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Abstract Computational models in biomechanics are generally unable to incorpo-
rate mechanical and anatomical data over the entire range of relevant spatial scales.
This chapter proposes the construction of a framework, which unites several method-
ologies that operate on traditionally different aspects of bone remodelling, bridging
the gap between previously incompatible data. The presented framework is used to
solve the load adaptation response of the femoral neck as an application and consists
of passing data from different sources across a multitude of spatial scales to solve for
both organ-level and Haversian-level biomechanical states. The solutions are then
stored in a database, to be utilised by a statistical method which can quickly estimate
new load adaptation responses for which solutions were not previously generated,
cutting down computation time.

1 Introduction

Bone damage and fracture from osteoporosis remain a costly medical condition with
significant implications for the quality of life among those who have suffered injuries.
For this reason, much research has been devoted to the understanding, treatment,
and prevention of bone-related diseases, especially among the elderly. Currently,
the widely known mechanobiological model of Wolff’s law of bone adaptation and
its successor, the mechanostat of the Utah Paradigm [1], still holds great explana-
tory power for its conceptual simplicity and remains a core component to the many
existing computational bone adaptation models primarily informed by biomechanics.
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Although there is a wealth of literature on the topic, most attempts at construct-
ing an in silico model for bone remodelling are immediately confronted with three
competing factors, which limit the available computational resources for a feasi-
ble evaluation. These are: (i) the geometric detail; (ii) the spatiotemporal scale; and
(iii) the applied constitutive mechanical laws. The existing studies have attempted
to balance the amount of detail considered for each of these factors. Fernandez [2]
and McNamara [3] have demonstrated bone remodelling behaviour in two dimen-
sions at the microscale in cortical and trabecular bone, respectively, complete with
changes in microgeometry; the model given by Fernandez has further demonstrated
the merging of pores as an emulation of osteoporosis, while the study by McNa-
mara has explored various modes of damage and recovery in the calculation of bone
adaptation. Beaupre et al. [4] constructed a model which simulates the bone density
changes of a long-term load response of a 2D macrolevel model to external loads,
providing a foundation for models investigating the response to sustained exercise
regimes. Coelho et al. [5] introduced a 3D multiscale hierarchical approach, char-
acterising bone spatial variation with repeating microstructures in several discrete
regions. Other important aspects of computational bone remodelling have produced
studies focussing on modelling osteoclast biochemistry [6], bone resorption and
stress shielding from orthopaedic implants [7], and reduction of solution time with
neural network approaches [8].

Apart from the difficulty of capturing complex geometries and scales, most exist-
ing literature disproportionately focus on trabecular bone remodelling when the
cortical to trabecular loading ratio is estimated to be as high as 65:35 [9].

This chapter proposes the development of a multiscale modelling framework
within the context of hip fracture for the swift prediction of bone strain and the
estimation of its adaptation response for a given exercise regime. The development
of the framework is divided into three parts: Part I utilises finite elements (FE) to
solve for the mechanical state of bones at the macroscale; Part II incorporates a
collection of algorithms based on a previous study [10], which addresses microscale
Haversian-level bone adaptation in response to loading based on ideas from the
mechanostat; and Part III describes a statistical surrogate model using partial least
squares regression (PLSR), which addresses the problem of computation time. The
integration of multiscale information allows the framework to remain anatomically
and physiologically relevant at all spatial scales and features high compatibility with
clinically important measurements and biomechanical data.

In Part I, we describe the construction of a biomechanical model from the visible
human (VH) data set of muscles and bones in the hip area and subject it to loading
obtained from gait analyses, from which we obtain stresses at the femoral neck corti-
cal bone. This femoral neck cortex henceforth will be referred to as the framework’s
region of interest (ROI). In Part I, we summarise the construction of Haversian-scale
FE models and link the ROI with the set of Haversian models through the propagation
of stresses from the macroscale down to the microscale. Furthermore, we describe
two load transduction algorithms, which affect cortical bone at the Haversian scale;
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the first alters localised bone strength via a change in bone mineral density, and the
second alters Haversian microstructure. When combined, these algorithms form our
approach to bone remodelling and load adaptation. In Part III, we detail the construc-
tion of a database of stress scenarios and resulting homogenised material properties
and utilise PLSR to predict the evolution of material properties given non-simulated
load cases.

