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Preface

Due to the ever-increasing computational power of modern computers, numerical
simulations are of growing interest in many different fields of science and engi-
neering. The fast-growing computer performance itself, however, is not sufficient to
satisfy the increasing requirements for the simulation of complex problems arising
in particular in fluid and solid mechanics. To this end, accurate and robust
numerical methods are of crucial importance. The development of reliable and
efficient discretization methods for solids and fluids supports the understanding of
complex physical phenomena and helps to accelerate and improve the development
of products and processes in almost all disciplines. Based on numerical simulation,
the number of time-consuming and expensive experiments can be significantly
reduced, and engineering decisions are supported by computed data which might be
very difficult if not impossible to obtain experimentally.

This book stems from the lecture notes of the CISM course: Modeling in
Engineering Using Innovative Numerical Methods for Solids and Fluids which was
held in Udine on October 15–19, 2018. Innovative and promising modeling and
simulation approaches are presented, including the basics of the methods as well as
advanced topics and complex applications. The contents cover the following topics:

• Particle methods addressing particle-based materials and numerical methods that
are based on discrete element formulations.

• Fictitious domain methods, which allow for the efficient discretization of
complex problems for which meshing with finite elements is very difficult.

• Phase field models, which have become very popular to model and simulate
fracture problems (among other possible applications).

• Computational fluid dynamics based on modern finite volume schemes to effi-
ciently discretize the Navier–Stokes equations.

• Hybridizable discontinuous Galerkin methods, which offer high convergence
rates for the simulation of incompressible flow problems.

• Non-intrusive coupling methods for structural models that allow to perform
model adaptive simulations based on existing well-developed solvers.

v



The book is addressed to scientists and engineers from both academia and industry
working in the broad field of civil and mechanical engineering or applied physics
and mathematics. The intention is to provide a sound introduction to innovative
numerical methods for solids and fluids which can be used to model complex
problems in engineering.

Braunschweig, Germany Laura De Lorenzis
Hamburg, Germany Alexander Düster
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Discrete Element Methods: Basics
and Applications in Engineering

Peter Wriggers and B. Avci

Introduction

Particle systems are of great importance in many industrial branches like in
chemical and food industries as well as in geotechnical engineering problems. Cou-
pling of particles with fluids are related to fluvial erosion, fluidized beds, sedimen-
tation and transport in the blood system. Thus, the numerical simulation of particle
systems is of great interest, both from practical and fundamental points of view.
Therefore, the understanding, the simulation and analysis of related phenomena is
significant, particularlywith regard tomicromovements, homogenization procedures
and coupled moderate or highly concentrated particulate flows. Certainly, such prob-
lems require an accurate description of the underlying physics, but the simulation
of particulate flow and movement is still a challenging task for a large number of
particles.

Popular examples of pure particle methods are Molecular Dynamics (MD), see
Alder and Wainwright (1957), Discrete Element Method (DEM), see Cundall and
Strack (1979), and Smoothed Particle Hydrodynamics (SPH), see
Gingold and Monaghan (1977). In these methods, the positions of the particles and
the evolution of their quantities are described by ordinary differential equations and
solved in a Lagrangian way. In the framework of DEM and SPH, the particle dynam-
ics are obtained by applying the Newton-Euler equations and the Navier-Stokes
equations, respectively. Both of these numerical techniques (DEM and SPH) utilize
many common algorithms, such as neighbor search algorithms, distance compu-
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2 P. Wriggers and B. Avci

tations among neighboring particles and force or kernel evaluations. Thus, many
subroutines can be implemented, used and maintained in a single framework.

In the recent years, effort has been made to improve the existing methods and to
develop new efficient numerical approaches. Among the various methods evolved
so far, e.g., see Zhu et al. (2007), Zohdi (2007), Pöschel and Schwager (2005) for an
overview, the approaches for the treatment of particle systems through direct numer-
ical simulation models are of high computationally cost. Basically, direct numerical
simulations can be performed by different discretization methods.

Concerning the treatment of the particle collision, the methods employed in the
DEMcan be classified into twomain classes, which are characterized by hard particle
contact (Alder and Wainwright 1957) and soft particle contact (Cundall and Strack
1979). Methods assigned to the first of the two groups are instantaneous collision
models. Here, the particles separate immediately from each other in the event of
collision. Theyundergonodeformation, so they are considered to be rigid. In the other
approach the particles are treated as quasi rigid objects such that they are assumed
to suffer minute deformations during the collision. The force based methods of the
second group can be applied to govern the contact forces implying the particles’
strength and eventually also allow to locally break a particle if very strong forces
act on it. The difference of the methods for the treatment of particle contact is
particularly crucial in highly concentrated systems. Here, a particle will usually
collided with more than one partner at the same time. Hence some particles might be
as well in a permanent contact situation with neighboring particles like it occurs in a
heap of sediments or in case of agglomerated adhesive particles. In these cases, the
application of hard contact models may not be suitable. In contrast, force based
soft contact models are applicable both for dense and dilute systems. However,
the computation of particle interactions is for soft spheres much more expensive
compared to the hard particle approach since very small time steps are needed to
resolve the contact interaction between the particles in time.

Other applications—like sediment transport or multiscale computation for gran-
ular materials—are related to coupling discrete elements to solids and fluids. In case
of a direct numerical simulation of 3D particulate flows one has to couple fluids and
particles. This can be done in different ways that span the bridge from just tracing
of particles to a full interaction of particle and fluid via the tractions. The latter can
be based on a complex ALE finite element scheme using a adaptive remesching of
the finite elements to follow the particle movement, see e.g. Johnson and Tezdu-
yar (1997), but is—due to the high computational effort—often limited to a small
amount of particles. Another approach is the fictitious domain method which can
handle much more particles in the flow. In both approaches the numerical tools of
DEM and FEM are appropriately coupled by a staggered scheme. To describe the
collision between particles, the soft contact approach is applied using repulsive force
models. For more details see e.g. Avci and Wriggers (2012).

When coupling finite elements for solids and discrete elements there are two dif-
ferent possibilities. The first is a surface coupling where contact between a finite and
a discrete element takes place. This can be handled by standard contact algorithms,
see e.g. Wriggers (2006). On the other hand it is possible to couple finite and dis-
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crete elements within a volume. Such coupling requires specific treatment of linking
the movement of the finite and the discrete elements. On possibility is the Arlequin
methodology, see e.g. Dhia and Rateau (2005), which was applied with respect to
particle and finite element coupling in Wellmann and Wriggers (2012).

Governing Equations

Themotion of a quasi rigid particlePi is described by a position vectorXi to its center
of mass and a rotation �i at time t = t0. In Fig. 1 the kinematics of the movement of
the particle Pi is depicted for different time instants. Additionally another particle
P j is depicted that collides with particle Pi .

The trajectory of particle Pi can be deduced from the Newton-Euler equations.
Consequently its translational and angular velocities, ui = ẋi and ωi = d�i

dt , have to
satisfy

Mi
d2xi

dt2
= ρi Vig + Fi (1)

�i
dωi

dt
+ ωi × (�iωi ) = Ti . (2)

Therein, Mi is the mass, xi the position vector at time t to the center of mass
(defined as Mi ), ρi the mass density, g the gravity and Vi denotes the volume of
the particle Pi . The tensor of inertia is represented by �i . Furthermore, the sum of
the contact forces is stated as Fi The torques that are caused by Fi with respect to
Mi are associated to the quantities Ti . The traction vector t on ∂�p is defined by
t = σn f where n f is the unit outward normal vector and ri is the position vector of
a point at ∂�p with respect toMi .

Fig. 1 Kinematics and
applied forces related to a
particles
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Constitutive Modeling of the Particle Phase

The particles are modeled as quasi rigid spheres. To describe their collision behavior,
a force based approach is used in order to govern the inter-particle forces that are
deduced from repulsive models. In the sections below, the relevant concepts of the
contact models are stated.

Normal Contact Model

The normal contact force acting between the colliding particles is described by a
constitutive viscoelastic model. For adhesive particles being in contact, the attractive
van der Waals force is additionally considered in the contact area. For the purpose
of governing the elastic contact force Fn

e , the Hertzian law (Hertz 1882) constitutes
a well-established model. If the particles, to be treated, have also viscous mate-
rial properties a consistent phenomenological model has to be employed, see e.g.,
Refs. (Brilliantov et al. 1996, 2007), where the effect of viscosity is considered via
an added dissipative force Fn

d . Regarding the presence of the attractive van derWaals
force in the contact area, the JKR theory, see Johnson et al. (1971), provides a proper
treatment of adhesion, even in the case of underwater adhesion, see e.g. Loskofsky
et al. (2006). For a detailed description of the JKR model see also Maugis (1992).

If adhesion is considered, the attractive force Fn
a acts against the elastic force Fn

e
so that it consequently reduces the particles’ compression. Thus, one obtains for the
force acting on a particle

Fn = Fn
e − Fn

a + Fn
d . (3)

Hertz Law

When using the Hertzian contact law Hertz (1882), the elastic repulsive force is
governed by

Fn
e = 4

3
E

√
R δ3/2 , (4)

where δ = δi + δ j is the total particle compression which is also called the approach
of the particles. The values

R =
(

1

Ri
+ 1

R j

)−1

and E =
(
1 − ν2

i

Ei
+ 1 − ν2

j

E j

)−1

(5)

denote the effective radius and the effective Young’s modulus of the contact pair Pi

and P j , respectively. The Poisson ratio is associated with the particles as νi and ν j .
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Fig. 2 Hertz contact law

Fig. 3 Adhesion in the contact interface

As a result of the mutual compression of the particles, a circular area is formed in
the contact zone. One can deduct that 1 the radius a of the shaped contact area is
related to the total deformation δ via a2 = Rδ.

Figure2 depicts the deformation state that is assumed locallywithin the quasi rigid
spheres. It also shows the relation between approach δ of the two spheres with respect
to the force Fn . One can easily see the nonlinearity of the Hertz law. Furthermore
the distribution of the contact pressure σ/σm depending on the contact radius r/a is
depicted in the right part of the figure. Here σ = Fn/(π a2) and σm = max σ .

Adhesion Law

According to the JKRmodel, see Johnson et al. (1971), it is implied that the adhesive
force acts only within the contact area, see Fig. 3. Here, the work of adhesion under
a liquid or just the free energy changes to separate a unit contact area of Pi and P j

in a liquid medium (l) is defined as
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W = γil + γ jl − γi j , (6)

where γ describes the respective interfacial energy, see Loskofsky et al. (2006).
Since the adhesive force Fn

a is opposed to the elastic force Fn
e , it reduces the elastic

deformation δe leading to

δe − δa = a2

R
−

√
2π Wa

E
, (7)

where δe is obtained from the Hertzian law, the second term δa is due to adhesion,
see Maugis (1992) for details. The corresponding forces follow as

Fn
e − Fn

a = 4Ea3

3R
− 2πa2

√
2W E

πa
. (8)

In case of the absence of external forces, i.e. Fn = 0, then Fn
a �= 0 while Fn

e = 0
and Fd

e = 0. Furthermore, an equilibrium contact area a0 is formed in the contact
zone where a mutual compression δ0 of the particles occurs

a0 =
(
9π W R2

2E

)1/3

and δ0 =
(
3R

4

(
π W

E

)2)1/3

. (9)

To pull the particles off each other, one has to apply a traction force under which
they suffer minute stretching deformations forming a connecting neck around the
contact zone. Once the pulling force has reached a critical level, i.e. Fn = −Fn

c , the
contact breaks and the particles will separate. The critical force Fn

c yields

Fn
c = 3

2
π W R (10)

and the corresponding critical distance of the particles follows

δc = 1

481/3
a2
0

R
. (11)

Here the pulling distance can be defined as δ = −δc. Figure4 demonstrates the
differences in the force.

Viscous Effects in the Contact Interface Law

Viscous properties can bemodeled using the system depicted in Fig. 5 for two spheres
(a) and one sphere (b) being in contact wth a rigid wall. The forces in the damper d
are provided below.
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Fig. 4 Forces in the contact interface due to Hertz and the JKR model

Fig. 5 Viscous effects in the
contact interface

To consider the properties of material viscosity, a dissipative force is adopted
according to the work of Brilliantov et al. (1996, 2007) which yields

Fn
d = Aȧ

∂

∂a
(Fn

e − Fn
a ) . (12)

From this definition, the viscous force follows as

Fn
d = ȧ A

(
4Ea2

R
− 3

2

√
8π W Ea

)
, (13)

where the dissipative factor1 A is related to a constant function of material viscos-
ity. Consequently, considering the above set of equations, one obtains the force-
displacement relation for adhesive viscoelastic particles

1This factor A can also be used as a fitting parameter within specific simulations—like quasistatic
predictions of granular material behaviour—to damp oscillations.
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Fn(δ) =4

3
E

√
Rδ3/2

− 2R3/4δ3/4
√
2π W E (14)

+ Aδ̇

(
2E

√
R
√

δ − 3

√
1

2
R3/2π W Eδ1/4

)
.

Computation of the Approach

In the present contribution, the constitutive law given in (4) and (14) is treated
analogous to the penalty method, e.g., see Wriggers (2006) and Wellmann et al.
(2008). In this methodology one computes the force Fn

e between to particles Pi and
P j is computed from the approach of two particles by using the interface law (in case
of the classical penalty approach this equation is Fn

e = εP δ with the spring stiffness,
know as penalty parameter, εP ). However in this case the penalty spring is nonlinear,
see e.g. Eq. (4).

In all constitutive equations above the approach of the spheres or the rate of this
approach has to be evaluated. For this one can compute the gap in normal direction
gn from the given current positions of two spheres

gn = (Ri + R j ) − l > 0, (15)

and define gn ≡ δ as the mutual compression or approach of Pi and P j . With this
kinematic relation the contact forces can be immediately computed by evaluating
(4) and (14). In Eq. (15) l = ||l|| is the length of the distance vector between Mi

and M j in the current configuration, where l = xi − x j . The deformation rate δ̇ is
computed in Eq. (16) by the projection of the relative velocity (vi − v j ) onto the
direction of the normal unit vector n. This yields

δ̇ = ġn = −(vi − v j ) · n where n = l/ l. (16)

We note that the direction of the contact force Fn of the respective particle is
opposite to the direction of compression δ. Based on this observation, one can deduct
from (14) the contact forceFn = Fnn that contributes to themomentum equation (1).

Tangential Contact Model

The constitutive relation of Coulomb’s law couples the tangential force Ft to the nor-
mal force Fn . For this the coefficient of friction has to be introduced as a constitutive
parameter. The relation is not smooth since for sliding

Ft = μG Fn (17)
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holds while
Ft ≤ μH Fn (18)

is valid for sticking. In this relation the dynamic and the static coefficients of friction
have to be introduced. The parameter μG stands for sliding and μH for stick, where
μG ≤ μH . The relations between normal and tangential force are depicted in Fig. 6.
Here (a) shows a simplifiedmodel of the real behaviour in (b)withμG = μH .Another
simplified model is depicted in Fig. 6c which differentiates between the coefficient
of friction for sticking and sliding.

Within the constitutive treatment for the tangential interface force Ft , a tangential
spring-dashpot element with an incorporated slider is used in order to model the
tangential friction behaviour, see e.g. Cundall and Strack (1979). This model is
depicted in Fig. 7 where again the difference between the tangential contact of two
particles and of a particle with a rigid wall is made.

Since the tangential part of the interface force Ft is related to two states, sliding
and sticking, it can be viewed like an elasto-plastic process where sliding relates to
the plastic flow. For these types of problems efficient algorithms were developed in
the mid 1980s. The first application to frictional contact can be found in Wriggers
(1987) and has been further developed over the years, see e.g. Wriggers et al. (1990),
Luding (2004) and Wriggers (2006). The idea is to algorithmically predict first a
“trial” stick step followed by a slip check in the second step. Then the regularized
penalty formulation for the tangential trial traction takes the form

Fig. 6 Friction states with stick and sliding

Fig. 7 Friction states with
stick and sliding
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Ft
o = −(ctgt + dtvt ). (19)

Therein, gt is the elongation of the tangential spring, ct and dt are the tangential
spring stiffness and the tangential dissipation parameter, respectively. The tangential
relative velocity at the contact point C is given by

vt = vs − (vs · n)n (20)

with the relative velocity at C

vs = vCi − vCj , (21)

where the surface velocities are defined by vCi = Ui + ωi × ri and vCj = U j + ω j ×
r j . The vectors pointing fromMi andM j to C are associated with ri = Ri (−n) and
r j = R jn, respectively. By introducing a trial function f tr, the following relation
can be stated for the tangential contact

f tr =: ||Ft
o|| − μs ||Fn|| ⇒

{≤ 0 : Stick
>0 : Slip.

(22)

If f tr ≤ 0 the contact point C is in the stick region and if f tr > 0 it is in slip
region, thus sliding occurs in the contact area. Note that the stick case is valid again
if Ft

o < μd Fn holds during the sliding process. If the contact point sticks, the actual
tangential spring gt is incremented for the succeeding time step by the relation
�gt = vt�tD. Consequently, the new spring length is defined by

gt = gt + �gt . (23)

Here, �tD denotes the time step of the discrete element method. However, if the
contact point slides in the current time step, the tangential spring is aligned by

gt = − 1

ct
(Ft t + dtvt ) (24)

in order to fulfill Coulomb’s slip condition. Therein, t = Ft
o/||Ft

o|| is the direction of
the trial traction.

In two subsequent time steps, the contact area might be slightly rotated. As
proposed in Luding (2004), the tangential spring is continuously projected onto
the current rotated contact area at the beginning of each new time step via gt =
gt − (gt · n)n . For the above approach, the tangential contact force is Ft = ||Ft

o|| if
f tr ≤ 0 and Ft = μd Fn if f tr > 0 holds. By computing Ft , one obtains Ft = Ft t
and Tt = r × Ft which contributes to F and T in Eq. (1) and Eq. (2), respectively.
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Rolling Resistance Model

During a rolling motion of two particles over each other, the leading part of the
contact area is continuously compressed and the trailing part is decompressed with
respect to the rolling direction, see Fig. 8.

In case of an attractive van der Waals force in the contact area, the particles suffer
an opposing torque to rolling motion, whereby a rolling resistance is generated. For
instance, regarding an agglomerated straight particle chain with a lack of rolling
resistance, the chain cannot resist any external impact resulting in a tangential force.
As a consequence, the particles will roll smoothly over each other, whereby the chain
easily bends and it will finally take a compact shape. For a detailed discussion of the
rolling resistance of adhesive particles, see Dominik and Tielens (1995).

For a constitutive treatment of the rolling resistance, amodel consisting of a rolling
spring-dashpot-slider element is adopted in this contribution, see Iwashita and Oda
(1998) and Fig. 9.

At this, the opposing torque is given by

Mr
o = −(cϕφ + dϕφ̇) = − 1

R
(cφgr + dϕvr ). (25)

Therein, cϕ is the rolling stiffness, dϕ relates to the rolling viscosity coefficient, φ
to the particle rotation, gr to the rolling distance and vr is the rolling velocity which,
according to Kuhn and Bagi (2004), can be computed using

vr = −R

[
(ωi − ω j ) × n + 1

2

(
1

R j
− 1

Ri

)
vt

]
. (26)

Fig. 8 Idea of rolling
resistance



12 P. Wriggers and B. Avci

Fig. 9 Model of rolling
resistance

In the context of the JKR theory one can set for cφ the following expression

cϕ = 4Fn
c R

(
a

a0

)3/2

where dϕ = 0 , (27)

see Dominik and Tielens (1995) for details.
Introducing a trial force Fr

o = Mr
o/R, the problem of the rolling resistance can

algorithmically be treated analogous to the tangential friction model. Here, one can
apply as a yield criteria for the slider Mr

max or μr Fn , where μr is a rolling friction
coefficient, see Iwashita and Oda (1998).

DEM Solver

The kinematic variables of the particles are governed by the computation of the
equations of motion (1) and (2). For this purpose, a time integration scheme has to
be applied to solve these equations.

At the same time the contact between the particles has to be considered. This
yields the different contact forces and moments between the particles. These forces
and moments can be computed using the interaction laws discussed in the previous
section.
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Time Integration

Since DEM simulations usually need very small time steps�t in order to resolve the
constitutive laws between the particles the computational time for a larger system of
particles is high. Thus time integration methods need to be considered very carefully.
They have on one side to guarantee a certain accuracy and on the other side they need
to be efficient and robust to solve the Newton-Euler-equations in (2). An overview
with respect to methods that are used in DEM can be found in e.g. Kruggel-Emden
et al. (2008).
The integration scheme is composed of three steps:

1. Predicting all the kinematic variables.
2. A force computation step is followed using the predicted variables according

to Section “Constitutive Modeling of the Particle”. Hence, the evolution of the
translational and rotational accelerations can be computed from Eqs. (1) and (2).

3. Applying an error criteria between the predicted and calculated accelerations, the
correction of the kinematic variables is ensued.

To illustrate the construction of such time integration scheme we consider a Gear
algorithm in more detail. This starts with a predictor computation which is different
for translation and rotation.
For the translation one computes

xP(t + �t) = X(t) + Ẋ(t)�t + 1

2
Ẍ(t)�t2 + 1

6

...
X(t)�t3

ẋP(t + �t) = Ẋ(t) + Ẍ(t)�t + 1

2

...
X(t)�t2

ẍP(t + �t) = Ẍ(t) + ...
X(t)�t (28)

...
x P(t + �t) = ...

X(t)

For the rotation the predictor is given by

ωP(t + �t) = �(t) + �̇(t)�t + 1

2
�̈(t)�t2 + 1

6

...
�(t)�t3 + 1

24

(iv)

� (t)�t4

ω̇P(t + �t) = �̇(t) + �̈(t)�t + 1

2

...
�(t)�t2 + 1

6

(iv)

� (t)�t3

ω̈P(t + �t) = �̈(t) + ...
�(t)�t + 1

2

(iv)

� (t)�t2 (29)

...
ωP(t + �t) = ...

�(t) + (iv)

� (t)�t

(iv)
ω P(t + �t) = (iv)

� (t)

Based on these predictions the force FP(xP , ẋP) and the moment MP(ẋP ,ωP) are
computedwhich act both on a particle. Based on these quantities the translational and
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rotational accelerations can be computed from (2). This yields a∗ = FP/m and ω̇∗ =
MP/�. Now the differences �ẍ = a∗ − ẍP and �ω̇ = ω̇∗ − ω̇P can be determined
for the corrector step in which the translations and rotations are corrected. For the
translations it follows

x(t + �t) = xP(t + �t) + ct
0 s

t

ẋ(t + �t) = ẋP(t + �t) + ct
1 s

t 1

�t

ẍ(t + �t) = ẍP(t + �t) + ct
2 s

t 2

�t2
(30)

...
x (t + �t) = ...

x P(t + �t) + ct
3 s

t 6

�t3

and the rotations are obtained from

ω(t + �t) = ωP(t + �t) + cr
0 s

r

ω̇(t + �t) = ω̇P(t + �t) + cr
1 s

r 1

�t

ω̈(t + �t) = ω̈P(t + �t) + cr
2 s

r 2

�t2
(31)

...
ω(t + �t) = ...

ωP(t + �t) + cr
3 s

r 6

�t3
(iv)
ω (t + �t) = (iv)

ω P(t + �t) + cr
4 s

r 24

�t4

with the constants

st = �t2

2
�ẍ , ct

0 = 1

6
, ct

1 = 5

6
, ct

2 = 1 , ct
3 = 1

3

and

sr = �t �ω̇ , cr
0 = 251

720
, cr

1 = 1 , cr
2 = 11

12
, cr

3 = 1

3
, cr

4 = 1

24

Within this method of Gear the translations are approximated by a Taylor expan-
sion of 3rd order while the rotations have to be modeled by a 4th order Taylor expan-
sion. This choice is necessary to achieve conservation of momentum and moment of
momentum and a good accuracy of the solution. A more complete description of the
Gear algorithm can be found in Allen and Tildesley (1987), Pöschel and Schwager
(2005).
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Fig. 10 Behaviour of a rigid sphere for a given velocity including frictional contact

Fig. 11 a Temporal evolvement of the coordinates of the center point of the particle and b trajectory
of the particle during the motion

Test Example

A specific example is considered to show that the normal and tangential contact is
working correctly. Here only one sphere is considered that comes into contact with
a rigid surface. It will be shown that the given formulations and the algorithms are
able to reproduce the rebound of the particle, see Fig. 10. The following constants
are used to compute the motion of the particle: density ρ = 2.5 kg/m3, dissipation
factor A = 6 × 10−4 s, normal stiffness ct = 106 N/m, damping dt = 50Ns/m and
friction coefficient for stick and slip μ(G,H) = 2.5. The behaviour can be modeled
experimentally using a bouncy ball made of rubber.

As shown in Fig. 10 the particle is subjected to an initial translations and rotational
velocity v0 und ω0 at time t0 = 0 and starts from the rigid plane. The rotational
velocity is described as a backward spin.

The temporal evolvement of the numerically computed coordinates of the particle
center can be found in Fig. 11a. Figure11b depicts the trajectory of the particle center
and thus shows the behaviour of the particle that jumps back and forth due to the
initial velocities and the gravitational force ρb. From the diagrams in Fig. 11 one
can observe that the maximal altitude of the particle is x3,max = 5.00m after that it
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Fig. 12 a Temporal evolvement of the translational and rotational velocities and b temporal evolve-
ment of the kinetic energy

starts to drop and contacts the rigid plane after tk = 2.00 s at x1,k = 20.00m. This
numerical result matches exactly the analytical solutions for the trajectory2. When
the particle impacts the rigid plane then due to tangential relative displacements a
frictional force develops that is opposite to the direction of the relative velocity.
This force reduces the tangential translation velocity and contributes to a change
in the rotational velocity. In this case the frictional force is large enough to reverse
the tangential motion and the rotation, see Fig. 12a. Thus the particle bounces back.
However due to the frictional dissipation the kinetic energy is reduced such that the
particle does not reach the position at t0. The numerical computed kinetic energy
is depicted in Fig. 12b with respect to time. Following the further trajectory of the
particle one observes that it bounces back and forth until the kinetic energy is used
up which is depicted by the horizontal line in the right part of Fig. 12b .

Search Algorithms

Besides the time integration, the computation of the contact forces is the most CPU
time consuming part of a DEM simulation. Thus the contact search and detection
governs the efficiency of aDEMcode.WIth this inmind, the evaluation of the contact
detectionEq. (15) has to beminimized to neighboring particles, since they are the only
eligible contact partners. If one simply creates a loop over all N particles in a system,
the number of tests amounts to

∑N−1
i=1 (N − i) = N (N − 1)/2. Such an algorithmhas

the complexity of O(N 2) and will result in extremely large computation time, even
for small particle systems with less than a few thousand particles. If large particle

2Analytical solution for the trajectory:

x̃3,max = (v0 sin α)2

2 b
, x̃1,k = v20 sin(2 α)

b
, t̃k = 2 v0 sin α

b
.
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Fig. 13 Particle contact:
Verlet distance

systems with several millions of particles have to be computed then an algorithm of
complexity O(N ) is needed.

There many different algorithm that reduce the complexity of contact search.
Among them are methods like space cell decomposition, combinations with binary
tree search and heapsort algorithms for the global search. More advanced algorithms
are the NBS algorithm, the alternating digital tree method, space filling curve tech-
nique or Double-Ended Spatial Sorting (DESS) algorithm.

Herewewill look inmore detail at algorithms that stem from the area ofmolecular
dynamics. These are known as Verlet list and linked cells and can be found for the
Verlet list in Verlet (1967) and for the link cells in Quentrec and Brot (1973). Here
both algorithms will be combined in order to yield a fast contact search algorithm,
see also Ref. (Allen and Tildesley 1987) and references therein.

Verlet lists are based on the idea that for each particle Pi {i = 1, . . . , N } one
generates a list with neighbouring particles. By this, the local contact check can be
reduced to these neighbouring particles and thus is a local operation. The Verlet list
can be build, based o the computation of a distance

gn
Verlet = (Ri + lv) + R j − (xi − x j ) · n

⎧⎨
⎩

≤ 0 no neighbour

> 0 neighbour

{
j < i list of Pi

j > i list of P j .

This takes into account the Verlet distance lv depicted in Fig. 13. The Verlet dis-
tance can be defined by

lv = 1

2

(
Max [ Ri ]

N
i=1 + Min [ Ri ]

N
i=1

)
αv .
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Fig. 14 Building the Verlet list with the linked cell method

where αv is a constant that can be chosen. A good choice for this constant is αv ≈
0.05–0.10.

A list of neighboring particles is maintained for each particleP holding lv > |gn|.
Once theVerlet list is built, Eq. (15) is only evaluated for neighboring pairs. Certainly,
the list has to be updated at some intervals since particles can move to other locations
and then have completely new neighbours. Here, a possible rebuild criteria can be
defined by

�smax = Max
[ ||xi − x′

i ||
]N

i=1 > βvlv .

In this equation the position vector x′
i of a particle Pi is used which relates to

the position vector of the existing Verlet list while xi is the position vector of the
current time step. The factor βv can be generally chosen in the range 0.5–0.6 which
ensures that no complete penetration of a particle by another one occurs. For details
see Pöschel and Schwager (2005).

In total the Verlet list method has a complexity of O(N ) for the computation
of the local contact and thus the contact forces. However building the list is not so
efficient. Due to this drawback the linked cell approach is used to construct the list.
This amounts to an algorithm that overall approaches a complexity of O(N ). The
idea of the linked cell algorithm is to divide the computational domain into cubic cells
of uniform side lengths that are slightly larger than the maximal particle diameter,
see Fig. 14.

After assigning the particles Pi to the cells with respect to their center of mass
Mi , the relevant particles for the construction of the neighbor list are referenced to
the 26 surrounding cells and of course to the mid-cell which contains the considered
particle Pi .
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Example: Silo Discharge

The DEM scheme is validated by means of a laboratory silo discharge experiment.
Choi et al. (2004) analyzed the velocity profile in a quasi 2D silo using an image
based particle tracking method. For the numerical modeling of this silo discharge,
see Wellmann (2011).

The box-shaped silo of size [20 × 2.5 × 90] cm is filledwith soda lime glass beads
of slight polydispersity (d = 3 ± 0.1 mm) using a distributed filling procedure. In
total 190.782 particles are used to model the silo discharge. This leads in three
dimensions to 1.144.692 particles. The rectangular orifice of [16 × 25]mm at the
bottom center is opened and a steady state flow is allowed to develop before the
tracking procedure starts. The tracking covers a rectangular section of [20 × 50] cm
above the orifice. The flow is measured at a rate of 125 frames per second for 16.4
s. For the evaluation of the velocity profile the observation window is divided into
[48 × 48] mm cells used as averaging domains. For a more detailed description of
the data gathering and evaluation see Choi et al. (2004, 2005).

The elastic parameters of soda lime glass are given as E = 71 GPa and ν = 0.22.
The mass density is ρ = 2.5 g/cm3. The friction coefficient between dry soda lime
glass beads was measured by Ishibashi et al. (1994) as μ = 0.162. The gravity con-
stant is chosen as g = 9.81m/s2. Since the particles in the vicinity of the orificemove
at reasonable velocities the viscoelastic contact law described in Section “Normal
Contact Model” is applied. The material constant A, see (13), to include viscoelastic
effects was chosen as A = 5.05 10−8 s for the soda lime glass beads. This corre-
sponds to a restitution coefficient of 0.97 at a relative velocity of 1.18 m/s and a
particle size of d = 3.18 mm. The material properties of the glass silo were assumed
to be identical with the glass bead properties.

The stiffness of the particles and their size require a time step of the order of
�t ≈ 1µs. For a total simulation time of 10 s this results in a number of time steps of
the order of 107.Combinedwith a number of particles of N ≈ 2 × 105 this amounts to
a large computational effort. However, numerical tests show that the system behavior
is not altered significantly by reducing the stiffness of the particles to E = 0.9GPa.
This value assures that the overlap corresponding to the maximum contact force at
the silo bottom is less than 1% of the particle radius. In order to preserve the dynamic
particle behavior the viscoelastic constant is adopted to A = 2.9 10−7 s. The stiffness
reduction enables a time step of δt = 10µs resulting in 3 × 106 steps for a simulation
period of 30 s.

The initial sample, see Fig. 15, is generated using uniformly distributed particles
with diameters in the range 2.9–3.1mm and a solid fraction in the packaging of
� = 0.5. To account for the solid fraction of a denser package (� = 0.6) the box
used as package space is enlarged in the z direction to 1.08m. In order to get realistic
fabric properties the sample is settled under the influence of gravity using the DEM
scheme and the above material parameters. At the point where the kinetic energy was
nearly dissipated the orifice was opened starting the silo discharge simulation for 30
s. During the simulation the output was written at 0.3 s intervals, see Fig. 15. After a
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Fig. 15 Outflow of the particles from the silo at different times

short time a steady state flow develops with a mass flow rate of Q = 132.6g/s. This
corresponds to a deviation of 6% from the experimental flow rate of Q = 141.1 g/s.
Considering the uncertainties regarding the initial distribution of the particles and
the container-particle friction this match is satisfactory.

In order to deduce a continuous downward velocity distribution v(x) from the
discrete DEM output a coarse graining scheme is applied. For this purpose the box-
shaped [20.5 × 50] cm silo volume above the orifice is divided into a regular grid of
[40 × 1 × 80] linear hexaeders. An ansatz vh is defined on the hexaeder mesh and
is fittes to the discrete DEM results using a volume weighted least square approach.
Finally, the velocity profile is evaluated in the silo mid-plane and averaged over the
data points between t = 5 s and t = 20 s. The resulting profile is compared with the
experimental profile from (Choi et al. 2004) in Fig. 16.

There is a good agreement of the maximum velocity at the orifice, of the velocity
gradient around the orifice, and of the run of the contour lines. The DEM scheme
predicts a realistic shape of the stagnant zones at the lower silo corners. For quanti-
tative comparisons 1D velocity profiles are evaluated at two heights sketched in the
right part of Fig. 16.

The results are presented in Fig. 17.While there is a close agreement of the profiles
in the vicinity of the orifice at z = 9.1 d the simulation predicts higher downward
velocities at the boundaries at z = 29.1 d. Note that this deviation can result basically
from the different evaluation schemes:While theDEMdata is averagedover the entire
depth of the silo, the experimental image-based particle tracking method is based
solely on the trajectories of the particles at the front window.
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Fig. 16 Comparison of
downward velocity:
simulation and experiment

Fig. 17 Comparison of
downward velocity:
simulation and experiment

In total it is obvious that the discrete element method can predict flow states in
a granular material accurately based on the introduced interface laws between the
particles. However due to the large number of particles involved in one discretization
itwill be necessary to use parallel computing architectures. This is the only possibility
to obtain reasonable results within engineering time frames.

DEM Using Parallel Solvers

Many engineering problems have to bemodelled by using a large number of particles.
These are e.g. milling applications or outflow problems in silos as discussed in the
last section. Since many particles interact which each other high computing power
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is needed to model a particle flow application in an accurate manner. This leads to
computer codes that include algorithms which can make the transition from serial to
parallel computing.

Within such models millions of spherical or arbitrary geometry particles have to
be generated in order to describe a typical in granular flow problem accurately. The
main application areas being simulations in geomechanics, structural, oil and gas
engineering and other processes involving granular materials and particulate flows.
When using parallel computing chunks of particles have to be distributed to the dif-
ferent processors. This distribution not only affects the computational part but also
the set up of the problem.Within the latter task scaling ofmesh generators necessarily
requires mesh splitting before multiple processors assignment and domain decom-
position techniques. During the run time—due to large movements of particles a load
balancing procedure has to be executed in order to distribute the computational load
equally to all processors.

Solver DEMFLOW

Themesh-free particle code DEMFLOW, developed at our institute over many years,
is a parallel and fully open source framework for the simulation of the flow of gran-
ular materials, fluid and particulate flows. This particle solver was initially designed
for cluster computations and was further developed to run efficiently on massively
parallel high performance computer (HPC) architectures allowing large scale com-
putations of engineering problems. The focused application areas of DEMFLOW
are particle and multiphase flows and fluid-particle interaction. The DEM-module is
completely developed in-house.

A common feature shared bymesh-free particlemethodswhich also includemesh-
lessmethods like smoothed particle hydrodynamics (SPH), seeGómez-Gesteira et al.
(2012a); Gomez-Gesteira et al. (2012b), is that they all represent computationally
very intensive simulation techniques. Due to their explicit nature, the correspond-
ing solvers require very small time steps. In classical discrete element methods the
restriction is due to the displacement-driven nature of the force computations and in
the SPH due to the CFL condition. As a result, a large number of time steps need
to be performed in order to simulate a time period of practical interest. Moreover,
to discretize real engineering problems in a 3D framework of a particle method, a
set of at least several millions particles is required for a sufficiently detailed recon-
struction of a complex system. In general, the simulation of systems with more than
one million particles can only be carried out in a reasonable way if a massively
parallelized strategy is used. This is also necessary in order to handle the aspect of
memory requirement, especially in really large scale problems.

A widely used strategy for the parallelization task in computational mechanics
is the domain decomposition approach in conjunction with the use of the Message
Passing Interface (MPI) library for inter-domain or inter-process communication.
In the framework of this strategy, the computational domain is geometrically split
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into sub-domains according to the number of specified processes (tasks, cores). Each
generated sub-domain is then assigned to a core, including the respective particles.
Both the communication and the data exchange between the cores are realized by
the network interconnect and controlled by the instructions of the MPI library. Com-
munication between sub-domains is necessary since the force computation or kernel
evaluation of a particle close to a boundary of its sub-domain requires informa-
tion about the particles positioned in the next boundary layer of the corresponding
adjacent sub-domain.

A crucial point in the domain decomposition strategy, which demands great atten-
tionwhen applied to particlemethods, is the aspect of the rescaling load-balanceof the
processes. As particles can cover large distances by traversing several sub-domains
of the computational domain this occurs especially in highly dynamic systems, like
in rotary mixing drums (for an illustration, see Fig. 20). Many dynamic systems are
often characterized by a heterogeneous particle distribution over the entire domain.
As a result, some sub-domains include only a small number of particles and while
others have a large number of particles. In the former case, the cores are underused
and complete their jobs faster than the cores in the latter case. Thus, they are idle
while waiting for the rest of the processes to complete. In general, unequal workload
leads to a strong decrease in the efficiency of the calculation with respect to the
number of used cores. Consequently, the development of powerful algorithms for
a continuous adaptation of the domain decomposition in terms of a homogeneous
workload across all processes is inevitable for efficient computations of large scale
engineering problems. This critical point represents a great challenge, especially in
case of irregular 3D computational domains with a highly dynamic change of the
particle distribution.

A second essential aspect that needs to be accounted for in order to design a
high performance simulation tool in the framework of particle methods is directly
linked to the organization and management of the particle data in the memory. The
procedure for the force or kernel evaluation represents the most computationally
intensive part in a simulation time step. The corresponding routine is carried out
for each particle and over the neighbors of each individual particle. A common
approach is to create and maintain an array index list (Verlet list) which stores the
neighbors of each particle. The Verlet list is generally built by the use of the Linked-
Cell method, see Allen and Tildesley (1987). By using this list, the evaluations are
only performed in the respective neighborhood of a discrete element, thus avoiding
unnecessary computations and minimizing numerical costs of a simulation, see also
Section “SearchAlgorithm”.At the beginning of a simulation, the order of the particle
data sequence assembled in the memory corresponds usually to the real particle
neighborhood connectivity, which is represented by the indices in the neighbor list.
With time, the initial arrangement of the particleswill be scattered due to large relative
particle motions. As the neighborhood connectivity changes, the particle data in the
memory can be considered as dispersed with respect to the accesses to the neighbor
list. This leads to a significant amount of cache misses, because the particles are now
more or less randomly distributed. Thus, a currently requested data of a neighbor
is increasingly less likely to be present in the loaded cache line compared to the
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beginning of the simulation run. However, in case of a cachemiss, fetching the data of
a particle from themainmemory is severalmagnitudes slower than retrieving the data
from one of the caches (L1-, L2- or L3-cache). Consequently, very efficient particle
reordering algorithms and data management strategies are essential to maximize
cache hits and to sustain the performance of a code.

There are a number of particle solvers in the literature that use the domain
decomposition approach in combination with MPI for parallelization. Some of those
advanced tools based on mesh-free particle methods are briefly mentioned below. A
sophisticated SPH fluid solver, called SPH-Flow, is presented in Maruzewski et al.
(2009). One of the applications of this code was the simulation of the impact of a
snooker ball onto the free surface of water. The authors report a parallel efficiency
of 58% when solving the problem with 124 million fluid particles on 2048 cores,
72% for 7.5 million particles with 128 cores and 87% for 3.5 million particles with
64 cores. The computations for the performance analysis were carried out on a Blue
Gene/L high performance computer. Gadget-2 is another advanced open source par-
ticle code reported in the literature. This SPH code extends the work of Springel
(2005) and is designed to perform parallel large scale cosmologic simulations. A
modified version of Gadget-2 regarding its application to hydrodynamic problems
is presented in Ulrich and Rung (2006). In this work, the authors report that the
solver shows a super-linear speedup behavior when applying it up to 256 cores. As a
scalability test, they considered a fixed-size problem of a sloshing application with
40 million fluid particles. The computations for the performance test were carried
out on the HLRN2 high performance computer. Motivated by the libraries that are
provided by the well-known frameworks of PETSc and Trilinos for linear algebra,
Sbalzarini et al. (2006) have designed and developed a MPI based middleware for
particle methods (among others, for DEM, MD and SPH), which consists of highly
efficient parallel libraries. The collection of open source libraries associated with
this project is known as the Parallel Particle-Mesh (PPM) Library. The overall aim
of the PPM middleware is to provide a very flexible framework with which a pro-
grammer can develop highly efficient particle-based software for HPC architectures
in a short time. For instance, Walther and Sbalzarini (2009) developed a DEM tool
in the setting of PPM and demonstrated a parallel efficiency of 40% on 192 cores
of a Linux cluster by performing simulations of 3D sand avalanches with up to 122
million particles. The efficiency of a SPH code implemented by adapting the PPM
libraries is presented in Sbalzarini et al. (2006) for a vortex ring simulation. The
paper shows that this particle solver reaches an efficiency of 91% on 128 cores of a
Cray XT4 HPC architecture.

The software DEMFLOW is developed on the basis of PPM libraries. In fact, the
optimization of a parallel particle software regarding its load-balancing capabilities
can yield a far more efficient tool as optimizing the respective calculation algorithms
assigned to the cores. The collection of libraries that the PPM middleware provides
in this context are very efficient and complex algorithms that can be included rela-
tively easily in DEMFLOW. The corresponding PPM libraries are highly optimized
and tested on HPC architectures with fairly encouraging results, see Sbalzarini et al.
(2006) and Walther and Sbalzarini (2009). Those libraries include, among others,
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a range of adaptive domain decomposition approaches, assignment algorithms for
sub-domains onto cores according to their individual performances, dynamic load-
balancing and heuristic criteria for particle domain updating. The integration of the
parallel PPM libraries in DEMFLOW in terms of load-balancing will significantly
contribute to the further development of the particle code regarding its parallel effi-
ciency on HPC architectures.

The best way to minimize the amount of cache misses in particle based computa-
tions is to reorder the particle data in the memory according to the particle locality.
However, in 3D, it is quite hard to sort scattered particle data for optimal cache use;
one has to also consider that the neighborhood of each particle changes with time
for relative particle motions. To deal with this problem, Springel (2005) uses (in his
astrophysics SPH-software Gadget-2) an approach based on the Peano-Hilbert curve
method. By applying this method, one can create a space-filling curve that maps the
considered 3D domain onto a 1D curve. In Gadget-2, this curve is employed both
to realize the domain decomposition and to reorder the particle data in the memory.
In the latter case, the algorithm maps the particle positions onto the Peano-Hilbert
curve and sorts the particles based on this mapping. Finally, a particle arrangement
in memory which conforms to a large extent to the real neighborhood of the particles
is obtained. In Springel (2005), it is reported that computational tests with Peano-
Hilbert ordering show a performance gain of the code Gadget-2 by a factor of two
when compared with the performances achieved by neglecting data sorting. This
approach was implemented in DEMFLOW.

Numerical Test: Medium Number of Cores

Bothmajor factors of a particle solver—adaptive load-balancing anddynamic particle
data reordering—have severe impact on the parallel performance of a code.

As the algorithms which should cover these two aspects are not yet developed in a
sophisticated manner and implemented into the DEMFLOW solver, the computation
domain of the system chosen to study its performance is only slightly affected by
a traversing particle flow. THe next example was selected to discuss the scalability
of the code on a parallel computer. For that particles were used to roughly model a
fluid.

The considered system consists of two relatively light cubes that plunge into a
compact particle domain which is fully discretized with fluid particles, as illustrated
in Fig. 18. Here, load-balancing and data reordering are of less importance. The
performance tests were run on a Linux-Cluster. The cluster is equipped with 16
nodeswheremost of the nodes contain either two IntelXeonE5-2642-v2CPUs (2× 6
cores) or two Intel Xeon E5-2670CPUs (2× 8 cores). The speedups and efficiency of
the software are computationally evaluated on the basis of four discretization levels
of the system: the original problem consists of 5 million particles, the half-sized
model of 2.5 million particles, the double-sized model of 10 million particles and
the quadrupled-sized model of 20 million particles. For each discretization level, a
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Fig. 18 Two light solid cubes plunging into water. Simulation results at different configurations in
time

Fig. 19 Speed-ups of DEMFLOW for different problem sizes

fixed-size problem is examined. The obtained speedups and efficiencies of the test
computations are displayed inFig. 19, respectively.A linear speed-up canbeobserved
for the original, half-sized and double-sized system. For the original problem, the
study even shows slight super-linear behavior of the program for a smaller number of
cores. Furthermore, a speedup of 47 is obtained for the largest system when 56 cores
are used for computation. The latter case results in an efficiency of 84%, whereas the
other three cases achieve efficiencies in the range of 90–120%. It can be concluded
that the results obtained in this study are successful and promising as they show a
very good speedup of the solver up to 56 cores.
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Numerical Test: Large Number of Cores

DEMFLOW has been adapted to run on a high performance computer with large
core numbers in order to validate its efficiency on HPC architectures. For this task a
system which implies a sophisticated strategy both for load-balancing with adaptive
domain decomposition and for particle-data reorganization was considered.

