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Abstract Bone is an active connective tissue composed of different types of cells.
The dynamic behavior of bone remodeling processes is typically represented through
differential equations, which represent the physiological phenomena occurring in
this organ. These models take into account the tight biochemical regulation between
osteoclasts and osteoblasts and have also been enriched with variables and param-
eters related to bone pathologies and treatment. This chapter reviews some of the
more recent models describing bone physiology, focusing on those that include the
main cellular processes, along the biochemical control, and also the pharmacoki-
netic/pharmacodynamic (PK/PD) of the most common treatments for diseases such
as cancer. These models are then compared in terms of the simulations obtained and,
finally, some highlights on integrating them with the biomechanical component of
the system which will be given. These models are expected to provide a valuable
insight into this complex system and to support the development of clinical decision
systems for bone pathologies.
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Overview

This chapter reviews some of the most recent models of bone remodeling processes,
focusing on those that include known biochemical phenomena. These models are
then complemented with variables related to healthy and pathological states, namely
to study oncological processes and other bone pathologies. Additionally, they have
been enriched with therapy, by including the pharmacokinetics (PK) and pharmaco-
dynamics (PD) of several bone treatments.

The main goal of the present review is to compare these approaches and highlight
future directions, in particular, how these models can be integrated with biomechan-
ical knowledge to build integrated models for bone physiology.

To better understand the mentioned models, this chapter follows a growing com-
plexity hierarchy. Firstly, basic physiology concepts are introduced in Sect. 1, ranging
from healthy bone dynamics to existing treatments for tumors in its microenviron-
ment. Local mathematical and computational models are then presented (Sect. 2),
followed by their non-local adaptations (Sect. 3). Different models are reviewed and
pertinent simulations results are presented, from the simplest one involving only
three state variables to more complex ones that include other physiological processes
and therapy.

1 Bone Remodeling Physiology

Modeling complex physiological systems are gaining an increasing interest in engi-
neering due to the expected impact in clinical sciences. Thesemultidisciplinary fields
are promoting the 4P approach to medicine, which is becoming more predictive, per-
sonalized, preventive, and participatory [15].

In particular, there are now many efforts to model bone physiology, taking into
account all the biochemical, cellular, and environmental processes. However, for an
accurate modeling process, the inherent physiology must be known.

1.1 Healthy Bone Remodeling

Living tissue is constantly being renovated, and this process is also true for bone
tissue. Static as it may seem to the naked eye, bone undergoes a constant remodel-
ing process, being resorbed by cells termed osteoclasts and formed by cells called
osteoblasts. They constitute part of a BMU, a basic multicellular unit.

• Osteoclasts—Originated from the fusion of mononucleated cells and progenitor
cells that express receptor activator of NF-κB (RANK) and macrophage colony-
stimulating factor receptor (c-FMS), and osteoclasts differentiate into multinucle-
ated cells when colony-stimulating factor 1 (CSF1) and RANK-ligand (RANKL)
are present in the bone microenvironment. Being capable of bone resorption, their
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generation rate determines the BMU extension; whereas, the life span determines
the depth of resorption [3, 35].

• Osteoblasts—Osteoblasts are mononucleated cells able to form bone. They can
regulate bone resorption and formation through parathyroid hormone (PTH) recep-
tors and RANKL and osteoprotegerin (OPG) production. OPG is a soluble decoy
receptor for RANKL that binds to RANK in osteoclasts precursors, consequently
inhibiting osteoclast formation. Osteoblasts upregulate RANKL expression due
to PTH, thus promoting their activation. PTH also contributes to osteoclastoge-
nesis by decreasing the OPG production. The bone resorption and formation are
regulated greatly by the RANK/RANKL/OPG pathway and PTH [10, 35].

• Basic Multicellular Unit—Basic multicellular units (BMU) are temporary
anatomical structures, where autocrine and paracrine factors produced by
osteoblasts and osteoclasts regulate the formation and activation of these cells.
Bone resorbing osteoclasts lead an active BMU, removing old and damaged tis-
sue. Osteoblasts then follow, occupying the tail portion of the BMU, secreting and
depositing bone [33, 38].

Bone remodeling cycles can be activated by either mechanical stimuli on the bone, or
through the production of estrogen or PTH [33] due to changes in homeostasis. The
resorption phase is triggered by this hormone, which acts on cells of the osteoblastic
lineage and leads to the differentiation and activation of osteoclasts. Active osteo-
clasts are then capable of degrading bone. At the resorpted site, the undigested dem-
ineralized collagen matrix is removed during the reversal phase, in preparation for
bone formation. Then, osteoblasts form bone and replace the resorpted bone by the
same amount, ending the bone remodeling cycle. The processes that link bone resorp-
tion to the initiation of bone formation may involve the release of coupling factors
from bone during resorption phase, such as insulin growth factor I and II (IGF I and
II) and transforming growth factor β (TGF-β), which attract osteoblasts to the sites
of bone resorption [17]. Some of these processes are illustrated in Fig. 1.

1.2 Tumor in the Bone Remodeling Cycle

The previous section describes the main biochemical processes in healthy bone.
When some pathology is present, the dynamic behavior of bone remodeling is
severely affected, which usually disrupts its biochemical regulation and has a high
impact on bone integrity. For example, in diseases such as cancer, either in bone
tumors or through metastization of other primary tumors (e.g., breast or prostate
cancer), the bone microenvironment is changed, affecting the osteoclasts/osteoblasts
equilibrium. This leads, consequently, to bone lesions. Such pathophysiology is
mostly explained by the theory of the vicious cycle proposed by Mundy and Guise
in [14], according to which cancer cells resident in the bone can cause its destruction
by stimulating osteoclast activity and receiving, in return, positive feedback from
humoral factors released by the bone microenvironment during bone destruction [5].
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Fig. 1 Biochemical processes of bone remodeling, progression of bone metastases and treatment.
Bone remodeling: (1) PTH stimulates RANKLproduction by osteoblasts; (2) RANK/RANKL/OPG
pathway plays an important role in bone resorption and formation; bone metastases vicious cycle:
(3) Bone-derived tumor growth factors (IGFs,TGF-β, bone morphogenetic protein (BMP), among
others); (4) Tumor-derived factors stimulate bone resorption (parathyroid hormone-related protein
(PTHrP), TGF-β, IL-8,11, among others); (5) Tumor-derived factors affect bone formation (DKK1,
BMP, IGFs, among others); (6) PTHrP stimulates RANKL production by osteoblasts treatment: (7)
Chemotherapy directly targets cancer cells; (8) Denosumab binds to RANKL, inhibiting osteoclast
formation; (9) Bisphosphonates promote osteoclast apoptosis. Reprinted from [9]: Journal of The-
oretical Biology, Vol 391, Coelho et al., Dynamic modeling of bone metastasis, microenvironment
and therapy. Integrating parathyroid hormone (PTH) effect, anti-resorptive and anti-cancer therapy,
Pages No. 1–12.Copyright 2016, with permission from Elsevier

Bone metastases can be osteolytic, in case bone resorption is increased, or
osteoblastic, when bone formation is stimulated in an unstructured way. Both bone
resorption and formation are still present in any case, although out of balance, result-
ing in loss of bone resistance and integrity. Breast cancer metastases are prone to
develop osteolytic metastasis, and prostate cancer ones are usually osteoblastic [44].

