
Chapter 4
Why Not Fuzzy Logic?

Ivan Restović

Abstract Fuzzy logic is an approach to AI which focuses on the mechanization
of natural language. It has long been proposed by Zadeh, its originator, as another
paradigm for AI and the correct way to achieve “human level machine intelligence”.
To present day, this approach hasn’t prevailed, but in the light of some recent ten-
dencies in AI development it can gain traction. The “black-box property” of the
currently predominant method—deep learning—has recently sparked a movement
called “explainable artificial intelligence”, a quest for AI that can explain its deci-
sions in a way understandable and acceptable to humans. As it has been recognized,
a natural way to provide explanations to users is to use natural language, embedded
in the fuzzy logic paradigm. However, to model natural language fuzzy logic uses
the notion of “partial truth”, which has brought some philosophical concerns. The
very core tenets of fuzzy logic have often been described as counterintuitive. In this
text, we provide philosophical support for fuzzy logic by providing possible answers
to the two most common critiques raised about it, as well as by offering independent
philosophical motivation for endorsing it.

Keywords eXplainable Artificial Intelligence (XAI) · Natural language · Fuzzy
logic · Philosophy of vagueness · Higher-order vagueness · Contradictions

4.1 A Problem and a Movement

Machine learning with deep neural networks is the predominant method in AI. How-
ever, there are some concerns about one of its widely recognized properties—many
of the results of deep learning algorithms remain intransparent to humans. They
reach a certain decision, but cannot provide reasons for it. This is usually called “the
black-box property”. Now, in certain areas it becomes “the black-box problem”, e.g.,
in the field of medicine or in the financial sector.
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This has sparked a movement in AI in 20161 coined “eXplainable Artificial Intel-
ligence” or XAI, proposed by Gunning on behalf of the USA Defense Advanced
Research Projects Agency (DARPA). The present situation is described as such:

The current generation ofAI systems offer[s] tremendous benefits, but their effectivenesswill
be limited by themachine’s inability to explain its decisions and actions to users. Explainable
AI will be essential if users are to understand, appropriately trust, and effectively manage
this incoming generation of artificially intelligent partners. [6, p. 2]

The proposal for XAI provides a summary of some existing AI techniques based
on two features: performance versus explainability. Deep learning scores the highest
on performance, but has very low explainability. Bayesian belief networks offer better
explainability, but lag behind on performance. The best explainability is provided by
decision trees, but there we also find the lowest performance. The desideratum is, of
course, more explainability without loss in performance.

Although notmentioned byDARPA’s proposal,many researchers have recognized
the potential of fuzzy logic paradigm to assist XAI [1, 2, 7, 11]. As Alonso puts
it, “interpretability is deeply rooted in the fundamentals of fuzzy logic” [1, p. 245].
This logic with its supporting theories and implementations has long been proposed
as another paradigm for AI, most vigorously by its originator, Lotfi A. Zadeh. But is
it itself understandable and acceptable to humans?

4.2 Zadeh’s Proposal

Throughout his career, Zadeh argued for a paradigm shift in AI development. His
position can be illustrated by this often paraphrased place:

Humans have many remarkable capabilities; there are two that stand out in importance.
First, the capability to reason, converse and make rational decisions in an environment of
imprecision, uncertainty, incompleteness of information, partiality of truth and possibility.
And second, the capability to perform a wide variety of physical and mental tasks without
any measurements and any computations. A prerequisite to achievement of human level
machine intelligence is mechanization of these capabilities and, in particular,mechanization
of natural language understanding. Inmyview,mechanization of these capabilities is beyond
the reach of the armamentarioumofAI – an armamentarioumwhich in largemeasure is based
on classical, Aristotelian, bivalent logic and bivalent-logic-based probability theory. [22, p.
11, added emphasis]

Zadeh talks about the “achievement of human level machine intelligence”. In the
present context, wewill slightly specify his claim.What we are looking for is “human
understandable machine intelligence”. Zadeh’s original term may be misleading
because it can be argued that some machines already surpassed the human level of
intelligence.AI outperforms humans on a variety of tasks. There are forms of artificial
intelligence alien to us—this makes the problem of XAI all the more urgent.