It can be shown that the optimization of a parallel particle software regarding
its load-balancing capabilities can yield a far more efficient tool as optimizing the
respective calculation algorithms assigned to the cores. The collection of libraries that
the PPMmiddleware provides in this context very efficient and complex algorithms.

Hence discrete element methods have become a more and more powerful tool,
especially for the treatment of granular materials and in process engineering. The
method can nowadays be applied to problems that 10–1000 million particles for an
accurate model. These processes are run on high performance parallel computers
or GPU systems. The problem of the interchanging contact conditions due to large
particle motions presents a challenge for the development of algorithms that scale
well for large numbers of processors.

Here we will focus on an application that uses the discrete element method to
model the mixing process of different particles in a drum. In this application 25
million of particles are used. The particles are mixed by rigid blades that rotate about
the middle axis. The blades move up and down to perform the mixing. Here many
small time steps have to be executed to follow the complex motion of the particles
in a mixer. Such problems necessitate the use of parallel computing machines with
many cores. The problem is depicted in Fig. 20a which also shows the allocation of
parts of the particles to a specific core of the parallel computer.

Fig. 20 a Set-up of the particles in the mixer. The color code shows the allocation to a core in the
parallel computer. b Velocity distribution of the particles during mixing
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Fig. 21 Speed-up for different algorithmic treatments

In Fig. 20b the velocity distribution during the mixing process is depicted. One
can easily observe the complex movement of the particles that change locations and
by that also come into contact with other particles thus leaving the location of the
initial allocation and thus have to be moved to another core. This usually requires
a reallocation and slows down the computation. In order to get a good performance
sophisticated algorithms have to be used that on one hand have to be fast and on the
other limit data transfer. By that a speed-up that is linear, even for a large number of
processors, can be achieved, see Fig. 21.

The blue curve shows the theoretical limit for a speed-up investigation up to
3500 processors. The red curve shows the performance for one algorithm while the
more sophisticated algorithm and related data handling amounts to the green curve
that produces an extremely good linear speed-up over all number of processors that
reaches 66% of the theoretical limit.

Conclusion

The discrete element method is a very good tool for the prediction of granular flows
and for the determination of macrsocopic material parameters of granular materials.
It is a time consuming method since on one side millions of particles have to be
used for adequate models and on the other side very small time steps have to be used
to resolve the complex interaction laws between particles. This means that discrete
element technologies have to be solved on computers with parallel architecture.

It was shown that DEMPACK exhibits a near linear scalability for small scale
problems but also for large scale problems with rapidly changing interconnections
of the particles due to large movements.
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Adaptive Integration of Cut Finite
Elements and Cells for Nonlinear
Structural Analysis

Alexander Düster and Simeon Hubrich

Introduction

Fictitious domain methods have gained increasing interest since they can be applied
to boundary value problems with complicated geometry for which it is difficult to
generate body-conforming finite element meshes. The basic idea of fictitious domain
methods is not new. To the best of the authors’ knowledge, the main idea goes back
to Saul’ev (1963a, b) who solved boundary value problems by a fictitious domain
method for the first time. Later on, several authors worked on related approaches
such as, for example, Neittaanmäki and Tiba (1995), Peskin (2002), Del Pino and
Pironneau (2003), Mittal and Iaccarino (2005), Glowinski and Kuznetsov (2007) and
Ramière et al. (2007). The so-called CutFEM, which utilizes meshes including finite
elements that are cut by the boundary of the domain, was introduced by Burman and
Hansbo (2010, 2012). The finite cell method (FCM), proposed by Parvizian et al.
(2007) and Düster et al. (2008), is to be seen as a combination of high-order finite
elements and the fictitious domain approach. The application of high-order shape
functions allows for high convergence rates, provided that the exact solution of the
mathematical problem is smooth enough – or that a proper mesh layout is chosen if
there are discontinuities or singularities.

Avery important issue in all fictitious domainmethods is thenumerical integration
of the stiffness and mass matrices as well as load vectors of broken elements/cells.
Due to the fact that the applied meshes are not aligned to the geometry of the domain,
computing the matrices involves discontinuous integrands which can not be com-
puted efficiently with standard Gauss quadrature rules. To overcome this problem
different approaches have been developed.

A rather simple approach to improve the quadrature of discontinuous functions
is to split the integration domain on element or cell level into sub-domains on which
the integrand is smooth. Then, the standard Gauss quadrature can be applied on
each of the so-called sub-cells in a very efficient manner. This composite integration
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scheme was applied in terms of the FCM, for example, in Düster et al. (2008). The
advantage of this approach is that its implementation is straightforward. Unfortu-
nately, if the geometry of the underlying problem is very complex, it might result in
a high number of integration points. In cases like this, an adaptive procedure based
on spacetrees might be more efficient. Spacetrees, i.e. quadtrees in 2D and octrees in
3D help to organize the spatial refinement for integration purposes by splitting the
broken elements/cells into sub-cells which correspond to the leaves of the spacetree.
Applications drawing on this approach can be found, for example, in Strouboulis
et al. (2000) and Abedian et al. (2013a). This adaptive approach based on spacetrees
can still result in a high number of integration points. Further attempts to reduce the
number of integration points account for the geometry of the underlying problem by
introducing more accurate mapping functions. To this end, Strouboulis et al. (2001)
proposed a fast remeshing approach including the blending function method, result-
ing in curvilinear sub-cells which can represent curved boundaries more accurately.
A similar approachwas developed inKudela et al. (2015) and appliedwithin the finite
cell method. An alternative approach based on a local meshing strategy was intro-
duced by Loehnert et al. (2011) for the extended finite element method (XFEM). In
this contribution, brick elements that are intersected by cracks were subdivided into
tetrahedral elements on which the integration was performed. A different approach
utilizing implicitly defined geometries suited for high-order accurate integration was
suggested by Fries and Omerović (2016). In the proposed scheme, the integration is
performed on local meshes with curved elements by applying carefully constructed
mapping functions.

Lyness and Jespersen (1975), Lyness and Monegato (1977) used moment fit-
ting equations to derive quadrature rules for triangles and regions exhibiting regular
hexagonal symmetry. This approach can also be used to derive quadrature rules for
discontinuous integrands defined on quite arbitrary domains. The main idea is to set
up an equation system for each broken element/cell, ensuring that solving the system
will lead to the desired quadrature rule. In themost general case, the nonlinear system
of equations can be used to find the position of the integration points as well as the
corresponding weights. If the position of the integration points is prescribed, then the
nonlinear system turns into a linear one that can be solved more easily in order to find
the desired weights. Mousavi and Sukumar (2010) used the moment fitting method
to compute integrals appearing in the XFEM applied to solve two-dimensional prob-
lems of fracture mechanics. An extension of the moment fitting for the integration
of discontinuous functions on irregular convex polygons and polyhedrons was pre-
sented by the same authors, see Mousavi and Sukumar (2011). Müller et al. (2013)
extended the moment fitting to derive quadrature rules for elements/cells cut by the
boundary of the domain with a geometry that was defined implicitly by means of
level set functions. In Joulaian et al. (2016) the moment fitting was extended for an
accurate integration of high-order discontinuous integrands appearing in the finite
cell method. An attempt to optimize the position of the integration points within the
moment fitting was presented in Hubrich et al. (2017). Although this optimization
approach resulted in an improved quadrature rule, it was not worth the additional
numerical effort. Employing the standard Gauss-Legendre points which might even
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be located in the fictitious domain turned out to be a good approach. In Hubrich
and Düster (2019), a new idea to circumvent the solution of the linear system was
suggested together with an adaptive version to improve the robustness of the moment
fitting for strongly nonlinear problems of finite strain elastoplasticity.

A completely different approach to accurately integrate elements/cells with dis-
continuous integrands was proposed by Ventura (2006), Ventura and Benvenuti
(2015). The key idea is to replace the discontinuous function by an equivalent poly-
nomial which yields the same result of the integral. This idea was further extended to
high-order discontinuous integrands appearing in the finite cell method in Abedian
and Düster (2019). Choosing Legendre polynomials and utilizing their orthogonality
helps to improve the accuracy and efficiency of the integration approach.

The outline of this chapter is as follows: In Section“The Finite Cell Method”, we
will summarize the finite cell method to set the stage for the discussion of quadrature
schemes. In Section“Standard Numerical Integration Schemes”, standard numer-
ical integration schemes will be briefly summarized since they are an important
ingredient of the advanced numerical integration methods presented in the remain-
ing sections. Section“Adaptive Quadtree/Octree Quadrature Schemes” focuses on
spacetrees which can be used for a fully automatic and adaptive integration of bro-
ken cells. In Section“Numerical Integration Based on Moment Fitting”, we will
present the moment fitting method as a promising approach to reduce the number
of integration points. In Section“Numerical Examples”, several examples including
elastoplastic material behavior assuming small as well as finite strains will be inves-
tigated. Finally, we summarize this contribution with some concluding comments in
Section“Conclusions”.

The Finite Cell Method

The finite cell method proposed by Parvizian et al. (2007), Düster et al. (2008) can
be considered as a combination of the fictitious domain approach with high-order
elements. In this section, we will briefly summarize the FCM in order to highlight the
necessity for reliable and efficient quadrature schemes. A more detailed presentation
and overview of the FCM can be found, for example, in Schillinger and Ruess (2015)
and Düster et al. (2017).

Weak Formulation

In order to explain the basic idea, let us consider a two-dimensional linear elasto-
static problem defined on the physical domain �, as depicted in Fig. 1. Dirichlet
boundary conditions with prescribed displacements ū are defined on �D , and Neu-
mann boundary conditions accounting for tractions t̄ are applied on �N . In order to
simplify the discretization process, the physical domain� is embedded into a bigger
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Ω Ωe \ Ω Ωe

Fig. 1 The basic idea of the FCM is to embed the physical domain � into a bigger domain �e
which can be easily meshed

domain �e of a simpler shape, which can be easily meshed into a Cartesian grid
consisting of quadrilateral elements. Next, we will consider the weak form of equi-
librium which will be discretized to find an approximate solution for the problem.
The corresponding bilinear form reads

Bα
e (u, v) =

∫

�e

[Lv]T Cα
e [Lu] d� (1)

where u denotes the displacement or trial function, v corresponds to the virtual dis-
placement or test function, and L is the standard strain-displacement operator. Fur-
thermore, Cα

e = αC denotes the elasticity matrix defined on the embedding domain
�e, where C represents the elasticity matrix defined on �. The indicator function

α(x) = 1.0 ∀ x ∈ � (2)

0.0 ≤ α(x) < 1.0 ∀ x ∈ �e \ �

implicitly represents the geometry of the physical domain�. Assuming thatα(x) = 0
vanishes for points located in the fictitious domain, i.e. x ∈ �e\�, the bilinear form
(1) reads

Bα
e (u, v) =

∫

�e

[Lv]T αC [Lu] d�

=
∫

�

[Lv]T C [Lu] d� +
∫

�e\�
[Lv]T 0 [Lu] d� (3)

=
∫

�

[Lv]T C [Lu] d� = B(u, v).

The load functional is defined as
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Fα
e (v) =

∫

�e

vT (α f) d� +
∫

�N

vT t̄ d� (4)

=
∫

�

vT f d� +
∫

�N

vT t̄ d� = F(v)

accounting for volume loads f and prescribed tractions t̄ on the Neumann boundary
of the physical domain �. In summary, the weak form of the problem defined on the
extended domain �e

Bα
e (u, v) = Fα

e (v) (5)

recovers the original problem B(u, v) = F(v), when setting α(x) = 0 for points
located in the fictitious domain � f = �e\�. In order to avoid conditioning prob-
lemswithin the solution process of the resulting linear equation system,α(x) = α f =
10−q ∀x ∈ �e\� is set to very small (positive) values by choosing q = 5, 6, . . . , 15
accordingly. In this way, the condition number can be improved by a small modifica-
tion of the original problem. The approach can be interpreted as introducing artificial
stiffness to the material of the fictitious domain. Provided that α f is chosen small
enough, very accurate solutions can be achieved, see Dauge et al. (2015).

Discretization of the Weak Formulation

The discretization of the weak form on the extended domain can be carried out
in a straightforward manner. The domain �e is meshed into a Cartesian grid as
depicted in Fig. 1. Since the resulting elements might be cut by the boundary of the
physical domain, we denote them as finite cells in order to distinguish them from
geometry-conforming finite elements. Due to the rectangular shape of the cells,
the mapping function from the local to the global coordinate system is simple and
results in a constant Jacobi matrix. Cells that are located completely outside of the
physical domain can be discarded – which reduces the overall number of degrees of
freedom and helps to improve the condition number of the resulting linear equation
system. Using such a Cartesian or structured mesh simplifies the meshing process
significantly. However, the burden of meshing is shifted towards the integration of
the cells cut by the boundary of the physical domain. Since the integrand of the
stiffness matrix of cut cells is discontinuous, a standard Gauss quadrature will not
perform well. To discretize the displacement (trial) and virtual displacement (test)
functions, we can apply different sets of shape functions. To this end, it is possible to
use either low-order shape functions based on Lagrange polynomials or a high-order
basis applying hierarchic shape functions as proposed by Szabó and Babuška (1991),
Szabó et al. (2004) or NURBS as suggested by Hughes et al. (2005), Cottrell et al.
(2009). In order to be able to achieve high convergence rates, we apply hierarchic
shape functions to discretize the trial and test function
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Fig. 2 Hierarchic shape functions: nodal, edge, and bubble mode

uc = NUc (6)

vc = NVc (7)

for each cell c. The two-dimensional hierarchic shape functions for quadrilaterals
can be classified into three groups: the nodal modes, the edge modes and the internal
or bubble modes, see Szabó and Babuška (1991). Figure2 shows a representative
shape function for each group. The nodal modes are the standard bilinear Lagrange
polynomials known from low-order elements. The edge modes are defined for each
edge individually. Figure2 depicts a quadratic mode for edge 1, where η = −1. The
bubble or internal modes are purely local to the element/cell and can therefore be
eliminated on element/cell level. Figure2 shows a quadratic bubble/internal mode.
For a more detailed description of the hierarchic shape functions and the related
Ansatz spaces, the reader is referred to Szabó and Babuška (1991), Szabó et al.
(2004). In Eqs. (6, 7) N represents the matrix containing the chosen shape functions
and Uc, Vc denote the displacement and virtual displacement vectors, respectively.
Inserting (6, 7) into the bilinear form (5) results in

Bα
e (u, v) =

nc∑
c=1

∫

�c

[
Lvc

]T
αC

[
Luc

]
d� (8)

=
nc∑
c=1

Vc,T
∫

�c

BTαCB d�Uc =
nc∑
c=1

Vc,T kc Uc

where

kc =
∫

�c

BTαCB d� (9)

represents the cell stiffness matrix and B = LN denotes the standard strain-
displacement matrix. In a similar way, we can discretize the linear form (4) by
inserting the test function (7) resulting in



Adaptive Integration of Cut Finite Elements … 37

Fα
e (v) =

nc∑
c=1

∫

�c

vc,Tαf d� +
∫

�c
N

vc,T t̄ d� (10)

=
nc∑
c=1

Vc,T
∫

�c

NTαf d� + Vc,T
∫

�c
N

NT t̄ d�

=
nc∑
c=1

Vc,T fc

where fc denotes the load vector of the cell c. The second term in Eq. (10) accounts
for the traction t̄ defined on �N . Since the Neumann boundary �N will generally not
coincide with the cell boundary, the integration has to be performed over a boundary
that intersects the corresponding cell. Thus, the second term in (10) is to be understood
in such a way that only those cells that are intersected by �N have to be considered.
Assembling the stiffness matrices and load vectors of all cells

K =
nc

A
c=1

kc , F =
nc

A
c=1

fc (11)

results in the overall linear equation system

KU = F (12)

where K denotes the global stiffness matrix, and F is the global load vector. Since
the fictitious domain approach is different as compared to a standard finite element
method, a few remarks shall be given:

• The geometry of the problem can be defined in various ways – by applying stan-
dard geometric models such as B-rep models, implicit geometry representations,
voxel models, constructive solid geometry representations, or trimmed geometric
models, see Düster et al. (2008, 2017). Common to all geometric models is the
requirement that for a given point it has to be decided whether it is located in the
physical domain. In this way, the indicator function α can be evaluated during the
integration of the stiffness matrix and load vector.

• As already indicated in the discussion of the discretization of the load functional,
the treatment of boundary conditions requires special attention. Neumann bound-
ary conditions can be considered with the procedure presented in Düster et al.
(2008). To this end, the surface on which the traction is defined needs to be
parametrized such that the integration can be carried out. Dirichlet boundary con-
ditions can be accounted for by applying the Nitsche method, which was applied
in the context of FCM in Ruess et al. (2013), Kollmannsberger et al. (2014).

• As the integrand of the stiffness matrix and the load vector involve the indicator
functionα, there is a discontinuity. Thus, a standard Gauss quadrature will not per-
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formwell and special integration techniques are required, which will be addressed
in this chapter in more detail.

• In the case of a smooth solution, a pure increase of the polynomial degree of
the shape functions will lead to an exponential convergence. In most cases, how-
ever, the problem will include discontinuities and singularities. Therefore, a local
enrichment has to be performed. Several strategies are available. One can take
advantage of the partition of unity method (PUM) (Melenk and Babuška 1996) in
order to locally enrich the displacement field with tailored shape functions, see,
for example, Joulaian and Düster (2013). Alternatively, a more general approach
applying an hp-type of refinement as proposed by Zander et al. (2016) can be
applied.

• The solution of the linear equation system (12) might require special attention
as well, since – due to the application of the fictitious domain concept – the
resulting condition number can be very high. To overcome this problem, one can
either apply direct solvers or use specialized preconditioners in combination with
iterative solvers, see Heinze et al. (2014), Jomo et al. (2017).

In order to obtain an impression of the efficiency which can be achieved with the
FCM, we consider a first numerical example.

A Simple Linear Elastostatic Example

As a first example, we consider a perforated plate under plane stress conditions.
Figure3 shows the geometry and boundary conditions of the plate. The dimensions
of the plate are L = B = 4mm and the radius of the hole is R = 1mm. An isotropic,
linear elastic material behavior with a Young’s modulus of E = 206,900 MPa and
Poisson’s ratio of ν = 0.29 is assumed. A traction of 100MPa acts on the upper edge
of the plate, as depicted in Fig. 3. The plate is meshed into 2 × 2 finite cells on which
high-order hierarchic shape functions suited for a p-extension are used. The geometry
of the problem is taken into account during the integration of the stiffness matrix of
the cells. To this end, an adaptive integration based on a quadtree is applied, which
will be explained in more detail in Section“Adaptive Quadtree/Octree Quadrature
Schemes”. Next, we study the convergence in terms of the relative error in energy
norm

(er )E(�e) =
√

|UFCM −UEX|
UEX

· 100 [%] (13)

where UEX,UFCM represent the exact and the approximated strain energy U =
1
2B(u,u) of the two-dimensional plate. Since the exact solution of the problem is
not known, it is replaced by an overkill solution that is accurate enough to com-
pute the error of the FCM approximation. The convergence of the FCM utilizing
a p-extension with p = 1, 2, 3, . . . is plotted in Fig. 3 for different levels of accu-
racy regarding the adaptive integration based on a quadtree. In addition to the FCM,
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Fig. 3 Perforated square plate with boundary conditions and convergence of error in energy norm
for different methods

results of the FEM computations are given, including an h-extension with bilinear
quadrilateral elements as well as a p-extension on ameshwith 4 quadrilaterals where
the geometry is represented exactly by means of the blending function method, see
Szabó and Babuška (1991). From the comparison, it is evident that the high-order
approaches achieve an exponential convergence, in contrast to the uniform mesh
refinement with p = 1 which results in an algebraic convergence rate. The FCM
closely follows the convergence of the p-FEM approach, provided that the inte-
gration is carried out accurately enough. A tree-depth level of 3, see Fig. 4, results
in an integration error that deteriorates the exponential convergence. However, by
choosing a more accurate integration based on a tree-depth level equal to 7, the high
convergence rate is maintained, resulting in a very efficient discretization.

In summary, this example demonstrates the appealing properties of the FCM.
High convergence rates can be achieved, provided that the integration of the cell
matrices is carried out accurately enough. In the remainder of this chapter, we will
therefore focus on different quadrature schemes that can be applied in the FCM.

Standard Numerical Integration Schemes

In this section, we will briefly summarize two standard numerical integration meth-
ods, the Newton-Cotes formulas and the Gauss-Legendre quadrature. The main pur-
pose is to recall the underlying ideas of these methods and their respective accuracy.
The methods will be presented for one-dimensional integrals.
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Newton-Cotes Formulas ( pq = n− 1)

The Newton-Cotes formulas are interpolatory quadrature rules to compute the inte-
gral

b∫

a

f (x) dx ≈
n∑

i=1

wi f (xi ) (14)

numerically by a weighted sum of the function f (x) evaluated at a set of n ≥ 2
equidistant points {xi }. The underlying idea is to interpolate f (x) at the n points
with a polynomial pn−1(x) of degree pq = n − 1 and to integrate this polynomial

b∫

a

f (x) dx ≈
b∫

a

pn−1(x) dx . (15)

To this end, the integration domain is sub-divided into intervals of length

h = b − a

n − 1
(16)

by utilizing an equidistant distribution of n points

xi = a + (i − 1) h , i = 1, . . . , n. (17)

Using the n points, a polynomial of degree pq = n − 1 is defined, such that

pn−1(xi ) = f (xi ) , i = 1, . . . , n (18)

holds. In order to set up the interpolation, it is convenient to construct a set of n
Lagrange polynomials of degree pq = n − 1

ln−1
i (x) =

n∏
j=1
j �=i

x − x j

xi − x j
, i = 1, . . . , n (19)

through the n equidistant points {xi }. The basic properties of the Lagrange polynomi-
als are ln−1

i (x j ) = δi j and the partition of unity
∑n

i=1 l
n−1
i (x) = 1. The first property

allows to directly represent the interpolation as

pn−1(x) =
n∑

i=1

ln−1
i (x) f (xi ). (20)
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Integrating the interpolatory polynomial yields

b∫

a

pn−1(x)dx =
n∑

i=1

b∫

a

ln−1
i (x)dx f (xi ). (21)

The antiderivative of the Lagrange polynomials in Eq. (21) can be interpreted as the
weights

wi =
b∫

a

ln−1
i (x)dx , i = 1, . . . , n (22)

required to approximately compute the integral

b∫

a

f (x) dx ≈
b∫

a

pn−1(x) dx =
n∑

i=1

wi f (xi ). (23)

To give two examples, we consider the Newton-Cotes formulas for two and three
points. Choosing n = 2 points with x1 = a, x2 = b and h = (b − a) results in the
well-known trapezoidal rule

x2∫

x1

f (x) dx ≈ h

2
( f (x1) + f (x2)), (24)

which allows to integrate linear (pq = n − 1 = 1) polynomials exactly.
Applying n = 3 points with x1 = a, x2 = a+b

2 , x3 = b and h = b−a
2 yields the

Simpson rule

x3∫

x1

f (x) dx ≈ h

3
( f (x1) + 4 f (x2) + f (x3)). (25)

It is interesting to note that the Simpson rule does not only allow to integrate
polynomials of degree pq = 2 exactly, but also polynomials of degree pq = 3. In
this case, the points {xi } and weights {wi } of the Simpson rule thus coincide with
the Gauss-Lobatto rule, which is known to be exact up to polynomials of order
pq = 2n − 3 = 3. The integration points and weights of the Gauss-Lobatto rule are
listed in Table4 in Section“Appendix”. Setting x1 = a = −1 and x3 = b = 1 results
in x2 = 0 and h = 1, and, consequently, the weights are w1 = 1

3 , w2 = 4
3 , w3 = 1

3 .
Comparing these points and weights for n = 3 with Table4 reveals that in this case
the Newton-Cotes formula coincides with the Gauss-Lobatto quadrature which con-
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firms the order of pq = 2n − 3 = 3. The fact that an additional order of accuracy is
gained explains the popularity of the Simpson rule.

Gauss-Legendre Quadrature ( pq = 2n− 1)

The most frequently used quadrature rule in finite element methods is probably the
Gauss-Legendre quadrature. It allows to integrate with n quadrature points polyno-
mials

1∫

−1

p2n−1(ξ) dx =
n∑

i=1

wi p2n−1(ξi ) (26)

of order pq = 2n − 1 exactly. To find the corresponding Gauss-Legendre points {ξi }
and weights {wi }, a polynomial

p2n−1(ξ) = a0 + a1ξ + a2ξ
2 + · · · + a2n−1ξ

2n−1 (27)

of order pq = 2n − 1 is integrated

1∫

−1

p2n−1(ξ) dξ = a0

1∫

−1

dξ + a1

1∫

−1

ξdξ + · · · + a2n−1

1∫

−1

ξ2n−1dξ (28)

term by term. For each term in (28), we can apply the quadrature rule – resulting in:

1∫

−1

dξ =
n∑

i=1

wi = w1 + w2 + · · · + wn (29)

1∫

−1

ξ dξ =
n∑

i=1

wiξi = w1ξ1 + w2ξ2 + · · · + wnξn (30)

... (31)
1∫

−1

ξ2n−1 dξ =
n∑

i=1

wiξ
2n−1
i = w1ξ

2n−1
1 + w2ξ

2n−1
2 + · · · + wnξ

2n−1
n (32)

The left-hand side, i.e. the integral of the monomials, can be computed analytically,
so that we obtain the nonlinear system
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0 =
n∑

i=1

wi ξ
β
i , β = 1, 3, 5, . . . , 2n − 1 (33)

2

β + 1
=

n∑
i=1

wi ξ
β
i , β = 0, 2, 4, . . . , 2n − 2 (34)

of 2n equations for n unknown abscissas {ξi } and n unknown weights {wi }. The
nonlinear system can be solved by applying, for example, the Newton-Raphson
method. However, since the Gauss-Legendre points {ξi , i = 1, . . . , n} are known
to be the roots of the Legendre polynomial of order n (see, for example, Schwarz
2004), the nonlinear system turns into a linear one. Algorithms and implementations
to compute the Gauss-Legendre points and weights are available, for example, in
Press et al. (2002). In Section“Appendix”, Table5 lists the Gauss-Legendre points
and weights for n = 1, . . . , 10.

Adaptive Quadtree/Octree Quadrature Schemes

In this section, we will discuss the adaptive numerical integration of discontinuous
integrands by a combination of spacetrees (Samet 1990) and Gaussian quadrature.
Spacetrees help to organize the adaptive spatial refinement in order to capture the
discontinuity of the integrand more efficiently than a uniform refinement, see Fig. 4.
The cells that are cut by the boundary of the domain or by some internal interfaces
are hierarchically sub-divided into sub-cells which correspond to the leaves of the
spacetree. In two-dimensional situations, we choose the quadtree, whereas an octree
can be applied for three-dimensional problems, see Abedian et al. (2013a). Alterna-
tively, an axis-aligned binary spactree, i.e. a k-d tree can be used instead, see, for
example, Gnegel (2019).

Fig. 4 Adaptive quadtree refinement of a perforated square plate. Tree-depth level: 0 (left), 3
(middle), and 7 (right)
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Fig. 5 Adaptive quadtree
integration. On the leaves of
the quadtree, i.e. the
sub-cells of a cut cell, a
Gauss quadrature is
performed

r

s

η

ξ

The main idea of the adaptive approach based on spacetrees is sketched in Fig. 4
for the two-dimensional problem of the perforated plate presented in Section“A
Simple Linear Elastostatic Example”. The tree-depth level 0 corresponds to the FCM
mesh consisting of 2 × 2 cells which are intersected by the circular hole. Starting
from this FCMmesh, each cell that is cut by the circle is recursively refined into four
sub-cells. The adaptive refinement process is continued until a pre-definedmaximum
tree-depth level is reached –which is set to 7 in this example. The adaptive refinement
gradually leads to a better representation of the geometry of the circle. On each leaf
of the quadtree, which corresponds to a sub-cell, a Gaussian quadrature is applied.
The situation is schematically depicted in Fig. 5 where the integration points applied
for one sub-cell are indicated.

The integration of the stiffness matrix of cell c

kc =
∫

�c

BTαCB d� =
1∫

−1

1∫

−1

BT (ξ)α(x(ξ))CB(ξ) t detJc dξdη (35)

=
nsc∑
sc=1

1∫

−1

1∫

−1

BT (ξ(r))α(x(ξ(r)))CB(ξ(r)) t detJc detJ̃c,sc drds

=
nsc∑
sc=1

nG∑
i=1

BT (ξ(ri ))α(x(ξ(ri )))CB(ξ(ri )) t detJc detJ̃c,scwi

with thickness t is carried out by applying a Gaussian quadrature with nG integration
points on each of the nsc sub-cells. In (35), ξ = [ξ, η]T , r = [r, s]T represent the
local coordinates of the cell c and sub-cell sc, respectively. The Jacobi matrix Jc cor-
responds to the mapping function x(ξ) that relates the local coordinates ξ = [ξ, η]T
of cell c to the global coordinate system x = [x, y]T . Furthermore, J̃c,sc represents
the Jacobi matrix of the mapping function ξ(r), relating the local coordinate system
of the sub-cell sc to the local coordinate system of the cell c. Since the two mapping
functions x(ξ) and ξ(r) are related to rectangular cells and sub-cells, the associated
Jacobi matrices are constant. TheGaussian quadrature is carried out in the local coor-
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Fig. 6 Adaptive octree refinement for a cell intersected by a sphere. The adaptive refinement is
carried out up to a tree-depth level of 7

dinate system of the sub-cell by applying {ri = [ri , si ]T , i = 1, . . . , nG} integration
points with the associated weights {wi , i = 1, . . . , nG}, which are obtained by the
straightforward extension of the 1D quadrature presented in Section “Gauss-Legen-
dre Quadrature (pq = 2n − 1)” to the 2D situation.

The extension of the presented adaptive integration scheme to 3D problems can
be implemented by applying an octree to locally refine broken (hexahedral) cells. A
first example is given in Fig. 6, where a cell intersected by a sphere is subdivided into
sub-cells up to a tree-depth level of 7. The resulting subdivision of the cell into sub-
cells can be used to perform an adaptive Gauss integration as explained previously
for the two-dimensional case.

Numerical Integration Based on Moment Fitting

A short literature overview over the moment fitting is presented in Section“Intro-
duction”. In this section, we will summarize the moment fitting approach to derive
quadrature rules for broken cells.

Moment Fitting Equations

Themain idea of themoment fitting approach is to set up an individual quadrature rule
for each broken cell. Consider, for example, the situation depicted in Fig. 7a where
the task is to integrate a given function over the domain�A, which corresponds to the
part of the physical domain that is located within the broken cell under consideration.
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ΩA(a) ΩA(b)

Fig. 7 a Quadrature points of the moment fitting with pq = 3. b Quadrature points of the adaptive
integration with k = 4 and pq = 3

Note that the geometry of the domain over which we want to integrate can be defined
by means of the indicator function (2) and can be therefore quite arbitrary. The
example under consideration even involves a disconnected domain – which does not
cause any problems with the moment fitting approach. To derive a quadrature rule
for such a broken cell, an equation system

n∑
i=1

f j
(
ξi

)
wi =

∫

�A

f j (ξ) d�, j = 1, . . . ,m (36)

is set up, where ξi and wi are the positions and the weights of the n integration
points, respectively. A set of m linearly independent basis functions f j (ξ) is chosen
to define the moment fitting equations, which can be represented in matrix notation
as ⎡

⎢⎣
f1

(
ξ1

)
. . . f1

(
ξn

)
...

. . .
...

fm
(
ξ1

)
. . . fm

(
ξn

)

⎤
⎥⎦

⎧⎪⎨
⎪⎩

w1
...

wn

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

∫
�A

f1 (ξ) d�
...∫

�A
fm (ξ) d�

⎫⎪⎬
⎪⎭ (37)

or in symbolic notation as
Aw = b. (38)

In (38), A denotes the coefficient matrix, w the vector of the unknown weights, and
b represents the moments which are defined as the integrals of the basis functions
f j (ξ). The equation system (38) is nonlinear with respect to the unknown position of
the integration points. Therefore, a nonlinear solution approach such as, for example,
the Newton-Raphson method has to be used to find an approximate solution. In
Hubrich et al. (2017), an optimization algorithm was applied to minimize the norm
of the residual of the moment fitting equations. In this way, efficient quadrature rules
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can be derived. However, the required numerical effort is increased when applying
such an optimization approach. Alternatively, we can pre-select the position of the
integration points. In Hubrich et al. (2017), it was shown that a suitable approach is to
employ standard Gauss-Legendre points, which can also be located in the fictitious
domain, see Fig. 7a. Thus, we choose the standard Gauss-Legendre points and define
a set of m basis functions, such that in d dimensions we have

n = m = (
pq + 1

)d
, (39)

i.e. a quadrature rule of order pq with the same number of points and basis functions.
Since the integration points are pre-defined, the nonlinear moment fitting equations
turn into a linear system with m equations for the n unknown weights. To fur-
ther accelerate the solution of the linear system, the basis functions are defined as
Lagrange polynomials through the Gauss-Legendre points. In order to simplify the
notation, we first consider the one-dimensional case, i.e. d = 1, and define the basis
functions as

f j (ξ) = l j (ξ) with l j (ξ) =
pq+1∏
k=1
k �= j

ξ − ξGLk

ξGLj − ξGLk

(40)

where l j (ξ) denote the one-dimensional Lagrange polynomials and ξGLj as well as
ξGLk are the coordinates of the standard one-dimensional Gauss-Legendre points.

Recalling that n = m = (
pq + 1

)d
, the n equations for the unknown weights read

pq+1∑
i=1

l j
(
ξGLi

)
wi =

∫

�A

l j (ξ) d�, j = 1, . . . , pq + 1. (41)

Thanks to the fact that Lagrange polynomials through the Gauss-Legendre points
are selected as basis functions, the Kronecker delta property holds and, therefore,
the coefficient matrix

A ji = l j (ξ
GL
i ) = δ j i (42)

results in the identity. This ideawasfirst proposed inHubrich andDüster (2018, 2019)
and allows to reduce the computational overhead of themoment fittingmethod signif-
icantly, since the effort of the solution of the equation system is avoided completely.
Furthermore, in Düster and Allix (2019) it was demonstrated that the basis functions
can be also chosen to include arbitrary types of discontinuities in an efficient man-
ner preserving the diagonal structure of the coefficient matrix A. To determine the(
pq + 1

)
one-dimensional moment fitting weights

wi =
∫

�A

li (ξ) d� , i = 1, . . . , pq + 1 (43)
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denoted also as ⎧⎪⎨
⎪⎩

w1
...

wpq+1

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

∫
�A

l1 (ξ) dξ
...∫

�A
l pq+1 (ξ) dξ

⎫⎪⎬
⎪⎭ , (44)

requires that the basis functions have to be integrated over the domain �A.
It is interesting to note that in the case where the cell of interest is not broken, i.e.

(�A = [−1, 1]), the resulting weights coincide with those of the standard Gauss-
Legendre quadrature. Furthermore, it can be observed that Eq. (43) is very similar to
the definition of the weights (22) of the Newton-Cotes formula. In both approaches,
Lagrange polynomials have to be integrated to find the weights of the related quadra-
ture rule. The proposed moment fitting method can therefore be interpreted as a
generalization of the Newton-Cotes formula, where Lagrange polynomials defined
on Gauss-Legendre points are applied to derive a quadrature rule for broken cells.
The utilization of Gauss-Legendre abscissae instead of an equidistant distribution of
points allows to increase the accuracy of the moment fitting method. Considering the
casewhere the cell is not broken, themoment fittingmethod yields the accuracy of the
Gauss-Legendre quadraturewherewith n points a polynomial of degree pq = 2n − 1
can be integrated exactly. Since we use the standard Gauss-Legendre quadrature for
non-broken cells anyway, this observation contributes to the understanding of the
moment fitting rather than suggesting a new quadrature rule for non-broken cells. In
themore interesting case of broken cells, the accuracy of themoment fitting approach
reduces to that of the Newton-Cotes formula, i.e. pq = n − 1. In summary, by using
Lagrange polynomials through pre-defined quadrature points as basis functions, we
can avoid having to solve a system to find the corresponding weights. This diag-
onalization of the coefficient matrix A in (38) does not only reduce the numerical
effort significantly, but it also helps to achieve the desired accuracy of the weights,
which can deteriorate when using a set of integration points and basis functions that
do not yield a diagonal coefficient matrix. In Hubrich et al. (2017), the influence of
the distribution of quadrature points on the condition number of A was investigated
in detail. It turned out that selecting Gauss-Legendre points – which might be even
located in the fictitious domain – improves the condition number of A and thereby
also the quality of the weights.

An extension of the moment fitting to the 2D and 3D case is straightforward. To
this end, the basis functions f j (ξ) are defined as the tensor product of the

(
pq + 1

)
one-dimensional Lagrange basis functions. Likewise, we define the quadrature points
as the tensor product of the

(
pq + 1

)
one-dimensional Gauss-Legendre points. In the

three-dimensional case (d = 3), the set of basis functions therefore reads

F = {
lr (ξ)ls(η)lt(ζ), r, s, t = 1, . . . , pq + 1

}
(45)

and the quadrature points are defined as

X = {[
ξGLr , ηGL

s , ζGLt

]
, r, s, t = 1, . . . , pq + 1

}
. (46)
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Again, thanks to the selection of basis functions defined as Lagrange polynomials
through the integration points, the weights

wi =
∫

�A

Li (ξ) d� , i = 1, . . . , (pq + 1)3 (47)

can be computed without the necessity of solving a system. In (47), Li (ξ) denotes
the product of the one-dimensional Lagrange polynomials (45), where the three
indices r, s, t have been replaced by index i to simplify the notation. In order to
evaluate the integral (47), there are several strategies available, see, for example,
Joulaian et al. (2016). One possibility is to convert the volume integral into a surface
integral. Alternatively, the volume integral can be computed by means of an adaptive
integration based on spacetrees, as explained in Section“Adaptive Quadtree/Octree
Quadrature Schemes”. This approach is also sketched in Fig. 7b, where a quadtree
with a tree-depth level k = 4 is used in combination with a Gaussian quadrature of
order pq = 3 to compute the right-hand side of the moment fitting equation system.
Since the integration only involves an evaluation of scalar-valued functions, the
adaptive integration based on spacetrees is not expensive, and it is to be seen as an
attractive approach since it can be performed in a fully automatic fashion.

Adaptive Moment Fitting

The variant of the moment fitting presented in the preceding section is quite efficient
and performs very well for linear problems of structural mechanics, see Hubrich
et al. (2017). However, there are situations, especially in nonlinear problems, where
the moment fitting method yields a less stable integration scheme. Consider, for
example, problems of elastoplasticity, where the moment fitting method turned out
to be less robust as compared to the adaptive Gauss integration based on spacetrees.
In situations like this, it was observed that the Newton-Raphson method, applied to
solve the algebraic set of nonlinear equations resulting from the discretization of the
linearized weak form, failed more often when the moment fitting method was used,
seeHubrich andDüster (2019). Elastoplasticmaterial models introduce an additional
difficultywhich is attributed to the evolving elastoplastic front representing amaterial
interface intersecting the cells. Such a material interface introduces a discontinuity
that is more difficult to handle than the one related to a boundary of the domain
intersecting a cell. Material interfaces require a special treatment of the trial and test
function of the spatial discretization as well as of the integration based on moment
fitting. The robustness of the overall nonlinear solution process based on the finite
cell method becomes even more fragile when considering problems of finite strains
and cells that are filled with a small fraction of material only, see Schillinger et al.
(2012), Taghipour et al. (2018), Hubrich andDüster (2019). Then, the deformation of
broken cells can become quite large, leading to a failure of the nonlinear computation.
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(a) Ωur
sc(b)

Fig. 8 a Quadrature points of the adaptive moment fitting with pq = 3 and ka = 1, 2, 3. bQuadra-
ture points of the adaptive quadtree with pq = 3 – used for the computation of the moment fitting
weights of sub-cell �ur

sc

A simple approach to remedy the aforementioned difficulties is to combine the
moment fitting method with the adaptive Gauss quadrature based on spacetrees.
The underlying idea of the adaptive moment fitting is sketched in Fig. 8 for the
same integration problem as discussed in Fig. 7a. The cell under consideration is
subdivided by means of a quadtree (or an octree in 3D) up to a certain tree-depth
level. We distinguish two different tree-depth levels, termed ka and k. Whereas ka
denotes the tree-depth level used for the adaptive moment fitting, k represents the
level of refinement used for the integration of the moments, i.e. the computation
of the right-hand side of the moment fitting equation system. Both levels can be
chosen independently, see Fig. 8. The decision whether a broken cell or sub-cell has
to be (further) subdivided is based on the volume fraction of its integration domain.
Based on numerical experiments, it turned out to be of advantage to set different
tolerances for the volume fractions for the different tree-depth levels. For ka = 0,
we set the tolerance to 0.85 – and to 0.7 as a tolerance for the volume fraction
for ka = 1, 2, which means that cells/sub-cells with a volume fraction lower than
the defined tolerances are further refined up to a maximum level of ka = 3. This
procedure will result in situations where broken cells/sub-cells are integrated either
with a standard Gauss quadrature or by applying the moment fitting approach. In
Fig. 8a, we can find sub-cells of different refinement levels (ka ≤ 3) that are either
integrated with a standard Gauss-Legendre quadrature (green points) or by means of
the moment fitting approach (red points). Non-broken sub-cells are integrated with a
standard Gauss-Legendre quadrature, whereas broken sub-cells are treated with the
momentfittingmethod. For both schemes, the number of integrationpoints is adjusted
to achieve an integration order of pq = 3. To compute the moments accurately, an
adaptive Gauss quadrature is applied with a tree-depth level of k = 4 and pq = 3 on
each sub-cell. Considering, for example, the sub-cell denoted as �ur

sc in Fig. 8a, its
corresponding refinement for the computation of the moments is depicted in Fig. 8b.
Since the sub-cell corresponds to tree-depth level 2, two additional refinements are
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required to achieve a tree-depth level 4. A Gauss-Legendre quadrature is applied on
each of the sub-cells to compute the moments.

If we compare Fig. 8 with Fig. 7, we can clearly see that the adaptive moment
fitting approach requires more integration points than the moment fitting method, but
less than the adaptive Gauss quadrature. As to be demonstrated by some numerical
examples in Section“Numerical Examples”, the additional integration points help to
increase the robustness of the numerical integration scheme.

Treatment of Integration Points in the Fictitious Domain

In the moment fitting method and also in its adaptive version, some of the integration
points will be located in the fictitious domain, see Fig. 7a and Fig. 8a. Therefore,
the question arises which constitutive model to choose for these points. Based on
extensive numerical experiments, it turned out to be of advantage to choose the
same material model for the points in the fictitious domain as for those located
in the physical domain. If we follow this approach, the results of the nonlinear
computations are very similar to those of an approach based on an adaptive Gauss
integration scheme, see Abedian et al. (2013a).

In order to improve the condition number of the resulting stiffness matrix and to
stabilize the FCM, it is of advantage to add a little bit of stiffness to the fictitious
domain. This can be accomplished by introducing additional integration points to the
cell, from which only those located in the fictitious domain are considered, see, for
example, Abedian et al. (2013b, 2014). The situation is depicted in Fig. 9, where the
yellow points represent the additional points introduced for stabilization purposes
only. For these additional standard Gauss-Legendre points, the original weights are
multiplied with a very small number – such as α = 10−q , where q is in the range of
5, . . . , 12. The material model assumed for these additional points is either a linear

ΩA

Fig. 9 Quadrature points used to stabilize the FCM
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elastic one or a hyperelastic one, depending on the question whether small strain or
finite strain problems are considered. The influence of the additional stiffness on the
accuracy of the FCM solution was investigated in Dauge et al. (2015).

Numerical Examples

The main purpose of this section is to investigate the adaptive integration schemes
presented inSections “AdaptiveQuadtree/OctreeQuadratureSchemes” and “Numer-
ical IntegrationBased onMoment Fitting”within the spatial discretization performed
with the finite cell method. The adaptive schemes were studied for linear problems of
structural mechanics in Abedian et al. (2013a), Joulaian et al. (2016), Hubrich et al.
(2017). In this section, we focus on nonlinear problems of structural mechanics with
particular attention toward elastoplasticity, including small as well as finite strains.
Both material models (for small as well as finite strains) are based on the J2 flow
theory of plasticity accounting for nonlinear isotropic hardening

K (ᾱ) = σ0 + hᾱ + (σ∞ − σ0)(1 − exp(−ωᾱ)), (48)

where σ0 represents the initial yield stress, h the linear hardening parameter, σ∞
the saturation stress, and ω the hardening exponent. The internal variable ᾱ used
to describe the isotropic hardening corresponds to the equivalent plastic strain. The
material parameters that are applied within all numerical examples presented in this
section are summarized in Table1.

