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Abstract. In this contribution, we report on a computational corpus-based study
to analyse the semantic evolution of words over time. Though semantic change is
complex and not well suited to analytical manipulation, we believe that computa-
tional modelling is a crucial tool to study this phenomenon. This study consists of
two parts. In the first one, our aim is to capture the systemic change of word mean-
ings in an empirical model that is also predictive, making it falsifiable. In order
to illustrate the significance of this kind of empirical model, we then conducted
an experimental evaluation using the Google Books N-Gram corpus. The results
show that the model is effective in capturing semantic change and can achieve
a high degree of accuracy on predicting words’ distributional semantics. In the
second part, we look at the degree to which the S-curve model, which is gener-
ally used to describe the quantitative property associated with linguistic changes,
applies in the case of lexical semantic change. We use an automatic procedure
to empirically extract words that have known the biggest semantic shifts in the
past two centuries from the Google Books N-gram corpus. Then, we investigate
the significance of the S-curve pattern in their frequency evolution. The results
suggest that the S-curve pattern has indeed some generic character, especially in
the case of frequency rises related to semantic expansions.

Keywords: Semantic change · Diachronic word embedding · Recurrent neural
networks · Computational semantics · S-curve model

1 Introduction

The availability of very large textual corpora spanning several centuries has recently
made it possible to observe empirically the evolution of language over time. This obser-
vation can be targeted toward a few isolated words or a specific linguistic phenomenon,
but it can also be interesting to combine these specific studies with the search for more
general laws of language change and evolution. Semantic change, on which we shall
focus in this contribution, includes all changes affecting the meaning of lexical items
over time. For example, the word awful has drastically changed in meaning, moving
away from a rather positive connotation, as an equivalent of impressive or majestic, at
the beginning of the nineteenth century, and toward a negative one, as an equivalent of
disgusting andmessy nowadays [1]. It has been established that there are some systemic
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regularities that direct the semantic shifts of words meanings. Not all words exhibit the
same degree and speed of semantic change. Some words (or word categories) might
be more resistant than others to the phenomenon of semantic change, as proposed by
Dubossarsky et al. [2]. Various hypotheses have been proposed in the literature to explain
such regularities in semantic change from a linguistic point of view [3].

One of the main challenges facing researchers studying the phenomenon of semantic
change is its formidable complexity. It seems impossible to grasp all details and factors
involved in this type of change, its abstract naturemaking it analytically intractable.How-
ever, computationalmodels have no difficulties in handling complexity, and can therefore
be used as means to make the study of semantic changes more accessible. Computa-
tional modelling of language change is a relatively new discipline, which includes early
works that aimed at characterising the evolution through statistical and mathematical
modelling [4, 5] and more recent and advanced works involving artificial intelligence,
robotics and large-scale computer simulations [6].

In this context, the computational study of text temporality in general and semantic
change in particular has become an active research topic, especially with the emergence
of new and more effective methods of numerical word representations. The interest of
taking into account the temporal dimension and the diachronic nature ofmeaning change
as a research direction has been effectively demonstrated in several studies. It makes it
possible tomodel the dynamics of semantic change [7], to analyse trajectories ofmeaning
change for an entire lexicon [8], to model temporal word analogy or relatedness [9, 10],
to capture the dynamics of semantic relations [11], and even to spell out specific laws
of semantic change, among which:

• The Law of Conformity, according to which frequency is negatively correlated with
semantic change [12].

• The Law of Innovation, according to which polysemy is positively correlated with
semantic change [12].

• TheLawof Prototypicality, according towhich prototypicality is negatively correlated
with semantic change [2].

In other studies on language change, researchers have been more interested in
analysing the quantitative patterns associated with the propagation of changes. It has
been shown that the diffusion of linguistic changes over time can be commonly pre-
sented as a sigmoidal curve (slow start/latency, accelerating period followed by a slow
end/saturation) [13]. In this matter, the so-called S-curve model is generally used to
describe the quantitative properties of frequency profiles. However, there have been
only few computational studies in the literature to attest this quantitative pattern, and to
the best of our knowledge, this claim is yet to be supported by case studies in the case
of lexical semantic change as well.

