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1 Introduction

If we measure the drain-to-source current of a metal–insulator–semiconductor
(MIS) field-effect transistor (FET) applying dc bias, excess low-frequency noise,
called 1/f noise, is usually observed, whose power spectral density is approximately
inversely proportional to frequency. A widely accepted explanation of 1/f noise
today is that it is caused by superposition of multiple random telegraph noise (RTN)
signals [1, 2]. If a trap site in the gate insulator of a MISFET captures or emits
an electron, the conductance of the MISFET will change, depending on the charge
state of the trap. An example of single-trap RTN waveform is shown in Fig. 1a. The
signal can be characterized by three parameters: amplitude A, and time constants τ 0
and τ 1, where τ 0 and τ 1 are defined here as the mean time of stay in states 0 and 1,
respectively. The power spectral density of the signal is given by [3]

S(f ) = 4A2

(τ0 + τ1)
{
1/τ 2 + (2πf )2} ,

1

τ
≡ 1

τ0
+ 1

τ1
. (1)

By adding many such signals, whose τ value is distributed uniformly per logτ

(i.e., the expected number of traps in the range of 1–10 Hz is the same as 10–100 Hz)
for many orders, a 1/f power spectrum is generated. Therefore, when the channel
length L and width W of a MISFET are large, in which many traps are expected to
exist, 1/f noise will be observed. However, as MISFETs are scaled down, it becomes
more and more likely that a limited number of traps exist in a FET. In such situations,
RTN signals become apparent (Fig. 1).
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Fig. 1 Random telegraph noise waveforms for single trap (a) and multiple (three) traps (b) cases

While the expected number of traps per transistor will decrease by shrinking the
channel area LW, on the contrary, the impact of RTN on transistor characteristics
becomes more serious [4–6]. This is because the sensitivity of MISFET character-
istics on a single charge carrier is increased in proportion to q/COX, where COX
is the MISFET gate capacitance. As a result, recently, low-frequency noise has
become a concern, not only for analog circuits but also for digital circuits using
miniaturized transistors. RTN was first reported as a practical reliability problem
for Flash memories [7–9], in which COX of the memory cell transistors is smaller
than logic FETs, owing to the thicker gate dielectric and smaller LW used. Today,
in state-of-the-art complementary metal–oxide–semiconductor (CMOS) integrated
circuit technologies, L and W on the order of 10 nm are used, and hence COX has
become extremely small, even for logic transistors. To realize reliable and error-free
digital circuits using such advanced technologies, RTN must be taken into account
[10–15].

To deal with RTN, a statistical approach is indispensable, since there is large
inter-device “variability of noise.” Depending on the number of traps, as well as
the characteristics of each of the traps, one transistor exhibits statistically different
noise waveforms from others. In such situations, effects of noise on MISFET
circuits cannot be judged only from the averaged 1/f noise characteristics, which
are obtained by measuring large transistors. Therefore, the author and coworkers
proposed a set of methods for assessing “RTN reliability” of static random access
memories (SRAMs) [16, 17], where “accelerated” SRAM measurements and fast
Monte Carlo simulations are combined. SRAM cells are considered to be most
vulnerable to RTN in logic integrated circuits, since the cell transistors are smaller
than other logic transistors. In this chapter, these methods will be reviewed and
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given more thorough descriptions. Works in [6] are also briefly reviewed in the next
section, which will serve as an additional introduction and motivation part of this
chapter.

2 Individual FET Characterization

A simple and straightforward way of statistically characterizing RTN would be to
measure noise waveforms for many individual transistors [5, 18–21]. For example,
in [19], hundreds of n-channel and p-channel MISFETs were measured, applying
dc bias on all the terminals. Then, the FETs exhibiting single-trap RTN signals
were selected, and the parameters A, τ 0, and τ 1 for each RTN signal were
extracted from the measured current vs. time waveforms, varying the dc bias
conditions. By focusing on only such single-trap FETs, the determination of the
trap parameters was simplified. This was possible, since single-trap RTN signals
were found in a sufficiently large portion (20–30%) of all the FETs, thanks to the
miniaturization. From such measurements, it was possible to discuss in detail the
statistical distributions of the trap time constants, energy levels, and even vertical
locations in the gate oxide. Correlation between the parameters was also easily
examined. In [20, 21], transient measurements were also used, which is effective for
covering a wider trap energy range than dc biasing. An advantage of this approach,
i.e., simply measuring many individual transistors, is that it can be combined with
almost any measurement and analysis methods of any sophistication. Detailed
information on each trap can be obtained, e.g., by manipulating bias conditions
or changing temperature. However, there is a disadvantage that single transistor
measurements are usually time-consuming, and therefore it is difficult to measure a
sufficient number of devices necessary for revealing detailed statistical distributions
of the trap parameters in the low quantile range.

To alleviate this problem, addressable transistor arrays were used in [6]. Today,
since variability in scaled down transistors is significant, characterization of vari-
ability in threshold voltage, drain current, etc. is indispensable, and therefore
addressable transistor arrays are commonly used for this purpose [22–25]. By using
addressable arrays, a large number of devices to be tested can be accommodated
in a small area, by sharing area consuming pads by many devices. If appropriately
designed, such arrays can be reused for characterizing RTN for a large number of
FETs. The arrays used in [6] integrate 1024 identically designed MISFETs, where
the gate and drain terminals of one selected FET out of the 1024 FETs, specified by
an address value, are connected to external pads via FET switches (Fig. 2). Kelvin
connections are used for the drain terminals (not shown) to reduce any voltage drop
by parasitic resistance. Common source and body pads are also provided. Using this
configuration, dc characterization including low-frequency noise measurements of
each FET, one-by-one, using standard parametric testers is possible. However, if
these 1024 FETs are measured sequentially, the measurement time per device will
be essentially the same with single FET measurement cases, though the number of
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Fig. 2 Addressable transistor
array configuration