In the next two subsections, we will study the performance of the adaptive inte-
gration schemes. To this end, we will start with the elastoplastic model for small
strains, followed by examples regarding finite strain elastoplasticity. The correspond-
ing material models, which are taken from the literature, are described at the begin-
ning of the individual sections. The overall solution process used for the FCMapplies
a standard incremental/iterative procedure, where the Newton-Raphson method is
used in each incremental load step in order to solve the nonlinear set of algebraic
equations emerging from the discretization of the linearized weak form. Thematerial
models and the solution process are – except for the spatial discretization by the FCM

Table 1 Material parameters for the elastoplastic model

Bulk modulus (K ) 164,206 MPa

Shear modulus (μ) 80,194 MPa

Initial yield strength (σ0) 450 MPa

Saturation stress (σ∞) 715 MPa

Linear hardening parameter (h) 129.24 MPa

Hardening exponent (ω) 16.93
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and its numerical integration – well established and can be found in textbooks such
as Simo and Hughes (1998), Wriggers (2008), de Souza Neto et al. (2008). There-
fore, we will keep the related description rather brief and focus on the numerical
results achieved with the finite cell method and the different versions of the adaptive
integration.

J2 Flow Theory of Plasticity for Small Strains

In this section, we start with the J2 flow theory of plasticity for small strains. The
small strain tensor

ε = εe + εp, (49)

is additively decomposed into an elastic εe and a plastic part εp. The Cauchy stress
tensor

σ = C (ε − εp) . (50)

is computed by an isotropic linear elastic constitutive model taking only the elastic
strains into account. In Eq. (50), C represents the fourth-order elasticity tensor.
Admissible stress states are defined by the classical von Mises yield criterion

�(σ, ᾱ) = ‖dev [σ]‖ −
√
2

3
K (ᾱ) ≤ 0, (51)

where dev [σ] = σ − 1
3 tr [σ] 1 is the deviator of the Cauchy stress tensor and K (ᾱ)

describes the isotropic hardening with Eq. (48). The evolution of the plastic strains

ε̇p = γ̇
∂�(σ, ᾱ)

∂σ
, (52)

is modeled by an associative flow rule, where γ ≥ 0 is the non-negative plastic
multiplier. A full description of the material model and its numerical integration
based on an implicit Euler scheme can be found, for example, in Simo and Hughes
(1998), Wriggers (2008). The numerical treatment of small strain elastoplasticity
problems with high-order finite elements was presented in Düster and Rank (2002),
Düster et al. (2002). First numerical investigations of the finite cell method for small
strain elastoplasticity can be found in Abedian et al. (2013b, 2014).

Porous material. As a first example, we consider a porous material that was studied
with respect to the computation of effective linear elasticmaterial properties inDüster
et al. (2012).Here,wewant to investigate the FCMand the integration schemes for the
same geometry but for small strain elastoplasticity. The porousmaterial of dimension
10 × 10 × 10mm3 includes randomly distributed ellipsoidal pores and is discretized
with 8 × 8 × 8 finite cells, as depicted in Fig. 10a. Symmetry boundary conditions
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(a) (b)

Fig. 10 Porousmaterial. aGeometry, boundary conditions, and FCMdiscretization. bOctreemesh

Fig. 11 Porous material.
Total number of integration
points for adaptive octree
and moment fitting
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are applied at three faces of the cube and at the top a displacement of ūz = 0.5mm
is applied in z-direction.

In a first step we study the number of integration points required by the different
quadrature schemes. To this end, the polynomial degree of the shape functions is
uniformly increased from p = 3, . . . , 8, and the number of integration points is
plotted in Fig. 11. The adaptive octree scheme – depicted in Fig. 10b for a cut through
the porous domain – uses a tree-depth level of k = 3. The same refinement level is
applied for themoment fittingmethod to compute the correspondingmoments. Please
note that the octree is in this case only used to compute the moments. The integration
with the moment fitting method is, however, carried out on cell level (i.e. without
further refinement, i.e. ka = 0). From Fig. 11, we can see that the moment fitting
method helps to reduce the number of integration points by approximately one order
of magnitude as compared to the adaptive octree.
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Fig. 12 Porous material.
Load-displacement curves
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Fig. 13 Porous material.
The von Mises stress σvM
along a diagonal cutline for
ūz = 0.5mm
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Next, we study the results in terms of the load-displacement curve and the von
Mises stress σvM along a diagonal cutline through the porous material, see Figs. 12
and 13. The results are obtained with p = 8, k = 3, and a stabilization parameter
α = 10−q where q = 12. We compare two different versions of the moment fitting.
The first version of the moment fitting (without asterisk) uses the same material
model and parameters in the entire domain. The version marked with an asterisk
(moment fitting*) uses a linear elastic material in the fictitious domain by setting the
yield stress of the related integration points to infinity. Taking the adaptive octree
integration scheme as a reference solution, the comparison reveals that choosing the
same material model and parameters in the entire domain yields to more accurate
results.

Finally, Fig. 14 depicts contour plots of the vonMises stressσvM and the equivalent
plastic strain ᾱ. From this it can be seen that the applied load leads to a stress state
resulting in a plastic region that is spread out over almost the entire domain.
Cube with a cylindrical hole. While the moment fitting performed very well in
the previous example, a second example serves to demonstrate possible problems
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Fig. 14 Contour plots of the porous material for ūz = 0.5mm and p = 8. a The von Mises stress
σvM. b Equivalent plastic strain ᾱ

(a) (b)

Fig. 15 Cube with a cylindrical hole. a Geometry, boundary conditions, and FCM discretization.
b Octree mesh

that can appear when applying the moment fitting without adaptive refinement. The
example under consideration is a cube with a cylindrical hole discretized by one cell
only, see Fig. 15a. The geometry of the cylinder is implicitly defined by the level set
function

φ (x) = (y − yc)
2 + (z − zc)

2 − r2 (53)

where the center coordinates yc and zc of the cylinder and its radius are given as

yc = 10mm , zc = 0mm , and r = 9mm. (54)

We apply symmetry boundary conditions at three faces of the cube, and a displace-
ment of up to ūz = 0.5mm is prescribed at the top.

Figure16 shows a comparison of the three different integration schemes in terms
of the load-displacement curve computed with a single finite cell utilizing p = 8 as
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Fig. 16 Cube with a
cylindrical hole.
Load-displacement curves
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Fig. 17 Cube with a
cylindrical hole. The von
Mises stress σvM along a
diagonal cutline for
ūz = 0.5mm
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the polynomial degree of the shape functions. The tree-depth level of the adaptive
octree, the moment fitting, and the adaptive moment fitting are set to k = 5. The
octree mesh using 5 refinements is given in Fig. 15b. For the adaptive moment fit-
ting, we furthermore choose ka = 3, i.e. a maximum tree-depth level for the adaptive
refinement of the cell. As can be seen in Fig. 16, the moment fitting method requires,
with q = 2, a significantly higher stabilization parameter α = 10−q as compared to
the other two integration methods, where q = 12 is chosen. The rather high stabi-
lization parameter is required for the moment fitting method in order to achieve a
convergence of the global Newton-Raphson method applied to solve the nonlinear
set of algebraic equations obtained from the discretization of the linearized weak
form of equilibrium. As a consequence of this rather high value of α, the stiffness of
the fictitious domain is significantly overestimated – resulting in a stiffer behavior,
i.e. an increase of the load-displacement curve.

In Fig. 17, the von Mises stress is plotted along the diagonal cutline through the
cube. The green bar indicates the physical domain whereas the white bar represents
the fictitious domain. The effect of the high stabilization valueα can be observed also
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Fig. 18 Cube with a
cylindrical hole. Total
number of integration points
for different integration
schemes
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in terms of the von Mises stress where the moment fitting yields to a clear deviation
from the results obtained with the other two integration schemes. This effect can
be attributed to the extra stiffness introduced in the fictitious domain, resulting in
oscillations of the stresses at the boundary of the cylindrical hole.

Finally, in Fig. 18, we compare the required number of quadrature points for
the three different integration schemes. The number of integration points is plotted
against the polynomial degree of the shape functions. Different tree-depth levels, i.e.
k = 5, 6 are chosen. Clearly, the number of integration points of the adaptive octree
scheme is increased when increasing k. However, the number of integration points
of the two versions of the moment fitting method does not increase when k is raised.
This is due to the fact that k corresponds to the refinement level used to compute
the moments. In the adaptive moment fitting, the cell is refined up to a tree-depth
level of ka = 3. Therefore, the adaptive moment fitting results in a higher number
of integration points as compared to the moment fitting method (where ka = 0).
However, the usage of the adaptive refinement in themoment fittingmethod increases
its stability and still results in significantly less integration points as compared to
the adaptive octree scheme. Therefore, we believe that the adaptive moment fitting
approach presents a good compromise between efficiency and robustness.
Thick plate with a hole under 3D conditions. Next, we consider a benchmark that
was used by different research groups to compare adaptive finite element schemes
developed for elastoplastic problems, see Stein (2002). The geometry and bound-
ary conditions of the three-dimensional plate with a hole are depicted in Fig. 19.
According to the definition of the benchmark, we set a = 100mm, the thickness
to t = 10mm, and the radius r = 10mm. The traction t̄y = λ 100MPa is increased
monotonously within 61 load steps up to a factor of λ = 4.15. Due to symmetry,
only one eighth of the plate has to be discretized. The FCM grid is composed of 399
cells, as depicted in Fig. 20a.

First, we compare the number of integration points required for the adaptive octree
and the adaptive moment fitting for k = 5 as p is increased uniformly, see Fig. 20b.
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Fig. 19 Thick-walled plate with a circular hole. Geometry and boundary conditions
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Fig. 20 3Dperforated plate. a FCMdiscretization.bTotal number of integration points for adaptive
octree and adaptive moment fitting

Again, it can be observed that the number of integration points can be reduced by
approximately one order of magnitude when applying the adaptive moment fitting.

Next, we compare the results obtained with the finite cell method with p = 8,
k = 5 and q = 5 (i.e. α = 10−5) to the reference solution provided by Wieners, see
Stein (2002). The results to be compared are the displacement component ux as well
as the stress component σyy at point A, with the coordinates (89.98, 0.01, 0.13) mm.
The results obtained with the adaptive octree as well as adaptive moment fitting
integration are plotted in Figs. 21 and 22.

From this, it is evident that the results of the finite cell method agree very well the
reference solution. Furthermore, it can be observed that the results of the adaptive
octree and the adaptive moment fitting method are in good agreement as well. This
demonstrates that a factor of about 10 integration points can be saved by the adaptive
moment fitting without sacrificing the accuracy of the FCM.
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Fig. 21 3D perforated plate.
Displacement ux at point A
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Fig. 22 3D perforated plate.
Stress component σyy at
point A
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Finally, we consider the contour plots of the von Mises stress σvM and the equiv-
alent plastic strain ᾱ in Fig. 23 for a load factor of λ = 4.15. At this load level, the
plastic region clearly occupies a large portion of the plate already.

J2 Flow Theory of Plasticity for Large Strains

As a second nonlinear problem, we consider the J2 flow theory of plasticity for large
strains. Here, the deformation gradient

F = ∂x
∂X

= Grad [X + u(X, t)] = 1 + Grad u (55)

is multiplicatively decomposed
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Fig. 23 Contour plots of the 3D perforated plate for the final load λ = 4.15. a The vonMises stress
σvM. b Equivalent plastic strain ᾱ

F = FeFp (56)

into an elastic Fe and a plastic Fp part. The Kirchhoff stress tensor

τ = Dεe (57)

is computed based on the specific free energy function of the Hencky material. In
Eq. (57), D denotes the fourth-order isotropic elasticity tensor and

εe = 1

2
ln (Be) (58)

represents the spatial logarithmic elastic strain tensor based on the elastic left Cauchy-
Green tensor

Be = Fe (Fe)
T

. (59)

Admissible stress states are defined by the von Mises yield criterion

�(s, ᾱ) =
√
3

2
s · s − K (ᾱ) ≤ 0 (60)

where s = dev [τ ] = τ − 1
3 tr [τ ] 1 denotes the deviator of theKirchhoff stress tensor

τ . Again, nonlinear isotropic hardening is modeled by the function K (ᾱ) as defined
in Eq. (48). The associative flow rule is defined in the finite strain regime as

Ḟ
p
(Fp)

−1 =
√
3

2
γ̇ (Re)

T nRe with n = s
‖s‖ . (61)

where γ ≥ 0 denotes the non-negative plastic multiplier and Re represents the elastic
rotation tensor. The constitutive equations are integrated with a backward Euler
scheme. An exponential mapping technique is applied for the flow rule to maintain
its volume-preserving feature. A detailed description of the material model and its
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Fig. 24 Porous material.
Load-displacement curves

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.5  1  1.5  2  2.5

fo
rc

e 
F

z 
[k

N
]

displacement uz [mm]

adaptive octree, p=8, k=3, q=12
moment fitting, p=8, k=3, q=12

moment fitting*, p=8, k=3, q=12

integration can be found in de Souza Neto et al. (2008). First results of the finite cell
method for this kind of material model are summarized in Taghipour et al. (2018).

Porous material. Again, we consider the porous material that was investigated in
Section“J2 Flow Theory of Plasticity for Small Strains” in the context of small strain
elastoplasticity. Here, we apply the finite strain elastoplasticity model as described
in Section“J2 Flow Theory of Plasticity for Large Strains”. The geometry and dis-
cretization of the porous material are the same as depicted in Fig. 10a. However, the
magnitude of the applied displacement is increased to ūz = 2.5mm, resulting in an
elongation of 25%. Again, we apply the same integration methods with the same
settings as in the small strain case. Therefore, the savings concerning the number of
integration points are again about one order of magnitude when applying themoment
fitting method instead of the adaptive octree.

Figure24 shows the load-displacement curves for the different integration
schemes. Again, we consider two different versions of the moment fitting. For the
integration points in the fictitious domain, the version denoted as moment fitting*
assumes an infinite yield stress – resulting in a hyperelastic material behavior. In
contrast, the version denoted as moment fitting (without asterisk) assumes the same
material (parameters) in the entire domain. Comparing the load-displacement curves
to those of the adaptive octree, it is evident that assuming the same material parame-
ters for the moment fitting points in the fictitious part as in the physical domain yields
more accurate results. This observation is also confirmed when investigating the von
Mises stress σvM evaluated along a diagonal cutline through the porous material, see
Fig. 25.

The contour plots of the von Mises stress σvM and the equivalent plastic strain
ᾱ are presented in Fig. 26. The black box represents the initial, i.e. undeformed
configuration of the porous material, giving an impression of the total deformation.

Swiss cheese domain. The last example which serves to investigate the different
integration techniques is the so-called ‘swiss cheese domain’ which is composed of
several cheese blocks. According to Burman et al. (2015) the geometric description
of one cheese block is given in terms of the following level set function
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Fig. 25 Porous material. The von Mises stress σvM along a diagonal cutline for ūz = 2.5mm

Fig. 26 Contour plots of the porous material for ūz = 2.5mm and p = 8. a The von Mises stress
σvM. b Equivalent plastic strain ᾱ

φ(x) = [
(x − xc)

2 + (y − yc)
2 − R2]2 + [

(y − yc)
2 + (z − zc)

2 − R2]2
+ [

(z − zc)
2 − r2

]2 + [
(x − xc)

2 + (z − zc)
2 − R2

]2
+ [

(x − xc)
2 − r2

]2 + [
(y − yc)

2 − r2
)]2 − d. (62)

We use eight of these cheese blocks, where every block of size 3 × 3 × 3mm3 has a
slightly different geometry, see Table2 for the corresponding parameters. Figure27a
shows the geometry, together with the boundary conditions and the FCM discretiza-
tion. The FCM grid consists of 5,376 cells, out of which 4,464 are cut by the geom-
etry. Figure27b shows the octree using 3 levels of refinement for the resolution of
the geometry.
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Table 2 Geometry parameters of the swiss cheese domain

Cheese
block id

xc (mm) yc (mm) zc (mm) R (mm) r (mm) d (mm4)

1 1.5 1.5 1.5 1.5 1.125 5.3

2 4.5 1.5 1.5 1.5 1.125 4.9

3 1.5 4.5 1.5 1.5 1.125 5.1

4 4.5 4.5 1.5 1.5 1.125 4.7

5 1.5 1.5 4.5 1.5 1.125 5.2

6 4.5 1.5 4.5 1.5 1.125 4.8

7 1.5 4.5 4.5 1.5 1.125 5.0

8 4.5 4.5 4.5 1.5 1.125 4.6

(a) (b)

Fig. 27 Swiss cheese domain. aGeometry, boundary conditions, and FCM discretization. bOctree
mesh

Figure28 shows the load-displacement curves computed with the FCM and the
adaptive octree as well as the adaptive moment fitting integration scheme. The poly-
nomial degree of the shape functions of the finite cells is p = 4, the tree-depth level
is k = 3, and the stabilization parameter is α = 10−q , with q = 5. The moment fit-
tingmethod (without refinement, i.e. ka = 0) failed, i.e. the overall Newton-Raphson
method did not convergewith this integration scheme.However, the adaptivemoment
fitting with ka = 3 performs very well, as is evident from a comparison with the
adaptive octree. Interestingly, 1,440 of the 4,464 broken cells do not even require a
refinement in the adaptive moment fitting, i.e. ka = 0.

Thenumber of integration points used for the adaptive octreenAOTg and the adaptive
moment fitting method nAMF

g are listed in Table3 for different polynomial degrees
p of the shape functions of the finite cells. From this, we can see that the adaptive
moment fitting requires approximately 2.5 times less integration points. The ratio
will increase even further if we elevate the tree-depth level k of the octree to resolve
the geometry. Recall that the tree-depth level for the computation of the weights in
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Fig. 28 Swiss cheese domain. Load-displacement curves

Table 3 Total number of integration points

p nAOTg nAMF
g Ratio

2 10,432,284 4,123,260 ≈2.5

3 24,720,696 10,391,292 ≈2.4

4 48,285,260 21,079,600 ≈2.3

the adaptive moment fitting corresponds to k, whereas the refinement level of the
cells is limited to ka . Therefore, the number of integration points for the computation
of the stiffness matrix will remain constant for the adaptive moment fitting method
as k is elevated. However, increasing k will help to improve the resolution of the
geometry.

Finally, Fig. 29 shows the contour plots of the von Mises stress σvM and the
equivalent plastic strain ᾱ for the last load step, in which a displacement of ūz =
0.28mm is applied. From this, it is evident that necking occurs in the thin parts of
the upper cheese blocks. The equivalent plastic strain in this regions is about 50%.

Conclusions

We presented different integration schemes that can be applied to cut finite elements
and cut finite cells appearing in fictitious domain methods. The adaptive octree inte-
gration combines a spacetree with a Gaussian quadrature on the leaves of the space-
tree. This approach is very robust but introduces a high number of integration points.
The moment fitting method, in which an individual quadrature rule is set up for
every broken element/cell, reduces the number of integration points significantly.
The computational overhead of the moment fitting can be also significantly reduced
by circumventing the necessity to solve a (nonlinear) set of equations. This can
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Fig. 29 Contour plots of the Swiss cheese domain for ūz = 0.28mm and p = 4. a The von Mises
stress σvM. b Equivalent plastic strain ᾱ

be accomplished by pre-selecting the position of the integration points and using
Lagrange polynomials defined on this set of points.

The different integration methods were tested in the framework of the finite cell
method applied to solve elastoplastic problems including small as well as finite
strains. In some nonlinear elastoplastic problems, the moment fitting method unfor-
tunately turned out to be less stable than the adaptive octree, leading to a failure of the
nonlinear solution process. To circumvent this problem, it is possible to employ the
adaptive moment fitting method, which borrows the idea of the spacetree to locally
refine broken elements/cells for integration purposes. This, of course, leads to an
increased number of integration points – but still results in significantly less points
than the adaptive octree approach, especially in cases where a high resolution of the
integration domain is required. In this way, the stability of the finite cell method can
be retained also for strongly nonlinear problems. Future work will apply the adaptive
moment fitting method also to other nonlinear problems to test its stability.
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Appendix

Table4 lists the abscissas and weight factors of the Gauss-Lobatto quadrature.
Applying n quadrature points allows to exactly integrate polynomials of degree
pq = 2n − 3. Table5 lists the abscissas and weight factors of the Gauss-Legendre
quadrature. Applying n quadrature points allows to exactly integrate polynomials of
degree pq = 2n − 1.

Table 4 Abscissas and weight factors of the Gauss-Lobatto quadrature

n Abscissas ξi Weight factors wi

2 −1.00000000000000000 1.0000000000000000

1.00000000000000000 1.0000000000000000

3 −1.00000000000000000 0.3333333333333333

0.00000000000000000 1.3333333333333333

1.00000000000000000 0.3333333333333333

4 −1.00000000000000000 0.1666666666666667

−0.44721359549995780 0.8333333333333333

0.44721359549995780 0.8333333333333333

1.00000000000000000 0.1666666666666667

5 −1.00000000000000000 0.1000000000000000

−0.65465367070797710 0.5444444444444444

0.00000000000000000 0.7111111111111111

0.65465367070797698 0.5444444444444444

1.00000000000000000 0.1000000000000000

6 −1.00000000000000000 0.0666666666666667

−0.76505532392946463 0.3784749562978469

−0.28523151648064499 0.5548583770354865

0.28523151648064510 0.5548583770354862

0.76505532392946451 0.3784749562978471

1.00000000000000000 0.0666666666666667

(continued)
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Table 4 (continued)

n Abscissas ξi Weight factors wi

7 −1.00000000000000000 0.0476190476190476

−0.83022389627856708 0.2768260473615660

−0.46884879347071418 0.4317453812098626

0.00000000000000000 0.4876190476190476

0.46884879347071423 0.4317453812098627

0.83022389627856685 0.2768260473615661

1.00000000000000000 0.0476190476190476

8 −1.00000000000000000 0.0357142857142857

−0.87174014850960668 0.2107042271435060

−0.59170018143314218 0.3411226924835044

−0.20929921790247885 0.4124587946587039

0.20929921790247885 0.4124587946587039

0.59170018143314218 0.3411226924835044

0.87174014850960646 0.2107042271435061

1.00000000000000000 0.0357142857142857

9 −1.00000000000000000 0.0277777777777778

−0.89975799541146018 0.1654953615608056

−0.67718627951073762 0.2745387125001618

−0.36311746382617827 0.3464285109730465

0.00000000000000000 0.3715192743764172

0.3631174638261781 0.3464285109730464

0.67718627951073773 0.2745387125001617

0.89975799541146007 0.1654953615608054

1.00000000000000000 0.0277777777777778

10 −1.00000000000000000 0.0222222222222222

−0.91953390816645864 0.1333059908510700

−0.73877386510550491 0.2248893420631265

−0.47792494981044459 0.2920426836796839

−0.16527895766638698 0.3275397611838974

0.16527895766638692 0.3275397611838974

0.47792494981044448 0.2920426836796837

0.73877386510550491 0.2248893420631265

0.91953390816645864 0.1333059908510700

1.00000000000000000 0.0222222222222222
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Table 5 Abscissas and weight factors of the Gauss-Legendre quadrature

n Abscissas ξi Weight factors wi

1 0.000000000000000e+00 2.000000000000000e+00

2 5.773502691896258e−01 1.000000000000000e+00

−5.773502691896258e−01 1.000000000000000e+00

3 7.745966692414834e−01 5.555555555555556e−01

0.000000000000000e+00 8.888888888888889e−01

−7.745966692414834e−01 5.555555555555556e−01

4 8.611363115940526e−01 3.478548451374539e−01

3.399810435848563e−01 6.521451548625461e−01

−3.399810435848563e−01 6.521451548625461e−01

−8.611363115940526e−01 3.478548451374539e−01

5 9.061798459386640e−01 2.369268850561891e−01

5.384693101056831e−01 4.786286704993665e−01

0.000000000000000e+00 5.688888888888889e−01

−5.384693101056831e−01 4.786286704993665e−01

−9.061798459386640e−01 2.369268850561891e−01

6 9.324695142031520e−01 1.713244923791703e−01

6.612093864662645e−01 3.607615730481386e−01

2.386191860831969e−01 4.679139345726910e−01

−2.386191860831969e−01 4.679139345726910e−01

−6.612093864662645e−01 3.607615730481386e−01

−9.324695142031520e−01 1.713244923791703e−01

7 9.491079123427585e−01 1.294849661688697e−01

7.415311855993944e−01 2.797053914892767e−01

4.058451513773972e−01 3.818300505051189e−01

0.000000000000000e+00 4.179591836734694e−01

−4.058451513773972e−01 3.818300505051189e−01

−7.415311855993944e−01 2.797053914892767e−01

−9.491079123427585e−01 1.294849661688697e−01

8 9.602898564975362e−01 1.012285362903763e−01

7.966664774136267e−01 2.223810344533745e−01

5.255324099163290e−01 3.137066458778873e−01

1.834346424956498e−01 3.626837833783620e−01

−1.834346424956498e−01 3.626837833783620e−01

−5.255324099163290e−01 3.137066458778873e−01

−7.966664774136267e−01 2.223810344533745e−01

−9.602898564975362e−01 1.012285362903763e−01

9 9.681602395076261e−01 8.127438836157441e−02

8.360311073266358e−01 1.806481606948574e−01

6.133714327005904e−01 2.606106964029355e−01

3.242534234038089e−01 3.123470770400028e−01

0.000000000000000e+00 3.302393550012598e−01

(continued)
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Table 5 (continued)

n Abscissas ξi Weight factors wi

−3.242534234038089e−01 3.123470770400028e−01

−6.133714327005904e−01 2.606106964029355e−01

−8.360311073266358e−01 1.806481606948574e−01

−9.681602395076261e−01 8.127438836157441e−02

10 9.739065285171717e−01 6.667134430868814e−02

8.650633666889845e−01 1.494513491505806e−01

6.794095682990244e−01 2.190863625159820e−01

4.333953941292472e−01 2.692667193099964e−01

1.488743389816312e−01 2.955242247147529e−01

−1.488743389816312e−01 2.955242247147529e−01

−4.333953941292472e−01 2.692667193099964e−01

−6.794095682990244e−01 2.190863625159820e−01

−8.650633666889845e−01 1.494513491505806e−01

−9.739065285171717e−01 6.667134430868814e−02
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Fries, T.-P., & Omerović, S. (2016). Higher-order accurate integration of implicit geometries. Inter-
national Journal for Numerical Methods in Engineering, 106(5), 323–371.

Glowinski, R., &Kuznetsov, Y. (2007). Distributed Lagrange multipliers based on fictitious domain
method for second order elliptic problems. Computer Methods in Applied Mechanics and Engi-
neering, 196, 1498–1506.

Gnegel, S. (2019). The finite cell method for the computation of cellular materials. Ph.D. thesis,
Fachgebiet für Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik (M-10), TU
Hamburg.

Heinze, S., Joulaian, M., Egger, H., & Düster, A. (2014). Efficient computation of cellular materials
using the finite cell method. Proceedings in Applied Mathematics and Mechanics, 14, 251–252.
https://doi.org/10.1002/pamm.201410113.

Hubrich, S., & Düster, A. (2018). Adaptive numerical integration of broken finite cells based
on moment fitting applied to finite strain problems. Proceedings in Applied Mathematics and
Mechanics, 18, e201800089. https://doi.org/10.1002/pamm.201800089.

Hubrich, S., & Düster, A. (2019). Numerical integration for nonlinear problems of the finite cell
method using an adaptive scheme based on moment fitting. Computers & Mathematics with
Applications, 77, 1983–1997. https://doi.org/10.1016/j.camwa.2018.11.030.

Hubrich, S., Di Stolfo, P., Kudela, L., Kollmannsberger, S., Rank, E., Schröder, A., et al. (2017).
Numerical integration of discontinuous functions: Moment fitting and smart octree. Computa-
tional Mechanics, 60, 863–881. https://doi.org/10.1007/s00466-017-1441-0.

Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and
Engineering, 194, 4135–4195.

Jomo, J. N., Zander,N., Elhaddad,M.,Özcan,A., Kollmannsberger, S.,Mundani, R.-P., et al. (2017).
Parallelization of the multi-level hp-adaptive finite cell method. Computers & Mathematics with
Applications, 74, 126–142. https://doi.org/10.1016/j.camwa.2017.01.004.

Joulaian, M., & Düster, A. (2013). Local enrichment of the finite cell method for problems with
material interfaces. Computational Mechanics, 52, 741–762. https://doi.org/10.1007/s00466-
013-0853-8.

Joulaian, M., Hubrich, S., &Düster, A. (2016). Numerical integration of discontinuities on arbitrary
domains based on moment fitting. Computational Mechanics, 57, 979–999. https://doi.org/10.
1007/s00466-016-1273-3.

https://doi.org/10.1007/s00466-019-01776-2
https://doi.org/10.1007/s00466-012-0681-2
https://doi.org/10.1007/s00466-012-0681-2
https://doi.org/10.1002/9781119176817.ecm2003g
https://doi.org/10.1002/pamm.201410113
https://doi.org/10.1002/pamm.201800089
https://doi.org/10.1016/j.camwa.2018.11.030
https://doi.org/10.1007/s00466-017-1441-0
https://doi.org/10.1016/j.camwa.2017.01.004
https://doi.org/10.1007/s00466-013-0853-8
https://doi.org/10.1007/s00466-013-0853-8
https://doi.org/10.1007/s00466-016-1273-3
https://doi.org/10.1007/s00466-016-1273-3


72 A. Düster and S. Hubrich

Kollmannsberger, S., Özcan, A., Baiges, J., Ruess,M., Rank, E., &Reali, A. (2014). Parameter-free,
weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming
patches. International Journal for Numerical Methods in Engineering, 101(9), 1–30. https://doi.
org/10.1002/nme.4817.

Kudela, L., Zander, N., Bog, T., Kollmannsberger, S., & Rank, E. (2015). Efficient and accu-
rate numerical quadrature for immersed boundary methods. Advanced Modeling and Simulation
in Engineering Sciences, 2(1), 1–22. https://doi.org/10.1186/s40323-015-0031-y. ISSN 2213-
7467.

Loehnert, S., Mueller-Hoeppe, D. S., & Wriggers, P. (2011). 3D corrected XFEM approach and
extension to finite deformation theory. International Journal for Numerical Methods in Engi-
neering, 86, 431–452.

Lyness, J. N., & Jespersen, D. (1975). Moderate degree symmetric quadrature rules for the triangle.
Journal of the Institute of Mathematics and Its Applications, 15, 19–32.

Lyness, J. N., & Monegato, G. (1977). Quadrature rules for regions having regular hexagonal
symmetry. SIAM Journal on Numerical Analysis, 14, 283–295.

Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and
applications. Computer Methods in Applied Mechanics and Engineering, 139, 289–314.

Mittal, R., & Iaccarino, G. (2005). Immersed boundary method. Annual Review Fluid Mechanics,
37, 239–260.

Mousavi, S. E.,&Sukumar,N. (2010).GeneralizedGaussian quadrature rules for discontinuities and
crack singularities in the extended finite element method.Computer Methods in AppliedMechan-
ics and Engineering, 199(49–52), 3237–3249. https://doi.org/10.1016/j.cma.2010.06.031.

Mousavi, S. E., & Sukumar, N. (2011). Numerical integration of polynomials and discontinuous
functions on irregular convex polygons and polyhedrons. Computational Mechanics, 47, 535–
554.

Müller, B., Kummer, F., & Oberlack, M. (2013). Highly accurate surface and volume integration
on implicit domains by means of moment-fitting. International Journal for Numerical Methods
in Engineering, 96, 512–528. https://doi.org/10.1002/nme.4569.

Neittaanmäki, P., & Tiba, D. (1995). An embedding of domains approach in free boundary problems
and optimal design. SIAM Journal on Control and Optimization, 33(5), 1587–1602.

Parvizian, J., Düster, A., & Rank, E. (2007). Finite cell method - h- and p-extension for embedded
domain problems in solid mechanics. Computational Mechanics, 41, 121–133.

Peskin, C. (2002). The immersed boundary method. Acta Numerica, 11, 1–39.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2002). Numerical recipes in
C++. The art of scientific computing (2nd ed.). Cambridge: Cambridge University Press. ISBN
0-521-75033-4.

Ramière, I., Angot, P., & Belliard, M. (2007). A fictitious domain approach with spread interface
for elliptic problems with general boundary conditions.ComputerMethods in AppliedMechanics
and Engineering, 196, 766–781.

Ruess, M., Schillinger, D., Bazilevs, Y., Varduhn, V., & Rank, E. (2013). Weakly enforced essential
boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of
the finite cell method. International Journal for Numerical Methods in Engineering, 95(10),
811–846. https://doi.org/10.1002/nme.4522.

Samet, H. (1990). Applications of spatial data structures: Computer graphics, image processing,
and GIS. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Saul’ev, V. K. (1963a). A method for automatization of the solution of boundary value problems on
high performance computers. Doklady Akademii Nauk SSSR, 144 (1962), 497–500 (in Russian).
English translation in Soviet Mathematics Doklady, 3, 763–766.

Saul’ev,V.K. (1963).On solution of some boundary value problems on high performance computers
by fictitious domain method. Siberian Mathematical Journal, 4, 912–925.

Schillinger, D., & Ruess, M. (2015). The finite cell method: A review in the context of higher-
order structural analysis of CAD and image-based geometric models. Archives of Computational
Methods in Engineering, 22, 391–455. https://doi.org/10.1007/s11831-014-9115-y.

https://doi.org/10.1002/nme.4817
https://doi.org/10.1002/nme.4817
https://doi.org/10.1186/s40323-015-0031-y
https://doi.org/10.1016/j.cma.2010.06.031
https://doi.org/10.1002/nme.4569
https://doi.org/10.1002/nme.4522
https://doi.org/10.1007/s11831-014-9115-y


Adaptive Integration of Cut Finite Elements … 73

Schillinger, D., Ruess, M., Zander, N., Bazilevs, Y., Düster, A., & Rank, E. (2012). Small and large
deformation analysis with the p- and B-spline versions of the finite cell method. Computational
Mechanics, 50, 445–478. https://doi.org/10.1007/s00466-012-0684-z.

Schwarz, H. R. (2004). Numerische Mathematik (5th ed). B.G. Teubner. ISBN 978-3519429609.
Simo, J. C., & Hughes, T. J. R. (1998). Computational inelasticity. Berlin: Springer.
Stein, E. (Ed.). (2002). Error-controlled adaptive finite elements in solid mechanics. Hoboken:
Wiley.

Strouboulis, T.,Copps,K.,&Babuška, I. (2000). The generalizedfinite elementmethod:Anexample
of its implementation and illustration of its performance. International Journal for Numerical
Methods in Engineering, 47, 1401–1417.

Strouboulis, T., Copps, K., & Babuška, I. (2001). The generalized finite element method. Computer
Methods in Applied Mechanics and Engineering, 190, 4081–4193.

Szabó, B. A., &Babuška, I. (1991). Finite element analysis. Hoboken:Wiley. ISBN 0-471-50273-1.
Szabó, B. A., Düster, A., & Rank, E. (2004). The p-version of the finite element method. In
E. Stein, R. de Borst, & T. J. R. Hughes (Eds.), Encyclopedia of computational mechanics (Vol
1, Chap. 5, pp. 119–139). Hoboken:Wiley. https://doi.org/10.1002/0470091355.ecm003g. ISBN
0-470-84699-2.

Taghipour,A., Parvizian, J., Heinze, S.,&Düster, A. (2018). The finite cellmethod for nearly incom-
pressible finite strain plasticity problems with complex geometries. Computers & Mathematics
with Applications, 75, 3298–3316. https://doi.org/10.1016/j.camwa.2018.01.048.

Ventura, G. (2006). On the elimination of quadrature subcells for discontinuous functions in the
eXtended finite-element method. International Journal for Numerical Methods in Engineering,
66, 761–795.

Ventura, G., & Benvenuti, E. (2015). Equivalent polynomials for quadrature in Heaviside function
enrichment elements. International Journal for Numerical Methods in Engineering, 102, 688–
710.

Wriggers, P. (2008). Nonlinear finite-element-methods. Berlin: Springer. ISBN 3-540-71000-0.
Zander, N., Bog, T., Elhaddad, M., Frischmann, F., Kollmannsberger, S., & Rank, E. (2016). The
multi-level hp-method for three-dimensional problems: Dynamically changing high-order mesh
refinement with arbitrary hanging nodes. Computer Methods in Applied Mechanics and Engi-
neering, 310, 252–277. https://doi.org/10.1016/j.cma.2016.07.007.

https://doi.org/10.1007/s00466-012-0684-z
https://doi.org/10.1002/0470091355.ecm003g
https://doi.org/10.1016/j.camwa.2018.01.048
https://doi.org/10.1016/j.cma.2016.07.007


Numerical Implementation of
Phase-Field Models of Brittle Fracture

Laura De Lorenzis and Tymofiy Gerasimov

Introduction

The phase-field framework for modeling systems with sharp interfaces consists in
incorporating a continuous field variable – the so-called order parameter – which
differentiates between multiple physical phases within a given system through a
smooth transition. In the context of fracture, such an order parameter (termed the
crack phase-field) describes the smooth transition between the fully broken and
intact material phases, thus approximating the sharp crack discontinuity, as sketched
in Fig. 1a. The evolution of this field as a result of the external loading conditions
models the fracture process.

The phase-field approach to brittle fracture dates back to the seminal work of
Francfort and Marigo (1998) on the variational formulation of quasi-static brittle
fracture and to the related regularized formulation of Bourdin et al. (2000, 2008),
Bourdin (2007a, b). The former is the mathematical theory of quasi-static brittle frac-
ture mechanics, which recasts Griffith’s energy-based principle Griffith (1921) as the
minimisation problem of an energy functional. The latter presents an approximation,
in the sense of �-convergence, of the energy functional and is designed to enable the
efficient numerical treatment.

The phase-field simulation of fracture processes holds a number of advantages
over classical techniques with discrete fracture description, whose numerical imple-
mentation requires explicit (in the classical finite element method, FEM) or implicit
(within the extended FEM) handling of the discontinuities. The most obvious one is
the ability to track automatically a cracking process by the evolution of the smooth
crack field on a fixed mesh. The possibility to avoid the tedious task of tracking
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Fig. 1 a Phase-field description of fracture (sketchy)withα ∈ C(�, [0, 1]) as the crack phase-field;
b mechanical system setup used for representation purposes in Section“Formulation”

complicated crack surfaces in 3d significantly simplifies the finite element imple-
mentation. The second advantage is the ability to simulate complicated processes,
including crack initiation (also in the absence of a singularity), propagation, coales-
cence, branching and bifurcationwithout the need for additional ad-hoc criteria.With
the formulation capability to also distinguish between fracture behavior in tension
and compression, no supplementary contact problem has to be posed for preventing
crack faces interpenetration.

The currently available phase-field formulations of brittle fracture encompass
static anddynamicmodels.Wemention the papers byDel Piero et al. (2007), Lancioni
and Royer-Carfagni (2009), Amor et al. (2009), Freddi and Royer-Carfagni (2009,
2010), Kuhn and Müller (2010), Miehe et al. (2010a, b), Pham et al. (2011), Borden
(2012), Borden et al. (2014), Vignollet et al. (2014), Mesgarnejad et al. (2015), Kuhn
et al. (2015), Ambati et al. (2015), Marigo et al. (2016), Strobl and Seelig (2016),
Weinberg and Hesch (2017), Tanné et al. (2018), Sargado et al. (2018), Gerasimov et
al. (2018), Wu and Nguyen (2018), Wu et al. (2019), where various formulations are
developed and validated. Recently, the framework has been also extended to ductile
(elasto-plastic) fracture Miehe et al. (2015, 2016), Duda et al. (2015), Ambati et al.
(2015), Alessi et al. (2015, 2018), Borden et al. (2016), fracture in filmsMesgarnejad
et al. (2013), León Baldelli et al. (2014), shells Amiria et al. (2014), Ambati and De
Lorenzis (2016), Kiendl et al. (2016), Reinoso et al. (2017), fracture under thermal
loading Sicsic et al. (2013), Bourdin et al. (2014), Miehe et al. (2015), hydraulic
fracture Bourdin et al. (2012), Wheeler et al. (2014), Mikelić et al. (2015a, b, c),
Wilson and Landis (2016), fracture in porous media Miehe and Mauthe (2016), Wu
and De Lorenzis (2016), Cajuhi et al. (2018), anisotropic fracture Li et al. (2015),
Teichtmeister et al. (2017), Zhang et al. (2017), Nguyen et al. (2017), Bleyer and
Alessi (2018), Li andMaurini (2019), fracture in laminates Alessi and Freddi (2017),
to name a few.

The three important aspects of the formulation in the brittle case, which give
rise to algorithmic challenges within the finite element treatment, and which have
recently been a subject of intensive studies are the following:
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Fig. 2 Challenging aspects of phase-field computing of brittle fracture with implications

(A) non-convexity of the governing energy functional with respect to the displace-
ment and the phase-field arguments,

(B) irreversibility constraint for the crack phase-field,
(C) smallness of the regularization parameter (i.e., the length scale inherent to the

diffusive crack approximation).

Figure2 sketches the above aspects along with the related implications.
The lack of convexity (A) poses the major difficulty within the so-called mono-

lithic treatment of the weak formulation, which aims at solving for both unknowns
simultaneously. It ismanifested via convergence issues of the directNewton-Raphson
iterative procedure Gerasimov and De Lorenzis (2016), Heister et al. (2015), Wick
(2017a, b). Some new results by Gerasimov and De Lorenzis (2016), Heister et al.
(2015), and Wick (2017a, b) on modified Newton-Raphson schemes, and by Kopan-
icakova and Krause (2019) on the trust region method hold a promise for improving
the robustness of the monolithic approach. Alternatively (and more commonly), the
staggered (also termed partitioned, or alternateminimization) solution strategy based
on decoupling of the weak formulation into a system and then iterating between the
equations is used Bourdin et al. (2000, 2008), Bourdin (2007a, b), Amor et al. (2009),
Miehe et al. (2010a, b), Pham et al. (2011), Borden et al. (2014), Mesgarnejad et al.
(2015), Ambati et al. (2015). The staggered scheme is intrinsically robust, but typi-
cally has a very slow convergence behavior of the iterative solution process, see e.g.,
Ambati et al. (2015), Gerasimov andDe Lorenzis (2016), Farrell andMaurini (2017).
Recently, the results by Farrell and Maurini (2017) on accelerated over-relaxed par-
titioned schemes indicate the possibility for the staggered approach to gain better
efficiency. The aforementioned approaches are outlined in Fig. 3.

Due to (B), the formulation is a constrained minimization problem, whose opti-
mality condition is a variational inequality Amor et al. (2009), Pham et al. (2011),
Mesgarnejad et al. (2015), Marigo et al. (2016), thus requiring special solution algo-
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Fig. 3 Iterative solution approaches for solving the weak formulation E ′ = 0 with E denoting the
energy functional for the mechanical system under consideration

rithms. Several options of enforcing the constraint that lead to a simpler equality-
based formulation andwhich can be classified as relaxed, penalized, and implicit ones
are found in the literature, see Gerasimov and De Lorenzis (2019) for an overview.
Within the first class Bourdin et al. (2000, 2008), Bourdin (2007a, b), Del Piero et al.
(2007), Lancioni and Royer-Carfagni (2009), Gerasimov and De Lorenzis (2016),
Burke et al. (2010a, b, 2013),Artina et al. (2014, 2015), the irreversibility of the crack
phase-field is enforced only on the so-called ‘crack-set’ (the points of the domain
where the phase-field variable exceeds some threshold value). In this case, irre-
versibility of only a fully developed crack is modeled, and therefore the technique is
termed relaxed.With regard to the second class, we recall the augmented-Lagrangian
method in Wheeler et al. (2014), Wick (2017a, b), as well as an advancement of the
Lagrange multipliers method using a primal-dual active set strategy Heister et al.
(2015). Both approaches allow for both the staggered and the fully monolithic treat-
ment, but may require solving for extra variable(s) Wheeler et al. (2014), Wick
(2017a, b), and the necessity of tracing explicitly various (active and inactive) sets in
which the corresponding sub-problems are to be solved Heister et al. (2015). Also, a
simpler penalization procedure is advocated in Gerasimov and De Lorenzis (2019),
with the advantage that the optimally defined penalty parameter guarantees a suffi-
ciently accurate user-prescribed enforcement of the crack phase-field irreversibility.
Finally, the implicit enforcement of the constraint using a so-called ‘history field’
was proposed in Miehe et al. (2010b) and has been adopted in a major amount of
works on the topic. This approach, however, yields a problem of non-variational
nature, whose equivalence to the original formulation cannot be proven. Also, in this
case, only the staggered solution scheme can be employed. The above options of
incorporating the constraint are summarized in Fig. 4.

Finally, property (C) calls for extremely fine meshes, at least locally in the crack
phase-field transition zone. Modeling a failure process whose final pattern is not
known in advance precludes the construction of a suitably pre-refined mesh, thus
forcing to compute on fixed uniformmeshes (unless adaptivity is introduced). In this
case, the computational cost is very high. Already in the seminal paper by Bourdin
et al. (2000) and later in Mesgarnejad et al. (2015) parallel computing has been
advocated for the staggered solution scheme combined with uniformly fine meshes.
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Fig. 4 Options to incorporate the irreversibility constraint α̇ ≥ 0 for the crack phase-field

Recent findings by Burke et al. (2010a, b, 2013), Artina et al. (2014, 2015) andWick
(2016) on error-controlled adaptive mesh refinement strategies, as well as by Heister
et al. (2015), Klinsmann et al. (2015) andNagaraja et al. (2018) on physics-motivated
procedures for mesh adaptivity provide a basis to efficiently tackle (C) as well.

