of course known in antiquity, we were not
satisfied by the Aristotelian explanation that a body falls to the earth because it is
their natural place, for this is where it belongs. Neither we were completely satis-
fied by the pretty accurate Newtonian description of how gravity works, nor with
better description and understanding made by general relativity. We still want to
have enhanced understanding of the nature of a phenomenon of gravity, not only to
account for anomalies and discrepancies like extra energetic photons and provide
better description and prediction but for the sake of understanding it as such.

By analogy, as machine learning is the venture of creating computer systems that
learn from data, such system can be viewed as an inductive machine, as a device that
is based on and performs inductive inferences.We are not, and should not be, satisfied
by the fact that the systems we are developing are getting better at their tasks, that
perform inductive inference well. We would like to know more, to understand the
whys of induction and learning, to better understand the limits and explainability of
it, not only of the present learning systems but any future systems as well. As we are
putting more trust in machine learning systems and integrating them into our lives,
from health to legal system, it is crucial to understand their foundation and limits
more thoroughly.

It may happen, as it already happened many times in the development of philoso-
phy and sciences, from physics to psychology, that the problems of induction detach
from the mothership of philosophy. It may become a problem of some particular
science, or even new science of it own, like the formal learning theory. However,
relevant questions about induction are still so open-ended, and there is still so little
understanding of the exact nature of those questions, methods to approach them and
possible solution. So, it is expected that the problem will stay “philosophical” for at
least some time.
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So even if philosophyandphilosophical problems are at present, less relevant to the
actual practice of science and technology than they used to be, it is plausible to argue
that the minimal relevance of philosophical problems is to avoid rediscoveries and
repeat mistakesmade by philosophers. Namely, in the two-and-a-half millenniums of
philosophical endeavours, many questions were raised, many problems and several
solutions were discussed, and numerous pro-and-contra arguments were examined.
Almost by definition, many of the discussed problems are pseudo-problems, many
of the solutions are bogus, and many of the arguments are unconvincing. However,
by the same token, many of the arguments are solid and show that some theories are
implausible to be valid, so the least we can learn from philosophy is not to repeat
same mistakes again and again.

Let us exemplify this with the claim related to the problem of induction and
machine learningmade 10 years ago byC. Anderson, former editor-in-chief ofWired
Magazine. In his influential and provocative article, inspired by big-data hype, “The
End of Theory: The Data Deluge Makes the Scientific Method Obsolete”, he states
that fundamental scientificmethodology—hypothesise,model, test—is nowobsolete
due to a vast amount of data. He claims that “with enough data, the numbers speak
for themselves”, and that petabytes of data allow us to say that correlation is enough,
that correlation is causation.

For philosophers, this is not a new claim. It is just reiteration of one of the many
arguments made by empiricist and rationalists in 25 old debate on the source and
justification of human knowledge. Thesis formulated by Anderson was most notably
made in seventeenth century by Francis Bacon in hisNovumOrganum. Bacon’s main
point was that contrary to the then-dominant Aristotelian scientific method based on
deduction. He argued that scientific knowledge should be based on experimental
data. In his famous metaphor, scientists are bees that unlike spiders the rationalist or
ants the pure empiricist are taking the middle course. They take materials from the
flowers (observations) and “transforms and digests it by a power of its own” [2]. In
the contemporary analogy, we only need to provide enough data to our deep learning
models, and they will flourish and produce knowledge.

Among many arguments against this position, let us consider the one stated by Sir
Karl Poppers. He can be considered as, at least philosophical, father of the scientific
method attacked by Anderson.

… the belief that we can start with pure observations alone, without anything in the nature of a
theory, is absurd; asmay be illustrated by the story of themanwho dedicated his life to natural
science, wrote down everything he could observe, and bequeathed his priceless collection
of observations to the Royal Society to be used as inductive evidence. This story should
show us that though beetles may profitably be collected, observations may not. Twenty-five
years ago I tried to bring home the same point to a group of physics students in Vienna
by beginning a lecture with the following instructions: ‘Take pencil and paper; carefully
observe, andwrite downwhat you have observed! They asked, of course, what I wanted them
to observe. Clearly, the instruction, ‘Observe!’ is absurd. …Observation is always selective.
It needs a chosen object, a definite task, an interest, a point of view, a problem. Moreover,
its description presupposes a descriptive language, with property words; it presupposes
similarity and classification, which in its turn presupposes interests, points of view, and
problems. … objects can be classified, and can become similar or dissimilar, only in this
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way – by being related to needs and interests. … a point of view is provided … for the
scientist by his theoretical interests, the special problem under investigation, his conjectures
and anticipations, and the theories which he accepts as a kind of background: his frame of
reference, his ‘horizon of expectations’. [22]

Digested reiteration of this Popper’s argument can be heard in the machine learn-
ing community under the dictum no learning without bias [5, 15].