For the bone remodeling deregulation resulting from osteolytic metastases,
metastatic cells stimulate bone resorption [7], and TGF-β is released from the bone
matrix, during bone resorption. TGF-β stimulates tumor growth and parathyroid
hormone-related protein (PTHrP) production in metastatic cells that binds to PTH
receptors on cells of osteoblastic lineage. RANKL levels are then enhanced, and,
subsequently, osteoclasts are activated, leading to increased bone resorption [5].
Osteoclasts activity, in turn, will result in the release of TGF-β from the degraded
bone, which further stimulates tumor growth and PTHrP secretion, giving rise to a
vicious cycle.
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In osteoblastic metastases, tumorous cells grow, as bone expresses
endothelin-1 (ET-1) that stimulates osteoblasts through the endothelin A receptor
(ETR), activating Wnt signaling. Tumor-derived proteases contribute to the release
of osteoblastic factors from the extracellular matrix, including TGF-β and IGF I.
RANKL is increased due to tumor-induced osteoblast activity, leading to the release
of PTH and promoting osteoclast activity [5]. Thus, the tumor microenvironment
leads to the accumulation of newly formed bone.

Although the reviewed models are mostly focused on cancer, these can be easily
adapted to other bone pathologies. Such can be found in [41], where the model in
[42] is extended to enable the simulation of postmenopausal osteoporosis effects
on bone remodeling combined with the pharmacodynamical effects of drug treat-
ment denosumab. Also, in [19], the original model in [17] is adapted to account for
the effect of osteomyelitis, a bone pathology caused by bacteria infection (mostly
Staphylococcus aureus), which alters the RANK/RANKL/OPG signaling dynamics
that regulates osteoblasts and osteoclasts behavior in bone remodeling.

1.3 Bone Treatments

There are several possible targets for bonemetastases treatment, as detailed in review
[6], namely bone resorption, osteoblast, and tumor cells.

Anti-resorptive treatment targets osteoclasts, since these cells are essential to
the vicious cycle of bone metastases. For osteolytic metastases, such as those from
breast cancer, bisphosphonates or denosumab treatment is administrated as effective
anti-resorptive therapies [5]. While bisphosphonates lodge in bone and poison osteo-
clasts as they degrade bone, denosumab, a fully human monoclonal antibody binds
exclusively to RANKL, inhibiting osteoclast formation.

Although therapeutics that targets osteoblasts exists, such as PTH daily adminis-
tration or endothelin, these are far less well-developed and used than anti-resorptive
therapy, in order to decrease tumor burden on bone and recover bone mass.

Anti-cancer agents that target metastatic cells directly, such as chemotherapy
and hormone therapy [22] should be used in combination with the other presented
therapies.

2 Mathematical Bone Remodeling Local Models

Computational models of the dynamics of bone remodeling and its interaction with
cancer cells are important to simulate the biochemical processes occurring in the bone
microenvironment that potentiate the progression of such disease. The importance
of understanding such a complex systems is highlighted in [26], which presents a
review of mathematical modeling methodologies, applied to bone biology.
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In all that follows, we will use systems of differential equations where D1 is a
first-order derivative in order to time, d

dt .

2.1 Healthy Remodeling Dynamics

The simplest model of bone remodeling involves a system of three ordinary differen-
tial equations representing osteoclast and osteoblast densities and normalized bone
mass [17]. In this early proposal, bone remodeling is represented as an S-system
[40], described by Eqs. (1a)–(1c), coupling the behavior of osteoclasts, C(t), and
osteoblasts, B(t), through biochemical autocrine (gCC , gBB ) and paracrine (gBC , gCB )
factors expressed implicitly in the exponents.

D1C(t) = αCC(t)gCC B(t)gBC − βCC(t) (1a)

D1B(t) = αBC(t)gCB B(t)gBB − βB B(t) (1b)

D1z(t) = −kC max{0,C(t) − Css} + kB max{0, B(t) − Bss} (1c)

This is a local model that only takes into account temporal dynamics and whose
variables and typical parameters values used in the simulations are described in
the Table3. It is worth noting that the RANK/RANKL/OPG pathway is implicitly
encoded as their ratio is in the osteoblasts-derived osteoclasts paracrine regulator, gBC .
The constants αC,B and βC,B represent the activation and apoptosis rate, respectively,
of the corresponding cell type. Bone resorption from active osteoclasts and bone
formation from active osteoblasts command the temporal evolution of the bonemass,
z, through the rates kC and kB , respectively. The action of each cell type C(t) and
B(t) is considered only when its number is above its steady-state values Css and Bss

(Eqs. 2a–2c).

Css =
(

βC

αC

) (1−gBB )

�
(

βB

αB

) gBC
�

(2a)

Bss =
(

βC

αC

) gCB
�

(
βB

αB

) (1−gCC )

�

(2b)

� = gCB gBC − (1 − gCC )(1 − gBB ) (2c)

By setting the values of the exponents appropriately, in particular gBC , this model
is capable of describing a single remodeling cycle or a periodic behavior, whose
amplitude and frequency of oscillations depend on the initial conditions, as can be
seen in Figs. 2 and 3, respectively. The parameters used in these simulations are those
from the values in column A of Table3, except those explicitly defined in the caption
of the figures, in accordance with [17].



Dynamic Biochemical and Cellular Models of Bone Physiology: Integrating … 101

Fig. 2 Simulation of the model in Eqs. (1a)–(1c): number of osteoclasts, osteoblasts, and bone
mass during normal bone modeling for a single event, triggered by an increase of the osteoclast
population. The parameters are those in column A of Table3 [2]

Fig. 3 Simulation of oscillatory changes in the number of osteoclasts, osteoblasts, and bone mass
during normal bone remodeling for which the model presented in [17] has periodic solutions. Such
behavior was triggered with an increase of ten units of the steady-state osteoclast population, C0 =
11.16 and Cth = 1.16. The parameters were set according to [2]: gCC = 1.1, being the responsible
for the bone dynamic response, κC = 0.0748, κB = 6.3952 × 10−4 and B0 = Bth = 231.72. Other
parameters were set according to column A of Table3



102 R. M. Coelho et al.

Due to its simplicity and versatility, this model serves as a basis for many other
studies. In [16], the anabolic and catabolic effects of external administration of PTH
on bone remodeling are studied, by using the single remodeling cycle behavior exhib-
ited in [17]. The influence of PTH in the production of RANKL by osteoblasts is
encoded in the exponent gBC , adding a pulse of fixed duration at a specific time. The
duration of application of PTH influences qualitatively the bone mass outcome and
can be used to achieve different scenarios of bone modeling. It is possible to apply
bifurcation analysis to generalized bone models [50], in particular to the model in
[17], adding the osteoblasts precursors to the system. A stability analysis is hence
achieved for this type of models.

More recently, the integration of PTH into the model was proposed [9], as given
by Eqs. (3a)–(3e).

D1C(t) = αCC(t)gCC B(t)gBC +KPTHpoolBC
PTHpool(t) − βCC(t), (3a)

D1B(t) = αBC(t)gCB B(t)gBB − βB B(t), (3b)

D1PTHpool(t) = −βPTHPTHpool(t) + KPTHδ(t), (3c)

P(δ(t) = 1) = 1 − exp

(
−

(
t

λW

)kW
)

, (3d)

D1z(t) = −kC max{0,C(t) − Css} + kB max{0, B(t) − Bss}, (3e)

The PTH concentration is included in PTHpool(t), and δ(t) represents a train of
Dirac deltas, occurring stochastically with a Weibull distribution with probability
P given by Eq. (3d). KPTH is the increase of PTHpool(t) with each Dirac delta. This
increase in PTH concentration is responsible for initiating a single remodeling cycle,
which increases the production of RANKL by osteoblasts, thus affecting gBC , as in
Eq. (3a). Variable KPTHpoolBC

quantifies this influence on the RANKL/OPG ratio. [13]
further extends the model in [17] to include osteocytes and pre-osteoblasts in the
bone model, predicting an osteocyte-induced bone remodeling after apoptosis. The
role of sclerostin is also included, enabling the study of anti-sclerostin drugs in bone
turnover.

