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Introduction

Particle systems are of great importance in many industrial branches like in
chemical and food industries as well as in geotechnical engineering problems. Cou-
pling of particles with fluids are related to fluvial erosion, fluidized beds, sedimen-
tation and transport in the blood system. Thus, the numerical simulation of particle
systems is of great interest, both from practical and fundamental points of view.
Therefore, the understanding, the simulation and analysis of related phenomena is
significant, particularlywith regard tomicromovements, homogenization procedures
and coupled moderate or highly concentrated particulate flows. Certainly, such prob-
lems require an accurate description of the underlying physics, but the simulation
of particulate flow and movement is still a challenging task for a large number of
particles.

Popular examples of pure particle methods are Molecular Dynamics (MD), see
Alder and Wainwright (1957), Discrete Element Method (DEM), see Cundall and
Strack (1979), and Smoothed Particle Hydrodynamics (SPH), see
Gingold and Monaghan (1977). In these methods, the positions of the particles and
the evolution of their quantities are described by ordinary differential equations and
solved in a Lagrangian way. In the framework of DEM and SPH, the particle dynam-
ics are obtained by applying the Newton-Euler equations and the Navier-Stokes
equations, respectively. Both of these numerical techniques (DEM and SPH) utilize
many common algorithms, such as neighbor search algorithms, distance compu-
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tations among neighboring particles and force or kernel evaluations. Thus, many
subroutines can be implemented, used and maintained in a single framework.

In the recent years, effort has been made to improve the existing methods and to
develop new efficient numerical approaches. Among the various methods evolved
so far, e.g., see Zhu et al. (2007), Zohdi (2007), Pöschel and Schwager (2005) for an
overview, the approaches for the treatment of particle systems through direct numer-
ical simulation models are of high computationally cost. Basically, direct numerical
simulations can be performed by different discretization methods.

Concerning the treatment of the particle collision, the methods employed in the
DEMcan be classified into twomain classes, which are characterized by hard particle
contact (Alder and Wainwright 1957) and soft particle contact (Cundall and Strack
1979). Methods assigned to the first of the two groups are instantaneous collision
models. Here, the particles separate immediately from each other in the event of
collision. Theyundergonodeformation, so they are considered to be rigid. In the other
approach the particles are treated as quasi rigid objects such that they are assumed
to suffer minute deformations during the collision. The force based methods of the
second group can be applied to govern the contact forces implying the particles’
strength and eventually also allow to locally break a particle if very strong forces
act on it. The difference of the methods for the treatment of particle contact is
particularly crucial in highly concentrated systems. Here, a particle will usually
collided with more than one partner at the same time. Hence some particles might be
as well in a permanent contact situation with neighboring particles like it occurs in a
heap of sediments or in case of agglomerated adhesive particles. In these cases, the
application of hard contact models may not be suitable. In contrast, force based
soft contact models are applicable both for dense and dilute systems. However,
the computation of particle interactions is for soft spheres much more expensive
compared to the hard particle approach since very small time steps are needed to
resolve the contact interaction between the particles in time.

Other applications—like sediment transport or multiscale computation for gran-
ular materials—are related to coupling discrete elements to solids and fluids. In case
of a direct numerical simulation of 3D particulate flows one has to couple fluids and
particles. This can be done in different ways that span the bridge from just tracing
of particles to a full interaction of particle and fluid via the tractions. The latter can
be based on a complex ALE finite element scheme using a adaptive remesching of
the finite elements to follow the particle movement, see e.g. Johnson and Tezdu-
yar (1997), but is—due to the high computational effort—often limited to a small
amount of particles. Another approach is the fictitious domain method which can
handle much more particles in the flow. In both approaches the numerical tools of
DEM and FEM are appropriately coupled by a staggered scheme. To describe the
collision between particles, the soft contact approach is applied using repulsive force
models. For more details see e.g. Avci and Wriggers (2012).

When coupling finite elements for solids and discrete elements there are two dif-
ferent possibilities. The first is a surface coupling where contact between a finite and
a discrete element takes place. This can be handled by standard contact algorithms,
see e.g. Wriggers (2006). On the other hand it is possible to couple finite and dis-
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crete elements within a volume. Such coupling requires specific treatment of linking
the movement of the finite and the discrete elements. On possibility is the Arlequin
methodology, see e.g. Dhia and Rateau (2005), which was applied with respect to
particle and finite element coupling in Wellmann and Wriggers (2012).

Governing Equations

Themotion of a quasi rigid particlePi is described by a position vectorXi to its center
of mass and a rotation �i at time t = t0. In Fig. 1 the kinematics of the movement of
the particle Pi is depicted for different time instants. Additionally another particle
P j is depicted that collides with particle Pi .

The trajectory of particle Pi can be deduced from the Newton-Euler equations.
Consequently its translational and angular velocities, ui = ẋi and ωi = d�i

dt , have to
satisfy

Mi
d2xi

dt2
= ρi Vig + Fi (1)

�i
dωi

dt
+ ωi × (�iωi ) = Ti . (2)

Therein, Mi is the mass, xi the position vector at time t to the center of mass
(defined as Mi ), ρi the mass density, g the gravity and Vi denotes the volume of
the particle Pi . The tensor of inertia is represented by �i . Furthermore, the sum of
the contact forces is stated as Fi The torques that are caused by Fi with respect to
Mi are associated to the quantities Ti . The traction vector t on ∂�p is defined by
t = σn f where n f is the unit outward normal vector and ri is the position vector of
a point at ∂�p with respect toMi .

Fig. 1 Kinematics and
applied forces related to a
particles
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Constitutive Modeling of the Particle Phase

The particles are modeled as quasi rigid spheres. To describe their collision behavior,
a force based approach is used in order to govern the inter-particle forces that are
deduced from repulsive models. In the sections below, the relevant concepts of the
contact models are stated.