All FE simulations utilised the software package SIMULIA Abaqus (www.3ds.
com). A schematic of the framework and its information sources is shown in Fig. 1.
The framework is categorised into two phases: the construction phase details the
process behind building each part of the framework, and the application phase is
where the framework is used for solving the load adaptation problem. The large
savings in computation time occur due to the replacement of Part Il in the framework
construction phase, the adaptation response, with Part Il in the framework application
phase, the response database.

Framework r""
Macroscale Microscale

N M

RonsEtion Simulate Loads " Adaptation i Build
at ROI " Response " Database
4 4
Simulate Loads M
Framework : at ROl Response
Database
Application
lll. Estimate Adaptation Responses

Fig.1 Framework diagram. Shades refer to the different parts of the framework. (Light grey) Part I,
collection of load information from macroscale; (grey) Part 11, receiving load information from Part
I and formulating the adaptation response which takes the form of homogenised material properties;
(dark grey) Part III, statistical model of responses
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2 Part I: Macroscale FE Model

2.1 Model Construction

Bone and muscle shapes were extracted and meshed with hexahedral 2 mm reduced
integration elements from the VH data set [11] from 269 colour photograph slices
in the original resolution of 0.33 mm x 0.33 mm per pixel and 1 mm of spacing
between slices.

Anatomically realistic porosity variations P¢ = {p¢}, 1 < i < n°, with n°
as the total number of ROI elements, were statistically generated from Gaussian
distributions based on experimentally determined values and uncertainties for cir-
cumferentially varying femoral cortex porosities [12]. The generated porosities for
the femoral cortex elements provide a realistic femoral neck mesh on which FE
mechanics simulations are run.

2.2 Mechanical Simulations

The simulation consists of two sections:

1. Initialisation, which estimates key parameters under the prescribed initial
conditions and
2. Progression, which emulates the evolution of the bone state.

2.2.1 Macroscale Initialisation

Bones were subjected to muscle forces recorded from walking gait analysis [13] with
simulation under linear elasticity and isotropic material properties shown in Table 1.

Maximum absolute principal stresses S¢ = {sf}, 1 < i < n® for each element
were recorded at the ROI element integration points as the load transduction sig-
nal for Haversian modelling. To incorporate the observation that bone fibres align
in a direction, which maximally resists stresses and strains, fibre directions were
estimated from the eigenvalue decomposition of the stress tensors from FE load
simulations, as shown in Fig. 2.

2.2.2 Macroscale Progression
The evolution of the mechanical state of the femoral cortex was simulated for a total

of T =90 days of simulation time, with iteration steps of one day. In each iteration, S°
is passed to the PLSR model in Part III, which outputs a set of evolved homogenised
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Table 1 Macroscale anatomical structures and their respective material properties as applied in FE
simulations

Structure Category E (GPa) | v Notes
Adductor brevis, longus, Muscle 0.27 0.4999 E from [15]; v from [16]
magnus

Biceps femoris
Gluteus maximus, medius,

minimus

Gracilis

Iliacus

Rectus femoris

Sartorius

Semitendinosus

Hip bone Cortical 14.65 0.332 [17]

Femur?® Cortical 14.65 0.332 Not ROI for ¢ > QP
Cartilage 0.580 0.39 [18] Femoral head®;
Trabecular | 3.386 0.12 [19] Cancellous boned

All are modelled as isotropic elastic materials

4Femur is composed of three different types of materials

PROI material properties evolve after the initialisation step (r = 0). Rest of the cortex does not
change

“Femoral head is modelled with a layer of cartilage surrounding the cortex

dFemur is modelled with a thick layer of cortex elements and filled with trabecular elements

Fig. 2 Left: stress tensor eigendecomposition of internal simulated stresses of the proximal femur
at the trabecular bone. Colour and line direction indicates magnitude and direction of maximum
absolute eigenvalue and eigenvector, respectively; with reference to the colour bar, green to blue
colouration indicates a compressive minimum principal stress (C), and green to red colouration
indicates a tensile maximum principal stress (T). Eigenvectors match closely with stress lines
found in other studies of bone stress, e.g. Koch’s mathematical analysis. Right: adapted from Gray
[14]; note the compressive stresses running in the proximal-distal direction along the medial shaft
through the femoral head, and the tensile stresses running up the lateral shaft then in the direction of
the femoral neck axis. The criss-cross pattern through the core indicates the co-dominance of both
tensile and compressive stress directions and closely resembles trabecular anatomy (see Fig. 7)
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material properties as a result of the construction of a database of material property
evolutions built in Part II.

