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Preface

The present book includes extended and revised versions of a set of selected papers
from the 11th International Conference on Agents and Artificial Intelligence (ICAART
2019), held in Prague, Czech Republic, during February 19–21, 2019.

ICAART 2019 received 202 paper submissions from 43 countries, of which 8,4%
were included in this book. The selection procedure was as follows. First, the papers
were selected by the event chairs. Their selection was based on a number of criteria that
include (1) the classifications and comments provided by the Program Committee
members, (2) the session chairs’ assessments, and (3) the program chairs’ global view
of all papers presented in the technical program. Then the authors of the selected papers
were invited to submit a revised and extended version of their papers having at least
30% innovative material. Finally, the remaining submissions were thoroughly
reviewed, leading to the publication of 17 submissions.

The purpose of the ICAART is to bring together researchers, engineers, and prac-
titioners interested in the theory and applications in the areas of Agents and Artificial
Intelligence (AI). Two simultaneous related tracks have been held, covering both
applications and current research work. One track focused on Agents, Multi-Agent
Systems and Software Platforms, Distributed Problem Solving, and Distributed AI in
general. The other track focused mainly on AI, Knowledge Representation, Planning,
Learning, Scheduling, Perception, Reactive AI Systems, Evolutionary Computing, and
other topics related to Intelligent Systems and Computational Intelligence.

The book opens with a publication on Natural Language Processing (NLP), titled
“The Dynamics of Semantic Change.” This is then followed by 12 publications on AI.
The topics, vast and interesting, range from wide and deep reinforcement learning via
Neural Hidden Markov Model to the Social Golfer Problem Revisited. Thereafter, the
book includes four publications on Agents, ranging from inspiring the multi-agent
cooperation to the application of conversational agents. Here the books shows four
interesting topics to the ICAART community.

Finally, we would like to thank all the authors for their contributions and the
reviewers who have helped us ensure the quality of this publication.

February 2019 Jaap van den Herik
Ana Paula Rocha

Luc Steels
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The Dynamics of Semantic Change:
A Corpus-Based Analysis

Mohamed Amine Boukhaled(B), Benjamin Fagard, and Thierry Poibeau

Laboratoire Langues, Textes, Traitements Informatique, Cognition,
LATTICE, CNRS, ENS & Université Paris 3; PSL & USPC, Paris, France

{amine.boukhaled,benjamin.fagard,thierry.poibeau}@ens.fr

Abstract. In this contribution, we report on a computational corpus-based study
to analyse the semantic evolution of words over time. Though semantic change is
complex and not well suited to analytical manipulation, we believe that computa-
tional modelling is a crucial tool to study this phenomenon. This study consists of
two parts. In the first one, our aim is to capture the systemic change of word mean-
ings in an empirical model that is also predictive, making it falsifiable. In order
to illustrate the significance of this kind of empirical model, we then conducted
an experimental evaluation using the Google Books N-Gram corpus. The results
show that the model is effective in capturing semantic change and can achieve
a high degree of accuracy on predicting words’ distributional semantics. In the
second part, we look at the degree to which the S-curve model, which is gener-
ally used to describe the quantitative property associated with linguistic changes,
applies in the case of lexical semantic change. We use an automatic procedure
to empirically extract words that have known the biggest semantic shifts in the
past two centuries from the Google Books N-gram corpus. Then, we investigate
the significance of the S-curve pattern in their frequency evolution. The results
suggest that the S-curve pattern has indeed some generic character, especially in
the case of frequency rises related to semantic expansions.

Keywords: Semantic change · Diachronic word embedding · Recurrent neural
networks · Computational semantics · S-curve model

1 Introduction

The availability of very large textual corpora spanning several centuries has recently
made it possible to observe empirically the evolution of language over time. This obser-
vation can be targeted toward a few isolated words or a specific linguistic phenomenon,
but it can also be interesting to combine these specific studies with the search for more
general laws of language change and evolution. Semantic change, on which we shall
focus in this contribution, includes all changes affecting the meaning of lexical items
over time. For example, the word awful has drastically changed in meaning, moving
away from a rather positive connotation, as an equivalent of impressive or majestic, at
the beginning of the nineteenth century, and toward a negative one, as an equivalent of
disgusting andmessy nowadays [1]. It has been established that there are some systemic

© Springer Nature Switzerland AG 2019
J. van den Herik et al. (Eds.): ICAART 2019, LNAI 11978, pp. 1–15, 2019.
https://doi.org/10.1007/978-3-030-37494-5_1
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2 M. A. Boukhaled et al.

regularities that direct the semantic shifts of words meanings. Not all words exhibit the
same degree and speed of semantic change. Some words (or word categories) might
be more resistant than others to the phenomenon of semantic change, as proposed by
Dubossarsky et al. [2]. Various hypotheses have been proposed in the literature to explain
such regularities in semantic change from a linguistic point of view [3].

One of the main challenges facing researchers studying the phenomenon of semantic
change is its formidable complexity. It seems impossible to grasp all details and factors
involved in this type of change, its abstract naturemaking it analytically intractable.How-
ever, computationalmodels have no difficulties in handling complexity, and can therefore
be used as means to make the study of semantic changes more accessible. Computa-
tional modelling of language change is a relatively new discipline, which includes early
works that aimed at characterising the evolution through statistical and mathematical
modelling [4, 5] and more recent and advanced works involving artificial intelligence,
robotics and large-scale computer simulations [6].

In this context, the computational study of text temporality in general and semantic
change in particular has become an active research topic, especially with the emergence
of new and more effective methods of numerical word representations. The interest of
taking into account the temporal dimension and the diachronic nature ofmeaning change
as a research direction has been effectively demonstrated in several studies. It makes it
possible tomodel the dynamics of semantic change [7], to analyse trajectories ofmeaning
change for an entire lexicon [8], to model temporal word analogy or relatedness [9, 10],
to capture the dynamics of semantic relations [11], and even to spell out specific laws
of semantic change, among which:

• The Law of Conformity, according to which frequency is negatively correlated with
semantic change [12].

• The Law of Innovation, according to which polysemy is positively correlated with
semantic change [12].

• TheLawof Prototypicality, according towhich prototypicality is negatively correlated
with semantic change [2].

In other studies on language change, researchers have been more interested in
analysing the quantitative patterns associated with the propagation of changes. It has
been shown that the diffusion of linguistic changes over time can be commonly pre-
sented as a sigmoidal curve (slow start/latency, accelerating period followed by a slow
end/saturation) [13]. In this matter, the so-called S-curve model is generally used to
describe the quantitative properties of frequency profiles. However, there have been
only few computational studies in the literature to attest this quantitative pattern, and to
the best of our knowledge, this claim is yet to be supported by case studies in the case
of lexical semantic change as well.

In this work, we address the question of semantic change from a computational
point of view. We conduct a computational corpus-based study that consists of two
parts. In the first part, our aim is to capture the systemic change of word meanings in an
empirical model that is also predictive, contrary to most previous approaches that meant
to reproduce empirical observations. In the second part, we try to analyse the degree to
which the S-curve model applies in the case of phenomena of lexical semantic change.
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Both parts of our study were conducted using a large-scale diachronic corpus, namely
the Google Books N-gram corpus.

The rest of the chapter is organised as follows: Sect. 2 presents the concept of
diachronic word embedding and describes how this technique can be used to empiri-
cally quantify the degree of semantic change. Section 3 presents the first part of our
study consisting of modelling and predicting semantic change using diachronic word
embedding. In Sect. 4, we report on the second part of our contribution concerned with
analysing the quantitative behaviour of some cases of semantic change. Finally, Sect. 5
concludes the chapter.

2 Empirical Assessment of the Semantic Change Using Diachronic
Word Embedding

2.1 Diachronic Word Embedding

To represent computationally the meaning of words over time-periods, it is necessary
first to extract the embedded projections of these words in a continuous vector space
according to their contextual relationships [14]. Various methods can be used to obtain
such vectors, such as Latent Semantic Analysis [15] and Latent Direchlet Allocation
[16]. However, more recent and advanced techniques such as word2vec [17] and GloVe
[18], known commonly as word embedding techniques, seem capable of better rep-
resenting the semantic properties and the contextual meaning of words compared to
traditional methods. Indeed, word embedding techniques have established themselves
as an important step in the processing pipeline of natural languages.

The word2vec algorithm is one of the most frequently used techniques to construct
word embeddings, with a huge impact in the field. It consists in training a simple neural
network with a single hidden layer to perform a certain task (see Fig. 1). Training is
achieved through stochastic gradient descent and back-propagation.

In the case of the skip-gram with negative sampling (SGNS) variant of the algorithm
[17], the learning task is as follows: Given a specific word in the middle of a sentence,
the model uses this current word to predict the surrounding window of context words.
The words are in fact projected from a discrete space of V dimensions (where V is the
vocabulary size) onto a lower dimensional vector space using the neural network. The
goal is not to use the network afterward. Instead, it is just to learn the weights of the
hidden layer. These weights constitute actually the word embedding vectors. Despite
its simplicity, the word2vec algorithm, given an appropriate amount of training text, is
highly effective in capturing the contextual semantics of words.

Suchword embedding techniques can be tweaked towork in a diachronic perspective.
The method consists first in training and constructing embeddings for each time-period,
then in aligning them temporally, so as to finally use them as a means to track semantic
change over time and thus to identify the words that have known the biggest semantic
change in the corpus.

In our case, we used pre-trained diachronic word embeddings constructed on the
basis of time-periods measured in decades from 1800 to 1990 [12]. The training text
used to produce these word embeddings is derived from the Google Books N-gram
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Fig. 1. Architecture of the Skip-gram Model [17].

datasets [19] which contain large amounts of historical texts in many languages (N-
Grams from approximately 8 million books, roughly 6% of all books published at that
time). Each word in the corpus appearing from 1800 to 1999 is represented by a set of
twenty continuous 300-th dimensional vectors; one vector for each decade.

2.2 Quantifying the Degree of Semantic Change

From a technical point of view, the degree of semantic change can be computationally
examined with the help of mainly two different measures using diachronic word embed-
dings. The first one, known as the global measure, simply consists in computing the
cosine distance between a given word’s vectors from two consecutive decades t and
t + 1. The bigger the distance, the higher the semantic change [8]. The second mea-
sure, which we chose to use in our work, is known as the local neighbourhood measure,
recommended by Hamilton et al. [20]. It consists in evaluating the amount of seman-
tic change of a word based on how much its corresponding semantic neighbours have
changed between two consecutive decades, as illustrated in Fig. 2. To do so, we first
extract for each word xi , with its corresponding embedding vector wi , the set of k near-
est neighbours, denoted by Nk(xi ), according to cosine-similarity for both consecutive
decades t and t+1. Then, in order tomeasure the changewhich took place between these
two decades, we compute a second-order similarity vector for x (t)i from these neighbour

sets. This second-order vector, denoted by s(t)i , contains the cosine similarity of wi and
the vectors of all xi ’s nearest semantic neighbours in the time-periods t and t + 1, with
entries defined as:

S(t)( j) = cosine_sim
(
w

(t)
i , w

(t)
j

)
∀x j ∈ Nk

(
x (t)i

)
∪ Nk(x

(t+1)
i ) (1)

An analogous vector for x (t+1)
i is similarly computed as well.
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Fig. 2. Visualisation of the semantic change in the English word “cell” using diachronic word
embedding. In the early 19th century the word cell was typically used to refer to a prison cell,
hence the frequency of cage and dungeon in the context of cell in 1800, whereas in the late 19th
century its meaning changed as it came to be frequently used in a scientific context, referring to a
microscopic part of a living being (see protoplasm, ovum, etc. in the 1900 context).

Finally, we compute the local neighbourhood distance that measures the extent to
which xi ’s similarity with its nearest neighbours has changed as:

d(x (t)i , x (t+1)
i ) = cosine_dist

(
s(t)i , s(t+1)

i

)
(2)

Hamilton et al. [20] have found that the local neighbourhood measure is more effec-
tive in capturing specific cultural and semantic shifts than the global measure, while
being less sensitive to other types of change such as grammaticalization.

3 Modelling the Semantic Change Dynamics Using Diachronic
Word Embedding

In this first part of our study, we aim to capture the systemic change of words meanings
in an empirical model that can also predict such changes, making it falsifiable. Our goal
is thus to define a model capable of learning how the meanings of words have changed
over time, and then use this model to predict how these meanings may evolve. This can
then be checked against the actual meaning change which can be assessed with the same
corpus. We propose a model that consists of two components:

1. Diachronic word embeddings to represent the meanings of words over time as the
data component of the model as described in the previous section.

2. A recurrent neural network to learn and predict the temporal evolution patterns of
these data.

The idea behind our model is to train Long Short Term Memory units (LSTMs)
Recurrent Neural Network (RNN) on word embeddings corresponding to given time-
periods (measured in decades) and try to predict the word embeddings of the following
decade. We then evaluate the model using the diachronic embeddings derived from
the English Google Books N-Gram corpus. The next two subsections describe more
thoroughly the architecture of the recurrent neural network used in our work and the
experimental evaluation respectively.
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3.1 Predicting Semantic Change with Recurrent Neural Networks

As we are interested in predicting a continuous vector of d dimensions representing
a word’s contextual meaning in a given decade, this task is considered to be a regres-
sion problem (by opposition to a classification problem, where the task is to predict a
discrete class). Many algorithms have been proposed in the literature to deal with this
kind of temporal pattern recognition problem, such as Hidden Markov Models [21] and
Conditional Random Fields [22].

In this work, we propose to use a recurrent neural network with a many-to-one
LSTMs architecture to address this problem. RNNs are a powerful class of artificial
neural networks designed to recognise dynamic temporal behaviour in sequences of
data such as textual data [23]. RNNs are distinguished from feed-forward networks by
the feedback loop connected to their past states. In this feedback loop, the hidden state
ht at time step t is a function F of the input at the same time step xt modified by a weight
matrixW , added to the hidden state of the previous time step ht−1 multiplied by its own
transition matrix U as in Eq. (3):

ht = F(Wxt + Uht−1) (3)

More specifically, we used a LSTMs architecture [24] (see Fig. 3) which is a variety
of RNNs designed to deal effectively with the problem of vanishing gradient that RNNs
suffer from while training [25].

Fig. 3. Themany-to-oneLSTMsarchitecture used in ourwork to predictword embedding vectors.
For each word in the vocabulary, the network is trained on diachronic word embedding vectors of
time-periods (1, . . . , t) as input and tries to predict the embedding vector for time t + 1 as output
[7].

Problem Formulation. In this contribution, we use the samemathematical formulation
used in [7]. Let us consider a vocabulary Vn consisting in the top-n most frequent words
of the corpus and W (t) ∈ Rd∗n to be the matrix of word embeddings at time step t .
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The LSTMs network is trained on word embeddings over time-period (1, . . . , t) as
input and asked to predict word embeddings W

∧

(t + 1) of time t + 1 as output. The
predicted embedding W

∧

(t + 1) is then compared to the ground truth word embedding
W (t + 1) in order to assess the prediction accuracy. Predicting a continuous 300-th
dimensional vector representing a word’s contextual meaning is thus, as indicated above,
formulated as a regression problem. Traditionally, researchers use mean-squared-error
ormean absolute-error cost functions to assess the performance of regression algorithms.
However, in our case, such cost functions would not be adapted, as they provide us with
an overview (i.e., numerical value) of how the model is performing but little detail on
its prediction accuracy. To have a more precise assessment of the prediction accuracy,
we need to be able to say whether the prediction, for each word taken individually, is
correct or not. Overall prediction accuracy is then computed. To do so, we proceed as
follows:

Given the vocabulary Vn constituted from the top-n most frequent words and the
matrixW(t) ofword embeddings at decade t, let us consider aword xi ∈ Vn andw

∧

i(t+1)
its predicted word-embedding at decade t+1.Though it is virtually impossible to predict
exactly the same ground truth vector wi(t + 1) for this decade, as we are working on
a continuous 300-th dimensional space, the accuracy of the predicted vector w

∧

i(t + 1)
can be assessed by extracting the words that are closest semantically, based on cosine-
similarity measure. If the word xi is actually the nearest semantic neighbour to the
predicted vector w

∧

i(t+ 1), then it is considered to be a correct prediction. Otherwise, it
is considered to be a false prediction.

3.2 Experimental Evaluation

In our experiment, we used word embeddings of all decades from 1800 to 1990 as
input for the network, and we trained it to predict the embeddings of the 1990–1999
decade as output. We then conducted two types of evaluations. The first one consisted
in reconstructing the overall large-scale evolution of the prediction accuracy on most
frequents words from the corpus. The second one consisted in evaluating the prediction
accuracy for a handful of word forms that have known considerable semantic shifts in
the past two centuries. In what follows, we describe the experimental protocol and the
results for both evaluations.

Overall Evaluation. In this first part of the evaluation, we experimented with different
vocabulary sizes (top-1,000, 5,000, 10,000 and 20,000 words respectively, consisting
of the most frequent words as computed from their average frequency over the entire
historical time-periods). The experimental settings can help us evaluate the effect of a
word’s frequency on the degree of semantic change, and hence on prediction accuracy.
For each experiment, and in order to get a reasonable estimate of the expected prediction
performance, we used a 10-fold cross-validation method. Each time, we used 90% of the
words for training the model, and the remaining 10% for testing its prediction accuracy.
The training and testing process was repeated 10 times. The overall prediction accuracy
is taken as the average performance over these 10 runs.

The results of measuring the prediction accuracy in our experimental evaluation are
summarised in Table 1. They show that the model can be highly effective in capturing
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semantic change and can achieve a high accuracy when predicting words’ distributional
semantics. For example, the model was able to achieve 71% accuracy trained and tested
exclusively on embeddings coming from the 10,000 most frequent words of the corpus.

Table 1. Results of prediction accuracy measured for different vocabulary sizes [7].

Vocabulary size Acc.

1,000 91.7%

5,000 86.1%

10,000 71.4%

20,000 52.2%

The results also show a better performance when using a smaller vocabulary size,
containing only the most frequent words. This is due to the fact that frequent words are
repeated a sufficient number of times for the embedding algorithm to represent them
accurately, and therefore to have a better distinction of the semantic change pattern
which those embeddings may contain, which in turn can lead the RNN model to better
capture this semantic change pattern and yield amore accurate prediction. Indeed, having
a large corpus is essential to enable the models to learn a better word representation.
These results are also in line with previous works claiming that frequency plays an
important role in the semantic change process. For instance, Hamilton et al. [12] have
shown that frequent words tend to be more resistant to semantic change (statistical Law
of Conformity).

Table 2. Neighbouring words according to cosine similarity (based on word2vec embeddings)
for sample words that have known important semantic shifts in the past two centuries [7].

Word Neighbours in 1800s Neighbours in 1990s

Circuit Habitable, district, lanes, range, area,
outer, globe, traverse

Circuits, appeals, amplifier, voltage,
transistor, capacitor, appellate, court,
resistor, district

Signal Commodore, hoisted, victory, tack,
admiral, commemoration, victories,
chace, flag, announce

Signals, modulated, amplitude, input,
noise, modulation, transmitter, analog,
waveform, transduction

Array Banners, spears, shields, ensigns, ranged,
pikes, trumpets, banner, standards

Arrays, variety, range, integers, integer,
byte, wide, pointer, formats, pointers

Mail Waistcoat, boots, shirt, gloves, breeches,
velvet, pistols, shoe, helmet, spurs

Mailing, email, send, internet, telephone,
sending, fax, messages, mails, postage

Case Studies. We further examined the prediction accuracy on a handful of words.
Based on the automatic procedure to assess the degree of semantic change as described
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in Sect. 2, we automatically extracted from the Google Books N-Gram Corpus the top-
100 words that have known the most important semantic shifts in the past two centuries.
We noticed that thesewords correspondmostly to cases that are correlatedwith important
cultural shifts, which makes them a harder challenge for the prediction model compared
to datasets used earlier in the overall evaluation. Table 2 presents sample words that
gained new meanings due to their evolution towards uses in scientific and technological
contexts. The model was able to correctly predict the semantic evolution of 41% of
the studied cases, including words that have known an important and attested semantic
change in the last two centuries such as the word cell. Moreover, a large portion of the
false predictions corresponds to borderline cases for which the model has a tendency
to predict vectors that are closer to much more frequent words, occurring in the same
semantic context in the corpus, such as predicting a vector closer to the (emerging but
more frequent) word optimistic for the (declining) word sanguine. The word sanguine
comes from Old French sanguin (itself from Latin sanguineus, on sanguis ‘blood’). It
originally means ‘blood-red’ (14th c., Merriam-Webster’s), and by extension ‘hopeful,
optimistic’ (15th c., ibid.). In our corpus examples from the early 18th c., it is already used
with the meaning ‘optimistic’, as in “My lords, I am sanguine enough to believe that this
country has in a great measure got over its difficulties” (Speech of the Earl of Liverpool,
1820: 31) and “she is sanguine enough to expect that her various Novelties will meet
the approbation of all Ladies of taste” (La belle assemblee, vol. XV, April 1st, 1817).
But Fig. 4 shows that its frequency in the 19th and 20th c. has dropped steadily, while
optimistic has seen its frequency rise sharply. Thus, the pair sanguine/optimistic seems
to be a good example of lexical replacement, which explains our model’s prediction.

Fig. 4. Frequency profiles of sanguine and optimistic in Google Books N-GramCorpusmeasured
in millions [7].

Thus, among other benefits for historical linguists, our method makes it possible to
identify the semantic replacement of one word by another in a specific context.

Despite being effective in predicting the semantic evolution of words, some diffi-
culties remain regarding our method. For instance, our model works best for the most
frequent words, i.e., according to the Law of Conformity, those with the least semantic
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evolution. One could thus wonder whether the words for which the model correctly
predicts the semantic are not simply those which display little or no semantic change.
The examples given in these case studies show that this is at least not always the case,
but a more systematic investigation of individual cases is needed in order to get a clear
picture. Another way to answer this question would be to explore more finely the effect
that both polysemy and word frequency may have on our results, especially on the word
representation part of our model. These two factors have been shown to play an impor-
tant role in the semantic change, and their effects need to be studied and formalized
more explicitly. Exploring more advanced and semantic-oriented word embedding tech-
niques, referred to as sense embeddings, such as SENSEMBED [26], could help make
the model less sensitive to those factors. In the next section describing the second part
of our contribution, we will take a closer look at the frequency aspect of that matter by
investigating the frequency pattern associated with lexical semantic change.

4 Investigating the Frequency Pattern Associated with Lexical
Semantic Change

In this second part of our study, our aim is to analyse the degree to which the S-curve
model applies in the case of phenomena of lexical semantic change. We investigate
the significance of this pattern through an empirical observation using the same large-
scale diachronic corpus as before, namely Google Books N-gram corpus. The rest of
the section is organized as follows: Subsect. 4.1 presents a brief review of the S-curve
pattern in linguistics. Subsect. 4.2 describes how to automatically extract it from corpus
data. In Subsect. 4.3, we describe our experimental settings and present the results.

4.1 The S-curve Pattern in Linguistics

S-curved functions have been used to analyse the diffusion of changes and innovations
in various scientific domains [27]. They describe change as resulting from the fact that
different parts of a given population successively adopt a new variant, which increases
its frequency of use over time. This frequency subsequently reaches a saturation point
at which the adoption of the variant stagnates.

The S-curve has been used starting from the early 1950s to model phenomena of
language change [28]. It supposes that language change occurs commonly according
to an S-curve, which means that the frequency rise associated with the new change
variant should obey a sigmoid function, or any similar function which has approximately
the same shape. The main reference in the literature on such matter is the work of
Kroch [5]. Several other works follow [29–31]. Blythe and Croft [32] have performed a
detailed survey on S-shaped patterns in linguistics totalising about 40 cases of changes.
Feltgen et al. [33] have provided a statistical survey on frequency patterns associated
with about 400 cases of functional semantic change (grammaticalization) in French. This
investigation has shown that 70%of the studied cases display at least oneS-curve increase
of frequency in the course of their adoption. Apart from these studies and despite having
an important part to play in the understanding of the underlyingmechanisms of language
evolution, it appears that large-scale quantitative studies of the statistical properties of
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language change were left aside, limited mostly by both the quantity and the quality of
the available historical linguistic data.

In semantic change, and more precisely in the case of semantic expansion, it is
expected to observe an increase in frequency for the word whose meaning changes. In
such cases, the generic character of the S-curve as a pattern associated with meaning
change can be described by the following three steps:

1. The first occurrences of the word linked to the new meaning start to appear in the
corpus and the frequency slightly increases to a certain low value. The word linked
to the same new meaning continues to show in the corpus, but not so much as to
reach a momentum. The frequency may thus remain constant for a certain period of
time.

2. Following its adoption, the word carrying the new meaning is used in a broader
number of contexts by an increasing portion of the population. The frequency rises
rapidly.

3. At a certain point, the rise in frequency reaches a saturation point. Saturation occurs
either because there is a limited number of new ‘adopters’ or because there is a
limited number of compatible linguistic contexts in which the new meaning can be
used [33].

In the following subsection, we describe how this pattern can be mathematically
extracted from diachronic textual data.

4.2 Extraction of S-curve Patterns from a Diachronic Corpus

In order to identify and extract S-curve patterns in diachronic data, we used a similar
procedure to the one described in [13]. The process is as follows:

1. For each word in the investigation dataset, we first extract its frequency xi in each
time period i of the diachronic corpus (in our case, we consider each year as one
time period). These frequencies are smoothed by computing a moving average over
the past five years.

2. For each frequency profile, we identify the two years istart and iend marking respec-
tively the beginning and the end of the time-range of a frequency rise, and we note
their corresponding frequencies xmin and xmax respectively.

3. We apply the logit transformation to the frequency points between xmin and xmax :

yi = log

(
xi − xmin

xmax − xi

)
. (4)

4. If the data actually follows a sigmoid function x̃i of the form:

x̃i = xmin + xmax − xmin

1 + e−hi−b
, (5)

then the logit transformation of this sigmoid function fits a linear function of the
form:

ỹi = hi + b, (6)
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which gives us the slope h, the intercept b and the residual r2 quantifying the linear
quality of the fit. Figure 6 provides an illustration of an extracted S-curve pattern of
frequency rise and its corresponding logit transform.

4.3 Experimentation

Experimental Settings. We investigated the presence of S-curve patterns on a handful
of words. We used the same 100 words that we have considered for the case studies
of the first part of our study (See Table 2 for examples). We then used the mathemat-
ical procedure described in the previous subsection to look for S-curve patterns in the
frequency profile of these words over time. We have decided to keep the investigation
dataset small in order to facilitate the subsequent qualitative analysis.

Results. In our study, we wanted to select only S-curves of highly satisfying quality.We
set the residual r2 quantifying the quality of the logit fit, as explained in Subsect. 4.2, to a
high value (98%) in order to ensure the S-shape quality of the extracted curves.Moreover,
we restricted the extraction to S-curves that cover at least one decade in length. Still,
our method enabled us to find at least one S-curve (and up to four in some cases) in the
frequency evolution for 46% of the studied. A lower threshold for r2 would have yielded
many more. The word Array, as we have seen in Table 2 above, is a good example of
semantic change, having shifted from the idea of order of battle (Webster, 1828, s.v.
array, first entry: “Order; disposition in regular lines; as an army in battle array. Hence
a posture of defense”) to that of imposing numbers (Merriam-Webster, online edition,
s.v. array, first entry: “an imposing group: large number”) [34]. Figure 5 illustrates the
frequency profile of this word in the past two centuries, while Fig. 6 shows the S-curve
pattern of frequency rise period extracted from its profile.

Theoretically speaking, semantic change can occur in two cases: because a word
gains new meanings (semantic expansion), or because it loses some (semantic reduc-
tion). Since only the former case is associated with a frequency rise, we decided to
focus the extraction on words having a growing frequency trend over time (instances
of semantic expansion). This brings up the percentage of S-curve pattern presence to
75%. These results suggest that the S-curve does indeed seem to be, to some extent, a
generic pattern of lexical semantic change, and especially of semantic expansion. How-
ever, when questioning the universality of the S-curve pattern, the results show that it
is actually not so pervasive as to be qualified as universal, at least on the basis of our
investigation dataset based on frequencies extracted from the Google Books N-gram
corpus. A more systematic investigation into bigger datasets, along with individual case
studies, is in order if we want to get a full picture.
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Fig. 5. Overall evolution of the relative smoothed frequency of use of the form array in the corpus.

Fig. 6. Extracted S-curve pattern of frequency rise period for the form array (left) and its
corresponding logit transform (right).

5 Conclusions

In conclusion, we presented a computational corpus-based study to analyse the semantic
evolution of words over time. First, we tried to capture the systemic change of word
meanings in an empirical model that is also predictive, making it falsifiable. In order to
illustrate the significance of this kind of empirical model, we conducted an experimental
evaluation using the Google Books N-Gram corpus. The results show that the model
is partly successful in capturing the semantic change and can achieve a high degree of
accuracy on predicting words’ distributional semantics.

We then proposed to investigate the pervasive nature of the S-curve pattern in the
case of semantic change. To do so, we used an automated procedure both to empirically
extract the words that have known biggest semantic shifts in the past two centuries,
and to extract S-curve patterns from their frequency profiles. Performing a statistical
observation over 100 cases of semantic change from the Google Books N-gram corpus,
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we established the generic character of the S-curve, especially in the case of frequency
rises related to semantic expansion.

Although our experiments described in this study are still in their preliminary stages,
we believe that this approach can provide linguists with a refreshing perspective on
language evolution by making it possible to observe large-scale evolution in general
and semantic change in particular. It thus nicely complements existing methods and
reinforces a falsifiability approach to linguistics. Based on the current results, we have
identified several future research directions. The RNN model that we propose to use in
the first part of our study is rather standard and simplistic compared to the complexity
of semantic change. We therefore intend to explore deeper networks and to put more
time and effort in the fine tuning process of its hyper-parameters. On the other hand, a
good question would be to analyse the possible interactions between different linguistic
properties of the word such as its actual degree of semantic change and the degree of
its polysemy in the time period covered by the S-curve pattern. This is only a broad
perspective of research, which we shall explore more thoroughly in future works.
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Abstract. High turnover of online advertising and especially real time bidding
makes this ad market very attractive to beneficiary stakeholders. For publishers, it
is as easy as placing some slots in their webpages and sell these slots in the avail-
able online auctions. It is important to determine which online auction market to
send their slots to. Based on the traditional Waterfall Strategy, publishers have a
fixed ordering of preferred online auction markets, and sell the ad slots by trying
these markets sequentially. This fixed-order strategy replies heavily on the expe-
rience of publishers, and often it does not provide highest revenue. In this paper,
we propose a method for dynamically deciding on the ordering of auction mar-
kets for each available ad slot. This method is based on reinforcement learning
(RL) and learns the state-action through a tabular method. Since the state-action
space is sparse, a prediction model is used to solve this sparsity. We analyze a
real-time bidding dataset, and then show that the proposed RL method on this
dataset leads to higher revenues. In addition, a sensitivity analysis is performed
on the parameters of the method.

Keywords: Reinforcement learning · Real time bidding · Waterfall strategy

1 Introduction

Online advertising is a growing industry in recent years. Many companies choose this
market to advertise their services or products because of its popularity and visibility.
For owners of websites, or publishers, participating in online advertising is as easy as
placing some blocks, called ad slot, and selling them to advertisers. Advertisers aim to
find publishers who match best with their objectives. For example, producers of sport
shoes want to target athletes and therefore, a sport news website could be an ideal
publisher. The objective of online publishers is to sell their ad slots as high as possible
to increase their revenue.

When a user open a website containing ad slots, an impression is generated. This
impression brings the opportunity of being viewed by end users. The traditional means
of selling impressions is offline, i.e. publishers contact directly to advertisers to negoti-
ate and agree on a contract. Real Time Bidding (RTB) and generally the Programmatic
Advertising are developed to automate the process of online buying and selling the
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impressions. Based on RTB, ad networks are placed between publishers and advertis-
ers to help them connect efficiently. Ad networks receive the impressions as goods and
the willingness to pay of advertisers as bids and run auctions to sell the impressions to
the holder of the maximum bid. These auctions are performed in real time and should
not take more than few milliseconds which is the loading time of a webpage. To make
things easier for publishers and advertisers, Supply Side Platform (SSP) and Demand
Side Platform come to play. SSPs help publishers in participating to the auction and
send the ad requests to the ad networks. DSPs are advertiser assistants and help them
manage their campaigns and determine their bids. We will focus on the environment
from publisher’s side. In this structure, an SSP on behalf of a publisher initializes and
sends the ad requests to the online auctions.

When a webpage containing ad slots starts to load, an ad request to fill the ad slot
is generated and sent to the ad networks. Ad networks receive the impression and run
auctions to find a buyer. The publishers determine a minimum price, called reserve, for
the impression, which eliminates all bids that are lower than the reserve price.

Different ad networks are available for a publisher to send the ad requests. A com-
mon way of participating in auctions is the so called Waterfall Strategy [8]. In this
strategy, a publisher sends the ad requests to the ad networks sequentially until finding
a bid value. The first request is sent to the first ad network. If there is no winner in the
auction of this ad network, the second ad network is determined and a new request is
sent. This process continues until finding a bidder or attempting all of the ad networks.
For all impressions, the ad networks are used in a fixed ordering. However, the fixed
ordering is not optimal and the best ad networks varies from one impression to another.

In our preliminary works [1,2], we developed a method to derive the best ordering
of ad networks dynamically for each impression. The ad network selection problem
is a sequential decision making problem. At each step, the decision maker decides an
ad network to send the ad request. Then, a reward is received and the next state is
determined accordingly. The method is based on reinforcement learning (RL) and model
the RTB environment as a reinforcement learning problem. In [2] the basic method
consists of a prediction model and a reinforcement learning step is presented. We used
a prediction model to find initial state-action values and updated these initial values
using a real time bidding dataset provided by our industrial partner. We considered the
sequences of requests for filling an ad slot as episodes and we used the Monte Carlo
algorithm to learn the state-action values based on averaging sample returns [19]. In [1]
we showed that the prediction model is not enough for ad networks ordering and the
revenue is lower than following the complete method.

In this paper, we analyze the sensitivity of the method to some of the parameter
values. In the prediction model, 5-fold cross validation was used for training. Here, the
sensitivity to the number of folds is discussed. Furthermore, we show that the reward
function control the trade-off between loading time and the revenue. The sensitivity of
the method to the reward or unsuccessful attempts is also discussed in this paper. We
show that the higher penalty results in higher revenue. We also explain where does the
states definition come from. In fact, the states are the combination of the most important
features.

This paper is structured as follows. Section 2 presents a brief literature review.
In Sect. 3 the proposed method is discussed. The real-time bidding data is discussed
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in Sect. 4. The experimentation and the sensitivity analysis are presented in Sect. 5.
Finally, we make our concluding remarks and discuss future work.

2 Related Works

In recent years, real time bidding is a very hot topic for researchers because of its impor-
tance for both publishers and advertisers. From the publisher’s point of view, problems
like dynamic pricing are popular. However, assisting the publishers in participating to
the auction is the subject that gain less attention though its importance. In this section,
some of related works and our contribution are presented.