Normal Contact Model

The normal contact force acting between the colliding particles is described by a
constitutive viscoelastic model. For adhesive particles being in contact, the attractive
van der Waals force is additionally considered in the contact area. For the purpose
of governing the elastic contact force Fn

e , the Hertzian law (Hertz 1882) constitutes
a well-established model. If the particles, to be treated, have also viscous mate-
rial properties a consistent phenomenological model has to be employed, see e.g.,
Refs. (Brilliantov et al. 1996, 2007), where the effect of viscosity is considered via
an added dissipative force Fn

d . Regarding the presence of the attractive van derWaals
force in the contact area, the JKR theory, see Johnson et al. (1971), provides a proper
treatment of adhesion, even in the case of underwater adhesion, see e.g. Loskofsky
et al. (2006). For a detailed description of the JKR model see also Maugis (1992).

If adhesion is considered, the attractive force Fn
a acts against the elastic force Fn

e
so that it consequently reduces the particles’ compression. Thus, one obtains for the
force acting on a particle

Fn = Fn
e − Fn

a + Fn
d . (3)

Hertz Law

When using the Hertzian contact law Hertz (1882), the elastic repulsive force is
governed by

Fn
e = 4

3
E

√
R δ3/2 , (4)

where δ = δi + δ j is the total particle compression which is also called the approach
of the particles. The values

R =
(

1

Ri
+ 1

R j

)−1

and E =
(
1 − ν2

i

Ei
+ 1 − ν2

j

E j

)−1

(5)

denote the effective radius and the effective Young’s modulus of the contact pair Pi

and P j , respectively. The Poisson ratio is associated with the particles as νi and ν j .
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Fig. 2 Hertz contact law

Fig. 3 Adhesion in the contact interface

As a result of the mutual compression of the particles, a circular area is formed in
the contact zone. One can deduct that 1 the radius a of the shaped contact area is
related to the total deformation δ via a2 = Rδ.

Figure2 depicts the deformation state that is assumed locallywithin the quasi rigid
spheres. It also shows the relation between approach δ of the two spheres with respect
to the force Fn . One can easily see the nonlinearity of the Hertz law. Furthermore
the distribution of the contact pressure σ/σm depending on the contact radius r/a is
depicted in the right part of the figure. Here σ = Fn/(π a2) and σm = max σ .

Adhesion Law

According to the JKRmodel, see Johnson et al. (1971), it is implied that the adhesive
force acts only within the contact area, see Fig. 3. Here, the work of adhesion under
a liquid or just the free energy changes to separate a unit contact area of Pi and P j

in a liquid medium (l) is defined as
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W = γil + γ jl − γi j , (6)

where γ describes the respective interfacial energy, see Loskofsky et al. (2006).
Since the adhesive force Fn

a is opposed to the elastic force Fn
e , it reduces the elastic

deformation δe leading to

δe − δa = a2

R
−

√
2π Wa

E
, (7)

where δe is obtained from the Hertzian law, the second term δa is due to adhesion,
see Maugis (1992) for details. The corresponding forces follow as

Fn
e − Fn

a = 4Ea3

3R
− 2πa2

√
2W E

πa
. (8)

In case of the absence of external forces, i.e. Fn = 0, then Fn
a �= 0 while Fn

e = 0
and Fd

e = 0. Furthermore, an equilibrium contact area a0 is formed in the contact
zone where a mutual compression δ0 of the particles occurs

a0 =
(
9π W R2

2E

)1/3

and δ0 =
(
3R

4

(
π W

E

)2)1/3

. (9)

To pull the particles off each other, one has to apply a traction force under which
they suffer minute stretching deformations forming a connecting neck around the
contact zone. Once the pulling force has reached a critical level, i.e. Fn = −Fn

c , the
contact breaks and the particles will separate. The critical force Fn

c yields

Fn
c = 3

2
π W R (10)

and the corresponding critical distance of the particles follows

δc = 1

481/3
a2
0

R
. (11)

Here the pulling distance can be defined as δ = −δc. Figure4 demonstrates the
differences in the force.

Viscous Effects in the Contact Interface Law

Viscous properties can bemodeled using the system depicted in Fig. 5 for two spheres
(a) and one sphere (b) being in contact wth a rigid wall. The forces in the damper d
are provided below.
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Fig. 4 Forces in the contact interface due to Hertz and the JKR model

Fig. 5 Viscous effects in the
contact interface

To consider the properties of material viscosity, a dissipative force is adopted
according to the work of Brilliantov et al. (1996, 2007) which yields

Fn
d = Aȧ

∂

∂a
(Fn

e − Fn
a ) . (12)

From this definition, the viscous force follows as

Fn
d = ȧ A

(
4Ea2

R
− 3

2

√
8π W Ea

)
, (13)

where the dissipative factor1 A is related to a constant function of material viscos-
ity. Consequently, considering the above set of equations, one obtains the force-
displacement relation for adhesive viscoelastic particles

1This factor A can also be used as a fitting parameter within specific simulations—like quasistatic
predictions of granular material behaviour—to damp oscillations.
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Fn(δ) =4

3
E

√
Rδ3/2

− 2R3/4δ3/4
√
2π W E (14)

+ Aδ̇

(
2E

√
R
√

δ − 3

√
1

2
R3/2π W Eδ1/4

)
.

Computation of the Approach

In the present contribution, the constitutive law given in (4) and (14) is treated
analogous to the penalty method, e.g., see Wriggers (2006) and Wellmann et al.
(2008). In this methodology one computes the force Fn

e between to particles Pi and
P j is computed from the approach of two particles by using the interface law (in case
of the classical penalty approach this equation is Fn

e = εP δ with the spring stiffness,
know as penalty parameter, εP ). However in this case the penalty spring is nonlinear,
see e.g. Eq. (4).

In all constitutive equations above the approach of the spheres or the rate of this
approach has to be evaluated. For this one can compute the gap in normal direction
gn from the given current positions of two spheres

gn = (Ri + R j ) − l > 0, (15)

and define gn ≡ δ as the mutual compression or approach of Pi and P j . With this
kinematic relation the contact forces can be immediately computed by evaluating
(4) and (14). In Eq. (15) l = ||l|| is the length of the distance vector between Mi

and M j in the current configuration, where l = xi − x j . The deformation rate δ̇ is
computed in Eq. (16) by the projection of the relative velocity (vi − v j ) onto the
direction of the normal unit vector n. This yields

δ̇ = ġn = −(vi − v j ) · n where n = l/ l. (16)

We note that the direction of the contact force Fn of the respective particle is
opposite to the direction of compression δ. Based on this observation, one can deduct
from (14) the contact forceFn = Fnn that contributes to themomentum equation (1).