3 Part II: Microscale Haversian Model

3.1 Model Construction

Haversian anatomy was constructed and voxel meshed with 5 pwm elements from
microcomputed tomography (WCT) images (Table 2) at 5 um resolution of an equine
cortical bone biopsy of dimensions 4 mm x 3.5 mm x 2 mm (Fig. 3, left). The
use of equine data was justified in our framework as (i) equine models are highly
translational to human contexts due to similar Haversian anatomy and have been

Table 2 Micro-CT imaging X-ray energy 60KV, 10 W
parameters

Exposure time for each projection 60 s

Total number of projections 721

Objective magnification 4x

Source to sample distance 120 mm

Detector to sample distance 40 mm

Pixel numbers 1024 x 1024 x 1024

Effective voxel size 5 pm

Fig. 3 Left: equine biopsy mesh showing Haversian canals. Right: example Haversian representa-
tive mesh cut from the biopsy mesh (not to scale)
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recommended by the US Federal Drugs Administration (FDA) for comparative joint
research [20], and (ii) there exists in vivo bone strain and biomarker data from
equine studies, unlike human data which only reports post-mortem information. A
database of Haversian models was formed from cutting n™ = 4 samples of on average
0.003 mm? from the voxel mesh, chosen as a size which contains a representative
number of Haversian canals for microscale anatomy and material strength changes
to be observed (Fig. 3, right). These samples were chosen based on their volume
fraction of canal elements versus dense cortical bone elements, and thus contained
porosity information to be matched to the porosity variation generated in Part I,
obtained as

Pt ={pi},1<j<n" (1)

3.2 Macro-microscale Link

3.2.1 Haversian Link to ROI Elements

For each ROI element i and associated porosity pf, lower and upper bounding porosi-

and p;nﬁ were extracted from P™. Subsequently, the link from the ROI
p.

ties p;"
elements to the Haversian models is defined by weights wi* and w

mf
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Loopr=pi=p"

This allows any parameter of the ith ROI element to be represented by a weighted
sum of its corresponding parameters of the linked Haversian models.

3.2.2 Stress Propagation from ROI to Haversian Models

The local positive z directions for each Haversian model were defined to be parallel
to the fibre directions estimated from the elements in the ROI. To determine the
appropriate load range for each Haversian model j from the propagation, we formulate
sets of reverse links by constructing a set of ROI element indices, which is associated
with these elements:

=i prefpre ) 1zisn 3)
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Fig. 4 Side view of application of load on a Haversian specimen. Blue symbols (bottom) indicate
spatial and rotational fixed boundary conditions. Yellow arrows (top) indicate load direction

Taking the magnitude s; of the maximum absolute principal stress on the ROI
element centroid as the most significant component of the load, we calculate a set of
loads L ; which appear in the macroscale initialisation step (Sect. 2.2.1) as

5

Lij=—, iell “4)
a; .

where a; is the surface area of the load application. An example of a typical loading
scenario of a Haversian specimen is given in Fig. 4.

3.3 Haversian Simulation

3.3.1 Microscale Initialisation

For each Haversian model j, the models were simulated under five different evenly
spaced loading regimes between min(L;) to max(L ;) under linear elasticity with
isotropic elements. An isotropic Young’s modulus was assigned to the cortical ele-
ments based on the homogenised cortical and canal values and the fraction of cortical
and canal elements in the model (see Table 3).
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Table 3 Microscale model Name/description | Parameter values Notes
parameters
Cortical v 0.3 Cortical E varies
Canal E 2 MPa with P
Canal v 0.167
Canal p 1 kg mm—3 Same as water
cl 4621.36 MPa From Eq. (7)
parameters atf =0
) 1.075kgm™3 s~! | Remodelling
constant; from [2]
b 1.54 Power law
exponent; from
[21]
Canal closing rate | 1.9 nm s™! Adapted from
canine data in [22]
Canal opening rate | 2.083 nm s~! From [6]
! —500 e Adapted from [2]
Lt +500 e
L +2000 e

Formulation of the Mechanostat
The initial simulations allowed the determination of the model’s elementwise
mechanostat across Haversian models j and their corresponding cortical elements
k, defined by the piecewise density evolution parameter

VMS I VMS 1
Sjkt - ijt’ gjkt < ijt
I vMS I
£y = 0, Ly, =¢€j° < Ljy )
jkt =) _vMms | i1 VMS m
€kt _ijt’ ijr ngkt <ijt
i} VMS _VMS i}
Lo =€ s €t Ly,
where 8}’,},"5 is the von Mises stimulus strain at time step ¢.