Fig. 3 Quasi-parallel
measurement scheme

available FETs is increased. Therefore, to measure more FETs, while avoiding the
unacceptable increase of measurement time, a quasi-parallel measurement scheme,
as shown in Fig. 3, was adopted. First, only DUT #1 (DUT: device under test) is
connected to the pads VD and VG, and its drain current is measured. Then, the
connection is switched to DUT #2, and then to DUT #3, and so on, and finally to
DUT #1024. After all the FETs are measured, the address goes back to #1, and the
procedure is repeated for a desired number of times. Constant voltage is applied
to all the pads VD, VG, and VGU throughout the measurements. By applying the
same voltage on VG and VGU, transient trapping/de-trapping by DUT switching
was avoided.

One significant advantage of parallel measurement is its ability to perform long
time measurements for a large number of FETs, and hence information of slow traps
can be obtained. Figure 4 shows examples of slow RTN signals found by the quasi-
parallel scheme. It can be confirmed that traps with time constants on the order of
hour actually exist. As will be discussed later, such slow traps are problematic in
that their existence is not easily detected by short-time screening tests applicable
to production. Drawback of the quasi-parallel scheme, compared with true parallel
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Fig. 4 Single-trap waveform
examples obtained by
quasi-parallel measurements.
Waveforms (a) to (d) were
taken from four different
FETs in the same array.
© 2009 the Japan Society of
Applied Physics (JSAP).
Reprinted, with permission,
from [6]

measurements, is that the sampling interval becomes very long (at least 1024 times
longer in this particular example). Because of the sparse sampling, obtained current
vs. time data do not fully track true current vs. time RTN waveforms, unless the RTN
time constants are much larger than the long sampling interval. Even if the measured
current values for two consecutive samples are equal, it does not guarantee that the
current was constant between the sampling events; it is possible that the current has
travelled to a different value, and came back to the original one. In spite of this, if the
measurements are repeated for many cycles, fast RTN signals whose time constants
are much shorter than the interval can be detected, on a condition that the signal
satisfies the following conditions: (1) Both f0 and f1 are sufficiently large compared
to 1/N, where N is the total number of current sampling per FET,

f0 ≡ τ0

τ0 + τ1
, f1 ≡ 1 − f0 = τ1

τ0 + τ1
, (2)

and (2) both τ 0 and τ 1 are long enough compared to the time resolution of the source
measure units (SMUs). From the data thus obtained, statistical distributions of trap
number and amplitude could be efficiently determined, without spending the cost of
true parallel measurements using 1024 sets of SMUs.

The measured source-to-drain current (IDS) was first translated into an effective
threshold voltage (VTH) defined as

VTH ≡ VGS − IDS/gm, (3)

where VGS is the constant gate-to-source voltage, and gm is the transconductance.
The gm value used for each FET was determined by individually measuring current–
voltage characteristics of the same FET, to reduce the effects of gm variability.
Then, from the N sampled VTH values per FET, the number of traps in the FET
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Fig. 5 Trap number distributions obtained by using addressable transistor array for nFETs (a) and
pFETs (b). Poisson distributions whose mean values are equal to the measured values (0.52 for
the nFETs, 1.90 for the pFETs) are also shown for comparison. © 2009 JSAP. Reprinted, with
permission, from [6]

was determined using a simple algorithm: (1) Sort the N VTH values for each FET,
(2) find discontinuity of sorted VTH values which is larger than a certain value (e.g.,
0.5 mV), and (3) determine the number of traps n as

n = ceil
(
log2 (m + 1)

)
, (4)

where m is the number of discontinuities. Figure 5 shows the number distributions
of detected traps for both n-channel and p-channel FETs, which were SRAM cell
transistors fabricated by a conventional poly-Si/SiON gate stack technology. More
traps were found in pFETs than nFETs in this example. Poisson distributions, whose
expected values are set equal to the measured sample means, are also shown for
comparison. Figure 5 shows that it is reasonable to assume Poisson distributions for
the trap number in a FET. The slight disagreement could be attributed to the limited
number of FETs measured and incompleteness of the simple number determination
algorithm.

Next, RTN signal amplitudes were determined. To do this, similar to [19], only
those FETs containing one trap were selected and used, to unambiguously determine
the amplitude associated with a single trap. Figure 6 shows cumulative distributions
of the amplitude of effective threshold voltage shift �VTH (normalized by channel
area LW) thus determined. It was found that the distributions can be approximated
by exponential distributions, shown by the straight lines, which were also found in
Flash memory cells [9]. For plotting the data in Fig. 6, care was taken to account
for the fact that traps with too small amplitudes cannot be detected. Note that, in
Fig. 6, there is a very small gap between �VTH = 0 and the lowest �VTH plot.
Since the number of the traps below this detection limit is unknown, that number
was used as a fitting parameter. Denoting the number of detected traps n1, and the
number of undetected ones n2, accounting for n2 results in shifting all the plots
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Fig. 6 Cumulative
distributions of RTN
amplitude obtained by using
an addressable transistor
array for n-channel FETs
(black marks) and p-channel
FETs (gray marks).
Amplitude is normalized by
transistor channel area. “Log”
here is the natural logarithm.
© 2009 JSAP. Reprinted,
with permission, from [6]

(quantile values) in Fig. 6 downward by a constant ratio n1/(n1 + n2). The fitting
parameter n2 was determined, such that each straight regression line crosses the
vertical axis �VTH = 0 at cdf = 0, where cdf is cumulative distribution function
of �VTH. In this way, two fitting parameters were used for determining the straight
lines in Fig. 6, though exponential distribution itself contains only one parameter.
Similar fit could be obtained by using naturally two parameter distributions, such
as lognormal distributions [5]. However, assuming nonzero n2 seems to be more
adequate, since it can decouple the effect of the measurement limitation.