The process of programmatic advertising is defined as “the automated serving of
digital ads in real time based on individual ad impression opportunities” [5]. Program-
matic advertising helps publishers and advertisers to reach their goals and increase
the efficiency of online advertising. The programmatic buying and selling of ad slots
prepares new environment for publishers and advertisers to better communicate with
each other. Publishers may easily find suitable advertisements for their ad slots while
advertisers may target suitable users, thus increasing potential product sales and brand
visibility [21].

An important factor in determining a publisher’s revenue is the reserve price.
Reserve price or floor price is the minimum price that a publisher expects to obtain
by selling the ad slots [27]. If it is too high and no advertiser wants to pay it, the adver-
tisement slot will not be sold, whereas if this price is set too low the publisher’s profit is
affected. For this reason, specifying that price is important and adjustments in reserve
price may lead to increase in publisher’s revenue. The adjustment of the reserve price
is not a trivial issue and has motivated a lot of research.

In [3], the reserve price is expressed as the weighted sum of features and the weight
values are found to maximize the price. In this study, the main task is learning weights
of features for which gradient descent is used. The inner product of these two vectors
computes the value of the reserve price. The limitation of this paper is that they adjust an
optimized floor price for all auctions regardless of the properties of auctions like time,
user characteristics, etc. The output floor price of their method is fixed for all future bid-
ding auctions. Xie et al. introduce a method to set the floor price dynamically [24]. The
assumption is that there is no information about the bids. Based on this method, first the
top bid is predicted using a family of classifiers. Because those higher top bids are more
important in case of revenue, the authors discretized the values of top bids and predict
the high bids with binary classifiers. In the next step they use the idea of cascading [14]
and try to reduce the false positive rate of the prediction algorithm by combining the
series of classifiers obtained before. They inspire [11] who follow the same basic idea
with their own feature and classification models. Then, the difference between the top
and the second bid is predicted by another set of binary classifiers. These classifiers
determine whether the difference is high or not by comparing with a threshold. Finally
the reserve price is set for high top bids that their difference with the second bid is also
high. In a recent work [12], the authors try to set the floor price in multi channels. The
online channel is the real time auction and the offline channel is the direct link with
the advertisers. Separate mathematical models are developed for setting floor price in
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offline and online settings. Then a parametric formulation for the expected revenue of
a publisher from both online and offline channel is defined. The floor price is deter-
mined by another equation containing two functions. These two functions are obtained
by differentiation of the total expected revenue. The methods introduced in [15–17], are
useful in non-stationary environments. The price setting is based on considering the gap
between top bid and second bid in second price auction. Other research such as [25] and
[23] propose methods for price setting by modeling the real time bidding environment
as a dynamic game and considering censored bid data respectively.

Wu et al. utilize a censor regression model to fit the censor bidding data that a
DSP suffers from these censored information especially for lost bids [23]. Because the
assumption of censored regression does not hold on the real time bidding data, they
proposed a mixture model namely a combination of linear regression for observed data
and censored regression for censored data, so as to predict the winning price.

The other research area that is the main topic of this paper, is to choose proper ad
networks in the waterfall strategy. Selecting the most profitable ordering of ad networks
in waterfall strategy is a research topic which has gained less attention in recent years
in comparison to reserve price optimization. However, it is an important topic because
unsuccessful attempts to find ads increases the response and loading time of the web-
page containing the ad slot. This decreases the performance of the website. A potential
method to find the best ordering is to model the publisher as an agent and using rein-
forcement learning. Our preliminary works to solve this problem are published [1,2].
In this paper, we follow the same methodology and perform sensitivity analysis. We
present the sensitivity of our method to the parameters like penalty value and the num-
ber of folds in k-fold clustering.

Sometimes there is a contract between a publisher and an ad network. There should
be a balance between selecting this ad network and other ad networks that may achieve
higher revenue [13]. According to [9], when the number of ad networks increases, the
most important factor in selection policy is the expected revenue. However, sometimes
the better ad network may not fill the ad slot and the publisher should try other ad
networks. This latency in filling ad slots may have bad effects on the performance
of publisher’s website. In [4], the authors optimize the trade-off between the short-
term revenue from ad exchange and the long-term benefits of delivering good spots
to the reservation ads. They formalize this combined optimization problem as a multi-
objective stochastic control problem. In [18], the authors study a variant of the ad allo-
cation problem to help online publisher to decide which subset of advertisement slots
should be used in order to fulfill guaranteed contracts and which subset should be sold
on SSPs in order to maximize the expected revenue. They propose a two-stage stochas-
tic programming approach to formulate and solve the display-ad allocation problem.

Reinforcement Learning (RL) in real-time bidding is also one of the hot topics dur-
ing the last few years. Basically in RL, the agent observes the current state of the envi-
ronment and decides which action to take [19]. Using reinforcement learning in the con-
text of real time bidding has gained remarkable attention in recent years. However, the
modeling of the RTB environment is mainly from the bidder side in previous research.
In [20] a reinforcement learning method is proposed to help sellers in dynamic pricing.
In this method a learning algorithm tunes the parameters of a seller’s dynamic pricing
policy. This method is general and is not specifically for RTB. In [6] a reinforcement
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learning modeling of RTB is introduced to help advertisers in setting their bid price.
In a recent work [22], the authors formulate the budget constraint bidding as a Markov
Decision Process and propose a model free reinforcement learning framework to derive
the optimal bidding strategy for the advertisers. We will focus on the publishers in our
study and develop the decision support system centered by them.

3 Methodology

The method for deriving the best ordering of ad networks is presented in this chapter.
This method serves as a decision support tool for online ad publishers to maximize
their revenue. Since the problem is a sequential decision making problem, we model
that as a reinforcement learning problem and the publisher learns the optimal policy by
interacting with the environment.

In reinforcement learning, an agent learns through interaction with the environment
and estimates the value of each action in each state. Basically the agent observes the
current state of the environment and decides which action to take. We assume that
accessing to the RTB environment and exploration is not possible and the historical
data is the only available source. This limitation is common in RTB research. States,
actions and responses are determined from the data and state transitions are determin-
istic based on what is available in the data. In other words, the exploration is confined
to the observed actions that are selected for each state. Therefore, the state-action space
might be sparse because the action selection policy is based on a predefined and fixed
ordering. A prediction model solves this sparsity and is explained shortly. Sequences of
ad requests to sell a certain impression are episodes in our modeling. Hence, the prob-
lem is an episodic problem. Monte Carlo algorithm is opted for learning state-action
values. In order to model the problem as a reinforcement learning problem, we need to
define states, actions, reward function, algorithms for learning state-action values and
action selection policy [19].

3.1 States

Features in ad requests influence on the bidding process and also on an advertiser’s
intention about buying the impression. Therefore, states should be related to the ad
requests. One approach to define a state is to consider each unique ad request as an
individual state. There are huge number of ad requests in each day and assigning a state
to each ad request creates an extremely large state space. This large state space is not
manageable and helpful because new states are adding to the space continuously and the
data is not sufficient for learning. Conversely, mapping a single state to a large number
of unique ad requests is the concept of predefined ordering. Conclusively, there is a
trade-off in defining the states. On one hand, if the states are more specific, there is not
enough ad requests in the RTB data obtained from a predefined ordering of ad networks.
On the other hand, if each state contains large number of ad requests, the approach is
similar to the predefined ordering because the method selects the same action for large
number of ad requests.
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In order to solve this problem, we select some of the features and partition their
values into intervals to define the states. Through developing a classifier for predicting
whether an ad request is successful or not, we derived the importance of the features.
This classifier is also used in solving the sparsity and is explained in Sect. 3.4. The ad
tag id, floor price and request order are the most important features and make a balance
between the number of states and the number of observed ad networks for each state.
We also set two thresholds named tfp for floor price and tro for request order to group
ad requests based on these thresholds. In the new states, values of floor price are divided
into two categories: below tfp and over tfp. The same approach has been followed for
request order: below tro and over tro. This definition reduced the number of states from
one million to around 3, 000. Equation (1) defines the states in our model.

s(xi) = {id(xi), F (xi), R(xi)},
xi ∈ D : ithad request,

(1)

F (xi) =

{
0 if floor price(xi) ∈ [0, tfp)
1 if floor price(xi) ∈ [tfp,mf ]

(2)

R(xi) =

{
0 if request order(xi) ∈ [0, tro)
1 if request order(xi) ∈ [tro,mr]

(3)

mr = max
xi∈D

(request order(xi)) (4)

mf = max
xi∈D

(floor price(xi)) (5)

wheremf andmr indicate the maximum values for floor price and request order in the
RTB data. D contains all of the ad requests that we use for our method.

3.2 Actions

The action is the decision that a publisher makes at each decision moment. Hence, in
the reinforcement learning modeling of real time bidding problem, the actions stand for
selections of ad networks. In each state, the model decides which ad network makes the
most revenue. There are N possible ad networks and each ad request could be sent to
any one of them. Based on Waterfall Strategy, ad networks are selected in a predefined
and fixed ordering. The episodes come from the historical data. Thereby, the number of
samples for each state-action pairs is different. In sum, the actions are ad networks and
there are at most N possible actions in each state.

The definition of the possible actions in each state is shown in (6). Because some
combinations of states and actions do not exist in the historical data, the actions set of
each state is a subset of all actions.

a(xi) ∈ {a1, a2, ..., aN} (6)

In this formulation a1, ..., aN are ad networks. Based on the definitions of states and
actions, there are more than one action for each state in historical data. Therefore, the



22 R. Refaei Afshar et al.

Ad tag id 
F > 
R < 

Ad Network 1

Ad Network 2

…
Ad Network 3

Ad Network N

State Actions

Fig. 1. State and actions [2].

problem is the ordering of these actions. Figure 1 illustrates the formation of a sample
state and actions.

Equation (7) defines the ad requests for each state-action pair. In this equation,
D(s, a) is the list of ad requests that their corresponding state and action are (s, a).

D(s, a) = {xi ∈ D|(s(xi), a(xi)) = (s, a)} (7)

3.3 Reward Function

Increasing the revenue is the main objective of an ad publisher and the responses from
the environment determine the value function as well as the policy. In addition, the pub-
lisher needs to receive the ads as fast as possible to load its webpage quickly. Thus,
the reward function should incorporate the preferences of the publisher. The publisher
should select an action that has the most success probability and highest expected rev-
enue. The floor price is the lower bound of revenue for an impression (ad request with
event state = 1) and is the only available information regarding to selling impression in
the auction and the actual revenue is not observable1. We assign the value of floor price
as the reward of successful ad requests. Conversely, unsuccessful attempts are penalized
by the value −1. This forces the agent (SSP) to find the advertisement in the shortest
time possible. Equation (8) defines the reward function of our model. In Sect. 5.4 the
sensitivity to the penalty is discussed.

Rewardxi(s, a) =

{
−1 if event state(xi) = 0
floor price(xi) if event state(xi) = 1

xi ∈ D(s, a)

(8)

where floor price and event state come from the ad request xi.

1 This is the case for online publishers who rely on SSPs to sell their impressions.



Reinforcement Learning Method for Ad Networks 23

Table 1. Top most important features.

Rank Feature Importance

1 FloorPrice 0.303459

2 AdNetwork 0.200992

3 RequestOrder 0.184083

4 URL 0.060835

5 AdTagId 0.052920

6 PageDomain 0.036096

7 Timestamp 0.027170

8 OpportunityOrder 0.021922

9 OperatingSystem 0.018707

10 DeviceName 0.018375

11 Browser 0.016962

3.4 Finding Initial Values for Reinforcement Learning Algorithm

As mentioned before, there are not enough data to estimate all state-action values and
the state-action table is sparse. For this reason we build a prediction model to estimate
an initial value for all state-action values. This prediction model helps in providing an
estimated revenue for all entries of state-action table regardless of whether they are
observed in the data or not.

In order to find initial state-action values, we first find the success probability of
sending requests to a certain ad network. We use supervised learning methods. The
feature vector contains information related to the ad request and the target value is
whether selecting an ad network will provide an advertisement or not.

The dataset is provided by our industrial partner, which contains ad requests. Ad
requests are the information of interactions between a publisher and ad networks to sell
ad impressions. The publisher is an entertainment company website, using ad networks
such as Google ad exchange, AOL and SpotX to sell their ad slots. Each webpage of
this website has some advertising slots which should be filled with ads provided from
the real time auction. There are many ad request per day and they are divided into two
groups. The majority are unsuccessful attempts in finding an advertisement and the rest
are impressions. The features in ad requests are the same with what are introduced in [1].

Our feature vector is a selected subset of the features discussed in [2] , which has
shown to provide the best success prediction. The most promising combination of fea-
tures contains floor price, time, ad tag id, request order, ad networks, page domain,
device name, operating system, opportunity order, browser name and URL. From the
time feature, we consider the hour of a day. The importance of the features are illus-
trated in Table 1. As mentioned in Sect. 3.1 the first and the third features plus the ad
tag id are chosen to shape the states. The ad network is the action.

The prediction model is applied on a subset of the dataset. This subset contains only
those samples that are in a sequence which the event state of its last ad request is one.
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Since there is no information in the datasets about these sequences, we followed the
algorithm in [2] to obtain the sequence of ad requests for a certain impression.

The prediction task is to classify each ad request into one of two classes: 0 for
unsuccessful and 1 for successful. In other words, the target is the value of the event
state and the objective of the prediction model is to predict this value.

Event state is a binary variable. The classifier receives an ad request and return its
success probability. Hence, for each ad request containing an ad network id, we obtain
a probability which determines the likelihood of filling the ad slot. The multiplication
of this probability to the floor price of the current ad request yields the expected lower
bound for the revenue of the ad request. Equation (9) shows this expected lower bound
of revenue.

E[R(xi, a(xi))] = P (event state(xi) = 1|xi, a(xi)) × floor price(xi) (9)

In this equation xi is an ad request, a(xi) is the ad network id of xi and
event state(xi) determines whether xi is successful or not. P (event state(xi) = 1)
is the success probability acquired from the prediction model, floor price(xi) is the
floor price of xi, and E[R] is the expected lower bound of the revenue when ad request
xi is successful. Because the revenue is zero for event state = 0, it is not written in
the equation. Through this formula we can find an initial value for state-action pairs.

A simple ordering method is to select ad networks based on the output of the pre-
diction model. However, this is shown that this ordering strategy does not provide the
maximum revenue [1]. In addition, the initial values are not sufficient for decision mak-
ing because there is no information about the long term revenue in these values. These
values are just useful to find the ad network that will provide the advertisements in the
shortest time. For instance, if the success probability of an ad network is 0.9, the floor
price is 0.5 and the request order is 1, this method does not care about the revenue that
another ad networks may make when this request fails [1]. To consider long term rev-
enue as well as time, we model the problem as a reinforcement learning problem. For
this reason we merely use them as initial values in the reinforcement learning process.
Then, the reinforcement learning process takes the long term revenue into consideration
when selecting ad networks.

The revenue obtained from (9) is used for learning state-action values. As we said
before, these values are helpful in dealing with sparsity.

3.5 Learning State-Action Values

SSPs or ad networks are the agents. They observe the current user and impression prop-
erties and select one of the ad networks to send the ad request. Upon the response is
received, the reward is determined which might be −1 or the value of floor price. The
problem is episodic where, as explained in Sect. 3.4, each episode consists of a sequence
of ad requests. We use Monte Carlo method to learn state action values. In the Monte
Carlo algorithm, for each state s and action a, Q(s, a) is obtained through averaging
over all returns starting from s until end of episode. Since in each episode there is at
most one occurrence of a certain state-action pair, the first visit Monte Carlo can do
well [19].
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Fig. 2. Proposed method for learning the expected revenue of selecting each ad network in each
state. First, some of ad requests are used by the prediction model to find an expected lower bound
of the revenue. Then, we use these expected values and new ad requests to find state-action values
through Monte Carlo algorithm. Finally, greedy action selection policy will select the best action
in each state [2].

The typical Monte Carlo starts with initializing all Q values with zero or arbitrary
values. We change this version to be fit with our purposes. In our approach, the values
acquired from (9) are considered as initialQ values and they are updated incrementally.
The number of data samples used for prediction model is used as a weight for the
initial values. The Monte Carlo algorithm yields the value of each state-action pair. The
modified updating rule of the Monte Carlo algorithm is defined in (10).

Q(s, a) =

n1(s,a)∑
j=1

Rewardxi
j (s, a) + E[R(s, a)] × n2(s, a)

n1(s, a) + n2(s, a)
s.t. xi ∈ D(s, a)

(10)

where n1(s, a) is the number of s(xi) and a(xi) pair in the data samples observed
so far, and n2(s, a) is the number of s(xi) in the dataset used for initialization when
its ad network id is a(xi). In other words, n1(s, a) is the length of D(s, a). Before
computing the average and updating Q(s, a), the current ad request should be added to
D(s, a). E[R(s, a)] is the average of the expected revenue of all ad requests that their
corresponding state is s.

The final output of this method is the state-action values. The publisher can decide
which ad networks to send the ad requests to achieve the maximum expected revenue
in the shortest time. In the next section, we discuss the results and evaluate our method
by comparing the expected rewards using our method to actual revenues obtained in the
dataset. Figure 2 provides an overview of our proposed method.
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4 Data Analysis

We use real-time bidding data from an online publisher to test our method. Each dataset
corresponds to one day’s ad requests, containing around one million records. For each
impression, the request order starts from one and increases after each unsuccessful
attempt to sell that impression. After receiving an unsuccessful response, the publisher
decreases the value of floor price and sends the new ad request to a new ad network.
Thus, increasing the request order and changing the floor price are the properties of
the environment in each state transition. In other words, we assume that the pattern for
changing the floor price is fixed. In order to know the rate of changing the floor price
and the request order, we consider all sequences of a certain day and plot the average of
the floor prices for each request order. Figure 3 illustrates the average of the floor prices
per request orders for successful, unsuccessful and all of the sequences. This figure
shows how the environment changes after each attempt.
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Fig. 3. The changing in the value of floor price after unsuccessful attempts.

Figure 3 also shows that there is no huge difference between the distribution of the
floor prices in successful and unsuccessful sequences. It is possible that setting floor
price dynamically will increase the revenue but we leave this problem as a future work
and focus on the role of the ad networks. Based on this figure, the decreasing rate for
different request orders are different. For instance, the slope of the line between request
order 3 and 4 are lower than others. The reason behind this observation comes from
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Fig. 4. The number of unsuccessful attempts for each floor price and ad network.

the fixed changing pattern of floor price. As we observed from the data, in some of
the sequences, the floor price increases between these two request orders. It is not a
problem because we assume the changing pattern as a property of the environment and
the publisher as an agent cannot alter that.

Figure 4 shows the number of unsuccessful attempts per floor price for each ad net-
work. A sequential numbering started from one is used for the name of ad networks. As
it is concluded from this figure, ad network 1 is the first ad network in the predefined
ordering and in many cases it cannot sell the impression with the highest price. How-
ever, ad network 4 has lower number of failures than ad network 1 for the high prices.
Conversely, for the lower prices ad network 1 is more successful. This is a good moti-
vation for finding a dynamic ordering of ad networks instead of predefined and fixed
one.

Different ad networks have different success rate. Based on the values of floor price
and request order, success rate varies. As it is shown in Table 1, these two values are
important in predicting success probability. Figures 5a and b show the effects of floor
price and request order on the success rate of each ad network. These figures shows
that the success rate changes for different values of floor price and request order and
this observation supports the definition of the states which is based on floor price and
request order.

As mentioned before, the time feature is not involved in the state definition.
Although it seems that it is necessary to consider the time in decision making, this
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Fig. 5. The success rate per floor price and request order for each ad network.
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feature is not as important as request order and floor price. We have seen that the impor-
tance of this feature based on the prediction model is lower than the selected features.
As another convincing explanation, Fig. 6 shows the average revenue per hours of a day.
In fact, this revenue is the total revenue divided by the number of ad requests. Therefore,
each bar in Fig. 6 shows the revenue per ad request. Based on this figure, the average
revenue does not vary too much during a day. Thus, a proper decision support tool for
selecting ad networks will increase the revenue regardless of the time of ad requests.
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5 Experiments and Results

The ordering method is developed to increase the revenue of ad publishers. This section
evaluates the method. The evaluation is based on testing on real time bidding data. The
method requires initial state-action values and uses the ad requests to learn final Q val-
ues. For the evaluation of the initial values obtained from the prediction model, we use
binary classification performance measures. Since it is not feasible to test our method
in the real environment, we compare the expected revenue of selecting the action cor-
responding to the highest Q value with the actual revenue obtained from the historical
data. We consider the floor price as a lower bound of revenue for impressions.

The dataset D contains the ad requests of one week (20–26 November 2017) for
users in the Netherlands. We use some part of this dataset for finding the initial state-
action values and the rest for the Monte Carlo algorithm. The attributes of our dataset
are introduced in [2].

Table 2. Performance measures for prediction model.

Event state = 1 Nov 20 Nov 21 Nov 22 Nov 23 Nov 24 Nov 25 Nov 26

Precision 0.7388 0.7668 0.7468 0.7382 0.7816 0.7991 0.8012

Recall 0.7165 0.7291 0.6781 0.6967 0.7486 0.7598 0.7662

F1 0.7275 0.7475 0.7108 0.7168 0.7647 0.7790 0.7833

Accuracy 0.7314 0.7549 0.7240 0.7261 0.7700 0.7844 0.7879

Kappa 0.4628 0.5098 0.4480 0.4521 0.5400 0.5689 0.5758

5.1 Initial Values Evaluation

In this section we discuss the result of event state prediction on the refined dataset.
The new dataset only contains successful sequences. As mentioned before, incomplete
sequences are removed because there is no information about the reason and distribu-
tion. This section shows that if we assume that all ad slots will finally be sold in the
auction, we can predict whether an ad network could find a proper bidder or not with an
acceptable performance. This assumption does not restrict the problem because when
the price of an ad slot is zero, it will definitely be sold. The reduction in floor price is
observed in the historical data and it is involved in state transitions.

There are seven available datasets that each one corresponds to a day of week in the
period of 20th to 26th of November 2017. Briefly speaking, the prediction model is a
classifier that labels each data sample with 0 or 1. A zero value denotes that this attempt
to get an advertisement from specified ad network will not be successful. Conversely, if
the prediction result is one, then the request to this ad network will result in filling the
ad slot. Our classifier is evaluated for this task using standard classification performance
measures, namely precision, recall, F1 score, kappa and ROC curve.

After data preprocessing that is explained in Sect. 3.4, the feature vector consists
of 673 features. We tested different classification methods such as Bayesian classifier,
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Fig. 7. ROC curve for 7 datasets.

Support Vector Machine and Random Forest classifier. We finally opted for the random
forest classifier as it has shown to achieve the best performance on our data.

Each sequence contains one to eight ad requests and only the last one is successful.
Therefore, the number of successful requests is far lower than the number of unsuc-
cessful ones and balancing is necessary. Undersampling and oversampling are the two
possible approaches. The SMOTE NC is reported to be a good method for oversam-
pling [7]. However, this method does not consider the dependencies between features.
For instance, if the browser of all ad requests from a given user is Chrome but the
prevalent browser of the nearest neighbors is Firefox, then sampling using SMOTE
NC would result in an incorrect sample combining this user characteristics to Firefox.
Because the number of samples per day are too high (about 1 million), oversampling
makes the dataset very large and loading the data for the classifier is not practical. The
samples with event state 1 are more important in our prediction model because they
provide the initial state-action values for our method. For this reason, we opted for
the random undersampling method for balancing the dataset [10]. Using this sampling
method prevents information loss, because these values are initial state-action values
and the rest of data samples containing incomplete sequences will be used in the Monte
Carlo algorithm.

Table 2 contains the performance measures of the prediction model. We applied the
classifier separately on each day. For each day, we implemented a 5-fold cross validation
method and computed the average performance over all folds. In Sect. 5.2 the sensitivity
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of the performance to the number of folds is experimented. As illustrated in Table 2, if
there is not any incomplete sequences we can predict whether an ad request will provide
an advertisement or not with a good F1 score (above 0.7). Figure 7 shows the ROC
curves of predicting success probability for seven consecutive days. The average value
of AUC for these seven dataset is 0.74.

The success probabilities for each ad network may be obtained with a good preci-
sion when there is not any incomplete sequences. Through multiplying the probability
of event state = 1 for each ad request and ad network to the value of floor price of
that ad request, a lower bound of revenue is obtained.

5.2 Sensitivity to the Number of Folds

As it is mentioned earlier, 5-fold cross validation is used to train the classifier. In this
section we try to realize the sensitivity of our prediction model to the number of folds.
For this purpose, we develop three different models that are trained based on 5-fold,
10-fold and 20-fold cross validation. In this structure, two k-fold selection procedures
are followed. In the first one, the folds are selected uniformly based on a static ordering
of ad request. In other words, there is no shuffling in the ad requests. The second one
selects fold after shuffling the ad requests. Generally, the shuffling increases the average
performance of the prediction. Table 3 contains the average F-score of each k-fold cross
validation and Fig. 8 illustrates the ROC curves of these approaches. Based on this
result, we infer that the best k-fold method is to first shuffle the dataset and then divide
it into five part and follow 5-fold cross validation approach.

Table 3. Performance measures for prediction model.

K-fold 5-fold 10-fold 20-fold

F-Score of shuffled dataset 0.7848 0.7847 0.7846

F-Score without shuffling 0.6547 0.7038 0.7507

5.3 State-Action Values Evaluation

Evaluation of theQ values is based on the total reward that is obtained by following the
greedy policy. There are about 1 million ad requests per day and all of them are used
in learning. The reinforcement learning requires merely one observation of the environ-
ment at a time, there is no need to load all the data entirely. This property provides the
possibility of processing a large number of ad requests.

The episodes used in the Monte Carlo algorithm are obtained by considering the
chronological ordering of ad requests. We used the ad requests of 20th of November for
the initialization and found initial state-action values. Then, we used the data samples of
the next five days in the Monte Carlo algorithm. Finally, we compared the real revenue
(based on sum of the values of floor prices for ad requests with eventstate = 1 as a
lower bound for revenue) with the expected revenue that is based on a greedy policy
with respect to the state-action values.
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Fig. 8. ROC curves for 6 k-fold clustering.

To determine the threshold values tfp and tro, we tested different values and found
that medians of the values of floor price and request order make the best balance
between the number of states and the number of observed actions for each state. Figure 9
illustrates the cumulative revenue prediction for the test dataset (red curve) compared
to the real revenue earned (blue curve). The ad requests of November 26 were used for
testing the method. As you can see in the figure, there is noticeable difference between
the two curves. For each episode, we considered only the first ad request, because the
state-action value of each state-action pair is the expected revenue of a sequence starting
from that state. Therefore, if a SSP acts greedily with respect to the state-action values
and selects the ad network with the highest value, the resulting revenue would be far
more than following the predefined ordering approach.

Theoretically there are huge differences between these two values which indicate
the potential of our proposed method. In the future we will test it on the real platform
and compare the theoretical results with the observed ones.
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5.4 Sensitivity to the Penalty Value

Current structure is based on setting a −1 for the reward of unsuccessful attempts.
This penalty value is responsible to find the advertisements as soon as possible. By
altering the penalty, we actually alter the priority of time in our model. If the minus
value of the penalty is too large, the publisher’s policy is too find the advertisements
in the shortest time regardless of the revenue. For example, when the penalty is −10,
being unsuccessful in the first attempt add a large minus value to the Q values. The
publisher tries to take the action corresponding to the maximum Q value. This action
is the one that provides the advertisement faster than the others. Obviously, the revenue
is affected based on this policy. The penalty value deals with the trade-off between
time and revenue. Figure 10 shows the comparison between the total revenue of setting
different penalty values.

Based on Fig. 10, the lower penalty entails decreasing in the amount of revenue. This
makes sense because when the penalty is very low (the minus value of penalty is high),
the policy is mainly to acquire advertisements as soon as possible. Therefore, selling
the ad slot to the lower bid in the first attempt, is preferred to the optimal bid that may
be received in the next attempts. In sum, the penalty value determines the preference of
a publisher. The publisher can set it dynamically to keep a balance between response
time and revenue.
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6 Conclusions

This paper proposed a reinforcement learning based decision support tool for online ad
publishers to help them finding an ordering of ad networks through that the maximum
revenue can be earned. The revenue is obtained by selling ad impressions in real time
auctions. Different ad networks for running auctions are available for a publisher. Our
method helps publishers to decide the best ad network at each step. The method models
the problem as a reinforcement learning problem by defining a set of ad requests as
states and the ad networks as actions. Then, it assigns a Q value for each state-action
pair. A prediction model initializes these Q values and the modified Monte Carlo algo-
rithm updates them continuously until convergence. Since, the number of episodes is
limited, batch updating is followed.

The method is suitable for publishers that participate in the real time bidding via
waterfall strategy. The response of sending ad requests are either a bid value or a mes-
sage showing that no bid could be found. During the procedure of selling a certain
impression, the ad networks are selected sequentially until finding proper bid. At each
trial, our method determines the best ad network and following the method results in
increasing the revenue.

Advertising is an important way of making money for website owners. Although
real time bidding and programmatic advertising make the connection between pub-
lishers and advertisers much easier, the publishers should take care of the way of
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participating to the auction. Waterfall strategy and Header Bidding are the two ways
[26]. Our proposed method increases the revenue in waterfall strategy by dynamically
determining the best ad network. This method is very helpful for publishers and they no
longer need to define a fixed ordering.

This ordering approach is also applicable for the header bidding. In header bidding,
connecting with ad networks is not sequentially anymore. A publisher sends separate ad
requests to all ad networks at the same time. Then, the highest bid is selected for selling
the impression. This strategy guarantees that the maximum possible bid would not be
missed. However, a challenging issue is the loading time of the webpage. Although all
of the ad requests are sent simultaneously, the publisher should wait until receiving the
responses from all of ad networks. Sometimes, the maximum bid is received very fast
and it is not necessary to wait for all responses. Nonetheless, the publisher is not aware
of the other bids and the maximum is determined only after receiving all bids. In the
future we will adapt our method with the header bidding. Instead of deriving an ordering
of ad networks, we will find a subset of ad networks for each impression to optimize the
response time and the revenue. In other word, the goal is to solve the trade-off between
time and revenue in header bidding which is discussed in Sect. 5.4.

Instead of developing a prediction model to solve the sparsity, we plan to use func-
tion approximation as future work. Even though the prediction model could be counted
as an approximation method, it is separated from the RL step and is learned offline. We
will assign a parametric function instead of the tabular one to replace the offline learn-
ing part. Through this modification, the algorithm can learn without any initial values
and the sparsity is solved by using a continuous function.
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Abstract. Hidden Markov models are tractable to capture long-term
dependencies but intractable to compute the transition probabilities of
higher-order process. We propose a neural hidden Markov models to com-
pute the transition probabilities of higher-order hidden Markov model by
a neural network and reduce the cost of computation. It is applied for
time-aware recommender systems to show the benefits from the hybrid of
combining neural network and hidden Markov model. We implement the
recommender system and experiment on real datasets to demonstrate
better performances over the existing recommender systems.

Keywords: Hidden Markov model · Neural network · Recommender
system · Collaborative filtering

1 Introduction

Hidden Markov models (HMMs) have been widely applied to many real-world
applications. Usually HMMs only deal with first-order transition probability
distribution among the hidden states. Due to their very nature higher-order
HMMs are suitable to capture longer range sequential dependencies.

Higher-order HMMs are extremely complicated due to their large number of
states that require estimation of the joint probabilities of the previous states.
Classical algorithms, such as the Baum-Welch reestimation equations, can either
be generalized to higher-order cases, or reduced to lower-order (e.g., first-order)
equivalents for training. Unfortunately, the number of transition probabilities in
higher-order HMMs grows with the power of the order of the model. Conventional
training procedures rapidly become computationally intractable due to their
space and runtime requirements.

In the previous work [9], we proposed the neural HMMs (NHMMs) that
replace the computation of the transition probabilities of higher-order HMMs
by neural networks (NNs). NHMMs reduce the time and space cost of higher-
order HMMs due to computational ability of deep learning. In this paper, we
extend NHMMs to applications that encompass sequential or temporal data
with long-term dependencies and apply NHMMs for recommender systems to
illustrate.

The recommendation predicts a user’s behavior from historical data. Higher-
order HMMs are well suited for modeling the recommendation problem. Time-
aware recommender systems (TARS) exploit time information and track the
c© Springer Nature Switzerland AG 2019
J. van den Herik et al. (Eds.): ICAART 2019, LNAI 11978, pp. 37–54, 2019.
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evolution of users and items that are important for giving satisfactory recom-
mendations [5]. HMMs and NNs are two common models for TARS. HMMs
use the hidden states to describe dynamic of users and items [25], but most of
them are simple first-order HMMs. NNs have been well applied for recommender
systems in recent years [37]. Recurrent neural networks (RNNs) are suitable for
sequential data with long-term dependencies [8,10,11,17,18,20,27,33]. However,
RNNs have some shortages compared with HMMs for recommender systems: (1)
RNNs use the order of the users’ behaviors, but neglect the time span between
the behaviors; (2) There is not an overall time axis in RNNs to indicate actual
time points of each behavior; (3) RNNs can not represent temporal relationship
among the behaviors from multiple users, and hence lack of personalization for
each user. HMMs can provide meaning of the hidden states for the analysis of
the properties of both users and items where RNNs can not.

We implement the time-aware recommender system based on NHMMs with
the algorithm in both batch-learning and online-updating situations. It is benefi-
cial from the hybrid of combining higher-order HMMs and NNs. We experiment
on real datasets to demonstrate better performances over the state-of-the-art
recommender systems.

In the next section, we discuss the related works. In Sect. 3, we present the
NHMM. In Sect. 4, we apply NHMM in recommender systems. In Sect. 5, we
experiment on real datasets to show the improvement performances of our algo-
rithm. Finally, we make concluding remarks.

2 Related Works

First-order HMMs were first introduced for recommender systems [1,2,25]. These
models can capture the duration that a user stays in a state. The hidden semi-
Markov models were applied for recommender systems [35,36], which extended
first-order HMMs on the dependency length from one time point to one staying
state. These models can not describe long-term affects in which the user changes
the states. Another kind of HMMs that were applied to recommender systems is
the Kalman Filter [6,14,22,23,28,29]. This approach has continuous state space
and continuous time axis. The dependency length in these models is extended
to the last time point that the user has ratings. But it has the same problem
about the long-term dependencies that is changed by the states.

In recent years, NNs have been applied for recommender systems, such as
autoencoder [21,32], RBM [26], MLP [16,34], CNN [12]. In particular, RNNs
are used for TARS. The sequential models apply the RNNs to model the history
of the users’ behavior as a sequence [10,11,27]. This approach uses the sequen-
tial order of the behavior generated by the users, but neglect the time span of
the data. The session-based models make recommendation on the session data
generated by users [8,17,18,20]. Similar to the sequential models, they use the
order of the users’ behavior sequence to make recommendation. Because there
is no overall time axis in these approaches, they can not find temporal relation-
ship between different users and describe the changes of multiple users at the
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same time. In [32], the model applied two separate RNNs for users and items for
TARS. Because the RNNs do not provide the meaning of the hidden states, it is
difficult to choose the function for interaction between users and items. Thus the
two RNNs model have to add some stationary components, e.g., an additional
matrix factorization model, to undertake the recommendation task.