Lemaire et al. [18] present a different approach, incorporating explicitly the
RANK/RANKL/OPG pathway, TGF-β, and PTH in the model. The kinetic reac-
tions of these molecules can activate or repress mechanisms of differentiation and
activation of bone cells, here considered to be the uncommitted osteoblast precursors
Bu , osteoblast precursors Bp, active osteoblasts Ba , and active osteoclasts Ca . This
model serves as the basis to [27], whose model is presented in Eqs. (4a)–(4d).

D1Bp(t) = αBuπ
TGF-β
act,Bu

− αBp Bp(t)π
TGF-β
rep,Bp

(4a)

D1Ba(t) = αBp Bp(t)π
TGF-β
rep,Bp

− βBa Ba(t) (4b)

D1Ca(t) = αCpCpπ
RANKL
act,Cp

− βCaCa(t)π
TGF-β
act,Cp

, (4c)

D1z = −kC(Ca(t) − Ca(t0)) + kB(Ba(t) − Ba(t0)) (4d)
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Functions πmolecule
act/rep, cell represents activation (act) or repression (rep) of a given process

in a cell type (cell) when binding to the molecule considered (molecule), and the
corresponding coefficients are αcell. It is usual to describe them as Hill functions,
given by Eqs. (5a) and (5b), where X is the concentration of the molecule driving a
cellular process, and K1 and K2 are activation or repression coefficients.

π X
act = X

K1 + X
(5a)

π X
rep = 1

1 + X/K2
(5b)

Osteoblast precursors Bp differentiate from uncommitted osteoblast progenitors Bu

at rate αBu , promoted by TGF-β. Osteoblast precursors differentiate into active
osteoblasts Ba at rate αBp , inhibited by TGF-β. The number of active osteoblasts
increases through this differentiation, but these cells have an apoptosis rate of βBa .
The differentiation of osteoclasts precursorsCp into active osteoclastsCa is promoted
by RANKL, at rate αCp . TGF-β also promotes the apoptosis of active osteoclasts,
occurring at rate βCa . It is assumed that the number of osteoclast precursors Cp

and uncommitted osteoblast progenitors Bu is large and constant. The bone mass z
is affected by bone resorption and formation, proportionally to the deviation from
steady state of the number of active osteoclasts and osteoblasts, respectively. These
cells are considered to be in their steady state at initial time t0. Models for the
concentrations of TGF-β and RANKL are proposed. The TGF-β release rate from
the bone during resorption is proportional to the number of active osteoclasts. The
RANK/RANKL/OPG pathway is explicitlymodeled, including the influence of PTH
on RANKL and OPG concentrations. The model is then studied for different scenar-
ios, namely the importance of RANKL and OPG expression in the bone remodeling
cycle. Moreover, the model parameter space is searched for physiologically sensible
behaviors. In [28], the role of RANK/RANKL/OPG pathway is studied following
the model in [27]. Furthermore, it was possible to simulate several bone diseases by
changing the values of parameters, as well as different treatment strategies for these
conditions, following the same approach.

2.2 Models Including Tumor Burden

Cancer interferes with the bone remodeling equilibrium, taking advantage of the
dysregulated microenvironment to proliferate. Studying such alterations is important
for cancers that begin in bone tissue, such as multiple myeloma, but also for bone
metastases that often result from some kinds of cancer, such as breast or prostate
cancer [44]. A modified version of the model in [17] which introduces multiple
myeloma disease is presented in [2] and is described in Eqs. (6a)–(6d).



104 R. M. Coelho et al.

D1C(t) = αCC(t)
(
gCC

(
1+rCC

T (t)
LT

))
B(t)

(
gBC

(
1+rBC

T (t)
LT

))
− βCC(t), (6a)

D1B(t) = αBC(t)

(
gCB

1+rCB
T (t)
LT

)

B(t)
(
gBB −rBB

T (t)
LT

)
− βB B(t), (6b)

D1T (t) = γT T (t) log
LT

T (t)
, (6c)

D1z(t) = −kC max{0,C(t) − CssT } − kB max{0, B(t) − BssT }, (6d)

In this model, T (t) represents tumor concentration and its growth; D1T (t) is made
independent of the bone microenvironment, following a Gompertz law with growth
rate γT and maximum size LT , described by Eq. (6c). It affects the autocrine param-
eters in the exponents of the system through rCC and rBB and paracrine parameters
through rBC and rCB , contributing to the increase in the number of osteoclasts and the
decrease in osteoblasts when set to non-negative values. This results in the deregula-
tion of the periodic remodeling cycles and, consequently, in the decrease of the overall
bone mass. The equation for bone mass z(t) keeps the same structure, although the
thresholds to determine the number of active bone cells are no longer the steady
states in healthy bone remodeling (Css, Bss), but the steady states are (CssT , BssT )

computed considering T (t) to be at its maximum value LT .
The model in [9], as presented in Eqs. (3a)–(3e), is extended in the same work to

include the growth of bone metastasis and its influence on the bone microenviron-
ment, described by Eqs. (7a)–(7g).

D1C(t) = αCC(t)
(
gCC +rCC

T (t)
LT

)
B(t)

(
gBC +KPTHpoolBC

PTHpool(t)
)
− βCC(t), (7a)

D1B(t) = αBC(t)

(
gCB

1+rCB
T (t)
LT

)

B(t)
(
gBB −rBB

T (t)
LT

)
− βB B(t), (7b)

D1PTHpool(t) = −βPTHPTHpool(t) + KPTHδ(t)

+rPTHrP max{0,C(t) − Cth(t)}T (t)

LT

, (7c)

P(δ(t) = 1) = 1 − exp

(
−

(
t

λW

)kW
)

, (7d)

D1T (t) = kT max{0,C(t) − Cth(t)} T (t)

λT + T (t)
, (7e)

D1Cth(t) = αCCth(t)
(
gCC +rCC

T (t)
LT

)
Bth(t)

gBC − βCCth(t), (7f)

D1Bth(t) = αBCth(t)
gCB Bth(t)

(
gBB +rBB

T (t)
LT

)
− βB Bth(t). (7g)

Metastatic cells produce PTHrP in the presence of TGF-β, which is released from
bone after bone resorption, encoded by the term rPTHrP max{0,C(t) − Cth(t)} T (t)

LT

in Eq. (7c). Osteoblasts have the same receptors for both PTH and PTHrP, which
contribute to the production ofRANKL.As such, PTHrP concentration is added to the
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PTHpool dynamics, which now includes PTH and PTHrP concentration. Increased
production of RANKL means the number of osteoclasts will rise, resulting in an
increased bone resorption. Bone resorption releases tumor growth factors from bone,
allowing the tumor to grow, as described by Eq. (7e), and to produce PTHrP, which
will, in turn, indirectly stimulate the activation of osteoclasts and bone resorption.
As such, this model is able to describe the vicious cycle of bone metastases through
the action of PTHrP. The growth rate of metastases includes a saturation term on the
size of the tumor, introduced by a sigmoid function. As bone metastases T (t) depend
on growth factors released during bone resorption to grow, the dynamics for tumor
growth is given by Eq. (7e), in which its growth rate due to tumor size is limited by
a sigmoid function. Besides affecting the number of osteoclasts indirectly through
PTHpool, the tumor also affects the dynamics of the system through the autocrine
parameters, as in [2]. In the presence of tumor, the thresholds for active osteoclasts
and osteoblasts are no longer static Cth and Bth , since the steady state is affected
thereby. Dynamic thresholdsCth(t) and Bth(t) are then used to determine the number
of active cells, as given by Eqs. (7f) and (7g), respectively.