So far, methods for collecting statistical information of RTN by measuring
individual transistors have been discussed. It was shown that the measurement
efficiency can be improved by using addressable transistor arrays. However, a
question arises. Is it practically possible to fully understand or describe RTN
phenomena by straightforwardly accumulating such statistical information (number,
amplitude, time constants, as well as their voltage and temperature dependence) of
the traps? To obtain such information, the problem of limited measurement window
must be considered. If we perform current sampling measurements with an interval
T and sampling count N, only those traps whose time constants are sufficiently larger
than T, and sufficiently smaller than NT, can be detected. On the other hand, to fully
predict product reliability, it would be necessary to know about those traps, whose
time constants are between around the operation clock cycle (e.g., 1 ns) and product
lifetime (e.g., 10 years). To straightforwardly achieve this, measurements of many
devices (e.g., 1000) must be continued for more than 10 years, which is practically
impossible. Even if all such information is available, there is another problem. How
can we predict product failure probability? It would be possible to simulate product
failures using Monte Carlo circuit simulations [26–28], using the perfect RTN
parameter sets. However, it is not realistic to repeat transient simulations of 10-year
duration for a large number of devices. Therefore, some additional methods must
be provided that can link individual trap characterization and product reliability.
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Various proposals, which will be useful for achieving this goal, are already made.
Transient measurements [29, 30] originally used in the field of bias temperature
instability are known to be very effective for enlarging the measurement windows.
New methods for long-term reliability simulations are also reported [31, 32]. The
methods in [16, 17] were also intended for solving these problems.

3 Accelerated SRAM Test

As for the first problem mentioned above, the same also applies to other phenomena
concerning long-term reliability, such as time-dependent dielectric breakdown
(TDDB) and bias temperature instability (BTI). To determine TDDB lifetime, for
example, a straightforward way would be to measure several devices for more
than 10 years, under the normal operation conditions. However, practically this
is not possible. Therefore, a common practice is to predict lifetime by combining
accelerated tests and lifetime extrapolation [33, 34]. For example, time to dielectric
breakdown (TBD) is measured by applying higher than normal voltage, to make
TBD short enough to measure. By obtaining TBD values for several different such
accelerated voltage conditions, TBD under normal operation voltage is estimated by
extrapolation. A similar method would also be required for RTN. As for the second
problem, it is considered that directly measuring circuit failures caused by RTN
would be a good solution. As already mentioned, a circuit that will be most easily
affected by RTN (or any random variability) in logic integrated circuits is static
random access memory (SRAM). The reasons are that an SRAM cell uses smaller
transistors than logic circuits, and that it is essentially an analog circuit relying on a
subtle balance between the transistors constituting the memory cells. Based on these
considerations, it was proposed to directly measure SRAM failures caused by RTN,
by applying accelerated bias conditions [16, 17]. The work will be reviewed in the
following.

Figure 7 shows a typical SRAM cell, consisting of six transistors. Transistors p1
and d1 form a first CMOS inverter, and p2 and d2 form a second. The two CMOS
inverters are cross-coupled, and constitute a bistable latch. Transistors a1 and a2
serve as pass gates to connect the internal nodes n1 and n2 to the bit lines BL and
BL′. Usually, an SRAM cell is disconnected from the bit lines, by turning off the
pass gates. In this situation (retention state), the cell is very stable, owing to the
near-ideal CMOS inverter transfer curves (Fig. 8a). The high node (either n1 or n2)
voltage (V1 or V2) is close to the power supply voltage VCC, and the low (the other)
node voltage is close to zero. However, when the cell content needs to be read out,
the pass gates are turned on by raising the word line (WL) voltage, while setting
the voltage of the bit lines equal to VCC. This deforms the inverter characteristics as
shown in Fig. 8b. The low node voltage is pulled up by the bit line voltage. In this
situation (read disturb state), the cell becomes less stable. SRAM cell failure due
to RTN will occur, if any, almost certainly during this read disturb state. A static
noise margin (SNM) [35, 36] is defined as the edge length of a square that nests
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Fig. 7 Six-transistor CMOS SRAM cell (a) and its equivalent circuit (b)

Fig. 8 Butterfly curves for retention (a) and read disturbed (b) states. V1 and V2 are the voltage at
nodes n1 and n2, respectively. Circles show stable crossing points of two inverter transfer curves,
which correspond to memory states “0” and “1,” respectively. If SNM1 < 0, crossing point “1”
disappears, and memory “1” is lost upon reading

in the “butterfly curves” in this read disturb state (see Fig. 8b). This definition can
be modified to allow negative SNM, by defining SNM as the maximum distance
between the two transfer curves (divided by the square root of two for compatibility
with the original definition). A failure occurs if SNM becomes negative.