There is literature of combining HMMs and NNs in other research fields. In
speech recognition, the hybrid model of combining HMM and NN in [4] applied
an NN to improve the discriminating power of HMM, in which the NN was
considered as a general form of Markov model and used to capture contextual
information. In molecular biology, the hybrid model in [3] applied an NN to
reduce the number of parameters of HMM. These hybrid models deal with the
problem of large number of the hidden states in HMM and use an NN to reduce
the parameter size. They discussed long-term dependencies, but chose multiple
first-order HMMs rather than a higher-order HMM. These models are totally
different from the NHMM.

3 NHMM

In this section, we present the NHMM, including the inference and learning
algorithm.

Let Xt be temporal state variable and Et temporal evidence variable, whose
possible values are in {1, . . . , N} and {1, . . . , K} respectively, and follow higher-
order hidden Markov assumptions:

P (Xt|Xt−1,Xt−2, . . . , Et−1, Et−2, . . .)
=P (Xt|Xt−1,Xt−2, . . . , Xt−L)
=P (X0|X−1,X−2, . . . , X−L),

(1)

P (Et|Xt,Xt−1,Xt−2, . . . , Et−1, Et−2, . . .)
=P (Et|Xt)
=P (E0|X0),

(2)

where L is the order and N,K,L are integers. In higher-order HMMs,
a matrix of transition probabilities with NL rows is needed to describe
P (Xt|Xt−1,Xt−2, . . . , Xt−L) in (1) for the NL value combinations of Xt−1,
Xt−2, . . . , Xt−L. The number of transition probabilities grows with the power
of the order of the model and rapidly become computationally intractable. We
use an NN to replace it to reduce the cost of computation.

Let φ(·) and ψ(·) be NNs with parameters. Given the marginal distribution
of X at the previous L time points,

P (Xt−i) = −−→xt−i, i = 1, 2, . . . , L. (3)

Then P (Xt) is defined as follows:

P (Xt) = φ(−−→xt−1,
−−→xt−2, . . . ,

−−→xt−L), (4)
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where the input and output of φ(·) are vectors with the dimensions LN and N

respectively. The output satisfies 0 ≤ φj ≤ 1 and
∑N

j=1 φj = 1. Note that φ(·)
may be any NN, such as feed-forward networks, RNNs or any NN that deals
with such input and output. In this paper, we take φ(·) as LSTM [19], which is
formulated as follows:

Ct−L = LSTM(−−→xt−L,
−→
0 ,

−→
0 ),

ht−L = LSTM(−−→xt−L,
−→
0 , Ct−L),

Ci = LSTM(−→xi , hi−1, Ci−1), t − L < i ≤ t,

hi = LSTM(−→xi , hi−1, Ci), t − L < i ≤ t,

φ = softmax(
−→
ht),

(5)

where for every i satisfying t − L ≤ i ≤ t, Ci is the cell state at time i while hi

is the output at time i.
The observation and initial state of NHMM are defined with a matrix and a

vector just like standard HMM:

P (Et = k|Xt = j) = Bj,k, (6)

P (Xt = i) = πi, −L ≤ t < 0. (7)

The inference of NHMM finds the conditional distribution P (Xt|E0:T−1 =−→e ), given an evidence sequence −→e = [e0, e1, . . . , eT−1]. To do this, we present
the neural network approximated forward-backward algorithm. It imitates the
procedure of the forward-backward algorithm of HMM [24], and calculates an
approximation γ(t) = P (Xt|E0:T−1 = −→e ).

The forward steps are in the following:

α(t) =
{

π, −L ≤ t < 0,
φ(α′(t − 1), . . . , α′(t − L)), 0 ≤ t,

(8)

where
α′(t) = normalize(α(t) � B:,et), (9)

and � means element-wise product of two vectors. B:,et means the et column
of the matrix B. If there is not evidence at t (for t < 0 or t ≥ T ), B:,et is
normalize(

−→
1 ). The function normalize(·) is defined as follows:

normalize(−→v ) =
−→v

∑N
j=1 |vj |

. (10)

The backward steps are in the following:

β(t) =
{

normalize(
−→
1 ), T ≤ t < T + L,

ψ(β′(t + 1), . . . , β′(t + L)), t < T,
(11)

where
β′(t) = normalize(β(t) � B:,et). (12)
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Where ψ(·) is another NN, whose lengths of the input and the output are the
same as the ones of φ(·). Note that ψ(·) may be any NN, here we taken as
LSTM. ψ(·) is said the reverse sequence network of φ(·). If φ is the function
(−→vL,−−→vL−1, . . . ,

−→v1) → −−→vL+1, ψ is the function (−→v2 ,−→v3, . . . ,−−→vL+1) → −→v1.
Thus, we can find γ by the following:

γ(t) = normalize(α′(t) � β(t)). (13)

Another inference task of NHMM is to find the distribution at the next time
point as follow:

γ(T ) = P (XT |E0:T−1 = −→e ) = φ(γ(T − 1), . . . , γ(T − L)), (14)

from which we find γ(T +1) with γ(T ), . . . , γ(T −L+1), and any γ(t) for t > T .
The learning algorithm of NHMM is described as follows: Suppose that we

have some evidence sequences ES = {−→e (1),−→e (2), . . . ,−→e (R)}, where −→e (r) =
[e(r)0 , e

(r)
1 , . . . , e

(r)

T (r)−1
]. We need to learn the set of parameters θ = {φ, ψ, π,B},

where we simply write φ and ψ for the parameters of φ(·) and ψ(·) respectively.
The learning algorithm works by inference-updating iterations similar to EM

algorithm. We firstly use some initial parameters θ in the inference steps and
calculate z = {α, α′, β, β′, γ} for every evidence sequence. We then use z in
updating steps to find a better θ∗. Finally we use θ∗ in inference steps and carry
on until finding satisfactory parameters.

The updating steps of π and B follow the Baum-Welch algorithm of HMM
[24] as follows:

π∗ = normalize(
R∑

r=1

−1∑

t=−L

γ(r)(t)), (15)

B∗
j,k =

∑R
r=1

∑T (r)−1
t=0 1

e
(r)
t =k

γ
(r)
j (t)

∑R
r=1

∑T (r)−1
t=0 γ

(r)
j (t)

, (16)

where

1
e
(r)
t =k

=
{

1, e
(r)
t = k,

0, else.
(17)

To update the NNs φ(·) and ψ(·), we need to build training sets for them.
The sampling method is as follows: we firstly select a random −→e (r) ∈ ES, then
select a random t such that 0 ≤ t < T (r). According to the inputs and expected
outputs of φ(·) and ψ(·), we add the following two examples to the training set
respectively:

(α′(r)(t − 1), α′(r)(t − 2), . . . , α′(r)(t − L)) → γ(r)(t), (18)

(β′(r)(t + 1), β′(r)(t + 2), . . . , β′(r)(t + L)) → γ(r)(t). (19)

By the training sets, we use standard training algorithm of the NNs (taken as
LSTM) to train.
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4 Recommendation

In this section, we apply the NHMM to provide the model of TARS and the
algorithm for recommendation.

Let RS =< User, Item, T ime, Level, Rating > be a recommender system,
where

– User is the set of users, and user (or u) ∈ User is a user.
– Item is the set of items, and item (or i) ∈ Item is an item.
– Time = Z is the set of time points, where Z is the set of integers.
– Level = {1, 2, . . . , N} is the set of rating levels, where N is a given integer.
– Rating is the set of ratings. rating = (user, item, time, level) (or r =

(u, i, t, l)) ∈ Rating is a rating. It means user gives item rating level at
time.

We make collaborative filtering recommendation by analyzing the similarity of
both users and items.

We introduce two hidden variables for the user type and the item type to
describe the common properties of users and items. Intuitively, the users with
the same type have similar properties. Any user (or item) has a type at a specific
time. Because users and items change, their types change as well.

Let Xuser,t and Yitem,t be state variables, which describe the user type and
the item type at time t respectively. For ratings, we define a variable Ruser,item,t

for each triplet (user, item, t). In addition, RS has the following:

– UserType = {1, 2, . . . , J} is the set of user types, where J is a given integer.
– ItemType = {1, 2, . . . ,K} is the set of item types, where K is a given integer.
– Xuser,t ∈ UserType is the variable for user’s type at t.
– Yitem,t ∈ ItemType is the variable for item’s type at t.
– Ruser,item,t ∈ Level is the variable for the rating user gives item at t.

By some known ratings, Ruser,item,t are (partially) observed, while Xuser,t and
Yitem,t are hidden states.

For example, consider a recommender system where User = {u1, u2, u3},
Item = {i1, i2}, N = 5, Rating = { (u1, i1, 1, 5), (u2, i2, 3, 3), (u1, i2, 5, 1),
(u3, i1, 6, 4) }, and set J = 2, K = 3. There are three user variables Xu1,t,
Xu2,t and Xu3,t whose possible values are in UserType = {1, 2}. The two item
random variables Yi1,t, Yi2,t have possible values in ItemType = {1, 2, 3}. There
are four observed rating variables Ru1,i1,1 = 5, Ru2,i2,3 = 3, Ru1,i2,5 = 1, and
Ru3,i1,6 = 4.

We consider that the users and the items generate ratings. When a user with
the j-th type meets an item with the k-th type, the probability that the user
likes the item is pj,k. We use the binomial distribution B(N − 1, pj,k) to convert
pj,k into discrete ratings as follows:

P (Ru,i,t = n | Xu,t = j, Yi,t = k)
= Pr(n − 1;N − 1, pj,k)

=
(

N − 1
n − 1

)

(pj,k)n−1(1 − pj,k)N−n.

(20)
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The transitions of Xu,t and Yi,t are described with two L-order NHMMs,
whose parameters are θ = {φ, ψ, π} and θ̃ = {φ̃, ψ̃, π̃} respectively. θ is shared
by all the users and θ̃ is shared by all the items. There is no matrix B in θ
because pj,k plays the role of generating evidences.

For the users, assume a user u has ratings at M(u) time points t1 < t2 < . . . <
tM(u). For 1 ≤ m ≤ M(u), if we know P (Xu,tm−l

) = −→x u,tm−l
, l = 1, 2, . . . , L,

then P (Xu,tm) is as follows:

P (Xu,tm) = φ(tm−tm−1,
−→x u,tm−1 , tm−tm−2,

−→x u,tm−2 , . . . , tm−tm−L,−→x u,tm−L
).

(21)
Compared with (4), we make an adjustment here. We only consider the time
points that the user has ratings, for there are a lot of time points that a user has
no ratings in recommender systems. To indicate the actual time length between
tm and tm−l, we add L dimensions in the input of φ(·). For tl with index l ≤ 0,
we set tl = t1 − τ and −→x u,tl = π, where τ is a given small time span.

Similarly, for the items, if item i is rated at M(i) time points t1 < t2 < . . . <
tM(i) and we know P (Yi,tm−l

) = −→y i,tm−l
, l = 1, 2, . . . , L for 1 ≤ m ≤ M(i), then

P (Yi,tm) is as follows:

P (Yi,tm) = φ̃(tm − tm−1,
−→y i,tm−1 , tm − tm−2,

−→y i,tm−2 , . . . , tm − tm−L,−→y i,tm−L
).

(22)
Now we consider the inference tasks of RS. Consider a user u who has ratings

at M(u) time points t1 < t2 < . . . < tM(u). At time points tm, the user gives
S(u, tm) ratings. These ratings are given to the items i1, i2, . . . iS(u,tm) and the
levels are n1, n2, . . . , nS(u,tm).

We first calculate the conditional probability that a type-j user gives these
S(u, tm) ratings at tm, denoted as bu,tm,j . From (20) we have:

bu,tm,j =P (Ru,i1,tm = n1, . . . , Ru,iS(u,tm),tm = nS(u,tm) | Xu,tm = j)

=
S(u,tm)∏

s=1

P (Ru,is,tm = ns | Xu,tm = j)

=
S(u,tm)∏

s=1

K∑

k=1

Pr(ns − 1;N − 1, pj,k)P (Yis,tm = k).

(23)

The vector bu,tm,: = (bu,tm,1, . . . , bu,tm,J) shows the probability that the user
generates these ratings at tm with each type. It plays the role of B:,et in Sect. 3.

The Algorithm 1 is the forward-backward algorithm for users. When we
refer to tl with index l < 1, we set tl = t1 − τ and α′

u(tl) = π. For tl with
index l > M(u), we set tl = tM(u) + τ and β′

u(tl) = normalize(
−→
1 ).

For convenience, we abbreviate the procedure of getting αu(tm) and
βu(tm) as φ(tm − tm−1, α

′
u(tm−1), . . . , tm − tm−L, α′

u(tm−L)) and ψ(tm+1 −
tm, β′

u(tm+1), . . . , tm+L − tm, β′
u(tm+L)), respectively.
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Algorithm 1. Forward-backward algorithm for users.

1: function Inference User(u)
2: for m = 1 to M(u) do

3: Cm−L ← LSTM([tm − tm−L, α′
u(tm−L)],

−→
0 ,

−→
0 )

4: hm−L ← LSTM([tm − tm−L, α′
u(tm−L)],

−→
0 , Cm−L)

5: for i = L − 1 to 1 do
6: Cm−i ← LSTM([tm − tm−i, α

′
u(tm−i)], hm−i−1, Cm−i−1)

7: hm−i ← LSTM([tm − tm−i, α
′
u(tm−i)], hm−i−1, Cm−i)

8: αu(tm) ← softmax(hm−1)
9: α′

u(tm) ← normalize(αu(tm) � bu,tm,:)

10: for m = M(u) to 1 do

11: Cm+L ← LSTM([tm+L − tm, β′
u(tm+L)],

−→
0 ,

−→
0 )

12: hm+L ← LSTM([tm+L − tm, β′
u(tm+L)],

−→
0 , Cm+L)

13: for i = L − 1 to 1 do
14: Cm+i ← LSTM([tm+i − tm, β′

u(tm+i)], hm+i+1, Cm+i+1)
15: hm+i ← LSTM([tm+i − tm, β′

u(tm+i)], hm+i+1, Cm+i)

16: βu(tm) ← softmax(hm+1)
17: β′

u(tm) ← normalize(βu(tm) � bu,tm,:)

18: for m = 1 to M(u) do
19: γu(tm) ← normalize(α′

u(tm) � βu(tm))

The inference steps for items are similar to the one for users. Consider
an item i that is rated at M(i) time points and has S(i, tm) rating at tm.
These ratings are from u1, . . . , uS(i,tm) and the levels are n1, . . . nS(i,tm). Then

bi,tm,k =
S(i,tm)∏

s=1

J∑

j=1

Pr(ns − 1;N − 1, pj,k)P (Xus,tm = j). (24)

The forward-backward algorithm Inference Item(i) is similar to Algorithm 1
except for the function name, the function input and the indexes.

The inference steps are taken separately for each user and each item. When
we do it for user u, we assume that the probability P (Yis,tm = k) in (23) is known.
Similarly, P (Xus,tm = j) in (24) is assumed to be known for inference steps of
item i. In practical, we use P (Xu,t = j) = (γu(t))j and P (Yi,t = k) = (γi(t))k.
The symbol (·)j means the j-th element of the vector. We first initialize γu and
γi, then take inference steps for u and i alternately to update them.

Finally, we present the learning algorithm for RS as follows. We update
the parameters θ = {φ, ψ, π}, θ̃ = {φ̃, ψ̃, π̃}, and pj,k with α, β and γ that
we calculate in the inference steps. pj,k is updated according to the parameter
estimation of binomial distribution as follows:

p∗
j,k =

∑
(u,i,t,l)∈Rating(l − 1)γu(t)γi(t)

∑
(u,i,t,l)∈Rating(N − 1)γu(t)γi(t)

. (25)

The prior π is updated as a sum of all the users’ distribution of t−L+1, . . . , t0. To
find γ(tl) with l ≤ 0, we take backward steps several times to find β and then γ.
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In practical, a fixed π = normalize(
−→
1 ) often has good performance because φ(·)

can generate the first L value of α(tl) for l > 0 from those normalize(
−→
1 ). We

have

π∗ = normalize(
∑

u∈User

0∑

l=−L+1

γu(tl)). (26)

The φ(·) and ψ(·) are trained with standard training algorithm of the NN
taken as LSTM. We only need to build the training sets for them. To sample
examples, we first select a random user u ∈ User, then select a random tm from
M(u) time points when the user generates ratings. The following two examples
are added to the training sets of φ and ψ respectively:

(α′
u(tm−1), . . . , α′

u(tm−L)) → γu(tm), (27)

(β′
u(tm+1), . . . , β′

u(tm+L)) → γu(tm). (28)

The updating of π̃ and the training example sampling steps of φ̃ and ψ̃ are the
same as those of π, φ and ψ except for the indexes.

We present the algorithms for the routines of the NHMM for RS, including
batch learning, online updating and prediction.

The batch learning algorithm learns the model from a set of training ratings.
It firstly initializes the θ, θ̃, pj,k, γu(t), γi(t) and empty training sets for each
LSTM. Then it takes inference-learning iterations for a given loop number. In
the inference steps, we randomly select a u ∈ User or an i ∈ Item, call the
Inference User or Inference Item functions to update γ. In the learning steps,
we calculate pj,k, π, π̃, build the training sets for each LSTM and train them in
standard way.

The online updating algorithm updates the model when receiving a rating
r = (u, i, t, l). We only take inference steps for both user and item that are related
to this rating. Then we update pj,k, π, π̃ by (25) and (26). The first equation is
a fraction of two sums in Rating, and the second equation is a sum in User (or
Item). We only need to subtract the previous contribution of the updated rating,
user or item in these sums, and add their new contributions. We do not need to
calculate the whole sums again. For the LSTMs, we sample some examples from
u and i, and update the φ, ψ, φ̃, ψ̃ with these examples, i.e., only run several
steps of the training algorithm of LSTM on them.

The prediction algorithm gives the prediction about the rating that a user u
would give to an item i at time t. We firstly calculate γu(t) and γi(t) with the γ
in the model:

γu(t) = φ(t − tM(u), γu(t − tM(u)), . . . , t − tM(u)−L+1, γu(t − tM(u)−L+1)), (29)

γi(t) = φ̃(t − tM(i), γi(t − tM(i)), . . . , t − tM(i)−L+1, γi(t − tM(i)−L+1)). (30)

Then we use γu(t) and γi(t) to calculate the model predicted P (Ru,i,t = n),
denoted as qu,i,t,n. The algorithm returns the vector qu,i,t,: =
(qu,i,t,1, . . . , qu,i,t,N ):
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qu,i,t,n =
J∑

j=1

K∑

k=1

(γu(t))j(γi(t))k Pr(n − 1;N − 1, pj,k). (31)

5 Experiments

The experiments adopt four datasets with different sizes as illustrated in Table 1.

Table 1. Datasets.

Dataset User Item Rating Density

MovieLens100k 944 1,683 100,000 6.29%

MovieLens1M 6,040 3,706 1,000,209 4.47%

Epinions 2,874 2,624 122,361 1.62%

Epinions Extended 11,201 109,520 5,449,415 0.44%

MovieLens100k (MLK) and MovieLens1M (MLM) [15] are two movie
datasets scratched through the web site MovieLens. The MovieLens100k
dataset consists of 100, 000 ratings from levels 1 to 5 which contain 943 users and
1, 682 movies. The MovieLens1M is comprised of 1, 000, 209 ratings from levels
1 to 5 including 6, 040 users and 3, 900 movies. Two datasets own well-defined
data of cleaning up by the providers, where the number of movies that every
user rates is at least 20 movies.

Epinions (Ep) [30,31] and Epinions (EpEx) [30,31] are two e-commerce
dataset collected through the web site Epinions. The Epinions (Ep) has data
span from 1999 to 2011. It contains 27 categories of items rated into levels 1
to 5. We first make a clean-up preprocess to produce a 20-core dataset (every
user rates at least 20 items and every item is rated by at least 20 users), which
has 2, 874 users, 2, 624 items and 122, 361 ratings. The additional information in
this dataset, like the categories of items and the trust relationships of users, are
not adopted by our experiments. The Epinions Extended (EpEx) is about
the reviews. A rating is between 1–5 levels to denote whether the review is
considered to be helpful or not. We make a clean-up preprocess to produce a
20-core dataset. After doing that, there are 5, 449, 415 ratings from 11, 201 users
and 109, 520 items. It is a sparse dataset whose density (the number of ratings
divided by the number of users and the number of items) is only 0.44%.

We make three kinds of experiments to test the performance of the algorithms
in different environments.

– Classical Experiment. The ratings in the datasets are randomly divided
into training set (80%) and test set (20%). The algorithms are trained by the
training set to provide predictions about the ratings in the test set.
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– Time-order Experiment. The ratings in the datasets are reordered accord-
ing to the time they are generated. We take the former 80% as training set
and the latter 20% as test set. This is a reasonable setup for TARS for it
ensures that the algorithms predict the future by the past.

– Time-order Online Experiment (TOO). The ratings in the datasets are
reordered according to the time they are generated and imported one by one
to the algorithms. For every rating, the algorithms are first required to give
their predicted rating, and then updated their parameters every time they
receive new coming rating. This method simulates the situation of real-world
online recommendation applications and is suitable to evaluate time-aware
and online algorithms.

The test ratings related to the users and the items that have no ratings
in the training set are not counted in the evaluation scores. In this case, the
parameters of some algorithms for the related users or items are not defined,
or just initialized by small random values. So the algorithms can not provide
reasonable ratings. For the same reason, in time-order online experiments, the
very first ratings for every user and item (i.e., the cold-start in the sense the user
or item has not appeared before) are not counted in the scores.

The algorithms are evaluated by RMSE, MAE, MRR and NDCG. RMSE
(Root Mean Square Error) and MAE (Mean Absolute Error) are two common
metrics in recommender systems:

RMSE =

√∑
(u,i,t)∈Rtest

(Ru,i,t − R̂u,i,t)2

|Rtest| , (32)

MAE =

∑
(u,i,t)∈Rtest

|Ru,i,t − R̂u,i,t|
|Rtest| , (33)

where Rtest denotes the test sets, Ru,i,t is the real rating level , in which user u

gives item i at time t and R̂u,i,t represents the corresponding predicted rating
level. The smaller value RMSE or MAE is, the better performance is. In addition,
we refer to two other metrics MRR and NDCG. MRR (Mean Reciprocal Rank)
equals to the average value of those reciprocal ranks. For user u, the reciprocal
rank is the multiplicative inverse of ranku denoting the position of the first
positive item in recommendation list of user u:

MRR =
1

|User|
|User|∑

u=1

1
ranku

. (34)

NDCG (Normalized Discounted cumulative gain) is the average of the NDCGu

for all users. For user u, NDCGu is normalized DCGu (Discounted Cumulative
Gain) via being divided by the maximum possible gain IDCGu. DCGu is defined
by the following:

DCGu =
2∑

i=1

Reli +
N∑

i=3

Reli
log2 i

, (35)
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where Reli denotes the relevancy of the i-th item and N is equal to the length
of recommendation list of user u. For simplicity, we directly take levels 1-5 as
relevancy.

We compare our algorithm NHMM-RS with several representative algorithms
as follows.

– Time Weight Collaborative Filtering (TWCF) [13] is time-related item-
based neighborhood method. It uses Pearson correlation coefficient to calcu-
late the similarity of items, and then an exponential time weight function
and the item similarity to make predictions. Similar to other neighborhood
methods, the algorithm is able to run in online experiments.

– Collaborative Kalman Filter (CKF) [14] is a HMM that uses the Kalman
Filter to make recommendation. The model has continuous time axis and
continuous variables for users, items and ratings. It has an online updating
algorithm and each update step only uses the most recent rating.

– Recurrent Recommender Networks (RRN) [33] is a time-aware model
by the RNN. It uses an LSTM to capture dynamics of users and items in
addition to a traditional low-rank factorization to describe the stationary
components.

– Streaming Recommender Systems (SRec) [7] is a time-aware proba-
bilistic model for recommender systems. It handles data as streams for effec-
tive recommendation, and uses a continuous-time random process to capture
dynamics of users and items. It provides an online algorithm for real-time
updating and making recommendation.

The hyperparameters of the tested algorithms are decided by grid search.
Each hyperparameter is selected from a set of candidates to produce the
best performance. In detail, the learning rate and regularization coefficient
of RRN, NHMM-RS and the decay rate λ of TWCF are selected from
{1, 0.1, 0.01, 0.001, 0.0001}. Because the CKF used a hyperparameter σ = 1.76,
we select σ from {0.5, 0.6, 0.7, . . . , 2.5} for CKF. We use LSTM to implement the
NNs in RRN and NHMM-RS. Another hyperparameter is latent vector length
(for CKF, RRN and NHMM-RS). Because it is directly related to the time and
space cost, we set it 10 for each algorithm for the sake of fairness.

Tables 2 and 3 summary the experiment results about RMSE and MAE. The
results show that NHMM-RS has best performances on most experiments (19
of 24 scores). In other scores, it also has competitive performance in the nearly
second place. Especially on the MovieLens1M, it achieves the best place on 5
scores. In time-order online experiments, it outperforms the existing algorithms,
which shows that our model makes use of the time information in a proper way.

Tables 4 and 5 summary the experiment results about MRR and NDCG. On
the MRR metric, NHMM-RS gains 8 No. 1 rankings among 12 lists. CKF owns
2 best results on Movielens1M in classical and time-order setup. RRN achieves
the first place on 3 experiments. SRec also shows best performance on Epinions
in classical setup. On the NDCG metric, NHMM-RS shows best performance on
9 experiments. Besides, CKF performs best on 3 experiments which all are on
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Table 2. RMSE.

Setting Datasets TWCF CKF RRN SRec NHMM-RS

Classical MLK 0.959 0.959 0.924 1.165 0.923

MLM 1.044 0.882 0.895 1.399 0.900

EP 1.219 1.075 1.107 1.097 1.037

EPEX 0.460 0.404 0.445 1.002 0.349

Time-order MLK 1.141 1.115 1.021 1.644 1.008

MLM 1.622 0.907 1.034 1.395 0.932

EP 1.324 1.167 1.123 1.175 1.065

EPEX 0.513 0.879 0.479 1.118 0.420

Time-order online MLK 1.004 1.062 1.090 1.467 0.948

MLM 0.998 0.924 1.040 1.457 0.913

EP 1.312 1.296 1.199 1.367 1.065

EPEX 0.458 0.499 0.468 0.783 0.358

Movielens1M, and RRN shows best results on 1 experiments, and SRec performs
best on 1 experiments.

We conduct experiments to analyze the convergency of the algorithms. The
experiments are carried out on Movielens100K and Epinions datasets in time-
order-online environment. As far as the size of dataset is concerned, an algorithm
which can converge on small-size datasets further shows its excellent capacity.
It is the reason why we choose those two small-scale datasets. To do that, we
select two metrics RMSE and MAE. Then, for every algorithm, RMSE and MAE
values are dynamically calculated and outputted with new 10% data as input.

Table 3. MAE.

Setting Datasets TWCF CKF RRN SRec NHMM-RS

Classical MLK 0.756 0.749 0.936 0.912 0.728

MLM 0.790 0.694 0.712 1.092 0.711

EP 0.958 0.911 0.862 0.873 0.803

EPEX 0.256 0.228 0.247 0.799 0.169

Time-order MLK 0.891 0.842 0.829 1.284 0.793

MLM 1.137 0.709 0.845 1.059 0.733

EP 1.004 0.895 0.848 0.900 0.812

EPEX 0.336 0.527 0.379 0.836 0.318

Time-order online MLK 0.789 0.823 0.857 1.110 0.756

MLM 0.788 0.724 0.812 1.111 0.723

EP 1.010 0.995 0.929 1.049 0.823

EPEX 0.234 0.293 0.327 0.404 0.193
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Table 4. MRR.

Setting Datasets TWCF CKF RRN SRec NHMM-RS

Classical MLK 0.784 0.800 0.772 0.733 0.807

MLM 0.798 0.870 0.608 0.780 0.836

EP 0.764 0.882 0.830 0.896 0.896

EPEX 0.967 0.971 0.967 0.965 0.973

Time-order MLK 0.673 0.727 0.729 0.692 0.729

MLM 0.764 0.841 0.805 0.794 0.783

EP 0.754 0.818 0.738 0.769 0.819

EPEX 0.958 0.955 0.953 0.959 0.984

Time-order online MLK 0.632 0.795 0.803 0.715 0.741

MLM 0.654 0.862 0.867 0.722 0.718

EP 0.748 0.861 0.842 0.824 0.900

EPEX 0.964 0.956 0.950 0.958 0.966

Table 5. NDCG.

Setting Datasets TWCF CKF RRN SRec NHMM-RS

Classical MLK 0.950 0.952 0.951 0.940 0.953

MLM 0.951 0.960 0.919 0.946 0.955

EP 0.942 0.968 0.956 0.969 0.969

EPEX 0.995 0.991 0.989 0.988 0.997

Time-order MLK 0.958 0.963 0.967 0.963 0.967

MLM 0.954 0.962 0.956 0.957 0.958

EP 0.969 0.978 0.966 0.974 0.979

EPEX 0.997 0.990 0.989 0.990 0.998

Time-order online MLK 0.928 0.945 0.946 0.930 0.947

MLM 0.930 0.959 0.959 0.939 0.950

EP 0.918 0.951 0.945 0.943 0.960

EPEX 0.991 0.989 0.983 0.990 0.992

Figure 1 shows the final comparison results. As we can see in every experiment,
the line of NHMM-RS is smoother than other algorithms, which reflects the fact
that NHMM-RS achieves convergency faster.
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(a) RMSE on MLK (b) RMSE on EP

(c) MAE on MLK (d) MAE on EP

Fig. 1. Convergency.

6 Concluding Remarks

We proposed the neural hidden Markov model and apply it to time-aware recom-
mender systems. It is well suitable for long-term dependencies and explainable
for the interactions between users and items.We provided both offline batch-
learning algorithm and efficient online updating algorithm. The experiments on
real datasets demonstrate that our algorithm has better performance than the
existing recommender systems.

We do not specify the neural networks in our models for the sake of generality.
We can select the state-of-the-art NNs to implement our model to arrive at the
best performance. If we adapt RNNs implementation in our model to deal with
unfixed length input sequences, our model can be extended to unfixed order
hidden Markov models, that is, we do not need to fix the order of hidden Markov
models.

Many applications can use higher-order Markov models in a natural way, such
as natural language precessing and reinforcement learning and so on, where the
neural hidden Markov models can be applied.

Acknowledgements. This work is supported by Natural Science Fund of China under
numbers 61672049/61732001.
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Abstract. Multi-agent planning (MAP) has recently gained traction in
both planning and multi-agent system communities, especially with the
focus on privacy-preserving multi-agent planning, where multiple agents
plan for a common goal but with private information they do not want
to disclose. Heuristic search is the dominant technique used in MAP and
therefore it is not surprising that a significant attention has been paid
to distributed heuristic computation, either with or without the concern
for privacy. Nevertheless, most of the distributed heuristic computation
approaches published so far are ad-hoc algorithms tailored for the partic-
ular heuristic. In this work we present a general, privacy-preserving, and
admissible approach to distributed heuristic computation. Our approach
is based on an adaptation of the technique of cost partitioning which
has been successfully applied in optimal classical planning. We present
the general approach, a particular implementation, and an experimental
evaluation showing that the presented approach is competitive with the
state of the art while having the additional benefits of generality and
privacy preservation.

1 Introduction

Automated planning is an established field of classical artificial intelligence
studying the representation and algorithms necessary to find solutions of prob-
lems which can be described in the form of state transition systems. In the pres-
ence of multiple interacting entities, or agents, we consider multi-agent planning.
If the agents are cooperative, that is, share a common goal or utility function,
but each agent might have some knowledge it considers private, the relevant
field of study is privacy-preserving multi-agent planning. Examples of such situ-
ations range from coalition mission planning to planning business operations for
a consortium of companies.

In recent years, a number of privacy preserving multi-agent planners have
been developed and published [10,13,22,24]. The most common paradigm used
in multi-agent planners is, similarly to classical planning, heuristically guided
(distributed) state-space search, first proposed as MAD-A* in [12]. MAD-A* is
c© Springer Nature Switzerland AG 2019
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also the only optimal distributed planning algorithm which considers privacy. As
such it has been re-implemented also in other planning systems, e.g., MAPlan [3],
which we use for implementation in this work. The recent work in multi-agent
(and especially privacy-preserving) planning is summarized in the survey [23].

Heuristic search requires good heuristic to be efficient and admissible heuris-
tic to be optimal. The same holds for multi-agent and distributed heuristic
search. The agent can compute a heuristic estimate from its view of the global
problem, i.e., its projection. Such projection also contains a view of other agents’
public operators, which allows for a heuristic estimate of the entire problem, but
such estimate may be significantly misguided as shown in [17]. The reason is
that the projection does not take into account the parts of the problem private
to other agents. Moreover in some problems, the optimal heuristic estimate may
be arbitrarily lower for the projection than for the global problem. This has
lead to the development of various distributed heuristics, but only few consider
privacy properly. An example of such privacy-preserving distributed heuristic is
the multi-agent potential heuristic [18].

In general, proper treatment of privacy has long been neglected. The first
serious consideration for privacy in multi-agent planning was Brafman’s Secure-
MAFS [1] which is privacy-preserving for a certain class of problems, but (i) does
not provide optimal solution (ii) does not consider privacy preservation of the
used heuristic. Basically, the heuristic has to be computed only on the public
projection of the problem for the proposed statements to hold.

Most of the distributed heuristics published up-to-date present ad-hoc tech-
niques to distribute each particular heuristic. Typically, the distributed compu-
tation of heuristic estimate requires the cooperation of all (or at least most of)
the agents and incurs a substantial amount of communication. In many scenar-
ios, the communication may be very costly (multi-robot systems) or prohibited
(military) and even on high-speed networks, communication takes significant
time compared to local computation. In such cases, it may pay off to use the
projected heuristic instead of its better-informed counterpart.

In [21] the authors present an idea of using the idea of cost-partitioning [7] in
multi-agent planning as a general approach to distribute multi-agent heuristics in
an additive way. In this work we take this approach even further by considering
privacy rigorously. We extend the previous work in the following points:

– We analyze the privacy leakage of a general additive multi-agent heuristic.
– We analyze the privacy leakage of multi-agent cost-partitioning based on [18],

first proposed in [21].
– We propose a general approach to secure additive heuristic computation using

secure-sum algorithm [16].
– We apply the secure-sum computation on cost-partitioning based additive

heuristic and evaluate the influence it has on the planning system.

The use of secure computation primitives such as secure LP computation
[11] or secure sum computation [16] to improve the preservation of privacy in
the distributed heuristic computation.



Distributed and Privacy-Preserving Heuristic Computation 57

1.1 Privacy

An important aspect of MAP is privacy. In [13], the authors have defined the
notions of weak and strong privacy, where strong privacy coincides with the
definition used in Secure Multiparty Computation (MPC) [27]. Whereas most
planners aim only for weak privacy, which is disputable as it gives no guaran-
tees on the private information the adversary can learn, the authors in [1] have
proposed a variant of the MAFS planner which is strong privacy preserving for
a restricted set of problems. Nevertheless, the authors in [25] have shown that it
is not possible to construct a complete, efficient, and strong privacy preserving
multi-agent planner based on heuristic search (e.g., MAFS).