Tangential Contact Model

The constitutive relation of Coulomb’s law couples the tangential force Ft to the nor-
mal force Fn . For this the coefficient of friction has to be introduced as a constitutive
parameter. The relation is not smooth since for sliding

Ft = μG Fn (17)
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holds while
Ft ≤ μH Fn (18)

is valid for sticking. In this relation the dynamic and the static coefficients of friction
have to be introduced. The parameter μG stands for sliding and μH for stick, where
μG ≤ μH . The relations between normal and tangential force are depicted in Fig. 6.
Here (a) shows a simplifiedmodel of the real behaviour in (b)withμG = μH .Another
simplified model is depicted in Fig. 6c which differentiates between the coefficient
of friction for sticking and sliding.

Within the constitutive treatment for the tangential interface force Ft , a tangential
spring-dashpot element with an incorporated slider is used in order to model the
tangential friction behaviour, see e.g. Cundall and Strack (1979). This model is
depicted in Fig. 7 where again the difference between the tangential contact of two
particles and of a particle with a rigid wall is made.

Since the tangential part of the interface force Ft is related to two states, sliding
and sticking, it can be viewed like an elasto-plastic process where sliding relates to
the plastic flow. For these types of problems efficient algorithms were developed in
the mid 1980s. The first application to frictional contact can be found in Wriggers
(1987) and has been further developed over the years, see e.g. Wriggers et al. (1990),
Luding (2004) and Wriggers (2006). The idea is to algorithmically predict first a
“trial” stick step followed by a slip check in the second step. Then the regularized
penalty formulation for the tangential trial traction takes the form

Fig. 6 Friction states with stick and sliding

Fig. 7 Friction states with
stick and sliding
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Ft
o = −(ctgt + dtvt ). (19)

Therein, gt is the elongation of the tangential spring, ct and dt are the tangential
spring stiffness and the tangential dissipation parameter, respectively. The tangential
relative velocity at the contact point C is given by

vt = vs − (vs · n)n (20)

with the relative velocity at C

vs = vCi − vCj , (21)

where the surface velocities are defined by vCi = Ui + ωi × ri and vCj = U j + ω j ×
r j . The vectors pointing fromMi andM j to C are associated with ri = Ri (−n) and
r j = R jn, respectively. By introducing a trial function f tr, the following relation
can be stated for the tangential contact

f tr =: ||Ft
o|| − μs ||Fn|| ⇒

{≤ 0 : Stick
>0 : Slip.

(22)

If f tr ≤ 0 the contact point C is in the stick region and if f tr > 0 it is in slip
region, thus sliding occurs in the contact area. Note that the stick case is valid again
if Ft

o < μd Fn holds during the sliding process. If the contact point sticks, the actual
tangential spring gt is incremented for the succeeding time step by the relation
�gt = vt�tD. Consequently, the new spring length is defined by

gt = gt + �gt . (23)

Here, �tD denotes the time step of the discrete element method. However, if the
contact point slides in the current time step, the tangential spring is aligned by

gt = − 1

ct
(Ft t + dtvt ) (24)

in order to fulfill Coulomb’s slip condition. Therein, t = Ft
o/||Ft

o|| is the direction of
the trial traction.

In two subsequent time steps, the contact area might be slightly rotated. As
proposed in Luding (2004), the tangential spring is continuously projected onto
the current rotated contact area at the beginning of each new time step via gt =
gt − (gt · n)n . For the above approach, the tangential contact force is Ft = ||Ft

o|| if
f tr ≤ 0 and Ft = μd Fn if f tr > 0 holds. By computing Ft , one obtains Ft = Ft t
and Tt = r × Ft which contributes to F and T in Eq. (1) and Eq. (2), respectively.
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Rolling Resistance Model

During a rolling motion of two particles over each other, the leading part of the
contact area is continuously compressed and the trailing part is decompressed with
respect to the rolling direction, see Fig. 8.

In case of an attractive van der Waals force in the contact area, the particles suffer
an opposing torque to rolling motion, whereby a rolling resistance is generated. For
instance, regarding an agglomerated straight particle chain with a lack of rolling
resistance, the chain cannot resist any external impact resulting in a tangential force.
As a consequence, the particles will roll smoothly over each other, whereby the chain
easily bends and it will finally take a compact shape. For a detailed discussion of the
rolling resistance of adhesive particles, see Dominik and Tielens (1995).

For a constitutive treatment of the rolling resistance, amodel consisting of a rolling
spring-dashpot-slider element is adopted in this contribution, see Iwashita and Oda
(1998) and Fig. 9.

At this, the opposing torque is given by

Mr
o = −(cϕφ + dϕφ̇) = − 1

R
(cφgr + dϕvr ). (25)

Therein, cϕ is the rolling stiffness, dϕ relates to the rolling viscosity coefficient, φ
to the particle rotation, gr to the rolling distance and vr is the rolling velocity which,
according to Kuhn and Bagi (2004), can be computed using

vr = −R

[
(ωi − ω j ) × n + 1

2

(
1

R j
− 1

Ri

)
vt

]
. (26)

Fig. 8 Idea of rolling
resistance
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Fig. 9 Model of rolling
resistance

In the context of the JKR theory one can set for cφ the following expression

cϕ = 4Fn
c R

(
a

a0

)3/2

where dϕ = 0 , (27)

see Dominik and Tielens (1995) for details.
Introducing a trial force Fr

o = Mr
o/R, the problem of the rolling resistance can

algorithmically be treated analogous to the tangential friction model. Here, one can
apply as a yield criteria for the slider Mr

max or μr Fn , where μr is a rolling friction
coefficient, see Iwashita and Oda (1998).