The bone remodeling model of [27] is extended in [49] to include the influence
of multiple myeloma in the bone microenvironment. The explicit inclusion of IL-6
and multiple myeloma bone marrow stromal cell adhesion in the model, along with
the multiple myeloma disease, made it possible to predict a vicious cycle between
bone and multiple myeloma cells.

2.3 Introducing Treatment

2.3.1 Pharmacokinetics and Pharmacodynamics

The pharmacokinetics (PK) of a drug describes its concentration evolution at the
target tissue; whereas, the effect of such concentration is given by pharmacodynam-
ics (PD). A PK one-compartment model with first-order absorption and elimination
for subcutaneous administration is described by Eqs. (8a) and (8b), where Cg is the
drug concentration yet to be absorbed and Cp the concentration in the plasma [12].
The drug is absorbed at rate ka and eliminated at rate ke.

D1Cg(t) = −kaCg(t) (8a)

D1Cp(t) = kaCg(t) − keCp(t) (8b)

C0 = D0F

Vd
(8c)

The initial drug concentrationC0 can be computed from the initial administered dose
D0, the bioavailability F , and volume distribution Vd , following Eq. (8c). The plasma
concentration can be described in the Laplace domain, Cp(s) as Eq. (9), where s is
the Laplace transform variable of time.
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Cp(s) = C0 ka
(s + ka)(s + ke)

(9)

From Eq. (9), the time response for single-dose administration is ruled by Eq. (10).

Cp(t) = C0 ka
ka − ke

(e−kd t − e−ka t ) (10)

For multiple dose administration, assuming that every dose initial concentration is
C0 and they are administrated at a constant time interval τ , the drug concentration
after the nth dose is described by

Cp(n, t ′) = C0 ka
ka − ke

(
1 − e−nkeτ

1 − e−keτ
e−ket ′ − 1 − e−nkaτ

1 − e−kaτ
e−ka t ′

)
(11)

where t ′ = t − (n − 1)τ represents the time elapsed after the nth dose. For single
intravenous (IV) administration, the PK is given by Eq. (12a), where the initial dose
D0 is included in the initial condition of Cp as Eq. (12b).

dCp(t)

dt
= −keCp(t), (12a)

C0 = D0

Vd
(12b)

In steady state, that is, after a large number of doses, the average concentration will
be C̄ pss = 1

τ
C0

ke
.

The effect of a drug d(t) according to its concentration in plasma Cp can be given
by a Hill function as in Eq. (13), where an effect of 50% is achieved at concentration
C50.

d(t) = Cp(t)

C50 + Cp(t)
(13)

The variables and parameters involved in the PK/PD model are summarized in
Table1.

2.3.2 Models for Tumor Treatment

The models proposed in [2] also allowed for tumor treatment. Since proteasome
inhibitors are known to have direct anti-myeloma effects and to have direct effects
on osteoblasts to stimulate osteoblast differentiation and bone formation, two time-
dependent treatment step functions, V1(t) and V2(t), were introduced to model the
inhibition of the osteoblasts apoptosis and tumor cells death, respectively. As such,
Eqs. (6b) and (6c) are replaced by Eqs. (14a) and (14b), respectively, with V1(t) and
V2(t) affecting the suitable parameters. This model including treatment is therefore
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Table 1 Variables and parameters of the PK/PD model

Variable Description Units

Cp(t) Effective drug concentration in the plasma mg/L

Cg(t) Concentration of drug remaining to be absorbed mg/L

Parameter Description Units

C0 Initial plasma concentration mg/L

D0 Drug dosage mg

τ Administration time interval day

ke Drug elimination rate day−1

ka Drug absorption rate day−1

F Bioavailability –

Vd Volume distribution L

C50 Drug concentration for 50% of maximum effect mg/L

composed of Eqs. (6a), (14a), (14b), and (6d), resulting in an increase of bone mass
and the elimination of tumor.

D1B(t) = αBC(t)

(
gCB

1+rCB
T (t)
LT

)

B(t)
(
gBB −rBB

T (t)
LT

)
− (

βB − V1(t)
)
B(t) (14a)

D1T (t) = (
γT − V2(t)

)
T (t) log

(
T (t)

LT

)
(14b)

This work [9] also proposes the treatment of bone metastases through anti-cancer
therapy and anti-resorptive therapy corresponding to the administration of either bis-
phosphonates or denosumab. Bisphosphonates (zoledronic acid) promote osteoclast
apoptosis, and denosumab acts as a decoy receptor for RANKL, indirectly inhibiting
osteoclast formation. Since both therapies act on osteoclasts, the effects of bisphos-
phonates, d1, and denosumab, d2, are included in Eq. (7a) as described in Eq. (15a).
Chemotherapy (paclitaxel), whose effect is given by d3, is considered for anti-cancer
therapy, targeting metastatic cells directly, and so it is included in Eq. (7e) as shown
in Eq. (15b). The treatment also affects the threshold for active osteoclasts, Cth ,
described by Eq. (15c). Including treatment variables, this new model is composed
of Eqs. (15a), (7b), (7c), (7d), (15b), (15c), and (7g).

D1C(t) = αCC(t)
gCC +rCC

T (t)
LT B(t)gBC +KPTHpoolBC

PTHpool(t)−Kd1d1(t)

− (βC + Kd2d2(t))C(t), (15a)

D1T (t) = kT max{0,C(t) − Cth(t)} T (t)

λT + T (t)
− Kd3d3(t)T (t), (15b)

D1Cth(t) = αCCth(t)
gCC +rCC

T (t)
LT Bth(t)

gBC −Kd1d1(t)

− (βC + Kd2d2(t))Cth(t), (15c)
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Fig. 4 PD effect of chemotherapy (paclitaxel), denosumab, and bisphosphonates (zoledronic acid),
with administration parameters from Table2 [9]

Table 2 Parameters for the therapy model (15), following [9]: denosumab, d1; bisphosphonates,
d2 (zoledronic acid); anti-cancer therapy (paclitaxel), d3
Parameter d1 d2 d3

D0 120 4 176

τ 28 28 7

ke 0.0248 0.1139 1.2797

ka 0.2568 – –

F 0.62 – –

Vd 3.1508 536.3940 160.2570

C50 1.2 0.0001 0.002

Kd 0.48 1.2 0.017

The PK/PD of denosumab (subcutaneous administration), zoledronic acid, and
paclitaxel (both IVadministration) is included in themodel as described inSect. 2.3.1.
Figure4 illustrates a simulation of the pharmacodynamics of these drugs,with admin-
istration starting at time tstart = 2000 days and interrupted at tstop = 3000 days. The
parameters for PK/PD are shown in Table2. It is possible to observe that chemother-
apy effect oscillates more than both drugs used for anti-resorptive therapy.
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The treatment of bone metastases with chemotherapy alone and combined with
either denosumab or bisphosphonates results in the dynamics shown in Figs. 5 and
6. The parameters used in the simulations are those from the values column B in
Table3, in accordance with [9].