A more practical question is then what and how much private information
leaks from the distributed computation. In the context of MAP, techniques for
privacy leakage quantification have been presented in [20,26], both as theoret-
ical frameworks, the only practical and usable implementation is [19]. In the
latter, the amount of private information leaked due to the public information
exchanged by the agents is quantified based on the number of possible transition
systems of the agent according to the communicated information.

In MPC, assumptions are typically placed on the agents, computation power,
and communication channels. Here, to assess the worst-case leakage, we assume
that there is a single agent hiding its private information and all other agents col-
lude to gain as much information as possible. We assume semi-honest agents, that
is, agents which do not alter the communication protocol (and the distributed
algorithm) but attempt to deduce as much private information as possible. We
assume unlimited computational power of the adversaries (that is, we aim for
unconditional security) and FIFO loss-less communication channels.

2 Formalism

In this section we define the formal definitions used throughout the paper.

2.1 Multi-Valued Planning Task

Let us first define a classical single-agent planning task in the form of Multi-
Valued Planning Task (MPT). The MPT is a tuple

Π = 〈V,O, sI , s�, cost〉

where

– V is a finite set of finite-domain variables, each V in the finite set of variables
V has a finite domain of values dom(V ),

– O is a finite set of operators,
– sI is the initial state,
– s� is the goal condition and
– cost : O �→ R

+
0 is a cost function.
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Moreover, a fact 〈V, v〉 is a pair of a variable V and one of the values v from its
domain (i.e., an assignment).

Let p be a partial variable assignment over some set of variables V. We use

– vars(p) ⊆ V to denote a subset of V on which p is defined and
– p[V ] to denote the value of V assigned by p.

Alternatively, p can be seen as a set of facts {〈V, p[V ]〉 |V ∈ vars(p)} correspond-
ing to that partial variable assignment. A complete assignment over V is a
state over V. A (partial) assignment p is consistent with an assignment p′ iff
p[V ] = p′[V ] for all V ∈ vars(p).

An operator o from the finite set O has

– a precondition pre(o) and
– an effect eff(o) which are both partial variable assignments.

An operator o is applicable in a state s if pre(o) is consistent with s. Application
of operator o in a state s results in a state s′ such that all variables in eff(o) are
assigned to the values in eff(o) and all other variables retain the values from s,
formally s′ = o ◦ s.

A solution to MPT Π is a sequence π = (o1, ..., ok) of operators from O (a
plan), such that o1 is applicable in sI = s0, for each 1 ≤ l ≤ k, ol is applicable
in sl−1 and sl = ol ◦ sl−1 and sk is a goal state (i.e., s� is consistent with sk).

2.2 Multi-Agent Multi-Valued Planning Task

MA-MPT is a multi-agent extension of the Multi-Valued Planning Task. For n
agents, the MA-MPT problem M = {Πi}n

i=1 consists of a set of n MPTs. Each
MPT for an agent αi ∈ A is a tuple

Πi =
〈
Vi = Vpub ∪ Vprivi , Oi = Opubi ∪ Oprivi , s�i

I , s�i
� , costi

〉

where

– Vprivi is a set of private variables,
– Vpub is a set of public variables shared among all agents Vpub ∪Vprivi = ∅ and
– for each i �= j, Vprivi ∩ Vprivj = ∅ and Oi ∩ Oj = ∅.

All variables in Vpub and all values in their respective domain are public, that
is known to all agents. All variables in Vprivi and all values in their respective
domains are private to agent αi which is the only agent aware of such V and
allowed to modify its value.

A global state is a state over VG =
⋃

i∈1..n Vi. A global state represents the
true state of the world, but no agent may be able to observe it as a whole.
Instead, each agent works with an i-projected state which is a state over Vi such
that all variables in VG ∩ Vi are equal in both assignments (the assignments are
consistent).

The set Oi of operators of agent αi consists of private and public operators
such that Opubi ∩ Oprivi = ∅. The precondition pre(o) and effect eff(o) of private
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operators o ∈ Oprivi , are partial assignments over Vprivi , whereas in the case of
public operators o ∈ Opubi the assignment is over Vi and either pre(o) or eff(o)
assigns a value to at least one public variable from Vpub . Because Vpub is shared,
public operators can influence (or be influenced by) other agents. The function
costi : Oi �→ R

+
0 assigns a cost to each operator of agent αi. The initial state sI

and the partial goal state s� (partial variable assignment over VG) are in each
agent’s problem represented only as i-projected (partial) states.

We define a global problem (MPT) as a union of the agent problems, that is

ΠG =

〈
⋃

i∈1..n

Vi,OG =
⋃

i∈1..n

Oi, sI , s�, costG

〉

where costG is a union of the cost functions costi. The global problem is the
actual problem the agents are solving.

An i-projected problem is a complete view of agent αi on the global problem
ΠG. The i-projected problem of agent αi contains i-projections of all operators
of all agents. Formally, an i-projection o�i of o ∈ Oi is o. For a public operator
o′ ∈ Opubj of some agent αj s.t. j �= i, an i-projected operator o′�i is o′ with pre-
condition and effect restricted to the variables of Vi, that is pre(o′�i) is a partial
variable assignment over Vi consistent with pre(o′) (eff(o′) treated analogously).
An i-projection of a private operator o′′ ∈ Oprivj s.t. j �= i is o′′�i = ε, that is
a no-op operator with cost�i(o′′�i) = costi(ε) = 0. The cost of i-projection of
o′′ ∈ Opubj is preserved, formally cost�i(o�i) = costj(o).

The set of i-projected operators is

O�i = {o�i|o ∈
⋃

j∈1...n

Oj}

and an i-projected problem is

Π�i =
〈
Vi,O�i, s�i

I , s�i
� , cost�i

〉

The set of all i-projected problems is then M� = {Π�i}n
i=1. The set M� of all

i-projected problems can be seen as a set of abstractions of the global problem
ΠG. A public projection Π� of Πi is defined analogously with all states, partial
states, and operators restricted only to public variables Vpub .

Let us define the transition system of an MPT problem Π. A transition
system of a planning task Π is a tuple T (Π) = 〈S,L, T, sI , S�〉, where S =∏

V ∈V dom(V ) is a set of states, L is a set of transition labels corresponding
to the operators in O and T ⊆ S × L × S is a transition relation of Π s.t.
〈s, o, s′〉 ∈ T if o ∈ O s.t. o is applicable in s and s′ = o ◦ s. A state-changing
transition is 〈s, o, s′〉 ∈ T such that s �= s′. The state sI ∈ S is the initial state
and S� is the set of all goal states (that is all states s s.t. s� is consistent with
s). The cost of a transition 〈s, o, s′〉 ∈ T is cost(o).

Formally, the private information of agent αi is the set of private variables
Vprivi , the set of private operators Oprivi , and the private preconditions and effects
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of the public operators in Opubi . According to [20], the private information agent
αi is hiding from other (adversary) agents is the isomorphic image of the tran-
sition system T (Πi), whereas the transition system T (Π�) and a projection
π� of the final plan π are public information. Privacy leakage can be quantified
as the difference in the uncertainty of the actual transition system T (Πi) tak-
ing into account only the apriori information (T (Π�) and π�) and taking into
account all information obtained throughout the planning process (or heuristic
computation in our case), e.g., all the exchanged messages.

3 Multi-agent Cost Partitioning

In this section, we briefly describe the idea of cost partitioning as used in classical
planning [7] and define multi-agent cost partitioning as presented in [21].

Definition 1. (Cost partitioning). Let Π be a planning task with operators O
and cost function cost. A cost partitioning for Π is a tuple cp = 〈cp1, ..., cpk〉
where cpl : O → R

+
0 for 1 ≤ l ≤ k and

∑k
l=1 cpl(o) ≤ cost(o) for all o ∈ O .

As shown in [7], a sum of admissible heuristics computed on the cost parti-
tioned problem is also admissible, formally

Theorem 1. (Katz and Domshlak 2010). Let Π be a planning task, let h1, ..., hk

be admissible heuristics for Π, and let cp = 〈cp1, ..., cpk〉 be a cost partitioning for
Π. Then hcp =

∑k
l=1 hl(s) where each hl is computed with cpl is an admissible

heuristic estimate for a state s.

Based on the particular cost partitioning cp, the heuristic estimate can have
varying quality. By optimal cost partitioning (OCP) we mean a cost partitioning
which maximizes hcp. Finding an OCP can be cast as an optimization problem
and is typically computed using a linear program (LP) formulations. Such for-
mulations are known for OCP based on landmarks [5] and abstractions [7]. Now
we proceed with the definition of a the multi-agent variant of cost partitioning,
which differs in that the partitions are defined apriori by the set of the i-projected
problems.

Definition 2. (Multi-agent cost partitioning). Let M� = {Π�i}n
i=1 be the set of

all i-projected problems with respective cost functions cost�i. A multi-agent cost
partitioning for M� is a tuple of functions cp = 〈cp1, ..., cpn〉 where cpi : O�i →
R

+
0 . For 1 ≤ i ≤ n and for each o ∈ OG holds

∑n
i=1 cpi(o�i) ≤ costj(o) where αj

is the owner of o, that is, o ∈ Oj .

Theorem 2. Let M� = {Π�i}n
i=1 be the set of all i-projected problems, ΠG the

global problem respective to M and cp a multi-agent cost partitioning for M�.
Then cp is a cost partitioning for ΠG.

Proof. The theorem follows from Definition 1, Definition 2 for all public oper-
ators and from setting o�i = ε for all o ∈ Oprivj s.t. j �= i. As cost�i(o�i) =
cost�i(ε) = 0 and cost�j(o�j) = costj(o), the cost partitioning property∑n

i=1 cpi(o�i) ≤ costj(o) holds also for private operators.
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Thanks to Theorem 2 we can apply the Proposition 1 also in the multi-agent
setting using a multi-agent cost partitioning. Thus, each agent αi can compute its
part of the heuristic locally on Π�i using cpi instead of costi as the cost function.
To obtain the global heuristic, the individual parts can be simply summed

hcp(s) =
n∑

i=1

h�i
cpi

(s�i) (1)

where h�i
cpi

is an i-projected heuristic computed on Π�i using cpi.
Note that in multi-agent cost partitioning, private operators are partitioned

implicitly as only their respective owners are aware of them, formally for o ∈
Oprivi :

cpj(o
�j) =

{
costi(o) if i = j

0 else

In classical planning, the cost partitioning is typically computed for each
state evaluated during the planning process. In privacy-preserving MAP, such
approach does not make much sense as we want to avoid the distributed compu-
tation as much as possible. Thus, the envisioned use of such cost partitioning is
to compute it once at the beginning of the planning process (as discussed in [6]),
use the cost partitioned problems to evaluate heuristics locally and sum the local
heuristics to obtain a global estimate.

3.1 Planning with Multi-agent Cost-Partitioning

In order for the reader to understand the consequences of communicating private
information during the planning process, we describe how the multi-agent cost-
partitioning is used throughout the distributed search (MAD-A*), similarly as
was already proposed in [21]. In classical planning, the (optimal) cost partitioning
computation is typically used as a means of computing heuristic value for each
state, even though there are alternative approaches where the cost partitioning
is not computed for every state [6,8,15]. As this work is the first to explore
the benefits of cost partitioning in multi-agent planning we adopt the simplest
approach based on [8].

The particular cost-partitioning is also often coupled with a particular heuris-
tic (for which it is optimal), e.g., cost partitioning based on landmarks is coupled
with the landmark heuristic (in fact, the objective value of the LP is the heuris-
tic value). Here we aim for a somewhat more general and decoupled approach,
that is, to provide a general technique for additive heuristic computation in
multi-agent planning. By additive we mean that each part of the heuristic can
be computed by each respective agent separately an then added together. As
defined in [18]:

Definition 3. (Agent-additive heuristic) A global heuristic h estimating the
global problem ΠG is agent-additive iff for any agent αi ∈ A it can be repre-
sented as

h(s) = hpub(s�) +
∑

αj∈A
hj(s�j)



62 M. Štolba et al.

where hpub is a heuristic computed on the public projection problem Π� and hj

is a heuristic computed on the j-projected problem Π�j.

Clearly, a heuristic is agent-additive even without the public part, that is, if
hpub(s�) = 0 for all states, which is the case of the heuristic computed on multi-
agent cost partitioning defined in Eq. 1. In the rest of this section, we show how
the agent-additive property can be utilized in the search.

The principle of the multi-agent heuristic search presented here is based
on the MAD-A* algorithm (Multi-Agent Distributed A*) [12]. We first briefly
summarize the main principles. The MAD-A* algorithm is a simple extension of
classical A*. The agents search in parallel, possibly in a distributed setting (i.e.,
communicating over a network). Each agent αi ∈ A searches using its operators
from Oi and if a state s is expanded using a public operator o ∈ Opubi , the
resulting state s′ is sent to other agents (the agents may be filtered in order to
send the state only to the relevant ones). When some other agent αj receives
the state s′, s′ is added to the OPEN list of αj and expanded normally when
due. The original MAD-A* uses only projected heuristics computed on Π�i.
Each state sent by αi is also accompanied with its i-projected heuristic estimate
and when received, the receiving agent αj computes the j-projected heuristic
estimate of the received state s′ and takes h(s) = max(h�i(s�i), h�j(s�j)).

Let us now consider how can the agent-additive heuristic be utilized in the
search to reduce heuristic computation and communication. In order to do so,
we first state the following two propositions.

Proposition 1. Let M = {Πi}n
i=1 be a multi-agent problem and let h(s) =

hpub(s�) +
∑

αi∈A hi(s�i) be an agent-additive heuristic. Let s and s′ be two
states where s′ is created from s by the application of a private operator o ∈ Oprivj

of some agent j. Then for all hj such that j �= i holds hj(s�j) = hj(s′�j) and

h(s′) = h(s) − hpub(s�) − hi(s�i) + hpub(s′�) + hi(s′�i) (2)

Proof. As o ∈ Oprivi the states s, s′ differ only in variables private to agent i and
thus s�j = s′�j and consequently hj(s�j) = hj(s′�j) for all j �= i. Equation 2
follows directly from the fact that from the point of view of the agent i, the
value of the private parts of the agent-additive heuristic of all other agents can
be expressed as

∑
αj∈A\{αi} hj(s�j) = h(s) − hpub(s�) − hi(s�i).

This means, that the heuristic estimate of a state s′ can be easily determined
from the heuristic estimate of its predecessor s if s′ was obtained from s by
the application of a private operator. When a state is received from some other
agent j, it is accompanied with its global heuristic estimate computed by agent
j. When a state s is expanded by agent i with a private operator, the heuristic
estimate of its successor s′ can be computed using Eq. 2.

Proposition 2. Let M = {Πi}n
i=1 be a multi-agent problem and let h(s) =

hpub(s�) +
∑

αi∈A hi(s�i) be an agent-additive heuristic. Let s and s′ be two
states such that for some agent j holds s�j = s′�j. Then hj(s�j) = hj(s′�j).
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Proposition 2 holds trivially. Of course, if the state s is expanded using a
public operator, the heuristic estimate has to be computed as a sum of the
particular projected heuristics over the cost-partitioned problems (as in Eq. 1).
In this context, the multi-agent cost partitioning acts as a means of making any
admissible classical heuristic (i) agent-additive, (ii) distributed, and (iii) privacy-
preserving. How to achieve the third property (and to what degree) is discussed
in the next section.

4 Privacy-Preserving Multi-agent Cost Partitioning

In order to preserve privacy, we need to focus on the following aspects of the
multi-agent cost partitioning:

– the computation of the cost partitioning,
– the computation of the heuristic value, and
– the cost-partitioned values themselves.

Clearly, additional private information can leak from the resulting heuristic
value, especially in combination with the underlying planning algorithm, but
we ignore this aspect here as it is out of the scope of this work.

4.1 Privacy-Preserving Additive Heuristic

In general we can assume that the computation of the individual components of
an additive heuristic is already privacy preserving. Then the sum of the individ-
ual heuristics can be computed using a privacy-preserving sum algorithm such
as [16]. In Sect. 5 we evaluate the effect of using secure sum algorithm (which is
quadratic in the number of agents) on the computation of the heuristic for each
public state.

To be able to compute sum of values of various parties without actually
revealing the values, we implemented the dk-Secure-Sum protocol as described
in [16]. The protocol works as follows.

1. There are k cooperative parties which are arranged in a ring for computational
purposes according to their ID.

2. Each party breaks their value into k segments,
(a) keeps one segment,
(b) randomly assigns each of the remaining segments to one other party, so

that exactly one segment is sent to one party,
(c) distributes the randomized segments among all the other parties, sending

one segment to each party.
3. At the end of this distribution process, each party has k segments from which

only one is an original segment.
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One of the parties is always the initiator of the whole protocol. After all segments
are distributed, the initiator sends the first segment to the neighbor party in the
formed ring. Party which receives a value adds its own segment to it and sends
the result to the neighbor in the formed ring. This procedure continues until
every party runs out of segments. In that case the initiating party receives the
final sum of all the values which can be further distributed amongst all the
parties, without knowing the original value of any of the parties.

In our implementation, the number of sent messages is slightly higher than in
the protocol proposed in [16] but the overall communication complexity remains
the same. Higher number of messages we use is caused by the need to confirm
received messages in order to be sure that all parties are aware of the current
algorithm stage and are synchronized.

Another question is what private information actually leaks if the sum is
computed plainly and whether the performance decrease is compensated by the
increase in preserved privacy. Based on [19], one important privacy breach is the
ability to discerns states which are equal in their public projection. The access
to the individual components of the additive heuristic may increase the ability
of the adversary to detect such distinct states, formally:

Proposition 3. Let s, s′ be two states such that s� = s′� and hi(s�i) �= hi(s′�i)
for any αi ∈ A. Then agents αj ∈ A other than αi learn that s�i �= s′�i.

In other words, the agents learn that two states which differ in the heuristic
of agent αi differ in the private part (private variables) of the agent αi. This
could influence the leakage computation and result in a higher privacy leakage.

4.2 Privacy-Preserving Cost Partitioning Computation

Let us now focus on how to compute a multi-agent cost partitioning in a privacy-
preserving way. The very baseline in cost partitioning computation presented
in [21] is the uniform cost partitioning, where

cpj(o
�j) =

costi(o�i)
n

(3)

for each operator o ∈ Opubi and each agent αj ∈ A. Unlike the uniform cost
partitioning defined in used in classical planning, we cannot focus only on the
partitions where the operator has effect on the heuristic value as (a) we do not
assume any particular heuristic and (b) doing so would leak private information.
This most simple variant does not leak any private information as there is no
communication of private nor public parts of the agent’s problems and the CP
is computed independently by each agent.

The commonly used LPs for OCP computation are based on landmarks [5]
and abstractions [8]. Nevertheless, the landmark-based OCP computation
requires the use of global landmarks. Global landmarks can be found using the
distributed LM-Cut heuristic [17] which is not privacy preserving and therefore
private information would leak even before the OCP LP was even constructed.
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The abstraction-based OCP is computed by expressing the transition system
of each abstraction as a shortest-path computation LP where the LP variables
represent the distance from a state to the goal and the constraints in the form
of

s̄′ ≤ s̄ + ō for all 〈s, o, s′′〉 ∈ T (4)

represent the cost of the transition from s to s′ via operator a. In the case of
MACP, the abstractions (and thus the transition systems) are given up front by
the agent problems, which can be in the worst case as big as the global problems
(if all variables and all operators are public). This means that the transition
systems would be too big to be represented in a LP. Of course this can be
avoided by constructing a set of smaller abstractions for each agent problem and
computing the OCP over such larger set of smaller abstractions.

The OCPs are typically computed using a linear program (LP). Secure LP
computation techniques such as [2,11] can be used to compute the LP objective
function and values without revealing the private parts of the LP. Such secure LP
computation has already been used in PP-MAP to compute securely the poten-
tial heuristic [18], thus the secure LP computation tools are readily available in
the MAPlan planner1 [3].

An adaptation of the potential heuristic LP to cost-partitioning computation
was proposed already in [21]. Here we briefly describe the components of the
potential heuristic LP as described in [14] and its adaptation to cost-partitioning
computation so that in the following section, we can analyze the privacy leakage
of such cost-partitioning.

The objective function of the LP is simply the sum of potentials for a state
(or average for a set of states). The simplest variant is to use the initial state sI

as the optimization target. For a partial variable assignment p, let maxpot(V, p)
denote the maximal potential that a state consistent with p can have for variable
V , formally:

maxpot(V, p) =

⎧
⎨

⎩

pot(〈V, p[V ]〉)
max

v∈dom(V )
pot(〈V, v〉)

if V ∈ vars(p)
otherwise

The LP contains a potential LP-variable pot(〈V, v〉) for each fact (that is
each possible assignment to each variable) and a maximum potential LP-variable
maxpotV for each variable in V. The constraints ensuring the maximum potential
property are simply

pot(〈V, v〉) ≤ maxpotV

for all variables V and their values v ∈ dom(V ). To ensure goal-awareness of the
heuristic, i.e., hpot(s) ≤ 0 for all goal states s, we add the following constraint

∑

V ∈V
maxpot(V, s�) ≤ 0

1 https://github.com/danfis/maplan.

https://github.com/danfis/maplan
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restricting the heuristic of any goal state to be less or equal to 0. The final set
of constraints ensures consistency. For each operator o in a set of operators O
we add the following constraint

∑
V ∈vars(eff(o))

(maxpot(V, pre(o)) − pot(〈V, eff(o)[V ]〉)) ≤ cost(o) (5)

The optimization function of the LP can be set to the sum of potentials in
the initial state. A solution of the LP yields the values for potentials which are
then used in the heuristic computation.

We obtain a cost partitioning LP by replacing the operator costs with vari-
ables, concatenating the respective LPs for each of the agent problems and
adding the cost partitioning constraints. The LP contains separate LP variables
for each potential and maxpot of public variables for each of the agents. Let
o ∈ Opubi be a public operator of αi, the consistency constraints from Eq. 5 for
operator o are re-formulated as

∑
V ∈vars(eff(o))

(maxpot(V, pre(o))�i−

pot(〈V, eff(o)[V ]〉)�i) ≤ ō�i (6)
∑

V ∈vars(eff(o�j))

(maxpot(V, pre(o�j))�j−

pot(
〈
V, eff(o�j)[V ]

〉
)�j) ≤ ō�j ∀j �= i (7)

n∑
k=1

ō�k ≤ costi(o) (8)

where maxpot(V, v)�k and pot(〈V, v〉)�k represent the LP variables respective to
agent αk. Note that in the case of projected operators o�j , the set vars(eff(o�j))
contains only public variables. All other constraints are treated similarly.

The cost partitioning LP can also be seen as a set of n individual potential
heuristic LPs which are interconnected only by the cost partitioning variables
ō�k and the respective CP constraint. The optimization function is constructed
simply as a sum of the individual optimization functions.

4.3 Privacy Leakage of the Partitioned Costs

The only aspect of the additive heuristic based on multi-agent cost partitioning
which cannot be handled by a privacy-preserving algorithm is the actual parti-
tioning of the operator costs. Clearly, the way how the cost of an operator o ∈ Oi

is partitioned among other agents j �= i gives away some information about the
structure of the problem Πi of agent i. The question is, what is this information
and how can it be reflected in the existing privacy leakage quantification schemes
such as [19].

As already described in the introduction, we assume that there is a single
agent αl ∈ A and all other agents collude to gain as much information as possible.
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One technique the adversary agents can use is to compare the cost partitioning
obtained from the global computation over the MAP M� = {Π�i}i∈A with a
cost partitioning obtained from a MAP problem M′� = {Π�i}i∈A\αl

∪ {Π�}
where the problem Π l of the agent αl is replaced by its public projection Π�.
Let cp = 〈cp1, ..., cpn〉 be a multi-agent cost partitioning computed over M�

and cp′ = 〈cp′
1, ..., cp

′
n〉 computed over M′�. Any difference in the values of cp

and cp′ indicates an influence of the private parts of the agent’s problem Π l.
In particular in the context of the CP based on the potential heuristic LP,

the main difference lies in the Eq. 8 where for operator o ∈ Ol the difference in
cpj(o) and cp′

j(o) for some αj �= αl indicates that
∑

V ∈vars(eff(o))

(maxpot(V, pre(o))�l − pot(〈V, eff(o)[V ]〉)�l) �=
∑

V ∈vars(eff(o�))

(maxpot(V, pre(o�))�l − pot(
〈
V, eff(o�)[V ]

〉
)�l) (9)

which can be caused either by different values of potentials (or maximum poten-
tials) of the public variables in both eff(o�) and eff(o) or by additional private
variables in eff(o). Since all the potentials (and their respective LP variables)
are known only to the agent αl, the adversaries cannot distinguish which of the
reasons caused the inequality.

Even though some private information clearly leaks from the values of the
cost partitioning, it is not clear how to map such information on the privacy
leakage quantification schemes. In [19] the leakage is computed based on the
private preconditions and effects of operators (and their consequent applicabil-
ity). As it is not possible to determine whether the cause of inequality in Eq. 9
is the presence of private preconditions and effects, such information does not
influence the considered leakage quantification. In [26] the leakage quantification
is based on the possible plans which, again, is not influenced by Eq. 9 and its
consequences.

In the case of uniform cost-partitioning, the question of privacy leakage based
on the partitioned cost is clearly irrelevant. As the cost-partitioning is computed
regardless the private problems and thus without any knowledge of the private
problems, no private information can be deduced from the partitioned costs.
This makes uniform cost-partitioning strongly secure, similarly to the projected
heuristic. Moreover, in contrast to the projected heuristic which can be used
to discern equivalent states as described in [19], uniform cost-partitioning with
secure sum algorithm does not allow for such inference. This makes it a perfect
general approach to distributed heuristic computation with respect to privacy.

5 Evaluation

We have evaluated the proposed approach on the benchmark set of the
CoDMAP’15 [9] competition. In the evaluation we focus on two key metrics:

– The number of problems solved in time limit of 30 min (coverage).
– The time needed to find the solution (capped by the 30 min limit).
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The proposed methods were implemented in the MAPlan planner [3] and evalu-
ated on the LM-Cut heuristic [4]. The configurations we have evaluated are the
following:

proj is the classical projected heuristic computed by each agent on its respective
projected problem.

uni is the uniform baseline cost partitioning (Eq. 3).
uni-sec-sum is the uniform baseline cost partitioning (Eq. 3) with the secure

sum computation.
pot is the potential-based cost partitioning computed using the LP in Eq. 8.

The implementation is based on the distributed potential heuristic LP com-
putation [18].

pot-sec-sum is the potential-based cost partitioning as in pot together with
the secure sum computation.

ma-lm-cut is the state-of-the-art distributed variant of the LM-Cut heuris-
tic [17].

5.1 Coverage

In this section, we focus on the actual performance of the MAD-A* algorithm
together with the proposed heuristics and the search improvements described in
this work. The main question is, whether the use of the secure-sum algorithm has
significant negative effect of the planner performance in terms of the coverage.

In order to perform this evaluation, we have replicated the configuration of
the distributed track of the CoDMAP’15 [9] competition, where each agent runs
on a dedicated machine with 4 cores (with multi-threading) on 3.8 GHz and
32GB RAM. The agents communicated over TCP-IP on a local area network
(Table 1).

The results show that the proposed cost-partitioning methods without the
secure sum algorithm are on par with the ad-hoc multi-agent variant of the
LM-Cut heuristic, albeit being more general. Nevertheless, the secure variants
pay their price of decreased coverage, although the negative effect is not as bad
as could be expected and the heuristics are still competitive. Overall, the best
performance is provided by the projected heuristic. This is not surprising but the
effect is amplified by the use of more RAM in the experiments than is typical in
the literature. This allows for the less-informed but faster projected heuristic to
dominate the results. As shown in [19], projected heuristic causes more privacy
leakage in the overall search evaluation.

5.2 Speed

In this experiment we present the comparison of both uniform and potential-
based cost-partitionings either using or not using the secure-sum algorithm with
respect to the speed of finding the solution. The setting of the experiment is the
same as in the previous case.
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Table 1. Numbers of problems solved (coverage).

Domain proj uni pot ma-lm-cut

add sec-sum add sec-sum

blocksworld 2 2 2 2 2 2

depot 6 0 0 0 0 2

driverlog 15 14 13 13 12 10

elevators 0 0 0 0 0 0

logistics 5 4 2 4 3 7

rovers 1 0 0 0 0 1

satellites 2 1 0 1 0 4

sokoban 13 8 3 8 5 1

taxi 20 20 7 0 15 15

wireless 0 0 0 0 0 0

woodwork. 0 0 0 0 0 0

zenotravel 6 6 6 6 6 8∑
71 55 43 34 28 50

Fig. 1. Planning speed comparison. Time in seconds, logarithmic scale.

The Fig. 1 shows a comparison of planning speed of the cost partitioning
approaches using plain addition and using the secure sum algorithm. We can
see, that even though the difference in coverage is not that dramatic, the differ-
ence in speed is in the order of magnitude. This is clearly due to the quadratic
communication complexity of the secure sum algorithm.
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6 Conclusion and Future Work

In this work, we have extended the recently published multi-agent cost-
partitioning towards privacy. We have theoretically analyzed the possible sources
of leakage in multi-agent planning with such cost-partitioning and proposed
a technique to prevent privacy leakage from one of such sources–the additive
heuristic computation. We have used an existing secure sum algorithm to do so.
We have shown, that uniform cost partitioning with the secure sum algorithm is
a general strong privacy-preserving approach to distributed heuristic computa-
tion. Finally, we have evaluated the newly proposed secure variants of the cost
partitioning in comparison with the original versions and baseline projection and
distributed heuristics. We have shown that the use of secure-sum algorithm has
negative effect on the metrics of coverage and planning speed, but the negative
effect can be outweighed by the gain in privacy preservation.

As future work directions we see firstly the application of the secure multi-
agent computations also on other methods of cost-partitioning. The cost-
partitioning can also be applied on other heuristics than just LM-Cut as it is fully
general. Secondly, it would be interesting to evaluate secure cost-partitioning in
a quantitative evaluation of the privacy leakage in context of the whole search
algorithm.
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Abstract. In a golf club, n = g ∗ s golfers want to play in g groups of
s golfers for w weeks. Does there exist a schedule for each golfer to play
no more than once with any other golfer? This simple but overwhelm-
ingly challenging problem, which is called social golfer problem (SGP),
has received considerable attention in constraint satisfaction problem
(CSP) research as a standard benchmark for symmetry breaking. How-
ever, constraint satisfaction approach for solving the SGP has stagnated
in terms of larger instance over the last decade. In this article, we improve
the existing model of the SGP by introducing more constraints that
effectively reduce the search space, particularly for the instances of the
specific form. And on this basis, we also provide a search space split-
ting method to solve the SGP in parallel via data-level parallelism. Our
implementation of the presented techniques allows us to attain the solu-
tions for eight instances with maximal number of weeks, in which six of
them were open instances for constraint satisfaction approach, and two
of them are computed for the first time, and super-linear speedups are
observed for all the instances solved in parallel. Besides, we survey the
extensive literature on solving the SGP, including the best results they
have achieved, and analyse the cause of difficulties in solving the SGP.

Keywords: Constraint programming · Parallel constraint solving ·
Resolvable steiner systems · Combinatorial optimization · Design
theory · Mutually Orthogonal Latin Squares · Affine plane

1 Introduction

The social golfer problem (SGP), i.e., 010 problem in CSPLib [13], is a typi-
cal combinatorial optimization problem that has attracted significant attention
from the constraints community because of its highly symmetrical and combi-
natorial nature. The original SGP, which was posted to sci.op-research in
May 1998 [13,38], can be stated as follows: In a golf club, 32 golfers wish to
play in foursomes for 10 weeks. Is it possible to find a schedule for maximum
socialization; that is, each golfer can only meet any other no more than once?
In fact, the SGP dates back to Thomas Penyngton Kirkman’s 1850 query [16]
in which the number of golfers and the size of a group are 15 and 3 respectively.
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Hence, we can readily generalize the SGP to the following: The SGP consists
of scheduling n = g ∗ s players into g groups of s players for w weeks so that any
two players are assigned to the same group at most once in w weeks. According to
the constraints community’s convention on this problem, an instance of the SGP
is denoted by a triple g-s-w, where g is the number of groups, s is the number of
players within a group, and w is the number of weeks in the schedule. In addition,
we can also regard the SGP as a discrete optimization problem that maximizes
the number of weeks w∗ for a given g and s, where w∗ ≤ g∗s−1

s−1 . Clearly, a
solution for an instance g-s-w∗ indicates itself as the solution for all instances
g-s-w with 0 < w < w∗. In practice, the computational difficulty of solving the
g-s-w∗ and g-s-w instance is often not in the same order of magnitude due to the
huge difference in the solution density of two instances. For example, the 8-4-9
instance can be solved in a second on a state-of-the-art constraint solver. The 8-4-
10 instance, by contrast, is still unsolvable for constraint approach at the time of
writing, although at least three non-isomorphic solutions are known to exist. In
light of this, this research concentrates on solving the g-s-w∗ instances with
maximal number of weeks, which we call the full instance. For instance, Table 1
depicts one solution for the full instance 7-3-10.

Table 1. A solution for 7-3-10 (transformed from the solution depicted in Table 2) The
text in bold indicates that the values have been initialized before search. (Table repro-
duced from [20]).

Week

Group
1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 1 4 7 2 10 13 3 16 19 5 8 17 6 11 14 9 12 20 15 18 21

3 1 10 14 2 4 17 3 9 11 5 7 21 6 12 16 8 15 19 13 18 20

4 1 17 21 2 6 19 3 4 12 5 10 20 7 15 16 8 11 13 9 14 18

5 1 8 12 2 5 16 3 7 13 4 14 21 6 9 15 11 17 20 10 18 19

6 1 9 16 2 11 15 3 10 21 4 8 20 5 14 19 6 13 17 7 12 18

7 1 13 19 2 9 21 3 6 20 4 11 18 5 12 15 8 10 16 7 14 17

8 1 5 11 2 8 18 3 15 17 4 9 19 6 7 10 14 16 20 12 13 21

9 1 6 18 2 7 20 3 8 14 4 10 15 5 9 13 11 16 21 12 17 19

10 1 15 20 2 12 14 3 5 18 4 13 16 6 8 21 9 10 17 7 11 19

The research on the SGP is not only meaningful to itself, but also for other
Constraint Satisfaction Problems (CSPs) that exhibit symmetrical and combi-
natorial nature. For example, balanced incomplete block design (BIBD), prob-
lem 28 in CSPLib [26], is a standard combinatorial problem from design theory
and also a test bed for symmetry breaking methods. Moreover, steel mill slab
design [23], which is a real industry problem, can also benefit from the SGP. The
reason is that we are likely to face the same difficulties as the SGP when solving
other CSPs through the constraint satisfaction approach.
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This article is an extended and revised version of our previous work [20].
In this version, the formulations of the constraints in the models have been
improved. Besides, we have added a new section which explains the difficulties of
the SGP and presents the background constraint programming. We also present
additional experimental results for the solved instances in Appendix A. We make
the following contributions: (1) The improvement of existing constraint model on
the SGP enables constraint approach to solve larger instances. (2) We discover
some patterns in the solutions of particular forms of the instances. (3) We show
that the two-stage models with static partitioning are well-suited for solving the
SGP in parallel since the instances which are unsolvable for a single model can
be solved in parallel.