In this work, we address the question of semantic change from a computational
point of view. We conduct a computational corpus-based study that consists of two
parts. In the first part, our aim is to capture the systemic change of word meanings in an
empirical model that is also predictive, contrary to most previous approaches that meant
to reproduce empirical observations. In the second part, we try to analyse the degree to
which the S-curve model applies in the case of phenomena of lexical semantic change.
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Both parts of our study were conducted using a large-scale diachronic corpus, namely
the Google Books N-gram corpus.

The rest of the chapter is organised as follows: Sect. 2 presents the concept of
diachronic word embedding and describes how this technique can be used to empiri-
cally quantify the degree of semantic change. Section 3 presents the first part of our
study consisting of modelling and predicting semantic change using diachronic word
embedding. In Sect. 4, we report on the second part of our contribution concerned with
analysing the quantitative behaviour of some cases of semantic change. Finally, Sect. 5
concludes the chapter.

2 Empirical Assessment of the Semantic Change Using Diachronic
Word Embedding

2.1 Diachronic Word Embedding

To represent computationally the meaning of words over time-periods, it is necessary
first to extract the embedded projections of these words in a continuous vector space
according to their contextual relationships [14]. Various methods can be used to obtain
such vectors, such as Latent Semantic Analysis [15] and Latent Direchlet Allocation
[16]. However, more recent and advanced techniques such as word2vec [17] and GloVe
[18], known commonly as word embedding techniques, seem capable of better rep-
resenting the semantic properties and the contextual meaning of words compared to
traditional methods. Indeed, word embedding techniques have established themselves
as an important step in the processing pipeline of natural languages.

The word2vec algorithm is one of the most frequently used techniques to construct
word embeddings, with a huge impact in the field. It consists in training a simple neural
network with a single hidden layer to perform a certain task (see Fig. 1). Training is
achieved through stochastic gradient descent and back-propagation.

In the case of the skip-gram with negative sampling (SGNS) variant of the algorithm
[17], the learning task is as follows: Given a specific word in the middle of a sentence,
the model uses this current word to predict the surrounding window of context words.
The words are in fact projected from a discrete space of V dimensions (where V is the
vocabulary size) onto a lower dimensional vector space using the neural network. The
goal is not to use the network afterward. Instead, it is just to learn the weights of the
hidden layer. These weights constitute actually the word embedding vectors. Despite
its simplicity, the word2vec algorithm, given an appropriate amount of training text, is
highly effective in capturing the contextual semantics of words.

Suchword embedding techniques can be tweaked towork in a diachronic perspective.
The method consists first in training and constructing embeddings for each time-period,
then in aligning them temporally, so as to finally use them as a means to track semantic
change over time and thus to identify the words that have known the biggest semantic
change in the corpus.

In our case, we used pre-trained diachronic word embeddings constructed on the
basis of time-periods measured in decades from 1800 to 1990 [12]. The training text
used to produce these word embeddings is derived from the Google Books N-gram
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Fig. 1. Architecture of the Skip-gram Model [17].

datasets [19] which contain large amounts of historical texts in many languages (N-
Grams from approximately 8 million books, roughly 6% of all books published at that
time). Each word in the corpus appearing from 1800 to 1999 is represented by a set of
twenty continuous 300-th dimensional vectors; one vector for each decade.

2.2 Quantifying the Degree of Semantic Change

From a technical point of view, the degree of semantic change can be computationally
examined with the help of mainly two different measures using diachronic word embed-
dings. The first one, known as the global measure, simply consists in computing the
cosine distance between a given word’s vectors from two consecutive decades t and
t + 1. The bigger the distance, the higher the semantic change [8]. The second mea-
sure, which we chose to use in our work, is known as the local neighbourhood measure,
recommended by Hamilton et al. [20]. It consists in evaluating the amount of seman-
tic change of a word based on how much its corresponding semantic neighbours have
changed between two consecutive decades, as illustrated in Fig. 2. To do so, we first
extract for each word xi , with its corresponding embedding vector wi , the set of k near-
est neighbours, denoted by Nk(xi ), according to cosine-similarity for both consecutive
decades t and t+1. Then, in order tomeasure the changewhich took place between these
two decades, we compute a second-order similarity vector for x (t)i from these neighbour

sets. This second-order vector, denoted by s(t)i , contains the cosine similarity of wi and
the vectors of all xi ’s nearest semantic neighbours in the time-periods t and t + 1, with
entries defined as:

S(t)( j) = cosine_sim
(
w

(t)
i , w

(t)
j

)
∀x j ∈ Nk

(
x (t)i

)
∪ Nk(x

(t+1)
i ) (1)

An analogous vector for x (t+1)
i is similarly computed as well.
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Fig. 2. Visualisation of the semantic change in the English word “cell” using diachronic word
embedding. In the early 19th century the word cell was typically used to refer to a prison cell,
hence the frequency of cage and dungeon in the context of cell in 1800, whereas in the late 19th
century its meaning changed as it came to be frequently used in a scientific context, referring to a
microscopic part of a living being (see protoplasm, ovum, etc. in the 1900 context).

Finally, we compute the local neighbourhood distance that measures the extent to
which xi ’s similarity with its nearest neighbours has changed as:

d(x (t)i , x (t+1)
i ) = cosine_dist

(
s(t)i , s(t+1)

i

)
(2)

Hamilton et al. [20] have found that the local neighbourhood measure is more effec-
tive in capturing specific cultural and semantic shifts than the global measure, while
being less sensitive to other types of change such as grammaticalization.

3 Modelling the Semantic Change Dynamics Using Diachronic
Word Embedding

In this first part of our study, we aim to capture the systemic change of words meanings
in an empirical model that can also predict such changes, making it falsifiable. Our goal
is thus to define a model capable of learning how the meanings of words have changed
over time, and then use this model to predict how these meanings may evolve. This can
then be checked against the actual meaning change which can be assessed with the same
corpus. We propose a model that consists of two components:

1. Diachronic word embeddings to represent the meanings of words over time as the
data component of the model as described in the previous section.

2. A recurrent neural network to learn and predict the temporal evolution patterns of
these data.

The idea behind our model is to train Long Short Term Memory units (LSTMs)
Recurrent Neural Network (RNN) on word embeddings corresponding to given time-
periods (measured in decades) and try to predict the word embeddings of the following
decade. We then evaluate the model using the diachronic embeddings derived from
the English Google Books N-Gram corpus. The next two subsections describe more
thoroughly the architecture of the recurrent neural network used in our work and the
experimental evaluation respectively.
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3.1 Predicting Semantic Change with Recurrent Neural Networks

As we are interested in predicting a continuous vector of d dimensions representing
a word’s contextual meaning in a given decade, this task is considered to be a regres-
sion problem (by opposition to a classification problem, where the task is to predict a
discrete class). Many algorithms have been proposed in the literature to deal with this
kind of temporal pattern recognition problem, such as Hidden Markov Models [21] and
Conditional Random Fields [22].

In this work, we propose to use a recurrent neural network with a many-to-one
LSTMs architecture to address this problem. RNNs are a powerful class of artificial
neural networks designed to recognise dynamic temporal behaviour in sequences of
data such as textual data [23]. RNNs are distinguished from feed-forward networks by
the feedback loop connected to their past states. In this feedback loop, the hidden state
ht at time step t is a function F of the input at the same time step xt modified by a weight
matrixW , added to the hidden state of the previous time step ht−1 multiplied by its own
transition matrix U as in Eq. (3):

ht = F(Wxt + Uht−1) (3)

More specifically, we used a LSTMs architecture [24] (see Fig. 3) which is a variety
of RNNs designed to deal effectively with the problem of vanishing gradient that RNNs
suffer from while training [25].

Fig. 3. Themany-to-oneLSTMsarchitecture used in ourwork to predictword embedding vectors.
For each word in the vocabulary, the network is trained on diachronic word embedding vectors of
time-periods (1, . . . , t) as input and tries to predict the embedding vector for time t + 1 as output
[7].