1According to [1, p. 244]. We use an updated version from 2017 [6].
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In the context of transparent AI, one of the more substantial claims made in
the above quote is one about natural language. Humans reason (mostly) in natural
language. In Zadeh’s opinion, this amounts to saying that we take as inputs sentences
in natural language and after some “computation” output a conclusion, also in natural
language. Now, wouldn’t it be nice if computers reasoned in natural language in the
way humans do? Zadeh’s working assumptions on natural language can be seen here:

Much of human knowledge is expressed in natural language. [...] The problem is that natural
languages are intrinsically imprecise. Imprecision of natural languages is rooted in impre-
cision of perceptions. A natural language is basically a system for describing perceptions.
Perceptions are intrinsically imprecise, reflecting the bounded ability of human sensory
organs, and ultimately the brain, to resolve detail and store information. Imprecision of
perceptions is passed on to natural languages. [21, p. 2769]

This passage seems to imply that natural language is enough to store human
knowledge based on perception. In other words, that there is nothing in perceptions
which cannot be expressed in the natural language. This is clearly an even more
substantial and also a controversial claim. However, in the context of XAI, we don’t
need to fully endorse it. Maybe there is something “lost in translation” but it is lost
on both sides since the question posed by a human is itself in natural language. This
text is only about “linguistic explanations” given by a logical system designed to
resemble human reasoning.

Zadeh proposed several closely connected theories for implementing his above-
described motivation, some of which we mention here. For modeling the underlying
perceptions, he proposes the Computational Theory of Perception (CTP) wherein
perceptions and queries are expressed as propositions in natural language. Having
perceptions thus modeled, we can use CTP’s underlying methodology of Computing
WithWords (CWW) to yield answers to queries [20]. ComputingWithWords in turn
is a branch of fuzzy logic in the broad sense [19], but it is also based on fuzzy logic
in the narrow sense, a logic of approximate reasoning [17]. More on this ambiguity
shortly.

Fuzzy logic employs a nonclassical set of truth values: they are considered as
belonging to the unit interval [0, 1], in accordance with the notion of fuzzy sets
Zadeh introduced in [15]. The basic notion of this set theory is partial elementhood.
In fuzzy logic, there is partial elementhood in the “set” of truth values.

Partiality of truth was introduced to capture the intuition that for some concepts
there are no clear boundaries. In [15] Zadeh wonders if bacteria are animals. The
answermight be—partly. In fuzzy logic atomic propositions are assigned truth values
in the interval [0, 1]. Truth conditions for connectives are taken from Łukasiewicz2:

v(¬p) =de f 1 − v(p)
v(p ∧ q) =de f min(v(p), v(q))
v(p ∨ q) =de f max(v(p), v(q))
v(p → q) =de f min(1, 1 − v(p) + v(q)).

2Appearing in his paper from 1930. For an English translation see [9].
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What brings fuzzy logic closer to natural language is its use of linguistic variables
[16] for truth values. Even though there is an underlying computation, we wouldn’t
get an answer like “Bacteria are animals is 0.892 true” since it would be far from
natural language. In [17, p. 410] Zadeh uses the countable set {true, false, not true,
very true, not very true, more or less true, rather true, not very true and not very
false, ... }. For instance, we can label as “true” those propositions the value of which
exceeds 0.5. The threshold for “very true” can be 0.7, and so on.

