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Abstract. Indoor localization system determines the location of the
users or some assets in indoor environments. There are important appli-
cations of indoor localization including smart home systems, indoor nav-
igation and tracking systems. In this work, a reliable neural network
model is developed for localizing users in room level. Model is based on
Wi-Fi signals received by the users’ devices at different rooms from var-
ious Wi-Fi access points. A neural network with two hidden layers with
sigmoid activation functions is trained with back-propagation optimizing
collected signal data. Some of the signals are set to 0 during the training
process, which gives significant stability to the model under the condi-
tions where some of the data required for prediction are not available.
An additional dataset is collected for the evaluation in addition to the
existing datasets. Performance of the model on the existing datasets as
well as the new collected dataset is discussed and evaluated. Results are
promising in terms of reliability and accuracy.

1 Introduction

As Global Positioning System (GPS) has plenty of applications that can easily
be developed, determining the location of a user in an indoor environment is still
a challenging problem as it requires a system with high accuracy and reliabil-
ity with cost-effective technology. Proposed systems generally require different
technologies such as GPS, Bluetooth beacons, RFID tags and Wi-Fi signals.
There are some disadvantages of some of these technologies in terms of acces-
sibility, cost and accuracy. GPS is only reliable in outdoor environments and
may not give the desired accuracies [1]. Bluetooth beacons can only be used for
short ranges [2]. RFID tags require users to carry an additional tag and may be
expensive in terms of price [3]. Using the received signal strength (RSS) values
of Wi-Fi access points (AP) makes use of the existing infrastructures by using
smartphones and Wi-Fi APs which are highly available these days. Smartphones
can be used to collect RSS values of the near Wi-Fi sources. Initially, a machine
learning algorithm can be used to train with the RSS data and location of the
users can be determined later with the trained algorithm. If a well-generalizing
machine learning model can be developed, Wi-Fi RSS values can remove the need
of additional cost and technology. Therefore, using RSS of Wi-Fi access points
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can be considered as a feasible solution to this problem and an accurate, stable
machine learning model needs to be developed for indoor localization systems.

Indoor localization as a machine learning problem have been considered as
both supervised and unsupervised problem. For example, Chen et al. proposed
a subarea localization scheme based on unsupervised clustering and subarea
matching [4]. Indoor localization can also be described as a supervised classifi-
cation or regression problem. Most of the existing solutions for solving indoor
localization problem with RSSI try to find the 2D coordinate locations of the
users [5,6]. However, such precise localization may not be needed for some appli-
cations. For instance, an indoor navigation system can be developed by using
only room-level position of the user by calculating the paths between different
rooms. Another example is a smart home system where the room-level location
of the users may improve efficiency and intelligence.

Room-level classification of indoor locations have been studied by various
scholars and different solutions are proposed. Rezgui et al. have used SVM
for room-level classification and introduced normalized rank transformation to
reduce the effect of signal fluctuations [7]. Buchman et al. have used overlap-
ping rings method which is based on the location of the access points [8]. Rohra
et al. have used fuzzy hybrid of particle swarm optimization and gravitational
search algorithm with Artificial Neural Networks (ANN) for room level indoor
localization [2]. Their model has high classification accuracy and also includes
fuzzy branch for dealing with uncertainties [2]. Furthermore, dataset used by
Rohra et al. have been used in other works as well. For instance, Gomes et al.
obtained a high accuracy with the dataset used in [2] by training a Random
Forest classifier [9]. Altay et al. also obtained high classification accuracy with
Linear Discriminant Analysis (LDA) classification [10]. Sabanci et al. compared
different classifiers on the same dataset and obtained that k-Nearest Neighbors
(k-NN) was the most successful classifier. Most of the works for room-level indoor
localization give decent accuracies but few of them give stable performances of
the proposed solutions under disturbances such as lack of a signal from an AP
on which the model was trained. In this paper, a simple yet efficient solution
to this problem is proposed and the performance of the model under different
conditions is provided [11].