The four conditions governing the piecewise function determine the four zones

of the mechanostat (Fig. 5), where the region below L! is the resorption zone which
encourages bone resorption due to lack of loading, the region between L' and L™ is
the adapted state (homeostatic) zone where no changes occur, the region between L
and L™ is the growth zone which encourages an increase in bone mineral density,
and the region above L' is the failure zone which also causes bone resorption. In
the initialisation step (¢t = 0), where the strain stimulus is defined to be in the centre
of the adapted state zone, the piecewise function’s boundaries are given by

I _ _VMS I
Lio=¢j0° +L

o _ _VMS I
ijo—gjko + L
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dp
dt

'Resorption . Adapted State

Growth I Failure

N ovMs
£
/

LH LIII

Fig. 5 Illustration of the zones of the mechanostat, indicating the rate of change of bone density
as a function of strain

LYy =R+ 1" (6)

Initialisation of Element-wise Density
The elementwise material properties also allowed the determination of an initial
elementwise density pjro through a power law relation [21], given by

Ej,; = 01,0?;{, @)

where Ejio at t = 0 is the initial Young’s modulus.

3.3.2 Microscale Progression

The Haversian models were simulated for a total of 7 = 90 days, with iteration steps
of one day. Each Haversian model j across the five initial loads was subjected to
three different evenly spaced excitation loads between values from 0.375 x min (L j)
to 1.5625 x max(L j) across its loading surface. Each excitation load was further
applied at seven evenly spaced angles between 0° and 90°. The strain state of the
model was obtained after each iteration, where for each Haversian cortical element
the von Mises stimulus 8}2\[43 was calculated from the strain tensor.

Calculation of the Strain Stimulus

The data given in Table 4 shows that bone growth continues in the rest period after the
exercise regime has ceased, indicating that the strain stimulus does not immediately
revert back to pre-exercise levels. The von Mises strain stimulus s}’kl\,’ls in Eq. (5) is
thus formulated as a weighted moving average on the actual von Mises equivalent
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Table 4 Cortical bone growth rates in horse specimens determined from
oxytetracycline/fluorescein complexone staining in a histological sample taken from the dorsal
cortex in equine third metacarpal bone, from Davies [23]

Days | Growth rate per day, wum £ SD Significance (p-value), control versus exercised
Control Exercised
40 1.8+ 1.1 2.6 &+ 2.6 (Trot) 0.510

40 32+£43 2.2 £ 3.3 (Canter) 0.680
40 21+£29 12.7 £ 8.6 (Gallop) 0.017

40 1.2+£0.7 4.3 4+ 2.5 (Rest) 0.014
strain ¢}'. The von Mises equivalent strain is used to determine &}, by
Tmax
VMS
elS = U@ Hj (1) )
=1

where T = 30 and U () and Hj; (1) are sets of weights and historical von Mises
strains, respectively, given by

TW = {1, 2, ey Tmax}

MY =(t1+7 -1}, TETY

U'={exp(t — Tmax)}, TET™

U/
U==
LU
ij={8>/kl\ﬁ}, /J,EMW (9)

Here, exp is the exponential function and Y | U = 1. The mechanostat boundaries
from Eq. (6) shift by an amount equal to the difference between the current and
previous stimulus strains:

I R | VMS VMS
Ly =Lt € — €k

0 _ g VMS _ _VMS
Ly =Lt € — €k
mo_ g VMS _ _VMS
Ly =Lt € — €k (10)

The von Mises equivalent strain is used as the stimulus criteria as it considers
both normal and shear deformations. This is formulated as

M \/(811 — &)+ (e — £33)” + (633 — e11)> + 6(e], + 63, + €3))
£ =
V2(1 )

Y
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with the strain components &4, as that found from the strain tensor ¢, and v’ is
the equivalent Poisson’s ratio, which is equal to the material Poisson’s ratio v under
elastic constitutive laws.

Density and Young’s Modulus Evolution
The density evolution parameter € i, is calculated from Eq. (5). This causes a change
in the density according to the forward Euler formulation

Pjkt = Pjki—1 + C2€ ks (12)
The updated density is subsequently converted to a Young’s modulus via Eq. (7).