The remainder of this article is organized as follows. Section 2 analyses the
causes of the difficulties of solving the SGP in the context of the CSP and
introduces the constraints required to encode the model. A modeling approach
improved on the model proposed by [3] are described in Sect. 3, and some
instance-specific constraints are presented in Sect. 4. In addition, we elaborate
on how to employ Embarrassingly Parallel Search (EPS) [30] to solve the SGP
in Sect. 5. We then present the experimental results in Sect. 6. In Sect. 7, we
classify the researches on the SGP and also survey the studies relevant to the
SGP outside the context of the CSP. We finally conclude in Sect. 8.

2 Background

In this section, we first explain why it is challenging to solve the SGP in the
context of the CSP. Then we review the definition of the CSP and the constraints
relevant to our model of the SGP.

2.1 The Difficulties of Solving the SGP

At first sight, the SGP is a simple-sounding question. And indeed, one can model
the problem by using several frequently-used constraints derived from the prob-
lem definition. The constraint satisfaction approach, however, still has enormous
difficulties in obtaining the solution even for some small instances (e.g. 7-4-9, 8-
4-10, etc.). We believe that the following two reasons result in the difficulties of
the SGP:

The First Difficulty. The inherent highly symmetrical nature of the SGP
cannot be entirely known before solving process. There exist four types of sym-
metries: (1) We can permute the w weeks, that is, arbitrarily ordered weeks (w!
symmetries). (2) Within each week, we can (separately) permute the g groups,
that is, interchangeable groups inside weeks (g! symmetries). (3) Within each
group, we can permute the s players, that is, interchangeable players inside
groups (s! symmetries). (4) Finally, we can also permute the n players (n! sym-
metries), which can also be viewed by renumbering n golfers. The first three
types of symmetries can be relatively easy to remove through model reformula-
tion or static symmetry breaking constraints. Nevertheless, it is difficult to elim-
inate all the symmetries among players caused by the fourth type of symmetry.
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For example, if players [16, 17, 18, 19, 20, 21] in Table 1 replace with
[19, 20, 21, 16, 17, 18] in turn, an isomorphism of the solution depicted in Table 1
will be generated even if the first row of the solution is fixed with [1, . . . , 21].
Apparently, we are unable to foresee this symmetry before search. Consequently,
the unnecessary symmetrical search space is explored redundantly.

The Second Difficulty. It is common to observe that some unfortunate choices
of variables early on are to blame for a long-running search process [12]. The
SGP has also been experienced such phenomena. More precisely, invalid partial
assignments lead to the backtrack search to trap in a barren part of the search
space since no consistent assignment can be found. More importantly, it is often
hard to determine the usefulness of a partial assignment until almost all variables
are instantiated; and these invalid partial assignments predominate in the overall
search space.

2.2 The Global Constraints

The constraint programming (CP) is a powerful technique to tackle combina-
torial problems, generally NP-complete or NP-hard. The idea behind the CP
is that the user states the problem by using constraints and a general purpose
constraint solver is used to solve the problem. The classic definition of a con-
straint satisfaction problem (CSP) is as follows. A CSP P is a triple 〈X,D,C〉,
where X = {x0, . . . , xn} is a set of decision variables, D = {D(x0), . . . , D(xn)}
contains associated finite domains for each variable in X, and C = {c0, . . . , ct}
is a collection of constraints. Each constraint ci ∈ C is a relation defined over
a subset of X, and restricts the values that can be simultaneously assigned to
these variables. A solution of a CSP P is a complete instantiation satisfying all
constraints of the CSP P.

The allDifferent1 constraint is the most influential global constraint in con-
straint programming and widely implemented in almost every constraint solver,
such as Choco solver [27] and Gecode [34]. Formally, let Xa denote a subset of
variables of X, the alldifferent(Xa) constraint can be defined as:

∀xi ∈ Xa∀xj ∈ Xa(xi �= xj)

The global cardinality constraint GCC(Xg, V,O) is defined using two lists of
variables Xg and O, and an array of integer values V , where Xg = {xl, . . . , xm} ⊆
X and O is a list of variables not defined in X and predefines the range of the
number of occurrences for each value in V . The GCC constraint restricts that
each value Vi appearing exactly Oij times in Xg, where Oij is in the domain of
Oi. More formally:

{(dl, . . . , dm)| dl ∈ D(xl), . . . , dm ∈ D(xm)∧
∀i∀Oij ∈ Oi(occur(Vi, (dl, . . . , dm)) = Oij )}

where occur counts the number of occurrences of Vi in (dl, . . . , dm).
1 This article follows the naming convention and order of the arguments of constraints

in Choco solver.
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The count constraint is similar to the GCC, but with the restriction for
only one value. More precisely, the count(v,Xc, occ) constraint only restricts the
number of occurrences of value v for the list of variables Xc = {xl, . . . , xm},
given by:

{(dl, . . . , dm)| dl ∈ D(xl), . . . , dm ∈ D(xm)∧
∀Oj ∈ occ(occur(v, (dl, . . . , dm) = Oj)}

The table constraint is another one of the most frequently-used constraints
in practice. For an ordered subset of variables Xo = {xi, . . . , xj} ⊆ X, a positive
(negative) table constraint defines that any solution of the CSP P must (not)
be explicitly assigned to a tuple in the tuples that consists of the allowed (disal-
lowed) combinations of values for Xo. For a given list of tuples T , we can state
the positive table constraint as:

{
(di, . . . , dj) | di ∈ D(xi), . . . , dj ∈ D(xj)

} ⊆ T

Finally, the arithm constraint is used to enforce relations between integer
variables or between integer variables and integer values. For example, an integer
value can be assigned to an integer variable by using the arithm constraint. We
refer to [6,19,33] for more comprehensive and profound introduction to the CP.

3 The Basic Model

There are various ways of modeling the SGP as a CSP proposed in the literature,
which is one of the reasons why the problem is so compelling. In this article, we
use a model improved on the model presented in [3] due to its untapped potential.
Specifically, we can add more constraints into the model to tackle larger instances
piece by piece.

The decision variables of our model is a w × n matrix G in which each
element Gi,j of the matrix G represents that player j is assigned to group Gi,j

in week i. Hence, the domain of decision variable Gi,j is a set of integers {1 . . . g},
where 0 ≤ i < w, 0 ≤ j < n.2 The major advantage of the decision variables
defined in this model is that the range of the variables are reduced from {1 . . . n}
to {1 . . . g} while keeping an unchanged number of variables, compared with the
naive model.

We mentioned, in Sect. 2.1, that symmetries among players are difficult to
handle and only dynamic checks can remove them completely. However, we can
partially eliminate the symmetries among players by fixing the first week (cf.
Tables 1 and 2), i.e. the first row of the matrix G, which can be expressed as:

∀j ∈ J(G0,j = j/s + 1), J = {j ∈ Z| 0 ≤ j ≤ n} (1)

where the operator “/” denotes integer division. Equation (1) produces a
sequence of integers from 1 to g in non-descending order, and every integer
continuously repeats itself exactly s times. Moreover, we can also freeze the first
2 In this article, we follow the Zero-based index.
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s columns by assigning the first s players to the first s groups after the first week
(cf. Table 2), given by:

∀i ∈ I∀j ∈ J(Gi,j = j + 1)
I = {i ∈ Z| 0 < i < w} , J = {j ∈ Z| 0 ≤ j < s} (2)

By applying Eq. (2) to the model, we can significantly reduce the search space.
Note that, in the implementation, we can realize Eqs. (1) and (2) by either
restricting the domain of the variables or using the arithm constraint. Therefore,
we use the term Equation instead of Constraint.

Table 2. A solution is obtained by our model for 7-3-10 instance, and it is equivalent
to the solution depicted in Table 1. The text in bold indicates that the values have
been initialized before search. (Table reproduced from [20]).

Week

Player
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7

2 1 2 3 1 4 5 1 4 6 2 5 6 2 5 7 3 4 7 3 6 7

3 1 2 3 2 4 5 4 6 3 1 3 5 7 1 6 5 2 7 6 7 4

4 1 2 3 3 4 2 5 6 7 4 6 3 6 7 5 5 1 7 2 4 1

5 1 2 3 4 2 5 3 1 5 7 6 1 3 4 5 2 6 7 7 6 4

6 1 2 3 4 5 6 7 4 1 3 2 7 6 5 2 1 6 7 5 4 3

7 1 2 3 4 5 3 7 6 2 6 4 5 1 7 5 6 7 4 1 3 2

8 1 2 3 4 1 5 5 2 4 5 1 7 7 6 3 6 3 2 4 6 7

9 1 2 3 4 5 1 2 3 5 4 6 7 5 3 4 6 7 1 7 2 6

10 1 2 3 4 3 5 7 5 6 6 7 2 4 2 1 4 6 3 7 1 5

By the definition of the SGP, n different players are divided into g groups,
which implies that each group includes exactly s players. Hence, the constraint
required by this property, which are imposed on the rows of the matrix G, can
be stated as:

∀i ∈ I(GCC(Gi,∗, V,O))
I = {i ∈ Z| 0 < i < w}
V = {v ∈ Z| 1 ≤ v ≤ g}

O = [s . . . s]

(3)

where the length of O is g. The constraints (3) ensure that every value in the
set of integers {1 . . . g} must occur exactly s times in all the rows of the matrix
G (cf. Table 2).

The restriction, which no player meets any other player more than once, can
be interpreted as saying that no two columns of the matrix G have the same
value at the same row more than once, given by:
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∑

0≤i<w

| Gi,j1 − Gi,j2 = 0 |≤ 1

j1 ∈ Z, j2 ∈ Z , 0 ≤ j1 < j2 < n

(4)

Constraints (3) and (4) are the only two constraints presented in [3]. In partic-
ular, unlike [3], we implement Constraint (4) in a different way to avoid using
the reified constraints because these constraints often slow the resolution speed
down in solvers like Choco [21,27]. Specifically, the need for the reified con-
straints can be bypassed by introducing a w × m matrix C, where m =

(
n
2

)
.

We then subtract every column from all other columns in the matrix G and
the differences between two columns of the matrix G are assigned to a column
of another matrix C. Simply put, the two matrices G and C are linked by the
equations expressed by the arithm constraints, given by:

∀i ∈ I∀j1 ∈ J1∀j2 ∈ J2(Gi,j1 − Gi,j2 = Ci,j3)
(j1 < j2) ∧ (0 ≤ j3 < m) ∧ (j3 ∈ Z)

I = {i ∈ Z| 0 ≤ i < w}
J1 = {j1 ∈ Z| 0 ≤ j1 < n}
J2 = {j2 ∈ Z| 0 ≤ j2 < n}

(5)

Next, we impose the count constraint on every column of the matrix C so that
the number of occurrences of value 0 on each column is no more than once. So
the constraint are defined by:

∀j ∈ J(count(0, C∗,j , occ))
J = {j ∈ Z| 0 ≤ j < m}

occ ∈ {0, 1}
(6)

where occ is an integer variable whose domain is {0, 1}. Thus, the conjunction
of Constraints (5) and (6) can logically realize the restriction required from
Constraint (4).

So far, all the constraints as mentioned earlier have fully satisfied all the
restrictions defined by the definition of the SGP and can be used to solve some
small instances (e.g., 3-3-4, 5-3-7). However, we can further shrink the search
space by placing implied constraints, which do not change the set of solutions,
and hence are logically redundant [36].

Equation (1) has already fixed the first row of the matrix G, which implies
that those players who have met in the first week cannot play in the same group
in the subsequent weeks. Therefore, the allDifferent constraint can be used to
enforce the groups of these players are pairwise distinct after the first week, and
we express these allDifferent constraints by:

∀i∀j �= j′ ∧ j/s = j′/s(Gi,j �= Gi,j′)
i ∈ {i ∈ Z| 0 ≤ i < w}

j, j′ ∈ {x ∈ Z| 0 ≤ x < n}
(7)
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In summary, the basic model comprises Eqs. (1), (2), and Constraints (3), (5),
(6), and (7). Nevertheless, the problem-solving ability of this model can be
greatly improved by the introduction of additional constraints, such as static
symmetry breaking constraints, and the constraints derived by instance-specific
pattern. In the subsequent sections, we will present the additional constraints
dedicated to different types of instances based on this model and discuss how to
solve the instances, which cannot be solved sequentially, in parallel.

4 Instances Solved Sequentially

For a given number of groups g and a group size s, our goal is to compute a first
solution for a full instance g-s-w∗, where w∗ represents the maximum number
of weeks. In this section, we consider a particular type of instance s-s-(s + 1 ),
which means that the number of groups in each week is the same as the number
of players in the groups within each week, and the number of weeks is equal to the
number of groups within each week plus one. Moreover, the number of weeks
is maximized because s∗s−1

s−1 = s + 1. The specific properties of the instances
of the form s-s-(s + 1 ) enable us to discover the instance-specific constraints.
Furthermore, we utilize the observed pattern from the relatively small instances
to deduce more instance-specific constraints for the instances of the form odd -
odd -(odd+1 ) (o-o-(o + 1 )), especially for the form prime-prime-(prime + 1 )
(p-p-(p + 1 )), and the form even-even-(even + 1 ) (e-e-(e + 1 )).

Before introducing the constraints, we first define the submatrix GS of the
decision variables matrix G. In the present paper, a submatrix GS of G is a
(w−1) × s matrix formed by removing the first row of G and selecting columns
[j . . . (j + s − 1)], where j must be divisible by s, i.e. j%s = 0.3 Thus, G has
exactly s such submatrices, each of which has w − 1 rows and s columns. The
i-th submatrix of G is denoted by GSi, where 0 ≤ i ≤ s − 1 (Table 3).

Table 3. A solution of 5-5-6 expressed by groups. It can be converted to the solution
expressed by the number of golfers easily. The submatrices GS1 and GS2 are surrounded
in the dotted line. (Table reproduced from [20]).

Week

Player
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5

2 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

3 1 2 3 4 5 2 5 1 3 4 3 1 4 5 2 4 3 5 2 1 5 4 2 1 3

4 1 2 3 4 5 3 1 4 5 2 2 5 1 3 4 5 4 2 1 3 4 3 5 2 1

5 1 2 3 4 5 4 3 5 2 1 5 4 2 1 3 3 1 4 5 2 2 5 1 3 4

6 1 2 3 4 5 5 4 2 1 3 4 3 5 2 1 2 5 1 3 4 3 1 4 5 2

3 The % (modulo) operator yields the remainder from the division of the first operand
by the second.
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4.1 7-7-8

For the instances of the form s-s-(s + 1 ), every player must play with every other
exactly once since s ∗ s - 1 is divisible by s - 1. Thus, players whose number is
greater than s must meet every player whose number is less than or equal to s
exactly once in every week except the first week since the first row and the first
s columns of the matrix G are frozen by Eqs. (1) and (2). To put it another
way, since the first s players, in turn, are assigned to the first s groups after
the first week and there are only s groups within each week, all the rest of n - s
players have to be assigned to these s groups to avoid meeting the first s players
more than once. Based on this analysis, we place the following constraints on
the columns of the matrix G:

∀i ∈ I ∧ i′ ∈ I ∧ i �= i′∀j ∈ J( Gi,j �= Gi′,j)
I = {x ∈ Z| 0 < x < w}
J = {x ∈ Z| s ≤ x < n}

(8)

Constraint (8) states that starting with submatrix GS1 of the matrix G, every
column in the matrix GSi (i ≥ 1) must be pairwise distinct, which can be imple-
mented by the allDifferent constraint (cf. Table 3). Therefore, all the possible
values of columns (column space) of the matrix GSi (i ≥ 1) is reduced from ss to
s! by introducing the Constraint 8, which is a significant search space reduction.

In Sect. 3, we have presented Eq. (1) to fix the first row of the matrix G.
We can also fix the second row of the instances of the form s-s-(s + 1 ) for the
following reason. In Constraint (7), we have explained that s players assigned
in the same group in the first week cannot meet again in the subsequent weeks.
Besides, for the form s-s-(s + 1 ), there are only s different groups, which implies
that the possible groups assigned to these s players must be a permutation of
the set of integers {1 . . . s}. Thus, every row of the submatrix GSi (i ≥ 1) is a
permutation of the set of integers {1 . . . s}. Moreover, arbitrary swapping two
columns in the submatrix GSi (i ≥ 1) leads to an isomorphism even when the
first row of the matrix G is fixed by Eq. (1). Therefore, for the instances of the
form s-s-(s + 1 ), we fix all the first rows of the submatrix GSi (i ≥ 1) with the
array [1 . . . s] (cf. the second row of Table 3), which can be expressed as:

∀j ∈ J(G1,j = j%s + 1)
J = {x ∈ Z| s ≤ x < n} (9)

Thus, the symmetries caused by renumbering players in the second row can be
eliminated by imposing Constraint (9).

In summary, the model used to tackle 5-5-6, 6-6-7, and 7-7-8 consists of the
constraints of the basic model and the additional constraints including Con-
straints (8) and (9).

4.2 9-9-10

The additional constraints for 7-7-8 are insufficient to solve 9-9-10 in an appro-
priate time since the size of the problem grows significantly. One possible way to
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tackle the larger instance is to shrink the overall search space by imposing more
instance-specific constraints.

We observe the solutions of the 4-4-5, 5-5-6, and 7-7-8 instances; and discover
that GS1 can always be a symmetric matrix, namely GS1 = GST

1 . Hence, we
conjecture that 9-9-10 can also have a symmetric submatrix and then impose
the following constraints on the decision variables G:

∀i ∈ I∀j ∈ J(Gi,j = G(j−s),(i+s))
I = {x ∈ Z| 0 ≤ x < w}

J = {x ∈ Z| s ≤ x < 2 ∗ s}
(10)

Constraint (10) states that the entries of GS1 are symmetric with respect to
the main diagonal. Besides, the main diagonal of the submatrix GS1 is pairwise
distinct for 5-5-6 and 7-7-8, given by:

∀i ∈ I∀j ∈ J(Gi,j �= G(i+1),(j+1))
I = {x ∈ Z| 0 ≤ x < w}

J = {x ∈ Z| s ≤ x < 2 ∗ s}
(11)

Apart from the fixed pattern of GS1, there is also a fixed pattern among
the submatrices of G. Because the second row has already been fixed by Con-
straint (9), we can impose the allDifferent constraints on the subsequent rows
for those players who have played together in the second week since any two
columns of G can only have identical values in exactly one row (e.g. allDif-
ferent(G3,5, G3,10, G3,15, G3,20) in Table 3). These constraints are implied con-
straints and can be expressed as:

∀i ∈ I∀j ∈ J ∧ j′ ∈ J ∧ j%s = j′%s ∧ j �= j′(Gi,j �= Gi,j′)
I = {x ∈ Z| 1 ≤ x < w}
J = {x ∈ Z| s ≤ x < n}

(12)

We also notice that for 5-5-6 and 7-7-8, there is always a type solution in which
the second row of GS1 is fixed by the array [2, s, 1, 3, 4, . . . , s− 1] (cf. the second
row of GS1 Table 3). We therefore assume that 9-9-10 also exists such solution,
and solve 9-9-10 by fixing the second row of GS1 with [2, 9, 1, 3, 4, 5, 6, 7, 8].

In conclusion, we solve 9-9-10 by adding Constraints (10), (11), and (12) to
the model of 7-7-8, as well as the fixed values for the second row of GS1.

4.3 13-13-14 etc.

We have discovered some common features of the instances of the form s-s-(s
+ 1 ), particularly for the instances of the form o-o-(o + 1 ) when expressing a
solution by groups; and these common features are mostly focused on the second
submatrix GS1 of G. It is also interesting to observe that the submatrix GSi,
1 < i < s, consists of s s-tuples that are derived from the second submatrix
GS1 on the 5-5-6 and 7-7-9 but 9-9-10 (cf. Table 3). Simply put, the rest of
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submatrices can be obtained by interchanging rows of GS1 on these instances.
Thus, we can solve larger instances of the form p-p-(p + 1 ) by restricting row
space of the submatrix GSi (1 < i < s) to the rows of the submatrix GS1.
Formally:

PT = {(Gi,j , Gi,j+1, ..., Gi,j+s−1)|
s ≤ j < 2 ∗ s ∧ 2 ≤ i < w ∧ i, j ∈ Z} (13)

(Gi,j , Gi,j+1, ..., Gi,j+s−1) ∈ PT,

2 ≤ i < w, 2 ∗ s ≤ j < n, j%s = 0, i, j ∈ Z (14)

where Constraint (13) defines the potential combination of values of columns of
GS1 as PT. Then we can limit the row space of the submatrices except GS0 and
GS1 to PT by Constraint 14, which can be implemented by the table constraint.
So the question then is, how to find the submatrix GS1 that can lead to a solution
of the instance.

To find the correct GS1, we create a separate model defined on a s × s matrix
(s must be a prime number), which comprises Constraints (10) and (11), and
the alldifferent constraint imposing on each row and each column of the matrix.
We also fix the first row and the second row with [1 . . . s] and [2, s, 1, 3, 4, . . . , s−1]
respectively, as we did for the 9-9-10 instance. Incidentally, GS1 is a Latin square
since it is a s × s matrix filled with s distinct numbers and every row and
column of the matrix is all different. Moreover, for the last row (i = s − 1) of
GS1, starting with the third element (j = 2) to the last element is fixed with
the array [2, 1, 3, 4, 5, . . . , s − 2]. Along with decrementing the row (i −−), the
element at the tail of the array is removed and the starting position of the first
element of the array incrementing (j++) until the array is reduced to containing
exactly one element {2}, as illustrated in Table 4.

Table 4. The second matrix GS1 for the instance 13-13-14 (Table reproduced from
[20]).

1 2 3 4 5 6 7 8 9 10 11 12 13

2 13 1 3 4 5 6 7 8 9 10 11 12

3 1 4 5 6 7 8 9 10 11 12 13 2

4 3 5 6 7 8 9 10 11 12 13 2 1

5 4 6 7 8 9 10 11 12 13 2 1 3

6 5 7 8 9 10 11 12 13 2 1 3 4

7 6 8 9 10 11 12 13 2 1 3 4 5

8 7 9 10 11 12 13 2 1 3 4 5 6

9 8 10 11 12 13 2 1 3 4 5 6 7

10 9 11 12 13 2 1 3 4 5 6 7 8

11 10 12 13 2 1 3 4 5 6 7 8 9

12 11 13 2 1 3 4 5 6 7 8 9 10

13 12 2 1 3 4 5 6 7 8 9 10 11
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Having this observed pattern and aforementioned separated model, we can
obtain exactly one GS1 for the instance of the form p-p-(p + 1 ), and then uti-
lize it as an input for Constraint (14) with the model of 7-7-8 to solve 11-11-12
and 13-13-14. Note that since GS1 has already initialized before solving process,
we do not use the model of 9-9-10 because it is redundant to impose Con-
straints (10), (11), and (12) on the model.

4.4 8-8-9

So far, all the instances we have discussed conform to the form of o-o-(o + 1 ).
We now consider the form of instances even-even-(even + 1 ). The 8-8-9 is solved
by the following conjectures derived from 4-4-5 with the model for 7-7-8:

∀i ∈ I(Gi,(i+s−1) = 1)
I = {x ∈ Z| 0 < x < w} (15)

∀j �= j′ ∧ i �= i′ ∧ j/s = j′/s ∧ j%s + 1 = i ∧ j′%s + 1 = i′

(Gi,j �= Gi′,j′)
i, i′ ∈ {x ∈ Z| 0 < x < w}

j, j′ ∈ {x ∈ Z| 2 ∗ s < x < n} (16)

Constraint (15) states that the main diagonal of the matrix GS1 consists of the
fixed values [1,1,. . . ,1]; and the rest of submatrices have the main diagonal whose
values must be pairwise distinct (Constraint (16)).

Table 5. The second matrix GS1 for a solution 8-8-9 (Table reproduced from [20]).

1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 1 2 7 8 5 6

4 3 2 1 8 7 6 5

5 6 7 8 1 2 3 4

6 5 8 7 2 1 4 3

7 8 5 6 3 4 1 2

8 7 6 5 4 3 2 1

Table 5 depicts the submatrix GS1 of the solution of 8-8-9 we solved. It is
interesting to observe that the GS1 matrix of 4-4-5 and 8-8-9 are composed of
four symmetric matrices. Moreover, we discover that their solutions also satisfy
the Constraints (13) and (14), and it is still unclear whether or not the 16-16-17
instance shares these common features with 4-4-5 and 8-8-9.
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5 Instances Solved in Parallel

In the previous section, we have presented the instances that can be solved
sequentially via our modeling approach. We now turn to more difficult instances
that must deal with by way of parallel processing to obtain one solution. The
difficult instances refer to no fixed pattern discovered so far, which implies no
instance-specific constraints to shrink search space for these instances and hence
there are large search spaces even for relatively small size.

Our idea is to partition the search tree of the SGP into independent subtrees;
then each worker that is associated with a thread works on distinct subtrees using
the same CP model. Thus, this approach can be classified as data-level parallelism
based on the taxonomy for parallelism in applications from [15]. Furthermore,
since no communication is required during the solving process, to some extent,
our parallel approach can also be seen as Embarrassingly Parallel Search (EPS)
[31]. The EPS is defined as decomposing the problem in many sub-problems and
assigning the sub-problems to workers dynamically [24]. By contrast, our parallel
approach differs from the EPS due to the use of a separate model that is used to
generate the sub-problems instead of Depth-bounded Depth First Search [31].
The generic procedure can be summarized as follows:

1. A subset of the decision variables of the model is selected.
2. A separate model generates all the partial assignments over selected variables

in the subset before the search process.
3. The partial assignments are mapped to the workers so that each worker can

work on its own independent search space by using its constraint solver.
4. Once a solution is found, the worker that finds the solution notifies other

workers to stop.

Step 1 is crucial to the search space splitting because it determines the subtrees
explored by each worker. The selection of the subset of the decision variables
adhere to the following rules: First, they should be easy to generate by a separate
model. Second, each worker should not be assigned too many partial assignments
because one partial assignment might take a long time to evaluate for a large
instance. Because of the usage of the separate model, the partial assignments
are consistent with the propagation (i.e., running the propagation mechanism on
them does not detect any inconsistency). Besides, the number of solutions of the
separate model can help us decide the workload of each worker and workload
distribution. In the following sections, we will gradually describe CP models
for generating partial assignments for search-space splitting and the constraints
imposed on the basic model for the 6-3-8, 6-4-7, and 7-3-10 instances in detail.

5.1 6-3-8

The 6-3-8 instance is a representative example to illustrate the effectiveness of our
parallel approach for the SGP since the instances smaller than it can be solved
quickly and the instances bigger than it are difficult to be solved sequentially by
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constraint solving. When switching the target instance from 5-3-7 to 6-3-8, the
number of decision variables grows from 5∗3∗7 = 105 to 6∗3∗8 = 144, and the
domain size of each variable is incremented by one for our modeling approach,
which indicates the overall underlying search space significantly increased from
5105 to 6144 if we do not take account of the search space pruned by constraint
propagation.

The idea behind the parallel approach is to freeze a part of the decision
variables so that the size of the sub-problem is shrunk to solvable, thereby solving
the original problem. For the 6-3-8 instance, we select the second row of the
matrix G for the search space splitting since the first row of the matrix G is
fixed by Constraint (1). A separate model is used to generate the solutions for
the second row of the matrix G as the partial assignments for the search space
splitting, which is composed of the following constraints:

J = {x ∈ Z| 0 ≤ x < s}
∀j ∈ J(Fj = j + 1) (17)

GCC(F, V,O), V = {1 . . . g}, O = [s . . . s] (18)
∀j �= j′ ∧ j/s = j′/s(Fj �= Fj′)

j′ ∈ J (19)
∀j%s = 0(Fj ≤ F(j+s)) (20)

∀j/s = (j + 1)/s(Fj < F(j+1)) (21)

where F is an array of decision variables for the separate model, and the domain
of each vairbales is also {1 . . . g}. Constraints (17), (18), and (19) are identical to
Constraints (1), (3), and (7) stated in the basic model (see Sect. 3) respectively.
Constraints (20) and (21), which are not included in the basic model, are static
symmetry breaking constraints. Constraint (20) removes the symmetries caused
by interchangeable submatrices GSi, 0 < i < s. We eliminate these symmetries
by arranging the values assigned to the first column of the first row of all the
submatrices GSi in non-decreasing order. (Please refer to the numbers with

Table 6. A solution of 6-3-8 expressed by groups.

Week

Player
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

2 1a 2 3 1a 4 5 1a 3 6 2a 5 6 2a 4 5 3a 4 6

3 1 2 3 2a 1 3 3 4 6 5 6 4 6 2 5 1 4 5

4 1 2 3 3a 2 1 5 6 3 1 6 4 5 6 4 4 5 2

5 1 2 3 4a 3 5 6 5 2 6 3 1 1 6 4 2 4 5

6 1 2 3 4a 5 2 6 4 5 3 6 2 4 1 5 6 3 1

7 1 2 3 4a 5 6 2 5 1 5 4 3 6 3 2 6 1 4

8 1 2 3 4a 5 6 5 1 6 4 2 5 3 6 1 4 2 3
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superscript a in the second row of Table 6.) Additionally, interchanging any
two columns of a submatrix GSi generates a solution symmetrical with the
original one, which entails Constraint (21) to remove these symmetries. Because
of Constraint (21), the players played together in the first week must be in
ascending order of groups in the second week (cf. the second row of Table 6).

In addition to the constraints of the separate model, we also place the con-
straints to break the symmetries caused by interchangeable weeks partially. The
idea is to restrict the groups of the 4th player in non-decreasing order from week
two, given by:

∀i ∈ I(Gi,s ≤ G(i+1),s)
I = {x ∈ Z| 0 < x < w − 1} (22)

Please note that Constraint (22) cannot fully remove the symmetries among
weeks because there are still symmetries whenever Gi,s = G(i+1),s. For example
in Table 6, interchanging the 7th week with 8th week results in a symmetrical
solution.

Finally, the results of the above model are equally distributed to each worker
that runs the basic model.

5.2 6-4-7

The separate model for 6-3-8 produces 424 solutions for the second row, while
it produces 351 for the second row of 6-4-7. However, because of the increasing
difficulty, we add the following constraints based on the separate model for 6-3-8
to produce less number of solutions for the second row of 6-4-7:

J =
{
j ∈ Z| 0 ≤ j < n − s ∧ j%s = 0 ∧ j = (s − 1) ∗ s ⇒ j + s �= s2

}

∀j ∈ J(Fj+1 ≤ Fj+s+1) (23)
∀j ∈ J(Fj+1 = Fj+s+1 ⇒ Fj+2 ≤ Fj+s+2) (24)

∀j ∈ J(Fj+1 = Fj+s+1 ∧ Fj+2 = Fj+s+2 ⇒ Fj+3 ≤ Fj+s+3) (25)

Table 7. A solution of 6-4-7. The numbers with the same superscript are in non-
decreasing order in the second row. (Table reproduced from [20]).

Week

Player
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6

2 1a 2b 3c 4d 1a 2b 3c 4d 1a 4b 5c 6d 1a 4b 5c 6d 2e 3f 5g 6h 2e 3f 5g 6h

3 1 2 3 4 2 4 6 5 5 3 6 1 6 2 4 5 3 4 1 2 5 1 3 6

4 1 2 3 4 3 6 4 5 4 2 1 3 6 1 5 2 5 1 2 6 3 6 4 5

5 1 2 3 4 4 6 1 2 3 5 2 6 5 6 3 1 1 5 4 3 5 2 6 4

6 1 2 3 4 6 3 5 1 2 6 3 4 4 5 6 3 4 2 5 1 5 6 1 2

7 1 2 3 4 6 1 2 3 5 1 4 2 3 5 2 6 5 6 3 4 4 5 6 1
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In short, Constraints (23)–(25) ensure that the values occupying the same posi-
tions in the first row of the first s submatrices (GS0, GS1, GS2, GS3) and the
last two submatrices (GS4, GS5) are in non-decreasing order respectively (see
Table 7). The reason why the submatrices are divided into two groups is that
numeral 1 always takes up the first row of the first column in the first s subma-
trices due to the restrictions from Constraint (20) and (21). Thus, if a constraint
enforces G1,13 ≤ G1,17, the solution shown in Table 7 will not be obtained. These
additional constraints also reduce search space by removing symmetries. For
example, if we do not impose Constraint (23) on the separate model, a second
row such like [1 2 3 4 1 4 5 6 1 2 3 4 1 4 5 6 2 3 5 6 2 3 5 6] will be generated.
In that case, we will require more workers to work on these symmetrical search
spaces.

As with the 6-3-8 instance, we map the solutions of the separate model to
different workers before the solving process. Then, to solve the 6-4-7 instance,
we further reduce the search space by adding the following constraints onto the
basic model:

∀j ∈ J(GCC(G∗,j , V,O))
J = {j ∈ Z| s ≤ j < 3s}

V = {1 . . . s} , O = {1 . . . 1} , 0 < ∗ < w

(26)

where G∗,j denotes the columns from the sth column to the (3s − 1)th column
of the matrix G with removed first element. More particularly, every value in
the set {1, 2, 3, 4} can appear only once in all the columns of the submatrices
GS1 and GS2. We impose Constraint (26) on only the columns of GS1 and GS2

because each player only plays with other 21 players since (24 − 1)%(4 − 1) =
2; thus not every column contains the set {1, 2, 3, 4}. Though Constraint (26)
does not enforce all columns containing the values {1, 2, 3, 4}, it reduces much
search space; our experiments show that we cannot solve 6-4-7 without these
constraints.

5.3 7-3-10

The problem size of 7-3-10 is much larger than 6-4-7 and 6-3-8, we must harness
more instance-specific constraints, which are given by:

∀i ∈ I(Gi,s = i + 1), I = {i ∈ Z| 0 < i ≤ s} (27)
∀i ∈ I ′(Gi,s = s + 1), I ′ = {i ∈ Z| s + 1 < i < 2} (28)

GCC(G∗,(s+1), V,O), V = {1, 2, 3, 6, 7}
0 < ∗ < w, O = [1, 1, 1, 0, 0] (29)

GCC(G∗,(s+2), V
′, O′), V ′ = {1, 2, 3, 6}

O′ = [1, 1, 1, 0] (30)
∀s + s ≤ j < n(GCC(G∗,j , V ′′, O′′))

V ′′ = {1 . . . s}, O′′ = [1 . . . 1] (31)
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We strictly limit the positions of player 4 so that he/she will never be assigned
to groups 5, 6, and 7. The reason is that player 4 must meet players 1, 2, and
3, and the groups of the first three (s) players are frozen by Eq. 2 after the first
week, which implies that player 4 must stay in the first three groups from week
2 to week 4. Hence, player 4 can only play in the groups that are greater than
or equal to 4 (s + 1) from week 5. Moreover, player 4 is always the smallest
player starting from the 9th column of a solution (cf. Table 1). Therefore, player
4 cannot appear in groups 5, 6, and 7, and only stay in group 4 from week 5.
Consequently, the 4th column of Table 2 is the result by imposing Constraint
(27) and (28). These two constraints not only shrink the search space but also
remove the symmetries caused by swapping the group containing player 4 with
other groups after week 4.