Figure 9 shows the concept of SRAM-accelerated test. In recent scaled SRAMs,
there is large transistor variability. Usually, the threshold voltage of SRAM cell
transistors is normally distributed, with a standard deviation of around a few tens
of millivolts. As a result, SNM is also nearly normally distributed, because the
nonlinearity between SNM and transistor threshold voltage is weak. To avoid yield
loss due to the variability, SRAM cells are designed such that the mean SNM is
larger than at least around six times the standard deviation σ (six sigma) of SNM. In
this situation, SRAM cells whose SNM is small enough to be diminished by RTN is
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Fig. 9 Concept of accelerated SRAM test. Histogram of SNM in normal operation (a) is shifted
to (b) by adjusting bias conditions. © 2010 IEEE. Reprinted, with permission, from [16]

Fig. 10 Quantile–quantile
plots of SNM distributions for
various combinations of cell
power supply voltage (VCC)
and word line voltage (VWL),
obtained by Monte Carlo
circuit simulations. Sixty-five
nanometer technology
transistor models were used.
A straight line corresponds to
a normal distribution. SNM
distributions can be shifted
keeping the same shape

extremely rare, since the amplitude of SNM change due to RTN (σ is on the order
of mV) is small compared to the SNM variability range (σ is a few tens of mV).
Hence, in normal operation of properly designed SRAMs, RTN failure can hardly
be detected (Fig. 9a). Therefore, to observe many SRAM failure events by RTN
experimentally, it was proposed to intentionally reduce SNM by applying a special
bias to the cell (Fig. 9b). In this situation, there will be a large number of cells
whose SNM is negative due to variability, and always fail. In addition, there are cells
whose SNM is so small that RTN can easily cause their failure. As a result, SRAM
cell failure events due to RTN can be frequently observed. Fortunately, almost ideal
parallel shift of the SNM distribution as schematically shown in Fig. 9 is possible,
by simply applying a voltage higher than the nominal value to the word lines, and/or
setting VCC to a lower than nominal value, as demonstrated in Fig. 10.
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Fig. 11 Measured (open
circles) and simulated (closed
circles) fail bit count vs. read
cycle count for two different
bias (i.e., acceleration)
conditions. Here, VWL is
constant. © 2011 JSAP.
Reprinted, with permission,
from [17]

For the accelerated SRAM measurements, a 512-k bit (32-k words × 16 bits) test
SRAM cell array was used, which was capable of setting the high-state word line
voltage (VWL) and VCC independently. A 40-nm bulk CMOS technology was used
for the fabrication. First, zero was written to all the 512-k bits. Then, the SRAM
array was repeatedly read out, one word (16 bits) at a time, by scanning the address
starting from 0 to 32,767 (= 32 × 1024 – 1). Note the similarity to the quasi-parallel
measurements discussed in the previous section. If a cell operates normally, zero
will be read out every time. However, if a failure occurs in a cell during a read
disturb period, the bit state is flipped from 0 to 1. Once a failure occurs, the bit
state will never return to 0, since state 1 should be more stable for that specific
bit, and 1 is read out for all the readings after the failure. Figure 11 shows results
of such an accelerated SRAM read test, where the number of 1 bits (i.e., fail bit
count, FBC) vs. read cycle count is plotted. It can be seen that, even at the very
first reading, many cells fail. This is because, as a result of the intentional margin
reduction, there are a large number of cells whose SNM is negative owing to the
variability. This initial FBC should stay constant, no matter how many times the
reading process is applied, if there is no noise. However, the fact is that the FBC
monotonically increased, as the number of read cycles increased. This shows that
some noise source that causes bit failures certainly exists. It is suspected that the
noise may be caused by some external source, such as that generated by the memory
tester. Therefore, the same measurement for the same chip was repeated three times,
to check the reproducibility. Figure 12 shows maps of those bits that failed at the
first reading (gray marks), and those that did not fail at the first reading, but failed
at the second or later readings (solid marks). Similarity of the locations of the solid
marks between the three trials is apparent. The time-dependent failures tend to occur
repeatedly at the same bits. Those failing bits seem to be randomly distributed over
the chip area. Absence of any positional correlation suggests that the failures are not
caused by any deficiency of the array circuitry. These results strongly suggest that
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Fig. 12 Fail bit maps obtained by repeatedly measuring the same chip three times. Gray circles
show always failing bits, and black ones show initially passed but finally failed bits. © 2010 IEEE.
Reprinted, with permission, from [16]

the noise source exists in each SRAM cell, which should be RTN. Table 1 shows
the statistics of the results. Among the bits that exhibited a time-dependent failure
at least once, 60% consistently showed first-pass, last-fail behavior in all the three
measurements. However, the repeatability is not perfect. This is natural considering
that the failures caused by RTN will be statistical.

4 RTN Monte Carlo Simulation

By using SRAM arrays, direct observations of RTN failures seem to be possible.
However, still, the link between the measurements and product reliability is missing.
To solve this problem, realizing numerical simulations of the SRAM failures
was considered, to understand the failure mechanism. Let us first discuss what
is happening in a cell during the accelerated SRAM measurements. As already
pointed out, a cell stays in the retention state for almost all the time, in which
the cell is very stable, and no failure is expected to occur. However, trapping and
de-trapping do occur in the cell transistors, and their threshold voltage (VTH) will
change over time. Since the applied bias does not change in the retention state, each
FET is in a similar situation as during dc bias RTN measurements. This situation
is occasionally interrupted by the read operations, which will cause some transient
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Table 1 Statistics of bit
failures for three repeated
accelerated SRAM tests

Case Bit count Ratio (%)

Bias condition 1
0–1 28 12.33
0–2 15 6.61
0–3 141 62.11
1–3 23 10.13
2–3 20 8.81
Subtotal 227 100.00
3–3 344
Total 571
Bias condition 2
0–1 328 8.93
0–2 248 6.76
0–3 2252 61.35
1–3 461 12.56
2–3 381 10.38
1–2 1 0.03
Subtotal 3671 100.00
3–3 8086
Total 11757

Case x–y means that the bit failed x out of three
times at the first reading, and y times at the last
reading. 3–3 means the bit always failed, and 0–
3 means the bit always passed at the first reading,
but always failed at the last reading. © 2010 IEEE.
Reprinted, with permission, from [16]

effects. However, since the duration of a read disturb state is very short (typically,
on the order of 0.1–10 ns, for product SRAMs), it is assumed that the slow traps of
interest for long-term reliability will be frozen during the reading operation, and the
trap states of the cell established during the retention state will be sampled. Since
SNM is a function of VTH,i (i = 1,2, . . . ,6), where VTH,i is the threshold voltage of
the ith cell transistor, SNM changes over time depending on the trap states of all the
cell transistors. The sampling result will be either 0 (SNM ≥ 0, pass) or 1 (SNM < 0,
fail).