“Fuzzy logic” can mean different things. In the broad sense, it includes all the
theories Zadeh proposes for mechanization of natural language, some of which are
more specialized than the others. So, when Zadeh opts for a paradigm shift toward
fuzzy logic, he doesn’t mean that the whole work in a field as broad as AI has to be
done solely within logic as a subfield of pure mathematics or of philosophy. Then,
in the narrow sense, “fuzzy logic” signifies such a subfield, i.e., the logical system
with truth values in the unit interval and with linguistic variables for such values.

Because of its focus on (computing with) natural language, fuzzy logic has been
recognized as a viable approach to XAI [1, 7, 11]. Even if Zadeh’s insistence on the
use of natural language was exaggerated, this feature is now extremely useful for
giving logical explanations acceptable to humans.

For instance, Hagras states:

[...] FRBS [fuzzy rule-based system] generates if-then rules using linguistic labels (which
can better handle the uncertainty in information). So, for example, when a bank reviews a
lending application, a rule might be: if income is high and home owner and time in address
is high, then the application is deemed to be from a good customer. Such rules can be read
by any user or analyst. More importantly, such rules get the data to speak the same language
as humans. [7, p. 35]

We will not debate the understandability of Hagras’ example rule. Notice just that
italicized words represent variables, some of which are fuzzy terms. Consider “high
income”. It would not be useful for a bank to classify incomes only according to
two categories: high versus low. Two incomes a and b can both be low, but one can
still be higher than the other. In fuzzy logic this amounts to saying that the sentence
“Income a is high” is more true than the sentence “Income b is high”. Similarly,
Alonso [1] sees Zadeh’s CWW especially relevant to XAI since humans are used to
explanations in natural language.

However, a host of philosophical critiques are raised against fuzzy logic. A great
deal of them attacks even its fundamental tenets, like the very notion of partial truth.
In the following section, we provide philosophical support for fuzzy logic. First, we
analyze the philosophical setting in which fuzzy logic is often proposed—the sorites
paradox. Then we describe the two common concerns raised about the viability of
fuzzy logic and outline possible answers. The last part offers an intermediate position,
tenable even if some critiques against fuzzy-set-theoretic treatment of truth values
are left unanswered.
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4.3 Philosophical Concerns

4.3.1 Fuzzy Logic and the Sorites Paradox

In philosophy, fuzzy logic is often considered as a special solution for a more gen-
eral problem—vagueness, or the possibility of a concept to have borderline cases.
Vagueness is problematic because it invites the famous sorites (heap) paradox.

Let’s illustrate this by using the most popular predicate in the literature about
fuzzy logic, “tall”. Consider Sandy Allen, the American actress who was 231 cm
tall. Now, everyone would agree that the proposition “The person standing at 231 cm
is tall”. Also, it seems plausible to affirm the conditional: “If a person standing at x
cm is tall, so is the person standing at x cm − 1 mm”. In other words, if there was a
person only 1 mm shorter than Allen, they would still be considered tall; a tenth of
a centimeter doesn’t make a difference.

But if we were to line up actors and actresses by their height starting with Sandy
Allen and apply the conditional a number of times, we would get counterintuitive
results. For instance, it would follow that Danny DeVito, standing at 147 cm, is tall.
This is clearly not the right result, despite the premises and the rules of inference
being acceptable. How to make DeVito short again? Similarly, we can start with
DeVito and the conditional “If a person standing at x cm is short, so is the person
standing at x cm + 1 mm”, which would in turn make Allen short.

Introducing partiality of truth can help us solve the paradox. Allen is clearly tall.
DeVito is clearly not. Fuzzy logic can get us to the right conclusion. Just as the
height of people in our lineup decreases, so do the truth values of height ascriptions
to people down the sorites. Also, the conditionals are all almost fully true. There is
nothing paradoxical about sorites in the fuzzy logic paradigm. The paradox appears
onlywhenwe use bivalent definitions for fuzzy concepts [22]. Tall is a fuzzy concept,
and it should be modeled as such.