DEM Solver

The kinematic variables of the particles are governed by the computation of the
equations of motion (1) and (2). For this purpose, a time integration scheme has to
be applied to solve these equations.

At the same time the contact between the particles has to be considered. This
yields the different contact forces and moments between the particles. These forces
and moments can be computed using the interaction laws discussed in the previous
section.
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Time Integration

Since DEM simulations usually need very small time steps�t in order to resolve the
constitutive laws between the particles the computational time for a larger system of
particles is high. Thus time integration methods need to be considered very carefully.
They have on one side to guarantee a certain accuracy and on the other side they need
to be efficient and robust to solve the Newton-Euler-equations in (2). An overview
with respect to methods that are used in DEM can be found in e.g. Kruggel-Emden
et al. (2008).
The integration scheme is composed of three steps:

1. Predicting all the kinematic variables.
2. A force computation step is followed using the predicted variables according

to Section “Constitutive Modeling of the Particle”. Hence, the evolution of the
translational and rotational accelerations can be computed from Eqs. (1) and (2).

3. Applying an error criteria between the predicted and calculated accelerations, the
correction of the kinematic variables is ensued.

To illustrate the construction of such time integration scheme we consider a Gear
algorithm in more detail. This starts with a predictor computation which is different
for translation and rotation.
For the translation one computes

xP(t + �t) = X(t) + Ẋ(t)�t + 1

2
Ẍ(t)�t2 + 1

6

...
X(t)�t3

ẋP(t + �t) = Ẋ(t) + Ẍ(t)�t + 1

2

...
X(t)�t2

ẍP(t + �t) = Ẍ(t) + ...
X(t)�t (28)

...
x P(t + �t) = ...

X(t)

For the rotation the predictor is given by

ωP(t + �t) = �(t) + �̇(t)�t + 1

2
�̈(t)�t2 + 1

6

...
�(t)�t3 + 1

24

(iv)

� (t)�t4

ω̇P(t + �t) = �̇(t) + �̈(t)�t + 1

2

...
�(t)�t2 + 1

6

(iv)

� (t)�t3

ω̈P(t + �t) = �̈(t) + ...
�(t)�t + 1

2

(iv)

� (t)�t2 (29)

...
ωP(t + �t) = ...

�(t) + (iv)

� (t)�t

(iv)
ω P(t + �t) = (iv)

� (t)

Based on these predictions the force FP(xP , ẋP) and the moment MP(ẋP ,ωP) are
computedwhich act both on a particle. Based on these quantities the translational and
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rotational accelerations can be computed from (2). This yields a∗ = FP/m and ω̇∗ =
MP/�. Now the differences �ẍ = a∗ − ẍP and �ω̇ = ω̇∗ − ω̇P can be determined
for the corrector step in which the translations and rotations are corrected. For the
translations it follows

x(t + �t) = xP(t + �t) + ct
0 s

t

ẋ(t + �t) = ẋP(t + �t) + ct
1 s

t 1

�t

ẍ(t + �t) = ẍP(t + �t) + ct
2 s

t 2

�t2
(30)

...
x (t + �t) = ...

x P(t + �t) + ct
3 s

t 6

�t3

and the rotations are obtained from

ω(t + �t) = ωP(t + �t) + cr
0 s

r

ω̇(t + �t) = ω̇P(t + �t) + cr
1 s

r 1

�t

ω̈(t + �t) = ω̈P(t + �t) + cr
2 s

r 2

�t2
(31)

...
ω(t + �t) = ...

ωP(t + �t) + cr
3 s

r 6

�t3
(iv)
ω (t + �t) = (iv)

ω P(t + �t) + cr
4 s

r 24

�t4

with the constants

st = �t2

2
�ẍ , ct

0 = 1

6
, ct

1 = 5

6
, ct

2 = 1 , ct
3 = 1

3

and

sr = �t �ω̇ , cr
0 = 251

720
, cr

1 = 1 , cr
2 = 11

12
, cr

3 = 1

3
, cr

4 = 1

24

Within this method of Gear the translations are approximated by a Taylor expan-
sion of 3rd order while the rotations have to be modeled by a 4th order Taylor expan-
sion. This choice is necessary to achieve conservation of momentum and moment of
momentum and a good accuracy of the solution. A more complete description of the
Gear algorithm can be found in Allen and Tildesley (1987), Pöschel and Schwager
(2005).
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Fig. 10 Behaviour of a rigid sphere for a given velocity including frictional contact

Fig. 11 a Temporal evolvement of the coordinates of the center point of the particle and b trajectory
of the particle during the motion

Test Example

A specific example is considered to show that the normal and tangential contact is
working correctly. Here only one sphere is considered that comes into contact with
a rigid surface. It will be shown that the given formulations and the algorithms are
able to reproduce the rebound of the particle, see Fig. 10. The following constants
are used to compute the motion of the particle: density ρ = 2.5 kg/m3, dissipation
factor A = 6 × 10−4 s, normal stiffness ct = 106 N/m, damping dt = 50Ns/m and
friction coefficient for stick and slip μ(G,H) = 2.5. The behaviour can be modeled
experimentally using a bouncy ball made of rubber.

As shown in Fig. 10 the particle is subjected to an initial translations and rotational
velocity v0 und ω0 at time t0 = 0 and starts from the rigid plane. The rotational
velocity is described as a backward spin.

The temporal evolvement of the numerically computed coordinates of the particle
center can be found in Fig. 11a. Figure11b depicts the trajectory of the particle center
and thus shows the behaviour of the particle that jumps back and forth due to the
initial velocities and the gravitational force ρb. From the diagrams in Fig. 11 one
can observe that the maximal altitude of the particle is x3,max = 5.00m after that it
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Fig. 12 a Temporal evolvement of the translational and rotational velocities and b temporal evolve-
ment of the kinetic energy

starts to drop and contacts the rigid plane after tk = 2.00 s at x1,k = 20.00m. This
numerical result matches exactly the analytical solutions for the trajectory2. When
the particle impacts the rigid plane then due to tangential relative displacements a
frictional force develops that is opposite to the direction of the relative velocity.
This force reduces the tangential translation velocity and contributes to a change
in the rotational velocity. In this case the frictional force is large enough to reverse
the tangential motion and the rotation, see Fig. 12a. Thus the particle bounces back.
However due to the frictional dissipation the kinetic energy is reduced such that the
particle does not reach the position at t0. The numerical computed kinetic energy
is depicted in Fig. 12b with respect to time. Following the further trajectory of the
particle one observes that it bounces back and forth until the kinetic energy is used
up which is depicted by the horizontal line in the right part of Fig. 12b .