The rest of this chapter is organized as follows. In Section“Formulation”, we
outline the main concepts of phase-field modeling of brittle fracture including major
ingredients of the formulation such as coupling function, tension-compression split
of the elastic energy density function, local energy dissipation function etc. The incre-
mental variational problem which models a quasi-static fracture evolution, required
for the numerical treatment, is then presented. Section“Treatment of Irreversibility”
presents various ideas for incorporating the irreversibility constraint and the result-
ing weak formulations, whereas Section“Solution Strategies” discusses the available
iterative solution strategies for the formulations. Both sections are complemented by
illustrative numerical examples. In the simulations,we employ the numerical package
FreeFem++ Hecht et al. (2019). Both the displacement field and the crack phase-
field are approximated using linear triangles on fixed (non-adaptive) finite element
meshes, which are pre-adapted (refined) in the region where crack propagation is
expected.

Formulation

In this section, for a mechanical system undergoing brittle fracture we recall the
phase-field formulation that models this process, and outline its main ingredients.

Governing Energy Functional
Let � ⊂ R

d , d = 2, 3 be an open and bounded domain representing the config-
uration of a d-dimensional linear elastic body, and let �D,0, �D,1 and �N ,1 be the
(non-overlapping) portions of the boundary ∂� of� on which homogeneous Dirich-
let, non-homogeneous Dirichlet and Neumann boundary conditions are prescribed,
respectively. The body is assumed to be linearly elastic and isotropic, with the elastic
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strain energy density function given by�(ε) := 1
2ε : C : ε = 1

2λtr
2(ε) + μtr(ε · ε),

where, in turn, ε is the second-order infinitesimal strain tensor, C is the fourth-order
elasticity tensor, and λ and μ are the Lamé constants. Also, let Gc be the material
fracture toughness. A quasi-static loading process with the discrete pseudo-time step
parameter n = 1, 2, . . ., such that the displacement ūn and traction t̄n loading data
are prescribed on the corresponding parts of the boundary is considered. Finally, let
�c ⊂ � be the crack surface that is evolving during the process, see Fig. 1b.

For the mechanical system at hand, the variational approach to brittle fracture in
Francfort and Marigo (1998) relies on the energy functional

E(u, �c) =
∫

�\�c

�(ε(u)) dx

︸ ︷︷ ︸
Eel.(u, �c)

+Gc

∫
�c

ds

︸ ︷︷ ︸
ES(�c)

−
∫

�N ,1

t̄n · u ds, (1)

with u : �\�c → R
d such that u = 0 on �D,0 and u = ūn on �D,1 as the displace-

ment field, �c as the crack set, and the related minimization problem at each n ≥ 1.
In (1), the functionals termed Eel. and ES represent the elastic energy stored in the
body and the fracture surface energy dissipated within the fracture process. The lat-
ter rigorously reads ES(�c) = GcSd−1(�c) with S p as the so-called p-dimensional
Hausdorff measure of the crack set �c. In simple terms, S1(�c) and S2(�c) represent
the length and the surface area of �c when d = 2 and 3, respectively.

The regularization of (1) á la Bourdin et al. (2000, 2008), Bourdin (2007a, b),
which is the basis for a variety of fracture phase-field formulations, reads as follows:

E(u,α) =
∫

�

g(α)�(ε(u)) dx
︸ ︷︷ ︸

Eel.(u,α)

+ Gc

cw

∫
�

(
w(α)

�
+ �|∇α|2

)
dx

︸ ︷︷ ︸
ES(α)

−
∫

�N ,1

t̄n · u ds,

(2)
with u : � → R

d and α : � → [0, 1] standing for the smeared counterparts of the
discontinuous displacement and the crack set in (1). The phase-field variable α takes
the value 1 on �c, decays smoothly to 0 in a subset of �\�c and then takes the
0-value in the rest of the domain. With this definition, the limits α = 1 and α = 0
represent the fully broken and the intact (undamaged) material phases, respectively,
whereas the intermediate range α ∈ (0, 1) mimics the transition zone between them.
The function g is responsible for the material stiffness degradation. The function w

defines the decaying profile of α, whereas the parameter 0 < � � diam(�) controls
the size of the localization zone of α, in other words, the thickness of the transition
zone between the two material states.

Degradation and local dissipation functions
The functions g and w are the major ingredients of (2), and their specific choice
establishes the rigorous link between (1) and (2) when � → 0 via the notion of �-
convergence, see e.g., Braides (1998), Chambolle (2004), also giving a meaning to
the induced constant cw. Thus, g is a continuous monotonic function that fulfills
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Table 1 Ingredients of
formulation (2) and (5)

g w Name

(1 − α)2 α AT-1 model

α2 AT-2 model

the properties: g(0) = 1, g(1) = 0, g′(1) = 0 and g′(α) < 0 for α ∈ [0, 1), see e.g.,
Pham et al. (2011) for argumentation and discussion. The quadratic polynomial

g(α) := (1 − α)2, (3)

is the simplest choice of the kind. The function w, also called the local part of
the dissipated fracture energy density function Pham et al. (2011), is continuous and
monotonic such thatw(0) = 0,w(1) = 1 andw′(α) ≥ 0 forα ∈ [0, 1]. The constant
cw := 4

∫ 1
0

√
w(t) dt is a normalization constant in the sense of �-convergence. The

two suitable candidates for w reading

w(α) :=
{

α,

α2,
such that cw =

{
8
3 ,

2,
(4)

are widely adopted. Formulation (2) combined with the aforementioned choices for
g and w are typically termed the AT-1 and AT-2 models, see Table1. AT stands for
Ambrosio-Tortorelli and the corresponding type of regularization, see Ambrosio and
Tortorelli (1990). The main difference between the two models is that AT-1 leads to
the existence of an elastic stage before the onset of fracture, whereas using AT-2 the
phase-field starts to evolve as soon as the material is loaded, see e.g., Amor et al.
(2009), Pham et al. (2011), Marigo et al. (2016) for a more detailed explanation.

Other representations for g and w are available in the literature, see e.g., Borden
(2012), Borden et al. (2016), Kuhn et al. (2015), Sargadoa et al. (2018), Ambati et al.
(2015), Alessi et al. (2015), Wilson and Landis (2016), Burke et al. (2010b, 2013).

Tension-compression split. Regarding the elastic strain energy function � the fol-
lowing must be noted. Due to the symmetry of � with respect to the variable u,
formulation (2) does not distinguish between fracture behavior in tension and com-
pression. In the numerical simulations, this ismanifested by themesh interpenetration
inside of the compressed fractured zones, as reported e.g., in Bourdin et al. (2000,
Sect. 3.3), Del Piero et al. (2007, Sect. 7) and Lancioni and Royer-Carfagni (2009,
Sects. 4.1–4.3). In the discrete crack setting, this would be equivalent to compressive
interpenetration of the crack faces. One of the proposed remedies for avoiding such a
non-physical behavior implies placing � into the context of non-linear (finite) elas-
ticity, as first presented in Del Piero et al. (2007). To remain within the framework of
linear elasticity, the alternative is to break the symmetry by introducing an additive
split of � into the so-called ‘tensile’ and ‘compressive’ parts �+ and �−, respec-
tively, and enabling the degradation of�+ only. This option is advocated in Lancioni
and Royer-Carfagni (2009), Amor et al. (2009), Freddi and Royer-Carfagni (2009,
2010),Miehe et al. (2010a, b) and yields the following enhanced representation of (2):
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E(u,α) =
∫

�

[
g(α)�+(ε(u)) + �−(ε(u))

]
dx + Gc

cw

∫
�

(
w(α)

�
+ �|∇α|2

)
dx

−
∫

�N ,1

t̄n · u ds. (5)

The two widely adopted options for tension-compression splits �± are based
respectively on the so-called volumetric-deviatoric decomposition of the strain tensor
ε, i.e.,

ε = εdev + εvol,

where εvol := 1
d tr(ε)I , εdev := ε − εvol and I is the second-order identity tensor,

and the spectral decomposition of ε, namely,

ε = ε+ + ε−,

where ε± := ∑3
i=1〈εi 〉±ni ⊗ ni with {εi }3i=1 and {ni }3i=1 as the principal strains and

principal strain directions, respectively, and 〈a〉± := 1
2 (a ± |a|). The resulting rep-

resentations read
{

�+(ε) := 1
2Kd〈tr(ε)〉2+ + μtr(εdev · εdev)

�−(ε) := 1
2Kd〈tr(ε)〉2−

(6)

with Kd := λ + 2μ
d , and

�±(ε) := 1
2λ〈tr(ε)〉2± + μtr(ε± · ε±), (7)

respectively. Notice that (6) is independently presented in Amor et al. (2009) and
Freddi and Royer-Carfagni (2009) (based on an extension of the split in Lancioni and
Royer-Carfagni 2009), and (7) is considered inMiehe et al. (2010a, b).An idea similar
to the latter one is also developed in Freddi and Royer-Carfagni (2010, Sect. 3.4).
We refer the interested reader to the aforementioned publications and to Li (2016),
where options for constructing �± and the related implications are explained.

Our final note here is that formulation (5) is what is usually referred to as phase-
field model of brittle fracture (at least in the engineering literature). Despite the
wide employment of the formulation, the �-convergence result that relates (5) to
the original Francfort-Marigo formulation (1) is, in general, not available. Some
particular results have recently been established in Chambolle et al. (2018).

Quasi-Static Evolution (Incremental Variational Problem)

With E defined by (5), the state of the system at a given loading step n ≥ 1 is
represented by
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argmin{E(u,α) : u ∈ V ūn ,α ∈ Dαn−1}, (8)

where
V ūn := {u ∈ H1(�) : u = 0 on �D,0, u = ūn on �D,1}

is the kinematically admissible displacement space with H1(�) := [H 1(�)]d and
H 1 denoting the usual Sobolev space, and

Dαn−1 := {α ∈ H 1(�) : α ≥ αn−1 in �}

is the admissible space for α with αn−1 known from the previous step. The condition
α ≥ αn−1 in� is used to enforce the irreversibility of the crack phase-field evolution.
It is the backward difference quotient form of α̇ ≥ 0 in �.

Thus, quasi-static evolution of fracture within the system is then given by the
sequence of the solution snapshots {(un,αn)}, n ≥ 1.

Due to the α ≥ αn−1 requirement, the incremental variational problem (8) is a
constrained minimization problem and its necessary optimality condition for com-
puting the solution (u,α) ∈ V ūn × Dαn−1 is a variational inequality. Written down
in the partitioned form, it reads

{E ′
u(u,α; v) = 0, ∀ v ∈ V 0,

E ′
α(u,α;β − α) ≥ 0, ∀ β ∈ Dαn−1,

(9)

see e.g. Burke et al. (2010b, 2013), Pham et al. (2011), Farrell and Maurini (2017),
where E ′

u and E ′
α are the directional derivatives of the energy functional with respect

to u and α, respectively,

E ′
u(u,α; v) :=

∫
�

[
g(α)

∂�+

∂ε
(ε(u)) + ∂�−

∂ε
(ε(u))

]
: ε(v) dx −

∫
�N ,1

t̄n · v ds,
(10)

E ′
α(u,α;β) :=

∫
�

[
g′(α)�+(ε(u))β + Gc

cw

(
1

�
w′(α)β + 2�∇α · ∇β

)]
dx.

(11)
The displacement test space in (9) is defined as V 0 := {v ∈ H1(�) : v = 0 on
�D,0 ∪ �D,1}.

Treatment of Irreversibility

The variational inequality E ′
α ≥ 0 in (9) that stems from the irreversibility constraint

α ≥ αn−1 requires special solution algorithms, see e.g., Kinderlehrer and Stampac-
chia (1980),Glowinski et al. (1981) andBurke et al. (2010b, Sect. 5). In the following,
we provide details about the three available options of handlingα ≥ αn−1 mentioned
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in the introduction, which lead to the equality-based formulations and, hence, allow
for simpler algorithmic treatment. The equivalence between the corresponding for-
mulations and the reference one in (9) is highlighted and then illustrated by the
numerical examples.

Relaxed (‘Crack-Set’ Irreversibility)

This is a version of irreversibility introduced by Bourdin et al. (2000, 2008), Bourdin
(2007a, b) and also adopted e.g. by Burke et al. (2010a), which relies on the notion
of a crack set: if at the current loading step n the (crack) set

CRn−1 := {x ∈ � : αn−1(x) ≥ CRTOL}, (12)

see Fig. 5 for a sketch where 0 � CRTOL < 1 is a specified threshold, is non-empty,
one explicitly sets α = 1 for all x ∈ CRn−1, and the corresponding analogue to (8)
to be solved at step n is

argmin{E(u, d) : u ∈ V ūn ,α ∈ {H 1(�) : α|CRn−1 = 1}}. (13)

The weak system of equations for (u,α) in this case reads

{E ′
u(u,α; v) = 0, ∀ v ∈ V 0

E ′
α(u,α;β) = 0, ∀ β ∈ {H 1(�) : β|CRn−1 = 0}, (14)

where E ′
u and E ′

α are given by (10) and (11), respectively. As noted in Amor et al.
(2009), the present option can be viewed as a relaxed version of the requirement α ≥
αn−1 in � since it only enforces irreversibility of a fully developed crack, whereas
phase-field patterns with α(x) < CRTOL for all x ∈ �, which from the mechanical
standpoint may be viewed as partially damaged regions, are allowed to heal.

Remark 3.1 Various algorithmic treatments of the ‘crack-set’ irreversibility can be
found in Del Piero et al. (2007), and in Lancioni and Royer-Carfagni (2009). Its more
sophisticated version is considered in Burke et al. (2010b, 2013).

Remark 3.2 In Artina et al. (2014, 2015) and Gerasimov and De Lorenzis (2016),
the Dirichlet condition α|CRn−1 = 1 is enforced via penalization by introducing into
(5) the functional

P(α; τ ) := 1

2τ

∫
CRn−1

(1 − α)2 dx, 0 < τ � 1,

thus yielding the penalized counterpart of (13) and (14).
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Fig. 5 Illustration of a fully-developed crack phase-fieldαn−1 (left) and the related crack setCRn−1
(right); �c indicates the crack αn−1 relates to

The choice of the threshold value CRTOL in (12) is subtle and may have a strong
impact on the computational results, as shown in Burke et al. (2010b, 2013). A
similar concern applies to the choice of τ in the corresponding penalized realization.

Implicit (‘History-Field’ Irreversibility)

In Miehe et al. (2010b), Miehe and co-workers proposed the idea of enforcing the
irreversibility constraint α ≥ αn−1 implicitly, via the notion of a history-field. Their
major assumption is that the tensile energy �+ can be viewed as the driving force
of the phase-field evolution and, hence, the maximal �+ accumulated within the
loading history, denoted as

Hn(x) := max
n≥1

{Hn−1(x),�+(ε(u))}, H0 ≡ 0, (15)

must guarantee the fulfillment of α ≥ αn−1. Technically, one substitutes Hn to �+
in the original E ′

α in (11) such that

Ẽ ′
α(u,α;w) :=

∫
�

[
g′(α)Hnβ + Gc

cw

(
1

�
w(α)β + 2�∇α · ∇β

)]
dx, (16)

and forms the system for computing the solution (u,α) ∈ V ūn × H 1(�):
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{E ′
u(u,α; v) = 0, ∀ v ∈ V 0

Ẽ ′
α(u,α;β) = 0, ∀ β ∈ H 1(�),

(17)

where E ′
u is given by (10). System (17) is composed of equalities and also uses

unconstrained spaces for α and β.
This approach is employed in a large number of publications on the topic due

to its simplicity. It should be noted, however, that the constructed Ẽ ′
α is no longer

of variational nature. The equivalence between (17) and the original formulation in
(9) is not evident and, to the best of our knowledge, no theoretical results that can
prove it are available. For numerical comparisons we refer to the recent publication
Gerasimov and De Lorenzis (2019), as well as to Sect. “Implicit (‘History-Field’
Irreversibility)”.

Interestingly, in the seminal paper of Miehe et al. (2010a), the authors considered
the penalization option similar to representation (18) below, yet already in Miehe
et al. (2010b) they switched to the notion of Hn and have been using it in all their
following publications.

Penalized

The third alternative of addressing α ≥ αn−1, which results in the equality to be
solved instead of the inequality, is via penalization. Several available options are
listed below.

Option ①: In the most straightforward case, one can add the penalty term

P(α; γ) := γ

2

∫
�

〈α − αn−1〉2− dx, γ � 1, (18)

to the energy functional E in (5).1 In (18), 〈y〉− := min(0, y). The corresponding
variational problem reads

argmin{E(u,α) + P(α; γ) : u ∈ V ūn ,α ∈ H 1(�)}. (19)

and the resulting weak system for (u,α) is as follows

⎧⎨
⎩
E ′
u(u,α; v) = 0, ∀ v ∈ V 0,

E ′
α(u,α;β) + γ

∫
�

〈α − αn−1〉−β dx = 0, ∀ β ∈ H 1(�),
(20)

1Ageneral formof the integrand in (18) is 〈α − αn−1〉p− with p ≥ 1 and P represents a regularization
of the indicator function

IDαn−1
(α) :=

{
0, in Dαn−1 ,+∞, otherwise,

(C)

to be added to E in (5).
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with E ′
u and E ′

α given again by (10) and (11), respectively. Note that the admissible
space for α and the test space for β are no longer constrained. The obtained penal-
ized un-constrained problem (20) approximates the original constrained problem (9)
and thus is equivalent to it in the limit of γ → ∞. Thus the appropriate choice of
γ is always viewed as a critical point of the technique also within the numerical
experiments. A too small penalty parameter will lead to inaccurate (i.e., insufficient)
enforcement of the constraint, a too large one will result in ill-conditioning (i.e., a
so-called stability issue).

InGerasimov andDeLorenzis (2019), an analytical procedure for the ‘reasonable’
choice of a lower bound for γ that guarantees a sufficiently accurate enforcement
of the crack phase-field irreversibility constraint and, seemingly, does not manifest
ill-conditioning is devised. It is shown that the optimal penalty parameter γ is a func-
tion of two formulation parameters (the fracture toughness Gc and the regularization
length scale �), but is independent of the problem setup (geometry, boundary condi-
tions etc.), the formulation ingredients (degradation function g, tension–compression
split �± etc.), as well as the discretization (mesh size). The carried out numerical
studies validate the findings.

Option ②: The augmented Lagrangian approach is adopted by Wheeler et al.
(2014) and Wick (2017a, b). It implies adding to (5) the functional

P(α;�, γ) := 1

2γ

∫
�

〈� + γα〉2+ dx + 1

2γ

∫
�

〈� + γ(α − αn−1)〉2− dx − 1

2γ

∫
�

�2 dx,

(21)
with an unknown � ∈ L2(�) and a user-prescribed penalty constant γ > 0. The
aforementioned P is the so-called Moreau-Yosida approximation of the indicator
function IDαn−1

in (C), see Wheeler et al. (2014) for details. It is advocated that using
(21), the stability issues possibly occurring in case of (18) are avoided.We notice that
simplified representations for P in (21) which contain only the first two terms and
only the second term are considered in Wheeler et al. (2014) and in Wick (2017a, b),
respectively. Furthermore, in either case, a ‘fixed-point iteration’-like strategy for
calculating � using P ′ is also employed, see e.g., Wheeler et al. (2014, Algorithm
1) and Wick (2017a, Algorithm 4.1). This is done to prevent the possibly significant
increase of the computational effort in the case the field � is to be solved for.

Option ③: In Heister et al. (2015), α ≥ αn−1 is incorporated using a Lagrange
multiplier and, following Hintermüller et al. (2002), the obtained formulation is
then tackled using a primal-dual active set strategy. As noticed by the authors, this
approach can be viewed as a semi-smoothNewtonmethodwith the advantage that the
fully-monolithic solution scheme would “allow for fast (super-linear) convergence”,
and that, “in contrast to other (penalization) methods, no adjustment of parameters is
required”. On the other hand, the necessity of tracing explicitly various (active and
inactive) sets in which the corresponding sub-problems are to be solved makes the
approach computationally more expensive than a simple penalization approach.
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Examples

In this section we compare the solutions of the formulations in (17) and (20) for
two benchmark problems. Recall that the former problem is the weak formulation
based on the use of a history-field of Miehe and co-workers (2010b), and the latter is
the penalized formulation recently proposed in Gerasimov and De Lorenzis (2019).
As explained in Section“Treatment of Irreversibility”, (17) is not equivalent to the
original inequality-based problem (9), whereas (20) is equivalent [more precisely, it
is a good approximation of (9)]. For every benchmark problem, formulations (17)
and (20) are computed using the staggered scheme, see Section“Solution Strategies”
for details.

The considered benchmark problems are the so-called single edge notched (SEN)
specimen under shear originally considered inBourdin et al. (2000), and later adopted
with some modifications in many related papers, see, e.g., Miehe et al. (2010b),
Borden et al. (2014), Ambati et al. (2015), Gerasimov andDe Lorenzis (2016, 2019),
and the traction test on a fiber-reinforcedmatrixBourdin et al. (2008) (also inBourdin
et al. 2000; Bourdin 2007a; Amor et al. 2009), see Fig. 6. The first example is a
crack propagation problem under external displacement-controlled loading, where
the pre-existing crack is modeled discretely and the propagating crack is represented
by the phase-field evolution. The problem setup is simple, but the failure pattern
is not symmetric, being the result of a non-trivial combination of local tension–
compression within the specimen during shear. The second example describes a
more complicated process, since it encompasses crack initiation in the absence of a
strong crack-tip singularity, which precedes the propagation stage. For either case,
the pure monotonic loading regimes are simulated.

The SEN shear test is computed using both formulations in (17) and (20) in which
functional E in (5) uses both the volumetric-deviatoric and spectral splits (for the sake
of compactness, we denote them as VD- and S-split, respectively) and the models
AT-1 and AT-2 given in Table1. That is, there are four available combinations of
split and model type in this case. The fiber-reinforced matrix test is computed using
(17) and (20) and only for the S-split and the AT-2 model combination.

Fig. 6 Problem setup (sketchy) and the computed failure patterns for the single edge notched (SEN)
specimen subject to shear (left) and the traction experiment on a fiber-reinforced matrix (right)
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Fig. 7 Comparison of the load–displacement and energy–displacement curves obtained for the
SEN specimen shear test using the formulations in (17) and (20) and various combinations of split
and model type

In Figs. 7 and 8, we present and compare, respectively, the load-/energy-
displacement curves and the crack phase-field profiles obtained for the SEN shear
test using the two irreversibility approaches. Similarly, Figs. 9 and 10 depict and
compare the corresponding results for the traction test on a fiber-reinforced matrix.

In all considered cases, both irreversibility approaches yield qualitatively and
quantitatively rather similar, but not identical results. Taking the γ-penalized results
as reference, it can be seen that the history field approach yields under-estimation
of the elastic energy and over-estimation of the fracture surface energy. We attribute
this to the observation drawn from the crack phase-field plots in Figs. 8 and 10 that
the support of the phase-field profile in the latter case is visibly thicker.

Solution Strategies

In this section we discuss two iterative strategies for solving the equation E ′ =
E ′
u + E ′

α = 0: the so-call staggered and the monolithic ones.2 Their advantages and
disadvantages are already outlined in the introductory part and were also extensively

2In the latter case, according to the sketch in Fig. 3, we imply the monolithic procedure based on
the Newton-Raphson method with the line-search procedure in Gerasimov and De Lorenzis (2016)
to cope with the iterative convergence issues.
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Fig. 8 Comparison of the crack phase-field profile obtained at the last loading step for the SEN
specimen shear test using the formulations in (17) and (20) and various combinations of split and
model type

Fig. 9 Comparison of the load–displacement and energy–displacement curves obtained for the
fiber-reinforced matrix traction test using the formulations in (17) and (20) for the S-split and the
AT-2 model combination



Numerical Implementation of Phase-Field Models of Brittle Fracture 91

Fig. 10 Comparison of the crack phase-field profile obtained at the last loading step for the fiber-
reinforced matrix traction test using the formulations in (17) and (20) for the S-split and the AT-2
model combination

discussed in the related references. The purpose of the following section is to pro-
vide the necessary technical details for both approaches, as well as to illustrate their
performance for three benchmark problems.

Staggered

The staggered solution algorithm applied to E ′ = 0 implies partitioning of this
equation into the system E ′

u = 0 and E ′
α = 0, as has been already encountered in

Section“Treatment of Irreversibility”. By alternately fixing u and α, the above cou-
pled system is then solved in an iterative manner until convergence is achieved. The
algorithm is sketched in Table2 in a general form, that is, regardless of the system in
(14), (17) and (20). Adaptation of step 2 to the corresponding equation in (14), (17)
and (20) is straightforward.3

Both equations in Table2 are non-linear: for the first one this is due to the non-
linearity of g(α) ∂�+

∂ε
(ε(u))+ ∂�−

∂ε
(ε(u)) =: σ(u,α), whereas for the second one it is

due to the Macaulay bracket term 〈·〉−. Therefore, the Newton-Raphson procedure is
used to iteratively compute uk and αk with uk−1 and αk−1 taken as the corresponding
initial guesses, andTOLNR as the tolerance.Owing to the nested nature of theNewton-
Raphson loops, we impose that TOLNR < TOLStag.

3In particular, in the case of (17), Hn entering Ẽα must be re-defined: at every k ≥ 1 we take the
cumulative quantity Hn := maxx∈�{Hn−1, �

+(ε(uk−1))}.
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Table 2 Staggered iterative solution process for E ′ = 0 at loading step n ≥ 1

Input: loading data ūn on �D,1, and

Input: solution (un−1,αn−1) from step n − 1.

Initialization, k = 0:

1. set (u0,α0) := (un−1,αn−1).

Staggered iteration k ≥ 1:

2. given uk−1, solve E ′
α(uk−1,α; β) = 0 for α, set α =: αk ,

3. given αk , solve E ′
u(u,αk; v) = 0 for u, set u =: uk ,

4. for the obtained pair (uk ,αk), check

ReskStag := |E ′(uk ,αk; v,β)| ≤ TOLStag,

5. if fulfilled, set (uk ,αk) =: (un,αn) and n + 1 → n;

5. else k + 1 → k.

Output: solution (un,αn).

The definition of ReskStag in Table2 used for stopping the staggered process is not
unique. As an example, the quantity ||αk − αk−1||∞ is considered as the residual
e.g., in Amor et al. (2009), Pham et al. (2011), Mesgarnejad et al. (2015), Farrell
and Maurini (2017) when solving (9) and in Bourdin et al. (2000, 2008), Bourdin
(2007a, b) while solving (14). Another option for ReskStag is a relative change in the
normalized energy E . It has been taken as a residual in Ambati et al. (2015) while
solving (17), and as an auxiliary convergence-tracing quantity in Gerasimov and De
Lorenzis (2016) while considering (14).

Finally, as already mentioned in the introductory part, the problem size of the
system in (9), (14), (20) and (17) after finite element discretization is typically very
large, since both the phase-field and the deformation localize in bands of width of
order �. Solving the system in a staggered way in this case is computationally very
demanding, see e.g., Mesgarnejad et al. (2015), Ambati et al. (2015), Gerasimov and
De Lorenzis (2016), Farrell and Maurini (2017) for detailed studies.

Remark 4.1 In recent work of Farrell and Maurini (2017), various strategies for
accelerating the partitioned solution schemes are discussed. It is shown that a better
efficiency of the staggered approach presented above can be gained.

Monolithic (Newton-Raphson with Line-Search)

The lack of convexity of the governing energy functional E in (5) typically results
in iterative convergence issues while solving E ′ = 0 monolithically, that is, for both
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Fig. 11 The divergence E(ui + �u,αi + �α) > E(ui ,αi ), with (�u,�α) as the known incre-
ment, of theNewton-Raphson solution process is detected; a properly determined line-search param-
eter τ � provides a converging update Gerasimov and De Lorenzis (2016)

arguments (u,α) using, e.g., the Newton-Raphson procedure. With the known guess
(ui−1,αi−1) and the computed increment (�u,�α), the divergence of the iterative
process is manifested by the increase of the energy for the solution update (ui−1 +
�u,αi−1 + �α). More precisely, it is E(ui−1 + �u,αi−1 + �α) > E(ui−1,αi−1).
A significant increase of the magnitude of the residual for the updated solution is
typically detected as well. Once occurred, the trend will typically continue at the
following Newton-Raphson iterations (no self-stabilization is observed), eventually
producing no meaningful solution.

In Gerasimov and De Lorenzis (2016), to cope with the aforementioned conver-
gence issues, a specific line-search procedure is devised and validated. The idea is
sketched in Fig. 11: once an increase of energy is detected for the direct solution
update (ui + �u,αi + �α), one rescales the search increment (�u,�α) by a mul-
tiplier τ ∈ (0, 1) called line-search parameter in order to arrive at a converged energy
level. With the optimal value τ � computed, the updated (ui + τ ��u,αi + τ ��α) is
then taken as the guess for the next Newton-Raphson iteration.

The resulting monolithic procedure for solving E ′ = 0 based on the combined use
of the Newton-Raphson method and the line-search procedure is depicted in Table3.
The items 3(a) and 3(b) in the table constitute the line-search procedure.

Remark 4.2 Recently, in Kopanicakova and Krause (2019), a monolithic solution
procedure based on the trust region method has been proposed. The efficiency and
robustness of the approach has been demonstrated. This represents an alternative to
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Table 3 Monolithic iterative solution process for E ′ = 0 at loading step n ≥ 1 using Newton-
Raphson equipped with line-search

Input: loading data ūn on �D,1, and

Input: solution (un−1,αn−1) from step n − 1.

Initialization, i = 0:

1. set (u0,α0) := (un−1,αn−1).

Newton-Raphson iteration i ≥ 1:

2. given (ui−1,αi−1), solve E ′(ui−1 + �u,αi−1 + �α; v,β) = 0 for (�u,�α),

3. if for the solution update divergence is detected, i.e.,

E(ui−1 + �u,αi−1 + �α) > E(ui−1,αi−1),

(a) find the line-search parameter τ � ∈ (0, 1) such that

E(ui−1 + τ ��u,αi−1 + τ ��α) < E(ui−1,αi−1),

(b) set (ui−1 + τ ��u,αi−1 + τ ��α) =: (ui ,αi ),

3. else set (ui−1 + �u,αi−1 + �α) =: (ui ,αi );

4. for the obtained pair (ui ,αi ), check

ResiNR := |E ′(ui ,αi ; v,β)| ≤ TOLNR,

5. if fulfilled, set (ui ,αi ) =: (un,αn) and n + 1 → n;

5. else i + 1 → i .

Output: solution (un,αn).

the monolithic approach using the Newton-Raphson method with line-search pre-
sented above. The comparison of the two approaches is the matter of forthcoming
research.

Examples

We compare the performance of the two solution schemes illustrated above by con-
sidering three benchmark problems. The first problem is the SEN under shear already
depicted in the left plot of Fig. 6 and explored in the context of the different irre-
versibility approaches. The second and the third one are the plate with hole under
tension, see, e.g., Ambati et al. (2015), Gerasimov and De Lorenzis (2016), and the
L-shaped panel experiment Mesgarnejad et al. (2015), Ambati et al. (2015), Wick
(2017a), Gerasimov andDeLorenzis (2016), Gerasimov andDeLorenzis (2019), see
Fig. 12. In all cases, the results are obtained for the combination of the S-split and the
AT-2 model. They are taken from the recent publication Gerasimov and De Lorenzis
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Fig. 12 Problem setup (sketchy) and the computed failure patterns for the notched plate with hole
under tension (left) and the L-shaped specimen experiment (right)

(2016). In the plots we designate our monolithic solution scheme using Newton-
Raphson with line-search as MON-ls. It is assumed that TOLStag = TOLNR =: Tol
with TOLStag and TOLNR as in Tables2 and 3, respectively.

For the three problems, Figs. 13, 14 and 15 report and compare the load-
displacement curves computed by the two approaches, as well as the cumulative
computational time and the ratio in this time. It can be observed that with the same
loading setup and under comparable accuracy requirements expressed through the
corresponding tolerance Tol the monolithic scheme appears far superior to the stag-
gered one, at least for these benchmark examples. For the detailed study of the energy
and the residual convergence at each loading step, we refer the interested reader to
Gerasimov and De Lorenzis (2016). There it is shown in particular that even though
the monolithic process typically starts with higher residual and energy levels, it con-
verges to the same level of residual and (approximately) the same minimum value
of energy faster than the staggered one.

Conclusions

We have addressed the main challenging computational aspects of phase-field mod-
eling of brittle fracture, focusing on the treatment of the phase-field irreversibility
constraint and on the choice of the iterative solution strategy for the non-convexmini-
mization problem stemming from the formulation. For treatment of irreversibility, we
have introduced and discussed the available options for enforcing the constraint, in
terms of equivalence of thefinal unconstrained formulation to the original constrained
one and of computational efficiency. For solution of the non-convex minimization
problem, we have also considered various available options and critically assessed
the efficiency and robustness of two of them. Numerical examples on well-known
benchmark problems were used for illustrative purposes. At the computational level,
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Fig. 13 SEN shear test: comparisons of the load–displacement curves and of the time–displacement
diagrams representing the cumulative computational cost for the staggered andmonolithic (Newton-
Raphson with line-search) approaches

Fig. 14 Notched plate with hole: comparisons of the load–displacement curves and of the time–
displacement diagrams representing the cumulative computational cost for the staggered andmono-
lithic (Newton-Raphson with line-search) approaches
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Fig. 15 L-shaped specimen experiment: comparisons of the load–displacement curves and of the
time–displacement diagrams representing the cumulative computational cost for the staggered and
monolithic (Newton-Raphson with line-search) approaches

finding an optimal compromise between robustness and efficiency seems to be a
major and still open issue for phase-field computation of brittle fracture problems.
Despite the progress achieved with line-search and trust region methods to improve
robustness of the monolithic approach, and with accelerated staggered schemes to
improve efficiency of the alternate minimization approach, there seems to be still
room for substantial improvement. Another interesting aspect, where theory and
numerics closely interact, is the issue of solution non-uniqueness stemming from the
non-convexity of the energy functional to be minimized. The occurrence of multiple
solutions has been occasionally reported in the literature, e.g., in Bourdin et al. (2000,
2008), Bourdin (2007a), Amor et al. (2009), Burke et al. (2010a), Artina et al. (2014),
Artina et al. (2015). However, to the best of our knowledge no attempt has beenmade
so far to investigate and characterize these multiple solutions. Finally, mesh adap-
tivity has been only briefly mentioned in this chapter but certainly deserves further
attention as a key technology for reducing the computational cost.
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Nomenclature

F Face flux (m3/s)
R Right hand side in a linear equation
S General source term
VP Cell volume (m3)
u Velocity vector (m/s)
H(u) Off-diagonal of matrix Au multiplied by velocity, and

associated r.h.s. contributions
A, B, C, D Arbitrary coefficient matrices
Au Convection-diffusion coefficient matrix
Du Diagonal of matrix Au

LUu Off-diagonal of matrix Au

M Preconditioning matrix
S Iteration matrix in fixed point algorithms
b Arbitrary right hand side vector
k Non-orthogonal vector component in orthogonal correction
p Search direction in Conjugate Gradients
r Residual vector
x, y Unknown vectors
XP Cell centroid (m)
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s f Surface normal face area vector (m2)
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aN Off-diagonal matrix element
aP Diagonal matrix element
aii Diagonal matrix element
ai j Off-diagonal matrix element
f Cell face centre
p Kinematic pressure (m2/s2)
p* Intermediate pressure field (m2/s2)
t Time-step (s)

Calligraphy Letters

K Krylov subspace

Greek Letters

α Length of the step in Conjugate Gradients
αu Underrelaxation factor for momentum equation
αP Underrelaxation factor for pressure field
β Projection operator in Conjugate Gradients
ε Residual tolerance for measuring convergence
γ Diffusion coefficient
λ Limiter value in orthogonal correction
� Orthogonal vector component in orthogonal correction
ν Kinematic viscosity (m2/s)
φ General scalar variable
ρ Density (kg/m3)

Superscripts

(k) Current time step or iteration
� Transpose operation
C Value on the coarse level of multigrid
F Value on the fine level of multigrid
n Value of (new) solution in current iteration
o Value of (old) solution from previous iteration

Subscripts

f Value which belongs to a face
N A value which belongs to neighbouring cells
P A value which belongs to the cell center
p, q Matrix dimensions
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Introduction

The Finite VolumeMethod (FVM) of discretisation is the dominant solution method
for continuummechanics problems in heat transfer, fluid flow and related phenomena
in the early 21st century. It is based directly on underlying conservation principles,
provides consistent second order accuracy in space and time which is sufficient for
many “fluid flow related” problems, it is versatile in terms of handling complex and
coupled problems, it operates naturally on unstructured or mixed element meshes
and it is compatible with today’s High Performance Computing (HPC) assets, using
the domain decomposition approach.

Clearly, the FVM also has significant drawbacks, compared to other discretisa-
tion methods. For example, penalty–based Petrov–Galerkin Finite Element Method
(FEM) is proven to be optimal for linear elasticity problems, and the Discontinuous
Galerkin (DG) method provides a natural and consistent extension to high–order
discretisation. However, a combination of its simplicity and ability of practitioners
to manipulate the properties of the discretisation matrices make the FVM capable of
dealing with industrial and academic needs.

This is best demonstrated by the size of largest conventional FVM simulation. To
the author’s knowledge, the largest simulation case executed with a general purpose
CFD code used 100 billion (1011) control volumes and was executed on a parallel
computer with 98,304 nodes (Phuc et al. 2016), using the free surface Volume–
of–Fluid (VOF) model. The number of degrees of freedom in this simulation is
500 billion (velocity, pressure, turbulence variables), which is several orders of mag-
nitude larger than largest FEM simulations in structural mechanics.

A further benefit of the modern FVM is the ability of the method to obey the basic
constraints of the continuum model, described via Partial Differential Equations
(PDE). Examples include:

• Strong conservation, where the amount of mass, species concentration or energy
in the system is preserved to the level of machine accuracy (as opposed to the level
of discretisation error);

• Enforcing of variable boundedness, where the physical bounds on variables such
as temperature (greater than 0K), turbulence kinetic energy (always positive) or
concentration (bounded between 0 and 1) are enforced not only in the converged
solution, but also during the iterative procedure;

• Stabilised boundary conditions, where the properties of differential operators are
enforced in the implementation and linearization of boundary conditions; and
others.

Perhaps the most important characteristic of the modern FVM is the way dis-
cretisation practitioners manipulate the form of discretisation to achieve beneficial
properties of the discretisationmatrix.Matrix sparsity, diagonal dominance, manipu-
lation of the source terms, symmetric positive definite matrices for elliptic problems,
control of the sign and eigen–spectrum of matrix elements, control of matrix band
and condition number all feature prominently in the discretisation process. Such



106 H. Jasak and T. Uroić

matrix manipulation allows the modern FVM to rely almost exclusively on iterative
solvers for linear systems of equations. A direct consequence is the ability to handle
huge problems and operate on massively parallel computing platforms.

Second–order FVM in its “classical” form also comes with significant deficien-
cies. Perhaps the most serious is its loss of accuracy and stability on highly non–
orthogonal meshes for elliptic problems and difficulties of handling strongly coupled
sets of PDEs. While the problems can be considered to be “under control”, better
discretisation shall certainly emerge in the future.

In this text, we shall present the “classical” Finite VolumeMethod of second order
accuracy in space and time, with support for polyhedral meshes. The derivation
originates from the work at Imperial College, starting in late 1960s and reaching
its current form in the late 20th century. For practitioners looking to reproduce the
examples, or use the formulation as a starting point, this particular form of second
order FVM is implemented in OpenFOAM (Weller et al. 1998).

Governing Equations

Most physics–based simulations (as opposed to e.g. simulation of stock prices in
financial markets) are based on the principle of conservation. In fact, historical meth-
ods of approaching fluid flow and heat transfer are based on the analysis of the system
under consideration through a control volume view. Here, the system is isolated from
the environment via boundary conditions and integral equations for conservation of
mass, momentum and energy allow us to draw insights into its behaviour using a
single control volume.

In numerical solution methods based on the FVM we shall extend this principle
by applying basic conservation laws on smaller chunks of space, posing conservation
equations for each of them and looking at their inter–dependence. The first step is,
of course to state the conservation equations for a control volume.

Clearly, the conservation of mass momentum and energy follow a simple law,
stated below as the scalar transport equation. Scalar transport equation in the stan-
dard form will be our model for discretisation. Conservation laws, governing the
continuum mechanics adhere to the standard form.

The scalar transport Eq. (1) stated below results from the Reynolds transport
theorem and a gradient–based diffusion transport, with source and sink terms usually
associated with aspects of physical modelling.

∂φ

∂t
︸︷︷︸

temporal derivative

+ ∇•(φu)
︸ ︷︷ ︸

convection term

− ∇•(γ∇φ)
︸ ︷︷ ︸

diffusion term

= qv
︸︷︷︸

source term

. (1)

Here, φ is the place–holder for the variable under consideration, u is the velocity
field, γ is the diffusivity field and qv − qv(φ) is the volumetric source/sink contribu-
tion to the balance of φ.
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Physical meaning can be associated with each term of (1). The temporal deriva-
tive represents inertia of the system. The convection term represents the convective
transport by a prescrived velocity field, which can also be described as a “coordi-
nate transformation”: a feature is carried by the given velocity field through space,
giving this term a hyperbolic nature. The diffusion term results from the gradient
transport hypothesis and is elliptic in nature. Finally, sources and sinks account for
local (non–transport) effects: local volumetric production or destruction of φ.

In the framework ofmany control volumes filling the domain of interestmentioned
above, individual control volumes (or cells) shall exchange the information via cell
faces in the form of convective or diffusive transport, while locally capturing the
inertial, source or sink effects.

The FVM discretisation described in this text shall primarily address the numer-
ical solution for (1). In order to address the issue of inter–equation coupling and
handling of non–linearity, a simplest flow model shall be used: incompressible lam-
inar transient Navier–Stokes equations for a Newtonian fluid. Governing equations
read as follows:

• Momentum equation:

∂u
∂t

+ ∇•(uu) − ∇• (ν∇u) = −∇ p, (2)

where u is the velocity field, p is the pressure field and ν is the kinematic viscosity;

• and Continuity equation:
∇•u = 0. (3)

A number of more complexmodels consist effectively of the Navier–Stokes equa-
tions and additional equations capturing various phenomena, such as the free surface
flow (position of the interface in the Volume–of–Fluid approach is tracked using the
advection equation for phase fraction α) or various models for turbulent flow, where
turbulence is characterised by transport equations for its characteristic properties,
such as eddy viscosity turbulence models, or Reynolds stress transport models. Such
models can be simulated in a segregated approach (see Section“Pressure–Velocity
Coupling”), with individual equations be discretised along the same guidelines.

Numerical Solution of Continuum Problems

A solution to a set of partial differential equations can be calculated analytically
or numerically. Analytical solution is represented as a continuous function of space
and time and is usually provided in a general form which is then adapted to a set of
boundary and initial conditions. Evaluation of the solution implies the evaluation of
this known analytical function at certain space and time coordinates. However, the
analytical solution is unavailable for most problems of engineering interest.
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While the power of analytical solution is impressive, its practical use may not be
straightforward. Consider a problem of calculating form drag on a vehicle, assuming
that the analytical solution is available. The drag force Fp is the integral of the
pressure along the vehicle’s body:

Fp =
∮

S

ssp. (4)

Assuming that a closed solution is available, Fp would be calculated by analytical
integration over a given analytical surface. However, there are few cars whose body
shape is known as a closed analytical function: this is not how they are designed. A
practical solution to the problem would involve splitting up the surface into a large
number of surface elements, assuming the pressure distribution across each element,
and evaluating the integral as a sum of forces of individual elements. To achieve this,
the value of the analytical function is extracted at a number of positions in space:
this is a striaghtforward task. As the number of evaluation elements on the surface
increases, this numerically evaluated force would approach its analytical evaluation.

Extending the analogy, one can claim that for engineering use, it is sufficient to
know the field value of a continuous field p at a large number of points, instead of
possessing the (ultimately more powerful) closed form of the analytical solution.

Such a collection of evaluation points, on a surface or in space, where the value
of the variable is known, comprise the computational mesh. Position of evaluation
points, also calledmesh resolution, dependson the shapeof the computational domain
and the complexity of the solution function.

Looking at Fig. 1, one can postulate a number of rules about a good numerical
representation of the function. For example, looking at a sinusoidal curve, one can
state that having less than 4 evaluation points points per period of the sinusoidal
function may give a misleading picture of the solution. Having a small number of
points or assuming a constant value of the solution variable across the computational
cell may lead to an erroneous idea of the true shape of the function. However, as the
number of sampling points increases to the level where the solution looks “smooth”
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Fig. 1 Analytical or numerical: target function (left); constant–per–interval sampling; evaluation
of derivatives from a numerical approximation
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on the mesh, the power of discrete representation of a continuous function becomes
unquestionable.

Taking the numerical solution further, one can easily evaluate not only the value
of an (analytically unknown) function from a set of evaluation points, but also its
derivatives, using intuitive right–minus–left–over–distance rules.

Closure

In what follows, we shall start with a set of governing partial differential equations in
analytical form, whose solution is sought over a domain of arbitrary shape. We shall
define the domain of interest as a computational mesh in space and time interval of
interest as a set of discrete time–steps. Having obtained such numerical description of
a computational domain, we shall proceed to assemble a solution procedure for sets
of partial differential equations stated above. The solution itself shall be in numerical
form, consisting of values of field φ at a set of predefined points in space–time.