Fig. 5 Dynamics of bone microenvironment affected by metastases, with treatment through
chemotherapy alone, chemotherapy combined with denosumab and combined with bisphospho-
nates, starting at time tstart = 2000 days and interrupted at tstop = 3000 days. Following Eqs. (15a),
(7b), (7c), (7d), (15b), (15c), and (7g), using the parameters from columnB in Table3, in accordance
with [9]
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Fig. 6 Bone metastases and bone mass evolution, with treatment through chemotherapy alone,
chemotherapy combined with denosumab and combined with bisphosphonates, starting at time
tstart = 2000 days and interrupted at tstop = 3000 days. Following Eqs. (15a), (7b), (7c), (7d),
(15b), (15c), and (7g), using the parameters from column B in Table3, in accordance with [9]

As it can be observed, the treatment with chemotherapy reduces the size of the
tumor, but does not reduce bone loss during treatment. However, in combination with
anti-resorptive therapy, it is possible to recover bone mass while eliminating tumor.
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Table 3 Variables, parameters, and initial conditions of the simulated models: (A) Eqs. (1a)–(1c)
[17], (B) Eqs. (15a), (7b), (7c), (7d), (15b), (15c), and (7g) [9], (C) Eqs. # [8]

Operator Description

D1 First-order derivative, i.e., Dα with α = 1

Dα Fractional order derivative

Dα(t) Variable order derivative

∇2 Non-local, second-order, vector differential operator
∂2

∂x2
Partial, second-order derivative for bone distance x

Variable Description Units

t Time day

x Adimensional
distance along
the bone

–

C(t, x) Number of
osteoclasts

cells

B(t, x) Number of
osteoblasts

cells

PTH pool(t, x) PTH and PTHrP
concentration
variation

ng/L

T (t, x) Bone metastases
size

%

z(t, x) Bone mass %

d1(t) Effect of
denosumab

–

d2(t) Effect of
bisphosphonates

–

d3(t) Effect of
anti-cancer
therapy

–

Cth(t, x) Threshold for
active osteoclasts

cells

Bth(t, x) Threshold for
active osteoblasts

cells

α(t) Variable order
for differential
equations

cells

Parameter Description Units Values A Values B Values C

α Fractional order
of the equations

– – – ∈]0, 2[

σC Diffusion
coefficient of
osteoclasts

– – – 10−6

σB Diffusion
coefficient of
osteoblasts

– – – 10−6

(continued)
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Table 3 (continued)

Parameter Description Units Values A Values B Values C

σz Diffusion
coefficient of the
bone

– – – 10−6

σT Diffusion
coefficient of the
tumor

– – – 10−6

αC Osteoclasts
activation rate

cell−1 day−α 3 3 3

αB Osteoblasts
activation rate

cell−1 day−α 4 4 4

βC Osteoclasts
apoptosis
(programmed
cell death) rate

day−α 0.2 0.2 0.2

βB Osteoblasts
apoptosis rate

day−α 0.02 0.02 0.02

gCC Osteoclasts
autocrine
regulator

– 0.5 0.1 1.1

gBC Osteoblasts-
derived
osteoclasts
paracrine
regulator

– −0.5 −1 −0.5

gCB Osteoclasts-
derived
osteoblasts
paracrine
regulator

– 1.0 0.8 1

gBB Osteoblasts
autocrine
regulator

– 0 0.2 0

kC Bone resorption
rate

% cell−1 day−α 0.24 0.5 0.45

kB Bone formation
rate

% cell−1 day−α 0.0017 0.00248723 0.0048

KPTH PTH growth rate ng L−1 day−α – 1 –

βPTH PTH and PTHrP
degradation rate

day−α – 0.1 –

(continued)
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Table 3 (continued)

Parameter Description Units Values A Values B Values C

KPTHpoolBC
Influence of
PTH/PTHrP in
RANKL/OPG
ratio

ng−1 L – 1.261 –

kW Shape parameter
of Weibull
distribution

– – 15 –

λW Scale parameter
of Weibull
distribution

– – 300 –

kT or γT Bone metastases
growth rate
through bone
resorption

% cell−1 day−α – 1 0.004

λT Half-saturation
constant for
bone metastases
size

% – 10 –

LT Maximum size
of bone
metastases

% – 100 100

rCC Effect of tumor
in osteoclasts
autocrine
regulator

– – 0.022 0.005

rCB Effect of tumor
in osteoblasts-
derived
osteoclasts
paracrine
regulator

– – – 0

rBC Effect of tumor
in Osteoclasts-
derived
osteoblasts
paracrine
regulator

– – – 0

(continued)
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Table 3 (continued)

Parameter Description Units Values A Values B Values C

rBB Effect of tumor
in osteoblasts
autocrine
regulator

– – −0.198 0.2

rPTHrP Rate of PTHrP
production by
cancer cells

ng L−1 cell−1

day−α
– 0.0043 –

Kd1 Maximum effect
of denosumab

– – 0.48 0.1

Kd2 Maximum effect
of
bisphosphonates

day−α – 1.2 0.1

Kd3 Maximum effect
of anti-cancer
therapy

% day−α – 0.017 2.3

Css Steady-state
value of C(t, x)

cells 1.06 –

Bss Steady-state
value of B(t, x)

cells 212.13 –

Initial condi-
tions

Description Units Values A Values B Values C

C0 or C(0, x) Initial number of
osteoclasts

cells Css + 10 Css C(0, x) [2]

B0 or B(0, x) Initial number of
osteoblasts

cells Bss Bss 316

z0 or z(0, x) Initial bone mass
percentage

% 100 100 100

PTH pool0 Initial PTH and
PTHrP
concentration

ng/L – 0 –

T0 or T (0, x) Initial size of
bone metastases

% – 1

2.4 Models Based on Fractional and Variable Order
Derivatives

2.4.1 Introduction to Fractional and Variable Order Calculus

Biological processes often present anomalous diffusion [21], and while it cannot be
said with certainty that this is the case for bone remodeling, it is very likely that
it be so. To account for this, it is necessary to introduce fractional derivatives in
the existing mathematical models (such an adaptation has been done and studied in
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[8]). Fractional derivatives are no more than a generalization of differentiation and
integration of order n ∈ N to orders α ∈ R. The most natural and appealing example
is that of the exponential function f (x) = eax , whose nth derivative is given simply
by aneax . This suggests defining the derivative of order α that has not necessarily to
be an integer, as aαeax . Since its idealization, the number of applications with frac-
tional derivatives has been rapidly growing. Recently, the fractional order linear time
invariant (FOLTI) systems have attracted significant attention in the control systems
society [24], and fractional differential equations find a very wide range of appli-
cations: They are used to formulate and solve different physical models allowing a
continuous transition from relaxation to oscillation phenomena; to predict the nonlin-
ear survival and growth curves of foodborne pathogens; to adapt the viscoelasticity
equations (Hooke’s Law, Newtonian fluids Law), among other applications [34]. It
also plays an important role in physics, thermodynamics, electrical circuits theory
and fractances, mechatronics systems, signal processing, chemical mixing, chaos
theory, to name a few [24]. However, many physical processes appear to exhibit a
fractional order behavior that varies with time or space: In the field of viscoelasticity,
the effect of temperature on the small amplitude creep behavior of certain materials
is known to change its characteristics from elastic to viscoelastic or viscous, and real
applications may require a time varying temperature to be analyzed; the relaxation
processes and reaction kinetics of proteins that are described by fractional differential
equations have been found to have a temperature dependence; the behavior of some
diffusion processes in response to temperature changes can be better described using
variable order elements rather than time varying coefficients; and more [20]. Such
evidence allowed to consider that the fractional order of integrals and derivatives
could be a function of time or some other variable, thus introducing the concept of
variable order (or structure) operators, where the order of the operator is allowed
to vary either as a function of the independent variable of integration or differentia-
tion (t) or as a function of some other (perhaps spatial) variable (y) [20, 48]. More
information on fractional and variable order calculus can be found in this chapter’s
Appendix.