Problem Formulation. In this contribution, we use the samemathematical formulation
used in [7]. Let us consider a vocabulary Vn consisting in the top-n most frequent words
of the corpus and W (t) ∈ Rd∗n to be the matrix of word embeddings at time step t .
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The LSTMs network is trained on word embeddings over time-period (1, . . . , t) as
input and asked to predict word embeddings W

∧

(t + 1) of time t + 1 as output. The
predicted embedding W

∧

(t + 1) is then compared to the ground truth word embedding
W (t + 1) in order to assess the prediction accuracy. Predicting a continuous 300-th
dimensional vector representing a word’s contextual meaning is thus, as indicated above,
formulated as a regression problem. Traditionally, researchers use mean-squared-error
ormean absolute-error cost functions to assess the performance of regression algorithms.
However, in our case, such cost functions would not be adapted, as they provide us with
an overview (i.e., numerical value) of how the model is performing but little detail on
its prediction accuracy. To have a more precise assessment of the prediction accuracy,
we need to be able to say whether the prediction, for each word taken individually, is
correct or not. Overall prediction accuracy is then computed. To do so, we proceed as
follows:

Given the vocabulary Vn constituted from the top-n most frequent words and the
matrixW(t) ofword embeddings at decade t, let us consider aword xi ∈ Vn andw

∧

i(t+1)
its predicted word-embedding at decade t+1.Though it is virtually impossible to predict
exactly the same ground truth vector wi(t + 1) for this decade, as we are working on
a continuous 300-th dimensional space, the accuracy of the predicted vector w

∧

i(t + 1)
can be assessed by extracting the words that are closest semantically, based on cosine-
similarity measure. If the word xi is actually the nearest semantic neighbour to the
predicted vector w

∧

i(t+ 1), then it is considered to be a correct prediction. Otherwise, it
is considered to be a false prediction.

3.2 Experimental Evaluation

In our experiment, we used word embeddings of all decades from 1800 to 1990 as
input for the network, and we trained it to predict the embeddings of the 1990–1999
decade as output. We then conducted two types of evaluations. The first one consisted
in reconstructing the overall large-scale evolution of the prediction accuracy on most
frequents words from the corpus. The second one consisted in evaluating the prediction
accuracy for a handful of word forms that have known considerable semantic shifts in
the past two centuries. In what follows, we describe the experimental protocol and the
results for both evaluations.

Overall Evaluation. In this first part of the evaluation, we experimented with different
vocabulary sizes (top-1,000, 5,000, 10,000 and 20,000 words respectively, consisting
of the most frequent words as computed from their average frequency over the entire
historical time-periods). The experimental settings can help us evaluate the effect of a
word’s frequency on the degree of semantic change, and hence on prediction accuracy.
For each experiment, and in order to get a reasonable estimate of the expected prediction
performance, we used a 10-fold cross-validation method. Each time, we used 90% of the
words for training the model, and the remaining 10% for testing its prediction accuracy.
The training and testing process was repeated 10 times. The overall prediction accuracy
is taken as the average performance over these 10 runs.

The results of measuring the prediction accuracy in our experimental evaluation are
summarised in Table 1. They show that the model can be highly effective in capturing
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semantic change and can achieve a high accuracy when predicting words’ distributional
semantics. For example, the model was able to achieve 71% accuracy trained and tested
exclusively on embeddings coming from the 10,000 most frequent words of the corpus.

Table 1. Results of prediction accuracy measured for different vocabulary sizes [7].

Vocabulary size Acc.

1,000 91.7%

5,000 86.1%

10,000 71.4%

20,000 52.2%

The results also show a better performance when using a smaller vocabulary size,
containing only the most frequent words. This is due to the fact that frequent words are
repeated a sufficient number of times for the embedding algorithm to represent them
accurately, and therefore to have a better distinction of the semantic change pattern
which those embeddings may contain, which in turn can lead the RNN model to better
capture this semantic change pattern and yield amore accurate prediction. Indeed, having
a large corpus is essential to enable the models to learn a better word representation.
These results are also in line with previous works claiming that frequency plays an
important role in the semantic change process. For instance, Hamilton et al. [12] have
shown that frequent words tend to be more resistant to semantic change (statistical Law
of Conformity).