Based on these considerations, a simple and fast Monte Carlo (MC) simulation
method was proposed [16], which will be described below. The basic idea is that,
given the parameters (amplitude and time constants) of all the traps in a cell, and
assuming that the amplitudes are additive, it would be possible to estimate the worst-
case amplitude that is likely to occur in N sampling events, by simple analytical
considerations, even if N is a very large number (e.g., N = 3 × 1014 for 1-M
samples/s × 10 years). First, let us introduce a linear approximation

�SNM =
6∑

i=1

ai�VTH,i, (5)
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where �SNM is SNM deviation, and �VTH,i is threshold voltage deviation of the
ith transistor (i = 1,2, . . . , 6) from the respective reference values. The set of
coefficients ai can be determined by iteratively searching for the most probable
failure point (MPFP) using circuit simulations, applying SRAM cell variability
design methods [37, 38]. We also assume that trap amplitudes are additive. That
is,

�VTH,i =
ni∑

j=1

�VTH,i,j , (6)

where ni is the number of traps in the ith transistor, �VTH,i,j is the threshold voltage
deviation caused by the jth trap in the ith transistor. By combining Eqs. (5) and (6),
the SNM shift is now expressed as a simple linear combination of the VTH shifts
caused by all the traps. Here, �VTH,i,j denotes the VTH change from some reference
value, and is not necessarily equal to the amplitude (≡Ai,j) of the trap (i, j), but
can be either 0 (no trap state change) or ±Ai,j (low VTH to high VTH transition, and
vice versa). For simulating the time-dependent FBC increase as in Fig. 11, it would
be natural to select the initially sampled (read disturbed) state as the reference. If
SNM + �SNM < 0 at the moment of any read disturb (including the first), the cell
will fail. Note that SNM is also randomly distributed due to variability, and differs
from cell to cell.

Noting that an SRAM read failure is determined only by the trap states at the
moment of a read disturb, a simple time domain MC simulation would be, in
principle, possible. The probability that a trap is in state 0 at time zero, and is found
in state 0 (denoted P00) or 1 (denoted P01) after a time t is given by [3]

P00 = f0 + f1 exp

(
− t

τ

)
, P01 = f1

(
1 − exp

(
− t

τ

))
. (7)

Using this formula, it is possible to track the state of a trap over time by MC
simulations. That is, starting from an initial state, the state of a trap at the next
reading is probabilistically determined using Eq. (7). Then, collecting all the states
of the traps in a cell, Eqs. (5) and (6) are calculated to judge if SNM of the cell
is negative or not. This can be repeated for a desired number of times to simulate
the behavior as in Fig. 11. This discretized time domain simulation, based on a
Markov chain model, is much more efficient than industry standard general purpose
transient circuit simulations. However, even using this method, simulations of a
sufficiently large number of cells (e.g., 1-M cells) for a sufficiently large number
of readings (e.g., N ~ 106 for 1 s, not to mention N ~ 3 × 1014 for 10 years) is still
computationally too demanding. It should also be noted that the number of traps in a
cell to be simulated is much larger than the measured numbers shown in Fig. 5, since
traps with small probability of transition, which did not fall within the measurement
window, must be taken into account. Therefore, in [16, 17], an even simpler method
of MC simulation was adopted. That is, the largest amplitude of a cell that is likely
to occur in N reading events with a constant interval T was directly calculated from
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the trap parameters. The procedure is as shown below. In the following, the state of
a trap, which corresponds to the better SNM (good state), will be denoted state 0,
and the other (bad state) will be denoted state 1.

(S1) Assign an SNM value to cell, according to random variability of transistors.
(S2) Assign number of traps n to each transistor.
(S3) Assign amplitude A and two time constants τ 0 and τ 1 to each trap.
(S4) Randomly select initial state of all the traps, according to the ratio of τ 0 and

τ 1.
(S5) Find a combination of traps which maximizes −�SNM, while the probability

of finding all the traps simultaneously in state 1 after N read disturb events is
high enough.

(S6) If SNM + �SNM<0, judge that the cell will fail.

By repeating this for many cells, and for several N values, FBC vs. N relationship
can be simulated. Note that the simulation time using this method does not depend
on N, and is much more simplified than [27, 28]. Therefore, simulations of 10 years
operation can be easily performed.

It can be noticed that, by following this procedure, a cell failure is deterministic.
That is, a cell is always assumed to fail, if N exceeds a certain value. However, in
reality, a failure of the same cell may occur much earlier or later. This simplification
(i.e., use of an expected lifetime for a given set of trap parameters) could be
justified by the following reasons. Firstly, the simulation will be performed for a
large number of cells. Because of the simplification, simulating 1-M bits is easily
accomplished. As a result, the stochastic difference between real and simulated
time-to-failure will be averaged, and its effect on FBC will be reduced. This is
supported by the fact that almost the same FBC vs. cycle count results are obtained
by measuring the same array for three times (Fig. 11). Second, consideration
of stochastically different waveforms for only a single bit introduces additional
dimension of variability. At an early stage of study, removal of such complication
would be desirable.