In the following sections, implementation details, behavior and the perfor-
mance of the model is explained. In Sect. 2, the datasets used in the experiments
are described. In Sect. 3, ANN implementation details and its behavior with
respect to different parameters are discussed. Moreover, an algorithm for robust-
ness is proposed. Finally, the model is evaluated on different datasets with clas-
sification accuracies and confusion matrices. Results show that proposed model
is accurate and reliable which can be used for an indoor localization system.
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2 Datasets

For training and evaluation, two different datasets are used which will be called
Dataset1 and Dataset2. Both datasets include RSS values of the APs and the
corresponding room labels. Dataset1 is collected by Rohra et al. where the indoor
environment is located in an office in United States [2]. In this dataset, there
are seven APs and the data is collected in four different rooms with 1 second
intervals [2]. Dataset2 is collected in a in a house located in Ankara, Turkey. In
the collection process for Dataset2, a simple Python script, which calls iwconfig
command from an Ubuntu terminal, for receiving RSS values of the routers
is executed every 500 ms in different rooms. In Dataset2, there are two APs
and four different rooms. This can be seen as a more challenging dataset when
compared to Dataset1 as four rooms are covered by only two APs. Wi-Fi RSS
signals have values changing from −30 to −90. There are two thousand samples
in each dataset. For preprocessing, we scaled the data to have zero mean and
unit variance.

In Fig. 1, distribution of the training data is plotted for Dataset1. Note that
Principal Component Analysis (PCA) for dimensionality reduction is applied as
there are seven APs for Dataset1 and the explained variance ratio of PCA is
94.45%. x1 and x2 are input signals in the projected feature space. Different
shapes correspond to the four rooms in Dataset1.

Fig. 1. Distribution for Dataset1

3 Proposed Method

ANNs have been powerful tools in solving many tasks. These tasks include identi-
fication of nonlinear systems, medical diagnosis, financial applications and many
others. A neural network with 2 hidden layers is implemented in this work. In



4 A. Serdar Karadeniz and M. Ö. Efe

all layers, sigmoid function is used as it is one of the mostly chosen for classi-
fying nonlinear data. 20% of the Dataset1 is used for parameter optimization.
Furthermore, to validate the convergence of the model, all the tuning process is
made only for Dataset1 and the model is tested on Dataset2 without changing
any parameters.

There are four layers including the input and output layers. Let wk be the
weight matrix between the layers k and k +1, ok be the output of the k-th layer
and o0 represent the input layer. wk is initialized to random small numbers and
o0 corresponds to the input data. Then, the feedforward operation used can be
represented as

sk+1 = wkok (1)

ok+1 = f(sk+1) (2)

where f is the sigmoid function f : R → [0, 1] which is defined as f(x) = 1
1+e−x .

We used mean squared error J : Rn ×R
n → R defined as J(y, ŷ) = 1

n

∑n
i=1(yi −

ŷi)2 where ŷ is the output vector, y is the true labels vector and n is the number
of samples. To prevent overfitting, L2 regularization is used. After L2 regular-
ization, loss function becomes

1
n

n∑

i=1

(yi − ŷi)2 + R(W ) (3)

where R(W ) = λ
2

∑
k

∑
l(W

2
k,l). Thus, we add λw to the gradients in the

backpropagation. Then, backpropagation with the gradient descent algorithm
becomes

Δwk
t = −η

∂J

∂wk
t−1

+ λwk
t−1 (4)

where t represents the iteration, λ and η are the regularization and the learning
rate terms.

As we discussed in the introduction part, the model has to be stable in
situations where the device is not able to receive the signals from some routers.
We simulated this situation by randomly setting the RSS values from random
access points to 0. Thus, an average of 519 signals out of 3500 signals are set to
zero in the validation set, which corresponds to the 14.1% of all validation data.
In practice, when a device cannot receive the signal, the same 0 value can be
used instead of the expected RSS value. To be precise, the simulation algorithm
is illustrated in Algorithm 1.