Among many philosophical arguments related to machine learning, in this work,
we will focus on the two examples. The first one is related to the supervised learning
and our thesis that the well-known no-free-lunch theorems are just reiteration of
famous Nelson Goodman’s New Riddle of Induction problem. The latter is related
to unsupervised learning and the relevance of theWillard Van Orman Quine analysis
of the problem of similarity to the problem of clustering.

9.4 Supervised Learning and the New Riddle of Induction

It is a pearl of received wisdom the no-free-lunch (NFL) theorems—the great neg-
ative results in machine learning—as a reiteration or even a formalisation of the
Hume’s problem of induction.1 The distinguished machine-learning researchers like
Christophe Giraud-Carrier and Pedro Domingos state, respectively:

It then becomes apparent that the NFL theorem in essence simply restates Hume’s famous
conclusion about induction having no rational basis… [8]

also,

...This observation was first made (in somewhat different form) by the philosopher David
Hume over 200 years ago, but even today many mistakes in machine learning stem from
failing to appreciate it.” [4]

Even the originator of the first form of the NFL theorems, David Wolpert, 15
years after he proved the theorem, joins the information cascade and claims that:

…these original theorems can be viewed as a formalisation and elaboration of concerns
about the legitimacy of inductive inference, concerns that date back to David Hume… [30]

This chapter argues that the NFL theorems, although vaguely connected to the
classical philosophical problem of induction, do not restate the Hume’s problem, but
rather the associated Nelson Goodman’s argument.2 We claim that NFL theorems
are closely related to Goodman’s new riddle of induction (NRI), to the extent that
they are one possible formalisation of the riddle. Additionally, we would like to
pose the question of the relevance of the NFL theorems to the lengthy philosophical
discussion on NRI, as the relationship is yet to be researched. The related, reversed,

1This part of the text is an extended version of the author’s text “How Gruesome are the No-free-
lunch Theorems for Machine Learning?” [16].
2We suppose that the new riddle is a different issue from the classical problem of induction, what
is the received position with a few notable exception.
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the issue is the relevance of NRI to NFL and the question as to whether the machine-
learning community could benefit from the almost 70 years of fruitful discussion
about Goodman’s argument.

9.4.1 No-Free-Lunch Theorems

The first form of NFL theorem was proven by Wolpert and Macready, 1992, in the
context of computational complexity and optimisation research [28, 31]. He later
proved the variant of the theorem for the supervised machine learning [29]. For the
sake of our argument, wewill sketch the proof of the simplified version of the theorem
for supervised learning based on the work of Cullen Schaffer [25].

In the simplest, discrete settings of the machine learning of a Boolean function,
training data X consists of the set of binary vectors representing a set of attributes
that are true or false for each instance of binary function—concept. Each vector
is labelled as a positive or negative example of a concept we want to learn. The
machine-learning algorithm L tries to learn a target binary function y; that is, it
tries to learn a real concept from this set of examples. The training dataset is always
finite with some length n, and the relative frequency of data feed to L is defined
by probability distribution D. In a context more familiar to the philosophers, this
problem of machine learning can be seen as a guessing a true form of a large n-ary
truth function from the partial truth-table, where most of the rows are not visible.

The key performance indicator of a machine learner is a generalisation perfor-
mance, with the accuracy of the learner found within the data outside the training
dataset. Modern machine-learning algorithms can easily “memorise” data from the
training dataset, and perform poorly on the “unseen” data, leading to the problem
known as overfitting. So, the success of the learner is measured by how well it will
generalise, and howwell it performs on the novel data. In the simple setting of binary
concept learning, the baseline of the generalisation accuracy of a learner, GP (L)
is at the level of a random guess, with the accuracy of the novel data being 0.5.
Such performance is the result we will expect on average if we use the toss of a coin
to decide, for an unseen example, whether it belongs to our target concept or not.
Obviously, we want any learner to perform better than this.