Consider again our example. Tomake comparisons one-dimensional, wewill only
speak about heights of actresses. Now, we all agree that:
v(Sandy Allen (231 cm) is tall) = 1 (i)
But obviously, she is not the only one who deserves to be classified as “fully tall”,
i.e., for whom the truth value of height ascription proposition is 1.3 Let’s decide that
the last actress to be fully tall is Geena Davis:
v(Geena Davis (183 cm) is tall) = 1 (ii)
So, anybody shorter than her would have v < 1 as a truth value of the proposition
ascribing height.

On the other end of the spectrum we have some actresses that are clearly not tall.
Call this “short”. We now have to decide on the tallest “fully not tall” or the tallest
“absolutely short” actress on the list. We decide on:

3Firstly, there could be an even taller actress. Since we cannot give a value above 1, she would get
the same truth value as Allen. Note that, in the present case, it would not make sense for the arrival
of a newcomer to lower the truth value of the initial “truest” element.
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v(Judy Garland (151 cm) is tall) = 0 (iii)
So, anybody taller than her would have v > 0 as a truth value of the proposition
ascribing height.

Let’s now calculate the intermediate case. It is someone of a height that is in
between the two cutoff points. We will characterize it thus:
v(“Judy Davis” (167 cm) is tall) = 0.5 (iv)
This would put Meryl Streep (168 cm) slightly on the taller side. Let’s approximate:
v(Meryl Streep (168 cm) is tall) = 0.55 (v)
Assume that there is no one between “Davis” and Streep. In that case, the latter
actress is the last person in our sorites series to whom tallness may be ascribed more
than shortness. So, not everybody is tall—we don’t get the counterintuitive result as
in the case of bivalent logic.

The presented scale looks useful, but as the reader might have noticed, we have
made some questionable assumptions. We had to draw two borders, both of which
seem arbitrary. And that in turn resulted in an also seemingly arbitrary intermediate
case between the two. Had Geena Davis not been absolutely tall, Meryl Streep might
have ended on the other side of the boundary.

4.3.2 The Problem of Higher-Order Vagueness

What we have encountered is the problem of higher-order vagueness or arbitrary
precision (cf. [14, Chap. 4], [8, Chaps. 4–5]). AsKeefe puts if, “what could determine
which is the correct function, settling that my coat is red to degree 0.322 rather than
0.321?” [8, p. 114]. She argues that a function from measurements to truth values
for every fuzzy concept should be unique. Otherwise, we lose the ordering relation
between sentences which was supposed to be an asset of fuzzy logic. If the same
coat is also blue to the degree 0.321, is it now more red than blue? However, this
uniqueness is unwarranted since there is no clear-cut answer on how to acquire the
initial truth values.

Similarly, Williamson argues that in fact, sentence like (v) above are vague rather
than exact. So, although truth by numbers looks like a more precise and nuanced
account than the classical picture, it doesn’t resolve the original problem. Is the
sentence (v) absolutely true? “Even if statistical surveys of native speaker judgements
were relevant to deciding [...], the results would be vague. It would often be unclear
whom to include in the survey, and how to classify the responses” [14, p. 128].

Both Keefe and Williamson propose different accounts of truth value ascription
to vague statements. Williamson proposes a position now called “epistemicism”.
Vagueness is just ignorance, there is nothing vague or fuzzy about the world. Every
sentence is either true or false. Even the seemingly borderline sentence (iv). On that
view, making the notion of truth more nuanced doesn’t help our lack of knowledge,
as it is shown by the problem of higher-order vagueness [14, Chaps. 7–8]. Keefe, on
the other hand, argues for “supervaluationism”. On that view, there are nonclassical



4 Why Not Fuzzy Logic? 35

values, but these values are not truth-functional. Some sentences fall in a “truth-value
gap” [8, Chaps. 7–8].

We will now outline two possible ways of alleviating the problem of higher-order
vagueness for a proponent of fuzzy logic. First one more philosophical, the other
more mathematical.