For the MC simulations, normal distributions for the random variability of
SNM, Poisson distributions for trap number, and exponential distributions for trap
amplitude are assumed, taking into account the results shown in Sect. 2. As for
the time constants, it is assumed that the occupancy ratio follows Fermi–Dirac type
relationship [1, 2].

τ1

τ0 + τ1
= 1

1 + exp
(

E−EF
kBT

) , (8)

where the trap energy E is uniformly and symmetrically distributed around EF. It is
also assumed that the effective time constant τ defined as

1

τ
≡ 1

τ0
+ 1

τ1
(9)
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Fig. 13 Energy vs. effective
time constant plane. Traps are
assumed to be uniformly
distributed in this plane.
Traps in a sufficiently large
rectangle are considered for
simulation

is uniformly distributed per logτ , as already mentioned in connection with 1/f noise.
Then, τ 0 and τ 1 are given as

τ0 = τ

{
1 + exp

(
E − EF

kBT

)}
, τ1 = τ

{
1 + exp

(
EF − E

kBT

)}
. (10)

The uniform distributions were chosen here as crude initial assumption. The
lower bound of τ was set equal to the duration of read disturb, whereas, the upper
bound of τ was selected to be large enough compared with the time range to be
simulated. The upper and lower bounds of E–EF were selected to be sufficiently
away from zero, so that the probability of switching outside these bounds is
negligible. In other words, it was assumed that traps are uniformly distributed in
a rectangle placed in the E vs. logτ plane (Fig. 13); the rectangle is selected to be
large enough so that switching outside its top, bottom, and right edges is so rare
and can be ignored. The mean number of traps λ and their mean amplitude � were
selected by fitting to SRAM measurement results, using the values obtained by the
addressable transistor array measurements as initial guess. Note that the number of
traps to be fed to the simulator should not be equal to the actually measured number.
Since the area of the rectangle in the E vs. logτ plane used for the simulation is
much larger than that covered by measurement windows, the measured number
should be multiplied by the ratio of the areas (simulated over measured). It was
assumed that �, E, and τ , are independent, and that SNM variability and RTN are
also independent, according to our measurement results, part of which are reported
in [19].

FBC vs. cycle count simulated using the above described method is overlaid in
Fig. 11. The MC simulation could reproduce the accelerated SRAM measurement
results quite well, using reasonable trap parameters consistent with individual
transistor measurements. For the comparison, the fact that a cell suffers from 32
read disturbs in a cycle was taken into account. This is because a word line is
shared by 512 bits, while only 16 bits are read out at a time. Therefore, N is set
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equal to 32 times the cycle count. Because of this shared word line architecture
of the array, which is customary for SRAMs, the first reading does not necessarily
correspond to the first disturb, but may be any of the 1st to 32nd disturb. This will
cause some overestimation of SNM variability, since any failure at the first reading
is regarded as caused by SNM variability, not RTN. This inaccuracy is ignored here,
expecting that its impact on long-term results will be small. Assuming that SNM is
normally distributed, the mean SNM (μ) normalized by its standard deviation σ can
be estimated from the initial fail bit ratio (FBR = FBC/512 k), using a relationship

1 − Φ
(μ

σ

)
= FBR, Φ(x) ≡ 1√

2π

x∫

−∞
e− x2

2 dx. (11)

Since SNM of the memory cells in the array was not directly measurable, it
was decided to assume that mean SNM estimated using Eq. (11) is the true mean
SNM. This results in automatic alignment of the measured and simulated first FBC.
The increase of FBC with the number of cycles depends on the trap parameters. It
was found that good agreement between the measurement and simulation can be
obtained without much effort of parameter fitting. The results for the two different
bias conditions were reproduced by the same set of trap parameters without bias
dependence, in spite of the 50-mV VCC difference. It was also found that different
sets of parameters can yield almost the same simulation results. This suggests that,
for the modeling of RTN failures, a simplified noise model with reduced number of
parameters, e.g., by assigning traps to only one or two transistors, could be used. In
the following, to save simulation time, only the three most relevant transistors for
read stability were taken into account, while keeping the parameters in the range
reasonably consistent with individual FET measurements.

5 Reliability Extrapolation

With the aid of MC simulations, it is now possible to discuss, in more detail, what
is happening during the accelerated SRAM measurements. Figure 14 shows the
simulated probability density function (pdf) of worst RTN amplitude (i.e., −�SNM
determined in step (S5) of the simulation, or largest amplitude expected to be found
in at least one of N read disturbs). As the number of disturbs N increases, it becomes
more likely that a cell encounters a larger SNM amplitude, since the probability
of simultaneous switching of more traps towards the bad direction increases. This
is because slow traps with large τ or rarely switching traps with large |E–ET|
contributes to the amplitude. As a result, the mode (peak position) of the amplitude
pdf increases with N, while its variance also increases. It was found that these
simulated pdfs can be approximated by gamma distributions. This is expected, since
exponential distributions are assumed for the single-trap amplitude, and that there
is a close relationship between exponential and gamma distributions.
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Fig. 14 Simulated worst
RTN amplitude distributions,
normalized by SNM standard
deviation. © 2011 JSAP.
Reprinted, with permission,
from [17]

Fig. 15 Explanation of
probability distribution shift
of worst-case SNM, caused
by coexistence of variability
(variability without time
dependence) and RTN
(time-dependent variability).
Original normal distribution
of variability is shifted
horizontally. © 2011 JSAP.
Reprinted, with permission,
from [17]