Along the way, we will address the methods of mesh generation, postulate the
shape of continuous function φ between the computational points, perform spatial
and temporal integration of various differential operators in (1) and explore ways of
obtaining the field values in computational points.

We shall also consider solutionmethods for large sets of linear algebraic equations
that occur from discretisation, consider the effect of boundary conditions and issues
of nonlinearity and inter–equation coupling. This is the journey of Finite Volume
discretisation.

Mesh Generation and Mesh Handling

Solution of partial differential equations in continuum mechanics is sought over a
region of space: a spatial domain; and a time interval. It is therefore necessary to
describe the spatial domain for a computer simulation in an appropriate manner. In
1–D or simple 2–D problems, this may be trivial; however 3–D space and complex
curved boundaries bring significant challenges.

Apart from capturing the solution domain, two further issues need to be addressed.
First, outer boundary of the spatial domain carries boundary conditions, needed to
close the problem. Problem definition and consequently case setup are simplified
when the outside boundary is split into patches. For example, in the flow simulation
around a vehicle in a wind tunnel it is practical to split the outer boundary into: wind
tunnel inlet and outlet; bottom wall (which may be moving), far–field walls and the
car body itself. In such a setup it is easier to define boundary conditions for each of
the solution variables on a per–patch basis.

Second, for a numerical solution of a PDE using the FVM, it is necessary to define
points in the spatial domain where the solution is sought. This is not a trivial task: it
defines the sampling density of the continuous function that will be used to capture
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the solution. It is known in advance that the primary region of interest is the vehicle
body, rather than the far–field of the tunnel; hence computational points should be
clustered close to it. Functional shape of the solution function will be more complex
close to the body (measured in terms of solution gradients): features such as boundary
layers, recirculation zones, stagnation points and vortices induced by the body are
of primary interest. This judgement comes from the practitioner’s knowledge of the
problem and expected characteristics of the solution and are captured in the creation
of the computational mesh.

The primary role of a computational mesh is to describe the domain shape (and
regions of interest) to the computer. When building the mesh, a number of questions
should be considered:

• How to capture the geometrical shape of the boundary for the computer?
• How to generate a surface mesh for the boundary?
• How to fill the volume with computational points? and
• How to cluster the points in regions of interest?

The challenges will be addressed in the ramainder of the text in this section.

Guidance on Mesh Generation

A computational mesh is a description of the spatial domain in the simulation: it
defines the external shape of the domain as well the regions of highest interest,
where mesh resolution is increased. Generation of a high–quality computational
mesh remains the current bottle–neck in CFD simulations. Fully automatic mesh
generators are improving and are routinely used. At the same time, requirements on
rapid and high–quality meshing and massively increased mesh size are becoming a
problem.

Mesh size varies considerably with the choice of physical model, purpose of
simulation, required accuracy, available computing power and user experience. As
a guidance to a novice, some of the routinely used mesh sizes at the time of writing
are:

• 100–50,000 cells: Small mesh for model experimentation and quick games with
fast turn–around;

• 10,000–1 million cells: 2–D geometry. However, low–Re turbulent simulations
may require more, due to near–wall mesh resolution requirements;

• 50,000 to several million cells: 3–D geometry;
• 100,000 to 10–50 million cells: Complex geometry, 3D, industrial size meshes.
Mesh size varies considerablydependingongeometry andphysics, steady/transient
flow etc.;

• 1–20 million cells: Large Eddy Simulation (LES) 3–D, transient. LES requires
very long transient runs and averaging (20–50k time steps), which keeps the mesh
resolution down;
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• 20–200 million cells: Full car aerodynamics, Formula 1 for routine use;
• 100 billion cells: Largest engineering CFD simulation with a general–purpose
CFD code (Phuc et al. 2016). The simulation was executed on a supercomputer
using 100,000 cores.

On very large meshes, problems with the current generation of CFD software
becomes a limiting factor: only a few massively parallel mesh generation algorithms
are available, data file read/write, post–processing of results, as well as high hardware
and software prices.

Typical geometrical data formats which are used for mesh generation are:

• 2–D boundary shape: e.g. airfoils. Usually a detailed map of x − y locations on
the surface. Sometimes defined as spline curve data;

• Stereo Lithographic Surface (STL): a surface is represented by a set of triangular
facets. Resolution can be automatically adjusted to capture the surface curvature
or control points. Creation of STL usually available from CAD packages;

• Native CAD description: Initial Graphics Exchange Specification (IGES), solid
model etc. In most cases, the surface is represented by Non–Uniform Rational
B–Splines (NURBs) or approximated by quadric surfaces. Typically, both are too
expensive for the manipulations required in mesh generation and either avoided
or simplified.

Even thoughCADfiles are themost accurate representation of the geometry, CAD
description is very rarely built specifically for CFD—in most cases, CAD surfaces
are assembled from various sources, with varying quality and imperfect matching.
Surface clean–up is usually done by hand, time–consuming and not trivial. Taking
these facts into account, the procedure of mesh generation can be divided into a
number of steps, as follows.

Geometry clean–up. Very rarely is theCADdescription built specifically for CFD—
inmost cases,CADsurfaces are assembled fromvarious sources,with varying quality
and imperfect matching. Surface clean–up is time–consuming and not trivial.

Feature removal. CAD description or STL surface may contain a level of detail
too fine to be captured by the desired mesh size, causing trouble with 3–D mesh
generation. Feature removal creates an approximation of the original geometry with
the desired level of detail.

Surface mesh generation. In cases where the surface description is not discrete, a
surface mesh may be created first. An STL surface is already a mesh. However, it
may be necessary to additionally split the surface for easier imposition of boundary
conditions: inlet, outlet, symmetry plane etc. Surface mesh is usually triangular or
quadrilateral and there are potential issues with capturing surface curvature: surface
mesh will be considered “sufficiently fine”.

Volumemesh generation. The role of the volumemesh is to capture the 3–D geome-
try The cells should not overlap and should completely fill the computational domain.
Additionally, some convexness criteria (FVM) or a library of pre–defined cell shapes
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(FEM) is included. Computational mesh defines the location and distribution of
solution points (vertices, cells, etc.). Thus, filling the domain with the mesh is not
sufficient—ideally, some aspects of the solution should be taken into account. Thus,
a–priori knowledge of the solution is useful in mesh generation in order to locate the
regions where high mesh resolution (“fine mesh”) is needed to capture critical parts
of the solution: shocks, boundary layers and similar. The quality of the mesh critical
for a good solution and is not measured only in mesh resolution and it depends on
the discretisation method.

Mesh Types

Since mesh generation is the bottle–neck, the solvers are generalised to be extremely
flexible regarding meshing, thus simplifying the most difficult part of the simu-
lation process. Certain numerical solution techniques require specific mesh types,
e.g.Cartesian meshes are used for high–order finite difference method and the sup-
ported mesh structure may severely limit the use of a chosen discretisation method.
The following mesh types are distinguished:

• Cartesian mesh
• Structured body–fitted mesh
• Multi–block mesh
• Unstructured shape–consistent meshes
• Tetrahedral and hybrid tet–hex mesh
• Overset and Chimera meshes
• Polyhedral meshes.

A Cartesian mesh is a trivial regular �x × �y × �z mesh used for rectangular
domains. While this mesh type is interesting for theoretical purposes, it is limited in
practical applications.

Body–fittedmeshes, Fig. 2, originate from the non–orthogonal curvilinear coordi-
nate system approach where the case–specific coordinate system is created to fit the
boundary. The mesh is hexahedral and regularly connected and realistic geometry
can be captured but with insufficient control over local mesh resolution.

Multi–block mesh is created as a combination of multiple body–fitted blocks,
Fig. 3. All blocks and cells are still hexahedral. It provides more control over mesh
grading and local resolution and significantly more complex geometries can be cap-
tured. Automatic smoothing and mesh optimisation tools are extensively used while
the initial block decomposition is still done by hand which makes mesh generation in
3–D for relatively complex shapes hard and time–consuming since block interfaces
need to match.

From the numerical simulation point of view, a major step forward was done with
unstructured meshes. Instead of being calculated, the mesh connectivity is stored.
Loose definition of connectivity allows more freedom: hexahedral and degenerate
hexahedral meshes: prisms, pyramids, wedges etc. allow easier meshing. Geometries
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Fig. 2 An example of a 2–D body fitted mesh

Fig. 3 Multi–block structured mesh

of industrial interest can now be tackled with a detailed description, which satisfies
what the design engineer needs. Still, at this stage, all meshes are hand–built. Manual
vertex–by–vertex and cell–by–cellmeshgeneration for a complex3–Dgeometrymay
take 2–3months.

From a numerics point of view, tetrahedral meshes are not optimal as they do
not provide ability of aligning with solution gradient. However, such meshes can be
generated automatically for a spatial domain of complex shape, using mathemati-
cal tessalation algorithms. This is a great improvement over manual generation of
unstructured or body–structured meshes. If a solver can support tetrahedral meshes,
mesh generation time for complex geometry reduces from weeks to hours.

Advantages of tetrahedral meshing are great savings in mesh generation effort,
faster turn–around of simulations and geometrical variation and mesh sensitivity
studies can now be performed on realistic geometries. However, tetrahedra are par-
ticularly poor in boundary layers close to walls, which led to hybridmeshes. A hybrid
mesh is built by creating a layer of hexahedral cells next to the wall. The rest of the
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domain is filled with tetrahedra. A combined tet–hex mesh is a great improvement
in quality and flexibility. On the negative side, cell count for a tetrahedral mesh of
equivalent resolution is higher than for hexahedra. A part of the price is also paid in
lower accuracy of the solver on tetrahedra due to limited neighbourhood connectivity.

Tetrahedral meshes can be automatically generated using the advancing front
method or Delaunay triangulation, Fig. 4. Advancing front algorithm starts from
the boundary surface triangulation and inserts tetrahedra from the live front using
priority lists. In Delaunay triangulation the initial mesh is created by triangulating
the boundary. New points are added in a way which improves the quality of the most
distorted triangles and creates a convex hull around each point.

As an illustration of relative quality of a hexahedral and tetrahedral mesh, Fig. 5
shows two meshes for the coolant system in a block of an Internal Combusion
(IC) engine. Experienced CFD professionals claim that a “pretty mesh” allows for
high–quality solutions: visual inspection can therefore give some guidance on solu-
tion quality.

In spite of the availability of automatic generation techniques, tetrahedral meshes
are often not of sufficient quality for industrial use. On the other hand, automatic
hexahedral mesh generation has proven to be extremely challenging. Finite Volume
discretisation is not actually dependent on the cell shape. Unlike FEM, there are no

Fig. 4 A triangular surface mesh of a Formula 1 car in 1996

Fig. 5 Comparison of a hexahedral and tetrahedral mesh for two models of coolant passages in a
block of an internal combustion engine
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Fig. 6 A mesh around a Formula 1 front wing produced by cut cell mesh generation technology

pre–defined shape functions and transformation tensors, which brings the possibility
of polyhedral mesh support. Polyhedral meshes are considerably better than tetra-
hedral, can be manipulated to be predominantly hexahedral, orthogonal and regular
and can be created automatically. For polyhedra, Finite Volume discretisation algo-
rithm is reformulated (optimised) into loops over cells and faces. While creating a
polyhedral mesh, the Delaunay triangulation algorithm introduces points on prox-
imity rules and a dual mesh of convex polyhedra is created and can be extracted.
The interaction of the tessalated mesh and the boundary needs to be recovered after
polyhedral mesh assembly while local control of mesh size is achieved in the same
way as in tetrahedral meshes.

The strategy for mesh generation is straightforward: filling space with non–
overlapping cells. Even close to boundaries, it is easy to build high quality layered
structure. Problematic parts of mesh generation are related to interaction of advanc-
ing generation surfaces or boundary interaction in complex corners of regions where
the mesh resolution dos not match the level of detail on the boundary description.
Cut cell technology creates a rough background mesh, either uniform hexahedral or
capturing major features of the geometry, Fig. 6. The mesh inside of the domain is
kept and the one interacting with the boundary surface is adjusted or cut by the sur-
face. In some cases, the background mesh resolution can be automatically adjusted
around the surface to match the local resolution requirements Such meshes are good
quality and generation is fast. Prismatic boundary layers may also be added and in
some cases, background mesh adjustment or concave cell corrections are required.

Adaptive Mesh Refinement

Mesh structure specifies where the computational points are located, while the dis-
cretisation practice postulates the shape of the solution between the computational
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points, which is the main source of discretisation error. A sensible meshing strategy
requires high resolution in regions of interest instead of uniformly distributing points
in the domain. This implies some knowledge of the solution during mesh generation.
The same can be achieved in an iterative way:

1. Create initial mesh and initial solution;
2. Examine the solution from the point of view of accuracy or resolution in “regions

of interest”;
3. Based on the available solution, adjust mesh resolution in order to improve the

solution in the selected parts of the domain;
4. Repeat until sufficient accuracy is achieved or computer resources are exhausted.

Performing mesh improvement by hand is tedious and time–consuming. For an
automatic procedure, Fig. 7, two questions need to be answered: “Where to refine
the mesh (adjust resolution)” and “How to change the mesh to achieve the required
accuracy”. Error indicators are usually located in the regions of interest, see Fig. 8.
For example: magnitude of the second pressure gradient, Mach number distribution
etc. Error estimates, apart from the spatial information (error distribution), provide
guidance on the absolute error level. Traditionally, mesh adaptation was a part of the
CFD solver instead of the mesh generator. In cases where the refinement algorithm
resorts to cell splitting, we may end up with a faceted surface representation instead
of a smooth surface, which compromises the results. The remedy lies in geometrical
description of the boundary and it needs to be available from the solver instead of
trying to recover the data from the original (coarse) mesh. A step further is related to
the specification of boundary conditions. In, for example, wind tunnel simulations,
the velocity and turbulence at the inlet plane in shown from the measured data and
interpolated onto the inlet patch of the mesh. Ideally, the boundary condition should
be associated with space or with the boundary description in order to avoid problems
with interpolation. This leads to issues of CAD integration, which is beyond our
scope.

Fig. 7 Adaptive mesh refinement. h–refinement: introducing new computational points in regions
of interest. r–refinement: re-organise the existing points such that more points fall into the region of
interest. p–refinement: enriching the space of shape functions in order to capture the solution more
closely
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Fig. 8 Mesh adaptivity on shocked flows

FVMMesh Quality Metrics

Suitability of a computational mesh for numerical simulation is closely connected
with the underlying discretisation method. For example, a cell away from “ideal”
isotropic shape is not necessarily bad, if it is aligned with local solution gradients
in an appropriate way. Some of the mesh quality measures in FVM are: cell aspect
ratio, face non–orthogonality, face skewness, cell distortion from ideal shape, etc.

Cell aspect ratio is defined as ratio of longest to shortest edge length. Inmany cases,
anisotropic cells are desirable to align the cell with the highest solution gradient.

Fig. 9 Face non–orthogonality
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Fig. 10 Face skewness

Face non–orthogonality, Fig. 9, is defined as the angle between the face normal
and the vector connecting two cell centres which share the face. Non–orthogonality
of 70−90◦ increases the solution cost and reduces accuracy due to diffusion discreti-
sation in FVM. Mesh with non–orthogonality over 90◦ is not valid.

Face skewness is defined as the distance between face centroid and face integration
point and it reduces the order of face integration but without stability implications.
It is shown in Fig. 10.

A distorted cell remains weakly convex: all cell–face pyramids need to be of
positive volume. Negative cell volumes (inverted cells) are usually fatal. Sensitivity
to convexity errors depends on the details of discretisation method.

Dynamic Mesh Simulations

In many cases, the shape of the simulation domain may vary during the simulation
time of interest, either in a prescribedmanner or as function of the solution. Examples
include simulation of flow in a cylinder of an Internal Combustion (IC) engine, where
boundary motion is known before the start of a simulation; or cases of fluid–solid
interaction, where domain shape is a function of solution variables. In both scenarios,
domain shape and computational mesh needs to be adjusted to the desired shape.

Shape change may be achieved in two ways, Jasak (2009):

• Moving deformingmesh, where the point, face and cell connectivity remains fixed,
and shape change is achieved via changes in point positions only;

• Topological mesh changes, where both point position and mesh connectivity
changes.

Inmoving deformingmeshes, point motion can be described a–priori (if boundary
deformation is known ahead of simulation), or by means of automatic mesh motion
algorithms. Here, boundary motion is prescribed (e.g. from a fluid–solid interaction
coupling) and positions of internal points are calculated by solving a mesh motion
equation Jasak and Tuković (2007), Jasak (2009).
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Examples of topological include sliding meshes, cell layering, attach/detach
boundaries, local remeshing and adaptive mesh refinement. In good implementa-
tions, the solution can be transferred between meshes using the space conservation
law Ferziger and Perić (1995).

Closure

In this section we have presented the challenges and requirements for building an
acceptable computational mesh. It all begins at the geometrical data format which
will be used as a basis for mesh generation. Several format types have been dis-
cussed as well as the steps necessary to prepare the geometry for generation of the
corresponding surface and volume mesh. When dealing with complex geometries,
different types of cells are often required to adequatly capture the objects, which can
lead to difficulties in terms of discretisation procedure and obtaining a high–quality
solution. Thus, we have also presented geometric metrics which are used to assess
the quality of the mesh. An overview of refined techniques such as moving meshes
and meshes with adaptive local refinement was also given. Once the spatial domain
has been discretised, i.e. represented with a computational mesh, discretisation of
equations using the Finite Volume Method can be conducted, which is presented in
the following section.

Finite Volume Discretisation

In the previous section methodology for discretisation of the spatial domain was
presented. In this section we shall describe the discretisation of equations using the
FiniteVolumeMethod.Theprocess shall be explained for a generic transport equation
of a scalar property, term by term. Treatment of numerical boundary conditions will
be also covered. We shall also comment on the contribution of each discretised term
to the linear system.

Generic Scalar Transport Equation

Scalar transport equation in the standard form will be our model for discretisation,
since conservation laws, governing the continuum mechanics adhere to the standard
form. Standard form is not the only one available: modelled equations may be more
complex or some source/sink terms can be recognised as transport. This leads to
other forms, but the basics of their discretisation remain the same.

Moving away from physical conservation laws, almost identical equations can
be found in other areas, for example financial modelling. The common factor for
all equations under consideration is the same set of operators: temporal derivative,
gradient, divergence, Laplacian, curl, as well as various source and sink terms.
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The standard form of the transport equation reads:

∂φ

∂t
︸︷︷︸

temporal derivative

+ ∇•(φu)
︸ ︷︷ ︸

convection term

− ∇•(γ∇φ)
︸ ︷︷ ︸

diffusion term

= qv
︸︷︷︸

source term

. (5)

Temporal derivative represents the inertia of the system. Convection term rep-
resents the convective transport by the prescribed velocity field (coordinate trans-
formation). The term is hyperbolic in nature: information comes from the vicinity,
defined by the direction of the convection velocity. Diffusion term represents gradi-
ent transport. This is an elliptic term: every point in the domain feels the influence
of every other point instantaneously. Sources and sinks account for non–transport
effects, i.e. local volume production and destruction of φ.

Numerical Discretisation

Generic transport equation canonly rarely be solved analytically andweneed to resort
to numerical methods. Discretisation is a process of representing the differential
equation we wish to solve by a set of algebraic expressions of equivalent properties,
typically written in a form of a matrix.

The discretisation will be assembled on a per–operator basis. Space and time will
be described via computational mesh for the spatial domain and time–steps which
cover the time interval. A generic scalar variable φ varies in space and time and it
will be represented as a discrete field data. Equation operators will be integrated over
a cell, and spatial and temporal variation of φ will be used to interpret the operator
in discrete terms.

The solution variable will be stored in cell centroid which is a characteristic of
the collocated cell–centred finite volume method. Boundary data, corresponding to
prescribed boundary conditions, will be stored on face centres of boundary faces.

For some purposes, e.g. face flux, different type of data is required—in this case it
will be a field over all faces in themesh. Spatial variation can be used for interpolation
in general since, e.g. post–processing tools typically use point–based data.

A convex polyhedral cell is shown in Fig. 11. The faces of the cell are convex poly-
gons. Point P is the computational point located at cell centroid xP . The definition
of the centroid reads: ∫

VP

(x − xP) dV = 0. (6)

Cell volume is denoted by VP . For the cell, there is one neighbouring cell across
each face. Neighbour cell and cell centre will be marked with N . The face centre f
is defined in the equivalent manner, using the centroid rule:
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Fig. 11 Convex polyhedral
cell

∫

S f

(x − x f ) d S = 0. (7)

Delta vector for the face f is defined as the vector between centroids of cells P
and N , straddling the face:

d f = P N . (8)

Face area vector s f is a surface normal vector whose magnitude is equal to the
area of the face. The face is numerically never flat, so the face centroid and area are
calculated from the integral:

s f =
∫

S f

n d S, (9)

where n is the face normal vector. The fact that the face centroid does not necessarily
lay on the plane of the face is not worrying: we are dealing with surface–integrated
quantities. However, we shall require the cell centroid to lay within the cell. In
practice, cell volume and face area are calculated by decomposition of a face into
triangles and cell into pyramids/tetrahedra.

Faces in a mesh can be internal faces, shared by two cells or boundary faces,
adjacent to one cell only and pointing outwards of the computational domain. When
operating on a single cell it is assumed that all face area vectors s f point outwards
of cell P .

Discretisation is based on the integral form of the transport equation over each
cell (control volume):
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∫

V

∂φ

∂t
dV +

∮

S

φ (n•u) d S −
∮

S

γ (n•∇φ) d S =
∫

V

Qv dV . (10)

When postulating spatial variation of φ, we assume second order discretisation in
space:

φ(x) = φP + (x − xP)•(∇φ)P . (11)

This expression is given for each individual cell. Here, φP = φ(xP).
Linear variation in time is also assumed:

φ(t + �t) = φt + �t

(

∂φ

∂t

)t

, (12)

where φt = φ(t). In FVM, we have specified the “shape function” without reference
to the actual cell shape (tetrahedron, prism, brick, wedge). The variation is always
linear. Thus, doing polyhedral Finite Volume should be straightforward.

Volume integrals are evaluated as:

∫

V

φ dV =
∫

V

[φP + (x − xP)•(∇φ)P ] dV

= φP

∫

V

dV + (∇φ)P •

∫

V

(x − xP)dV

= φP VP . (13)

Surface integrals are split into a sum over faces and evaluated as:

∮

S

n φ d S =
∑

f

∫

S f

nφ f d S f =
∑

f

∫

S f

n[φ f + (x − x f )•(∇φ) f ] d S f

=
∑

f

s f φ f . (14)

Assumption of linear variation of φ and selection of P and f in the centroid
results in second–order discretisation. Gauss’ theorem is a tool which will be used
for handling the volume integrals of divergence and gradient operators:

∫

VP

∇•a dV =
∮

∂VP

ds•a. (15)

∫

VP

∇φ dV =
∮

∂VP

dsφ. (16)
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Note that the face area vector operates from the same side as the gradient operator
and it fits with the definition of the gradient for a vector field. In the rest of the
analysis, we shall look at the problem face by face. A diagram of a face is given
below for 2–D. Working with vectors will ensure no changes are required when
switching from 2–D to 3–D.

When assembling the terms from the discretisationmethod it should be considered
whether the solution in a point depends on the values around it. For each computa-
tional point, a linear equation will be created by the process of discretisation:

aP xP +
∑

N

aN xN = b. (17)

Index P denotes an influence of x on itself, while N indicates the influence from
neighbouring cells. The influences are stored in matrix elements aP and aN , while
other contributions go into r.h.s. vector b.

Thus, the procedure begins by splitting the space into cells and time into time
steps. A discrete description of a continuous field variable is assembled and spatial
and temporal variation of the solution for second–order discretisation is postulated.
Expressions for evaluation of volume and surface integrals are generated and all is
used to assemble the discretisation of the differential operators:

1. Rate of change term,
2. Gradient operator,
3. Convection operator,
4. Diffusion operators,
5. Source and sink terms.

Rate of Change

Time derivative captures the rate–of–change of φ and only the volume integral must
be handled. First, time–step size�t must be defined and then tnew = told + �t , while
time levels of the variable are defined as φn and φo:

φo = φ(t = told), (18)

φn = φ(t = tnew). (19)

The first and second order approximation of the temporal derivative are:

∂φ

∂t
= φn − φo

�t
(20)

∂φ

∂t
=

3
2φ

n − 2φo + 1
2φ

oo

�t
. (21)
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Thus, with the volume integral:
∫

V

∂φ

∂t
dV = φn − φo

�t
VP (22)

∫

V

∂φ

∂t
dV =

3
2φ

n − 2φo + 1
2φ

oo

�t
VP (23)

Since ∂φ
∂t in cell P depends onφP , thematrixwill only have a diagonal contribution

and a source

• Diagonal element: aP = VP
�t ,

• Source contribution: bP = VP φo

�t .

Gradient

A gradient of a given field is evaluated using the Gauss theorem:

∫

VP

∇φ dV =
∮

∂VP

dsφ, (24)

where the surface integral in discretised form is split into a sum of face integrals:

∮

S

nφ d S =
∑

f

s f φ f . (25)

It is necessary to evaluate the face value of φ. Consistently with second–order
discretisation, linear variation between P and N is assumed:

φ f = fxφP + (1 − fx )φN , (26)

where fx = f N/P N . Gradient evaluation is almost exclusively done explicitly,
using the known values of field variables.

It is also possible to use a least–square formulation of the gradient. Consider a
cell centre P and a cluster of points N around it and fit a plane:

eN = φN − (φP + dN •(∇φ)P). (27)

Minimising the weighted error eP :

e2P =
∑

N

(wN eN )2 where wN = 1

|dN | (28)
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yields a second–order least–square form of gradient:

(∇φ)P =
∑

N

w2
N G−1•dN (φN − φP). (29)

G is a 3 × 3 symmetric matrix:

G =
∑

N

dNdN . (30)

Gradient reconstruction may lead to local over– or under–shoots in the recon-
structed field:

minN (φN ) ≤ φP + dN •(∇φ)P ≤ maxN (φN ) (31)

This is important for bounded variables, especially when gradients are used in
further discretisation or coupling terms. The remedy is that aminimumandmaximum
neighbourhood value is calculated and a gradient limiter is applied to preserve bounds
in cell centres, Fig. 12.

Convection

The convection term captures the transport by convective velocity. It is split into a
sum of face integrals to transform it from differential to integral form:

∫

V

∇•(φu) dV =
∮

S

φ(n•u)d S. (32)

Fig. 12 Calculation of
gradient limiter
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Fig. 13 Face interpolation

Integration follows the same path as before:

∫

V

∇•(φu) dV =
∮

S

φ(n•u)d S =
∑

f

φ f (s f •u f ) =
∑

f

F φ f , (33)

where φ f is the face value of φ and:

F = s f •u f (34)

is the face flux, which is a measure of the flow through the face. In order to close the
system, we need a way of evaluating φ f from the cell values φP and φN which is
done by face interpolation, Fig. 13.

The simplest face interpolation is central differencing:

φ f = fxφP + (1 − fx )φN . (35)

It is second–order accurate, but causes oscillations. A more stable scheme is
upwind differencing. The transportive property of the term is taken into account,
i.e. the information to the face comes from upstream. There are no oscillations, but
the solution is smeared, due to the numerical diffusion error:

φ f = pos(F)φP + neg(F)φN or fx = pos(F). (36)

pos(.) function takes the value of 1 if the argument is greater or equal to zero and
0 otherwise.

There exists a large number of schemeswhich try to achievegood accuracywithout
causing oscillations: e.g.TVD, and NVD families: φ f = f (φP ,φN , F, . . .).

For unstructured polyhedral meshes, the concept of a “far upwind node” does not
exist. However, the basis of the algorithm is comparison of two cell gradients, which
can be achieved using the grad(φ)P and grad(φ)N around the face, without the need
for further addressing Jasak et al. (1999).

In the convection term,φ f depends on the values ofφ in two computational points:
P and N . Note that F can be positive or negative, depending on the flow direction
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with respect to the face normal. Therefore, the solution in P will depend on the
solution in N and vice versa, which means there exists an off–diagonal element aN

in the matrix.
In the case of central differencing on a uniform mesh, a contribution for a face f

is:

• Diagonal element: aP = fx F ; for all faces aP = ∑

N fx F .
• Off–diagonal element: aN = (1 − fx )F .
• Source contribution: in our case, nothing. However, some other schemes may have
additional (gradient–based) correction terms.

In general, the P–to–N element will be different from the N–to–P element: the
matrix is asymmetric.

In case of upwind differencing, a contribution for face f is:

• Diagonal element: aP = max(F, 0).
• Off–diagonal element: aN = min(F, 0).

Diffusion

Diffusion term captures the gradient transport. Integration of the term is done using
the established procedure:

∫

V

∇•(γ∇φ) dV =
∮

S

γ(n•∇φ)d S =
∑

f

∫

S f

γ(n•∇φ) d S

=
∑

f

γ f s f •(∇φ) f , (37)

where γ f is evaluated from cell values using central differencing. Evaluation of the
face–normal gradient is done with respect to the alignment of face area normal vector
s and vector connecting the two cell centresd f = P N . If s andd f = P N are aligned,
difference across the face is used:

s f •(∇φ) f = |s f |φN − φP

|d f | . (38)

This is the component of the gradient in the direction of the d f vector. For non–
orthogonal meshes, a correction term may be necessary.

For an orthogonal mesh, a contribution for a face f is:

• Diagonal value: aP = −γ f
|s f |
|d f | . For all faces aP = −∑

N γ f
|s f |
|d f | .

• Off–diagonal value: aN = γ f
|s f |
|d f | .• Source contribution: for orthogonal meshes, nothing. Non–orthogonal correction

will produce a source.
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Fig. 14 Non–orthogonal
correction in diffusion term

The P–to–N and N–to–P elements are identical, which creates a symmetric
contribution to thematrix. This is an important characteristic of the diffusion operator.

For non–orthogonal meshes, a correction is added to compensate for the angle
between the face area and P N vectors.

The decomposition of face gradient into “orthogonal component” � and “non–
orthogonal correction” k, depends on mesh quality: mesh non–orthogonality is mea-
sured as an angle between P N and s f , Fig. 14. Mathematically, a Laplacian is a
perfect operator: smooth, bounded, self–adjoint. Its discretisation yields a symmetric
matrix. In contrast, non–orthogonal correction is explicit, unbounded and unsigned.
Often on low quality meshes, non–orthogonal correction is limited: the explicit part
(k) is clipped to be smaller than its implicit counterpart, based on the current solution:

λ
|s f |
|d f | (φN − φP) > k f •∇(φ) f , (39)

and λ is the limiter value.

Source and Sink Terms

Source and sink terms are local in nature:
∫

V

S dV = SVP . (40)

In general, S may be a function of space and time, the solution itself or other
variables and can be quite complex. In complex physics cases, the source term can
carry the main interaction in the system, e.g. in complex chemistry mechanisms.
We shall for the moment consider only a simple case. Typically, linearisation with
respect to φ is performed to promote stability and boundedness:

S(φ) = Su − Spφ

where Sp = ∂S(φ)

∂φ
and for cases where Sp > 0 (sink), treated separately. The con-

tribution to the linear system is limited to diagonal and r.h.s. since source and sink
terms do not depend on the neighbourhood:
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• Diagonal value created for Sp < 0: “boosting diagonal dominance”.
• Explicit source contribution: Su .

Numerical Boundary Conditions

Boundary conditions will contribute to the discretisation through the prescribed
boundary behaviour. Boundary condition is specified for the whole equation but
we shall study them term by term to simplify the problem.

Dirichlet Condition

Dirichlet (fixed value) boundary condition specifies the value of the variable on the
boundary: φ f = φb.

In convection term there is a fixed contribution F φb, i.e. source contribution only.
For diffusion term it is necessary to evaluate the near–boundary gradient:

n•(∇φ)b = φb − φP

|db| . (41)

This produces a source and a diagonal contribution.

Neumann Condition

Ageneralised formof theVonNeumann (fixedgradient) boundary condition specifies
the near–wall gradient n•(∇φ)b = gb.

In the convection term the boundary value ofφ is evaluated from the internal value
and the known gradient:

φb = φP + db•(∇φ)b = φP + |db|gb (42)

The evaluated boundary value is used as the face value, which creates a source
and a diagonal contribution.

In the diffusion term boundary–normal gb gradient can be used directly. There is
only a source contribution.

Mixed (Robin) boundary condition is a combination of Dirichlet and von Neu-
mann boundary conditions: α times Dirichlet plus (1 − α) times Neumann.

Besides the basic numerical boundary conditions, geometric and coupled condi-
tions are used: symmetry plane condition enforces using themirror–image of internal
solution.Cyclic andperiodic boundary conditions couple near–boundary cells to cells
on another boundary.

Time Advancement

There are two basic types of time advancement schemes: implicit and explicit
schemes. Properties of the algorithmcritically depend on this choice, but both are use-
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ful under given circumstances. Temporal accuracy depends on the choice of scheme
and time step size.

For steady–state simulations, if the equations are linear, the system can be solved
with a single linear solver call (provided the discretisation is linear as well). For
non–linear equations or special discretisation practices, relaxation methods are used,
which exhibit characteristics of time integration, i.e.we are free to redefine themean-
ing of time.

We have established that an equation can be written in the following form for
every control volume:

aP xP +
∑

N

aN xN = R, (43)

where N denotes the neighbourhood of a computational point P . Every time xP

depends on itself, the contribution is added into aP , while when xN depends on
itself, contribution is added into aN . Other contributions go into R. For example, in
the time derivative, x depends on a value from previous iteration, which goes into
R. In convection, x f depends on xP and xN , where f denotes a face. In diffusion,
s f •(∇x) f depends on xP and xN .

There are two solution advancement methods: explicit and implicit.
In the explicit method, xn

P depends on the neighbour values xo
N from previous

iteration. The expressions are evaluated using the currently available x and the new
x is obtained from the time term. Thus, the solution is calculated cell–by–cell, by
using the available xo:

xn
P =

R − ∑

N
aN xo

N

aP
. (44)

Explicit schemes carry a Courant number (Co) limitation, where for stability
reasons convective information cannot progress to the mesh more than one cell at a
time.

Co = U �t

�x
. (45)

Here, U is the face–normal velocity, usually calculated from the face flux:

U = F

|S f | , (46)

�x is the representative cell size, such as distance between two adjacent cell centres
and �t is the time–step size. The Courant number poses a particularly inconvenient
stability limit: as the computational mesh becomes finer, the maximum stable time–
step size also reduces accordingly. Even worse, the global stability limit is related
to a maximum local Co number, meaning that locally refined cells, e.g. in boundary
layers may cause a massive increase in computational effort.
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Courant number limit is the major limitation of explicit methods: information can
only propagate at the order of cell size, otherwise the algorithm is unstable. It is quick
and efficient, no additional storage is needed but it is very bad for elliptic behaviour.

In the implicit method, xn
P depends on the neighbour values xn

N from current itera-
tion. Each term is expressed in matrix form and the resulting linear system is solved.
The new solution takes into account the new values in the complete domain which
is ideal for elliptic problems. Implicitness removes the Courant number limitation,
which allows larger time–steps. However, there is substantial additional storage for
matrix elements.

The solution is calculated as:

xn
P = R − ∑

N aN xn
N

aP
. (47)

Thus, each cell value of x for the “new” level depends on others and all equations
need to be solved simultaneously.

First order time integration presented here is often not accurate enough. Runge–
Kutta schemes Ferziger and Perić (2002) achieve higher order of accuracy by intro-
ducing multiple stages of evaluation within a single time–step. The basic idea of
Runge–Kutta methods is to evaluate the variable at several instances in the interval
between t and t + �t and then combine them to obtain a high order approximation
of the variable.

Closure

In this section discretisation of a generic scalar transport equation using the Finite
Volume Method was presented. Discretisation procedure was conducted for each
term separately, to examine the properties of the underlying matrix, i.e. contribution
of discrete terms to diagonal and off–diagonal elements. The effect of basic numer-
ical boundary conditions on each term was also presented, as well as the effect
of sub–optimal computational mesh. The methods presented in this section can be
directly applied to other types of transport equations, e.g.Navier–Stokes equations.
Algorithms for solving the discrete pressure–velocity systemwill be presented in the
following section.

Pressure–Velocity Coupling

In the previous section FVM discretisation of a generic scalar transport equation
was derived for each transport mechanism. In this section, strategies for resolving
the coupling between pressure and velocity fields in a transient, incompressible,
single–phase, laminar flow will be presented.
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Governing Equations

Equations describing transient, incompressible (ρ = const.), laminar and single–
phase flow are the momentum and continuity equation:

∂u
∂t

︸︷︷︸

rate of change

+ ∇•(uu)
︸ ︷︷ ︸

convection

−∇• (ν∇u)
︸ ︷︷ ︸

diffusion

= − ∇ p
︸︷︷︸

pressure gradient

. (48)

∇•u
︸︷︷︸

velocity divergence

= 0, (49)

Here, u is the velocity field, p is kinematic pressure field (p = P/ρ) and ν is
kinematic viscosity. Looking at the number of equations and unknowns, the system
is well–posed: 1 vector and 1 scalar equation.

There exists linear coupling between Eqs. (48) and (49). u is a vector variable
governed by the (vector) momentum equation. Continuity equation imposes a con-
straint on velocity, i.e. velocity field should be divergence free. This is an example
of a scalar constraint on a vector variable, as ∇•u is a scalar.

The convection term in the momentum equation is non–linear. The term will be
linearised by reusing the available (previous) values of the velocity field:

∇•(uu) ≈ ∇•(uoun), (50)

whereuo is the currently available solution or an initial guess,un is the “new” solution.
An iterative solution technique will be used to resolve the non–linear coupling and
the algorithm cycles until uo = un.

The system of Eqs. 48 and 49 can be written in matrix form:

[

Au ∇(•)

∇•(•) 0

] [

u
p

]

=
[

0
0

]

, (51)

where Au is the linear combination of the temporal term, linearised convection and
diffusion and (•) denotes the position of the unknown variable. For clarity, effects
of boundary conditions (although nominally either source or diagonal contribution)
are included in the relevant operator matrices.

Pressure Equation as a Schur Complement

Theoperators in the block systemcould be considered both as differential and discrete
operators. Pressure field does not appear in the continuity equation and there is a zero
term on the diagonal of the block matrix, meaning that the system is a saddle point. A
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Schur complement (Zhang 2005) will be used to precondition the system and enable
the use of standard iterative linear algorithms.

Consider a general block matrix systemM, consisting of 4 block matrices, A, B,
C and D, which are respectively p × p, p × q, q × p and q × q matrices and A is
invertible:

[

A B
C D

]

. (52)

This structurewill arise naturallywhen trying to solve a block systemof equations:

Ax + By = a, (53)

Cx + Dy = b. (54)

The Schur complement arises when trying to eliminate x from the system using
partial Gaussian elimination by multiplying the first row with A−1:

A−1Ax + A−1By = A−1a (55)

and
x = A−1a − A−1By (56)

Substituting Eq. (56) into Eq. (54) yields:

(D − CA−1B)
︸ ︷︷ ︸

Schur complement

y = b − CA−1a. (57)

The same procedure can be repeated on the block form of the pressure–velocity
system, attempting to assemble a pressure equation. Formally, this leads to the fol-
lowing form of the pressure equation:

[∇•(•)][A−1
u ][∇(•)][p] = 0. (58)

Here, A−1
u represent the inverse of the momentum matrix in the discretised form,

which acts as diffusivity in the Laplace equation for the pressure. While Au is a
sparse matrix, its inverse is likely to be dense. Discretised form of the divergence
and gradient operator are sparse and well–behaved. However, a triple product with
A−1

u would result in a dense matrix, making it expensive to solve.
This can be remedied be decomposing the momentum matrix before the triple

product into the diagonal part off–diagonal matrix:

[Au] = [Du] + [LUu], (59)

where Du only contains diagonal entries. Du is easy to invert and will preserve the
sparsity pattern in the triple product. Revisiting the momentum equation before the
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formation of the Schur complement and moving the off–diagonal component of Au

onto r.h.s. yields:
[ [Du] [∇(•)]
[∇•(•)] [0]

] [

u
p

]

=
[−[LUu][u]

0

]

. (60)

A revised formulation of the pressure equation via the Schur complement yields:

[∇•(•)][D−1
u ][∇(•)][p] = [∇•(•)][D−1

u ][LUu][u]. (61)

In both cases, matrix D−1
u is simple to assemble. It follows that the pressure

equation is a Poisson equation with the diagonal part of the discretised momentum
acting as diffusivity and the divergence of the velocity on the r.h.s.

Derivation of the Pressure Equation

Weshall now rewrite the procedure using discrete form to formally derive an equation
for the pressure. This may be done in several ways: formally correct involves a Schur
complement (Elman et al. 2005) of the block pressure–velocity system.

We start by discretising the momentum equation using the techniques described
for a scalar transport equation. For the purposes of derivation, the pressure gradient
term will remain in the differential form. For each control volume, the discretised
momentum equation yields:

au
PuP +

∑

N

au
NuN = r − ∇ p. (62)

For simplicity, we shall introduce theH(u) operator (Jasak 1996), containing the
off–diagonal part of the momentum matrix and any associated r.h.s. contributions:

H(u) = r −
∑

N

au
NuN (63)

Using the above, it follows:

au
PuP = H(u) − ∇ p (64)

and
uP = (au

P)−1(H(u) − ∇ p). (65)

Substituting the expression for uP into the incompressible continuity equation
∇•u = 0 yields

∇•
[

(au
P)−1∇ p

] = ∇•((au
P)−1H(u)). (66)
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This is the form of the pressure equation for incompressible fluid. Note the implied
decomposition of the momentum matrix into the diagonal and off–diagonal contri-
bution, where au

P is an element in Du matrix and H(u) is the product LUuu.
The pressure equation is derived from continuity which implies divergence–free

velocity. The discretised form of the continuity equation is:

∇•u =
∑

f

s f •u =
∑

f

F, (67)

where F is the face flux:
F = s f •u. (68)

The conservative face flux should be created from the solution of the pressure
equation. Substituting expression for u into the flux equation, it follows:

F = −(au
P)−1s f •∇ p + (au

P)−1s f •H(u). (69)

A part of the above, (au
P)−1s f •∇ p appears during the discretisation of the Lapla-

cian, for each face:

(au
P)−1s f •∇ p = (au

P)−1 |s f |
|d| (pN − pP) = a p

N (pN − pP). (70)

Here, a p
N = (au

P)−1 |s f |
|d| is equal to the off–diagonal matrix element in the pressure

Laplacian. Note that in order for the face flux to be conservative, assembly of the
flux must be completely consistent with the assembly of the pressure equation, e.g. it
must include non–orthogonal correction.

Segregated Solution Algorithm: SIMPLE

The earliest pressure–velocity coupling algorithm is SIMPLE (Semi–Implicit Algo-
rithm for Pressure–Linked Equations), conceived by Patankar and Spalding in 1972
at the Imperial College London (Patankar and Spalding 1972). It comprises the fol-
lowing sequence of operations:

1. Guess the pressure field p∗.
2. Solve the momentum equation using the guessed pressure. This step is called

momentum predictor:
au

PuP = H(u) − ∇ p∗.

3. Calculate the new pressure based on the velocity field. This is called a pressure
correction step:

∇•
[

(au
P)−1∇ p

] = ∇•((au
P)−1H(u)).
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4. Based on the pressure solution, assemble conservative face flux F :

F = s f •H(u) − a p
N (pN − pP).

5. Repeat to convergence.

The algorithm in its base form produces a series of corrections on u and p.
Unfortunately, it will not converge in the presented form. Divergence happens due
to the fact that pressure correction contains both the pressure as a physical variable
and a component which forces the discrete fluxes to become conservative. In order
to achieve convergence, under–relaxation is used:

p∗∗ = p∗ + αP(p − p∗), (71)

and

u∗∗ = u∗ + αu(u − u∗), (72)

where p and u are the solution of the pressure and momentum equations and u∗
and p∗ represent a series of pressure and velocity approximations. αP and αu are
the pressure and velocity under–relaxation factors. Note that in practice, momentum
under–relaxation is implicit (included in the coefficient matrix) while pressure is
under–relaxed explicitly, since the pressure equation is elliptic:

au
P

αU
uP = H(u) − ∇ p∗ + 1 − αU

αU
au

Pu
∗
P . (73)

Some guidelines for choosing under–relaxation factors are:

0 < αP ≤ 1,

0 < αU ≤ 1,

αP + αU ≈ 1,

or the standard set (for guidance only):

αP = 0.2,

αU = 0.8.

Under–relaxation dampens the oscillation in the pressure–velocity coupling and
is very efficient in stabilising the algorithm.

To summarise, SIMPLE algorithm prescribes that the momentum predictor will
be solved using the available pressure field. The role of pressure in the momentum
equation is to ensure that the velocity field is divergence free. After the first momen-
tum solution, the velocity field is not divergence–free since a guessed pressure field
was used. Therefore, the pressure field after the first pressure corrector will contain
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two parts: physical pressure, consistent with the global flow field and a “pressure cor-
rection” component, which enforces the continuity and counter–balances the error in
the initial pressure guess. Only the first component should be built into the physical
pressure field. In SIMPLE, this is handled by severely under–relaxing the pressure.

Segregated Solution Algorithm: PISO

Having 2 under–relaxation factors which balance each other is very inconvenient as
the tuning is difficult. The solution was offered by Issa in 1986 in the form of the
PISO (Pressure Implicit with Splitting of Operators) algorithm (Issa 1986).