2.4.2 Local Models with Variable Derivatives

A newmodel is proposed by the authors, where the model described in Eq. (6)— cor-
responding to local tumorousmodel, without treatment—was simplified by including
variable order derivatives in the osteoclasts and osteoblasts equations, whose time-
dependent order is given by α(t). Hence, by doing so, tumor itself would influence
the order directly, and it is now the order responsible for the change in the behavior
of the osteoclasts and osteoblasts, instead of inducing such behavior through the
tumorous parameters (ri j ). The remaining parameters are to be set according to the
healthy bone remodeling case, for periodic cycles.
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Fig. 7 Simulation results for the model in Sect. 2.4.2 simplifying the existing equations for the
local tumorous influence in [2]. Parameters used for simulation are the same as the referred case

Dα(t)C(t) = αCC(t)gCC B(t)gBC − βCC(t) (16a)

Dα(t)B(t) = αBC(t)gCB B(t)gBB − βB B(t) (16b)

D1T (t) = γT T (t) log
LT

T (t)
(16c)

α(t) = 1 − T (t)ρ(t), where ρ(t) = 0.00005

Tsimulation
t = 4.1667 × 10−8t (16d)

Bone mass, like in previous cases, reflects the behavior of the osteoclasts and
osteoblasts and is thus the same as that of the original model in [17]. This model
consists, consequently, in Eqs. (16a)–(16d) and (1c).

The advantage of this model with variable order differential equations over all
previous models is that the same phenomena are modeled with far less parameters
(See Fig. 7).

3 Non-local Models

The previous section addressed local models for bone remodeling representedmostly
by ordinary differential equations (ODEs). Under this framework, only the dynamic
behavior of individual BMUs is taken into account. The present section extends these
models to one-dimensional geometries, thus modeling diffusion processes in the
bone. We will focus on the proposals based on partial differential equations (PDEs)
although other approaches also exist, such as in [1] that uses hybrid cellular automata
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to describe spatiotemporal bone remodeling, both healthy and in the presence of bone
metastases, and even the effect of anti-RANKL and bisphosphonates therapy.

3.1 Healthy Bone Remodeling

Ayati and colleagues [2] extend the model in [17], adding the effect in the bone
dynamics and allowing for diffusionover onedimension (i.e., a one-dimensional bone
is assumed), by introducing diffusion terms σ ∂2

∂x2 into the osteoclasts, osteoblasts,
and bone mass equations. Consequently, variables C , B, and z now depend on x as
well as on t .

D1C(t, x) = σC

d2

dx2
C(t, x) + αCC(t, x)gCC B(t, x)gBC − βCC(t, x) (17a)

D1B(t, x) = σB

d2

dx2
B(t, x) + αBC(t, x)gCB B(t, x)gBB − βB B(t, x) (17b)

D1z(t, x) = σz
∂2

∂x2
z(t, x) − kC max{0,C(t, x) − Cth(t, x)}

+ kB max{0, B(t, x) − Bth(t, x)} (17c)

In Eq. (17c), the diffusion term of z(t, x) represents the stochastic nature of bone
dynamics, but not cells migration. More information about variables and parameters
can be found in Table3. Other proposal by Ryser and colleagues [37] explicitly
introduces OPG and RANKL as separate variables and includes the spatial evolution
of a single BMU. The model is described by Eq. (18), assuming gBB = 0 and, since
OPG, φO , RANKL and φR are modeled explicitly, gBC = 0.

D1C(t, x) = αCC(t, x)gCC − βCC(t, x) + f1
φR(t, x)

λ + φR(t, x)
θ(yC(t, x))C(t, x)

−ζ∇ · (yC(t, x)∇φR(t, x)), (18a)

D1B(t, x) = αBC(t, x)gCB − βB B(t, x), (18b)

D1φR(t, x) = αR yB,tR + fR�(φε
R(t, x)) − fB

φR(t, x)

λ + φR(t, x)
θ(yC(t, x))C(t, x)

− fROφR(t, x)φO(t, x), (18c)

D1φO(t, x) = αO yB,tO + fO�(φδ
O(t, x)) − fROφR(t, x)φO(t, x), (18d)

D1z(t, x) = −kC max{0,C(t, x) − Css} + kB max{0, B(t, x) − Bss}
= −kC yC (t, x) + kB yB (t, x) (18e)

The activation of osteoclasts is now dependent on autocrine parameters and RANK/
RANKL binding, encoded by the term f1

φR

λ+φR
θ(yC)C . RANK receptors saturation

threshold is described by aHill function,with half-saturation concentrationλ, and θ is
the Heaviside function (thus θ(yC) = 1 if the number of active osteoclasts yC verifies
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yC > 0; otherwise, θ(yC) = 0). Osteoclasts movement follows RANKL gradient, as
described by the term ζ∇ · (yC∇φR), at migration rate ζ . RANKL and OPG are
produced by active osteoblasts, considering that after osteoblasts precursors become
mature, there is a time delay tR and tO before they can produce RANKL and OPG,
encoded by yB,tR and yB,tO , respectively. RANKL and OPG porous diffusion in the
bone is given by fR�(φε

R) and fO�(φδ
O), at rates fR and fO . The binding of OPG

to RANKL is described by the term fROφRφO , which is present in both O and R
dynamics. For RANKL, however, an additional term f2

φR

λ+φR
θ(yC)C encodes the

RANK/RANKL binding in osteoclasts precursors, at rate f2, similarly to the term in
(18a). Sensitivity analysis and parameter estimation are conducted for this model in
[36]. The model of [27] is extended in [4] by adding spatial evolution to the different
components of themodel and by introducing appropriate fluxes in cells and regulatory
agents. Fluxes represent transport processes, such as diffusion or chemotaxis. This
model is able to capture the known organized structure of a BMU, presenting a
resorption zone at the front, then a reversal zone and lastly a bone formation zone.
The model also captures how PTH and the RANK/RANKL/OPG pathway affect the
bone cells in the different stages of maturation and during bone remodeling.

3.2 Models Including the Tumor Burden

Ayati and colleagues [2] also extended the model proposed in [17] by including the
diffusion process of multiple myeloma disease effects on bone dynamics:

D1C(t, x) = σC

∂2

∂x2
C(t, x) + αCC(t, x)

gCC

(
1+rCC

T (t,x)
LT

)
B(t, x)

gBC

(
1+rBC

T (t,x)
LT

)

−βCC(t, x) (19a)

D1B(t, x) = σB

∂2

∂x2
B(t, x) + αBC(t, x)

gCB

1+rCB
T (t,x)
LT B(t, x)

gBB −rBB
T (t,x)
LT

−βB B(t, x) (19b)

D1T (t, x) = σT

∂2

∂x2
T (t, x) + γT T (t, x) log

(
T (t, x)

LT

)
(19c)

This model’s bone mass equation is (17c). The tumorous variables and parameters
now introduced have the same meaning as in the local case (see Sect. 2.2), except
that T (t) and T (0) are now given by T (t, x) and T (0, x), respectively.