Search Algorithms

Besides the time integration, the computation of the contact forces is the most CPU
time consuming part of a DEM simulation. Thus the contact search and detection
governs the efficiency of aDEMcode.WIth this inmind, the evaluation of the contact
detectionEq. (15) has to beminimized to neighboring particles, since they are the only
eligible contact partners. If one simply creates a loop over all N particles in a system,
the number of tests amounts to

∑N−1
i=1 (N − i) = N (N − 1)/2. Such an algorithmhas

the complexity of O(N 2) and will result in extremely large computation time, even
for small particle systems with less than a few thousand particles. If large particle

2Analytical solution for the trajectory:

x̃3,max = (v0 sin α)2

2 b
, x̃1,k = v20 sin(2 α)

b
, t̃k = 2 v0 sin α

b
.
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Fig. 13 Particle contact:
Verlet distance

systems with several millions of particles have to be computed then an algorithm of
complexity O(N ) is needed.

There many different algorithm that reduce the complexity of contact search.
Among them are methods like space cell decomposition, combinations with binary
tree search and heapsort algorithms for the global search. More advanced algorithms
are the NBS algorithm, the alternating digital tree method, space filling curve tech-
nique or Double-Ended Spatial Sorting (DESS) algorithm.

Herewewill look inmore detail at algorithms that stem from the area ofmolecular
dynamics. These are known as Verlet list and linked cells and can be found for the
Verlet list in Verlet (1967) and for the link cells in Quentrec and Brot (1973). Here
both algorithms will be combined in order to yield a fast contact search algorithm,
see also Ref. (Allen and Tildesley 1987) and references therein.

Verlet lists are based on the idea that for each particle Pi {i = 1, . . . , N } one
generates a list with neighbouring particles. By this, the local contact check can be
reduced to these neighbouring particles and thus is a local operation. The Verlet list
can be build, based o the computation of a distance

gn
Verlet = (Ri + lv) + R j − (xi − x j ) · n

⎧⎨
⎩

≤ 0 no neighbour

> 0 neighbour

{
j < i list of Pi

j > i list of P j .

This takes into account the Verlet distance lv depicted in Fig. 13. The Verlet dis-
tance can be defined by

lv = 1

2

(
Max [ Ri ]

N
i=1 + Min [ Ri ]

N
i=1

)
αv .
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Fig. 14 Building the Verlet list with the linked cell method

where αv is a constant that can be chosen. A good choice for this constant is αv ≈
0.05–0.10.

A list of neighboring particles is maintained for each particleP holding lv > |gn|.
Once theVerlet list is built, Eq. (15) is only evaluated for neighboring pairs. Certainly,
the list has to be updated at some intervals since particles can move to other locations
and then have completely new neighbours. Here, a possible rebuild criteria can be
defined by

�smax = Max
[ ||xi − x′

i ||
]N

i=1 > βvlv .

In this equation the position vector x′
i of a particle Pi is used which relates to

the position vector of the existing Verlet list while xi is the position vector of the
current time step. The factor βv can be generally chosen in the range 0.5–0.6 which
ensures that no complete penetration of a particle by another one occurs. For details
see Pöschel and Schwager (2005).

In total the Verlet list method has a complexity of O(N ) for the computation
of the local contact and thus the contact forces. However building the list is not so
efficient. Due to this drawback the linked cell approach is used to construct the list.
This amounts to an algorithm that overall approaches a complexity of O(N ). The
idea of the linked cell algorithm is to divide the computational domain into cubic cells
of uniform side lengths that are slightly larger than the maximal particle diameter,
see Fig. 14.

After assigning the particles Pi to the cells with respect to their center of mass
Mi , the relevant particles for the construction of the neighbor list are referenced to
the 26 surrounding cells and of course to the mid-cell which contains the considered
particle Pi .
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Example: Silo Discharge

The DEM scheme is validated by means of a laboratory silo discharge experiment.
Choi et al. (2004) analyzed the velocity profile in a quasi 2D silo using an image
based particle tracking method. For the numerical modeling of this silo discharge,
see Wellmann (2011).

The box-shaped silo of size [20 × 2.5 × 90] cm is filledwith soda lime glass beads
of slight polydispersity (d = 3 ± 0.1 mm) using a distributed filling procedure. In
total 190.782 particles are used to model the silo discharge. This leads in three
dimensions to 1.144.692 particles. The rectangular orifice of [16 × 25]mm at the
bottom center is opened and a steady state flow is allowed to develop before the
tracking procedure starts. The tracking covers a rectangular section of [20 × 50] cm
above the orifice. The flow is measured at a rate of 125 frames per second for 16.4
s. For the evaluation of the velocity profile the observation window is divided into
[48 × 48] mm cells used as averaging domains. For a more detailed description of
the data gathering and evaluation see Choi et al. (2004, 2005).

The elastic parameters of soda lime glass are given as E = 71 GPa and ν = 0.22.
The mass density is ρ = 2.5 g/cm3. The friction coefficient between dry soda lime
glass beads was measured by Ishibashi et al. (1994) as μ = 0.162. The gravity con-
stant is chosen as g = 9.81m/s2. Since the particles in the vicinity of the orificemove
at reasonable velocities the viscoelastic contact law described in Section “Normal
Contact Model” is applied. The material constant A, see (13), to include viscoelastic
effects was chosen as A = 5.05 10−8 s for the soda lime glass beads. This corre-
sponds to a restitution coefficient of 0.97 at a relative velocity of 1.18 m/s and a
particle size of d = 3.18 mm. The material properties of the glass silo were assumed
to be identical with the glass bead properties.