Since player 4 can only play in group 4 after week 4, player 5 is impossible
to stay in groups 6 and 7, because then there will be no player assigned in group
5. Similarly, player 6 cannot appear in group 7 and can only appear in group 6
once. Thus, we use Constraints (29) and (30) to limit the number of occurrences
of the values 6 and 7.

Furthermore, because (21 − 1)%(3 − 1) = 0, each player must play with
other players exactly once. Hence, we guarantee the first s players must meet
the rest of players once, which are ensured by Constraints (29), (30), and (31).
Incidentally, Constraint (31) can be applied to any full instance that satisfies
(n − 1)%(s − 1) = 0 in our modeling approach (e.g. 7-4-9).

In the implementation of parallelism for 7-3-10, we also use the same sepa-
rate model as the model for 6-4-7 to generate solutions of the second row and
distribute them to the workers.

6 Experiments

In this section, we report the experimental results on instances discussed in
Sects. 4 and 5 separately since different hardware and methods were used.

6.1 Experimental Results on Instance Solved Sequentially

To confirm our theoretical discussion and the conjecture for the instances dis-
cussed in Sect. 4, we implemented the basic model as described in Sect. 3 and
the instance-specific constraints in Sect. 4 via the Choco Solver 4.0.6 [27] with
JDK version 10.0.1. All experiments were performed on a laptop with an Intel
i7-3720QM CPU, 2.60 GHz with 4 physical and 8 logical cores, and 8 GB DDR3
memory running Linux Mint 18.3.

Table 8 summarizes the experimental results on the instances solved sequen-
tially, including the total CPU time, the number of visited nodes, backtracks,
and fails. It also provides search strategies we used. By using our approach,
we were able to prove the nonexistence of the solution of 6-6-7 and solved six
open instances for constraint satisfaction approach but not for metaheuristic
approach [7].
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Table 8. Results on the s-s-(s + 1 ) Instances. A superscript “c” means that the
instance was open for constraint satisfaction approach; “dom” and “min” denote the
predefined search strategies domOverWDegSearch and minDomLBSearch in Choco
Solver, respectively. (Table reproduced from [20]).

Instance Time(s) Nodes Backtracks Fails Strategy

5-3-7 0.095 111 179 94 dom

5-5-6 0.069 7 1 0 min

6-6-7c 25 1.38e5 2.77e5 1.38e5 min

7-7-8c 111 3.62e5 723e5 3.62e5 min

8-8-9c 12 15,370 30,680 15,350 min

9-9-10c 2559 2.08e6 4.16e6 2.08e6 min

11-11-12c 62 3,150 6,279 3,144 min

13-13-14c 2563 5.80e4 1.16e5 5.79e4 min

6.2 Experimental Results on Instance Solved in Parallel

To validate our parallel approach for the SGP, we switch to a computer with
250 GB DDR3 1066 memory and 4 Intel Xeon CPU E7-4830 2.13 GHz proces-
sors running on Linux CentOS 6.5, where each processor has 8 physical cores.
The versions of Choco Solver and the JDK are unchanged. Table 9 reports the
experimental results for comparing parallel and sequential execution when using
the same model to solve the same instance. For parallel execution, the number
of workers we used varies from instance to instance. For 6-3-8, we specified 8, 16
and 32 workers to execute in parallel, but super-liner speedup was only observed
when using 8 workers, because the partial assignment that can lead to a solution
does not happen to be evaluated first.

Table 9. Results on the Instances solved in parallel. A superscript “f” means that the
instance is solved by computer for the first time. A “-” sign means the program was
still running after a period which is equal to the number of workers multiplied by the
execution time in parallel. (Table reproduced from [20]).

Instance Workers Time(s) Nodes Backtracks Fails Strategy

6-3-8c 1 2.95e4 2.91e8 5.83e8 2.91e8 min

8 50.2 2.09e5 4.18e5 2.09e5 min

16 2.62e4 2.50e8 5.13e8 2.31e8 min

6-4-7f 1 - - - - min

48 8.59e3 1.66e7 3.32e7 1.66e7 min

7-3-10f 1 - - - - dom

32 7.61e4 1.86e8 3.73e8 1.86e8 dom
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Then, for 6-4-7, we used 48 workers because there are only 48 solutions
generated by the separate model. Finally, the result of 7-3-8 is given by select-
ing the first 8 solutions of the separate model, and every solution is allocated
to 4 different workers, each of which employs their respective search strate-
gies that are predefined in Choco Solver, including minDomUBSearch, min-
DomLBSearch, defaultSearch and domOverWDegSearch. Besides, we also per-
formed three more experiments in which the separate model was specified with
above mentioned search strategies. As a consequence, the first 8 solutions are
different from the first experiment, and we obtained three more non-isomorphic
solutions for the 7-3-10 instance. The solutions of the instances in Table 9, which
are not given in the main body of this article, are provided in Appendix A.

6.3 Discussion

It is interesting to observe the results for the instances of the form s-s-(s + 1 )
(s = {5, 7, 8, 11, 13}) consisting of s-1 mutually orthogonal s × s latin squares4

(cf. GS1, GS2, GS3, and GS4 of Table 3). The results of these instances are con-
sistent with the basic correspondence of affine planes and Latin squares, which
proves that there exist n-1 Mutually Orthogonal Latin Squares (MOLS) of order
n iff there exists an affine plane of order n [2,25], i.e., there are affine planes of
order 5, 7, 8, 11, and 13. It is also not difficult to relate no solution for 6-6-7 to no
MOLS of order 6 [4]. And we argue that the solution of 10-10-11 is nonexistent
because there is no set of 7 MOLS of order 10 [22] and thereby no affine plane of
order 10 [17]. More generally, we speculate that the solutions for the form np-np-
(np+1 ) (e.g., np = 14, 21, 22, 30, 33) do not exist because of the nonexistence
of projective planes5 for them according to the Bruck-Ryser-Chowla theorem [2],
where np ≡ 1 or 2 (mod 4) and the square-free part of np contain at least one
prime p ≡ 3 (mod 4).6 Moreover, the 12-12-13 instance is hard for the CP app-
roach, which corresponds to searching an affine plane of order 12—an unsettled
case.

In addition to the results of the instances, we also show that more instance-
specific constraints can shorten the execution time even if the size of instances
increases. For example, 11-11-12 took much less time than 9-9-10 since more con-
straints are posted. The experimental results also show that parallel constraint
solving through search space splitting is a very effective means to prevent back-
track search from getting stuck into a fruitless search area. Without surprise,
the super-linear speedup was observed since only one invalid partial assignment
is enough to cause instances such as 6-4-7 to be unsolvable for sequential solv-
ing and one valid partial solution can easily lead to backtrack search into a
search area with a solution. Note that observed super-linear speedups are not in

4 Two Latin squares are mutually orthogonal if, they have the same order n and when
superimposed, each of the possible n2 ordered pairs occur exactly once.

5 An affine plane of order n exists iff a projective plane of order n exists.
6 For instance, 14 = 2 ∗ 7 ≡ 2 (mod 4), and the primes in the square-free part are 2

and 7.
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contradiction with Amdahl’s law since our goal is to obtain a first solution instead
of all solutions.

7 Related Work

There is a substantial body of work available on symmetry breaking for the SGP
from the constraints community, including model reformulation, static symmetry
breaking constraints, and dynamic symmetry breaking.

7.1 Methods from the CSP Literature

Smith [37] presented the integer set model with extra auxiliary variables that
automatically eliminates the symmetries inside of groups, which is probably one
of the first works that break the symmetry of the SGP via model reformulation.
Besides, Symmetry Breaking During Search (SBDS) with symmetry breaking
constraints is employed to break renumbering symmetry but not entirely, where
SBDS is essentially a search space reduction technique that adds constraints
to remove symmetrical search space during search. Law and Lee [18] developed
the Precedence constraint to break the symmetries of groups inside of weeks
for the integer model and the symmetries caused by renumbering players for
the set model. Symmetry Breaking via Dominance Detection (SBDD), another
dynamic symmetry breaking technique, was developed separately by Focaci and
Milano [10] and by Fahle et al. [9,11]. The main idea of SBDD is to utilize no-
good learning to avoid exploring search space that is symmetrical of previously
explored nodes recorded on the no-goods. By using SBDD, Fahle and Milano
discovered seven non-symmetric solutions for the 5-3-7 instance in less than two
hours on a computer with an UltraSparc-II 400 MHz processor.

Barnier and Brisset [3] proposed SBDD+ for the SGP, which computes iso-
morphism not only for leaves of the search tree but also on current non-leaves
node. The experimental results showed that SBDD+ only took around eight sec-
onds to compute all the seven non-symmetric solutions for 5-3-7, which is a
significant improvement compared with [9]. However, they also pointed out that
SBDD+ has to tackle the explosion of node store and the time overhead due to
nodes dominance checking for a larger instance. Puget [28] combined SBDD with
Symmetry Breaking Using Stabilizers (STAB) to obtain a solution of 5-5-6 in
38 s on a laptop with a Pentium M 1.4 GHz processor, where STAB is a variant
of SBDS that adds symmetry breaking constraints without changing specified
partial assignment.

All of the above mentioned works aim at eliminating the symmetries of the
SGP, which is the first difficulty mentioned in Sect. 2.1. To tackle the second
difficulty, Sellmann and Harvey [35] developed the vertical constraints and hor-
izontal constraints for propagation, which can check whether a given partial
assignment is extensible to a solution. They obtained all unique solutions of the
5-3-7 instance in 393.96 s on a computer with Pentium III 933 MHz proces-
sor by using the dedicated constraints. However, the dedicated constraints are
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developed for the original naive model, and no efficient algorithm for finding the
players who have conflicting residual graphs is given.

7.2 Methods from the Metaheuristic Literature

Despite having elegant and sophisticated search space reduction techniques such
as SBDS, SBDD, etc., the constraint satisfaction approach, a systematic search
method, cannot compete with the metaheuristic approaches on the SGP when
the goal is to obtain one solution instead of all non-symmetric solutions. Dotú
and Van Hentenryck [7] employed tabu search with a constructive seeding heuris-
tic and good starting points to achieve significant results on the instances of the
form prime-prime-(prime + 1) (e.g. 43-43-44, 47-47-48). Dotú and Van Henten-
ryck also solved 9-9-10 and 6-3-8 by using tabu search with a good starting point
in 0.01 s and 51.93 s on a computer with Pentium IV 3.06 GHz processor [8].
Besides, the 6-3-8 instance was also solved by the evolutionary approach on a
Pentium IV 3.06 GHz processor [5]. Unfortunately, the total CPU time is not
reported in [8].

Triska and Musliu [38] are the first to solve the 8-4-10 instance reported
in the literature, although one solution of 8-4-10 had already been published
before [1] but without any explanation. The idea behind their metaheuristic
approach is to employ a greedy heuristic for tabu search with the well-designed
greedy initial configuration. The first solution of 8-4-10 instance was obtained in
11 min on a computer with an Intel Core 2 Duo 2.16 processor. Moreover, after
varying the randomization factor of the greedy heuristic, they obtained two new
non-isomorphic solutions for 8-4-10. In addition to the metaheuristic approach,
they also explored a SAT encoding for the SGP [39]. Unfortunately, their SAT
encoding is not competitive with other approaches.

Generally, solving the q-q-(w + 2) instance of the SGP amounts to find-
ing w Mutually Orthogonal Latin Squares (MOLS). Thus, in addition to these
approaches mentioned above which address the SGP head-on, Harvey and Win-
terer [14] exploited MOLS (in practice, MOLR) solutions found to construct
solutions to the SGP. The most notable instance they solved is 20-16-6, which
indicates that this is probably the most efficient method so far. However, no full
instance g-s-w∗ was resolved since this method heavily relies on the construction
of MOLR.

7.3 Summary

Most of the research from the constraints community focus on search space
reduction techniques, mainly dynamic symmetry breaking. The metaheuristic
approach, by contrast, aims at finding a first solution as quickly as possible.
For example, the 6-3-8 instance could be solved within reasonable time via the
metaheuristic approach but not the constraint satisfaction approach. Note that
the problem grows much faster even from 5-3-7 to 6-3-8 than the performance
boost out of the processors. Table 10 summarizes the main accomplishments in
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the SPG from the computer-science community, including both the constraints
and metaheuristics communities.

Table 10. The summary of the most significant results on the SGP from the computer-
science community.

Instance Year Authors Method Description

4-3-4 2001 Smith [37] SBDS 42 solutions found

5-3-7 2001 Fahle and Milnano [9] SBDD 7 unique solutions in 2 h

5-3-7 2001 Barnier and Brisset [3] SBDD+ 7 unique solutions in 8 s

5-3-7 2002 Sellmann and Harvey [35] Specific Constraints 7 unique solutions in 394 s

5-5-6 2005 Puget [28] SBDD and STAB A solution in 38 s

20-16-6 2005 Harvey and Winterer [14] MOLR Tabu search for MOLR

47-47-48 2005 Dotú et al. [7] Tabu-search Efficient for p-p-(p + 1)

6-3-8 2007 Dotú et al. [8] Tabu-search A solution in 52 s

8-4-10 2011 Triska and Musliu [38] Tabu-search 2 new unique solutions found

Finally, some instances which have not been solved by computer at present
have already been constructed by combinatorics (e.g., 7-4-9, 9-3-13). For a
detailed introduction, please refer to [29,32].

8 Conclusion

In this paper, we have presented a combination of techniques which allows us to
find solutions for eight open instances, where six of these instances are solved
sequentially, and three of these instances are solved in parallel. In particular, we
have shown the constraints derived from the relatively small instances can be
used to solve larger instances that are in the same form as the smaller ones. In
other words, we explore the properties of the instances of the form s-s-(s + 1 )
from the perspective of constraint programming. Besides, we have also shown
that it is not uncommon for solving the SGP in parallel via search space splitting
or with portfolio to gain super-linear speedups and parallel solving the SGP can
be an effective method to address the instances that cannot be solved sequen-
tially. The results show that our method is much more successful, even if we
consider that the computers used for the other methods are up to 10 times
slower than ours.

Unlike the earlier researches on the SGP which mainly focus on dynamic
symmetry breaking, we attribute the success of our approach to the effective-
ness of the instance-specific constraints and parallelism due to mitigating the two
problems of solving the SGP mentioned in Sect. 2.1. Specifically, the instance-
specific constraints imposed on the second submatrix of the decision variables
matrix prune a large number of the sub-search trees near the root, including
some symmetries. And since many partial assignments are extended simultane-
ously, fruitless partial assignments have no impact on overall execution time.
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Not only that, but search space splitting can result in the partial assignments
that can lead to a solution to be proceeded much earlier than the sequential
search, which is the reason for super-linear speedup. Furthermore, we can con-
clude that early diversity brought by search space splitting before search can
effectively alleviate the strong commitment due to the early decisions made by
search strategy. Besides, we also remove the symmetries of the second row in
the decision variables matrix when generating the partial assignments, which is
helpful because nodes near the root contain much more symmetries than the
nodes near the leaves of the search tree [28]. Therefore, with mainstream com-
puters turning into parallel architectures, we believe that parallel constraint
solving through search space splitting is a promising approach to solving more
significant instances of the SGP.

Indeed, there is still a lot of potential to improve the performance of our
approach. In particular, Constraints (22) is unable to eliminate the symmetries
among weeks after week s when solving 6-3-8, 6-4-7, and 7-3-10. In fact, we
have resolved it by enforcing the indices of the second “1” of all the weeks in
ascending order, which means that the second golfers assigned in the first group
are in ascending order. Unfortunately the performance is not satisfactory. As
future work, we want to know whether the performance degradation is due to
the use of the IfThen constraints or removal of symmetries that also simulta-
neously removes solutions. Besides, despite better than the Reified constraints,
Constraints (5) and (6) introduce too many auxiliary variables that inevitably
slow down the resolution process; thus, we have also implemented a specialized
constraint to replace them. However, our constraint increases the difficulty of
variable-selection since the constraint requires an additional variable to record
the equality relationship among rows of the matrix G. To solve larger instances,
in addition to using more processors and discovering more instance-specific con-
straints, we would like to consider combining the dynamic symmetry breaking
and parallel constraint solving for the SGP.

In the end, we must regretfully admit that even if we have made some
progress, some interesting instances are still open (e.g. 7-4-9, 8-3-11, and 9-3-
13); notably, the original SGP 8-4-10 [13] is still unsolved for the CP approach,
despite many efforts from the constraint programming community. Constraint
technology should solve these instances to demonstrate itself as the first choice
for solving combinatorial problems.
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A Appendix

The Solutions

See Tables 11, 12, 13, 14, 15, 16 and 17.

Table 11. The solution for 6-3-8 transformed from the solution shown in Table 6.

Week

Group
1 2 3 4 5 6

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 1 4 7 2 10 13 3 8 16 5 14 17 6 11 15 9 12 18

3 1 5 16 2 4 14 3 6 7 8 12 17 9 11 13 10 15 18

4 1 6 10 2 5 18 3 4 9 7 13 17 8 11 14 12 15 16

5 1 8 15 2 11 17 3 13 18 4 10 16 5 7 12 6 9 14

6 1 9 17 2 7 15 3 12 14 4 11 18 5 8 10 6 13 16

7 1 12 13 2 9 16 3 5 11 4 15 17 6 8 18 7 10 14

8 1 14 18 2 6 12 3 10 17 4 8 13 5 9 15 7 11 16

Table 12. A new non-isomorphic solution for the 6-3-8 instance.

Week

Group
1 2 3 4 5 6

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 1 4 7 2 5 8 3 6 10 9 13 16 11 14 17 12 15 18

3 1 5 16 2 4 15 3 7 12 6 8 14 9 10 17 11 13 18

4 1 6 9 2 10 18 3 4 11 5 12 13 7 14 16 8 15 17

5 1 8 18 2 12 16 3 9 15 4 13 17 5 10 14 6 7 11

6 1 10 13 2 7 17 3 14 18 4 8 12 5 9 11 6 15 16

7 1 11 15 2 9 14 3 8 13 4 10 16 5 7 18 6 12 17

8 1 12 14 2 6 13 3 5 17 4 9 18 7 10 15 8 11 16

Table 13. The solution for 6-4-7 transformed from the solution shown in Table 7.

Week

Group
1 2 3 4 5 6

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2 1 5 9 13 2 6 17 21 3 7 18 22 4 8 10 14 11 15 19 23 12 16 20 24

3 1 6 10 24 2 7 12 15 3 8 13 19 4 11 20 21 5 16 18 23 9 14 17 22

4 1 7 16 17 2 8 11 22 3 9 15 20 4 5 19 24 6 12 14 23 10 13 18 21

5 1 8 20 23 2 9 18 24 3 6 11 16 4 12 13 17 5 10 15 22 7 14 19 21

6 1 11 14 18 2 10 16 19 3 5 12 21 4 7 9 23 6 13 20 22 8 15 17 24

7 1 12 19 22 2 5 14 20 3 10 17 23 4 6 15 18 7 11 13 24 8 9 16 21
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Table 14. A new non-isomorphic solution for the 7-3-10 instance.

Week

Group
1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 1 4 7 2 5 10 3 8 11 6 13 16 9 14 19 12 17 20 15 18 21

3 1 5 18 2 8 15 3 17 19 4 14 20 6 9 11 7 12 13 10 16 21

4 1 6 19 2 7 16 3 5 12 4 13 17 8 14 21 9 10 18 11 15 20

5 1 8 17 2 4 11 3 9 16 5 13 21 6 14 18 7 10 20 12 15 19

6 1 9 15 2 13 19 3 4 21 5 8 20 6 10 17 7 11 18 12 14 16

7 1 10 14 2 12 18 3 6 15 4 8 16 5 7 19 9 13 20 11 17 21

8 1 11 13 2 14 17 3 18 20 4 9 12 5 15 16 6 7 21 8 10 19

9 1 12 21 2 6 20 3 7 14 4 10 15 5 9 17 8 13 18 11 16 19

10 1 16 20 2 9 21 3 10 13 4 18 19 5 11 14 6 8 12 7 15 17

Table 15. A new non-isomorphic solution for the 7-3-10 instance.

Week

Group
1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 1 4 7 2 10 13 3 16 19 5 8 20 6 11 14 9 12 17 15 18 21

3 1 5 11 2 8 21 3 15 20 4 9 16 6 7 10 12 13 18 14 17 19

4 1 6 21 2 7 17 3 8 14 4 10 15 5 9 13 11 18 19 12 16 20

5 1 8 12 2 5 19 3 7 13 4 14 18 6 9 15 10 16 21 11 17 20

6 1 9 19 2 11 15 3 10 18 4 8 17 5 14 16 6 13 20 7 12 21

7 1 10 14 2 4 20 3 9 11 5 7 18 6 12 19 8 15 16 13 17 21

8 1 13 16 2 9 18 3 6 17 4 11 21 5 12 15 7 14 20 8 10 19

9 1 15 17 2 12 14 3 5 21 4 13 19 6 8 18 7 11 16 9 10 20

10 1 18 20 2 6 16 3 4 12 5 10 17 7 15 19 8 11 13 9 14 21

Table 16. A new non-isomorphic solution for the 7-3-10 instance.

Week

Group
1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 1 4 7 2 5 10 3 6 11 8 12 13 9 16 19 14 17 20 15 18 21

3 1 5 19 2 13 16 3 10 15 4 18 20 6 8 14 7 11 17 9 12 21

4 1 6 18 2 9 11 3 8 21 4 10 14 5 13 20 7 15 16 12 17 19

5 1 8 15 2 6 17 3 9 18 4 13 19 5 11 21 7 10 20 12 14 16

6 1 9 17 2 15 20 3 4 12 5 8 16 6 10 19 7 14 21 11 13 18

7 1 10 16 2 4 21 3 13 17 5 9 14 6 12 15 7 18 19 8 11 20

8 1 11 14 2 8 19 3 16 20 4 9 15 5 12 18 6 7 13 10 17 21

9 1 12 20 2 14 18 3 5 7 4 8 17 6 16 21 9 10 13 11 15 19

10 1 13 21 2 7 12 3 14 19 4 11 16 5 15 17 6 9 20 8 10 18
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Table 17. A solution of 8-8-9 expressed by groups.

Week
Player

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
3 1 2 3 4 5 6 7 8 2 1 4 3 6 5 8 7 3 4 1 2 7 8 5 6
4 1 2 3 4 5 6 7 8 3 4 1 2 7 8 5 6 6 5 8 7 2 1 4 3
5 1 2 3 4 5 6 7 8 4 3 2 1 8 7 6 5 8 7 6 5 4 3 2 1
6 1 2 3 4 5 6 7 8 5 6 7 8 1 2 3 4 2 1 4 3 6 5 8 7
7 1 2 3 4 5 6 7 8 6 5 8 7 2 1 4 3 4 3 2 1 8 7 6 5
8 1 2 3 4 5 6 7 8 7 8 5 6 3 4 1 2 5 6 7 8 1 2 3 4
9 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1 7 8 5 6 3 4 1 2

Week
Player

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

1 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6
2 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
3 4 3 2 1 8 7 6 5 5 6 7 8 1 2 3 4 6 5 8 7 2 1 4 3
4 8 7 6 5 4 3 2 1 2 1 4 3 6 5 8 7 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 3 4 6 5 8 7 2 1 4 3 7 8 5 6 3 4 1 2
6 6 5 8 7 2 1 4 3 7 8 5 6 3 4 1 2 3 4 1 2 7 8 5 6
7 7 8 5 6 3 4 1 2 3 4 1 2 7 8 5 6 8 7 6 5 4 3 2 1
8 3 4 1 2 7 8 5 6 8 7 6 5 4 3 2 1 2 1 4 3 6 5 8 7
9 2 1 4 3 6 5 8 7 4 3 2 1 8 7 6 5 5 6 7 8 1 2 3 4

Week
Player

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 1 1 1 1 1 1 1

1 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1
3 7 8 5 6 3 4 1 2 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1
4 5 6 7 8 1 2 3 4 7 8 5 6 3 4 1 2 1 1 1 1 1 1 1
5 3 4 1 2 7 8 5 6 2 1 4 3 6 5 8 7 1 1 1 1 1 1 1
6 8 7 6 5 4 3 2 1 4 3 2 1 8 7 6 5 1 1 1 1 1 1 1
7 2 1 4 3 6 5 8 7 5 6 7 8 1 2 3 4 1 1 1 1 1 1 1
8 4 3 2 1 8 7 6 5 6 5 8 7 2 1 4 3 1 1 1 1 1 1 1
9 6 5 8 7 2 1 4 3 3 4 1 2 7 8 5 6 1 1 1 1 1 1 1
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Abstract. Classifying Multi-Label nodes in networks is a well-known
and widely used task in different domains. Current classification models
rely on mining the network structure either by random walks or through
approximating the laplacian of the network graph which gives insight
about the nodes’ neighborhood. In implicit feedback relations, these
models assume all relation edges to be equally strong and important.
However, in real life, this is not necessarily the case as some edges might
have different semantic weights such as friendship relation. To tackle
this limitation we propose in this paper a weighted two-stage multi-
relational matrix factorization model with Bayesian personalized ranking
loss for network classification that utilizes different weighting functions
for approximating the implicit feedback relation weights. Experiments
on four real-world datasets show that the proposed model significantly
outperforms the state-of-art models. Results also show that selecting the
right weighting functions for approximating relation weights significantly
improves classification accuracy.

Keywords: Multi-relational learning · Network representations
Multi-label classification · Recommender systems · Document
classification

1 Introduction

Multi-label node classification is a widely used in network analysis for predicting
users interests [5,8,12,13], document classification [13,19] and in protein labeling
in protein-protein interaction graphs [5,13].

Earlier approaches of node classification relied on extracting a set of infor-
mative features from each node and train a classification model on them. This
typical way of feature processing has two main significant drawbacks. First, prior
expert domain knowledge is needed to extract and preprocess such features. Sec-
ond, to extract useful features, a decent amount of raw information should be
embedded with each node such as profile details in social networks or document
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title and body in citation networks. This kind of information, however, might
not always be available or accessible due to privacy settings.

On the other hand, recent approaches focused on learning latent features for
each node by mining the network structure instead of relying on node informa-
tion. These approaches also optimize an objective function that aims to minimize
the classification error of nodes labeling [4,13]. Multi-relation matrix factoriza-
tion [7,8,17] is one example that follows this approach. This model represents
every network relation as a matrix, and it aims to factorize the target relation
matrix into two smaller matrices that represent the latent features of the inter-
acting nodes. The main advantage of these recent approaches is that they can
be better generalized to almost all node classification tasks without any need
for feature engineering or expert domain knowledge. However, they face signifi-
cant challenges with very sparse networks and especially if these networks have
implicit feedback relations. These implicit relations are dominantly very sparse,
and relation edges are either observed or unobserved without explicit weights
which means that all edges will be treated equally by these models. In vari-
ous real-world scenarios, those implicit relations have hidden semantic weights
[9] which are not directly quantifiable but can be approximated using differ-
ent weighting functions such as similarity measures. A famous example of such
relations is the friendship relation in social networks. This relation is a type of
implicit feedback relations that models the interaction between nodes that have
the same types, and it is expressed as sparsely observed edges connecting those
nodes. This kind of friendship relations frequently occurs in multi-relational set-
tings and it is not only for representing a relation between users, but it can also
represent a relation between any same type nodes [13]. In networks data, all of
the friendship observed edges would have the same importance weight while in
real-life, some friendship relations are stronger than others. The real-life weights
of such relations can be approximated by measuring the similarity between every
two interacting nodes which can be calculated using information from network
structure only such as nodes degrees without the need of any complex side infor-
mation.

In our previous work, we introduced a similarity based personalized two-
stage multi-relation matrix factorization model (Two-Stage-MR-BPR) for multi-
label network classification and ranking [13]. It utilizes the basic transitive node
similarity for weighting implicit friendship relations and a two-stage training
protocol to optimize the Bayesian personalized ranking loss. By optimizing the
BPR loss, the model will output a ranked list of labels instead of only one label
for any target node which means it will be suitable for recommender system
problems and node classification problems. The weighted Two-Stage-MR-BPR
can differentiate between observed and unobserved relations along with learning
the different strength weights of the observed relations.

In this work, we present an extended version of the Two-Stage-MR-BPR
paper [13] by applying a more in depths analysis and comparison between dif-
ferent weighting functions and their effect on the classification accuracy. We
also conduct a sensitivity analysis on the regularization weights of the proposed
model.



102 A. Rashed et al.

Our contributions can be summarized as follows:

• We conduct a comparative study between different weighting functions that
can be used with the Two-Stage-MR-BPR model to approximate the semantic
weights of all implicit relations that have interacting nodes of the same type.
This allows the model to differentiate between weak and strong relations.

• We conduct multiple experiments on four real-world datasets. The results
show that the proposed weighted Two-Stage-MR-BPR outperform the MR-
BPR and current state-of-art models in multi-label and single-label classifi-
cation problems. Results also show that the basic transitive friend similarity
is a good weighting function across datasets from different domains.

The rest of the paper is organized as follows. In Sect. 2, we summarize the
related work. We discuss the problem formulation of the multi-label classification
task in Sect. 3. In Sect. 4, we present and discuss the technical details of the Two-
Stage-MR-BPR model. We present the experiential results in Sect. 5. Finally, we
conclude with discussing possible future work in Sect. 6.

2 Related Work

Current approaches for multi-label node classification automate the process of
features extraction and engineering by directly learning latent features for each
node. These latent features are mainly generated based on the global network
structure and the connectivity layout of each node. In earlier approaches such
as [20,21], they produce k latent features for each node by utilizing either the
first k eigenvectors of a generated modularity matrix for the friendship relation
[20] or a sparse k-means clustering of friendship edges [21]. These k features are
fed into an SVM for labels predictions.

Recently, semi-supervised [22] and unsupervised approaches [5,12,24] have
been proposed to extract latent node representations in networks data. These
models are inspired by the novel approaches for learning latent representations
of words such as the convolutional neural networks and the Skip-gram models
[11] in the domain of natural language processing. They formulate the network
classification problem as discrete words classification problem by representing
the network as a document and all nodes as a sequence of words. The Skip-gram
can then be used to predict the most likely labels for each node based on the
assumption that similar nodes will have same labels.

In [8], MR-BPR was proposed as learning to rank approach for tackling the
multi-label classification problem by extending the BPR [15] model for multi-
relational settings. This approach expresses the problem as a multi-relational
matrix factorization trained to optimize the AUC measure using BPR loss. Each
network relation is represented by a sparse matrix and the relation between nodes
and labels will be the target being predicted. Because of the BPR loss, this model
is considered suitable for sparse networks with implicit feedback relations; how-
ever, since all implicit feedback connections are only observed or unobserved,
the MR-BPR fail to realize that some implicit links are stronger than others in
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real-life. To solve this drawback in the original single relation BPR model, [9]
proposed BPR++ an extended version of the BPR model for user-item rating
prediction. They utilized multiple weighting functions to approximate the logical
weights between users and items. Those functions relied on the frequency of inter-
action and timestamps to weight each edge. In the training phase, they randomly
alternate between learning to distinguish observed and unobserved relations and
learning to rank weighted observed relations. This learning approach expands
the BPR capacity to differentiate between strong and weak connections.

Finally, the proposed Two-Stage-MR-BPR model [13] follow a similar intu-
ition to that of BPR++ and it considers the more general multi-relational set-
tings which allow it to be used for any multi-label and single-label network classi-
fication problems. The proposed model also can utilize different node similarity
functions to approximate the weights of implicit relations that have interact-
ing nodes of the same type. In this work, we also presenet MR-BPR++ [13]
which is the extend an extended version of BPR++ for multi-relational settings.
The learning algorithm for Two-stage-MR-BPR is different from MR-BPR++;
it relies on two consecutive non-overlapping learning stages instead of random
alternation. In the first stage, it allows the model to sufficiently learns to differ-
entiate between strong and weak relations and in the second stage, it allows it
to learns to differentiate between observed and unobserved relations.

3 Problem Definition

The problem can be formulated similarly to [8,13] as a relational learning setting
on network data. Let G = (V, E) be a network where V is a set of heterogeneous
nodes, and E is the set of edges. Each node can be seen as an entity and each
edge represents a relation between two entities. Let N := {N1, N2, ..., N|N |}
be a set of node types and each type has a set of nodes as instances Ni :=
{n

(1)
i , n

(2)
i , ..., n

(|Ni|)
i }. Let R := {R1, R2, ..., R|R|} be a set of relations and each

relation represents interactions between two specific node types N1R and N2R

such that R ⊆ N1R × N2R.
Our primary task in this paper is to predict missing edges in a primary tar-

get relation Y , and all other relations will be considered auxiliary relations that
can be used to improve the prediction accuracy. In multi-label network classifi-
cation, the relation Y represents the relation between a set of nodes and labels
Y ⊆ NTarget × NLabel, such as the relationship between multiple interests and
users in social networks or document-labels and documents in citation networks.
Examples of auxiliary relations are the friendship relation in social networks or
citation links in citation networks.

The task of predicting missing edges in the target relation can be formulated
as a ranking problem where we try to drive a ranked list of labels that represent
the likelihood that a specific node belongs to each of them.

In case of sparse auxiliary relations with implicit edges, the current multi-
relational matrix factorization model with BPR loss [8] does not exploit the full
potential of the BPR loss because it only distinguishes between observed and
unobserved edges without considering the edges weights [9].
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Our proposed approach addresses the shortcomings of the current multi-
relational matrix factorization model by firstly using a similarity function for
weighting the implicit auxiliary relations and using a Two-Stage-MR-BPR learn-
ing algorithm that can rank observed edges and distinguish between observed
and unobserved edges. The proposed approach is also suitable for cold-start sce-
narios where only the auxiliary relations information are available for the target
nodes.

4 Proposed Model

The proposed model can be formulated as a two-stage multi-relational matrix
factorization using node similarity for weighting implicit relations. Initially, the
node similarity is used to weight all observed edges in any implicit auxiliary
relations that has interacting nodes of the same type. In the first stage of learning,
the model is trained to rank edges based on their weights. In the second stage,
the model is trained to differentiate between observed and unobserved edges.
Figure 1 illustrates the workflow of the Two-Stage-MR-BPR model with basic
transitive node similarity as weighting function and each step will be discussed
in details in the following subsections.
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Fig. 1. Two-Stage-MR-BPR workflow. Initially, the transitive node similarity is used
to weight all implicit relations with same type interacting nodes followed by learning
a two stage multi-relational matrix factorization on all relations using the BPR loss to
rank all labels with respect to each test node [13].