Table 2. Neighbouring words according to cosine similarity (based on word2vec embeddings)
for sample words that have known important semantic shifts in the past two centuries [7].

Word Neighbours in 1800s Neighbours in 1990s

Circuit Habitable, district, lanes, range, area,
outer, globe, traverse

Circuits, appeals, amplifier, voltage,
transistor, capacitor, appellate, court,
resistor, district

Signal Commodore, hoisted, victory, tack,
admiral, commemoration, victories,
chace, flag, announce

Signals, modulated, amplitude, input,
noise, modulation, transmitter, analog,
waveform, transduction

Array Banners, spears, shields, ensigns, ranged,
pikes, trumpets, banner, standards

Arrays, variety, range, integers, integer,
byte, wide, pointer, formats, pointers

Mail Waistcoat, boots, shirt, gloves, breeches,
velvet, pistols, shoe, helmet, spurs

Mailing, email, send, internet, telephone,
sending, fax, messages, mails, postage

Case Studies. We further examined the prediction accuracy on a handful of words.
Based on the automatic procedure to assess the degree of semantic change as described
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in Sect. 2, we automatically extracted from the Google Books N-Gram Corpus the top-
100 words that have known the most important semantic shifts in the past two centuries.
We noticed that thesewords correspondmostly to cases that are correlatedwith important
cultural shifts, which makes them a harder challenge for the prediction model compared
to datasets used earlier in the overall evaluation. Table 2 presents sample words that
gained new meanings due to their evolution towards uses in scientific and technological
contexts. The model was able to correctly predict the semantic evolution of 41% of
the studied cases, including words that have known an important and attested semantic
change in the last two centuries such as the word cell. Moreover, a large portion of the
false predictions corresponds to borderline cases for which the model has a tendency
to predict vectors that are closer to much more frequent words, occurring in the same
semantic context in the corpus, such as predicting a vector closer to the (emerging but
more frequent) word optimistic for the (declining) word sanguine. The word sanguine
comes from Old French sanguin (itself from Latin sanguineus, on sanguis ‘blood’). It
originally means ‘blood-red’ (14th c., Merriam-Webster’s), and by extension ‘hopeful,
optimistic’ (15th c., ibid.). In our corpus examples from the early 18th c., it is already used
with the meaning ‘optimistic’, as in “My lords, I am sanguine enough to believe that this
country has in a great measure got over its difficulties” (Speech of the Earl of Liverpool,
1820: 31) and “she is sanguine enough to expect that her various Novelties will meet
the approbation of all Ladies of taste” (La belle assemblee, vol. XV, April 1st, 1817).
But Fig. 4 shows that its frequency in the 19th and 20th c. has dropped steadily, while
optimistic has seen its frequency rise sharply. Thus, the pair sanguine/optimistic seems
to be a good example of lexical replacement, which explains our model’s prediction.

Fig. 4. Frequency profiles of sanguine and optimistic in Google Books N-GramCorpusmeasured
in millions [7].

Thus, among other benefits for historical linguists, our method makes it possible to
identify the semantic replacement of one word by another in a specific context.

Despite being effective in predicting the semantic evolution of words, some diffi-
culties remain regarding our method. For instance, our model works best for the most
frequent words, i.e., according to the Law of Conformity, those with the least semantic
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evolution. One could thus wonder whether the words for which the model correctly
predicts the semantic are not simply those which display little or no semantic change.
The examples given in these case studies show that this is at least not always the case,
but a more systematic investigation of individual cases is needed in order to get a clear
picture. Another way to answer this question would be to explore more finely the effect
that both polysemy and word frequency may have on our results, especially on the word
representation part of our model. These two factors have been shown to play an impor-
tant role in the semantic change, and their effects need to be studied and formalized
more explicitly. Exploring more advanced and semantic-oriented word embedding tech-
niques, referred to as sense embeddings, such as SENSEMBED [26], could help make
the model less sensitive to those factors. In the next section describing the second part
of our contribution, we will take a closer look at the frequency aspect of that matter by
investigating the frequency pattern associated with lexical semantic change.