The NFL theorem claims that, for any learner L , given any distribution D and any
n of X ∑

f ∈Y GP(L)

|Y | = 0.5,

where Y is a set of all target functions, all possible concepts that can be learned.
So, the theorem states that, on average, the generalisation performance of any

learner is no better than random guessing. All learning methods, from the simple
decision trees to the state-of-the-art deep neural networks, will perform equally when
all possible concepts are considered.
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This result, unanticipated at least on the first sights, does bear some resemblance to
the discrepancy between the results of the argument and our expectations in the case
of the Hume’s argument. However, it does not claim that we cannot learn anything
from the training data or experience, but that we can learn everything, which is,
arguably, the point of Goodman’s argument. The resemblance to the NRI will be
more evident from the sketch of the proof of the NFL theorem. The basic idea is
straightforward: for any concept that the learner gets right, there is a concept that
it gets wrong or, in Goodman’s lingo, for every “green” concept there is a “grue”
concept. The “grue” concept is constructed similar to the NRI argument, in that it
agrees on all observed data—data in the training dataset—with the “green” concept,
and it is bent on all non-observed data.

More formally, for every concept C that L learns to classify well—say it classi-
fies m novel examples accurately—there is a concept C ′ that L learns where all m
examples will be misclassified. C ′ is constructed as follows:

C ′ =
{
C if x ∈ X

¬C if x /∈ X

Visually, this simple constructionof the conceptC ′ corresponds to theWittgenstein–
Goodman “bent predicate” [1], where X represents observed data (training dataset)
and X′ unobserved data.

From the perspective of the primary measure of the success of the learning—
generalisation accuracy, for every accuracy improvement a over the baseline for a
concept C , there is a concept C ′ that will offset the improvement of the accuracy
by −a. Consequently, the improvement in accuracy for any learner over all possible
concepts is zero. It is possible to generalise this result to the more general learning
settings, and many extensions of the theorem are proven [13, 14] (Fig. 9.2).

Fig. 9.2 A bent predicate
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9.4.2 Is the No-Free-Lunch Theorem the New Riddle of
Induction?

Although NFL bears a strong resemblance to NRI, it seems worthy to analyse dif-
ferences and similarities between these two results. Let us start with similarities.
Both arguments are about inductive inference, about inferring from the known to
the unknown, and from the observed to the unobserved data. Both arguments imply
that there are too many inductive inferences that can be inferred. Furthermore, both
arguments seem to draw empirically inadequate conclusions, contrary to scientific
practice and reasonable expectation. Nobody is expected to conclude that all emer-
alds are grue, and neither that random guess is an inductive strategy as good as any
other.

The fundamental resemblance is in the construction of the arguments, the split of
the evidence and the bend in the unobserved data. In most of the NRI arguments,
we split the evidence into observed and unobserved (sometimes to some point in the
future). Equally, in the NFL, data is split into observed, training dataset and the unob-
served data to which the learning algorithm should generalise. In both arguments,
the other counter-concept, grue or C ′, is constructed in the same manner. It agrees
on the observed data and bends on the unobserved data.

Regarding the differences, firstly, there is a difference in the argument contexts.
NRI was made in the philosophical, theoretical context of the logic of confirmation
and pragmatic vindication of induction, while the NFL was made in the technolog-
ical context of artificial intelligence and computing. The aim of the arguments also
differs, at least at first glance. The intention of NRI, at least in Goodman’s original
form [9, 11], was to recognise one of the problems in the logic of confirmation—the
demarcation between projectable and non-projectable predicates. On the other hand,
the objective of the NFL was to demonstrate that there is no single best algorithm,
initially for the optimisation and search, and later for supervised learning.

The most significant difference seems to be in the scope of quantification. The
no-free-lunch theorem quantifies overall learners and all concepts, while Goodman’s
argument seems to be about constructing one particular example. However, NRI can
be reformulated to have a similar quantificational structure as NFL.

The takeaway of this formalisation would be one of the lessons that Goodman
has taught us—the importance of the language for the induction, or the impossibility
of empirical investigation without some predefined language that we bring to the
process. It is interesting to compare this with the conclusion that the same researcher
from the machine-learning community draws from the NFL—there is no learning
without bias, there is no learning without knowledge [5].
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9.5 Unsupervised Learning and the Problem of Similarity

Willard Van Orman Quine, one of the greatest philosophers of the twentieth century,
accepted Hume’s challenge to inductive inference and agreed that justification could
be provided neither by experience nor a priory—“The Humean predicament is the
human predicament” [21]. Quine is trying to provide, in the framework of his natu-
ralistic epistemology, an explanation of our inductive practices based on evolution.
He claims that all learning is based on conditioning, thus on induction, and therefore
induction itself cannot be learned:

… the instinct of induction: the instinct to expect perceptually similar stimulations to have
similar sequels. … Philosophers have marvelled that expectation by induction, though falli-
ble, is so much more successful than random guessing. This is explained by natural selection
…” [20]

Regarding the other two problems, Quine notices that the Hempel’s problem, the
raven paradox, is reducible to Goodman’s problem [23]. Precisely, a complement of
a projectible predicate (black–nonblack), does not need to be, also almost never is,
projectible.His simple solution to the new riddle of induction is that “green emeralds”
are more similar to each other than the “grue emeralds”. However, this reduction
of the problems of induction to the problem of similarity is not an easy solution,
because “..the dubious scientific standing of a general notion of similarity … the
dubiousness of this notion is itself a remarkable fact” [23].