Take Keefe’s question about finding out the exact value of redness for her coat.
Smith [12] argues that this is not the job for fuzzy logic. Fuzzy logic is a calculus of
fuzzy truth values. Given such values for atomic propositions, we use logical laws
to infer other truths. What these truths are is a matter for another discipline:

Classical logic countenances only two truth values [...]. This does not make it correct,
however, to say that it is a commitment of classical logic (model theory) that every statement
is either true or false. Such a commitment comes into play only when one seeks to use
classical logic to shed light on the semantics of some language (e.g., natural language, or
the language of mathematics). It is thus a commitment not of pure classical logic (model
theory) – considered as a branch of mathematics – but of model-theoretic semantics (MTS).
[...] Pure model theory tells us only that a wff is true on this model and false on that one
(etc.). [12, p. 2]

Of course, the problem is here not solved, just relocated. Smith [12] recognizes that
and offers possible answers. But from the standpoint of pure logic, one can lessen the
concern by endorsing a working assumption of logical pluralism: different logics can
be used for different purposes. Remember intuitionism in mathematics. Brouwer [4]
argued that real mathematics doesn’t conform to some laws of classical logic, most
famously the principle of excluded middle. But in other domains, such as reasoning
about our everyday finite domains, there is no fault in using classical logic. However,
it took a different kind of research to come to the true nature of mathematics and its
corresponding logic. The research into the correct fuzzy truth values may turn out
to be in the scope of fuzzy logic in the broad sense, but this shouldn’t hinder the
progress of fuzzy logic in the narrow sense.

Especially since if truth simpliciter is a logical or mathematical problem, it is not
so just for fuzzy logic. Even classical predicate logic cannot decide on a truth value
of the proposition “Bacteria are animals”. It can only say what follows from that
proposition. Every logic is about valid reasoning, arriving at true conclusions given
true premises, which often come from other areas of knowledge. Fuzzy logic, we
argue, can be the right way to describe some phenomena.

The mathematical way to combat higher-order vagueness is to admit that in some
cases the truth value of a proposition is not unique, but that this can be accounted for
set-theoretically. Along with “regular” fuzzy sets, Zadeh [16] proposed fuzzy sets
with fuzzy membership functions. In that way, we can model second order, as well
as higher-order vagueness.

A fuzzy set is of type n, n = 2, 3, ..., if its membership function ranges over fuzzy sets of
type n − 1. The membership function of a fuzzy set of type 1 ranges over the interval [0, 1].
[16, p. 242]

Let’s illustrate this within our example. The average height for an actress was
167 cm. But there seem to be other appropriate ascriptions. Let’s say we have several
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authorities on height, who don’t all agree. The lowest proposed average height is
162 cm, and the largest 170. Now we can fuzzify the concept of average height. It is
not exactly 167 cm, but somewhere in between—it becomes an interval, rather than
a point. There is a “footprint of uncertainty” [7, p. 34] on the scale. Note that the
actresses over 170 cm tall are still clearly above average.

All this being said, one might still claim that some terms like “beautiful” seem
to resist mathematical treatment. Height is easy to capture since there is only one
variable to measure. But how to find out which variables to consider in the correct
“beauty-function”? Here it would be useful to introduce a notion of a “prototype”.
Something may be said to be beautiful to such-and-such degree of truth depending
on its closeness to some prototype(s). In the area of psychology of concepts, this
is a well-known approach and some of the groundbreaking work was influenced by
Zadeh himself. See [3] for a discussion about fuzzy logic in this area.

4.3.3 The Problem with Contradictions

Putting aside the problem with arriving at the initial truth values, there is yet another
concern often raised against fuzzy logic, one that actually is in its providence—it
allows for true contradictions. As stated above, in fuzzy logic, the truth value of ¬p
(v(¬p)) is defined as 1 − v(p). Also, conjunction assumes the same value as the
lowest conjunct (min function).