The pressure–velocity system contains two complex coupling terms: non-linear
convection term, containing u − u coupling and linear pressure–velocity coupling.
On lowCourant number, i.e. small time–steps, the pressure velocity coupling ismuch
stronger than the non–linear coupling. It is therefore possible to repeat a number of
pressure correctors without updating the discretisation of the momentum equation,
using the new fluxes. In such a setup, the first pressure corrector will create a con-
servative velocity field, while the second and following will establish the pressure
distribution.

Since multiple pressure correctors are used with a single momentum equation, it
is no longer necessary to under–relax the pressure. In steady–state simulations, the
system is stabilised bymomentum under–relaxation. On the negative side, derivation
of PISO is based on the assumption that momentum discretisation may be safely
frozen through a series of pressure correctors, which is true only at small time–steps.
PISO contains the following sequence of operations:

1. Use the available pressure field p∗ from previous corrector or time–step. Conser-
vative fluxes corresponding to p∗ are also available.

2. Discretise the momentum equation with the available flux field.
3. Solve the momentum equation using the guessed pressure. This step is called

momentum predictor:
au

PuP = H(u) − ∇ p∗.

4. Calculate the new pressure based on the velocity field. This is called a pressure
correction step:

∇•
[

(au
P)−1∇ p

] = ∇•((au
P)−1H(u)).

5. Based on the pressure solution, assemble conservative face flux F :

F = s f •H(u) − a p
N (pN − pP).

6. Explicitly update cell–centred velocity field with the assembled momentum coef-
ficients:

uP = (au
P)−1(H(u) − ∇ p).



138 H. Jasak and T. Uroić

7. Return to pressure correction step if convergence is not reached.
8. Proceed from beginning for a new time–step.

PISO is useful in kinds of simulationswhere the time–step is controlled by external
issues and temporal accuracy is important. In such cases, assumption of slowvariation
over non-linearity holds and the cost of momentum assembly and solution can be
safely avoided, e.g. for Large Eddy simulations. Functional equivalent of the PISO
algorithm is also used as a preconditioner in Krylov space saddle–point solvers.

In transient flows there is a natural time–step limit, related to mesh size. In many
cases local mesh resolution, e.g. near walls limits the global time–step size to unrea-
sonable level. The limit can be violated locally “without effect on global time accu-
racy”. Some options are:

• Transient SIMPLE–based algorithms where each time-step is considered as a
quasi–steady solution, by assuming the time derivative term is a “local inertial
source”.

• Inertial under–relaxation: in small cells the temporal accuracy will be ruined any-
way. It is assumed as it is already the case and “inertial under–relaxation” is added
in problematic cells.

• Sub–cycling: in cases where a large time–step or inertial under–relaxation is not
an option, e.g.wave propagation, a transport equation can be solved in sub–steps
to satisfy the Courant number limit.

However, non–uniform time step size will potentially lead to unboundedness
problems. Local time–stepping algorithms can be reformulated to work around this
problem.

The weakest point of SIMPLE–type algorithms is equation segregation since a
linear problem (pressure and velocity coupling) is addressed by parts. Block–coupled
solution of both equations in a single linear system can significantly accelerate con-
vergence as iterations happen only over non–linear terms.

Block–Implicit Coupled Solution

It is possible to formulate a systemof equationswhichwill discretise both the pressure
andmomentum equation in a singlematrix and solve them simultaneously. Efficiency
of such algorithms is good for steady–state computations but at a cost of considerable
increase in storage and choice of linear solver technology.Wehave previously derived
the pressure equation as a Schur complement of the momentum equation. Elman
preconditioning of saddle–point systems (Elman et al. 2005) implies replacing the
zero term on the diagonal with a Schur complement. Thus, the final form of the
block–coupled pressure–velocity system is:

[ [Au] [∇(.)]
[∇•(.)] [∇•(.)][D−1

u ][∇(.)]
] [

u
p

]

=
[

0
∇•(D−1

u ∇(p))

]

. (74)
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Here, matrix elements are 4 × 4 blocks, consistent with discretisation of operators
and boundary conditions of the segregated system. The r.h.s. term in p is the conven-
tional Rhie–Chow correction (Rhie and Chow 1983). The complete p–umatrix is no
longer diagonally dominant because of the [∇(•)] and [∇•(•)] blocks, and these two
off–diagonal blocks are a transpose of each other. Flux calculation after block solu-
tion is identical to the segregated method. Momentum under–relaxation is needed
only for ensuring the convergence of linear solvers, while there is no under–relaxation
of pressure equation. The iteration is only performed to handle true non–linearity in
convection and turbulence. However, due to matrix properties, stronger solvers and
smoothers are needed, e.g.Algebraic Multigrid (AMG).

Closure

In this section algorithms for the solution of pressure–velocity coupling in equations
for incompressible, transient, single–phase, laminar flow were presented. The non–
linear momentum equation is linearised, which means an iterative procedure must
be employed to solve the non–linear coupling. Since there is no equation for pres-
sure, a Schur preconditioning technique is used for derivation as it counteracts the
saddle–point problem. Several algorithms based on this preconditioning technique
were presented: SIMPLE, PISO and block–coupled implicit technique. The available
linear solver technology for the solution of linear coupling will be presented in the
following section.

Linear Equation Solvers

In the previous section, various forms of pressure–velocity coupling algorithms were
presented. In this section, numerical solutionmethods for the resulting linear systems
of equations which arise from the FVM discretisation of equations will be outlined.
We shall discuss direct solvers and whether they are applicable to CFD problems as
well as different types of iterative solvers.

Finite Volume Matrix

Going back to the Finite Volume discretisation, we can observe that an equation can
be written in the following form for every computational point (control volume):

aP xP +
∑

N

aN xN = R. (75)
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Together, equations for all cells form a linear system or a matrix:

Ax = b, (76)

where A contain matrix elements, x is the value of xP in all cells and b is the right-
hand-side vector.

MatrixA is potentially very big: n cells× n cells and it is square since the number
of equations is equal to the number of unknowns. Also, most elements are equal
to zero because the connectivity is always local. Thus, the matrix is sparse which
potentially leads to storage savings if a good matrix storage format can be identified.
The equations are linearised if they are non–linear by nature, as we typically wish
to avoid handling non–linearity at this level due to high cost of non–linear matrix
solvers.

Matrix Storage Formats

The matrix can be stored in either dense, compressed row or arrow format. Dense
matrix format is used formatriceswhich are completely or almost full, i.e. do not have
many zero elements. All matrix elements are stored, typically in a two–dimensional
array: diagonal elements (aii ) and off-diagonal elements (ai j ).

This format is convenient for small matrices and when direct solvers are used.
Matrix elements represent a large chunk of memory and efficient operations imply
memory management optimisation. Also, it is impossible to say if the matrix is
symmetric or not without floating point comparisons.

If the matrix is sparse, as FVM matrices are, only non–zero elements may be
stored, which yields considerable savings in memory. In the compressed row format,
the elements are typically stored in a single 1-D array (diagonal elements may be
separate) and they are ordered row–by–row. Addresing is stored in two arrays: “row
start” and “column”. The row array records the start and end of each row in the
column array. Thus, row i has got elements from row[i] to row[i + 1]. Size
of row arrays is equal to number of rows + 1.

An example of the code for calculating a matrix–vector product using the com-
pressed row format is given:

vectorProduct(b, x) // [b] = [A] [x]
{

for (int n = 0; n < count; n++)
{

for (int ip = row[n]; ip < row[n+1]; ip++)
{

b[n] = coeffs[ip]*x[col[ip]];
}

}
}
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Arrow format is an arbitrary sparse format. Elements are stored in 3 arrays: diago-
nal, upper and lower triangle. While the diagonal addressing is implied, off–diagonal
addressing is stored in 2 arrays: “owner” (row index) and “neighbour” (column index)
array. The size of addressing arrays is equal to the number of off-diagonal elements.
The matrix structure (fill–in) is assumed to be symmetric: presence of ai j implies
the presence of a ji . Symmetric matrices are easily recognised from this format and
if the matrix elements are symmetric, only the upper triangle is stored.

An example of the code for calculating a matrix–vector product using the arrow
format is given:

vectorProduct(b, x) // [b] = [A] [x]
{

for (int n = 0; n < coeffs.size(); n++)
{

int c0 = owner(n);
int c1 = neighbour(n);
b[c0] = upperCoeffs[n]*x[c1];
b[c1] = lowerCoeffs[n]*x[c0];

}
}

Matrix Properties

A relationship between the FV mesh and matrix is established through the connec-
tivity of cells and equations. A cell value depends on other cell values only if the
two cells share a face. Therefore, a correspondence exists between the off-diagonal
matrix elements and the mesh structure. In practice, the matrix is assembled by loop-
ing through the mesh. The structure (pattern of elements) of the matrix depends on
the numbering of cells.

We have established that FV discretisation produces sparse matrices with only a
few non–zero elements per row, depending on the cell type, i.e. the number of faces.
A sparse matrix is banded if its non-zero elements are grouped in a stripe around
the diagonal. It has a multi–diagonal structure if its non–zero off–diagonal elements
form a regular diagonal pattern. A symmetric matrix is equal to its transpose:

A = A�. (77)

A matrix is positive definite if for every x �= 0:

x�Ax > 0. (78)

A matrix is diagonally dominant if in each row the sum of off–diagonal element
magnitudes is equal or smaller than the diagonal element:
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aii ≥
N

∑

j=1

|ai j | ; j �= i, (79)

and for at least one i

aii >

N
∑

j=1

|ai j | ; j �= i. (80)

The exact solution of the linear system Ax = bwe wish to solve, can be obtained
by inverting the matrix A:

x = A−1 b. (81)

This is how direct solvers operate: number of operations required for the inversion
of A is fixed and until the inverse is constructed, x cannot be obtained.

Note that in direct solution algorithm, an initially sparse matrix shall be filled in
elements: inverting a sparse matrix A does not preserve the sparsity pattern in A−1.

Definition of Residual

Iterative solvers start from an approximate solution x(0) and generate a set of solution
estimates x(k), where k is the iteration counter. Their most important property is that
the storage of matrix inverse is not needed—overall storage during the solution
process will be only slightly higher (by several vectors of size n) than the storage of
the sparse matrix.

In iterative solution algorithms, quality of the solution estimate is measured
through a residual:

r = b − Ax(k). (82)

A residual is a vector showing how far the current estimate x(k) is from the exact
solution x. Note that for correct x, r will be zero. Since r defines a value for every
equation (row) in A, it is impractical to measure and compare. Thus a residual norm
||r|| is used. It can be assembled in many ways, but usually:

||r|| =
N

∑

j=1

|r j |. (83)

In CFD software, the residual norm is normalised further for easier comparison
between the equations. Convergence of the iterative solver is usually measured in
terms of residual reduction. The linear system of equations is considered to be solved
when:

||r(k)||
||r(0)|| < ε, (84)
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where ε is a user defined tolerance. Good (implicit) numerical simulation software
will spend 50−90%ofCPU time invertingmatrices and performance of linear solvers
is absolutely critical for the performance of the entire solution method. Like in the
case ofmeshgeneration, the characteristics of a discretisationmethod and the solution
algorithm are coupled with the linear solver. Only a combination of a discretisation
method and a linear solver will result in a useful solver. Typically, properties of
discretisation will be set up in a way that allows the choice of an efficient solver.

Direct Solvers

Whe looking for a solution of a linear equation set, it is possible to use a direct solver,
which performs a given number of operations, after which a solution is obtained.

Direct solvers are expensive in storage and CPU time but can handle any type of
matrix and there are no concerns about matrix properties during discretisation. Thus,
direct solvers are typically used for cases where it is difficult to control matrix prop-
erties through discretisation: boundary element methods, high-order FEM methods,
Hermitian elements, DiscontinuousGalerkin etc. Iterative solvers start from an initial
solution and perform an a number of operations (unknown in advance), which will
result in an improved solution.

Iterative solvers may be variants of the direct solution algorithm with special
characteristics. For large problems, iterative solvers are the only option, however, they
require matrices with “special” properties. Fortunately, FVM matrices are ideally
suited (read: carefully constructed) for use with iterative solvers.

Since the number of operations required for the solution by a direct method is
known, intermediate solutions are of no interest. When operating on a large sparse
matrix like the one from discretisation methods, the direct solver will create entries
for elements that were not previously present. As a consequence, formal matrix
storage requirement for a direct solver is a full matrix for a complete system, which
is extremely large. Also, the advantage of direct solvers is that they can handle any
sort of well-posed linear system. In reality this is compromised by the round-off
error, and even though it can be partially taken into account through the details of
the solution algorithm, for really bad matrices this cannot be helped.

Gaussian elimination is the easiest direct solver, see (Saad 2000). Elimination
is performed by combining row elements until a matrix becomes triangular. The
elimination step is followed by backward substitution to obtain the solution. In order
to control the discretisation error, equations are chosen for elimination based on the
diagonal element, which is called pivoting. Linear combination of matrix rows leads
to additional fill–in of elements. The number of operations in direct solvers scales
with the number of equations cubed, which is computationally very expensive in
CFD.

When handling sparse systems, the fill–in is very problematic since it leads to a
large increase in storage size and accounts for the bulk of operations. The modern
implementation of direct solvers is based on the window approach. Looking at the
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structure of the sparse system, it can be established that equation for xP depends
only on a small subset of other nodes: in principle, it should be possible to eliminate
the equation for P just by looking at a small subset of the complete matrix. If all
equations under elimination have overlapping regions of zero off–diagonal elements,
there will be no fill–in in the shared regions of zeros. Thus, instead of operating on
the complete matrix, an active window for elimination can be created in a multi–
frontal solver (Duff and Reid 1983). The window will sweep over the matrix, adding
equations one by one and performing elimination immediately. The window matrix
will be dense, but much smaller than the complete matrix. Also, the triangular matrix
(needed for back–substitution) can be stored in a sparse format.

The window approach may reduce the cost of direct solvers by several orders of
magnitude and it is acceptable for medium–sized systems. The number of operations
scales roughly with N · M2, where N is the number of equations and M is the maxi-
mum size of the solution window. The first step in the implementation is the control
of the window size: the window changes its width dynamically and in the worst case
may be the size of the complete matrix. Maximum size of the window depends on the
matrix connectivity and ordering of equations. Special optimisation software is used
to control the window size. Matrix renumbering and ordering heuristics is regularly
used, e.g. numbering of a Cartesian mesh to minimise the matrix band. The most
expensive operation in the multi–frontal solver is the calculation of the Schur’s com-
plement: the difference between the trivial and optimised operation can be a factor
of 1000. In practice, Basic Linear Algebra (BLAS) (National Science Foundation
2014) library is used for such problems. It is a special assembly code implementation
for matrix manipulation. The code is optimised by hand and sometimes written spe-
cially for processor architecture. It is unlikely that a hand–written code for the same
operation achieves more than 10 % efficiency of BLAS and a good implementation
can be measured in how much the code spends on operations outside of BLAS.

Iterative Solvers

Performance of iterative solvers depends on the matrix characteristics. The solver
operates by incrementally improving the solution, which leads to the concept of error
propagation: if the error is augmented in the iterative process, the solver diverges.
The easiest way of analysing the error is in terms of eigen–spectrum of the matrix.
The general idea of iterative solvers is to replaceAwith a matrix that is easy to invert
and approximates A and use this to obtain the new solution.

The most basic iterative solvers are Jacobi and Gauss–Seidel iterations (Saad
2000). Propagation of information in these simple iterations is very slow. Jacobi
propagates the “data” one equation at a time. For Gauss–Seidel, the information
propagation depends on thematrix ordering and sweep direction. In practice, forward
and backward sweeps are alternated.

Consider again a linear problemAx = b. Afixedpoint iterativemethod is obtained
by splitting A = M − N:
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x(k+1) = Sx(k) + M−1b, (85)

where k is the iteration counter, and S is the iteration matrix:

S = M−1N. (86)

The solution error e and error propagation equation are:

e(k) = x(k) − x, (87)

e(k+1) = Se(k), (88)

where x is the correct solution. Iteration matrix possesses the recursive property:

e(k+1) = Ske(0). (89)

Thus, the iterative matrix affects the error vector which should reduce in magni-
tude each time thematrix is applied to it. Themagnitude of error reduction is governed
by matrix properties: the method will converge fast if the matrix is strictly diagonally
dominant and if all off–diagonal elements are approximately the same. FV matri-
ces stemming from problems with complex physics and unstructured non–uniform
meshes can hardly satisfy such conditions, which leads to performance deterioration
of fixed point algorithms. A step in an alternate direction wasmade by transforming a
linear system into a minimisation problem by using Conjugate Gradient type solvers.

Krylov Subspace Solvers

Looking at the direct solver, we can imagine that it operates in N -dimensional space,
where N is the number of equations and searches for a point which minimises the
residual. In Gaussian elimination, each direction of the N–dimensional space is
visited once and eliminated from further consideration.

The idea of Krylov space solvers, see (van der Vorst 2003), is that an approximate
solution can be found more efficiently if we look for search directions more intelli-
gently. A residual vector r at each point gives the “direction” in which the error is
minimised and we should search in. Additionally, we would like to always search in
a direction orthogonal to all previous search directions, meaning the correct solution
will be reached after N iterations.

Even though the idea is good, it is still impractical for large systems. The search
procedure is an example of an iterative roughener, i.e. the error term does decrease
in magnitude in each iteration, but some components of the error may temporarily
grow. In terms of performance, the number of operations in Krylov space solvers
scales with N · log(N ), where N is the number of unknowns.
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The basicKrylov subspace solver, which can be applied onto symmetric, positive–
definite systems is the Conjugate Gradient (CG) (Shewchuk 1994). CG solver is an
orthogonal projection technique onto the Krylov spaceK(A, r(0)), and comprises the
following operations:

1. In the beginning assume x(0) = 0, and then p(0) = r(0) = b − Ax(0).
2. Calculate the length of the step in direction p(k):

α(k) = (r(k))�r(k)

(p(k))�Ap(k)
.

3. Calculate the new solution:

x(k+1) = x(k) + α(k)p(k).

4. Calculate the new residual:

r(k+1) = r(k) + α(k)Ap(k).

5. Calculate the projection operator of the new residual onto the previous search
direction:

β(k) = (r(k+1))�r(k+1)

(r(k))�r(k)
p(k).

6. Calculate the new search direction bymaking itA–orthogonal to the new residual:

p(k+1) = r(k+1) + β(k)p(k).

7. Return to step 2 if the convergence criterion is not satisfied.

CG solver seeks the solution in the Krylov space by stepping in direction p scaled
by step length α:

x(k+1) = x(0) + αkp(k). (90)

Direction vectors p(k) are chosen to be conjugate (A–orthogonal):

(

Ap(k),p(k)
) = 0. (91)

Here, symbol (•, •) denotes the scalar product of two vectors. Even though it is
guaranteed that CG will converge to correct solution in N iterations, it is still not
appropriate for large systems such as those arising from the FVM discretisation.
To speed up and stabilise convergence, transformations of the coefficient matrix are
used, called preconditioning.
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Preconditioning

Preconditioning matrixM is a matrix which approximates A such that equation

Mx = b

may be inexpensive to solve. Then, the following procedure is applied:

AM−1u = b (92)

x = M−1u. (93)

For example, the additional cost of the preconditioned CGmethod is equivalent to
solving a linear system. Thus,M should be chosen in such a way that this system can
be solved quickly and efficiently. Some possibilities for choosing a preconditioning
matrix are using only the diagonal elements of A or using an incomplete lower–uper
factorisation of A, which is known as the ILU preconditioner (Saad 2000).

Algebraic Multigrid

A return to fixed point methods has been made after mathematical analysis of dis-
cretisation showed it makes sense to use coarse–mesh solutions to accelerate the
solution process on the fine mesh, through initialisation of fine level solution using
the coarse correction. In terms of matrices and linear solvers, the same principle
should apply since the matrices come from discretisation. Since it would be imprac-
tical to build a series of coarse meshes just to solve a system of linear equations,
it can be readily recognised that all the information about the coarse mesh (and
therefore the coarse matrix) already exists in the fine mesh. Thus, the same can be
done with a linear equation solver which is the basis of Algebraic Multigrid (AMG)
(Trottenberg et al. 2001).

Operation of AMG relies on the fact that a high–frequency error is easy to elim-
inate using the fixed point algorithm. High–frequency error corresponds to those
components of the error which can be eliminated using the local information, i.e. by
communicating only with the coupled equations. Once the high-frequency error is
removed by e.g.Gauss–Seidel solver, iterative convergence slows down. At the same
time, the error that looks smooth on the current mesh will behave as oscillatory on a
coarser mesh. If the mesh is coarser, the error is both eliminated faster and in fewer
iterations. Thus, in multigrid the solution is mapped through a series of coarse levels,
each of the levels being responsible for eliminating a “band” of the error.

Communication between fine and coarse level is established through restriction
and prolongation matrices,R and P respectively. Restriction matrix is used for trans-
ferring the residual from fine to coarse level:

RrF = rC, (94)
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where rF is the residual calculated from the fine level approximate solution and rC is
the value of the residual on coarse level, after restriction. A fine residual, containing
the smooth error component, is restricted and used as the right-hand-side of the coarse
system. Prolongation matrix is used for interpolating the coarse level correction onto
fine level:

PeC = eF, (95)

where eC is the correction calculated on the coarse level by solving the residual
equation AC eC = rC, and eF is the correction after interpolation onto fine level.
Once the coarse system is solved, coarse correction is prolongated to the fine level
and added to the solution. Interpolation introduces aliasing errors, which can be
efficiently removed by smoothing (using a fixed point method) on the fine level.

Coarse matrix AC is constructed through projection:

AC = RAFP. (96)

Creating a coarse level matrix is roughly equivalent to creation of coarse mesh
cells. Twomain approaches are Aggregative algebraic multigrid (AAMG) and Selec-
tive algebraic multigrid (SAMG). In AAMG (Hutchinson and Raithby 1986), equa-
tions are grouped into clusters in a manner similar to grouping fine cells to form a
coarse cell. The grouping pattern is based on the strength of off–diagonal elements.
In SAMG (Ruge and Stüben 1987), the equations are separated into two groups: the
coarse and fine equations. Selection rules specifies that no two coarse points should
be connected to each other, creating a maximum possible set. Fine equations form a
fine–to–coarse interpolation method (restriction matrix), which is used to form the
coarse system.

The bulk of multigrid work is performed by transferring the error and correc-
tion through the multigrid levels. Fixed point algorithms only act to remove high–
frequency error, i.e. they smooth the error. Smoothing can be applied on each level
before the restriction of the residual, which is called pre–smoothing. If it is applied
after the coarse correction has been added, it is called post–smoothing. Algorithmi-
cally, post-smoothing is more efficient.

Based on the above, AMG can be considered a two–level solver. In practice,
the “coarse level” solution is also assembled using multigrid, leading to multi–level
systems, which are governed by a cycle. The most important multigrid cycle types
are:

• V–cycle (Fig. 15) inwhich a hierarchy of coarse levels is created, each level (except
the coarsest) is visited twice. Residual reduction is performed all the way to the
coarsest level and then prolongation and post–smoothing are done on each level
in the opposite direction. Mathematically, it is possible to show that the V–cycle
is optimal and leads to the solution algorithm where the number of operations
scales linearly with the number of unknowns. Other cycles, e.g.W–cycle (Fig. 16)
or F–cycle are a variation on the V-cycle, where coarse levels are visited multiple
times.
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Fig. 15 Multi–level multigrid V–cycle

Fig. 16 Multi–level multigrid W–cycle

• Flex cycle: the creation of coarse levels is done on demand, when the smoother
stops converging efficiently.

Block–Coupled Solution Algorithms

For cases of strong coupling between the components of a vector, the components can
be solved as a block variable: (ux , uy, uz) will appear as variables in the same linear
system. In spite of the fact that the system is much larger, the coupling pattern still
exists: components of u in cell P may be coupled to other components in the same
point or to vector components in the neighbouring cell.With this in mind, we can still
keep the sparse addressing defined by the mesh: if a variable is a vector, a tensorial
diagonal elements couples the vector components in the same cell. A tensorial off–
diagonal element couples the components of uP to all components of uN , which
covers all possibilities. Important disadvantages of a block coupled system are that
the linear system is large as several variables are handled together. Also, different
kinds of physics can be present, e.g. the transport–dominated momentum equation
and elliptic pressure equation. At matrix level, it is impossible to separate them,
which makes the system more difficult to solve.

Irrespective of the level of coupling, the FVMdictates that a cell value will depend
only on values in surrounding cells. We still have freedom to organise the matrix by
ordering entries for various components of the solution variable x, i.e. global sparsity
pattern is still related to mesh connectivity.
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An example of a block–coupled system is shown for the pressure–velocity system,
see Uroić et al. (2017) and Uroic and Jasak (2018):

u1 u2
p1 p2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

aP (u u) aP (u p)

aP (p u) aP (p p)

) (

aN (u u) aN (u p)

aN (p u) aN (p p)

)

· · ·

.
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⎥

⎥

⎥

⎥

⎦

Closure

In this section algorithms for the solution of linear systems of equations were pre-
sented. Historically, fixed point methods were the first iterative algorithms for large,
sparse matrices. However, due to their deficiencies which became obvious on non–
uniform meshes, other types of solvers were developed. The first class are Krylov
subspace solvers which rely in transforming the solution of linear system into a min-
imisation problem in which the correct solution vector can be found in N iterations,
where N is the dimension of the problem. Krylov subspacemethods are efficient only
when used with matrix preconditioning techniques. Fixed methods were reawakened
with the application of algebraic multigrid methods, which efficiently eliminate the
components of the error unaffected by fixed point methods.

Examples

In this section we shall present some applications of CFD using only the basic
incompressible, single–phase and turbulent flow equations, which were discussed in
the scope of this chapter. Examples from automotive industry will be given as well
as applications for turbomachinery and biological flows.
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CFD for External Aerodynamics

Numerous automotive components involve fluid flow and require optimisation. This
opens a wide area of potential of CFD use in automotive industry. CFD approaches
the problemof fluid flow from fundamental equations: there is no problem–specific or
industry–specific simplification. A critical step involves complex geometry handling
as it is essential to capture real geometrical features of the engineering component
under consideration. Traditional applications involve incompressible turbulent flow
of Newtonian fluids.

While automotive CFD is mostly perceived in terms of external aerodynamics
simulations, reality of industrial CFD use is significantly different. In numbers of
users in automotive companies, CFD today is second only to CAD packages and
in some areas, CFD replaces experiments. In comparison with CFD, experimental
studies are expensive, carry limited information and it is difficult to achieve sufficient
turn–over. The biggest obstacle is validation, i.e. confidence in CFD results. CFD is
used across the automotive industry, at various levels of sophistication. The impact
of simulations and reliance on numerical methods is greatest in areas that were not
studied in detail beforehand.

There is considerable use in cases where it is difficult to quantify the results in
simple terms like the lift and drag coefficient, such as flow organisation, stability and
optimisation or a detailed look at the flowfield, especially in complex geometry. Thus,
CFD can contribute through parametric study (trends), by reducing experimental
work etc. Numerical modelling is particularly useful in understanding the flow or
looking for qualitative improvements: e.g. optimisation of vehicle soiling pattern on
windows.

Aerodynamic design of a car is important as it plays a significant role in the
behaviour of a vehicle. Investigating flow features is useful for optimisation of the
aerodynamics which results in reduction of fuel consumption, more comfort (less
noise, better ventilation) and improved driving characteristics (stability, handling).
In racing car industry, it is important to achieve a large negative lift (downforce)
while minimising the drag. Drag usually comes from frontal pressure when a vehicle
pushes the air out of the way, and from the vacuum created at the rear when the
air molecules are not able to fill the hole left by the vehicle body and it acts in the
direction opposite to the velocity vector. The third component is the boundary layer
effect, i.e. the friction between the car and the air. Downforce (negative lift) pushes the
car into the road, which increases traction. Good traction is extremely important for
behaviour of the car in the corners. A Formula 1 car without its front and rear wings
would fly off the ground as it reaches the maximum speed, because the higher the
velocity the air molecules are travelling, the lower the pressure. Thus, the car would
act like an airfoil in a freestream and the force would lift it off the road. The wings,
which are essentially inverted airfoils, make sure that the car stays on the ground
and even enable it to drive turned upside–down. The best road cars today have the
drag coefficient of 0.3, while Formula 1 cars with the wings and open wheels have
a minimum of about 0.7. This makes a Formula 1 car slightly more efficient than
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Fig. 17 Streamlines around the bluff body with a diffuser, coloured by the values of velocity
magnitude (top), pressure field around the bluff body (bottom)

a flat plate (drag coefficient = 1), but have in mind the downforce and horsepower.
There are two options for estimating the drag and lift acting on a vehicle: wind
tunnel measurements and CFD simulation. The financial and time aspect make CFD
a better solution. Here, we give an example of isolated aerodynamics components:
the diffuser and a rotating wheel. The diffuser is situated at the rear of a racing
car undertray and is of great importance for downforce generation. Exposed wheels
increase the drag force and also greatly influence the lift characteristics. In general,
boundary layer separation is a good indicator of high drag.

A bluff body equipped with an upswept back section that operates in close prox-
imity to the ground is shown in Fig. 17. “A bluff body can be defined as a body of
any shape, which experiences complete boundary layer separation before the trail-
ing edge, due to large adverse pressure gradient set up over that part of the body
behind the position of maximum thickness. This pressure gradient decelerates the
slow moving fluid within the boundary layer near the surface and eventually causes
a reversed flow and hence separation.” (Fackrell 1974).
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Fig. 18 Vortices behind a rotating wheel

When placed in ground effect, an expansion/diffuser effect is formed between the
upswept surface and the ground. This is used to increase downforce. The experimen-
tally measured lift coefficient is equal to −1.90, (Senior 2002), while the simulated
was −1.88 (+1.1%). The measured lift coefficient is 0.49, and the simulated 0.47
(−4.1%). “The flow remains essentially symmetric. The flow velocities accelerating
underneath the side-plate have increased due to the reduction in gap through which
it flows. The vortex behind is strong and concentrated and the flow separating from
the side-plate winds into the vortex” (Senior 2002), visible in Fig. 17.

The second case is a rotating wheel in contact with the ground, with a camber
angle equal to 2.4◦. The experimentally measured drag coefficient is equal to 0.598.
Drag coefficient obtained from the simulation was equal to 0.60 (+0.3%). The flow
characteristics can be seen in Fig. 18, andwere described in literature (Fackrell 1974):

The near wake of the tire ... is dominated by two large counter-rotating vortices. Looking
from the back of the wind tunnel, the left vortex is larger and more persistent than the right
vortex and this is due to the combined effect of the wheel camber angle and strut.

“There is a region of strong downward velocity between the vortex cores in the
centerplane of the tire...”, evident in Fig. 18.

The third case is a generic car, a crossbreed between BMW 3 and Audi A4
Limousine, developed in TU Munich. Here, the simulated drag coefficient is equal
to 0.36, which is high in comparison to experimental data (0.29). This indicates that a
mesh refinement study should be conducted. The effects mentioned can be observed
for this geometry: high pressure acting on the front of the car and recirculation at the
back of the car, Fig. 19.
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Fig. 19 Pressure field acting on the surface of a generic car (top). Streamlines coloured by the
values of velocity magnitude around the car (bottom)

Turbomachinery CFD

Another industrial example of solving basic pressure–velocity coupling problem are
turbomachinery applications. In turbomachinery, CFD can give a good prediction of
flow features and integral quantities, such as power, head and efficiency. The first
bottle–neck of turbomachinery simulations is the creation of computational mesh. To
capture the smallest features of the blades, such as trailing edges and the boundary
layer around them, refinement needs to be conducted, i.e. the meshes become very
large. Also, rotation of turbomachinery components causes phenomena in the flow
field which repeat with the rotational frequency. Thus, a transient problem with a
moving mesh has to be solved to capture the correct behaviour of the flow. It was
mentioned in Section“Finite Volume Discretisation” that explicit time stepping is
limited by the Courant number, which typically makes turbomachinery simulations
very slow as there are extremely small cells in the computational mesh. It is possible
to simplify the solution procedure by solving the modified steady–state set of equa-
tions, accounting for centrifugal and Coriolis forces rather than rotating the rotor
mesh, which is known as the Multiple Reference Frame approach (MRF) (Jasak and
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Beaudoin 2011). A stationary mesh is used and the results are accurate only for the
simulated position of the rotor (frozen rotor approach). Two steady–state examples
with incompressible flow are shown: a centrifugal pump and a model of the Francis
turbine.

Hydropower is an important contributor to the overall power generation. Water
turbines turn the kinetic energy of water into mechanical energy (rotation) which is
used to power the generator which generates electricity. Based on the head under
which they operate, water turbines can be divided into high, medium and low head.
The choice of each type depends on the working conditions, i.e. the available head
and flow rate. Francis turbine operates at a medium head and is the most frequent
among other notable types (Pelton, Kaplan). The water flows into the turbine through
a spiral casing and enters the guide vanes which direct the flow towards the rotor
blades. After exiting the rotor, the water enters a draft tube and is ejected into the river
through a diffuser. Thus, the inlet into the rotor is radial, while the outlet is axial,
which is one of the characteristics of Francis turbines. As established, the choice
of the turbine type depends on the available water quantities. However, optimising
the chosen type to suit the specific operating conditions is not straightforward. CFD
simulations of flow through the turbine can help in exploring local phenomena or
even identifying operating conditions which would be unsafe and damaging to the
mechanical components, i.e. cavitation inside the rotor.Here, results of the simulation
of the best efficiency operating point is shown, Fig. 20 (Norwegian Hydropower
Centre 2014). Best efficiency is achieved for minimal flow losses (no recirculation
areas or boundary layer separation). Thus, analysis of the flow pattern can reveal
potential drawbacks of the design.

A machine complimentary to a water turbine is the centrifugal pump. A pump
has a rotating impeller powered by an electric motor which accelerates water. The
kinetic energy of water is then transformed into high pressure via the pump casing.
Since there exists an adverse pressure gradient (the water flows from an area of
low to an area with high pressure), it is more challenging to simulate due to thicker
boundary layers and generallymore unstable flowconditions.However, the equations
and methodology remain the same. An example of a centrifugal pump simulation is
shown in Fig. 21.

In addition to investigation of enclosed turbomachines, i.e. turbomachines which
have rotational and stationary components, CFD is used to analyse complex flow
phenomena which appear in marine propulsion. For example, with an increasing
complexity of propulsion systems and a continued need to design faster,more reliable
and quieter means of propulsion with greater manoeuvrability, the focus shifted
towards Contra-Rotating Propellers (CRP). The main reason for employing such a
design is the idea that positioning a secondary propeller behind the main propeller
and having it rotate in the opposite direction positively affects the performance of the
propulsion system and removes the bulk of the torque transferred from the propeller
to the vessel. This is due to the fact that the secondary propeller harvests the additional
energy otherwise lost in the rotating flow. An important benefit of CRP sets is better
uniformity of flow in downstream wake of the propeller set, resulting in lower noise
signatures. Furthermore, if sets with equal and even number of blades are used,
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Fig. 20 Streamlines inside a Francis turbine coloured by velocity magnitude (top). Pressure field
acting on the guide vanes and rotor blades (bottom)

fluctuating thrust will be present. If there is an odd number of blades, the fluctuation
is smaller, but a sideways force will be present. Classic CRP design recognises two
approaches to CRP installation with regard to shaft design: coaxially mounted and
single shaft CRP. Coaxially mounted CRP set consists of two propellers fitted on
two separate shafts with coaxial axes of rotation. The main (fore) propeller is fitted
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Fig. 21 Pressure field acting on the pump impeller (top). Turbulent kinetic energy values in the
flow inside a centrifugal pump (bottom)

on the main shaft, with the secondary (aft) propeller mounted on a shaft positioned
behind the main propeller. Single shaft CRP design features both the fore and the
aft propeller on a single shaft. Such design is historically older than the dual–shaft
design and was abandoned because of problems with inner shaft lubrication, which
lead to the stagnation of further CRP research in general. With recent developments
in electromagnetic motors and electric propulsion systems, a renewed interest in
CRP design and development has emerged. CFD serves as an irreplacable tool for
comparing the performance of different types of propellers, and as a preparation of
experimental setup and measurement. An example of CFD analysis of a single shaft
CRP is shown in Fig. 22, taken from (Balatinec and Jasak 2019).
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Fig. 22 Velocity field around contra–rotating propellers normalised against the inlet value of veloc-
ity (top). Vortices generated by the rotation of propellers (bottom)

Biomedical CFD Simulations

The most recent application of CFD appeared among medical practitioners, where
patient–specific simulations can reveal important informations for an effective
surgery. An example of simulating flow in the nasal cavity is presented next. The
complex anatomical structure of the nose and the internal soft tissue which gives the
form to the nasal cavity, make it extremely difficult to generalise and understand the
exact mechanism of nasal breathing. A description of the nasal airflow and the con-
sequential phenomena would contribute to the comprehension and identification of
a variety of nasal conditions and selection of an appropriate medical treatment. Here
a project (Balatinec 2018) which investigates the idea of creating an atlas of healthy
nasal airflows using CFD is presented. The pattern of nasal airflow can be determined
by examining a sufficient number of anatomies, in order to capture the significant
characteristics of the flow. The challenge of the simulation process is the description
of the geometry and the definition of boundary conditions. The computational mesh
is created based on computational tomography (CT) scans, Fig. 23. The boundary
conditions are defined from in vivo measurements. The airflow is incompressible
and turbulent, thus a set of transient incompressible pressure–velocity equations is
solved.
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Fig. 23 CAD model of a nose cavity obtained from CT scans (left). Computational mesh of the
nose cavity (Right)

A case of normal inhalation is presented in Fig. 24 where distinct flow features
can be observed. Looking at the cross-section of the nasal cavity at several locations
and time-steps, it can be seen that the largest velocity magnitude develops along the
nasal septum which separates the nasal canals (7.3m/s at the nasal valve region). In
the peripheral part of the nasal cavity (meatus region), the velocity is significantly
smaller (3.6m/s). Weak airflow can be noticed in the sinuses (0.04m/s) during the
second half of the inhalation when the velocity starts to decrease in the first section
of the nasal cavity. For the particular patient, there is more obstruction in the right
side of the cavity, therefore the velocities are higher in the left side.

Similar conclusions can be observed for the simulation of normal exhalation and
quick inhalation, with some simulation-specific phenomena further examined in the
project documentation (Balatinec 2018).

Closure

In this section we presented some applications of basic flow equations. In automo-
tive industry, CFD is used mainly for optimisation of vehicle performance as well
as improving passenger comfort. There were three examples of aerodynamics sim-
ulations in this section: flow around a bluff body equipped with a diffuser, rotating
wheel and a generic car. It was shown that, in addition to calculating integral val-
ues of interest (forces, power, etc.) CFD provides an insight into flow phenomena
which appear at specific working conditions, demonstrated for turbomachinery cases
(Francis turbine, centrifugal pump, ship propellers). CFD has even penetrated into
medicine as patient–specific simulations provide pieces of information crucial for
successful procedures. An example of airflow through a nasal cavity was given.
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Fig. 24 Velocity magnitude during the inhalation process on different planes throughout the nose
cavity
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Tutorial on Hybridizable Discontinuous
Galerkin (HDG) Formulation for
Incompressible Flow Problems

Matteo Giacomini, Ruben Sevilla and Antonio Huerta

Introduction

Computational engineering has always been concernedwith the solution of equations
of mathematical physics. Development of robust, accurate and efficient techniques
to approximate solutions of these problems is still an important area of research. In
recent years, hybrid discretization methods have gained popularity, in particular, for
flow problems. This chapter presents the extension to incompressible flows (Stokes
and Navier-Stokes) of the primer presented by Sevilla and Huerta (2016), which was
restricted to the Poisson (thermal) problem.

Hybrid methods have been proposed for some time. In fact, already Ciarlet (2002)
describes a hybrid method as “any finite element method based on a formulation
where one unknown is a function, or some of its derivatives, on the set �, and
the other unknown is the trace of some of the derivatives of the same function, or
the trace of the function itself, along the boundaries of the set”. In fact, Raviart
and Thomas (1977) propose a discontinuous Galerkin (DG) technique such that the
continuity constraint is eliminated from the finite element space and imposed by
means of Lagrange multipliers on the inter-element boundaries. Stemming from this
work, several hybrid methods have been developed using both primal (see Egger and
Waluga 2012; Oikawa 2015; Di Pietro and Ern 2015) and mixed formulations (see
Cockburn and Gopalakrishnan 2004, 2005a, b; Cockburn et al. 2009b). The latter
family of techniques is nowadays known as hybridizable discontinuous Galerkin
(HDG) method. For a literature review on hybrid discretization methods and their
recent developments, the interested reader is referred to Cockburn (2017) or Giaco-
mini and Sevilla (2019).
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Since its introduction, HDG has been objective of intensive research and has been
applied to a large number of problems in different areas, including fluid mechanics
(see Cockburn et al. 2009b, 2010; Peraire et al. 2010; Nguyen et al. 2010a, b, 2011b;
Giacomini et al. 2018), wave propagation (see Nguyen et al. 2011a, c; Giorgiani et al.
2013a) and solid mechanics (see Soon et al. 2009; Kabaria et al. 2015; Sevilla et al.
2018; Sevilla 2019), to name but a few.

This chapter starts from the HDG method originally proposed by Cockburn et
al. (2009b) and, following Sevilla and Huerta (2016), provides a tutorial for the
implementation of an HDG formulation for incompressible flow problems. Note
that HDG features a mixed formulation and a hybrid variable, which is the trace of
the primal one. The hybridization (Fraeijs de Veubeke 1965) (also known as static
condensation for primal formulations, Guyan 1965) allows to reduce the number
of the globally-coupled degrees of freedom of the problem (see Cockburn et al.
2009a; Kirby et al. 2011; Giorgiani et al. 2013b; Huerta et al. 2013). Moreover, the
superconvergent properties of HDG in elliptic problems allow to define an efficient
and inexpensive error indicator to drive degree adaptivity procedures, not feasible in
a standard CG approach, see for instance Giorgiani et al. (2013a, 2014) or Sevilla
and Huerta (2018).

Moreover, the HDG formulation presented in this chapter approximates the
Cauchy stress formulation of incompressible flow equations. In particular, Voigt
notation allows to easily enforce the symmetry of second-order tensors pointwise.
Optimal convergence of order k + 1 is obtained for velocity, pressure and strain-rate
tensor, even for low-order polynomial approximations. Moreover, the local postpro-
cessing strategy is adapted to construct an approximation of the velocity supercon-
verging with order k + 2, even for low-order polynomial approximations.

The remainder of this chapter is organized as follows. Section “Incompressible
Flows: Problem Statement” introduces the problem statement for incompressible
flows. The implementation of HDG for the linearized incompressible Navier-Stokes,
known as Oseen equations, is presented in Section “HDGMethod for Oseen Flows”.
Section “Numerical Examples” presents some numerical results to validate the opti-
mal convergence properties of HDG for Stokes, Oseen and incompressible Navier-
Stokes equations. Eventually, two Appendices “Appendix: Saddle-Point Structure
of the Global Problem” and “Appendix: Implementation Details”, present the proof
of the symmetry of the matrix of the HDG global problem for Stokes equations and
the technical details required for implementation, respectively.

Incompressible Flows: Problem Statement

In compact form, the steady-state incompressible Navier-Stokes problem in the open
bounded computational domain � ∈ R

nsd with boundary ∂� and nsd the number of
spatial dimensions, reads
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (2ν∇su − pInsd) + ∇ · (u ⊗ u) = s in�,

∇ · u = 0 in�,

u = uD on�D,
(
(2ν∇su − pInsd) − (u ⊗ u)

)
n = t on�N ,

(1)

where the pair (u, p) represents the unknown velocity and pressure fields, ν > 0
is the kinematic viscosity of the fluid, n is the outward unit normal vector to the
corresponding boundary, in this case �N , s is the volumetric source term, and ∇su
is the strain-rate tensor, that is, the symmetric part of the gradient of velocity with
∇s := (∇ + ∇T

)
/2.Consequently,σ := 2ν∇su − pInsd is theCauchy stress tensor.

Recall that [∇u]i j = ∂ui/∂x j .
The boundary ∂� is composed of two disjoint parts, the Dirichlet portion �D ,

where the value uD of the velocity is imposed, and the Neumann one �N . Formally,
∂� = �D ∪ �N , �D ∩ �N = ∅. On Neumann boundaries, two typical options are
found. On the one hand, material surfaces (i.e. u · n = 0 and, thus, (u ⊗ u)n = 0)
where a traction t is applied. For this reason, many fluid references define Neu-
mann boundary conditions as (2ν∇su − pInsd) n = t . On the other hand, artificial
boundaries where the convection term cannot be neglected. This is typical when
implementing Neumann boundaries in synthetic problems.

Remark 2.1 (Cauchy stress vs. velocity-pressure formulation) It is standard for
incompressible flowproblems to use the pointwise solenoidal property of the velocity
to modify the momentum equations. Then, the Navier-Stokes problem is rewritten
as ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (ν∇u − pInsd) + ∇ · (u ⊗ u) = s in�,

∇ · u = 0 in�,

u = uD on�D,
(
(ν∇u − pInsd) − (u ⊗ u)

)
n = t on�N .

However, as noted by Donea and Huerta (2003, Sect. 6.5), from a mechanical
viewpoint the two formulations are not identical because, in general,

σ n = (2ν∇su − pInsd) n �= (ν∇u − pInsd) n.

In fact, in a velocity-pressure formulation t is a pseudo-traction imposed on the
Neumann boundary �N , unless a Robin-type boundary condition is imposed, namely

(
(ν∇u − pInsd) − (u ⊗ u)

)
n = t − (ν∇uT )n,

which, obviously, does not correspond to the natural boundary condition associated
with the operator in the partial differential equation.