Haversian Microstructure Evolution

Haversian microstructure changes according to osteoclast and osteoblast activity at
the head and tail, respectively, of Haversian canals; bone resorption and deposition
occur at the head and tail, and the regions where these activities occur are known as
the cutting and closing regions.

TIFF image stacks were generated from the element states of the Haversian model.
With each element represented as a pixel, black and white binary colour values were
assigned to the cortical and canal elements, respectively. The image stacks were
subsequently passed to Fiji (fiji.sc/Fiji) for morphological thinning via medial axis
skeletonisation (Skeletonize3D plugin, fiji.sc/Skeletonize3D) and a shape analysis
on the generated skeleton (fiji.sc/AnalyzeSkeleton). This analysis allowed the deter-
mination of the cutting and closing regions of the canal and their present evolution
directions.

Figure 6 shows the guidelines behind the determination of cutting and closing
regions, with respective rates of 2.083 nm s~! and 1.9 nm s~! as given in Table 3. For
all canal ends which are classified as cutting, the cutting direction g was determined
by

n!

g=y Vi, (13)

y=1

where T is the matrix transpose operation, n! is the number of cortical elements
at the boundary between the cutting region and the canal elements, and V,, A,
are a horizontally concatenated matrix of eigenvectors and a vector of eigenvalues,
respectively, found through the eigendecomposition of the strain tensor €;,;. The
direction g typically aligns with the longitudinal direction in cortical bone towards
the zones of highest strain and is heavily influenced by the angle of load application,
as shown in Fig. 7.

Elements undergoing resorption receive canal material properties as specified in
Table 3, and elements which have been mineralised by the closing cone receive
material properties equal to the average of the surrounding cortical elements in the
closing regions.
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Cutting Closing  Cutting

Fig.6 Determination of Haversian canal activity type based on canal geometry and load application.
The type of activity that the Haversian canal undergoes is determined through the angle between the
current canal direction and the closest point of load application. An acute or right angle categorises
the canal end as a cutting cone, while an obtuse angle categorises the canal end as a closing cone

e h P
Fig.7 Comparison between simulated canal evolution and anatomical morphology. Left: example
of the change in canal evolution due to different load angle applications (purple) along the surface
(green) in the first row. Red pie sectors specify the angular deviation from the x-axis, and yellow pie
sectors indicate the angular deviation from the xy plane. A single Haversian model was subjected
to three different loading angles of the same magnitude; the region in the solid blue circle shows a
cutting cone. Left column: pure shear load 45° from the x-axis; middle column: tensile load 45° from
the x-axis and 67.5° from the xy plane; right column: pure normal compressive load to the xy plane.
Compare tunnelling behaviour with example (right) of equine Haversian canals reconstructed from

WCT data and estimated trabecular fibre directions in Fig. 2. Adapted from Wang et al. [10] with
permission from Springer Nature
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4 Part III: Statistical Modelling Using PLSR

4.1 Database Construction

Partial least squares regression [24] is used to relate two sets of matrices, the sample
predictors X and corresponding sample responses Y, of data via a linear multivariate
model, with the capability of analysing non-independent and incomplete variables
in either matrix. Once the model has been trained on X and Y, it can be utilised to
compute new responses from predictors which were not in the training sample.

The database is constructed on 420 Haversian simulations, consisting of all param-
eter combinations of the four porosities, five initial loads, three excitation loads, and
seven application angles, with the addition of the time iteration step of each simula-
tion. The values of these parameters in each combination form X for a total of 3780
parameter combinations.

The response Y is chosen as the homogenised Young’s modulus E ;{[ as a result of
the Haversian simulations. This is given by

1
Ej = ;;Eﬂ« (14)

The error in the PLSR response predictions was evaluated using a leave-one-out
analysis, where each of the 3780 predictor/response sets was left out of the training
data set and predicted using the rest of the training data. This is repeated for each set.
Table 5 shows results from two samples of Haversian models for a time iteration at
30 days which indicate that homogenised Young’s modulus was predicted with less
than 0.4 and 0.2% error, respectively.