The stiffness of the particles and their size require a time step of the order of
�t ≈ 1µs. For a total simulation time of 10 s this results in a number of time steps of
the order of 107.Combinedwith a number of particles of N ≈ 2 × 105 this amounts to
a large computational effort. However, numerical tests show that the system behavior
is not altered significantly by reducing the stiffness of the particles to E = 0.9GPa.
This value assures that the overlap corresponding to the maximum contact force at
the silo bottom is less than 1% of the particle radius. In order to preserve the dynamic
particle behavior the viscoelastic constant is adopted to A = 2.9 10−7 s. The stiffness
reduction enables a time step of δt = 10µs resulting in 3 × 106 steps for a simulation
period of 30 s.

The initial sample, see Fig. 15, is generated using uniformly distributed particles
with diameters in the range 2.9–3.1mm and a solid fraction in the packaging of
� = 0.5. To account for the solid fraction of a denser package (� = 0.6) the box
used as package space is enlarged in the z direction to 1.08m. In order to get realistic
fabric properties the sample is settled under the influence of gravity using the DEM
scheme and the above material parameters. At the point where the kinetic energy was
nearly dissipated the orifice was opened starting the silo discharge simulation for 30
s. During the simulation the output was written at 0.3 s intervals, see Fig. 15. After a
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Fig. 15 Outflow of the particles from the silo at different times

short time a steady state flow develops with a mass flow rate of Q = 132.6g/s. This
corresponds to a deviation of 6% from the experimental flow rate of Q = 141.1 g/s.
Considering the uncertainties regarding the initial distribution of the particles and
the container-particle friction this match is satisfactory.

In order to deduce a continuous downward velocity distribution v(x) from the
discrete DEM output a coarse graining scheme is applied. For this purpose the box-
shaped [20.5 × 50] cm silo volume above the orifice is divided into a regular grid of
[40 × 1 × 80] linear hexaeders. An ansatz vh is defined on the hexaeder mesh and
is fittes to the discrete DEM results using a volume weighted least square approach.
Finally, the velocity profile is evaluated in the silo mid-plane and averaged over the
data points between t = 5 s and t = 20 s. The resulting profile is compared with the
experimental profile from (Choi et al. 2004) in Fig. 16.

There is a good agreement of the maximum velocity at the orifice, of the velocity
gradient around the orifice, and of the run of the contour lines. The DEM scheme
predicts a realistic shape of the stagnant zones at the lower silo corners. For quanti-
tative comparisons 1D velocity profiles are evaluated at two heights sketched in the
right part of Fig. 16.

The results are presented in Fig. 17.While there is a close agreement of the profiles
in the vicinity of the orifice at z = 9.1 d the simulation predicts higher downward
velocities at the boundaries at z = 29.1 d. Note that this deviation can result basically
from the different evaluation schemes:While theDEMdata is averagedover the entire
depth of the silo, the experimental image-based particle tracking method is based
solely on the trajectories of the particles at the front window.
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Fig. 16 Comparison of
downward velocity:
simulation and experiment

Fig. 17 Comparison of
downward velocity:
simulation and experiment

In total it is obvious that the discrete element method can predict flow states in
a granular material accurately based on the introduced interface laws between the
particles. However due to the large number of particles involved in one discretization
itwill be necessary to use parallel computing architectures. This is the only possibility
to obtain reasonable results within engineering time frames.

DEM Using Parallel Solvers

Many engineering problems have to bemodelled by using a large number of particles.
These are e.g. milling applications or outflow problems in silos as discussed in the
last section. Since many particles interact which each other high computing power
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is needed to model a particle flow application in an accurate manner. This leads to
computer codes that include algorithms which can make the transition from serial to
parallel computing.

Within such models millions of spherical or arbitrary geometry particles have to
be generated in order to describe a typical in granular flow problem accurately. The
main application areas being simulations in geomechanics, structural, oil and gas
engineering and other processes involving granular materials and particulate flows.
When using parallel computing chunks of particles have to be distributed to the dif-
ferent processors. This distribution not only affects the computational part but also
the set up of the problem.Within the latter task scaling ofmesh generators necessarily
requires mesh splitting before multiple processors assignment and domain decom-
position techniques. During the run time—due to large movements of particles a load
balancing procedure has to be executed in order to distribute the computational load
equally to all processors.

Solver DEMFLOW

Themesh-free particle code DEMFLOW, developed at our institute over many years,
is a parallel and fully open source framework for the simulation of the flow of gran-
ular materials, fluid and particulate flows. This particle solver was initially designed
for cluster computations and was further developed to run efficiently on massively
parallel high performance computer (HPC) architectures allowing large scale com-
putations of engineering problems. The focused application areas of DEMFLOW
are particle and multiphase flows and fluid-particle interaction. The DEM-module is
completely developed in-house.

A common feature shared bymesh-free particlemethodswhich also includemesh-
lessmethods like smoothed particle hydrodynamics (SPH), seeGómez-Gesteira et al.
(2012a); Gomez-Gesteira et al. (2012b), is that they all represent computationally
very intensive simulation techniques. Due to their explicit nature, the correspond-
ing solvers require very small time steps. In classical discrete element methods the
restriction is due to the displacement-driven nature of the force computations and in
the SPH due to the CFL condition. As a result, a large number of time steps need
to be performed in order to simulate a time period of practical interest. Moreover,
to discretize real engineering problems in a 3D framework of a particle method, a
set of at least several millions particles is required for a sufficiently detailed recon-
struction of a complex system. In general, the simulation of systems with more than
one million particles can only be carried out in a reasonable way if a massively
parallelized strategy is used. This is also necessary in order to handle the aspect of
memory requirement, especially in really large scale problems.