In [38], the effect of osteolytic bonemetastases is included in the bone remodeling
model in [36], accounting for spatial diffusion, as described by Eq. (20).

D1C(t, x) = αCC(t, x)gCC − βCC(t, x) + f1
φR(t, x)

λ + φR(t, x)
yC(t, x)

−ζ
∂

∂x

(
yC(t, x)

∂φR(t, x)

∂x

)
, (20a)
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D1φR(t, x) = kRφP(t, x)z(t) + τRT (t, x) + fR
∂2φR(t, x)

∂x2

− fB
φR(t, x)

λ + φR(t, x)
yC(t, x) − fROφR(t, x)φO(t, x), (20b)

D1φO(t, x) = τOT (t, x) + SO + fO
∂2φO(t, x)

∂x2
− βOφO(t, x)

− fROφR(t, x)φO(t, x), (20c)

D1φP(t, x) = τP T (t, x) + fP
∂2φP(t, x)

∂x2
− βPφP(t, x), (20d)

D1z(t, x) = −kC max{0,C(t, x) − Cth} = −kC yC(t, x), (20e)

T (t, x) = 1 − z(t, x) (20f)

This model assumes bone formation to be much slower than bone resorption and
tumor growth in the presence of osteolytic bone metastases. As such, the osteoblast
dynamics is not taken into account and is removed from the model. Hence, bone
mass dynamics z in Eq. (20e) is dominated by bone resorption and tumor cells T
fill in the space left in the bone after resorption. Tumor-derived PTHrP φP increases
the production of RANKL φR by osteoblasts. Also, tumor cells can also produce
RANKL. The conjugation of these factors leads to increased bone resorption in
areas close to the tumor, which contributes to tumor growth, and thus the vicious
cycle of bone metastases is captured by this model.

3.3 Non-local Treatment Approach

3.3.1 Normal Cell Diffusion

Following what was done in [2], a treatment possibility is applied accounting for the
effects of proteasome inhibition (V1(t)) and anti-cancer therapy (V2(t)) in myeloma
bone disease, similarly to what was done locally in the model (14). For the following
equation, when t < tstart, treatment is yet to be started.

V1(t) = υ1, for t ≥ tstart (21a)

V2(t) = υ2, for t ≥ tstart (21b)
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Fig. 8 Bone model simulation with an initial distribution of osteoclasts and tumor by C(0, x) =
T (0, x), asC(0, x) presented in [2], where a represents the osteoclast evolution, and b the osteoblast
evolution. Treatment was introduced at tstart = 1000 days, with parameters V1(t) = υ1 = 0.0005
and V2(t) = υ2 = 0.007. Non-spatial and bone mass parameters were set according to the local
model presented for periodic remodeling cycles (see column A of Table 3) and as in the one-
dimensionalmodelwithout tumor (see [2] formore details), respectively; and all of the tumor-related
parameters are the same as in the local case

D1C(t, x) = σC

∂2

∂x2
C(t, x) + αCC(t, x)

gCC

(
1+rCC

T (t,x)
LT

)
B(t, x)

gBC

(
1+rBC

T (t,x)
LT

)

−βCC(t, x) (22a)

D1B(t, x) = σB

∂2

∂x2
B(t, x) + αBC(t, x)

(
gCB

1+rCB
T (t,x)
LT

)

B(t, x)
(
gBB −rBB

T (t,x)
LT

)

− (
βB − V1(t)

)
B(t, x) (22b)

D1T (t, x) = σT

∂2

∂x2
T (t, x) + (γT − V2(t)) T (t, x) log

(
T (t, x)

LT

)
(22c)

Again, the bone mass equation is (17c) (non-local healthy bone remodeling case).
Simulations for such treatment, and its effect on the bone microenvironment, can be
seen inFig. 8,where the tumor is of initial small intensity, acting in several areas of the
spatial bone environment x , but growing over time. Bone resorption and formation,
both temporal and spatially, are disruptedwith a delayed response from the osteoblast
population [2]. Consequently, an increased bonemass loss is observed in areas where
the tumor has a more intense effect until treatment is introduced at tstart = 1000 days.
Osteoclast production is then promoted, and the tumor growth inhibited until its
significant reduction and regular bone dynamics coupling are achieved. Bone mass
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only partially recovers, since areas of the bone where the tumor effect was stronger
were unable to fully recover its original density.

The pharmacokinetics and pharmacodynamics presented in Sect. 2.3.1 can also
be integrated with non-local bone remodeling models. This was done in [8], by
considering that each drug’s pharmacodynamic effect to be the same throughout
the bone, for the same time instance. Again, the effect of a drug, di (t), is given by
Eq. (13), where d1(t) is the effect of bisphosphonates; d2(t) represents denosumab;
and chemotherapy is encompassed in d34(t) (it is noted that, in [8], chemotherapy
is considered to be a combination of two distinct drugs, hence the subscript 34).
Simulation results, from [8], can be found in Fig. 9. This model’s bone mass equation
is once more (17c) (non-local healthy bone remodeling case), and the remaining
equations are as follows.

D1C(t, x) = σC

∂2

∂x2
C(t, x)

+αCC(t, x)
gCC

(
1+rCC

T (t,x)
LT

)
B(t, x)

gBC

(
1+rBC

T (t,x)
LT

)
(1+Kd1d1(t))

− (
1 + Kd2d2(t)

)
βCC(t, x) (23a)

D1B(t, x) = σB

∂2

∂x2
B(t, x) + αBC(t, x)

(
gCB

1+rCB
T (t,x)
LT

)

B(t, x)
(
gBB −rBB

T (t,x)
LT

)

−βB B(t, x) (23b)

D1T (t, x) = σT

∂2

∂x2
T (t, x)

Fig. 9 Simulation of model of Eq.23, where a is the osteoclasts evolution, b the osteoblasts
evolution, c the tumorous influence, and d the consequences for the bone mass. Used parameters
can be found in column C of Table3
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+ (
1 − Kd34d34(t)

)
γT T (t, x)a

(
T (t, x)

LT

)b

(23c)

Although different set of parameterswere used, when compared to the localmodel
in Eq.15 and considering the different used expressions for the tumor evolution, the
results behave similarly. The tumor is extinguished as osteoclasts and osteoblasts
recover their steady-state value.

3.3.2 Working with Fractional Derivatives

Anomalous diffusion corresponds to partial differential equations with fractional
derivatives in order to time and second-order derivatives in order to space [21]. In
what pharmacokinetic and pharmacodynamic models are concerned, those presented
in Sect. 2.3.1 were achieved for models with integer orders derivatives. Hence, they
cannot be directly applied when one is considering fractional order: New PK equa-
tions are introduced and assumed to have the same fractional order as the model
itself. Such adaptation is given by Eq. (24), where α is the fractional order of the
system. The PD component, however, remains as in Eq. (13).

DαCg(t) = −kaCg(t) (24a)

DαCp(t) = kaCg(t) − keCp(t) (24b)

C0
P = D0F

Vd
(24c)

d(t) = Cp(t)

C50 + Cp(t)
(24d)

Themodel fromEq. (23) is, but, a particular case of a general anomalous diffusion
case, corresponding to setting the describing fractional order to α = 1. The general
model of order α (including for the PK/PD treatment) is as follows [8].