4 Investigating the Frequency Pattern Associated with Lexical
Semantic Change

In this second part of our study, our aim is to analyse the degree to which the S-curve
model applies in the case of phenomena of lexical semantic change. We investigate
the significance of this pattern through an empirical observation using the same large-
scale diachronic corpus as before, namely Google Books N-gram corpus. The rest of
the section is organized as follows: Subsect. 4.1 presents a brief review of the S-curve
pattern in linguistics. Subsect. 4.2 describes how to automatically extract it from corpus
data. In Subsect. 4.3, we describe our experimental settings and present the results.

4.1 The S-curve Pattern in Linguistics

S-curved functions have been used to analyse the diffusion of changes and innovations
in various scientific domains [27]. They describe change as resulting from the fact that
different parts of a given population successively adopt a new variant, which increases
its frequency of use over time. This frequency subsequently reaches a saturation point
at which the adoption of the variant stagnates.

The S-curve has been used starting from the early 1950s to model phenomena of
language change [28]. It supposes that language change occurs commonly according
to an S-curve, which means that the frequency rise associated with the new change
variant should obey a sigmoid function, or any similar function which has approximately
the same shape. The main reference in the literature on such matter is the work of
Kroch [5]. Several other works follow [29–31]. Blythe and Croft [32] have performed a
detailed survey on S-shaped patterns in linguistics totalising about 40 cases of changes.
Feltgen et al. [33] have provided a statistical survey on frequency patterns associated
with about 400 cases of functional semantic change (grammaticalization) in French. This
investigation has shown that 70%of the studied cases display at least oneS-curve increase
of frequency in the course of their adoption. Apart from these studies and despite having
an important part to play in the understanding of the underlyingmechanisms of language
evolution, it appears that large-scale quantitative studies of the statistical properties of
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language change were left aside, limited mostly by both the quantity and the quality of
the available historical linguistic data.

In semantic change, and more precisely in the case of semantic expansion, it is
expected to observe an increase in frequency for the word whose meaning changes. In
such cases, the generic character of the S-curve as a pattern associated with meaning
change can be described by the following three steps:

1. The first occurrences of the word linked to the new meaning start to appear in the
corpus and the frequency slightly increases to a certain low value. The word linked
to the same new meaning continues to show in the corpus, but not so much as to
reach a momentum. The frequency may thus remain constant for a certain period of
time.

2. Following its adoption, the word carrying the new meaning is used in a broader
number of contexts by an increasing portion of the population. The frequency rises
rapidly.

3. At a certain point, the rise in frequency reaches a saturation point. Saturation occurs
either because there is a limited number of new ‘adopters’ or because there is a
limited number of compatible linguistic contexts in which the new meaning can be
used [33].

In the following subsection, we describe how this pattern can be mathematically
extracted from diachronic textual data.

4.2 Extraction of S-curve Patterns from a Diachronic Corpus

In order to identify and extract S-curve patterns in diachronic data, we used a similar
procedure to the one described in [13]. The process is as follows:

1. For each word in the investigation dataset, we first extract its frequency xi in each
time period i of the diachronic corpus (in our case, we consider each year as one
time period). These frequencies are smoothed by computing a moving average over
the past five years.

2. For each frequency profile, we identify the two years istart and iend marking respec-
tively the beginning and the end of the time-range of a frequency rise, and we note
their corresponding frequencies xmin and xmax respectively.

3. We apply the logit transformation to the frequency points between xmin and xmax :

yi = log

(
xi − xmin

xmax − xi

)
. (4)

4. If the data actually follows a sigmoid function x̃i of the form:

x̃i = xmin + xmax − xmin

1 + e−hi−b
, (5)

then the logit transformation of this sigmoid function fits a linear function of the
form:

ỹi = hi + b, (6)
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which gives us the slope h, the intercept b and the residual r2 quantifying the linear
quality of the fit. Figure 6 provides an illustration of an extracted S-curve pattern of
frequency rise and its corresponding logit transform.