Previously, we defined “short” as the negation of “tall”. Considering the clear
cases of tallness, we can assert (see proposition (ii)):
v(Geena Davis is tall and short) = 0 (vi)
Davis is fully tall and not at all short. The conjunction takes the lesser value and turns
out totally false, just like in classical logic. However, the problem appears among
intermediate cases. For we have:
v(“Judy Davis” is tall and short) = 0.5 (vii)
v(Meryl Streep is tall and short) = 0.45 (viii)

Numerous authors have criticized fuzzy logic for this feature. So much so that
Smith calls it “the undead argument” [13]. He outlines several lines of response to
this argument, coming from several disciplines.

Philosophers usually label the sentences (vii–viii) as counterintuitive: the princi-
ple of non-contradiction is the undisputed logical axiom and should (fully) hold in
all theories. However, this may be circular. Fuzzy logic is accused of not following
the classical principles. But it is exactly the inability of classical logic to model the
“real world” that was the motivation for a nonclassical approach, such as fuzzy logic.
Zadeh simply has different intuitions about bivalence, as we saw from his proposal
for a paradigm shift.

Also, note that there are no blatant contradictions in fuzzy logic. Contradictions
can be at most half-true. Nothing is both a triangle and a circle, both in classical
and in fuzzy logic. This is because such concepts are not vague. Not-absolutely-false
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contradictions appear only with vague concepts, which classical logic cannot model
in the first place.

Returning to different intuitions, consider again the putatively controversial propo-
sition (viii). From it we can infer:
Meryl Streep is more tall than short. (ix)
We don’t consider this proposition neither blatantly false nor meaningless, even if it
rests on a contradiction. Streep is both tall and short but she is also more tall than
short, which can be seen as just another way of saying that her height is slightly
above average.

The situation seems to be even more clear in the case of our “most true contra-
diction”, proposition (vii). Asserting it amounts to saying:
“Judy Davis” is as tall as she is short. (vii’)
Again, we don’t see anything wrong with this assertion. Our hypothetical actress is
right in the middle, and a contradiction of a value 0.5 tells us exactly that. So, one
could instead argue that, contrary to being unintelligible, there is additional informa-
tion in true contradictions in fuzzy logic. Whereas in classical logic they all get the
same truth value, in fuzzy logic their truth value tells us more [3, p. 31]. This logic
is simply more expressive than its classical counterpart.

4.3.4 Vagueness Is Not Fuzziness

In the preceding text, we have treated fuzzy logic based on fuzzy set theory as an
answer to the problem of vagueness. This view has been prevalent in the philosoph-
ical literature. However, fuzziness can be seen as distinct from vagueness. Impor-
tantly, this is the view expressed by Zadeh himself. Dubois [5] further elaborates and
expands on this view expressed in the following quote, showing that both epistemi-
cism (vagueness as ignorance) and supervaluationism (there is a gap in truth value
for borderline cases) are compatible with the notion of truth modeled by fuzzy sets.
Zadeh argues:

Although the terms fuzzy and vague are frequently used interchangeably in the literature,
there is, in fact, a significant difference between them. Specifically, a proposition, p, is
fuzzy if it contains words which are labels of fuzzy sets; and p is vague if it is both fuzzy
and insufficiently specific for a particular purpose. For example, “Bob will be back in a
few minutes” is fuzzy, while “Bob will be back sometime” is vague if it is insufficiently
informative as a basis for a decision. Thus, the vagueness of a proposition is a decision-
dependent characteristic whereas its fuzziness is not. [18, p. 396, n.]

Herewe see that vagueness includes fuzziness, but there is another important char-
acteristic of vague sentences—they don’t offer enough information to be accounted
for by fuzzy sets. With this distinction at hand, we can accommodate some theories
about vague propositions. One can claim that there are truth value gaps, but they only
concern vague propositions. Such propositions are in a way deficient, they are too
underspecified to be ascribed a numerical truth value, be it classical of fuzzy, even
type-n fuzzy. On the other hand, there is nothing underspecified in an exclusively
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fuzzy description of a predicate. In Dubois’ words: “While vagueness is a defect,
gradualness is an enrichment of the Boolean representation” [5, p. 317].