4.1 Basic Transitive Node Similarity for Implicit Feedback
Relations

In the relational learning setting, in order to apply the two-stage MR-BPR learn-
ing technique we need first to convert all possible implicit feedback relations
into weighted relations. To convert implicit relations into weighted relations,
one needs a suitable weighting function that approximate relation weights by
utilizing the available embedded information in each relation such as frequency
or timestamps of interactions in user-item relations, or similarity measures in
friendship relations. In the most basic case where there is no available embedded
information, an implicit relation can be considered a relation that was weighted



Weighted Personalized Factorizations for Network Classification 105

by a constant weighting function which outputs only one value if it encounters
an observed edge.

Friendship relations are one of the prominent types of implicit relations in
networks data. It can represent any relation between nodes of the same type such
as users friendships in social networks or web links between web pages or citation
links between documents. For weighting edges in general friendship relations, the
similarity measures such as Adamic/Adar [1], common neighbors, Jaccard index
[6] and friend transitive node similarity FriendTNS [18] are considered the best
candidates to act as weighting functions [10,18].

FTNS(ni, nj) :=

{
1

deg(ni)+deg(nj)−1 , if (ni, nj) ∈ R

0, if (ni, nj) /∈ R
(1)

Adamic/Adar(ni, nj) =
∑

u∈Neighbors(ni)∩Neighbors(nj)

1
log |Neighbors(u)| (2)

Jaccard(ni, nj) =
|Neighbors(ni) ∩ Neighbors(nj)|
|Neighbors(ni) ∪ Neighbors(nj)| (3)

Common Neighbors(ni, nj) = |Neighbors(ni) ∩ Neighbors(nj)| (4)

where deg(ni) and deg(nj) is the degree of nodes ni and nj respectively. In case
of directed graphs, we used the summation of the node’s in-degree and out-degree
as the total degree.

In our proposed approach we used the FriendTNS function because it showed
a superior accuracy over other similarity functions in the experimental results
which is inline with the earlier research findings [2,18] in link prediction tasks.
Comparison between the different weighting functions is discussed in details in
Sect. 5.6.

FriendTNS was used for weighting all the observed edges in all available
implicit friendship relations and it was calculated only for observed edges because
it is computationally expensive to calculate weights for all possible node pairs
in very sparse networks. The FriendTNS similarity between two nodes can be
calculated using Eq. (1).

4.2 Multi-relational Matrix Factorization with Basic Transitive
Node Similarity

To formulate the problem as a multi-relational matrix factorization, each node
type Ni can be represented by a matrix Ei ∈ R

|Ni|×k where the rows are the
latent feature vectors for all instances in the node type, and k represents the
number of latent factors defined in the model. Similarly, each implicit relation
R can be represented by a matrix R ∈ R

|N1R|×|N2R| where N1R and N2R are the
two types of the interacting nodes inside relation R. Each entry in the relation
matrix is given by
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R(n(i)
1R, n

(j)
2R) :=

⎧⎪⎨
⎪⎩

Weight(n(i)
1R, n

(j)
2R), if(n(i)

1R, n
(j)
2R) ∈ R

unobserved, if(n(i)
1R, n

(j)
2R) /∈ R

(5)

where Weight(n(i)
1R, n

(j)
2R) is the weighting function used to approximate the

weights of implicit relation between any two nodes such as similarity functions
in case of friendship relations or frequency of interaction in case of user-item
relations. If no available embedded information can be used to weight relations,
a constant weighting function is assumed.

Finally, each relation R can be approximated by multiplying the latent matri-
ces of the two relation node types E1R and E2R such that R ≈ E1R × ET

2R. For
simplicity, we define a set of all the model parameters Θ := {E1, E2, ..., E|N |}
which contain the matrices of all nodes types and our general objective will be
to find the set of matrices Θ that minimize the sum of losses over all relations.

4.3 Two-Stage MR-BPR

The original BPR model [15] assumes that for a given user u, any item i this
user interacted with should be ranked higher than any item j he did not interact
with. In order to do so, the BPR model learns to maximize the difference x̂R

u,i,j

between the predicted rating r̂(u, i) for an observed item i and the rating r̂(u, j)
for an unobserved item j.

To follow the same notation in a multi-relational setting, for any given rela-
tion R, the user u will represent a node of type N1R, while i and j will represents
two nodes of type N2R. For each relation R the baseline MR-BPR model samples
a set of triples DR which is defined as follows:

DR := {(u, i, j)|(u, i) ∈ R ∧ (u, j) /∈ R}
The sampling is done using bootstrap sampling with replacement. The model

is then trained to maximize the difference between the predicted ratings of the
observed edges and unobserved edges for all relation using Eqs. (2) and (3).

BPR-Opt(R,E1RE2R
T ) =

∑
(u,i,j)∈R

lnσ(x̂R
u,i,j) (6)

MR-BPR(R,Θ) =
∑
R∈R

αRBPR-Opt(R,E1RE2R
T ) +

∑
E∈Θ

λE ||E||2 (7)

where σ is the sigmoid logistic function and αR is the loss weight for relation
R. By following this learning approach, the MR-BPR model learns to distin-
guish between observed edges and unobserved edges over iterations. This app-
roach is not optimal as it fails to realize the different semantic weights of the
implicit relations. In [9] they proposed a new learning technique for the origi-
nal BPR model called BPR++ which extend the BPR to learn weighted rela-
tions. There proposed extension allow the BPR model to provide better rankings
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for item ratings by utilizing the timestamps and frequency of user interactions
to weight user-item edges. BPR++ is randomly alternating between learning
to rank observed weighted edges and learning to distinguish between observed
and unobserved edges. Instead of using such random alternation between the
two learning tasks for multi-relational settings, we propose a two-stage learning
approach that decouple the two learning tasks and learn them sequentially to
avoid information overwrites across iterations. When applied to multi-relational
settings, the proposed two-stage learning protocol and BPR++ will utilize a
separate set of triples D++

R beside the original set DR. This new set contains
observed weighted edges sampled using bootstrap sampling with replacement for
each available weighted relation as follows:

D++
R := {(u, i, j)|Weight(u, i) > Weight(u, j) ∧ (u, i) ∈ R ∧ (u, j) ∈ R}

The main difference between the proposed two-stage learning protocol and
BPR++ is that the later will rely on random alternating sampling from DR

and D++
R which introduce the risk of having information loss as some iterations

might overwrite the previously learned information, e.g. if an node was selected
first as an observed item from DR and in the next iteration it was selected
as the lower weighted item from D++

R , the second iteration will overwrite the
information gained in the first iteration as it will decrease the score of the item
after it has been increased. On the other hand, Two-Stage-MR-BPR overcome
such problem by learning to rank all weighted edges first then it learns to dis-
tinguish observed and unobserved edges afterward with no overlap between the
two stages in each epoch. This means that the second stage will shift the learned

1: procedure TWO-STAGE-MR-BPR(D, R, Θ)
2: Initialize All E ∈ Θ
3: repeat
4: for R ∈ R do
5: // (Stage One)
6: if D++

R \DR �= φ then
7: for ObsEdgesR times do
8: draw (u,i,j) from D++

R

9: Θ ← Θ + μ ∂(MR-BPR(R,Θ))
∂Θ

10: end for
11: end if
12: // (Stage Two)
13: for ObsEdgesR times do
14: draw (u,i,j) from DR

15: Θ ← Θ + μ ∂(MR-BPR(R,Θ))
∂Θ

16: end for
17: end for
18: until convergence
19: return Θ
20: end procedure

Fig. 2. Two-Stage-MR-BPR algorithm with learning rate μ and L2 regularization
λΘ [13].
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1: procedure MR-BPR++(D, R, Θ)
2: Initialize All E ∈ Θ
3: repeat
4: for R ∈ R do
5: r = random(0, 1)
6: if r ≤ β ∧ D++

R \DR �= φ then
7: draw (u,i,j) from D++

R

8: else
9: draw (u,i,j) from DR

10: end if
11: Θ ← Θ + μ ∂(MR-BPR(R,Θ))

∂Θ

12: end for
13: until convergence
14: return Θ
15: end procedure

Fig. 3. MR-BPR++ algorithm with learning rate μ, probability threshold β and L2
regularization λΘ [13].

scores of the observed edges away from the unobserved ones while maintaining
the learned rankings between the weighted observed edges.

In our experiments, we applied both learning protocols on the MR-BPR
model for performance comparison and we used the basic FriendTNS similarity
as weighting function for all implicit relations where the participating nodes have
the same type. In each learning epoch during the training phase, the number
of sampling steps for D++

R and DR is equal to the number of observed edges
ObsEdgesR in R, similar to the original BPR [15] and MR-BPR [8] models. The
generalized algorithms for training the Two-Stage-MR-BPR and MR-BPR++
are described in Figs. 2 and 3.

In the experiments section, we compared the two models against each other
and the original MR-BPR model. The results showed that the proposed two-
stage model provides better accuracy for multi-relational settings where we have
multiple sparse relations without timestamps or frequency of interactions that
can be used to weight relations.

Table 1. Datasets statistics [13].

Type Nodes Labels Edges Features Sparsity

BlogCatalog Undirected 10312 39 667966 − 99.37%

PPI Undirected 3890 50 76584 − 99.49%

Wiki Directed 2405 19 17981 − 99.68%

Cora Directed 2708 7 5429 1433 99.92%
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5 Experiments

5.1 Datasets

We applied the Two-Stage MR-BPR and MR-BPR++ on four network classi-
fication datasets from four different domains. The first three datasets contain
two relations while the fourth dataset is a citation network where nodes have an
embedded feature vector that can be considered as third relations.

• BlogCatalog [25]: This dataset represents a large social network from the
BlogCatalog website. It has two relations, a target relation which represents
the relation between groups and users, and an auxiliary relation representing
the friendship between users.

• Wiki [23]: This dataset represents a network of Wikipedia web pages. It also
has two relations, a target relation which represents the categories of the web
pages, and an auxiliary relation that represents links between the web pages.

• Protein-Protein Interactions (PPI) [3]: This dataset is a network of protein-
protein interactions for homo sapiens. It has two relations, a target one which
represents the relation between protein-labels and proteins, and an auxiliary
relation that represents the interactions between proteins and other proteins.
This dataset was used to check how well our proposed model performs in
non-web-based domains.

• Cora [16]: This dataset represents a citation network where each document has
1433 binary feature vector representing words occurrence. This dataset can
be considered as having three relations, a target relation which represents the
class label of a document, an auxiliary relation that represents citation links
between documents and a final auxiliary relation that represents a relation
between a document and words that exist in this document.

Table 1 shows the detailed statistics of the datasets.

5.2 Baselines

• MR-BPR [8]: The original MR-BPR model that utilizes implicit auxiliary
relations for ranking node labels. This model does not utilize transitive node
similarities.

• DeepWalk [12]: One of the well-known models for multi-label network classi-
fication. This model learns node latent representations by utilizing uniform
random walks in the network.

• Node2Vec [5]: This is one of the state-of-art models for multi-label network
classification and can be seen as a generalized version of DeepWalk with two
guiding parameters p and q for the random walks.

• GCN [22]: This model is one of the state-of-art models for document clas-
sification in citation networks. It relies on multi-layered graph convolutional
neural network for learning network representation with text features.

• TADW [24]: This model is also one of the state-of-art models for document
classification in citation networks. It is an extended version of the original
Deep Walk model for learning network representation with text features.
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On Cora dataset, our proposed model was compared only against GCN and
TADW because they require nodes with embedded textual features which is
missing in the first three datasets. On the other hand DeepWalk and Node2Vec
where not used on Cora dataset because they can’t represent nodes with embed-
ded features.

Table 2. Mutli-lable classification results on BlogCatalog dataset [13].

%Lable nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1(%) DeepWalk 33.71 36.67 38.22 39.20 39.37 40.01 40.64 41.04 41.11

Node2Vec 33.72 36.91 38.33 39.42 39.98 40.52 40.75 41.82 42.16

MR-BPR 36.16 37.75 39.24 40.07 40.68 40.29 40.39 41.24 40.64

MR-BPR++ 35.47 38.00 39.49 40.22 40.84 40.83 40.99 41.92 41.14

Two-Stage-

MR-BPR

37.27** 39.30** 40.49** 41.52* 42.22** 41.76** 42.03** 42.83** 42.51*

Macro-F1(%) DeepWalk 18.19 22.18 23.61 24.63 25.32 26.24 27.20 27.21 27.84

Node2Vec 19.24 23.13 24.70 25.64 26.80 27.81 27.80 28.75 29.15

MR-BPR 22.21 24.74 26.20 27.59 27.95 28.26 28.49 29.33 29.13

MR-BPR++ 22.03 25.21 26.55 27.89 28.19 28.65 29.12 29.53 29.62

Two-Stage-

MR-BPR

23.18** 25.66** 26.91** 28.16** 28.69** 28.76 29.54** 29.85 30.55*

Significantly outperforms MR-BPR at the: **0.01 and *0.05 levels.

Table 3. Mutli-lable classification results on PPI dataset [13].

%Lable nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1(%) DeepWalk 15.89 17.77 18.68 19.39 20.85 21.75 22.35 22.70 24.11

Node2Vec 15.09 16.89 17.52 19.00 20.38 21.43 22.02 22.25 22.65

MR-BPR 17.11 19.68 20.87 21.87 22.61 22.73 23.55 23.08 23.44

MR-BPR++ 16.97 19.46 20.62 21.90 22.46 23.14 23.33 23.28 23.56

Two-Stage-

MR-BPR

18.21**20.45** 21.88**22.63** 23.31**23.70** 24.78**24.48** 25.38**

Macro-F1(%) DeepWalk 12.73 14.20 15.41 17.06 18.50 18.84 18.49 18.49 19.15

Node2Vec 12.17 13.47 14.51 16.72 18.01 18.62 18.89 18.45 18.76

MR-BPR 12.88 15.56 16.83 18.09 18.81 18.98 19.54 19.16 19.48

MR-BPR++ 12.71 15.40 16.58 18.00 18.66 19.37 19.54 19.46 19.66

Two-Stage-

MR-BPR

13.96**16.31** 17.96**18.75** 19.43**19.99** 20.72**20.51** 21.41**

Significantly outperforms MR-BPR at the: **0.01 and *0.05 levels.

5.3 Experimental Protocol and Evaluation

We followed the same experimental protocol in [5,8,12,13]. We used 10-fold
cross-validation experiments on each target relation. These experiments were
applied using different percentages of labeled nodes ranging from 10% to 90%.
In each experiment, we only used the defined percentage of labeled nodes for
training along with all the auxiliary relations, while the remaining percent of
nodes were used for testing. We used Micro-F1 and Macro-F1 measures for per-
formance evaluation on Blog Catalog, PPI and Wiki Dataset, and Accuracy on
Cora Dataset.
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We used the same hyper-parameters that were used in the original baselines’
papers, and grid-search was used to find the best hyper-parameters if none were
mentioned for the target dataset.

5.4 Results

The experimental results on the four datasets are shown in Tables 2, 3, 4, 5,
and Fig. 4. The results shows that Two-Stage-MR-BPR with transitive node
similarity outperformed the original MR-BRP model in all train-splits. In com-
parison with other well-known models for multi-label network classification,
the Two-Stage-MR-BPR model outperformed the state-of-art Node2Vec over
all trains-splits on BlogCatalog, PPI and Wiki datasets. It is worthy to note
that all improvements over Node2Vec are statistically significant with a p-value
less than 0.01 using paired t-test. Two-Stage-MR-BPR also outperformed Deep-
Walk over all trains-splits on BlogCatalog and PPI, while on Wiki, DeepWalk
only achieved better Macro-F1 scores on the 20%, 30%, and 40% trains-splits.
The results also show that Two-Stage-MR-BPR outperformed all other models
in terms of Micro-F1 with 40% less data using the 50% train-split on the Blog-
Catalog dataset. On PPI, It outperformed all other models in terms of Micro-F1
and Macro-F1 with 30% less data using the 60% train-split. On the other hand,
the document classification results on the Cora datasets show that Two-Stage-
MR-BPR outperformed the state-of-art models on 10% and 90% splits, while it
achieves comparable results on the 50% train-splits.

Table 4. Mutli-lable classification results on Wiki dataset [13].

%Lable nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1(%) DeepWalk 56.04 60.60 63.52 64.13 65.03 65.29 66.73 67.64 66.27

Node2Vec 57.24 60.85 61.40 62.13 62.45 62.08 63.76 63.72 62.61

MR-BPR 58.10 62.71 65.54 66.94 68.66 69.44 70.24 70.79 71.71

MR-BPR++ 59.56 63.26 65.61 67.26 68.56 69.31 69.99 70.48 70.34

Two-Stage-MR-BPR 60.40** 64.42** 66.16 67.99** 69.21 70.01 71.18 71.74 72.84

Macro-F1(%) DeepWalk 44.33 53.55 57.16 57.42 56.21 56.93 58.71 60.50 61.20

Node2Vec 42.95 48.88 51.96 53.34 52.25 50.88 53.25 52.57 55.04

MR-BPR 44.41 49.32 53.23 55.32 57.50 58.88 59.17 59.76 63.99

MR-BPR++ 46.58 50.27 54.01 55.45 57.62 59.57 59.29 59.42 62.79

Two-Stage-MR-BPR 47.35** 51.12** 54.41* 57.20* 58.33 60.21 60.32 61.27 65.16

Significantly outperforms MR-BPR at the: **0.01 and *0.05 levels.

In comparison with Two-Stage-MR-BPR, MR-BRP++ also outperformed
MR-BRP on BlogCatalog over most of the train splits, but it had minimal per-
formance gains in some train-splits on PPI, Wiki and Cora. These results demon-
strate the importance of using transitive node similarity to weight implicit rela-
tions, and they show that using two sequential non-overlapping stages to train
the BPR loss is better than randomly alternating between ranking observed
edges and distinguishing them from unobserved edges.
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Fig. 4. Evaluation of the Two-Stage-MR-BPR model against other baseline models.
The x axis denotes the percent of labeled nodes used in the training phase, while the
y axis denotes the Micro-F1 and Macro-F1 scores [13].

Table 5. Document classification results on Cora dataset [13].

%Lable Nodes 10% 50% 90%

Accuracy(%) GCN 78.37 86.53 86.39

TADW 75.24 85.99 85.60

MR-BPR 75.03 78.76 81.66

MR-BPR++ 76.24 78.10 81.10

Two-Stage-MR-BPR 79.30** 84.20 86.86

Significantly outperforms GCN at the: **0.01 and *0.05 levels.

5.5 Parameters Sensitivity

In this section, we study the sensitivity of the Two-Stage-MR-BPR regularization
parameters. To do so we compared their different values using the 10% data
split with the best found number of dimensions on BlogCatalog, Wiki and PPI
datasets. We used weights of [0.1, 0.05, 0.02, 0.0125, 0.01, 0.005] for the node’s
regularization parameter λ1 and weights of [0.01, 0.005, 0.001, 0.0005, 0.0001]
for the regularization parameter of labels λ2.
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Results in Fig. 5 show that the node’s regularization parameter λ1 is more
sensitive than the regularization parameter of labels λ2 across all three datasets
and no significant correlation is observed between the two values. Results also
show a similar smooth pattern in all three datasets which indicate that it is
easy to find the best hyper-parameter configuration for the Two-Stage-MR-BPR
across different datasets.

(a) Blog Catalog Micro F1 (b) Blog Catalog Macro F1

(c) PPI Micro F1 (d) PPI Macro F1

(e) Wiki Micro F1 (f) Wiki Macro F1

Fig. 5. Sensitivity analysis on the regularization parameters of nodes (λ1) and labels
(λ2).



114 A. Rashed et al.

5.6 Comparison Between Different Weighting Functions

In this section, we compare the effect of different weighting functions on the
accuracy of the Two-Stage-MR-BPR model, specifically the FriendTNS [18],
Adamic/Adar [1], Jaccard index [6] and the number of common neighbors. To
do so we applied each weighting function separately using the best-found Two-
Stage-MR-BPR configuration on BlogCatalog, Wiki and PPI datasets using the
10% data split.

Results in Fig. 6 show that the FriendTNS has the highest positive effect on
the accuracy across all datasets and it is followed by the Jaccard index. These
results also prove that weighting the implicit relation has a diverse effect on
the multi-relational classification task and a careful selection is required for the
weighting function.
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Fig. 6. Comparison between different weighting functions and their impact on Two-
Stage-MR-BPR performance.

5.7 Reproducibility of the Experiments

For each model we used the following hyper-parameters during in experiments
similar to the original paper [13].
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• MR-BPR: The hyper-parameters are k = 500, μ = 0.02, λuser = 0.0125,
λitem = 0.0005, 300 iterations and α = 0.5 for BlogCatalog; k = 500, μ =
0.01, λprotein = 0.0125, λlabel = 0.0005, 400 iterations and α = 0.5 for PPI;
k = 600, μ = 0.02, λpage = 0.0125, λlabel = 0.0005, 1000 iterations and
α = 0.5 for Wiki; and k = 900, μ = 0.03, λdocument = 0.005, λlabel = 0.0001,
λwords = 0.0001, 1400 iterations and α = 0.33 for Cora.

• MR-BPR++: The hyper-parameters are β = 0.75, k = 500, μ = 0.02, λuser =
0.0125, λitem = 0.0005, 300 iterations and α = 0.5 for BlogCatalog; β = 0.75,
k = 500, μ = 0.01, λprotein = 0.0125, λlabel = 0.0005, 400 iterations and α =
0.5 for PPI; β = 0.75, k = 600, μ = 0.02, λpage = 0.0125, λlabel = 0.0005, 1000
iterations and α = 0.5 for Wiki; and k = 900, μ = 0.03, λdocument = 0.005,
λlabel = 0.0001, λwords = 0.0001, 1400 iterations and α = 0.33 for Cora.

• Two-Stage-MR-BPR: We used the same hyper-parameters of MR-BPR
• DeepWalk: The hyper-parameters are d = 128, r = 10, l = 80 and k = 10 for

all datasets.
• Node2Vec: The hyper-parameters are d = 128, r = 10, l = 80, k = 10,

p = 0.25 and q = 0.25 for BlogCatalog; d = 128, r = 10, l = 80, k = 10, p = 4
and q = 1 for PPI and Wiki.

• GCN: We used the same hyper-parameters from the original paper. Dropout
rate = 0.5, L2 regularization = 5.10−4 and 16 (number of hidden units)

• TADW: We used the same default hyper-parameters from the original papers
which are k = 80 and λ = 0.2.

6 Conclusions

In this paper, we extended the original Two-Stage-MR-BPR paper by utilizing
and comparing four different similarity weighting functions for the implicit feed-
back relations. The weighting functions are utilized by the Two-Stage-MR-BPR
model to convert all implicit relation edges into weighted ones which allow the
model to learn edge rankings based on their approximated weights. Experiments
on well-known four real-world datasets showed that selecting the right weighting
function is crucial for improving the classification accuracy. Results also show
that with the basic transitive node similarity as a weighting function, Two-Stage-
MR-BPR outperformed the original MR-BPR and other state-of-art models in
the task of multi-label network classification and document classification. [14].
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Abstract. This paper gives an overview of conflict reasoning in gener-
alizations of multi-agent path finding (MAPF). MAPF and derived vari-
ants assume items placed in vertices of an undirected graph with at most
one item per vertex. Items can be relocated across edges while various
constraints depending on the concrete type of relocation problem must
be satisfied. We recall a general problem formulation that encompasses
known types of item relocation problems such as multi-agent path find-
ing (MAPF), token swapping (TSWAP), token rotation (TROT), and
token permutation (TPERM). We then focused on three existing opti-
mal algorithms for MAPF: search-based CBS, and propositional satisfi-
ability (SAT) - based MDD-SAT and SMT-CBS. These algorithms were
modified to tackle various types of conflicts. The major contribution of
this paper is a thorough experimental evaluation of CBS, MDD-SAT,
and SMT-CBS on various types of relocation problems.

Keywords: Conflicts · MAPF · Token swapping · Token rotation ·
Token permutation · SMT · SAT

1 Introduction

Item relocation problems in graphs such as token swapping (TSWAP) [7,13],
multi-agent path finding (MAPF) [22,28,53], or pebble motion on graphs (PMG)
[15,47] represent important combinatorial problems in artificial intelligence with
specific applications in coordination of multiple robots and other areas such as
quantum circuit compilation [8]. Graphs in item relocation problems may be
directly derived from the physical environment where items move but can be
also represented by abstract spaces like configuration spaces in robotics [52].

Distinguishable items placed in vertices of an undirected graph such that at
most one item is placed in each vertex. Items can be moved across edges while
problem specific rules must be observed. For example, PMG and MAPF usually
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assume that items (pebbles/agents) are moved to unoccupied neighbors only.
TSWAP on the other hand permits only swaps of pairs of tokens along edges
while more complex movements involving more than two tokens are forbidden.
The task in item relocation problems is to reach a given goal configuration from
a given starting configuration.

We focus here on the optimal solving of item relocation problems with respect
to common objectives. Two cumulative objective functions are used in MAPF
and TSWAP - sum-of-costs [19,25] and makespan [35,55]. The sum-of-costs cor-
responds to the total cost of all movements performed. The makespan corre-
sponds to the total number of time-steps until the goal is reached. We trying to
minimize the objective in both cases.

Many practical problems from robotics involving multiple robots can be inter-
preted as an item relocation problems. Examples include discrete multi-robot
navigation and coordination [18], item rearrangement in automated warehouses
[4], ship collision avoidance [14], or formation maintenance and maneuvering
of aerial vehicles [57]. Examples not only include problems concerning physical
items but problems occurring in virtual spaces of simulations [12], computer
games [45], or quantum systems [8].

The contribution of this paper consists in an experimental evaluation of a
general framework for defining and solving item relocation problems based on
satisfiability modulo theories (SMT) [6,40] and conflict-based search (CBS) [24].

The framework has been used to define two problems derived from TSWAP:
token rotation (TROT) and token permutation (TPERM) where instead of swap-
ping pairs of tokens, rotations along non-trivial cycles and arbitrary permuta-
tions of tokens respectively are permitted. We show how to modify existing
algorithms for various variants of item relocation problems. We will adapt the
standard conflict-based search (CBS) but also propositional satisfiability (SAT)
- based MDD-SAT [42] and recent SMT-based SMT-CBS [40].

This work originally appeared as a conference paper [41]. In this revised
version we provide more thorough experimental study of concepts presented
in the original conference paper. We first introduce TSWAP and MAPF. Then
prerequisites for conflict handling formulated in the SMT framework are recalled.
On top of this, the combination of CBS and MDD-SAT is developed - the SMT-
CBS algorithm. Finally, a thorough experimental evaluation of CBS, MDD-SAT,
and SMT-CBS on various benchmarks including both small and large instances
is presented.

2 Background

Multi-agent path finding (MAPF) problem [23,27] consists of an undirected graph
G = (V,E) and a set of agents A = {a1, a2, ..., ak} such that |A| < |V |. Each
agent is placed in a vertex so that at most one agent resides in each vertex. The
placement of agents is denoted α : A → V . Next we are given nitial configuration
of agents α0 and goal configuration α+.

At each time step an agent can either move to an adjacent location or wait
in its current location. The task is to find a sequence of move/wait actions for
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each agent ai, moving it from α0(ai) to α+(ai) such that agents do not conflict,
i.e., do not occupy the same location at the same time. Typically, an agent can
move into adjacent unoccupied vertex provided no other agent enters the same
target vertex but other rules for movements are used as well.

The following definition formalizes the commonly used move-to-unoccupied
movement rule in MAPF.

Definition 1 Movement in MAPF. Configuration α′ results from α if and
only if the following conditions hold: (i) α(a) = α′(a) or {α(a), α′(a)} ∈ E for
all a ∈ A (agents wait or move along edges); (ii) for all a ∈ A it holds that
if α(a) �= α′(a) ⇒ α′(a) �= α(a′) for all a′ ∈ A (target vertex must be empty);
and (iii) for all a, a′ ∈ A it holds that if a �= a′ ⇒ α′(a) �= α′(a′) (no two agents
enter the same target vertex).

Solving the MAPF instance is to search for a sequence of configurations
[α0, α1, ..., αµ] such that αi+1 results using valid movements from αi for i =
1, 2, ..., μ − 1, and αµ = α+.

In many aspects, a token swapping problem (TSWAP) (also known as sorting
on graphs) [49] is similar to MAPF. It represents a generalization of sorting
problems [44]. While in the classical sorting problem we need to obtain linearly
ordered sequence of elements by swapping any pair of elements, in the TSWAP
problem we are allowed to swap elements at selected pairs of positions only.

Using a modified notation from [50] the TSWAP each vertex in G is assigned
a color in C = {c1, c2, ..., ch} via τ+ : V → C. A token of a color in C is placed in
each vertex. The task is to transform a current token placement into the one such
that colors of tokens and respective vertices of their placement agree. Desirable
token placement can be obtained by swapping tokens on adjacent vertices in G.

We denote by τ : V → C colors of tokens placed in vertices of G. That is,
τ(v) for v ∈ V is a color of a token placed in v. Starting placement of tokens
is denoted as τ0; the goal token placement corresponds to τ+. Transformation
of one placement to another is captured by the concept of adjacency defined as
follows [48,50]:

Definition 2 Adjacency in TSWAP. Token placements τ and τ ′ are said
to be adjacent if there exists a subset of non-adjacent edges F ⊆ E such that
τ(v) = τ ′(u) and τ(u) = τ ′(v) for each {u, v} ∈ F and for all other vertices
w ∈ V \ ⋃

{u,v}∈F {u, v} it holds that τ(w) = τ ′(w).1

The task in TSWAP is to find a swapping sequence of token placements
[τ0, τ1, ..., τm] such that τm = τ+ and τi and τi+1 are adjacent for all i =
0, 1, ...,m − 1. It has been shown that for any initial and goal placement of
tokens τ0 and τ+ respectively there is a swapping sequence transforming τ0 and
τ+ containing O(|V |2) swaps [51]. The proof is based on swapping tokens on
a spanning tree of G. Let us note that the above bound is tight as there are

1 The presented version of adjacency is sometimes called parallel while a term adja-
cency is reserved for the case with |F | = 1.
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instances consuming Ω(|V |2) swaps. It is also known that finding a swapping
sequence that has as few swaps as possible is an NP-hard problem.

If each token has a different color we do not distinguish between tokens and
their colors ci; that is, we will refer to a token ci.

3 Related Work

Although many works sudying TSWAP from the theoretical point of view exist
[7,19,51] practical solving of the problem started only lately. In [39] optimal solv-
ing of TSWAP by adapted algorithms from MAPF has been suggested. Namely
conflict-based search (CBS) [24,26] and propositional satisfiability-based (SAT)
[5] MDD-SAT [42,43] originally developed for MAPF have been modified for
TSWAP.

3.1 Search for Optimal Solutions

We will commonly use the sum-of-costs objective funtion in all problems studied
in this paper. The following definition introduces the sum-of-costs objective in
MAPF.

Definition 3. Sum-of-costs (denoted ξ) is the summation, over all agents, of
the number of time steps required to reach the goal vertex [10,24,25,28]. For-
mally, ξ =

∑k
i=1 ξ(path(ai)), where ξ(path(ai)) is an individual path cost of

agent ai connecting α0(ai) calculated as the number of edge traversals and wait
actions.2

Observe that in the sum-of-costs we accumulate the cost of wait actions for
items not yet reaching their goal vertices. Also observe that one swap in the
TSWAP problem yields the cost of 2 as two tokens traverses single edge.

A feasible solution of a solvable MAPF instance can be found in polynomial
time [15,47]; precisely the worst case time complexity of most practical algo-
rithms for finding feasible solutions is O(|V |3) (asymptotic size of the solution
is also O(|V |3)) [16,17,31,32,37,46]. This is also asymptotically best possible
as there are MAPF instances requiring Ω(|V |2) moves. As with TSWAP, find-
ing optimal MAPF solutions with respect to various cummulative objectives is
NP-hard [21,33,54].

3.2 Conflict-Based Search

CBS uses the idea of resolving conflicts lazily; that is, a solution is searched
against an incomplete set of movement constraints hoping a valid solution can
be found before all constraints are added.

2 The notation path(ai) refers to path in the form of a seqeunce of vertices and edges
connecting α0(ai) and α+(ai) while ξ assigns the cost to a given path.



122 P. Surynek

The high level of CBS searches a constraint tree (CT) using a priority queue
in breadth first manner. CT is a binary tree where each node N contains a set of
collision avoidance constraints N.constraints - a set of triples (ai, v, t) forbidding
occurrence of agent ai in vertex v at time step t, a solution N.paths - a set of k
paths for individual agents, and the total cost N.ξ of the current solution.

The low level process in CBS associated with node N searches paths for
individual agents with respect to set of constraints N.constraints. For a given
agent ai, this is a standard single source shortest path search from α0(ai) to
α+(ai) that avoids a set of vertices {v ∈ V |(ai, v, t) ∈ N.constraints} whenever
working at time step t. For details see [24].

Algorithm 1. Basic CBS algorithm for MAPF solving [41].

1 CBS (G = (V, E), A, α0, α+)
2 R.constraints ← ∅
3 R.paths ← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
4 R.ξ ← ∑k

i=1 ξ(N.paths(ai))
5 insert R into Open
6 while Open �= ∅ do
7 N ← min(Open)
8 remove-Min(Open)
9 collisions ← validate(N.paths)

10 if collisions = ∅ then
11 return N.paths

12 let (ai, aj , v, t) ∈ collisions
13 for each a ∈ {ai, aj} do
14 N ′.constraints ← N.constraints ∪ {(a, v, t)}
15 N ′.paths ← N.paths
16 update(a, N ′.paths, N ′.conflicts)

17 N ′.ξ ← ∑k
i=1 ξ(N ′.paths(ai))

18 insert N ′ into Open

CBS stores nodes of CT into priority queue Open sorted according to ascend-
ing costs of solutions. At each step CBS takes node N with lowest cost from Open
and checks if N.paths represents paths that are valid with respect to movements
rules in MAPF. That is, if there are any collisions between agents in N.paths. If
there is no collision, the algorithms returns valid MAPF solution N.paths. Oth-
erwise the search branches by creating a new pair of nodes in CT - successors
of N . Assume that a collision occurred between agents ai and aj in vertex v at
time step t. This collision can be avoided if either agent ai or agent aj does not
reside in v at timestep t. These two options correspond to new successor nodes
of N - N1 and N2 that inherits set of conflicts from N as follows: N1.conflicts =
N.conflicts∪{(ai, v, t)} and N2.conflicts = N.conflicts∪{(aj , v, t)}. N1.paths
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and N1.paths inherit path from N.paths except those for agent ai and aj respec-
tively. Paths for ai and aj are recalculated with respect to extended sets of con-
flicts N1.conflicts and N2.conflicts respectively and new costs for both agents
N1.ξ and N2.ξ are determined. After this N1 and N2 are inserted into the priority
queue Open.

The pseudo-code of CBS is listed as Algorithm 1. One of crucial steps occurs
at line 16 where a new path for colliding agents ai and aj is constructed with
respect to an extended set of conflicts. Notation N.paths(a) refers to the path
of agent a.

3.3 SAT-Based Approach

An alternative approach to optimal MAPF solving is represented by the reduc-
tion of MAPF to propositional satisfiability (SAT) [30,34]. The idea is to con-
struct a propositional formula such F(ξ) such that it is satisfiable if and only if
a solution of a given MAPF of sum-of-costs ξ exists.