Table 5 Error of PLSR predictions for homogenised Young’s modulus in two different specimens,
varying load angle and magnitude

Excitation magnitude® Angle from xy plane (degrees)
0 15|30 45 60 |75 |90

Specimen 1

0.375 0.02 0.06 <0.01 <0.01 0.03 0.06 0.25
1 0.50 0.12 0.13 0.21 0.15 0.12 0.30
1.5625 0.15 0.37 0.24 0.09 0.05 0.42 0.16
Specimen 2

0.375 0.08 0.57 0.19 0.05 0.04 0.38 0.21
1 0.13 0.22 0.08 0.16 0.25 0.11 0.06
1.5625 0.16 0.04 0.36 0.02 0.16 0.03 0.07

4Excitation load magnitude is given as a factor of the initial magnitude
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4.2 Macroscale-PLSR Link

The index link from the ROI elements to the Haversian models is retrieved as the
weights from Eq. (2). For each iteration of the femoral cortex mechanical state, the
homogenised material properties Ell'[I for the ith ROI element are updated as

Ejj = wiE + w]E" (15)
where EF is the PLSR response function for the homogenised Young’s modulus and

El* = E°(p, I°, 1, 9)
EY = EP(pj“ﬁ, 1, z?) (16)

with 19, ¥, and ¢ as the initial load, excitation load, and angle of the excitation load,
respectively.

4.3 Example Prediction

Figure 8 shows the strains simulated from the right femur ROI to material property
changes predicted from PLSR, stimulated by walking and running exercises. The
femur was originally conditioned to a walking exercise regime and subsequently
subjected to the same walking exercise or changed to a running exercise regime for
90 simulated days, and PLSR was used to predict the Young’s modulus at days 50
and 90. The effect of the adaptation is shown by the change in von Mises strains
since day 1 when subjected to the same exercises since day 1.

The von Mises strains from the running exercises effected higher remodelling
stimuli than the walking stimulus, as seen in the top row at ¢ = 1. This is reflected in
the strain response, where the walking exercise shows smaller strain changes than the
running exercise. The former corresponds to much of the ROI falling in the adapted
state zone in Fig. 5, while growth and failure regions are more abundant in the running
series and appear earlier as seen in the strain changes at t = 50 and ¢ = 90.

Large regions of high strains are found at the posterior lateral region of the femoral
neck cortex, while more moderately high strains are found at the anterior lateral
region, agreeing with calculations of femoral neck cortical strains from hip muscle
contractions [25]. The higher strains at the posterior lateral region correspond to bone
weakening and the mechanostat failure zone, with large zones of bone weakening
appearing in the running series and smaller, and moderate amounts of weakening
appearing in the walking series. In contrast, the large regions of moderately high
strains appearing at the anterior lateral region corresponded to a growth response in
the running series and little to no response in the walking series.
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Posterior Anterior

Walking Running Walking Running

Fig. 8 Von Mises strain changes due to PLSR-predicted homogenised Young’s moduli from dif-
ferent exercise regimes over 90 simulated days. With reference to Fig. 5, strengthening is shown
through negative strain changes, corresponding to the growth zone of the mechanostat, while weak-
ening is shown through positive strain changes, corresponding to the failure zone. Stable areas with
little to no strain changes fall in the adapted state zone

From these results, the PLSR is shown to be able to capture spatially varying
patterns of bone growth and resorption as governed by the mechanostat. Adapted state
regions are generally more widespread in the walking series, and the running series
exhibited bone strengthening in moderately high strain regions and bone weakening
in extremely high strain regions.

5 Conclusions

The presented work in this chapter proposes a framework incorporating detailed
anatomical and biomechanical data across all relevant spatial scales to solve for the
strain state and estimate an adaptation response for given stresses obtained from bone
exercise regimes. In particular, the adaptation response is modelled at the microscale
and the effects emerge at the macroscale, reflecting in vivo bone density changes at the
Haversian level. We demonstrate that it is possible to circumvent lengthy computation
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times and mitigate the loss of important detail through the application of statistical
techniques, namely a partial least squares regression in this case, resulting in rapid
prediction of the state of strains and bone strength from given exercise regimes. The
presented techniques may be adapted to other bone joints to make use of the rich
information available at different spatial scales. For example, in this study, we used
information from high-resolution p.CT of Haversian canals and biomarker data show-
ing rates of bone turnover from equine models to inform macroscale responses. This
modelling pipeline exhibits strong relations between changes observed at Haversian
levels and the homogenised whole bone response, linking microscale adaptation with
functional behaviour such as walking and running measured at the whole organ level.
Outside of standard functional behaviour, the pipeline has the potential to explore
disease states at the Haversian microscale and how these states manifest as changes
at larger scales.
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