As usual in computational mechanics, when modeling requires it, along the same
portion of a boundary it is also typical to impose Dirichlet and Neumann boundary
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conditions at once but along orthogonal directions. For instance, this is the case of a
perfect-slip boundary, which is the limiting case of those discussed in Remark 2.2,
and of a fully-developed outflow boundary in Remark 2.3.

Remark 2.2 (Slip/friction boundary condition) Another family of physical bound-
ary conditions that can be considered for the Navier-Stokes equations includes
slip/friction boundaries, see Volker (2002), which, in fact, correspond to Robin-
type boundary conditions. Slip boundaries are denoted by �S and need to verify:
∂� = �D ∪ �N ∪ �S , being �D , �N and �S disjoint by pairs. Slip boundary conditions
are: {

u · n + αn · σn = 0 on�S,

βu · tk + tk · σn = 0 for k = 1, . . . ,nsd − 1, on�S,

where α and β are the penetration and friction coefficients respectively, whereas n is
the outward unit normal to �S and the tangential vectors tk , for k = 1, . . . ,nsd − 1,
are such that {n, t1, . . . , tnsd−1} form an orthonormal system of vectors.

Note that symmetry-type boundary conditions can be seen as a particular case
of slip boundary conditions. That is, along the plane of symmetry (in 3D and axis
of symmetry in 2D) a non-penetration (α = 0) and perfect-slip (β = 0) boundary
condition needs to be imposed. Obviously, this plane of symmetry can be oriented
arbitrarily in the domain �.

Remark 2.3 (Outflow boundary condition) Outflow surfaces are of great interest
in the simulation of engineering problems, especially for internal flows. Common
choices in the literature are represented by traction-free conditions

(2ν∇su − pInsd) n = 0 (2a)

or homogeneous Neumann conditions,

(
(2ν∇su − pInsd) − (u ⊗ u)

)
n = 0. (2b)

Nonetheless, as will be shown in Section “Navier-Stokes Flow”, these condi-
tions introduce perturbations in the flow near the outlet and do not meet the goal
of outflow boundaries, that is, to model a flow exiting the domain undisturbed.
Outflow conditions for fully-developed flows can be devised as Robin-type bound-
ary conditions (see van de Vosse et al. 2003) similarly to the perfect-slip bound-
ary conditions described in Remark 2.2. Given an outflow boundary �O such that
∂� = �D ∪ �N ∪ �S ∪ �O , being �D , �N , �S and �O disjoint by pairs, the correspond-
ing conditions are

{
u · tk = 0 for k = 1, . . . ,nsd − 1, on�O ,

n · σn = 0 on�O ,
(2c)
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where n is the outward unit normal to �O and the tangential vectors tk , for k =
1, . . . ,nsd − 1, are such that {n, t1, . . . , tnsd−1} form an orthonormal system of
vectors.

To further simplify the presentation, the linearized incompressible Navier-Stokes
equations are considered. The so-called Oseen equations, with linear convection
driven by the solenoidal field a, are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (2ν∇su − pInsd) + ∇·(u ⊗ a) = s in�,

∇ · u = 0 in�,

u = uD on�D,
(
(2ν∇su − pInsd) − (u ⊗ a)

)
n = t on�N ,

(3)

where a coincides with u when confronted with Navier-Stokes. In Einstein notation
and for i = 1, . . . ,nsd, the strong form of the Oseen equations reads as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂x j

(

ν
( ∂ui

∂x j
+ ∂u j

∂xi

)
− p δi j

)

+ ∂

∂x j

(
ui a j

) = si in�,

∂u j

∂x j
= 0 in�,

ui = uD,i on�D,

ν
( ∂ui
∂x j

+ ∂u j

∂xi

)
n j − pni − uia jn j = ti on�N .

Finally, it is important to recall that, when inertial effects are negligible (viz. in
micro-fluidics), incompressible flows are modeled by means of the Stokes problem.
That is, ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (2ν∇su − pInsd) = s in�,

∇ · u = 0 in�,

u = uD on�D,

(2ν∇su − pInsd) n = t on�N ,

(4)

which is a second-order elliptic equation. Stokes problem can be viewed as the
particular case of the Oseen equations (3), for a = 0. Thus, in the remainder of this
Chapter, the Oseen equations will be detailed. Navier-Stokes and Stokes problems
will be recovered after replacing a by u or 0, respectively.

It is worth noticing that the divergence-free equation in Navier-Stokes, Oseen and
Stokes problems induces a compatibility condition on the velocity field, namely

∫

�D

uD · n d� +
∫

�N

u · n d� = 0. (5)



168 M. Giacomini et al.

In particular, if only Dirichlet boundary conditions are considered (i.e.�D = ∂�),
an additional constraint on the pressure needs to be imposed to avoid its indetermi-
nacy. It is common for hybrid formulations (see for instance Cockburn et al. 2009b,
2010;Cockburn andShi 2014) to impose zeromean pressure on the boundary, namely

∫

∂�

p d� = 0. (6)

HDG Method for Oseen Flows

Functional and Discrete Approximation Setting

TheHDGmethod relies on amixed hybrid formulation of the problemunder analysis.
Thus, assume that � is partitioned in nel disjoint subdomains �e,

� =
nel⋃

e=1

�e, with �i ∩ � j = ∅ for i �= j,

with boundaries ∂�e, which define an internal interface, also known as internal
skeleton, �

� :=
[ nel⋃

e=1

∂�e

]
\∂�.

Moreover, in what follows, the classicalL2 inner products for vector-valued func-
tions are considered for a generic domain D ⊆ � ⊂ R

nsd and a generic line/surface
S ⊂ � ∪ ∂�, that is,

(u,w)D :=
∫

D

u · w d�, 〈u,w〉S :=
∫

S

u · w d�.

The L2 inner product for tensor-valued functions will also be used on D, namely

(L, G)D :=
∫

D

L : G d�, i.e. in Einstein notation:
∫

D
[L]i j [G]i j d�.

In the following subsections the Sobolev space H1(D), D ⊆ �, of L2(D) func-
tions whose gradient also is an L2(D) function, will be used systematically. The
space of L2(D) symmetric tensors S of order nsd with L2(D) row-wise divergence
is denoted by [H(div; D); S]. Moreover, the trace space H 1

2 (∂D), being the space
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of the restriction of H1(D) functions to the boundary ∂D, is introduced. Note also
that for functions on S ⊂ � ∪ ∂�, the typical L2(S) space is employed.

Moreover, the following discrete functional spaces are considered according to
the notation introduced in Sevilla and Huerta (2016)

Vh(�) := {v ∈ L2(�) : v|�e ∈ Pk(�e) ∀�e , e = 1, . . . ,nel

}
, (7a)

V̂h(S) := {v̂ ∈ L2(S) : v̂|�i ∈ Pk(�i ) ∀�i ⊂ S ⊆ � ∪ ∂�
}
, (7b)

wherePk(�e) andPk(�i ) are the spaces of polynomial functions of complete degree
at most k in �e and on �i , respectively.

Strong Forms of the Local and Global Problems

As noted earlier, the HDG method relies on a mixed hybrid formulation. Following
the rationale described by Sevilla and Huerta (2016), the Oseen problem reported in
(3) is rewritten as a system of first-order equations as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L + √
2ν∇su = 0 in�e, and for e = 1, . . . ,nel,

∇ · (√2νL + pInsd) + ∇ · (u ⊗ a) = s in�e, and for e = 1, . . . ,nel,

∇ · u = 0 in�e, and for e = 1, . . . ,nel,

u = uD on�D,
(
(
√
2νL + pInsd) + (u ⊗ a)

)
n = −t on�N ,

�u ⊗ n� = 0 on�,

�
(
(
√
2νL + pInsd) + (u ⊗ a)

)
n� = 0 on�,

(8)

where L = −√
2ν∇su is the mixed variable representing the scaled strain-rate or

second-order velocity deformation tensor. The last two equations are the so-called
transmission conditions. They impose, respectively, continuity of velocity and nor-
mal flux (normal component of the stress—i.e. diffusive flux—and of the convective
flux), across the interior faces. The jump � · � operator has been introduced following
the definition byMontlaur et al. (2008), such that, along each portion of the interface
� it sums the values from the element on the left and on the right, say �l and �r ,
namely

��� = �l + �r .

Note that the above definition of the jump operator always involves the outward
unit normal to a surface, say ��n�. Thus, at the interface between elements �l and
�r , this definition implies ��n� = �lnl + �rnr where nl and nr are the outward
unit normals to ∂�l and ∂�r , respectively. Moreover, recall that nl = −nr along
their interface.
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Remark 3.1 Recall that for incompressible flow problems with purely Dirichlet
boundary conditions (i.e. �D = ∂�) an additional constraint is required to avoid
indeterminacy of pressure. A common choice is to impose an arbitrary mean value
of the pressure on the boundary (usually zero), that is 〈p, 1〉∂� = Cst.

Starting from the mixed formulation on the broken computational domain, see
(8), HDG features two stages. First, a set of nel local problems is introduced to
define element-by-element (Le, ue, pe) = (L, u, p) for all x ∈ �e ⊂ � in terms of
a novel independent variable û, namely

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Le + √
2ν∇sue = 0 in�e,

∇ · (√2νLe + peInsd) + ∇ · (ue ⊗ a) = s in�e,

∇ · ue = 0 in�e,

ue = uD on ∂�e ∩ �D,

ue = û on ∂�e \ �D,

(9a)

where û represents the trace of the velocity on the mesh skeleton � ∪ �N . Note that
(9a) constitutes a purely Dirichlet boundary value problem. As previously observed,
an additional constraint needs to be added to remove the indeterminacy of the pres-
sure, namely

〈pe, 1〉∂�e = ρe, (9b)

whereρe denotes the scaledmean pressure on the boundary of the element�e . Hence,
the local problem defined by (9) provides (Le, ue, pe), for e = 1, . . . ,nel, in terms
of the global unknowns û and ρ = (ρ1 . . . , ρnel)

T .

The second stage computes the trace of the velocity û and the scaled mean pres-
sure ρ on the element boundaries by solving the global problem accounting for the
following transmission conditions and the Neumann boundary conditions

{
�
(
(
√
2νL + pInsd) + (u ⊗ a)

)
n� = 0 on�,

(
(
√
2νL + pInsd) + (u ⊗ a)

)
n = −t on�N .

(10a)

Note that the continuity of velocity on �, �u ⊗ n� = 0, is not explicitly written
because it is automatically satisfied. This is due to the Dirichlet boundary condition
ue = û imposed in every local problem and to the unique definition of the hybrid
variable û on each edge/face of the mesh skeleton. Moreover, the divergence-free
condition in the local problem induces the following compatibility condition for each
element �e, e = 1, . . . ,nel

〈û · ne, 1〉∂�e\�D + 〈uD · ne, 1〉∂�e∩�D = 0, (10b)

which is utilized to close the global problem.
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Remark 3.2 (Neumann local problems) As detailed by Sevilla and Huerta (2016),
an alternative HDG formulation is obtained if the Neumann boundary condition
is imposed in the local problem. In this case, the trace of the velocity, û, is only
defined on � rather than on � ∪ �N . This leads to a marginally smaller discrete
global problem. For the sake of clarity, the standard HDG formulation with Neumann
boundary conditions imposed in the global problem is only considered here.

For a complete introduction toHDG, the interested reader is referred to the seminal
contribution by Cockburn and Gopalakrishnan (2009b) and to the subsequent series
of papers by Cockburn and coworkers (Cockburn et al. 2009b, 2010, 2011; Nguyen
et al. 2009a, b, 2010a, b, 2011b; Peraire et al. 2010) where the HDG formulation for
flow problems has been theoretically and numerically analyzed.

Weak Forms of the Local and Global Problems

For each element�e, e = 1, . . . ,nel, theweak formulation of (9) is as follows: given
uD on �D and û on � ∪ �N , find (Le, ue, pe) ∈ [H(div;�e); S] × [H1(�e)

]nsd ×
H1(�e) that satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
− G,Le

)
Ωe

+ ∇·(
√

2νG),ue

)
Ωe

= 〈Gne,
√

2ν uD〉∂Ωe∩ΓD + 〈Gne,
√

2ν û〉∂Ωe\ΓD ,

w,∇·(
√

2νLe)
)
Ωe

+ w,∇pe

)
Ωe

+
〈
w, (

√
2νLe+peInsd
∧

)ne−(
√

2νLe+peInsd)ne

〉
∂Ωe

− ∇w,ue ⊗ a
)
Ωe

+〈w, (ue ⊗ a)ne〉∂Ωe = w, s
)
Ωe

,

∇q,ue Ωe
= 〈q,uD · ne〉∂Ωe∩ΓD + 〈q, û · ne〉∂Ωe\ΓD ,

for all (G,w, q) ∈ [H(div;�e); S] × [H1(�e)
]nsd × H1(�e), where, as defined in

Section “Functional and Discrete Approximation Setting”, [H(div;�e); S] is the
space of square-integrable symmetric tensors S of order nsd on �e with square-
integrable row-wise divergence. Note that the variational form of the momentum
equation above is obtained after integrating by parts the diffusive part of the flux
twice, whereas the convective term is integrated by parts only once. This, as noted
in Sevilla and Huerta (2016), preserves the symmetry of the local problem for the
diffusive operator and, consequently, for the Stokes problem (a = 0).

The numerical trace of the diffusive flux is defined in Cockburn et al. (2009b) and
Sevilla and Huerta (2016),
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(
√

2νLe+peInsd
∧

)ne:=

{
(
√

2νLe+peInsd)ne+τd(ue−uD) on ∂Ωe ∩ ΓD,
(
√

2νLe+peInsd)ne+τd(ue û) elsewhere. (11a)

For the convection flux, several alternatives are possible, and they can be written
in general form as

(ûe ⊗ a)ne :=
{

(ũ ⊗ â)ne + τ a(ue − uD) on ∂�e ∩ �D,

(ũ ⊗ â)ne + τ a(ue − û) elsewhere,
(11b)

where â is the trace of the convective field evaluated on the mesh edges/faces (and
it is unique, as û, on the interior faces) whereas ũ needs to be appropriately defined.
The option ũ = ue is rarely used because, in general, ũ can be seen as an interme-
diate state typically used in exact Riemann solvers (see Hesthaven 2019, Sect. 6.1).
Here, as usually done in HDG (see Nguyen et al. 2009a, b, 2011b) ũ is chosen such
that ũ = uD on �D and ũ = û, elsewhere. The coefficients τ d and τ a are stabiliza-
tion parameters that play a crucial role on the stability, accuracy and convergence
properties of the resulting HDG method, see Remark 3.3.

Remark 3.3 (Stabilization paramaters) The influence of the stabilization parameters
on the well-posedness of the HDG method has been studied extensively (see for
instance Cockburn and Gopalakrishnan 2009; Cockburn et al. 2008; Nguyen et al.
2010b). As noted in those references, for second-order elliptic problems, τ d is of
order one for dimensionless problem; thus, here τ d is proportional to the viscosity,
namely

τ d = κν/�, (12)

where � is the characteristic size of the problem under analysis and κ > 0 is a scaling
factor. It is worth noticing that the purely diffusive (i.e. Stokes) problem is not very
sensitive to the stabilization parameter τ d , as will be shown later in the numerical
experiments.

Stabilization of the convective term emanates from the extensive literature on
DG methods for hyperbolic problems. Obviously, in presence of both diffusion and
convection phenomena, an appropriate choice of the stabilization parameters τ d and
τ a is critical to guarantee stability and optimal convergence of the HDG method,
as extensively analyzed by Cockburn et al. (2009a) and Cesmelioglu et al. (2013;
2017). Typically for the convection term, a characteristic velocity field of the fluid is
considered to determine τ a , namely

τ a = β‖a‖2 or τ a = β‖a‖∞, (13a)

where the above norms may be defined either locally on a single element�e or glob-
ally on the domain � and β > 0 is a positive constant independent on the Reynolds
number. Note that alternative choices for the stabilization parameters τ d and τ a are
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possible, e.g. depending on the spatial coordinate x. More precisely, global defi-
nitions of the parameter τ a may be obtained by considering the maximum of the
expressions reported in (13a), over all the nodes in the computational mesh, that is

τ a = β max
x∈N�

‖a(x)‖2 or τ a = β max
x∈N�

‖a(x)‖∞, (13b)

whereN� is the set of nodes of the computational mesh associated with the domain
�. The possibility of defining different values of the stabilization on each face of ∂�e

is also of great interest, e.g. the expression proposed by Cesmelioglu et al. (2017)
for each face �e, namely

τ a|
�e

= β max{â · ne, 0}. (13c)

Nonetheless, τ d + τ a − â · ne needs to be nonnegative on all the faces of the
element and positive at least on one, see Cockburn et al. (2009a). Thus, for any pair
(τ d , τ a), the following admissibility condition is introduced

min
x∈∂�e

{τ d + τ a − â · ne} ≥ γ > 0.

Introducing the definition of the numerical traces in (11) into the momentum
equation leads to the weak form of the local problem: for e = 1, . . . ,nel, find
(Le, ue, pe) ∈ [H(div;�e); S] × [H1(�e)

]nsd × H1(�e) that satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(G, Le
)

�e
+ (∇ · (√2νG), ue

)

�e

= 〈G ne,
√
2ν uD〉∂�e∩�D + 〈G ne,

√
2ν û〉∂�e\�D ,

(
w,∇ · (√2νLe)

)

�e
+ (w,∇pe

)

�e
− (∇w, ue ⊗ a

)

�e
+ 〈w, τue〉∂�e

= (w, s
)

�e

+ 〈w, (τ − â · ne)uD〉∂�e∩�D + 〈w, (τ − â · ne)û〉∂�e\�D ,
(∇q, ue

)

�e
= 〈q, uD · ne〉∂�e∩�D + 〈q, û · ne〉∂�e\�D ,

〈pe, 1〉∂�e = ρe,

(14)

for all (G,w, q) ∈ [H(div;�e); S] × [H1(�e)
]nsd × H1(�e) and where the stabi-

lization parameter is defined as τ = τ d + τ a . Note that, as expected, the previous
problem provides (Le, ue, pe), for e = 1, . . . ,nel, in terms of the global unknowns
û and ρ = (ρ1 . . . , ρnel)

T .

For the global problem, the weak formulation equivalent to (10) is: find û ∈[
H 1

2 (� ∪ �N )
]nsd

and ρ ∈ R
nel that satisfies
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⎧⎪⎪⎪⎪⎨
nel∑
e=1

{〈
w, (

√
2νLe+peInsd
∧

)ne+(ue⊗a)ne

〉
∂Ωe\∂Ω

+
〈
w, (

√
2νLe+peInsd
∧

)ne+(ue⊗a)ne+t
〉

∂Ωe∩ΓN

}
=0,

û · ne, 1 ∂Ωe ΓD = uD ne, 1 ∂Ωe ΓD for e 1, . . . , nel,

for all ŵ ∈ [L2(� ∪ �N )
]nsd .

Replacing in the transmission equations the numerical traces defined in (11), the

variational formof the global problem is obtained.Namely, find û ∈
[
H 1

2 (� ∪ �N )
]nsd

and ρ ∈ R
nel such that, for all ŵ ∈ [L2(� ∪ �N )

]nsd , it holds

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nel∑

e=1

{
〈ŵ, (

√
2νLe + peInsd) ne〉∂�e\�D + 〈ŵ, τue〉∂�e\�D

−〈ŵ, τ û〉∂�e∩� − 〈ŵ, (τ − â · ne)û〉∂�e∩�N

}

= −
nel∑

e=1

〈ŵ, t〉∂�e∩�N ,

〈û · ne, 1〉∂�e\�D = −〈uD · ne, 1〉∂�e∩�D for e = 1, . . . ,nel.

(15)

Remark 3.4 shows how the first equation in (15) is obtained exploiting the uniqueness
of û and â on the internal skeleton. Recall that for Stokes it is trivial (â = 0) and for
Navier-Stokes it follows from â = û on � ∪ �N .

Remark 3.4 In order to obtain the first equation in (15) the usual choice ũ = û is
employed in the definition of the convection numerical flux, see (11b). Thus,

nel∑

e=1

〈ŵ, (ûe ⊗ a)ne〉∂�e\�D

=
nel∑

e=1

〈ŵ, (û ⊗ â)ne + τ a(ue − û)〉∂�e\�D

=
nel∑

e=1

〈ŵ, τ aue − (τ a − â · ne)û〉∂�e\�D

=
nel∑

e=1

{
〈ŵ, τ aue〉∂�e\�D − 〈ŵ, (τ a − â · ne)û〉∂�e∩�

− 〈ŵ, (τ a − â · ne)û〉∂�e∩�N

}

=
nel∑

e=1

{
〈ŵ, τ aue〉∂�e\�D − 〈ŵ, τ a û〉∂�e∩� − 〈ŵ, (τ a − â · ne)û〉∂�e∩�N

}
,
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where the last line follows from the uniqueness of ŵ, û and â on the internal skeleton
� and from the relationship nl = −nr between the outward unit normal vectors on
an internal edge/face shared by two neighboring elements �l and �r .

Discrete Forms and the Resulting Linear System

The discrete functional spaces defined in (7) are used in this section to construct
the block matrices involved in the discretization of the HDG local and global prob-
lems. Moreover, following the rationale proposed in Giacomini et al. (2018) for the
Stokes equations, the HDG-Voigt formulation is introduced to discretize the Cauchy
stress form of the incompressible flow equations under analysis. The advantage of
this formulation compared with classical HDG approaches lies in the easy imple-
mentation of the space S of symmetric tensors of order nsd, which thus allows to
retrieve optimal convergence and superconvergence properties, even for low-order
approximations.

Voigt Notation for Symmetric Second-Order Tensors

A symmetric second-order tensor is written in Voigt notation by storing its diagonal
and off-diagonal components in vector form, after an appropriate rearrangement.
Exploiting the symmetry, only msd = nsd(nsd + 1)/2 components (i.e. three in 2D
and six in 3D) are stored. For the strain-rate tensor∇su, the following column vector
ev ∈ R

msd is obtained

ev :=
{[

e11, e22, e12
]T

in 2D,
[
e11, e22, e33, e12, e13, e23

]T
in 3D,

(16)

where the arrangement proposed by Fish and Belytschko (2007) has been utilized
and the components are defined as

ei j := ∂ui
∂x j

+ (1 − δi j )
∂u j

∂xi
, for i, j = 1, . . . ,nsd and i ≤ j, (17)

being δi j the classical Kronecker delta.Moreover, the strain-rate tensor can bewritten
as ev = ∇su by introducing the msd × nsd matrix

∇s :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
∂/∂x1 0 ∂/∂x2
0 ∂/∂x2 ∂/∂x1

]T

in 2D,

⎡

⎢
⎣

∂/∂x1 0 0 ∂/∂x2 ∂/∂x3 0

0 ∂/∂x2 0 ∂/∂x1 0 ∂/∂x3
0 0 ∂/∂x3 0 ∂/∂x1 ∂/∂x2

⎤

⎥
⎦

T

in 3D.

(18)
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Remark 3.5 The components of the strain-rate tensor ∇su can be retrieved from its
Voigt counterpart by multiplying the off-diagonal terms ei j , i �= j by a factor 1/2,
namely

∇su :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
e11 e12/2

e12/2 e22

]

in 2D,
⎡

⎢
⎣

e11 e12/2 e13/2

e12/2 e22 e23/2

e13/2 e23/2 e33

⎤

⎥
⎦ in 3D.

(19)

Moreover, recall the following definitions introduced in Giacomini et al. (2018)
for Voigt notation. First, the vorticity ω := ∇ × u is expressed using Voigt notation
as ω = ∇wu, where the nrr × nsd matrix ∇w, with nrr = nsd(nsd − 1)/2 number
of rigid body rotations (i.e. one in 2D and three in 3D), has the form

∇w :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[−∂/∂x2, ∂/∂x1
]

in 2D,
⎡

⎢
⎣

0 −∂/∂x3 ∂/∂x2
∂/∂x3 0 −∂/∂x1

−∂/∂x2 ∂/∂x1 0

⎤

⎥
⎦ in 3D.

(20)

Remark 3.6 (Vorticity in 2D) Recall that in 2D the curl of a vector v = [v1, v2]T is a
scalar quantity. By setting v3 = 0, the resulting vector v = [v1, v2, 0]T is embedded
in the three dimensional space R

3. Thus, ∇ × v may be interpreted as a vector
pointing along x3 and with magnitude equal to −(∂v1/∂x2) + (∂v2/∂x1).

Stokes’ law is expressed in Voigt notation as σv = D∇su − Ep, where the vector
E ∈ R

msd and the matrix D ∈ R
msd×msd are defined as

E :=
{[

1, 1, 0
]T

in 2D,
[
1, 1, 1, 0, 0, 0

]T
in 3D.

D :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
2νInsd 0nsd×1

0Tnsd×1 ν

]

in 2D,
[
2νInsd 0nsd

0nsd νInsd

]

in 3D.

(21)

Similarly, traction boundary conditions on �N are rewritten as NTσv = t , where
N is the msd × nsd matrix

N :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
n1 0 n2
0 n2 n1

]T

in 2D,

⎡

⎢
⎣

n1 0 0 n2 n3 0

0 n2 0 n1 0 n3
0 0 n3 0 n1 n2

⎤

⎥
⎦

T

in 3D,

(22)
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which accounts for the normal direction to the boundary.
For the sake of completeness, the matrix T ∈ R

nrr×nsd denoting the tangential
direction τ to a line/surface is introduced

T :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[−n2, n1
]

in 2D,
⎡

⎢
⎣

0 −n3 n2
n3 0 −n1

−n2 n1 0

⎤

⎥
⎦ in 3D,

(23)

and the projection of a vector u along such direction is given by u · τ = Tu.
Voigt notation is thus exploited to rewrite the Oseen equations in (3). First, recall

that the divergence operator applied to a symmetric tensor is equal to the transpose
of the matrix ∇s introduced in (18). Moreover, the vector E in (21) is utilized to
compactly express the trace of a symmetric tensor required in the incompressibility
equation, namely ∇ · u = tr(∇su) = ET∇su = 0. Finally, the formulation of the
Oseen problem equivalent to (3) using Voigt notation is obtained by the combining
the above matrix equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∇T
s (D∇su − Ep) + ∇ · (u ⊗ a) = s in�,

ET∇su = 0 in�,

u = uD on�D,

NT (D∇su − E p) − (u ⊗ a) n = t on�N .

(24)

Of course, as previously observed, replacing a by u or 0 leads to theNavier-Stokes,
see (1), and the Stokes, see (4), problems, respectively.

HDG-Voigt Strong Forms

TheHDG local and global problems introduced inSection “StrongFormsof theLocal
and Global Problems” are now rewritten using Voigt notation. The local problem in
(9) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Le + D1/2∇sue = 0 in�e,

∇T
s D1/2Le + ∇T

s E pe + ∇ · (u ⊗ a) = s in�e,

ET∇sue = 0 in�e,

ue = uD on ∂�e ∩ �D,

ue = û on ∂�e \ �D,

〈pe, 1〉∂�e = ρe,

(25)

where the additional constraint described in (9b) to remove the indeterminacy of
pressure is included. Note that Le is the restriction to element �e of the HDG mixed
variable introduced to represent the strain-rate tensor in Voigt notation scaled via the
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matrix D1/2, featuring the square root of the eigenvalues of the diagonal matrix D,
see Eq. (21).

Similarly, the global problem using Voigt notation, see (10), is

⎧
⎪⎨

⎪⎩

�NT (D1/2L + E p) + (u ⊗ a)n� = 0 on�,

NT (D1/2L + E p) + (u ⊗ a)n = −t on�N ,

〈ETNe û, 1〉∂�e\�D + 〈ETNeuD, 1〉∂�e∩�D = 0 for e = 1, . . . ,nel,

(26)

where the compatibility condition to close the global problem, see (10b), is also
written in Voigt notation.

Moreover, by exploiting Voigt notation, the definition of the trace of the diffusive
numerical flux, see (11a), becomes

NT
e (D1/2Le+E pe

∧

):=
NT

e (D1/2Le+E pe) + τd(ue−uD) on ∂Ωe ∩ ΓD,
NT

e (D1/2Le+E pe) + τd(ue û) elsewhere.

(27)
Of course, the trace of the convective numerical flux, since it follows the standard

tensorial notation, is the one defined in (11b), with ũ = û.

HDG-Voigt Discrete Weak Forms

Following the derivation in Section “Weak Forms of the Local andGlobal Problems”,
the HDG formulation of the Oseen equations with Voigt notation is obtained. The
discrete weak formulation of the local problems proposed in (25) is as follows: for
e = 1, . . . ,nel, given uD on �D and û on � ∪ �N , find (Le, ue, pe) ∈ [Vh(�e)]msd ×
[Vh(�e)]nsd × Vh(�e) such that

−(v, Le)�e + (∇T
s D1/2v, ue)�e = 〈NT

e D
1/2v, uD〉∂�e∩�D + 〈NT

e D
1/2v, û〉∂�e\�D ,

(28a)
(
w,∇T

s D1/2Le
)

�e
+ (w,∇T

s E pe
)

�e
− (∇w, ue ⊗ a)�e + 〈w, τue〉∂�e

= (w, s)�e + 〈w, (τ − â · ne)uD〉∂�e∩�D

+ 〈w, (τ − â · ne)û〉∂�e\�D ,

(28b)

(∇T
s E q, ue)�e = 〈NT

e E q, uD〉∂�e∩�D + 〈NT
e E q, û〉∂�e\�D ,

(28c)

〈pe, 1〉∂�e = ρe,

(28d)
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for all (v,w, q) ∈ [Vh(�e)]msd × [Vh(�e)]nsd × Vh(�e), where, as done previously,
the stabilization parameter is defined as τ = τ d + τ a .

The global problem computes the hybrid variable û ∈ [V̂h(� ∪ �N )]nsd and the
scaled mean pressure on each element boundary ρ ∈ R

nel . The global problem is
obtained starting from (26), recall also Remark 3.4, and the definitions of the numer-
ical flux given in (27) and (11b): find û ∈ [V̂h(� ∪ �N )]nsd and ρ ∈ R

nel , such that

nel∑

e=1

{
〈ŵ,NT

e

(
D1/2Le + E pe

)〉∂�e\�D + 〈ŵ, τ ue〉∂�e\�D

−〈ŵ, τ û〉∂�e∩� − 〈ŵ, (τ − â · ne)û〉∂�e∩�N

}
= −

nel∑

e=1

〈ŵ, t〉∂�e∩�N ,

(29a)

〈ETNe û, 1〉∂�e\�D = −〈ETNeuD, 1〉∂�e∩�D for e = 1, . . . ,nel, (29b)

for all ŵ ∈ [V̂h(� ∪ �N )]nsd .

HDG Linear System

The discretization of the weak form of the local problem given by (28) using an
isoparametric formulation for the primal, mixed and hybrid variables leads to a
linear system with the following structure

⎡

⎢
⎢
⎣

ALL ALu 0 0
AT

Lu Auu AT
pu 0

0 Apu 0 aTρp
0 0 aρp 0

⎤

⎥
⎥
⎦

e

⎧
⎪⎪⎨

⎪⎪⎩

Le

ue
pe
ζ

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

fL
fu
fp
0

⎫
⎪⎪⎬

⎪⎪⎭
e

+

⎡

⎢
⎢
⎣

ALû

Auû

Apû

0

⎤

⎥
⎥
⎦

e

ûe +

⎧
⎪⎪⎨

⎪⎪⎩

0
0
0
1

⎫
⎪⎪⎬

⎪⎪⎭
e

ρe, (30)

for e = 1, . . . ,nel. It is worth noticing that the last equation in (28) is the restriction
(9b) imposed via the Lagrange multiplier ζ in the system of equations above. Recall-
ing the dimensions of the unknown variables, the solution of this system implies
inverting a matrix of dimension

(
(msd + nsd + 1)nen + 1

)
for each element in the

mesh, being nen the number of element nodes of�e. Note that nen is directly related

Table 1 Dimension of the local problem

Order of interpolation 1 2 3 4 5 7 9 11

Simplexes

2D 19 37 61 91 127 217 331 469

3D 41 101 201 351 561 1201 2201 3641

Parallelepipeds

2D 25 55 97 151 217 385 601 865

3D 81 271 641 1251 2161 5121 10,001 17,281
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to the degree k of polynomial approximations. Table1 shows the dimension of the
local problem stated in (30) for Lagrange elements on simplexes and parallelepipeds
for 2D and 3D and different orders of approximation.

Similarly, the following system of equations is obtained for the global problem

nel∑

e=1

{ [
AT

Lû Aûu AT
pû

]

e

⎧
⎨

⎩

Le

ue
pe

⎫
⎬

⎭
+ [Aûû]e ûe

}
=

nel∑

i=e

[fû]e,

1T [Apû]eûe = −1T [fp]e
(31)

The expressions of thematrices and vectors appearing in (30) and (31) are detailed
in Appendix “Appendix: Implementation Details”.

After replacing the solution of the local problem (30) in (31), the global problem
becomes [

K̂ G
GT 0

]{
û
ρ

}

=
{
f̂û
f̂ρ

}

, (32)

where

K=Anel
e=1

[
AT

Lû Aûu AT
pû 0

]
e

⎡
⎢⎢⎣
ALL ALu 0 0
AT

Lu Auu AT
pu 0

0 Apu 0 aT
ρp

0 0 aρp 0

⎤
⎥⎥⎦

−1

e

⎡
⎢⎢⎣
ALû

Auû

Apû

0

⎤
⎥⎥⎦

e

+[Aûû]e, (33a)

GT =

⎡
⎢⎢⎣
1T [Apû]1
1T [Apû]2

· · ·
1T [Apû]nel

⎤
⎥⎥⎦ , (33b)

f̂û=Anel
e=1[fû]e−

[
AT

Lû Aûu AT
pû 0

]
e

⎡
⎢⎢⎣
ALL ALu 0 0
AT

Lu Auu AT
pu 0

0 Apu 0 aT
ρp

0 0 aρp 0

⎤
⎥⎥⎦

−1

e

⎧⎪⎪⎨
⎪⎪⎩
fL
fu
fp
0

⎫⎪⎪⎬
⎪⎪⎭

e

, (33c)

f̂ρ = −

⎡
⎢⎢⎣
1T [fp]1
1T [fp]2

· · ·
1T [fp]nel

⎤
⎥⎥⎦ . (33d)

It is worth noticing that the resulting system in (32) has a saddle-point structure,
as it is classical in the discretization of incompressible flow problems (see Donea
and Huerta 2003, Sect. 6.5). The proof of the symmetry of the global system in (32)
is presented in Appendix “Appendix: Saddle-Point Structure of the Global Problem”
for the stokes problem.
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Local Postprocess of the Primal Variable

HDG methods feature the possibility of constructing a superconvergent approxima-
tion of the primal variable via a local postprocess performed element-by-element.
Several strategies have been proposed in the literature, either to recover a globally
H(div)-conforming andpointwise solenoidal velocity field (seeCockburn et al. 2011,
2010) or simply to improve the approximation of the velocity field (see Nguyen et al.
2010b or Sevilla and Huerta 2016) and then, derive an error indicator for degree
adaptive procedures (see Giorgiani et al. 2014 and Sevilla and Huerta 2018). The
former approach stem from the Brezzi-Douglas-Marini (BDM) projection operator,
see Brezzi and Fortin (1991), whereas the latter is inspired by the work of Stenberg
(1990).

The superconvergent property of the HDG postprocessed solution depends, on the
one hand, on the optimal convergence of order k + 1 of themixed variable and, on the
other hand, on a procedure to resolve the indeterminacy due to rigid body motions.
This is especially critical when the Cauchy stress formulation of incompressible flow
problems is considered since a loss of optimal convergence and superconvergence
is experienced for low-order polynomial approximations, as noted by Cockburn
et al. (2010). Cockburn and coworkers (see Cockburn et al. 2017; Cockburn and
Fu 2017,b) proposed the M-decomposition to enrich the discrete space of the mixed
variable, whereas Qiu and Shi (2016) suggested an HDG formulation with different
polynomial degrees of approximation for primal, mixed and hybrid variables. Using
a pointwise symmetric mixed variable and equal-order of approximation for all the
variables, HDG-Voigt formulation has proved its capability to retrieve optimal con-
vergence of the mixed variable and superconvergence of the postprocessed primal
one, as shown by Sevilla et al. (2018) and Giacomini et al. (2018).

To determine the postprocessed velocity field u�
e in each element�e, a local prob-

lem to be solved element-by-element is devised. Applying the divergence operator
to the first equation in (9a), for each element �e, e = 1, . . . ,nel, it follows

∇ ·
(√

2ν∇su�
e

)
= −∇ · Le, (34a)

whereas boundary conditions enforcing equilibrated fluxes on ∂�e are imposed,
namely (√

2ν∇su�
e

)
n = −Len. (34b)

The elliptic problem (34) admits a solution up to rigid motions, that is nsd trans-
lations (i.e. two in 2D and three in 3D) and nrr rotations (i.e. one in 2D and three
in 3D). First, the indeterminacy associated with the nsd rigid translational modes is
handled by means of a constraint on the mean value of the velocity, namely

(u�
e, 1)�e = (ue, 1)�e . (35)



182 M. Giacomini et al.

Second, a condition on the curl of the velocity (i.e. the vorticity) is introduced to
resolve the nrr rigid rotational modes

(∇ × u�
e, 1)�e = 〈uD · τ , 1〉∂�e∩�D + 〈û · τ , 1〉∂�e\�D , (36)

where τ is the tangential direction to the boundary ∂�e and the right-hand side
follows from Stokes’ theorem and the Dirichlet conditions imposed in the local
problem (9a).

As previously done for the local and global problems, the discrete form of the
postprocessing procedure is obtained by exploiting Voigt notation to represent the
involved symmetric second-order tensors, that is

{∇T
s D1/2∇su�

e = −∇T
s Le in�e,

NT
e D

1/2∇su�
e = −NT

e Le on ∂�e.
(37)

Similarly, condition (36) is equivalent to

(∇wu�
e, 1)�e = 〈TuD, 1〉∂�e∩�D + 〈Tû, 1〉∂�e\�D , (38)

where ∇w and T are defined in (20) and (23), respectively.
Thus, followingGiacomini et al. (2018), the local postprocess needed to compute a

superconvergent velocity in the HDG-Voigt formulation is as follows. First, consider
a space for the velocity components with one degree more than the previous one
defined in (7a), namely

Vh
� (�) := {v ∈ L2(�) : v|�e ∈ Pk+1(�e) ∀�e , e = 1, . . . ,nel

}
,

where Pk+1(�e) denotes the space of polynomial functions of complete degree at
most k + 1 in �e. Then, for each element �e, e = 1, . . . ,nel, the discrete local
postprocess is: given Le, ue and û solutions of (28) and (29) with optimal rate of
converge k + 1, find the velocity u�

e ∈ [Vh
� (�e)

]nsd such that

⎧
⎪⎨

⎪⎩

−(∇sv�,D1/2∇su�
e)�e = (∇sv�, Le)�e ,

(u�
e, 1)�e = (ue, 1)�e ,

(∇wu�
e, 1)�e = 〈TuD, 1〉∂�e∩�D + 〈Tû, 1〉∂�e\�D ,

(39)

for all v� ∈ [Vh
� (�e)

]nsd . It is worth emphasizing that in the first equation in (39), the
boundary terms appearing after integration by parts are naturally equilibrated by the
boundary condition on ∂�e, see (37). Moreover, it is also important to note that the
right-hand-sides of the last two equations in (39) converge with orders larger than
k + 1. Finally, the rate of convergence of u�

e in diffusion dominated areas is k + 2.
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Numerical Examples

Stokes Flow

The first numerical example involves the solution of the so-called Wang flow (see
Wang 1991) in� = [0, 1]2. This problem has a known analytical velocity field given
by

u(x) =
{
2ax2 − bλ cos(λx1) exp{−λx2}

bλ sin(λx1) exp{−λx2}
}

. (40)

The value of the parameters is selected as a = b = 1 andλ = 10 and the kinematic
viscosity ν is taken equal to 1. The pressure is selected to be uniformly zero in the
domain.

Neumann boundary conditions are imposed on the bottom part of the domain,
�N = {(x1, x2) ∈ � | x2 = 0}, whereas Dirichlet boundary conditions are imposed
on �D = ∂�\�N .

A sequence of uniform triangular meshes is generated. Figure 1 shows the mag-
nitude of the velocity computed in the first two uniform triangular meshes with a
degree of approximation k = 3. The results clearly illustrate the gain in accuracy
provided by a single level of mesh refinement.

To validate the implementation of the HDG-Voigt formulation, a mesh conver-
gence study is performed. Figure 2 shows the relative error in the L2(�) norm as
a function of the characteristic element size h for the velocity (u), postprocessed
velocity (u�), scaled strain-rate tensor (L) and pressure (p). Optimal rate of con-
vergence, equal to k + 1, is observed for the velocity, scaled strain-rate tensor and
pressure and optimal rate, equal to k + 2, is observed for the postprocessed velocity.
In all the examples, the stabilization parameter is taken as τ d = κν/�, with κ = 3.

Fig. 1 Stokes equations—Wang flow: magnitude of the velocity field computed with the HDG-
Voigt method using a degree of approximation k = 3 on two triangular meshes
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Fig. 2 Stokes equations—Wang flow: error of the velocity (u), postprocessed velocity (u�), scaled
strain-rate tensor (L) and pressure (p) in the L2(�) norm as a function of the characteristic element
size h

Fig. 3 Stokes equations—Wang flow: error of the velocity (u), postprocessed velocity (u�), scaled
strain-rate tensor (L) and pressure (p) in the L2(�) norm as a function of the parameter κ used to
define τ d . Third mesh with k = 1 (left) and second mesh with k = 2 (right)

It is worth emphasizing that the optimal rate of convergence is observed even
for linear and quadratic approximations. This is in contrast with the suboptimal
convergence of the mixed variable, and a loss of superconvergence of the postpro-
cessed velocity, using low-order approximations with the classical HDG equal-order
approximation for the Cauchy formulation as shown by Cockburn et al. (2010).

The influence of the stabilization parameter κ in the accuracy of the HDG-Voigt
formulation is studied numerically. Figure 3 shows the relative error in the L2(�)
norm, as a function of the parameter κ used to define τ d = κν/�. The error for the
velocity, postprocessed velocity, scaled strain-rate tensor and pressure is considered.
The results are displayed for two different levels ofmesh refinement and two different
degrees of approximation. In both cases, it can be observed that there is an optimal
value of the stabilization parameter that provides the maximum accuracy for the
velocity and the postprocessed velocity, corresponding to κ ∈ [1, 10]. The error for
the scaled strain-rate tensor and the pressure is less sensitive to the value of κ . It can
be observed that low values of the stabilization parameter substantially decrease the
accuracy of the velocity field whereas large values produce less accurate results for
all variables.
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For more numerical examples in two and three dimensions and using different
element types, the reader is referred to Giacomini et al. (2018), where the HDG-Voigt
formulation with a strong imposition of the symmetry of the stress tensor via Voigt
notation was originally introduced.

Oseen Flow

The numerical study of the Oseen problem involves the solution of the so-called
Kovasznay flow (see Kovasznay 1948) in � = [0, 1]2. This problem has a known
analytical solution given by

u(x) =
{

1 − exp(2λx1) cos
(
(4x2 − 1)π

)

(λ/2π) exp(2λx1) sin
(
(4x2 − 1)π

)

}

, p(x) = −1

2
exp(4λx1) + C, (41)

where λ := Re/2 −√Re2/4 + 4π2, C = [
1 + exp(4λ) − (1/2λ)

(
1 − exp(4λ)

)]
/8.

The Reynolds number is taken as Re = 100 and the convection velocity field a
is taken as the exact velocity.

As done in the previous example, Neumann boundary conditions are imposed
on the bottom part of the domain, �N = {(x1, x2) ∈ � | x2 = 0}, whereas Dirichlet
boundary conditions are imposed on �D = ∂�\�N .

Figure 4 shows themagnitude of the velocity computed in the first triangular mesh
with a degree of approximation k = 4 and the postprocessed velocity computed by
using the strategy described in Section “Local Postprocess of the Primal Variable”.
The results clearly illustrate the increased accuracy provided by the element-by-
element postprocess of the velocity field.

Fig. 4 Oseen equations—Kovasznay flow: magnitude of the velocity field computed with the
HDG-Voigt method using a degree of approximation k = 4 (left) and postprocessed velocity (right)



186 M. Giacomini et al.

Fig. 5 Oseen equations—Kovasznay flow: error of the velocity (u), postprocessed velocity (u�),
scaled strain-rate tensor (L) and pressure (p) in the L2(�) norm as a function of the characteristic
element size h

Fig. 6 Oseen equations—Kovasznay flow: error of the velocity (u), postprocessed velocity (u�),
scaled strain-rate tensor (L) and pressure (p) in the L2(�) norm as a function of the parameter β

used to define τ a = β‖a‖∞. Third mesh with k = 1 (left) and second mesh with k = 2 (right)

To validate the implementation of the HDG-Voigt formulation, a mesh conver-
gence study is performed as done in the previous example. Figure 5 shows the rel-
ative error in the L2(�) norm as a function of the characteristic element size h for
the velocity (u), postprocessed velocity (u�), scaled strain-rate tensor (L) and pres-
sure (p). The optimal rate of convergence is again observed for all the variables. In
all the examples, the stabilization for diffusion is defined as τ d = κν/�, whereas for
convection it holds τ a = β maxx∈N�

‖a(x)‖2 with parameters κ = 10 and β = 0.02.
Finally, the influence of the stabilization parameter β is studied numerically. The

value of the stabilization parameter κ is selected as 10. Figure 6 shows the relative
error in theL2(�) norm, as a function of the parameter β used to define the stabiliza-
tion parameter τ a = β maxx∈N�

‖a(x)‖2. The error for the velocity, postprocessed
velocity, scaled strain-rate tensor and pressure is considered. The results are displayed
for the same two levels of mesh refinement and degrees of approximation utilized for
the sensitivity analysis in the Stokes flow problem. It can be observed that there is an
optimal value of the stabilization parameter that provides the maximum accuracy for
the velocity and the postprocessed velocity, corresponding to β ∈ [0.01, 0.1]. The
pressure is the variable that shows a higher dependence in terms of the selected value
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of the stabilization parameter β. In particular, large values of β lead to sizeable errors
in the pressure.