A widely used strategy for the parallelization task in computational mechanics
is the domain decomposition approach in conjunction with the use of the Message
Passing Interface (MPI) library for inter-domain or inter-process communication.
In the framework of this strategy, the computational domain is geometrically split
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into sub-domains according to the number of specified processes (tasks, cores). Each
generated sub-domain is then assigned to a core, including the respective particles.
Both the communication and the data exchange between the cores are realized by
the network interconnect and controlled by the instructions of the MPI library. Com-
munication between sub-domains is necessary since the force computation or kernel
evaluation of a particle close to a boundary of its sub-domain requires informa-
tion about the particles positioned in the next boundary layer of the corresponding
adjacent sub-domain.

A crucial point in the domain decomposition strategy, which demands great atten-
tionwhen applied to particlemethods, is the aspect of the rescaling load-balanceof the
processes. As particles can cover large distances by traversing several sub-domains
of the computational domain this occurs especially in highly dynamic systems, like
in rotary mixing drums (for an illustration, see Fig. 20). Many dynamic systems are
often characterized by a heterogeneous particle distribution over the entire domain.
As a result, some sub-domains include only a small number of particles and while
others have a large number of particles. In the former case, the cores are underused
and complete their jobs faster than the cores in the latter case. Thus, they are idle
while waiting for the rest of the processes to complete. In general, unequal workload
leads to a strong decrease in the efficiency of the calculation with respect to the
number of used cores. Consequently, the development of powerful algorithms for
a continuous adaptation of the domain decomposition in terms of a homogeneous
workload across all processes is inevitable for efficient computations of large scale
engineering problems. This critical point represents a great challenge, especially in
case of irregular 3D computational domains with a highly dynamic change of the
particle distribution.

A second essential aspect that needs to be accounted for in order to design a
high performance simulation tool in the framework of particle methods is directly
linked to the organization and management of the particle data in the memory. The
procedure for the force or kernel evaluation represents the most computationally
intensive part in a simulation time step. The corresponding routine is carried out
for each particle and over the neighbors of each individual particle. A common
approach is to create and maintain an array index list (Verlet list) which stores the
neighbors of each particle. The Verlet list is generally built by the use of the Linked-
Cell method, see Allen and Tildesley (1987). By using this list, the evaluations are
only performed in the respective neighborhood of a discrete element, thus avoiding
unnecessary computations and minimizing numerical costs of a simulation, see also
Section “SearchAlgorithm”.At the beginning of a simulation, the order of the particle
data sequence assembled in the memory corresponds usually to the real particle
neighborhood connectivity, which is represented by the indices in the neighbor list.
With time, the initial arrangement of the particleswill be scattered due to large relative
particle motions. As the neighborhood connectivity changes, the particle data in the
memory can be considered as dispersed with respect to the accesses to the neighbor
list. This leads to a significant amount of cache misses, because the particles are now
more or less randomly distributed. Thus, a currently requested data of a neighbor
is increasingly less likely to be present in the loaded cache line compared to the
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beginning of the simulation run. However, in case of a cachemiss, fetching the data of
a particle from themainmemory is severalmagnitudes slower than retrieving the data
from one of the caches (L1-, L2- or L3-cache). Consequently, very efficient particle
reordering algorithms and data management strategies are essential to maximize
cache hits and to sustain the performance of a code.

There are a number of particle solvers in the literature that use the domain
decomposition approach in combination with MPI for parallelization. Some of those
advanced tools based on mesh-free particle methods are briefly mentioned below. A
sophisticated SPH fluid solver, called SPH-Flow, is presented in Maruzewski et al.
(2009). One of the applications of this code was the simulation of the impact of a
snooker ball onto the free surface of water. The authors report a parallel efficiency
of 58% when solving the problem with 124 million fluid particles on 2048 cores,
72% for 7.5 million particles with 128 cores and 87% for 3.5 million particles with
64 cores. The computations for the performance analysis were carried out on a Blue
Gene/L high performance computer. Gadget-2 is another advanced open source par-
ticle code reported in the literature. This SPH code extends the work of Springel
(2005) and is designed to perform parallel large scale cosmologic simulations. A
modified version of Gadget-2 regarding its application to hydrodynamic problems
is presented in Ulrich and Rung (2006). In this work, the authors report that the
solver shows a super-linear speedup behavior when applying it up to 256 cores. As a
scalability test, they considered a fixed-size problem of a sloshing application with
40 million fluid particles. The computations for the performance test were carried
out on the HLRN2 high performance computer. Motivated by the libraries that are
provided by the well-known frameworks of PETSc and Trilinos for linear algebra,
Sbalzarini et al. (2006) have designed and developed a MPI based middleware for
particle methods (among others, for DEM, MD and SPH), which consists of highly
efficient parallel libraries. The collection of open source libraries associated with
this project is known as the Parallel Particle-Mesh (PPM) Library. The overall aim
of the PPM middleware is to provide a very flexible framework with which a pro-
grammer can develop highly efficient particle-based software for HPC architectures
in a short time. For instance, Walther and Sbalzarini (2009) developed a DEM tool
in the setting of PPM and demonstrated a parallel efficiency of 40% on 192 cores
of a Linux cluster by performing simulations of 3D sand avalanches with up to 122
million particles. The efficiency of a SPH code implemented by adapting the PPM
libraries is presented in Sbalzarini et al. (2006) for a vortex ring simulation. The
paper shows that this particle solver reaches an efficiency of 91% on 128 cores of a
Cray XT4 HPC architecture.

The software DEMFLOW is developed on the basis of PPM libraries. In fact, the
optimization of a parallel particle software regarding its load-balancing capabilities
can yield a far more efficient tool as optimizing the respective calculation algorithms
assigned to the cores. The collection of libraries that the PPM middleware provides
in this context are very efficient and complex algorithms that can be included rela-
tively easily in DEMFLOW. The corresponding PPM libraries are highly optimized
and tested on HPC architectures with fairly encouraging results, see Sbalzarini et al.
(2006) and Walther and Sbalzarini (2009). Those libraries include, among others,
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a range of adaptive domain decomposition approaches, assignment algorithms for
sub-domains onto cores according to their individual performances, dynamic load-
balancing and heuristic criteria for particle domain updating. The integration of the
parallel PPM libraries in DEMFLOW in terms of load-balancing will significantly
contribute to the further development of the particle code regarding its parallel effi-
ciency on HPC architectures.