4.3 Experimentation

Experimental Settings. We investigated the presence of S-curve patterns on a handful
of words. We used the same 100 words that we have considered for the case studies
of the first part of our study (See Table 2 for examples). We then used the mathemat-
ical procedure described in the previous subsection to look for S-curve patterns in the
frequency profile of these words over time. We have decided to keep the investigation
dataset small in order to facilitate the subsequent qualitative analysis.

Results. In our study, we wanted to select only S-curves of highly satisfying quality.We
set the residual r2 quantifying the quality of the logit fit, as explained in Subsect. 4.2, to a
high value (98%) in order to ensure the S-shape quality of the extracted curves.Moreover,
we restricted the extraction to S-curves that cover at least one decade in length. Still,
our method enabled us to find at least one S-curve (and up to four in some cases) in the
frequency evolution for 46% of the studied. A lower threshold for r2 would have yielded
many more. The word Array, as we have seen in Table 2 above, is a good example of
semantic change, having shifted from the idea of order of battle (Webster, 1828, s.v.
array, first entry: “Order; disposition in regular lines; as an army in battle array. Hence
a posture of defense”) to that of imposing numbers (Merriam-Webster, online edition,
s.v. array, first entry: “an imposing group: large number”) [34]. Figure 5 illustrates the
frequency profile of this word in the past two centuries, while Fig. 6 shows the S-curve
pattern of frequency rise period extracted from its profile.

Theoretically speaking, semantic change can occur in two cases: because a word
gains new meanings (semantic expansion), or because it loses some (semantic reduc-
tion). Since only the former case is associated with a frequency rise, we decided to
focus the extraction on words having a growing frequency trend over time (instances
of semantic expansion). This brings up the percentage of S-curve pattern presence to
75%. These results suggest that the S-curve does indeed seem to be, to some extent, a
generic pattern of lexical semantic change, and especially of semantic expansion. How-
ever, when questioning the universality of the S-curve pattern, the results show that it
is actually not so pervasive as to be qualified as universal, at least on the basis of our
investigation dataset based on frequencies extracted from the Google Books N-gram
corpus. A more systematic investigation into bigger datasets, along with individual case
studies, is in order if we want to get a full picture.
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Fig. 5. Overall evolution of the relative smoothed frequency of use of the form array in the corpus.

Fig. 6. Extracted S-curve pattern of frequency rise period for the form array (left) and its
corresponding logit transform (right).

5 Conclusions

In conclusion, we presented a computational corpus-based study to analyse the semantic
evolution of words over time. First, we tried to capture the systemic change of word
meanings in an empirical model that is also predictive, making it falsifiable. In order to
illustrate the significance of this kind of empirical model, we conducted an experimental
evaluation using the Google Books N-Gram corpus. The results show that the model
is partly successful in capturing the semantic change and can achieve a high degree of
accuracy on predicting words’ distributional semantics.

We then proposed to investigate the pervasive nature of the S-curve pattern in the
case of semantic change. To do so, we used an automated procedure both to empirically
extract the words that have known biggest semantic shifts in the past two centuries,
and to extract S-curve patterns from their frequency profiles. Performing a statistical
observation over 100 cases of semantic change from the Google Books N-gram corpus,



14 M. A. Boukhaled et al.

we established the generic character of the S-curve, especially in the case of frequency
rises related to semantic expansion.

Although our experiments described in this study are still in their preliminary stages,
we believe that this approach can provide linguists with a refreshing perspective on
language evolution by making it possible to observe large-scale evolution in general
and semantic change in particular. It thus nicely complements existing methods and
reinforces a falsifiability approach to linguistics. Based on the current results, we have
identified several future research directions. The RNN model that we propose to use in
the first part of our study is rather standard and simplistic compared to the complexity
of semantic change. We therefore intend to explore deeper networks and to put more
time and effort in the fine tuning process of its hyper-parameters. On the other hand, a
good question would be to analyse the possible interactions between different linguistic
properties of the word such as its actual degree of semantic change and the degree of
its polysemy in the time period covered by the S-curve pattern. This is only a broad
perspective of research, which we shall explore more thoroughly in future works.
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