Epistemicist theory of vagueness can also be incorporated to fit this distinction.
Vagueness is still ignorance, not of just two possible truth values, but of the exact
fuzzy truth value. Dubois calls this a “gradual epistemic view”, according to which
partially true propositions exist, but they appear vague or imprecise because of our
(partial) ignorance. Similar point is elaborated by MacFarlane [10] in a view called
“fuzzy epistemicism”. Classical (bivalent) epistemicism claims that what distin-
guishes vague language fromnon-vague language has only to dowith our knowledge,
not with the underlying metaphysics of truth. However, “both uncertainty and partial
truth are needed to understand our attitudes towards vague propositions” [10, p. 438].

This concerns some cases of higher-order vagueness. Firstly, if fuzzy epistemicism
is correct, some first-order vagueness can actually be downgraded to fuzziness via
amelioration of our epistemic position. And if there is still some vagueness about
such fuzziness, it can again be a result of insufficient specificity. If so, it can then
be alleviated with the corresponding type-n fuzzy sets. It may take some conceptual
analysis to come to know the “depth” of a (putatively) vague concept or proposition,
but once we find that level, we can describe it mathematically.

4.4 Conclusion

Machine learning with deep neural networks is the prevailing paradigm of AI. How-
ever, the black-box property of deep learning algorithms may often propose a prob-
lem. This has recently sparked a movement called eXplainable Artificial Intelligence
(XAI). Decisions made by AI should seek to become more transparent to humans.

Now, humans are the most accustomed to explanations in natural language. And it
is exactly the insistence on natural language that is the hallmark of another approach
to AI, Zadeh’s fuzzy logic paradigm, which has been recognized as a viable approach
toward XAI. This paradigm rests on “fuzzy logic” in the narrow sense, i.e., a logical
calculus of partial truth.

However, it has been argued that fuzzy logic is not meaningful or acceptable
(to humans) since some of its fundamental notions are mistaken or unintelligible.
The aim of this text was to provide philosophical support for fuzzy logic. We first
described the most common philosophical motivation for introducing this nonclas-
sical logic—the sorites paradox. Then we addressed two common critiques. Fuzzy
logic has been accused of harboring higher-order vagueness and allowing for true
contradictions.

It is argued that such a nuanced view of a truth value as a number in the interval
[0, 1] is itself vague since there is no transparent way of finding the exact value. We
proposed two ways of alleviating higher-order vagueness. Firstly, it can be argued
that finding the right (fuzzy) truth values for atomic propositions is not the domain
of (fuzzy) logic. Secondly, even if in some cases the numbers are not unique, fuzzy
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set theory can be expanded via type-n fuzzy sets to mathematically describe this
phenomenon.

Connectives in fuzzy logic are so defined as to allow some contradictions not to be
fully false. This is often considered an undesirable feature which any correct theory
should avoid. However, it is important to note that in fuzzy logic contradictions are
at most half-true. We explored some true contradictions and argued that they can
indeed be meaningful and even informative.

We also proposed arguments for distinguishing vagueness from fuzziness. In
philosophy, fuzzy logic is often seen as just another theory of vagueness along with
competing theories such as “epistemicism” and “supervaluationism”.However, it can
be argued that vagueness includes both fuzziness and an additional characteristic—
lack of information. On this view, fuzzy logic doesn’t compete with theories of
vagueness—they can work in concert.

The notion of partial truth turns out not to be as counterintuitive as it first appears.
This being the case, we think it is safe to assume that explanations provided by AI
arrived at by using fuzzy logic can be understandable to humans, especially provided
an accessible and coherent underlying philosophy of fuzziness.
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