It should be noted that there is large SNM variability, which is not time-
dependent. RTN amplitude calculated in Fig. 14 is still much smaller than the SNM
variability. Let us now consider what happens when variability and RTN coexist.
Assuming that SNM variability and RTN are independent, the pdf of the sum of
the two can be calculated by convolution of the respective pdfs. Figure 15 shows
an exemplary result of such convolution obtained numerically. It can be seen that
the resulting summed amplitude distribution is almost equal to the original SNM
normal distribution with a shifted mean. Although the RTN amplitude pdf has some
width, since the distribution is much narrower than SNM variability, the original
normal distribution is scarcely broadened.
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Fig. 16 Measured (open
circles) and simulated (closed
circles) effective margin vs.
read cycle count. © 2011
JSAP. Reprinted, with
permission, from [17]

Fig. 17 Measured (open
circles) and simulated (closed
circles) effective margin vs.
read cycle count for an
extended number of cycles. ©
2011 JSAP. Reprinted, with
permission, from [17]

Considering that RTN effectively shifts the SNM distribution as the number of
read disturbs N increases, we can define an effective SRAM margin M as a function
of N. M(N) normalized by the SNM standard deviation σ is calculated from the
measured fail bit ratio (FBR) at the Nth read disturb using Eq. (11), where M(N) is
obtained as μ, which satisfies Eq. (11). By using this translation of FBR to M(N),
we can plot effective SRAM margin vs. read disturb counts, as shown in Fig. 16. It
can be seen that the effective margin linearly decreases with log(N). The fact that
the slope of the decrease does not depend on the initial FBC (i.e., the degree of
acceleration) supports the assumption that the effective SNM distribution is shifted
in parallel. It has to be pointed out here that the linear relationship is a result of
assuming a uniform trap number distribution in the energy vs. logτ plane. If the
real distribution deviates from this assumption, a nonlinear dependence should be
observed. To confirm the linearity for a larger N range, an accelerated measurement
for extended number of cycles was performed. A linear relationship up to 10-M
cycles (320-M disturbs) was confirmed (Fig. 17). These results suggest that effective
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Fig. 18 Explanation of guard
banding (GB). © 2011 JSAP.
Reprinted, with permission,
from [17]

margin loss due to RTN after 10 years operation can be empirically estimated by
linearly extrapolating M(N) vs. log(N). If a 1-M byte (= 8-M bits) SRAM in which
each word line is shared by 512 bits, and all the word lines are evenly activated by
a 500-MHz clock, a cell will be disturbed 30-k times per second (=500 MHz/8-M
bits × 512 bits). Then, the margin loss �M after 10 years at N = 1 × 1013 (~30-
k disturbs/s × 10 years) is estimated to be around 0.25σ , both by extrapolation
and direct simulation. Though this value is much smaller than the usually assumed
worst-case variability of 6σ , it is not negligible, since this degradation is time-
dependent. While time-independent variability only degrades the product yield at
shipment, the margin loss is relevant to reliability in the field.

Though the effective margin loss can now be estimated by the extrapolation
technique, it has to be pointed out that the tolerance necessary for guaranteeing
reliability would be somewhat larger than the �M value thus obtained, as discussed
below. Consider a situation as shown in Fig. 18, where SRAMs, whose cells suffer
from SNM variability, are tested before shipment, and a certain part of the products
are discarded because of a failure caused by negative SNM. Since RTN should
effectively shift the SNM variability distribution to the left during use, this testing
condition should be stricter than the real use conditions. Then, the SNM distribution
of an SRAM in use that passed the test would look like the dashed line in Fig. 18b. It
can be assured that, if RTN is ignored, the worst SNM in the SRAM is greater than
zero by at least a certain amount. This tolerance will be called a guard band (GB).
If RTN simply shifts this truncated SNM distribution in parallel, similarly to Fig.
15, a GB width slightly larger than the extrapolated �M would suffice. However,
this is too optimistic. Figure 19 shows a result of convoluting a truncated normal
distribution (corresponding to variability) with a gamma distribution (corresponding
to RTN). In addition to a parallel shift as in Fig. 15, a tail emerges at the left
side, extending further than the parallel shift, owing to the nonzero width of the
gamma distribution. The GB width should be determined such that the probability
of failure during use does not exceed a certain acceptable limit (may be 1 ppm
or 0.1%, depending on the applications). In doing so, existence of the tail portion
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Fig. 19 Explanation of
probability distribution
change of worst-case SNM,
caused by coexistence of
variability and RTN, where
the initial variability
distribution is truncated by a
screening test. In addition to a
horizontal parallel shift,
additional tailing caused by
RTN amplitude variability
emerges. The screening
condition −4σ is too strict
practically, and is chosen here
for illustrative purpose. ©
2011 JSAP. Reprinted, with
permission, from [17]

Fig. 20 Measured (open
squares) and simulated
(closed circles) distributions
of worst-case SNM,
corresponding to Fig. 19.
Double circles show
simulation results
corresponding to 10-years
operation (=3 × 1011

reads = 1 × 1013 disturbs). ©
2011 JSAP. Reprinted, with
permission, from [17]

should be taken into account. In the following, it will be shown that the shape of the
distribution tail in Fig. 19 can be estimated, again using both the accelerated SRAM
measurements and MC simulations, as shown in Fig. 20.