Navier-Stokes Flow

The solution of the nonlinear incompressible Navier-Stokes equations is consid-
ered. The HDG-Voigt formulation follows the rationale presented in Section “HDG
Method for Oseen Flows”with a being u and â being û. The resulting nonlinear local
and global problems are solved by using a standard Newton-Raphson linearization.
It is worth noticing that by substituting u for a and û for â in (13), the resulting stabi-
lization parameter τ a is now a function of the unknown primal, τ a = τ a(u) or hybrid,
τ a = τ a(û), variable. In order to avoid introducing an additional nonlinearity in the
problem, the stabilization parameter τ a is thus evaluated in the previous iteration of
the Newton-Raphson algorithm. For the following numerical experiments, at step
r + 1 of the Newton-Raphson method, the definition of τ a = β maxx∈N�

‖ur (x)‖2
is considered, ur being the velocity field computed at iteration r of the nonlinear
procedure.

Navier-Stokes Kovasznay Flow

First, the Kovasznay flow described in Section “Oseen Flow” is considered with
the same boundary conditions and using the same set of meshes used to solve the
Ossen equations. Figure 7 shows the magnitude of the velocity computed in the
first triangular mesh with a degree of approximation k = 4 and the postprocessed
velocity computed by using the strategy described in Section “Local Postprocess of
the Primal Variable”. A visual comparison of the results between Navier-Stokes and
Ossen solutions, computed using the same coarse mesh, illustrates the extra level of
difficulty induced by the nonlinearity of the Navier-Stokes equations.

To validate the implementation of the HDG-Voigt formulation, a mesh conver-
gence study is performed as done in the previous examples. Figure 8 shows the
relative error in the L2(�) norm as a function of the characteristic element size h
for the velocity (u), postprocessed velocity (u�), scaled strain-rate tensor (L) and
pressure (p). The optimal rate of convergence is again observed for all the variables,
with a slightly higher rate for the primal variables when k = 4. In all the examples,
the stabilization parameters are taken as τ d = κν/� and τ a = β maxx∈N�

‖ur (x)‖2,
with κ = 10 and β = 0.1, ur being the velocity field computed in the previous
Newton-Raphson iteration.
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Fig. 7 Navier-Stokes equations—Kovasznay flow: magnitude of the velocity field computed with
the HDG-Voigt method using a degree of approximation k = 4 (left) and postprocessed velocity
(right)

Fig. 8 Navier-Stokes equations—Kovasznay flow: error of the velocity (u), postprocessed veloc-
ity (u�), scaled strain-rate tensor (L) and pressure (p) in the L2(�) norm as a function of the
characteristic element size h

Navier-Stokes Poiseuille Flow

The following example considers another well-known problem with analytical solu-
tion to illustrate the effect of the boundary condition imposed on an outflow part of
the boundary, as discussed in Section “Incompressible Flows: Problem Statement”.
The Poiseuille flow in a rectangular channel� = [0, 10] × [0, 1] is considered, with
Dirichlet boundary conditions on the left, top and bottom part of the boundary and
different boundary conditions, described in Remark 2.3, on the right-end of the
boundary. The exact solution is given by

u(x) =
{
4V x2(1 − x2)

0

}

, p(x) = −8νV x1 + C, (42)
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Fig. 9 Navier-Stokes equations—Poiseuille flow: magnitude of the velocity field computed with
the HDG-Voigt method using a degree of approximation k = 2 with the outflow boundary condition
in (2c)

Fig. 10 Navier-Stokes equations—Poiseuille flow: magnitude of the velocity field and streamlines
k = 2 with the outflow boundary condition (left) homogeneous Neumann boundary condition in
(2b) (middle) and traction-free boundary condition in (2a) (right)

where V is the maximum value of the velocity profile, achieved at the centerline of
the channel, that is for x2 = 1/2, and C = 80νV .

The solution computed with a structured quadrilateral mesh with 10 × 10
biquadratic elements is shown in Figure 9, by imposing the outflow boundary condi-
tion given in (2c). As expected, the computed solution reproduces the exact solution
(with machine accuracy) as the latter belongs to the polynomial space used to define
the functional approximation. The error of the velocity measured in theL∞(�) norm
is 3.6 × 10−13. In contrast, when the homogeneous Neumann boundary condition
given in (2b) is utilized, the error of the velocity measured in the L∞(�) norm is
1.11. Finally, when the traction-free boundary condition in (2a) is imposed on the
right part of the boundary, the error of the velocity measured in the L∞(�) norm is
1.29.

A detailed view of the solution near the outflow boundary for the three differ-
ent boundary conditions considered is shown in Figure 10. The figure displays the
streamlines. It can be clearly observed that, using the outflow boundary condition,
the streamlines are parallel to the x-axis and the motion of a fluid between two par-
allel infinite plates is correctly reproduced. On the contrary, with the homogeneous
Neumann boundary condition and the traction-free boundary condition the isolines
present non-physical artifacts.
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Backward Facing Step

The last example considers another well-known test case for the incompressible
Navier-Stokes equations, the so-called backward facing step. This problem is tradi-
tionally employed to test the ability of a numerical scheme to capture the recirculation
zones and position of the reattachment point (see Armaly et al. 1983; Erturk 2008).

Figure 11 shows the magnitude of the velocity for three different Reynolds num-
bers, namely Re = 800, Re = 1,900 and Re = 3,000. The results illustrate the higher
complexity induced by an increased value of the Reynolds number.

To better observe the complexity of the flowand the different recirculation regions,
Figure 12 displays the streamlines of the velocity field for Re = 800, Re =1,900
and Re =3,000. The results show the change in the number of recirculation regions
as well as the change in the position of such regions as the Reynolds number is
increased.

Fig. 11 Navier-Stokes equations—Backward facing step: magnitude of the velocity field for Re =
800 (top), Re = 1,900 (middle) and Re = 3,000 (bottom)
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Fig. 12 Navier-Stokes equations—Backward facing step: streamlines for Re = 800 (top), Re =
1,900 (middle) and Re = 3,000 (bottom)
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Fig. 13 Navier-Stokes equations—Backward facing step: Position of the reattachment point as a
function of the Reynolds number and comparison with published results

Finally, Figure 13 displays the position of the reattachment point as a function
of the Reynolds number. The results obtained using the presented HDG-Voigt for-
mulation are compared with the results in Armaly et al. (1983) and Erturk (2008),
showing an excellent agreement with the more recent results of Erturk (2008).
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Appendix: Saddle-Point Structure of the Global Problem

In this Appendix, the symmetry of the global system in (32) is demonstrated. First,
rewrite (32) as [

K̂ H
GT 0

]{
û
ρ

}

=
{
f̂û
f̂ρ

}

, (43)

where the block H is obtained by the solution of the local problem in (30) and has
the following form
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H = Anel

e=1

[
AT

Lû Aûu AT
pû 0
]

e

⎡

⎢
⎢
⎣

ALL ALu 0 0
AT

Lu Auu AT
pu 0

0 Apu 0 aTρp
0 0 aρp 0

⎤

⎥
⎥
⎦

−1

e

⎧
⎪⎪⎨

⎪⎪⎩

0
0
0
1

⎫
⎪⎪⎬

⎪⎪⎭
e

. (44)

In order for the system in (43) to have a saddle-point structure, it needs to be proved
that H = G. For the sake of readability, rewrite the matrix of the local problem in
(30) using the block structure

Ke :=
[
Be Ce

CT
e De

]

(45)

where the blocks are defined as

Be :=
[
ALL ALu

AT
Lu Auu

]

, Ce :=
[

0 0
AT

pu 0

]

, De :=
[
0 aTρp
aρp 0

]

.

Proposition 5.1 For each element �e, it holds

K−1
e

⎧
⎪⎪⎨

⎪⎪⎩

0
0
0
1

⎫
⎪⎪⎬

⎪⎪⎭
e

=

⎡

⎢
⎢
⎣

− [B−1
e

]

12 A
T
pu

[
S−1
e

]

12− [B−1
e

]

22 A
T
pu

[
S−1
e

]

12[
S−1
e

]

12
0

⎤

⎥
⎥
⎦

e

, (46)

where
[
B−1
e

]

12 = −A−1
LLALu(Auu − AT

LuA
−1
LLALu)

−1,
[
B−1
e

]

22 = (Auu − AT
LuA

−1
LLALu)

−1,

[
S−1
e

]

12 =
(
aρp
(
I − (Apu(Auu − AT

LuA
−1
LLALu)

−1AT
pu)

†

(Apu(Auu − AT
LuA

−1
LLALu)

−1AT
pu)
))†

.

Proof The inverse of the block matrix in (45), written using Schur-Banachiewicz
form (see Bernstein 2009, Sect. 2.17), is

K−1
e :=

[
B−1
e (I + Ce(De − CT

e B
−1
e Ce)

−1CT
e B

−1
e ) −B−1

e Ce(De − CT
e B

−1
e Ce)

−1

−(De − CT
e B

−1
e Ce)

−1CT
e B

−1
e (De − CT

e B
−1
e Ce)

−1

]

,

where the block (2, 2) is the inverse of the Schur complement

Se := De − CT
e B

−1
e Ce =

[−Apu
[
B−1
e

]

22 A
T
pu aTρp

aρp 0

]

(47)

of block Be of the matrix Ke. Moreover, the block (1, 2) of the inverse matrix K−1
e

has the form



Tutorial on Hybridizable Discontinuous Galerkin (HDG) … 193

[
K−1
e

]

12 = −B−1
e CeS−1

e

= −
[[
B−1
e

]

12 A
T
pu

[
S−1
e

]

11

[
B−1
e

]

12 A
T
pu

[
S−1
e

]

12[
B−1
e

]

22 A
T
pu

[
S−1
e

]

11

[
B−1
e

]

22 A
T
pu

[
S−1
e

]

12

]

.
(48)

To fully determine the inverse matrix K−1
e , the blocks of B−1

e and S−1
e need to be

computed. Following the Schur-Banachiewicz rationale utilized above, the blocks of
B−1
e have the form

[
B−1
e

]

11 := A−1
LL(I + ALu(Auu − AT

LuA
−1
LLALu)

−1AT
LuA

−1
LL),

[
B−1
e

]

12 := −A−1
LLALu(Auu − AT

LuA
−1
LLALu)

−1,
[
B−1
e

]

22 := (Auu − AT
LuA

−1
LLALu)

−1,

(49)

and, from the symmetry of Be, it follows that
[
B−1
e

]

21 = [B−1
e

]T
12.

Plugging the expression of
[
B−1
e

]

22, see (49), into the definition of Se in (47), it
follows that the block (1, 1) of such matrix is

[
Se
]

11 := −Apu(Auu − AT
LuA

−1
LLALu)

−1AT
pu . (50)

It is straightforward to observe that this matrix is the Schur complement of block

[
ALL ALu

AT
Lu Auu

]

of the matrix ⎡

⎣
ALL ALu 0
AT

Lu Auu AT
pu

0 Apu 0

⎤

⎦ ,

which is singular, since it is obtained from the discretization of an incompressible
flow problem with purely Dirichlet boundary conditions. Hence, to compute the
blocks of S−1

e , the framework of the generalized inverse of a partitioned matrix is
exploited (see Miao 1991) leading to

[
S−1
e

]

11 :=
(
I − (aρp(I − [Se

]†
11

[
Se
]

11)
)†
aρp

)

[
Se
]†
11

(
I − aTρp

(
(I − [Se

]

11

[
Se
]†
11)a

T
ρp

)†
)
,

[
S−1
e

]

12 := (aρp(I − [Se
]†
11

[
Se
]

11)
)†

,
[
S−1
e

]

21 := ((I − [Se
]

11

[
Se
]†
11)a

T
ρp

)†
,

[
S−1
e

]

22 := 0

(51)
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where the Moore-Penrose pseudoinverse
[
Se
]†
11 of the singular matrix

[
Se
]

11 has the
form [

Se
]†
11 := −(Apu(Auu − AT

LuA
−1
LLALu)

−1AT
pu

)†
. (52)

From (44), it is straightforward to observe that only the blocks in the last column
of the inverse matrix are involved in the definition of the product in (46). The result
(46) follows directly from (48), (51) and (52). �
Proposition 5.2 Given H and GT from (44) and (33b) respectively, it holds that
H = G.

Proof From (44) and (46), it follows that

He = −(AT
Lû

[
B−1
e

]

12 + Aûu
[
B−1
e

]

22

)
AT

pu

[
S−1
e

]

12 + AT
pû

[
S−1
e

]

12 , (53)

for each element �e.
First, recall that the matrix I − [Se

]†
11

[
Se
]

11 defines an orthogonal projector onto
the kernel of

[
Se
]

11 (see Bernstein 2009, Sect. 6.1). As observed in the previous
proposition, see (50),

[
Se
]

11 is the Schur complement of the velocity block of the
matrix obtained from the discretization of an incompressible flow problem with
purely Dirichlet boundary conditions. Thus, the kernel of

[
Se
]

11 contains all constant
vectors representing the mean value of pressure. It follows that

aρp
(
I − [Se

]†
11

[
Se
]

11

) = 1

nen
1T

is the constant vector obtained as the average of 1 over the nen element nodes of �e

and, consequently,
[
S−1
e

]

12 = 1. Moreover, since the kernel of the matrix AT
pu also

includes all constant vectors, AT
pu

[
S−1
e

]

12 = 0. Hence, from (53), it follows that

H = [[H1] [H2] . . . [Hnel ]
] = [[AT

pû]11 [AT
pû]21 . . . [AT

pû]nel1
]

which proves the statement. �
When convection phenomena are neglected (Stokes flow), Aûu = AT

uû and the
symmetry of K̂ and the global matrix in (32) follows straightforwardly. For general
incompressible flow problems, the matrix K̂ is not symmetric but the off-diagonal
blocks G and GT are one the transpose of the other and the resulting global matrix
maintains the above displayed saddle-point structure (Benzi et al. 2005).

Appendix: Implementation Details

In this Appendix, thematrices and vectors appearing in the discrete form of theHDG-
Voigt approximation of the Oseen equations are detailed. The elemental variables
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u, p and L are defined in a reference element �̃(ξ), ξ = (ξ1, . . . , ξnsd) whereas the
face variable û, is defined on a reference face �̃(η), η = (η1, . . . , ηnsd−1) as

u(ξ) �
nen∑

j=1

u j N j (ξ), p(ξ) �
nen∑

j=1

p j N j (ξ),

L(ξ) �
nen∑

j=1

L j N j (ξ), û(η) �
nfn∑

j=1

û j N̂ j (η),

where u j , p j ,L j and û j are the nodal values of the approximation, nen and nfn the
number of nodes in the element and face, respectively and N j and N̂ j the polynomial
shape functions in the reference element and face, respectively.

An isoparametric formulation is considered and the following transformation is
used to map reference and local coordinates

x(ξ) =
nen∑

k=1

xk Nk(ξ),

where the vector {xk}k=1,...,nen denotes the elemental nodal coordinates.
Following Sevilla et al. (2018), the matrices ∇s and N in (18) and (22), respec-

tively, are expressed in compact form as

∇s =
nsd∑

k=1

Fk
∂

∂xk
, N =

nsd∑

k=1

Fknk,

where the matrices Fk are defined as

F1 =
[
1 0 0
0 0 1

]T

, F2 =
[
0 0 1
0 1 0

]T

in two dimensions and

F1 =
⎡

⎣
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤

⎦

T

, F2 =
⎡

⎣
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎤

⎦

T

, F3 =
⎡

⎣
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

⎤

⎦

T

in three dimensions. Moreover, from the definition of E in (21), it holds NTE = n
and ∇T

s E = ∇ for the gradient operator applied to a scalar function. The following
compact forms of the shape functions and their derivatives are introduced
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N := [N1Insd N2Insd . . . NnenInsd

]T
,

̂N := [N̂1Insd N̂2Insd . . . N̂nfnInsd

]T
,

N τ := [N1τ Insd N2τ Insd . . . Nnenτ Insd

]T
,

̂N τ := [N̂1τ Insd N̂2τ Insd . . . N̂nfnτ Insd

]T
,

N n := [N1n N2n . . . Nnenn
]T

,

M := [N1Imsd N2Imsd . . . NnenImsd

]T
,

N a := [N1(τ − â · n)Insd N2(τ − â · n)Insd . . . Nnen(τ − â · n)Insd

]T
,

̂N a := [N̂1(τ − â · n)Insd N̂2(τ − â · n)Insd . . . N̂nfn(τ − â · n)Insd

]T
,

Q := [(J−1∇N1)
T (J−1∇N2)

T . . . (J−1∇Nnen)
T
]T

,

Qa := [a · (J−1∇N1) a · (J−1∇N2) . . . a · (J−1∇Nnen)
]T

,

where n is the outward unit normal vector to a face, a is the convection field evaluated
in the reference element, and â is the convection field evaluated on the reference face.
Moreover, for each spatial dimension, that is, for k = 1, . . . ,nsd, define

N D
k := [

N1nkFT
k D

1/2 N2nkFT
k D

1/2 . . . NnfnnkF
T
k D

1/2
]T

,

̂N D

k := [
N̂1nkFT

k D
1/2 N̂2nkFT

k D
1/2 . . . N̂nfnnkF

T
k D

1/2
]T

,

QD
k := [[J−1∇N1]kFT

k D
1/2 [J−1∇N2]kFT

k D
1/2 . . . [J−1∇Nnen ]kFT

k D
1/2
]T

,

where nk is the k-th components of the outward unit normal vector n to a face and J
is the Jacobian of the isoparametric transformation.

The discretization of (28a) leads to the following matrices and vector

[ALL ]e = −
ne
ip∑

g=1

M(ξe
g)MT(ξe

g)|J(ξe
g)|we

g,

[ALu]e =
nsd∑

k=1

ne
ip∑

g=1

QD
k (ξe

g)N T(ξe
g)|J(ξe

g)|we
g,

[ALû]e =
ne
fa∑

f =1

( nsd∑

k=1

nf
ip∑

g=1

N D
k (ξf

g)
̂N T

(ξf
g)|J(ξf

g)|wf
g

)
(
1 − χ�D ( f )

)
,

[fL ]e =
ne
fa∑

f =1

( nsd∑

k=1

nf
ip∑

g=1

N D
k (ξf

g)uD
(
x(ξf

g)
)|J(ξf

g)|wf
g

)

χ�D ( f ),

wherene
fa is the number of faces�e, f , f = 1, . . . ,ne

fa, of the element�e, ξ
e
g andwe

g

(resp., ξf
g and wf

g ) are the ne
ip (resp., n

f
ip) integration points and weights defined on
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the reference element (resp., face) and χ�D is the indicator function of the boundary
�D , namely

χ�D ( f ) =
{
1 if �e, f ∩ �D �= ∅
0 otherwise

Similarly, from the discretization of (28b) the following matrices and vectors are
obtained

[Auu]e = −
ne
ip∑

g=1

Qa(ξe
g)N T(ξe

g)|J(ξe
g)|we

g

+
ne
fa∑

f =1

nf
ip∑

g=1

N τ(ξf
g)N T(ξf

g)|J(ξf
g)|wf

g,

[Auû]e =
ne
fa∑

f =1

( nf
ip∑

g=1

N a(ξf
g)

̂N T
(ξf

g)|J(ξf
g)|wf

g

)
(
1 − χ�D ( f )

)
,

[fu]e =
ne
ip∑

g=1

N (ξe
g)s
(
x(ξe

g)
)|J(ξe

g)|we
g

+
ne
fa∑

f =1

( nf
ip∑

g=1

N a(ξf
g)uD

(
x(ξf

g)
)|J(ξf

g)|wf
g

)

χ�D ( f ).

The discrete forms of the incompressibility constraint in (28c) and the restriction
in (28d) feature the following matrices and vector

[Apu]e =
ne
ip∑

g=1

N (ξe
g)QT(ξe

g)|J(ξe
g)|we

g,

[Apû]e =
ne
fa∑

f =1

( nf
ip∑

g=1

N n(ξf
g)

̂N T
(ξf

g)|J(ξf
g)|wf

g

)
(
1 − χ�D ( f )

)
,

[fp]e =
ne
fa∑

f =1

( nf
ip∑

g=1

N n(ξf
g)uD

(
x(ξf

g)
)|J(ξf

g)|wf
g

)

χ�D ( f ),

[aρp]e =
ne
fa∑

f =1

nf
ip∑

g=1

N (ξf
g)1|J(ξf

g)|wf
g,

Finally, the matrices and vectors resulting from the discretization of the global prob-
lem in (29a) are
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[Aûû]e = −
ne
fa∑

f =1

( nf
ip∑

g=1

̂N τ
(ξf

g)
̂N T

(ξf
g)|J(ξf

g)|wf
g

)

χ�( f )

−
ne
fa∑

f =1

( nf
ip∑

g=1

̂N a
(ξf

g)
̂N T

(ξf
g)|J(ξf

g)|wf
g

)

χ�N ( f ),

[Aûu]e =
ne
fa∑

f =1

( nf
ip∑

g=1

̂N τ
(ξf

g)N T(ξf
g)|J(ξf

g)|wf
g

)
(
1 − χ�D ( f )

)
,

[fû]e = −
ne
fa∑

f =1

( nf
ip∑

g=1

̂N (ξf
g)t
(
x(ξf

g)
)|J(ξf

g)|wf
g

)

χ�N ( f ),

where χ� and χ�N are the indicator functions of the internal skeleton � and the
Neumann boundary �N , respectively.
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Non Intrusive Global/Local Coupling
Techniques in Solid Mechanics: An
Introduction to Different Coupling
Strategies and Acceleration Techniques

Olivier Allix and Pierre Gosselet

Introduction

In the last decade, many innovative modeling or solution techniques have been intro-
duced in the field of computational mechanics. These techniques, such as enriched
finite elements or multiscale modeling, enable to perform complex simulations that
are out of the reach of conventional finite element analysis (FEA) tools, in terms
of computational or human costs. Although these techniques have proved their per-
formance by extensive testing on academic applications, they are scarcely applied
on actual industrial problems because they cannot be conveniently implemented into
commercial FEA software packages. Therefore, a scientific and practical challenge is
to allow realistic simulation of complex industrial problems including all their phys-
ical and technological complexity. A view on this issue can be found in a prospective
document of the NSF blue-ribbon panel (Oden et al. 2006):

If an industry is to replace testing with simulation, the simulation tools must undergo robust
verification and validation procedures for effectiveness. Overall, simulation in industry has
yet to meet its full potential. The following list is a summary of its current limitations:

1. The development of models is very time-consuming, particularly for geometries of
complex engineering systems […]

2. Methods are needed for linking models at various scales and simulating multi-physics
phenomena.

We are interested in the case where the complex phenomenon to be analyzed
concerns one or several reduced parts (called local models) of the whole body (called
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Fig. 1 Illustration of global and locals models

global model). Those parts often correspond to very fine structural details that can not
be taken into account in the global mesh of the structure, details which in turns can
induce nonlinearity such as plasticity, visco-plasticity or damage. A typical example
is presented in Fig. 1 where one can see that a proper description of the local parts
may require meshes larger than the mesh used for the global model (Blanchard et al.
2019).

A method often used by engineers to tackle such problems is the submodeling
approach (Cormier et al. 1999): after the global computation, structural zooms are
applied on the local critical zones, with details represented exactly. An advantage of
this approach is that it allows to easily connect research software and commercial
code, as was done for example to deal with the prediction of delamination under
low velocity impacts (Allix 2001). Unfortunately, it implies neglecting the influence
of the local zones on the whole structure. This may lead in turn to quite important
local errors. The problem becomes more crucial when nonlinearity initiated locally
spreads over the whole structure.

To correct the drawback of submodeling while keeping its simplicity and flexibil-
ity, a non-invasive method was proposed in order to allow exact local/global analysis,
embedding the same basic tools as those used in the submodeling inside an iterative
procedure. The prerequisite of the proposed framework is to keep unchanged the
global numerical model as well as the solver used for its treatment. Therefore, two or
several models are used concurrently, the untouched global model and the local ones
which are iteratively substituted where needed. The exchanges between the models
are such that the data should be “natural” to the software, such as prescribed nodal
reactions or displacements.



Non Intrusive Global/Local Coupling Techniques … 205

The proposed method aims therefore at converging by iterations toward the refer-
ence problembymeans of submodeling-like steps. The formulation of themethod and
its numerical optimization have first been derived in the case of global linear models
and local plasticity (Gendre et al. 2009, 2011). A number of other applications and
extensions have been proposed: use of XFEM at the local scale (Passieux et al. 2013),
treatment of non-matching interfaces (Liu et al. 2014), coupling between a global
plate model and 3D parts for bolted assemblies (Guguin et al. 2014), geometrically
non conforming coupling (Guinard et al. 2018), multiscale time and space compu-
tation in explicit dynamic (Bettinotti et al. 2014) with implementation in Abaqus
Explicit for the analysis of delamination under impact (Bettinotti et al. 2017), non-
invasive domain decomposition approach (Duval et al. 2016).Mesh refinement based
on error estimation may also be cast in the proposed non-intrusive framework (Duval
et al. 2018).

Alternative proposals exist, based on volume coupling as for example theArlequin
method (Dhia 1998). The implementation of such methods in a legacy code is not
straightforward, mainly because the creation of the coupling operators between the
two models in the transition zone requires complex integration operations. The vol-
ume coupling may also be performed by means of a non-invasive version of the
Partition of Unity method (Plews et al. 2012; Fillmore and Duarte 2018), by using
projection techniques between the local and global models (Temizer and Wriggers
2011; Holl et al. 2013) or by means of homogenization-like techniques (Hühne et al.
2016).

The aim of this paper is to provide, for a reader not familiar with the non-intrusive
coupling method, the simplest possible example on which most of the different iter-
ative coupling strategies used in the previously cited papers can be solved by hands.
Among them, the basic algorithm, Aitken’s method, mixed interface conditions …A
drawback of this example is that, for some acceleration techniques, the convergence
is achieved in one iteration after the initialization. Nevertheless, it allows to easily
become acquainted with the different techniques. For this, we consider the case of a
bar in tension as described on Fig. 2.

uL

p
uL

Reference

Global model

Local model
uF
l

Fig. 2 Reference, global and local models
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Reference Model

Let us consider a unit-section beam, clamped on its left side (x = 0) andwith imposed
traction displacement uL on its right side (x = L). The beam is made out of two
components: the Young modulus of the left part [0, l] is EF , while it is EG on the
right side [l, L]. We use the ′ notation for the derivative with respect to the axial
coordinate x. The subscript R is used for the reference solution. In what follows we
separate the left (−) and right (+) sides of the interface point x = l. The system of
equations satisfied by the Reference displacement uR and the Reference tension σ R ,
can be written as:

σ R = EF (uR)′ in ]0, l[ σ R = EG(uR)′ in ]l, L[
σ R′ = 0 in ]0, l[ and in ]l, L[

uR(0) = 0 uR(L) = uL

uR
−(l) = uR

+(l) σ R
− (l) = σ R

+ (l)

(1)

The solution is uniform in tension, and continuous piecewise-linear in displacement:

uR(x) = uR
l

x

l
in [0, l]

uR(x) = uR
l + (uL − uR

l )
x − l

L − l
in [l, L]

uR
l = uL

1

1 + EF

EG
L−l
l

σ R = EFuR
l

l
= EF EG

EGl + EF (L − l)
uL

(2)

Iterative Techniques Using the Global and the Local Models
Separately

As previously described, the principle of the method is to use the two models
described on Fig. 2. The local model, to which a displacement coming from a pre-
vious global solution is imposed at the interface, and the global one where an extra
load is prescribed at the interface. The different iterative techniques aim basically at
determining the load pG to be prescribed to the global model which would lead to
the exact solution, in the unchanged part of the global model (referred to as com-
plement zone) and in the local model. To avoid possible misunderstanding we first
define the two models. Let us also note that the convergence properties presented on
this simple example can be generalized to structural problems introducing the Schur
complement of the different domains (Gosselet et al. 2018a).
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Local Model

The Local model is the extraction of the left part of the Reference model. In order to
avoid confusion between the point L and the Local model, we use the F superscript
for the Local model, meaning Fine model. A Dirichlet condition uF

l is imposed on
the right side x = l of the Fine model:

σ F = EFu′ in ]0, l[ (σ F )′ = 0 in ]0, l[
uF (0) = 0 uF (l) = uF

l

(3)

and the solution is:
uF (x) = uF

l

x

l
in [0, l]

σ F = EFuF
l

l
in [0, l]

(4)

Global Model

The Global model is a simplification of the Reference model with a coarse represen-
tation of the zone of interest [0, l]. In our case, we chose a homogeneous beam with
Young modulus EG . An extra effort pG is imposed at the interface x = l:

σG = EG(uG)′ in ]0, L[
(σG)′ = 0 in ]0, l[ and in ]l, L[
uG(0) = 0 uG(L) = uL

uG
−(l) = uG

+(l) σG
− (l) = σG

+ (l) + pG

(5)

The solution can be written as:

uG(x) = uG
l

x

l
in [0, l]

uG(x) = uG
l + (uL − uG

l )
x − l

L − l
in [l, L]

uG
l =

(
pG(L − l)

EG
+ uL

)
l

L

σG
+ = EGuL

L
− pG

l

L

(6)

The coarse representation of the zone of interest in the Global model [0, l] was
often called Auxiliary model in previous papers, here it is noted with subscript −.
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The zone [l, L] where the Global and Reference models match is the Complement
zone, here written with subscript +.

Remark 3.1 (Solution in term of pG) By comparing (6) and (2), we see that σG+ = σ R

can be achieved for a specific value of pG , named pR :

σ R = EF EG

EGl + EF (L − l)
uL = EGuL

L
− pR l

L
= σG

+

pR = (EG − EF )

EGl + EF (L − l)
EGuL

(7)

where we see that, of course, pR is proportional to the dissemblance between the
Fine and the Coarse model in the zone of interest.

Basic Fixed Point Iterative Technique

The basic iteration consists in a Global computation for a given pGi , from which we
deduce the displacement to be imposed on the Local model. We then evaluate the
lack of balance between the Local model and the Complement zone of the Global
model, this residual, written r , is to be added to pGi to define the next load pGi+1 of
the Global model.

Algorithm 1: Non-invasive stationary iterations

Arbitrary initialization pG0
for j ∈ [0, · · · ,m] do

Solve Global model with extra Load pGj , extract displacement uGl, j and Traction σG+, j

Solve Fine model with imposed displacement uGl, j , extract Reaction σ F
j

Compute Residual r j = (σG
+, j − σ F

j )

Update Global load pGj+1 = pGj + r j
end

Using previous formula, we have:

pGj+1 = pGj + r j = pGj + (σG
+, j − σ F

j )

= pGj − EFuG
l, j

l
− pGj

l

L
+ EGuL

L

= pGj −
EF

(
pGj (L−l)

EG + uL

)
l
L

l
− pGj

l

L
+ EGuL

L
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= pGj

(
1 − EF

EG

)
L − l

L
+ uL

(
EG − EF

L

)
(8)

We recognise a fixed point iteration. We remind below the classical conditions of
convergence of a fixed point algorithm; we will then make used of similar results for
the other algorithms presented in this paper.

Proposition 3.2 (Condition of convergence) The iteration is a contraction and it
converges if

ρ =
∣∣∣∣
(
1 − EF

EG

)
L − l

L

∣∣∣∣ < 1 (9)

In fact:

uL

(
EG − EF

L

)
= pGj+1 − pGj

(
1 − EF

EG

)
L − l

L

uL

(
EG − EF

L

)
= pGj − pGj−1

(
1 − EF

EG

)
L − l

L

(10)

Thus by subtracting the previous two relations we obtain, whatever j ≥ 1:

pGj+1 − pGj =
(
1 − EF

EG

)
L − l

L
(pGj − pGj−1) (11)

Thus:

pGj+1 − pGj =
((

1 − EF

EG

)
L − l

L

) j

(pG1 − pG0 ) (12)

Thus, if ρ < 1, then (pGj ) is a Cauchy sequence. As we work in a complete space,
(pGj ) tends to the limit pG∞. The convergence is linear with rate ρ.

Proposition 3.3 (Limit) If the iteration is a contraction, we recover (7)when search-
ing pG∞ = pR.

In fact, from the previous relation pG∞ satisfies:

pG∞ = pG∞

(
1 − EF

EG

)
L − l

L
+ uL

(
EG − EF

L

)

pG∞ = (EG − EF )

EGl + EF (L − l)
EGuL = pR

(13)

Remark 3.4 The case where the basic fixed point iteration diverges corresponds to
two cases: (

1 − EF

EG

)
L − l

L
> 1 ⇔ − l

L − l
>

EF

EG(
1 − EF

EG

)
L − l

L
< −1 ⇔ 1 + L

L − l
<

EF

EG

(14)
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In those cases, it is required to make use of more refined algorithms. The first case
corresponds practically to the possibility of softening. This is why relaxation was
used in Gerasimov et al. (2018) where a local model prone to cracking was modeled
by means of a phase field approach of fracture. The second case corresponds to a
local material much stiffer than the global one.

Basic Fixed Point with Relaxation

In order to improve the convergence rate, one can simply use relaxation. For a given
ω ∈ R

+, the update formula is modified:

pGj+1 = pGj + ωr j (15)

and the rate of convergence can be computed, and minimized in order to obtain the
optimal relaxation:

ρ = 1 − ω
EGl + EF (L − l)

EGL

ωopt = EGL

EF (L − l) + EGl

(16)

Aitken’s Acceleration

Aitken’s acceleration can be viewed as an automatic tuning of the relaxation param-
eter using the formula:

ωaitken
j+1 = −ωaitken

j

r j−1(r j − r j−1)

‖r j − r j−1‖ (17)

where an initial relaxation must be provided (in general equal to 1).
In this very simple case (scalar unknown and linear problem), it can be checked,

using Eqs. 6 and 8, that Aitken’s formula reaches the optimal relaxation after the first
iteration.

Robin Condition on the Fine Model

Apossibility, in order to obtain fast convergence, is to improve the boundary condition
applied to the Fine model, see Fig. 3. Indeed, a Dirichlet condition has the advantage
of being easy to implement, and always available in legacy codes, but it provides an
extremely simplified vision of the Complement domain.
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uL

pG

uL

Reference

Global model

Local model

pF

kF

Fig. 3 Reference, global and local models

In this approach, not only reactions are not balanced (σG+ − σ F ) �= 0, but the local
displacement uF (l) does not match the global displacement uG(l), unless conver-
gence is reached. We gather the two conditions in an equivalent form:

(σG
+ − σ F ) − kF (uF (l) − uG(l)) = 0

(σG
+ − σ F ) − kS(uG(l) − uF (l)) = 0

(18)

where kF and kS are parameters homogeneous to a stiffness. The first expression is
used to define the boundary condition on the local model whereas the second is used
to evaluate the residual which should take into account not only the lack of balance
of forces but also the jump of displacements.

We consider the modified Fine model:

σ F = EF (uF )′ in ]0, l[ (σ F )′ = 0 in ]0, l[
uF (0) = 0 σ F (l) + kFuF (l) = kFuG(l) + σG

+
(19)

If we note pF = kFuG(l) + σG+ , we recover the configuration of Fig. 3. The solution
is:

uF (x) = pF

kFl + EF
x in [0, l]

σ F = pF EF

kFl + EF
in [0, l]

(20)

As said earlier, the second line of (18) is used to define the a residual which
measures both the lack of balance and of continuity between the Local and Global
models at the interface:

r j = (σG
+, j − σ F

j ) + kS(uF
l, j − uG

l, j ) (21)
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This leads to Algorithm 2. If we analyze one iteration, we get:

pGj+1 = pGj + r j

= pGj
l(EG − EF )((L − l)kF − lkS) − EF L(kSl − EG)

(kFl + EF )EGL

. . . + (EG − EF )(kF + kS)luL

(kFl + EF )L

(22)

Algorithm 2: Non-invasive stationary iterations with Robin condition

Arbitrary initialization pG0
for j ∈ [0, · · · ,m] do

Solve Global model with extra Load pGj , extract displacement uGl, j and Traction σG
+, j

Solve Fine model with Robin condition pFj = kFuGl, j − σG
+, j , extract Displacement uF

l, j

Reaction σ F
j

Compute Residual r j = (σG
+, j − σ F

j ) + kS(uF
l, j − uGl, j )

Update Global load pGj+1 = pGj + r j
end

The optimal parameters are kF = EG

L−l , that is to say the equivalent stiffness of the

complement zone, and kS = EG

l the stiffness of the Global representation of the zone
of interest. With these parameters, convergence is obtained in one iteration. Indeed,
choosing these values one obtains:

pGj+1 = 0 ∗ pGj + pR (23)

In fact there exists a whole range of admissible mixed parameters ensuring the con-
vergence, which can be fully characterized using Proposition 3.2.

Remark 3.5 It can be shown that all the properties of different versions of the
coupling only depends on the equivalent stiffness of the domains: Fine model
SF = EF/ l, Complement domain SC = EG/(L − l), Auxiliary model (coarse rep-
resentation of the zone of interest in the Global model) SA = E A/ l. More, the equiv-
alent stiffness of a beam is generalized by the concept of Schur complement, and
with minor caution, all the results above can be generalized to 2D ou 3D elasticity.
Note that in practice using the optimal kS is not a problem whereas estimating the
optimal kF is much more involved. The question of finding a good Robin condition
mimicking the stiffness of a given domain has been addressed in many papers. In
the frame of non-intrusive coupling, a two-scale approximation was proposed and
tested in Gendre et al. (2011).



Non Intrusive Global/Local Coupling Techniques … 213

uL

pG

uL

Reference

Global model

Local model uF
lF

lA

Fig. 4 Reference, global and local models with overlap

Use of Overlap

This version of the method was proposed to handle certain incompatibilities of the
models: use of non-matching meshes (Gosselet et al. 2018b) or models with different
dimensionality (Global plate vs Fine 3D) (Guguin et al. 2014).

We distinguish two inner boundaries: let lF be the limit of the Fine model and
lA < lF be such that the Global model in [lA, L] matches the Reference model. The
extra traction on theGlobalmodel is imposed at position lA whereas the displacement
to be imposed on the Fine model is obtained at position lF . See Fig. 4.

Note that if the models do not match exactly in the overlap, then the limit of the
iterations might differ from the Reference model. In the case where the Reference is
well characterized this might be a problem. In many circumstances (non matching
meshes, models of different dimensionality) there is no real reference and the limit
of the iterations gives a mechanically sound coupled model.

Algorithm 3: Non-invasive stationary iterations with overlap

Arbitrary initialization pG0
for j ∈ [0, · · · ,m] do

Solve Global model with extra Load pGj at position lA, extract displacement uGlF , j and

Traction σG
lA+, j

Solve Fine model with imposed displacement uGlF , j , extract Reaction σ F
lA, j

Compute Residual r j = (σG
lA+, j − σ F

lA, j ) at position lA
Update Global load pGj+1 = pGj + r j

end
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Illustrations

Application of the Previous Results

We illustrate previous study for the following values: L = 1, uL = 1/10, l =
L/4, EG = 1, EF = .75.

In Fig. 5, we compare the relaxation techniques. Note that in this simple case
with 1D interface, optimal relaxation leads to convergence in on iteration, Aitken’s
formula finds the optimal relaxation as soon as it possibly can (iteration 2).

In Fig. 6, we compare the convergence for different values of the Robin parame-
ters. The basic (primal) iteration is printed, it corresponds to kS = 0 and kF = ∞.
The optimal setting leads to convergence at the first iteration. It appears that the
convergence rate is more sensitive to variations in kS than in kF , which is lucky since
the computation of the optimal kS is actually feasible. As soon as kS is well-chosen,
a wide range of values of kF leads to better convergence than basic iteration.

In Fig. 7, we compare the convergence for different lengths of the overlap. Large
overlap is needed to ensure significant speedup. Using overlap is thus not a com-
petitive acceleration technique. Its interest mostly lies in its capability to handle
non-conforming meshes or models.

Comments on Other Iterative Algorithms

This subsection briefly presents other iterations that have been tested but can not be
illustrated on the simple 1D linear example.

Fig. 5 Comparison between
relaxation techniques
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Fig. 6 Comparison between
various Robin techniques
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In the linear case, the fixed point can be accelerated by a Krylov solver. The par-
ticular structure of the fixed point operator, which can be written as the matrix of the
reference problem preconditioned by the global problem, makes it possible to apply
a conjugate gradient algorithm (Gosselet et al. 2018b). Since the Global problem
often forms an excellent preconditioner for the reference problem, the convergence
is extremely fast.

In the nonlinear case, if theGlobalmodel remains linear, quasi-Newton techniques
like BFGS or SR1 can naturally be applied (Gendre et al. 2009). Again, because of
the quality of the Global model, line-search appears not to be mandatory which
enabled us to propose a fully nonlinear version of quasi-Newton (Gosselet et al.
2018b). Also, nonlinear conjugate gradient was tested with interesting performance
if carefully configured (Gosselet et al. 2018b).
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Anyhow, in almost all the cases we ever tested, it appeared that Aitken’s �2

formula provided excellent performance in term of wall clock time, for an extremely
simple implementation.

In the case of studies defined over large (pseudo)time intervalswhere the computa-
tion must be carried out on a succession of time steps. The use of partially decoupled
time scales between the models was studied in Blanchard et al. (2019).

3D Example

In order to illustrate the method on a more significant test case, we propose to use the
data fromGendre et al. (2011). The structure is the “sweded” turbine blade presented
in Fig. 8, it was provided by Safran Aircraft Engines and it is representative of actual
engineering work. In this particular case, only the mechanical behavior of the zone
of interest is altered in the Global model: the Fine model is elastoplastic whereas
the Global model is purely elastic. Meshes are unchanged in the different models.
Again, the constitutive relations are representative of actual problems. In general
industrialists address this kind of problems with submodeling or “structural zoom”
techniques which can be interpreted as not iterating in the Global/Local coupling.

The Reference and Global meshes contain about 500000 degrees of freedom
(dof), the zone of interest contains 80000 dof, and the interface is about 6400 dof
large. Only one increment of load (pressure applied to one face) is considered.

The computation is managed by a python script which drives Abaqus software.
The implementation is non-intrusive in the sense that the models are barely modified,
only the extra interface load must be added to the global model. The two-scale Robin
approach of Gendre et al. (2011) consists in extending the Fine model with 3 layers
of (elastic) elements to approximate the surrounding stiffness; the long-scale effects
are taken into account by a projector based on the response of the global structure to
Saint-Venant loads on the interface. When needed, Sherman-Morrison is applied to
take into account low-rank alteration to the stiffness matrix.

The problem was small enough in order to compute the Reference solution.
Figure9 presents the convergence of the method, measured by the error in terms
of maximum accumulated plastic strain compared to the reference. The basic itera-
tion takes 10 iterations to lower the error by 2 order of magnitudes. The accelerated
version (SR1 quasi-Newton) needs 7 iterations to lower the error by 5 orders of
magnitudes. Finally, the Robin version with acceleration only needs 4 iterations for
a 6-order of magnitude decrease.

Note that a plateau can be observed around a relative error of 10−6. This is very
common when using industrial software: some truncation was applied by Abaqus
on strain and stress which makes it impossible to achieve better precision. Often,
the estimation of the residual (nodal forces) does not suffer such limitation, so that
the residual can be decreased up to machine zero whereas the actually attainable
mechanical precision was reached much earlier.
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Area of 
interest

Fig. 8 Sweded turbine blade

Fig. 9 Convergence on the 3D test case—error in accumulated plastic strain

We end up the illustration by important mechanical considerations. Figures10
and 11 present a comparison between the solution obtained by the classical submod-
eling approach and the Global/Local coupling. In the presented case, the classical
submodeling, widely used by industrialists, provides a good estimation of the stress
in the zone of interest. But it is really inaccurate in terms of plastic equivalent strain
which, for the record, is one of the mechanical quantity used to estimate the lifespan
of the structure under cyclic loading. Global/Local coupling is thus a powerful tool
to achieve higher precision in the computation without impeding the industrialists’
design chain, since usual tools can be employed without profound alteration.
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Fig. 10 Comparison between submodeling of global/local coupling: von Mises stress

Fig. 11 Comparison between submodeling of global/local coupling: accumulated plastic strain

Note that the Global/Local coupling can also provide a simple framework in order
to introduce dedicated software for localized phenomena, see e.g.Guguin et al. (2016)
for the use of a research code specialized in friction contact simulation to precisely
model bolts in a composite plate assembly.

Conclusion

So far, most of what has been done regarding the global/local non-invasive coupling
technique concerns the development of the method within legacy codes. We hope
that the very simple case which was analyzed in this paper will be useful for anyone,
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and possibly Ph.D. students, to get familiar with the method and to further develop
it. We think in particular to its initial motivation: to make it possible realistic simu-
lation of complex industrial problems including all their physical and technological
complexity. The proposed method should allow, by an easy and fast coupling, to
merge research software, with their enhanced physical capabilities, with industrial
ones with their geometrical and technological capabilities.
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