The best way to minimize the amount of cache misses in particle based computa-
tions is to reorder the particle data in the memory according to the particle locality.
However, in 3D, it is quite hard to sort scattered particle data for optimal cache use;
one has to also consider that the neighborhood of each particle changes with time
for relative particle motions. To deal with this problem, Springel (2005) uses (in his
astrophysics SPH-software Gadget-2) an approach based on the Peano-Hilbert curve
method. By applying this method, one can create a space-filling curve that maps the
considered 3D domain onto a 1D curve. In Gadget-2, this curve is employed both
to realize the domain decomposition and to reorder the particle data in the memory.
In the latter case, the algorithm maps the particle positions onto the Peano-Hilbert
curve and sorts the particles based on this mapping. Finally, a particle arrangement
in memory which conforms to a large extent to the real neighborhood of the particles
is obtained. In Springel (2005), it is reported that computational tests with Peano-
Hilbert ordering show a performance gain of the code Gadget-2 by a factor of two
when compared with the performances achieved by neglecting data sorting. This
approach was implemented in DEMFLOW.

Numerical Test: Medium Number of Cores

Bothmajor factors of a particle solver—adaptive load-balancing anddynamic particle
data reordering—have severe impact on the parallel performance of a code.

As the algorithms which should cover these two aspects are not yet developed in a
sophisticated manner and implemented into the DEMFLOW solver, the computation
domain of the system chosen to study its performance is only slightly affected by
a traversing particle flow. THe next example was selected to discuss the scalability
of the code on a parallel computer. For that particles were used to roughly model a
fluid.

The considered system consists of two relatively light cubes that plunge into a
compact particle domain which is fully discretized with fluid particles, as illustrated
in Fig. 18. Here, load-balancing and data reordering are of less importance. The
performance tests were run on a Linux-Cluster. The cluster is equipped with 16
nodeswheremost of the nodes contain either two IntelXeonE5-2642-v2CPUs (2× 6
cores) or two Intel Xeon E5-2670CPUs (2× 8 cores). The speedups and efficiency of
the software are computationally evaluated on the basis of four discretization levels
of the system: the original problem consists of 5 million particles, the half-sized
model of 2.5 million particles, the double-sized model of 10 million particles and
the quadrupled-sized model of 20 million particles. For each discretization level, a
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Fig. 18 Two light solid cubes plunging into water. Simulation results at different configurations in
time

Fig. 19 Speed-ups of DEMFLOW for different problem sizes

fixed-size problem is examined. The obtained speedups and efficiencies of the test
computations are displayed inFig. 19, respectively.A linear speed-up canbeobserved
for the original, half-sized and double-sized system. For the original problem, the
study even shows slight super-linear behavior of the program for a smaller number of
cores. Furthermore, a speedup of 47 is obtained for the largest system when 56 cores
are used for computation. The latter case results in an efficiency of 84%, whereas the
other three cases achieve efficiencies in the range of 90–120%. It can be concluded
that the results obtained in this study are successful and promising as they show a
very good speedup of the solver up to 56 cores.
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Numerical Test: Large Number of Cores

DEMFLOW has been adapted to run on a high performance computer with large
core numbers in order to validate its efficiency on HPC architectures. For this task a
system which implies a sophisticated strategy both for load-balancing with adaptive
domain decomposition and for particle-data reorganization was considered.

It can be shown that the optimization of a parallel particle software regarding
its load-balancing capabilities can yield a far more efficient tool as optimizing the
respective calculation algorithms assigned to the cores. The collection of libraries that
the PPMmiddleware provides in this context very efficient and complex algorithms.

Hence discrete element methods have become a more and more powerful tool,
especially for the treatment of granular materials and in process engineering. The
method can nowadays be applied to problems that 10–1000 million particles for an
accurate model. These processes are run on high performance parallel computers
or GPU systems. The problem of the interchanging contact conditions due to large
particle motions presents a challenge for the development of algorithms that scale
well for large numbers of processors.

Here we will focus on an application that uses the discrete element method to
model the mixing process of different particles in a drum. In this application 25
million of particles are used. The particles are mixed by rigid blades that rotate about
the middle axis. The blades move up and down to perform the mixing. Here many
small time steps have to be executed to follow the complex motion of the particles
in a mixer. Such problems necessitate the use of parallel computing machines with
many cores. The problem is depicted in Fig. 20a which also shows the allocation of
parts of the particles to a specific core of the parallel computer.

Fig. 20 a Set-up of the particles in the mixer. The color code shows the allocation to a core in the
parallel computer. b Velocity distribution of the particles during mixing
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Fig. 21 Speed-up for different algorithmic treatments

In Fig. 20b the velocity distribution during the mixing process is depicted. One
can easily observe the complex movement of the particles that change locations and
by that also come into contact with other particles thus leaving the location of the
initial allocation and thus have to be moved to another core. This usually requires
a reallocation and slows down the computation. In order to get a good performance
sophisticated algorithms have to be used that on one hand have to be fast and on the
other limit data transfer. By that a speed-up that is linear, even for a large number of
processors, can be achieved, see Fig. 21.

The blue curve shows the theoretical limit for a speed-up investigation up to
3500 processors. The red curve shows the performance for one algorithm while the
more sophisticated algorithm and related data handling amounts to the green curve
that produces an extremely good linear speed-up over all number of processors that
reaches 66% of the theoretical limit.

Conclusion

The discrete element method is a very good tool for the prediction of granular flows
and for the determination of macrsocopic material parameters of granular materials.
It is a time consuming method since on one side millions of particles have to be
used for adequate models and on the other side very small time steps have to be used
to resolve the complex interaction laws between particles. This means that discrete
element technologies have to be solved on computers with parallel architecture.

It was shown that DEMPACK exhibits a near linear scalability for small scale
problems but also for large scale problems with rapidly changing interconnections
of the particles due to large movements.
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