The measured plots in Fig. 20 were obtained as follows. The accelerated SRAM
measurements of 10-k cycles were repeated for the same array, by changing the
cell power supply voltage VCC with a small interval from 0.88 V to 0.98 V, while
keeping the word line voltage VWL constant at a higher than nominal value (1.3 V).
At these bias conditions, the mean SNM normalized by σ , or margin M (Fig. 15),
is moved to around 1–2, depending on the VCC value. Lower VCC corresponds to
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lower M. For each condition, the address values of all the fail bits at the first and the
last readings were recorded. Let us denote fail bit counts for the first and last cycles
FBC1 and FBC2, respectively (FBC1 < FBC2). By translating FBC1 into a SNM
deviation using Eq. (11), M for a certain VCC value can be estimated. That is, the μ/σ
that satisfies Eq. (11) is an estimate of M for each VCC. Since FBC1 was measured
for several VCC values, it was also possible to approximately determine the pdf of
FBC1 (pdf1) by calculating (�FBC1/512 k)/�M, where �x means the difference of
x between two adjacent VCC conditions and 512 k is the total number of bits. By
definition, pdf1 vs. −M plots should fall on a standard normal distribution N(0,1).
Similarly, pdf2 can be obtained from FBC2, which will fall on a shifted normal
distribution N(−�M,1). Note that the negative sign accompanying M comes from
the fact that in the evaluation procedure here, the shape of the pdf is obtained by
changing M and counting bits whose margin deviation is smaller than −M (i.e.,
SNM < 0). By increasing M, the pdf information at a more negative deviation
−M is accessed. To obtain the tail distribution, the measured data were further
manipulated. First, one of the VCC condition (VCC = 0.92 V, M = 1.7σ denoted
MREF) was selected as a reference and a special fail bit count FBC2

′ was defined.
FBC2

′ is the number of those bits that failed after 10-k cycles at the respective VCC
(or M) condition, but passed at the reference condition at the first reading. Since
the entire fail bit maps were recorded, determination of FBC2

′ is straightforward.
Then, similar to other cases, FBC2

′ was converted to pdf2
′. The open marks in

Fig. 20 show pdf2
′ vs. −M thus obtained. The vertical line shows the reference

condition. This mimics a shipment test discussed earlier, though the condition is
unrealistically strict such that many failure bits can be measured (i.e., this is an
accelerated condition). On the left-hand side of the line, an exponentially decaying
tail was obtained, which should correspond to the tail in Fig. 19. These tail bits
passed a stricter test (M = MREF = 1.7σ ) at the first reading, but failed under a
looser condition (M > 1.7σ ) after 10-k cycles (= 320-k disturbs).

In Fig. 20, MC simulation results are also shown (solid circles). It is first
mentioned that the procedures for obtaining the measured and simulated plots in Fig.
20 would look quite different. This is because while the measured pdf is determined
by scanning it at SNM = 0 by shifting the mean of the pdf by sweeping VCC, the
simulated pdf is determined directly. The simulations were performed by modifying
the procedure in Sect. 4, by replacing steps (S5) and (S6) with the following.

(S5′) Find �SNM for N = N1 (≡�SNM1), using the procedure as in (S5).
(S6′) Find �SNM for N = N2 (≡�SNM2), using the procedure as in (S5).
(S7′) If (SNM + �SNM1−μ)/σ < −MREF, mark the cell as rejected at test.
(S8′) Record the values of SNM + �SNM1 and SNM + �SNM2.

The simulated solid marks in Fig. 20 were obtained by creating a histogram of
SNM + �SNM2 for a large number of bits (i.e., MC simulation runs), and normal-
izing it both horizontally and vertically. The screening operation at M = MREF was
taken into account by assigning an out-of-range value to SNM + �SNM2 of the
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rejected bits. For the horizontal normalization, an SNM + �SNM2 value must be
translated into a normalized SNM deviation. To do this, a seemingly natural choice
is to use the transformation

f (x) = x − μ

σ
, (12)

where μ and σ are the mean and standard deviation of SNM determined in step (S1)
of the MC simulations. However, in real measurements, it is not possible to perfectly
separate the effects of variability and RTN. Some randomness induced by RTN is
always mixed up with variability. This is also the case for the measured plots in
Fig. 20, where the normalized deviation was estimated from measured FBC1 data,
which is certainly affected by RTN. Therefore, for the horizontal normalization, μ

and σ in Eq. (12) were replaced by those of SNM + �SNM1 to make the results
consistent with the measurements. In addition, N1 in step (S5′) was set to 16 (i.e.,
average number of disturbs before the first reading in the SRAM measurements). By
properly taking into account the effects of RTN on the first reading in this way, the
good agreement between the measurements and simulations was obtained, using the
same set of parameters that reproduce FBC vs. cycle count measurements. Without
such measures, the simulated extension of the tail portion will be overestimated. It
is also pointed out that, if we perform multiple tests, or increase N1, the extension
of the tail can be reduced, because more vulnerable bits can be screened. Once the
MC simulation is calibrated in this way, the tail distribution after 10 years operation
can be estimated using the simulation, as shown by the dotted circle plots in Fig. 20.

6 Conclusion and Remarks

A systematic set of methods for assuring SRAM reliability against RTN proposed
earlier [16, 17] has been reviewed, supplementing additional details. It was pointed
out that there is similarity between RTN reliability and other long-term reliability
issues (e.g., TDDB, BTI), owing to the existence of extremely rarely switching
traps, and that something similar to “lifetime extrapolation” is necessary. Another
important point is that there is large inter-device variability of RTN waveforms and
statistical evaluation of a large number of devices is mandatory. It was argued that
these requirements could be met by using accelerated SRAM array measurements,
combined with an extremely simplified and fast Monte Carlo simulation. A pro-
cedure for evaluating SRAM read failure probability in a product lifetime (e.g.,
10 years) was described.

It is considered that, regarding the methods presented, there are still problems
that remain to be addressed. Following are some of them that seem to be important.
(1) The methods should be extended to cover SRAM write stability, which is equally
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important as read stability. (2) Validity of the MC simulation algorithm should be
proved mathematically. The agreement with the measurements is still empirical.
(3) The trap parameter distributions assumed, which strongly affect extrapolation
results, seems to be too simplified. More trustworthy parameter settings based on
experimental and/or theoretical studies are desired.
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