DαC(t, x) = σC

∂2

∂x2
C(t, x)

+αCC(t, x)
gCC

(
1+rCC

T (t,x)
LT

)
B(t, x)

gBC

(
1+rBC

T (t,x)
LT

)
(1+Kd1d1(t))

− (
1 + Kd2d2(t)

)
βCC(t, x) (25a)

DαB(t, x) = σB

∂2

∂x2
B(t, x) + αBC(t, x)

(
gCB

1+rCB
T (t,x)
LT

)

B(t, x)
(
gBB −rBB

T (t,x)
LT

)

−βB B(t, x) (25b)

Dαz(t, x) = σz
∂2

∂x2
z(t, x) − kC max{0,C(t, x) − Cth(t, x)}

+ kB max{0, B(t, x) − Bth(t, x)} (25c)
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DαT (t, x) = σT

∂2

∂x2
T (t, x)

+ (
1 − Kd34d34(t)

)
γT T (t, x)a

(
T (t, x)

LT

)b

(25d)

Also, the local PTH model in Eq. (15) was extended to a three-dimensional case
in [45]. This was done replacing variable χ(t, x) (where χ can be C , B, T , z, Cth

or Bth) with χ(t, x) = χ(t, x1, x2, x3) and using the Laplacian operator ∇ = ∂2

∂x21
+

∂2

∂x22
+ ∂2

∂x23
instead of ∂2

∂x2 . However, for comparison sake, only the one-dimensional
version is presented next.

DαC(t, x) = σC

∂2

∂x2
C(t, x)

+αCC(t, x)gCC +rC
T (t,x)
LT B(t, x)gBC +KPTHpool21 PTHpool(t,x)−Kd1d1(t)

−(βB + Kd2d2(t))C(t, x) (26a)

DαB(t, x) = σB

∂2

∂x2
B(t, x) + αBC(t, x)gCB B(t, x)gBB +rB

T (t,x)
LT − βB B(t, x)

(26b)

DαPTHpool(t, x) = −βPTHPTHpool(t, x) + KPTHδ(t) + rPTHrP max{0,C(t, x)

−Cth(t, x)}T (t, x)

LT
(26c)

P(δ(t) = 1) = 1 − e
−

(
t

λw

)kw

(26d)

DαT (t, x) = σT

∂2

∂x2
T (t, x) + kT max{0,C(t, x) − Cth(t, x)} T (t, x)

λT + T (t, x)
−Kd3d3(t)T (t, x) (26e)

DαCth(t, x) = αCCth(t, x)
gCC +rC

T (t,x)
LT Bth(t, x)

gBC −Kd1d1(t)

−(βC + Kd2d2(t))Cth(t, x) (26f)

DαBth(t, x) = αBCth(t, x)
gCB Bth(t, x)

gBB +rB
T (t,x)
LT − βB Bth(t, x) (26g)

The bone mass equation of this model is in Eq. (25c) for an order α. Simulations
of this model can be found in Fig. 10.

Table3 lists variables and parameters, used throughout presented simulations,
giving their meaning and dimensions.

4 Conclusions and Future Work

This chapter overviewed someof themost recentmodels for bone remodeling dynam-
ics that take into account the biochemical microenvironment and the main cellular
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Healthy bone

Bone with tumor

Fig. 10 Equation (26) model simulation, comparing the effect of several values of α on the model
dynamics, where the α = 1 case is represented by either a blue or red line. On the left, a healthy
bone environment is represented and, on the right, a tumorous bone environment. From [45]

processes. These computational models allow for the integration of pathological phe-
nomena such as cancer and also accommodate pharmacokinetic/pharmacodynamic
(PK/PD) information.

There are many other models for the bone that are focused on the biomechanical
aspects of the system, addressed in other chapters of this book. As future work, it
would be crucial to integrate both approaches, as to improve the models in terms
of accuracy to describe the real organ. In fact, these parallel lines of research are
already being integrated in recent years. Scheiner, Pivonka, and colleagues [25, 42]
proposedmodels that include the coupled regulations of geometrical, biomechanical,
andbiochemical factors. TheODEsystemuses biochemical factors already addressed
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such as TGFβ, RANK and RANKL, OPG and PTH with the fvas , Sv and �bm of
BMU. Although very complete, this model does not take into account one entire
bone (e.g., femur) and the corresponding spatial effects, neither the inclusion of
input functions representing PK/PD of the therapeutic drugs. These therapies were
also analyzed separately, such as denosumab and bisphosphonates for osteoporosis
[11, 41]. It is expected that all of these modeling and computational analysis of
bone physiology will have an impact on the development of clinical decision support
systems in the future.
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Appendix: Fractional and Variable Order Derivatives

To formally define fractional derivatives (fractional is the historical name, though
order α can be irrational or have an imaginary part), one can present the Grünwald–
Letnikoff construction, usually denoted by Dα f (t). The upper limit of the sum-
mations was set so that D−k, k ∈ N to retrieve Riemann integrals: cD−1

t f (t) =∫ t
c f (t) dt , and in general

cD
−k
t f (t) =

∫ t

c
. . .

∫ t

c
f (t) dt . . . dt

︸ ︷︷ ︸
k integrations

, k ∈ N (27)

Since it is not always reasonable to call c and t limits of integration, they are usually
called terminals instead.

The Grünwald–Letnikoff construction is as follows.

cD
α
t f (t) = lim

h→0+

∑[ t−c
h ]

k=0 (−1)k
(a
k

)
f (t − kh)

hα
(28)

where

(
a
k

)
are the combinations of a things k at a time, given by
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(
a

k

)
=

⎧⎪⎨
⎪⎩

�(α+1)
�(k+1)�(α−k+1) , if α, k, (α − k) ∈ R \ Z−
(−1)k�(k−α)

�(k+1)�(−α)
, if α ∈ Z

− ∧ k ∈ Z
+
0

0, if (k ∈ Z
− ∨ (k − α) ∈ N) ∧ α /∈ Z

−
(29)

Function �(z), z ∈ C \ Z−
0 generalizes the factorial since �(k + 1) = k!, k ∈ Z

+
0 .

Since α can assume any real value, it is possible to make it change with time
(continuously or not). There are different reasonable ways of accounting for a time
varying order α(t), again considering the Grünwald–Letnikoff definition. The two
most straightforward options are given below:

• in the first, the argument of the order is simply the current value of t , meaning that
the result at a given instant will not depend on previous values of the order α(t):

cD
α(t)
t f (t) = lim

h→0+

∑| t−c
h |

k=0 (−1)k
(
α(t)
k

)
f (t − kh)

hα(t)
(30)

• in the second, the argument of α in the summation is the same argument of f ,
leading to a memory of previous values of the order [48]:

cD
α(t)
t f (t) = lim

h→0+

| t−c
h |∑

k=0

(−1)k
(
α(t−kh)

k

)
f (t − kh)

hα(t−kh)
(31)

Other possible definitions exist [43, 47]. Since it is reasonable to expect the previous
evolution of a metastasis to have influence in the present time, variable order models
presented presume this type of definition.

Readers interested in details can consult [21, 23, 39, 46, 48], which also address
alternative definitions of fractional derivatives (namely those of Riemann–Liouville
and of Caputo, that will, for functions well-behaved enough, lead to similar results).

Letting h have a small but finite value, approximations of fractional derivatives
can be obtained. Values can be stored in matrices updated iteratively. This is the idea
behind the numerical method of [29, 31, 32], termed matrix approach to discrete
fractional calculus, used for the simulations in this chapter throughMATLAB toolbox
[30].
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