Quine was not the first philosopher to tackle the concept of the similarity, among
others Leibniz, Hume and Goodman were analysing it. Leibniz considered similarity
as a weakened version of his famous principle of identity of indiscernibles. Two
objects (substances in his terminology) are identical if they share all properties,
two objects are similar if they share at least one [18].3 Likewise, Hume position of
similarity (resemblance) is that degree of similarity of two concepts depends on the
number of “simple ideas”, properties, that they share [12], the approach that is today
called the common attribute view of similarity.4

In the context of machine learning problem of similarity emerges primarily in
unsupervised learning, although it is relevant to supervised learning tasks as well.
In clustering problem, the primary technique of unsupervised learning, similarity
(closeness, distance) metric is input to clustering algorithms as well as to all its
performance metrics. There are several philosophical and practical problems with
supervised learning even once the distance metrics are defined, reaching from deter-
mining number of clusters to the interpretation of clusters, but here we will focus
on the concept of similarity itself as a prerequisite of any unsupervised learning
technique.

Let us illustrate the problem of similarity with a simple, practical application, that
is the problem of reasoningwith dates, the temporal referenceswith the granularity of

3Rodriguez-Pereyra claims there are strong philosophical grounds that Leibniz thought that the
similarity of substances does not derive from the similarity of their properties (accidents) [24].
4Although there are readings of Hume that suggest that Hume’s position on similarity is closer to
Goodman’s view [7].
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days. Date similarity seems a trivial problem aswe can use simple absolute difference
in days between any two dates as similarity metrics. However, how to extend this the
similarity metrics to the inexact temporal expressions, dates determined by inexact
expressions such as “the beginning of the twentieth century” or “the date of birth of
the person who died in 1875”? It is natural to represent such dates, that often occur in
practical application, using discrete probability distribution over the range of relevant
period. So, for example, we could represent exact dates with distribution where total
probability mass is assigned to one day. If the date is from an unreliable source, we
can assign only 0.1 mass to it and spread the rest to the neighbouring dates according
to some probability distribution. In the same manner, we can represent expressions
like “XVII century” or “beginning of the XVIII” century (see Fig. 9.3).

So, if we want to cluster such dates, what similarity metrics should we use?
There is no simple distance in parameters of distribution because many different
distributions that need to be used. There are many similarity measures and dis-
tance function between probability distribution in different scientific fields. In statis-
tics and probability theory, there are distance correlation, Bhattacharyya distance,
f-divergences like Kullback–Leibler, Kolmogorov–Smirnov and many others [3].
There are information-theoretical distance/similarity measures like mutual infor-
mation or Jensen–Shannon divergence, as symmetric version of Kullback–Leibler
divergence [19]. The principal problem with all those distances is that they do not
satisfy the underlying intuitive semantics of the inexact date’s comparison.

Even worse, similarity metrics as perceived by the field experts, historians, in
this case, do not even satisfy the essential requirement of any metrics—reflexivity.
Professionals perceive narrow ranges of dates as more similar to itself than the
larger ones, so, for example, the year 1941 is more similar to itself than the twen-
tieth century [17]. In the context of cognitive sciences, Tversky studied extensively
this problem of subjective and highly contextual perception of similarity [26]. He
demonstrated that human judgement of similarity is not symmetrical, as test subjects
perceived that North Korea is more similar to China than vice versa.

As it is often the case, this empirical research was preceded by philosophical
analysis. Goodman wrote off the concept of similarity in both philosophically and
scientifically use:

…Consider baggage at an airport checking station. The spectator may notice shape, size,
colour, material, and even make of luggage; the pilot is more concerned with weight, and
the passenger with destination and ownership. Which pieces are more alike than others
depends not only upon what properties they share, but upon who makes the comparison, and
when. [10]

The takeaway from this and related discussions for the unsupervised learning
could be expressed in Quinean lingo like: there is no “fact of the matter”, no real
ground truth for the similarity metrics, hence for any association or clustering learn-
ing. Those structures are not something objective in the nature that science can
discover as we invented it, and we should be aware of contextuality and limitation
of it.
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