An intuitive solution to this problem is to set some of the features in the
input vector to zero randomly during the training. At each iteration, we set
different signals to zero with probability p = 0.20. In this way, the network learns
the cases where some signals are missing in the input data. Thus, feedforward
equation is changed as initial o0 is replaced by the disturbed input vector õ0.
Note that õ0 changes at each iteration due to the randomness in the disturbance
algorithm. While this operation can decrease the overall accuracy slightly, it may
be tolerated when the stability is important.
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Algorithm 1. RSS Disturbance Simulation
1: p ← 0.2 � Disturbance probability
2: for i = 0 . . . nsamples do
3: for j = 0 . . . nfeatures do

r ← random(0, 1, p) � Choose 0 or 1 with probability p
4: if r == 0 then

X̂[i, j] ← 0
5: end if
6: end for
7: end for

A proper initialization and tuning of the parameters is essential for training
neural networks. Therefore, we optimized the parameters of the network such
as learning rate, number of epochs, regularization parameter and disturbance
probability parameter. Results of the learning rate experiments are shown in
Fig. 2 where loss graphs with different learning rates are plotted. η = 0.01 gives a
fast and smooth drop on the training loss curve. All the other chosen parameters
are shown in Table 1.

Fig. 2. Training loss with different learning rates

Table 1. Parameters of the ANN and training algorithm

Parameter Value

Learning rate 0.01

Regularization 0.001

Number of epochs 500

Number of neurons in the 1st hidden layer 7

Number of neurons in the 2nd hidden layer 7

Disturbance probability 20%
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4 Performance Evaluation

In this section, performance of the model is evaluated. First, we tested the model
for Dataset1 and Dataset2. We used 10-fold cross validation in the reported
accuracies. Then, impact of the proposed algorithm is discussed. Moreover, we
compared our model with other classifiers where around 20% of the signals in
the test sets of Dataset1 were set to zero. Finally, confusion matrices for both
datasets are provided.

As shown in Table 2, 96.44% and 91.45% classification accuracies were
obtained on Dataset1 and Dataset2, respectively. Although all the parameter
optimization process was made on the validation set of Dataset1, the model
was also able to perform well for the Dataset2 with the same parameters. This
shows that our model can be used in different indoor environments without any
modification.

Table 2. Classification accuracies

Dataset Accuracy

Dataset1 96.44%

Dataset2 91.45%

In Fig. 3, training and validation accuracies were plotted to illustrate the
effect of the proposed algorithm. In this figure, blue and orange curves are train-
ing and validation accuracies of ANN without the proposed modification, red and
green curves represent the training and validation accuracies of ANN with the
proposed modification. From the figure, it is deduced that the proposed method
makes the model more robust against disturbances.

Fig. 3. Impact of proposed method (Color figure online)
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In Table 3, classification accuracies are compared with various classifiers.
Classifiers used in other works were chosen to compare our model [9–11]. k-
NN was used in [11], Random Forest was used in [9] and LDA was used in [10].
Although reported accuracies were high in [9–11], it is observed that they can
significantly drop when some of the data are missing if there is no proper modi-
fication. Table 3 shows that our method yielded the highest accuracy under the
condition that 20% of the test data were missing.

Table 3. Classification accuracies

Model Accuracy

k-NN [11] 90.70%

Random forest [9] 84.35%

LDA [10] 87.35%

Proposed method 93.05%

In Fig. 4, average confusion matrices with 10-fold cross validation are illus-
trated. Diagonal elements in the confusion matrices correspond to per class accu-
racy. Note that test sets were not disturbed in the reported confusion matrices. In
Fig. 4a, confusion matrix for Dataset1 is illustrated. We have above 98% accuracy
for room 0, room 1 and room 3. For room 2, we have 89% accuracy. In Fig. 4b,
class accuracies are around 90% except room 1 which have 98% classification
accuracy.

(a) Confusion matrix for Dataset1 (b) Confusion matix for Dataset2

Fig. 4. Confusion matrices

5 Conclusion

Room-level indoor localization problem is challenging especially when there is
a lack of data at test time. Furthermore, the number of Wi-Fi access points is
another important factor obtaining high accuracies. Main concentration in this
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work was to develop a room-level indoor localization algorithm which is resistant
to lack of signals and generalizable into different indoor environments. An accu-
racy of 96.44% and 91.45% was obtained in two different datasets. Moreover,
93.05% classification accuracy was obtained where around 20% of the collected
data were assumed to be missing at prediction time, which is around 3% higher
than the closest classifier. In the future, more advanced architectures can be
used to improve the overall performance of the proposed algorithm.
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