Being able to construct such formula F one can obtain optimal MAPF solu-
tion by checking satisfiability of F(0), F(1), F(2),... until the first satisfiable F(ξ)
is met. This is possible due to monotonicity of MAPF solvability with respect to
increasing values of common cummulative objectives such as the sum-of-costs.
The framework of SAT-based solving is shown in pseudo-code in Algorithm2.

Algorithm 2. Framework of SAT-based MAPF solving [41].

1 SAT-Based (G = (V, E), A, α0, α+)
2 paths ← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
3 ξ ← ∑k

i=1 ξ(N.paths(ai))
4 while True do
5 F(ξ) ← encode(ξ, G, A, α0, α+)
6 assignment ← consult-SAT-Solver(F(ξ))
7 if assignment �= UNSAT then
8 paths ← extract-Solution(assignment)
9 return paths

10 ξ ← ξ + 1

The advantage of the SAT-based approach is that state-of-the-art SAT solvers
can be used for determinig satisfiability of F(ξ) [1].

Construction of F(ξ) relies on time expansion of underlying graph G [38].
Having ξ, the basic variant of time expansion determines the maximum number
of time steps μ (also refered to as a makespan) such that every possible solution
of the given MAPF with the sum-of-costs less than or equal to ξ fits within
μ timestep (that is, no agent is outside its goal vertex after μ timestep if the
sum-of-costs ξ is not to be exceeded).
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Time expansion itself makes copies of vertices V for each timestep t =
0, 1, 2, ..., μ. That is, we have vertices vt for each v ∈ V time step t. Edges from
G are converted to directed edges interconnecting timesteps in time expansion.
Directed edges (ut, vt+1) are introduced for t = 1, 2, ..., μ − 1 whenever there is
{u, v} ∈ E. Wait actions are modeled by introducing edges (ut, tt+1). A directed
path in time expansion corresponds to trajectory of an agent in time. Hence
the modeling task now consists in construction of a formula in which satisfying
assignments correspond to directed paths from α0

0(ai) to αµ
+(ai).

Assume that we have time expansion TEGi = (Vi, Ei) for agent ai. Propo-
sitional variable X t

v(aj) is introduced for every vertex vt in Vi. The semantics
of X t

v(ai) is that it is True if and only if agent ai resides in v at time step t.
Similarly we introduce Eu, vt(ai) for every directed edge (ut, vt+1) in Ei. Anal-
ogously the meaning of Et

u,v(ai) is that is True if and only if agent ai traverses
edge {u, v} between time steps t and t + 1.

Finally constraints are added so that truth assignment are restricted to those
that correspond to valid solutions of a given MAPF. The detailed list of con-
straints is given in [42]. We here just illustrate the modeling by showing few
representative constraints. For example there is a constraint stating that if agent
ai appears in vertex u at time step t then it has to leave through exactly one
edge (ut, vt+1). This can be established by following constraints [41]:

X t
u(ai) ⇒

∨

(ut,vt+1)∈Ei

Et
u,v(ai), (1)

∑

vt+1|(ut,vt+1)∈Ei

Et
u,v(ai) ≤ 1 (2)

Similarly, the target vertex of any movement except wait action must be
empty. This is ensured by the following constraint for every (ut, vt+1) ∈ Ei [41]:

Et
u,v(ai) ⇒

∧

aj∈A∧aj �=ai∧vt∈Vj

¬X t
v(aj) (3)

Other constraints ensure that truth assignments to variables per individual
agents form paths. That is if agent ai enters an edge it must leave the edge at
the next time step [41]:

Et
u,v(ai) ⇒ X t

v(ai) ∧ X t+1
v (ai) (4)

Agents do not collide with each other; the following constraint is introduced
for every v ∈ V and timestep t [41]:

∑

i=1,2,...,k|vt∈Vi

X t
v(ai) (5)

A common measure how to reduce the number of decision variables derived
from the time expansion is the use of multi-value decision diagrams (MDDs) [25].
The basic observation that holds for MAPF and other item relocation problems
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is that a token/agent can reach vertices in the distance d (distance of a vertex
is measured as the length of the shortest path) from the current position of the
agent/token no earlier than in the d-th time step.

Above observations can be utilized when making the time expansion of G.
For a given agent or token, we do not need to consider all vertices at time step
t but only those that are reachable in t timesteps from the initial position and
that ensure that the goal can be reached in the remaining σ − t timesteps.

The combination of SAT-based approach and MDD time expansion led to the
MDD-SAT algorithm described in [42] that currently represent state-of-the-art
in SAT-based MAPF solving.

4 Generalizations of Item Relocation

We define two problems derived from MAPF and TSWAP: token rotation
(TROT) and token permutation (TPERM)3.

4.1 Token Rotation and Token Permutation

A swap of pair of tokens can be interpreted as a rotation along a trivial cycle con-
sisting of single edge. We can generalize this towards longer cycles. The TROT
problem permits rotations along longer cycles but forbids trivial cycles; that is,
rotations along triples, quadruples, ... of vertices is allowed but swap along edges
are forbidden.

Definition 4 Adjacency in TROT. Token placements τ and τ ′ are said to be
adjacent in TROT if there exists a subset of edges F ⊆ E such that components
C1, C2, ..., Cp of induced sub-graph G[F ] satisfy following conditions:

(i) Cj = (V C
j , EC

j ) such that V C
j = wj

1, w
j
2, ..., w

j
nj

with nj ≤ 3 and
EC

j = {{wj
1, w

j
2}; {wj

2, w
j
3}; ...; {wj

nj
, wj

1}}
(components are cycles of length at least 3)

(ii) τ(wj
1) = τ ′(wj

2), τ(wj
3) = τ ′(wj

3), ..., τ(wj
nj

) = τ ′(wj
1)

(colors are rotated in the cycle one position forward/backward)

The rest of the definition of a TROT instance is analogous to TSWAP.
Similarly we can define TPERM by permitting all lengths of cycles. The

formal definition of adjacency in TPERM is almost the same as in TROT except
relaxing the constraint on cycle lenght, nj ≤ 2.as

We omit here complexity considerations for TROT and TPERM for the sake
of brevity. Again it holds that a feasible solution can be found in polynomial
time but the optimal cases remain intractable in general.

3 These problems have been considered in the literature in different contexts already
(for example in [56]). But not from the practical solving perspective focused on
finding optimal solutions.
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Both approaches - SAT-based MDD-SAT as well as CBS - can be adapted for
solving TROT and TPERM without modifying their top level design. Only local
modification of how movement rules of each problem are reflected in algorithms
is necessary. In case of CBS, we need to define what does it mean a conflict
in TROT and TPERM. In MDD-SAT different movement constraints can be
encoded directly.

Motivation for studying these item relocation problems is the same as for
MAPF. In many real-life scenarios it happens that items or agents enters posi-
tions being simultaneously vacated by other items (for example mobile robots
often). This is exactly the property captured formally in above definitions.

4.2 Adapting CBS and MDD-SAT

Both CBS and MDD-SAT can be modified for optimal solving of TSWAP,
TROT, and TPERM (with respect to sum-of-costs but other cumulative objec-
tives are possible as well). Different movement rules can be reflected in CBS and
MDD-SAT algorithms without modifying their high level framework.

Different Conflicts in CBS. In CBS, we need to modify the understanding
of conflict between agents/tokens. In contrast to the original CBS we need to
introduce edge conflicts to be able to handle conflicts properly in TSWAP and
TROT.

Edge conflicts have been introduced to tackle conflicting situations in
TSWAP and TROT properly within CBS and SMT-CBS. An edge conflict is
triple (ci, (u, v), t) with ci ∈ C, u, v ∈ V and timestep t. The interpretation
of (ci, (u, v), t) is that token ci cannot move across {u, v} from u to v between
timesteps t and t + 1.

Conflict reasoning in individual item relocation problems follows.

TPERM: The easiest case is TPERM as it is least restrictive. We merely forbid
simultaneous occurrence of multiple tokens in a vertex - this situation is under-
stood as a collision in TPERM and conflicts are derived from it. If a collision
(ci, cj , v, t) between tokens ci and cj occurs in v at time step t then we introduce
conflicts (ci, v, t) and (cj , v, t) for ci and cj respectively.4

TSWAP: This problem takes conflicts from TPERM but adds new conflicts
that arise from doing something else than swapping [39]. Each time edge {u, v}
is being traversed by token ci between time steps t and t+1, a token residing in
v at time step t, that is τt(v), must go in the opposite direction from v to u. If
this is not the case, then a so called edge collision involving edge {u, v} occurs
and corresponding edge conflicts (ci, (u, v), t) and (τt(v), (v, u), t) are introduced
for agents ci and τt(v) respectively.

4 Formally this is the same as in MAPF, but in addition to this MAPF checks vacancy
of the target vertex which may cause more colliding situations.
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Edge conflicts must be treated at the low level of CBS. Hence in addition
to forbidden vertices at given time-steps we have forbidden edges between given
time-steps.

TROT: The treatment of conflicts will be complementary to TSWAP in TROT.
Each time edge {u, v} is being traversed by token ci between time steps t and t+1,
a token residing in v at time step t, that is τt(v), must go anywhere else but not
to u. If this is not the case, then we again have edge collision (ci, τt(v),{u,v}, t)
which is treated in the same way as above.

Encoding Changes in MDD-SAT. In MDD-SAT, we need to modify encod-
ing of movement rules in the propositional formula F(ξ). Again, proofs of sound-
ness of the following changes are omitted.

TPERM: This is the easiest case for MDD-SAT too. We merely remove all
constrains requiring tokens to move into vacant vertices only. That is we remove
clauses (3).

TSWAP: It inherits changes from TPERM but in addition to that we need
to carry out swaps properly. For this edge variables Et

u,v(ci) will be utilized.
Following constraint will be introduced for every {ut, vt+1} ∈ Ei (intuitively,
if token ci traverses {u, v} some other token cj traverses {u, v} in the opposite
direction) [41]:

Et
u,v(ci) ⇒

∨

j=1,2,...,k|j �=i∧(ut,vt+1)∈Ej

Et
v,u(cj) (6)

TROT: TROT is treated in a complementary way to TSWAP. Instead of adding
constraints (6) we add constraints forbidding simultaneous traversal in the oppo-
site direction as follows [41]:

Et
u,v(ci) ⇒

∧

j=1,2,...,k|j �=i∧(ut,vt+1)∈Ej

¬Et
v,u(cj) (7)

5 Combining the SAT-Based Approach and CBS

A close look at CBS reveals that it works similarly as problem solving in satisfi-
ability modulo theories (SMT) [6,20]. SMT divides satisfiability problem in some
complex theory T into an abstract propositional part that keeps the Boolean
structure of the problem and simplified decision procedure DECIDET that
decides only conjunctive formulae over T . A general T -formula is transformed
to propositional skeleton by replacing atoms with propositional variables. The
SAT-solving procedure then decides what variables should be assigned TRUE
in order to satisfy the skeleton - these variables tells what atoms holds in T .
DECIDET checks if the conjunction of selected (satisfied) atoms is satisfiable.
If so then solution is returned. Otherwise a conflict from DECIDET is reported
back and the skeleton is extended with a constraint that eliminates the conflict.
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Following the above observation we rephrased CBS in the SMT manner. The
abstract propositional part working with the skeleton was taken from MDD-
SAT except that only constraints ensuring that assignments form valid paths
interconnecting starting positions with goals will be preserved. Other constraints,
namely those ensuring collision avoidance between items will be omitted initially.
Paths validation procedure will act as DECIDET and will report back a set of
conflicts found in the current solution (here is a difference from the SMT-style
solving that reports only one conflict while here we take all conflicts). We call
the new algorithm SMT-CBS and it is shown in pseudo-code as Algorithm 3 (it
is formulated for MAPF; but is applicable for TSWAP, TPERM, and TROT
after replacing conflict resolution part).

Algorithm 3. SMT-CBS algorithm for solving MAPF [41].

1 SMT-CBS (Σ = (G = (V, E), A, α0, α+))
2 conflicts ← ∅
3 paths ← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
4 ξ ← ∑k

i=1 ξ(paths(ai))
5 while True do
6 (paths, conflicts) ← SMT-CBS-Fixed(conflicts, ξ, Σ)
7 if paths �= UNSAT then
8 return paths

9 ξ ← ξ + 1

10 SMT-CBS-Fixed(conflicts, ξ, Σ)
11 F(ξ)) ← encode-Basic(conflicts, ξ, Σ)
12 while True do
13 assignment ← consult-SAT-Solver(F(ξ))
14 if assignment �= UNSAT then
15 paths ← extract-Solution(assignment)
16 collisions ← validate(paths)
17 if collisions = ∅ then
18 return (paths, conflicts)

19 for each (ai, aj , v, t) ∈ collisions do
20 F(ξ) ← ¬X t

v(ai) ∨ ¬X t
v(aj)

21 conflicts ← conflicts ∪ {[(ai, v, t), (aj , v, t)]}
22 return (UNSAT,conflicts)

The algorithm is divided into two procedures: SMT-CBS representing the
main loop and SMT-CBS-Fixed solving the input MAPF for a fixed cost ξ. The
major difference from the standard CBS is that there is no branching at the
high level. The high level SMT-CBS roughly corresponds to the main loop of
MDD-SAT. The set of conflicts is iteratively collected during entire execution of
the algorithm. Procedure encode from MDD-SAT is replaced with encode-Basic
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that produces encoding that ignores specific movement rules (collisions between
agents) but on the other hand encodes collected conflicts into F(ξ).

The conflict resolution in the standard CBS implemented as high-level
branching is here represented by refinement of F(ξ) with a disjunction (line 20).
Branching is thus deferred into the SAT solver. The advantage of SMT-CBS is
that it builds the formula lazily; that is, it adds constraints on demand after
a conflict occurs. Such approach may save resources as solution may be found
earlier than all constraints are added. In contrast to this, the eager approach of
MDD-SAT first adds all constraints and then solves the complete formula.

6 Experimental Evaluation

To evaluate how different conflicts affect the performance of solving algorithms
we performed an extensive evaluation of all presented algorithms on both stan-
dard synthetic benchmarks [9,25] and large maps from games [29]. A represen-
tative part of results is presented in this section.

Fig. 1. Example of 4-connected grid, star, path, and clique [41].

6.1 Benchmarks and Setup

We implemented the SMT-CBS algorithm in C++ on top of the Glucose 4 SAT
solver [1,2]. The choice of Glucose 4 is given by the fact that it ranks among the
best SAT solvers according to recent SAT solver competitions [3]. The standard
CBS has been re-implemented from scratch since the original implementation
written in Java does support only grids but not general graphs [24] that we need
in our tests.

Regarding MDD-SAT we used an existing implementation in C++ [42]. The
original MDD-SAT has been developed for MAPF but versions applicable on
TSWAP, TROT, and TPERM are implemented in the existing package as well.
All experiments were run on a Ryzen 7 CPU 3.0 Ghz under Kubuntu linux 16
with 16 GB RAM5.

Our experimental evaluation is divided in three parts. The first part of experi-
mental evaluation has been done on diverse instances consisting of small graphs:
random graphs containing 20% of random edges, star graphs, paths, and cliques

5 To enable reproducibility of results presented in this paper we provide complete
source codes and experimental data on author’s web page: http://users.fit.cvut.cz/
surynpav/research/icaart2019revised.

http://users.fit.cvut.cz/surynpav/research/ icaart2019revised
http://users.fit.cvut.cz/surynpav/research/ icaart2019revised
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Fig. 2. Runtime comparison of CBS, MDD-SAT, and SMT-CBS algorithms solving
MAPF, TSWAP, TPERM, and TROT on 8 × 8 grid [41].

(see Fig. 1). The initial and the goal configuration of tokens/agents was set at
random in all tests. The size of the set of vertices of clique, random graph, path,
and star graphs was 16. Small graphs were densely populated with tokes/agents.
Instances containing up to 40 tokens/agents in grids of size 8 × 8 and up to 64
tokens/agents in grids of size 16 × 16 were generated. All generated instances
were solvable but not all of them could be solved under the given timeout.

The second part of experiments has been done on medium-sized graphs -
4-connected open grids of size 8×8 and 16×16. This is the standard benchmark
being used for evaluation of MAPF algorithms [11].

And finally the third part of experimental evaluation took place on large
4-connected maps taken from Dragon Age [24,29] - three maps we used in our
experiments are shown in Fig. 3. These are structurally different maps focusing
on various aspects such as narrow corridors, large almost isolated rooms, or
topologically complex open space. In contrast to small instances, these were only
sparsely populated with items. Initial and goal configuration were generated at
random again.

We varied the number of items in relocation instances to obtain instances of
various difficulties; that is, the underlying graph was not fully occupied - which
in MAPF has natural meaning while in token problems we use one special color
⊥ ∈ C that stands for any empty vertex (that is, we understand v as empty if
and only if τ(v) = ⊥). For each number of items in the relocation instance we
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brc202d den520d ost003d

Fig. 3. Three structurally diverse Dragon-Age maps used in the experimental evalua-
tion. This selection includes: narrow corridors in brc202d, large topologically complex
space in den520d, and open space with large almost isolated rooms in ost003d [41].
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Fig. 4. Comparison of TROT solving by CBS, MDD-SAT, and SMT-CBS on a star
and clique graphs consisting of 16 vertices [41].

Number of generated clauses

|Agents| 4 8 12 16 20

MDD-SAT 556 56 652 1 347 469 3 087 838 2 124 941

SMT-CBS 468 31 973 598 241 1 256 757 803 671

Fig. 5. Comparison of the size of encodings generated by MDD-SAT and SMT-CBS
(number of clauses is shown) on MAPF instances [41].

generated 10 random instances. For example, a clique consisting of 16 vertices
gives 160 instances in total.

The timeout was set to 60 s in the series of tests comparing the performance of
CBS, MDD-SAT, and, SMT-CBS with respect to the growing number of items.
The next series of large scale tests comparing the performance of CBS and
SMT-CBS with respect to the growing difficulty of instances used the timeout
of 1000 s (sorted runtimes are compared). All presented results were obtained
from instances finished under the given timeout.
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Fig. 6. Sorted runtimes of CBS and SMT-CBS solving MAPF on clique, random, and
star graphs consisting of 16 vertices.

6.2 Comparison on Small Graphs

Tests on small graphs were focused on the runtime comparison and the evaluation
of the size of encodings in case of MDD-SAT and SMT-CBS. Part of results we
obtained is presented in Figs. 2, 4, and 5. The mean runtime out of 10 random
instances is reported per each number of items. Surprisingly we can see in Fig. 4
that instances are relatively hard even for small graphs. For CBS the runtime
quickly grows with the increasing number of items. The runtime growth is slower
in case of MDD-SAT and SMT-CBS but even these algorithms are not fast
enough to solve all instances under the given timeout (only instances with up to
11 items were solved).

In all tests CBS turned out to be uncompetitive against MDD-SAT and SMT-
CBS on instances containing more agents. This is an expectable result as it is
known that performance of CBS degrades quickly on densely occupied instances
[43].

If we focus on the number of clauses generated by SAT-based solvers MDD-
SAT and SMT-CBS we can see that MAPF, TSWAP and TROT have more
clauses in their eagerly-generated encodings by MDD-SAT than TPERM hence
SMT-CBS has greater room for reducing the size of the encoding by constructing
it lazily in these types of relocation problems.

Experiments indicate that using SMT-CBS generally leads to reduction of
the size of encoding to less than half of the original size generated by MDD-SAT
in case of MAPF, TSWAP, and TROT. Results concerning this claim for MAPF
are shown in Fig. 5. The number of clauses for 4-connected grids are analyzed in
the next section.

In the rest of runtime experiments that are focused on large scale evaluation
we omitted MDD-SAT.

Figures 6, 7, 8, and 9 show sorted runtimes of CBS and SMT-CBS solving
MAPF, TSWAP, TROT, and TPERM on all types of small graphs: clique, path,
random graph, a star all consisting of 16 vertices (some combinations were not
applicable: MAPF is typically unsolvable on path; TROT is trivial on clique but
unsolvable on path; and TPERM is also trivial on clique).
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The general trend is that CBS clearly dominates in easier instances but its
performance degrades faster as instances gets harder where SMT-CBS tends to
dominate. Eventually SMT-CBS solved more out of 160 instances per test than
CBS under the given timeout of 1000 s.

Some cases are particularly interesting as they point to the role of the struc-
ture of the underlying graph in the difficulty of instance. CBS significantly out-
performs SMT-CBS on easy instances over cliques (and generally highly con-
nected graphs). Instances over paths seem to yield biggest difference in perfor-
mance of CBS and SMT-CBS, CBS looses very quickly here.

Interesting results can be seen on star graphs. The growth of the runtime
across sorted instances looks step-wise here (especially in TPERM - Fig. 9). The
interpretation is that adding an item into the graph causes sharp increase in the
runtime (a step consists of 10 instances of roughly similar difficulty).
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Fig. 7. Sorted runtimes of CBS and SMT-CBS solving TSWAP on clique, path, random,
and star graphs consisting of 16 vertices.

SMT-CBS turned out to be fastest in performed tests on small graphs. SMT-
CBS reduces the runtime by about 30% to 50% relatively to MDD-SAT. More
significant benefit of SMT-CBS was observed in MAPF and TSWAP while in
TROT and TPERM the improvement was less significant.
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6.3 Comparison on 4-Connected Grids

Solving of all types of relocation problems on girds - the 8 × 8 grid and the
16× 16 grid - is shown in Figs. 10 and 11. A different pattern can be observed in
these results, SMT-CBS dominates across all difficulties of instances over CBS.

The 8 × 8 grid contained up to 40 items, so having 10 random instances
per number of agents, we had 400 instances in total, but only about 300 were
solvable under 1000 s in the case of TPERM problem using SMT-CBS. In the
16 × 16 grid we had up to 64 items yielding to 640 instances in total. Almost all
were solvable in the case of TPERM by SMT-CBS.

On the 16 × 16 grid the dominance of SMT-CBS seems to be pronounced.
The general observation from this trend is that the difficulty on instances for
CBS grows faster with every new item on larger maps than in smaller maps
(disregarding the region where the performance of CBS and SMT-CBS is roughly
the same). This observation complements results for large maps where we will
see even bigger difference in difficulty growth.

In addition to runtime experiments we measured the number of generated
clauses for instances on the 8×8 grid and the 16×16 grid. Results are presented
in Figs. 12 and 13.
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Fig. 8. Sorted runtimes of CBS and SMT-CBS solving TROT on random and star
graphs consisting of 16 vertices.
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Fig. 9. Sorted runtimes of CBS and SMT-CBS solving TPERM on random and star
graphs consisting of 16 vertices.
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We can observe that there is a small difference in the number of generated
clauses between MDD-SAT and SMT-CBS on the TPERM problem. This can be
attributed to the fact that TPERM is the least constrained version of relocation
problems hence conflicts here arise less frequently and are simpler to express
than in other more constrained versions. In other words, an encoding forbidding
no conflict is of similar size as that eagerly forbidding all conflicts.

In MAPF, TSWAP, and TROT we can observe on both the 8 × 8 grid and
the 16 × 16 grid that the difference in the size of eagerly generated encoding
and lazily generated encoding grows in instances containing more agents. The
reduction to about half of the size of the encoding generated by MDD-SAT can
be achieved by SMT-CBS in sparsely occupied instances. But the difference is
up to the factor of 10 in densely occupied instances.

6.4 Evaluation on Large Maps

The final category of tests was focused on the performance of CBS and SMT-
CBS on large maps (experimenting with MDD-SAT was omitted here). In the
three structurally different maps, up to 64 items were placed randomly. Again
we had 10 random instances per each number of items.
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Fig. 10. Sorted runtimes of CBS and SMT-CBS solving MAPF, TSWAP, TPERM,
and TROT on the 8 × 8 grid [41].
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Fig. 11. Sorted runtimes of CBS and SMT-CBS solving MAPF, TSWAP, TPERM,
and TROT on the 16 × 16 grid.
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Fig. 12. The number of clauses generated by MDD-SAT and SMT-CBS when solving
MAPF, TSWAP, TPERM, and TROT on the 8 × 8 grid.
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Fig. 13. The number of clauses generated by MDD-SAT and SMT-CBS when solving
MAPF, TSWAP, TPERM, and TROT on the 16 × 16 grid.

Sorted runtimes are reported for each individual map and each version of
relocation problem in Figs. 14, 15, 16, and 17. Somewhat different picture can
be seen here in comparison with experiments on small graphs. We attribute the
different picture to the fact that we observe the problem in a different scale.

CBS shows its advantage over SMT-CBS across large set of easier instances
where these correspond to instances containing fewer items. Eventually however
SMT-CBS wins since the runtime of SMT-CBS goes quickly up when instances
get more difficult. This is quite expectable from the theoretical properties of
CBS and SMT-CBS. In instances with few items, CBS mostly searches for sin-
gle source shortest paths while not needing to handle conflicts frequently. This is
easier than building a SAT instance for the same problem. The situation changes
when CBS must handle frequent conflicts between items in more densely occu-
pied instances. Here viewing the problem as SAT and handling many conflicts
in SAT as done by SMT-CBS seems to be more efficient than handling conflicts
via branching the search at the high level in CBS.

MAPF and TSWAP are relatively more constrained than TROT and
TPERM while TPERM is the least constrained version of item relocation. This
property is clearly reflected in the line with the above observation in experiments.
We can see that in less constrained cases CBS performs better than SMT-CBS
for larger set of instances. Especially it is observable in TROT and TPERM
solving on the brc202d map.
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Fig. 14. Sorted runtimes of CBS and SMT-CBS solving MAPF on ost003d, brc202d,
and den520d maps.
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Fig. 15. Sorted runtimes of CBS and SMT-CBS solving TSWAP on ost003d, brc202d,
and den520d maps.
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Fig. 16. Sorted runtimes of CBS and SMT-CBS solving TROT on ost003d, brc202d,
and 2den520d maps.

The overall analysis of runtimes can be summarized into the observation
that whenever CBS has a chance to search for a long conflict free path it can
outperform SMT-CBS. On the other hand if conflict handling due to intensive
interaction among items prevails then SMT-CBS tends to dominate.
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Fig. 17. Sorted runtimes of CBS and SMT-CBS solving TPERM on ost003d, brc202d,
and den520d maps.

7 Conclusions

This paper summarizes a general framework for reasoning about conflicts in
item relocation problems in graphs based on concepts from the CBS algorithm.
Different types of conflicts in four versions of relocation problems derived from
multi-agent path finding (MAPF) are studied. In addition to two well studied
problems MAPF and TSWAP, we also cover two derived variants TROT and
TPERM. We presented thorough experimental evaluation of conflict handling in
CBS, MDD-SAT and novel algorithm SMT-CBS that combines CBS and SAT-
based reasoning from MDD-SAT. The experimental evaluation has been focused
on runtime comparison as well as on the size of generated SAT encodings.

Experiments with CBS, MDD-SAT, and SMT-CBS showed that SMT-CBS
outperforms both CBS and MDD-SAT on harder instances in all types of graphs.
The most significant benefit of SMT-CBS can be observed on highly constrained
MAPF and TSWAP instances where disjunctive conflict elimination is inten-
sively used. The CBS algorithm on the other hand suffers from steep growth
of the runtime in instances containing more items because it has to eliminate
many conflicts through branching at the high level. This observation can be made
across all individual types of relocation problem. The search for long paths with
few conflicts is, on the other hand, the performance bottleneck of SMT-CBS.
Hence in easier instances CBS is usually the fastest option.

MDD-SAT placed in the middle between CBS and SMT-CBS. The perfor-
mance of MDD-SAT almost copies that of SMT-CBS though it is worse approx-
imately by a factor of 2.0.

For the future work we plan to revise SAT encodings used in SMT-CBS and
perform relevant experiments. Variables Eu, vt(ai) are auxiliary in fact as they
can be derived from X t

v(ai). Hence we plan to make experiments with modified
encodings where Eu, vt(ai) variables will not be used. This attempt is inspired
by the DIRECT encoding [36] that was the first MAPF encoding relying on only
X t

v(ai) variables.
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Abstract. The purpose of this paper is to consider and formalize an
important factor of human intelligence, belief affected by passion, which
we call narrow-minded belief. Based on Public Announcement Logic, we
define our logic, Logic Of Narrow-minded belief (LON), as that which
includes such belief. Semantics for LON is provided by the Kripke-style
semantics, and using this semantics, we formally analyze the mental state
of the hero of Shakespeare’s tragedy Othello as an example of narrow-
minded belief and its formalization. A proof system for it is given by a
Hilbert-style proof system. In addition to that, we provide a complete
labelled sequent calculus for LON based on the Hilbert-style proof sys-
tem, and it syntactic cut elimination theorem is shown.

Keywords: Dynamic epistemic logic · Labelled sequent calculus ·
Doxastic logic · Othello

1 Introduction

Love is blind, and hatred is also blind. To generalize these phrases, we may
say that passion causes narrow-mindedness. It is not unusual that people cannot
emotionally stop believing what they do not want to believe without any specific
reason to believe so. The hero of William Shakespeare’s play, Othello, is involved
in a pitiful but possible situation where he wants to believe his wife’s chastity
but he cannot since he heard a bad rumor about her. It may be difficult to
answer whether or not he believes that his wife is a betrayer of their marriage
given that he has heard this rumor. In this situation, Othello has at least two
different types of belief and/or knowledge. One is passionate or narrow-minded
belief, which he is willing to believe or cannot stop believing emotionally. The
other is belief, which is more rational (less passionate) or, without considering
any philosophical discussions regarding the relationship between knowledge and
belief, it may even be said, is knowledge whereby he judges something based
on information attained via rational inferences. The latter type of knowledge
or belief is treated by a standard epistemic (or doxastic) logic and the current
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researchers would like to introduce the former belief, passionate belief or narrow-
minded belief.

In fact, the notion of passion has a philosophically and psychologically pro-
found meaning in terms of belief, and it is highly possible that such emotional
belief plays a significant role in rationality. In A Treatise of Human Nature,
Hume famously (or even notoriously) wrote the following quotation.

[T]he principle, which opposes our passion, cannot be the same with rea-
son, and is only called so in an improper sense. We speak not strictly and
philosophically when we talk of the combat of passion and of reason. Rea-
son is, and ought only to be the slave of the passions [...]. [13, Book II,
Sec. 3, Part 3].

Here, Hume says not only that passion has the same significance as rationality,
but also that reason is a subordinate of passion. We introduce one more quotation
from modern literature, Damasio’s Descartes’ error, to support the importance
of consideration on the relationship between passion and rationality.

[T]here may be a connecting trail, in anatomical and functional terms, from
reason to feelings to body. It is as if we are possessed by a passion for reason
[...]. Reason, from the practical to the theoretical, is probably constructed
on this inherent drive by a process which resembles the mastering of a
skill or craft. Remove the drive, and you will not acquire the mastery. But
having the drive does not automatically make you a master. [7, Part III,
Chap. 11].

By referring neurological evidence, Damasio argues that feeling (or passion) and
rationality are strongly connected with other, and they cannot be separated as
Descartes thought. The current researchers would like to take a similar stance
to that of Damasio, where passion and rationality (in our term, narrow-minded
belief and knowledge) are related to one another in a formal language of epistemic
logic.

In this paper, we treat such a paradigm of agent communication that each
agent changes his/her belief, after receiving messages from others, to strengthen/
weaken his/her tolerance. Towards this motivation, we present a logic that ade-
quately reflects human minds which tends to be biased by certain kinds of infor-
mation. Additionally, we define a sequent calculus for a logic of narrow-minded
belief and show its syntactic cut-elimination theorem.

The outline of the paper is as follows. In Sect. 2, we introduce logic of narrow-
minded belief (LON) which is based on Public Announcement Logic by Plaza [19]
and refers to the ideas of explicit and implicit belief in dynamic epistemic aware-
ness logic by van Benthem and Velázquez-Quesada [6]. Its semantics are given by
an expansion of the Kripke-style semantics. In Sect. 3, we attempt to investigate
and formalize a person’s belief and emotion through focusing on a literary work,
Othello since this is a story of delicate transition of the hero’s narrow-minded
belief towards his wife. In Sect. 4, we introduce a Hilbert-style proof system HLON
of LON, and show some proof theoretic properties, and its completeness the-
orem. (Theorem 3) through the innermost strategy for reducing a formula for
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LON into a formula without announcement operators. In Sect. 5, we introduce
our labelled sequent system for LON and its cut-elimination theorem by a syn-
tactic procedure (Theorem 5). In Sect. 6, we introduce related epistemic/doxastic
logics to the present work.

We also note that this paper is an extended version of our conference
paper [16]. To be specified, main points of modification are adding Sect. 5 of a
labelled sequent calculus, and modifying LON from single-agent to multi-agent
framework.

2 Language and Semantics of LON

2.1 Language

First of all, we address the syntax of LON. Let P = {p, q, . . .} be a non-empty
set of atomic propositions and A = {a, b, . . .} be a countable set of agents. Then,
formula ϕ of the language L(KaNa��!) is inductively defined as follows (p ∈ P, a ∈
A):

ϕ :: = p | ¬ϕ | (ϕ → ϕ) | Kaϕ | Naϕ | [�ϕ]ϕ | [�ϕ]ϕ | [!ϕ]ϕ.

We define other Boolean connectives such as ϕ ∧ χ, ϕ ∨ χ, ϕ ↔ χ and ⊥ in
a usual manner. We call operators [�ϕ], [�ϕ] and [!ϕ] announcement operators.
Besides, ̂Ka is defined by ¬Ka¬ and ̂Na is defined by ¬Na¬. Note that Ka and
Na can be considered as the box operator � in modal logic, and ̂Ka and ̂Na can
be considered as the diamond operator �.

– Kaϕ reads ‘the agent a knows that ϕ’,
– Naϕ reads ‘the agent a narrow-mindedly believes that ϕ’,
– [�ϕ]χ reads ‘after obtaining information ϕ which may strengthen the agent’s

narrow-mindedness, χ holds’,
– [�ϕ]χ reads ‘after obtaining information ϕ which may weaken the agent’s

narrow-mindedness, χ holds,’ and
– [!ϕ]χ reads ‘after obtaining truthful information (announcement) ϕ, χ holds’.

2.2 Semantics of LON

We call the tuple (S, (Ra)a∈A, V ) an epistemic model if the domain S is a
nonempty countable set of states, each accessibility relation Ra in the list
(Ra)a∈A is an equivalence relation on S and V : P → P(S) is a valuation
function. The set S is called domain of M and may be denoted by D(M). Sub-
sequently, we define an epistemic narrow-doxastic model (or simply en-model)
M = (S, (Ra)a∈A, (Qa)a∈A, V ) where the components of S, Ra and V are the
same as that of the epistemic model, and each Qa is a binary relation on S such
that Qa ⊆ Ra (a ∈ A). Intuitively, Ra is a relation of all possibilities that an
agent can imagine. In other words, the agent never imagine a state x from s if
(s, x) /∈ Ra. This is why Qa ⊆ Ra; narrow-minded condition does not allow an
agent to imagine possibilities which exceeds the agent’s knowledge states.
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Definition 1 (Satisfaction Relation). Given an en-model M, a state s ∈
D(M), and a formula ϕ ∈ L(KaNa��!), we inductively define the satisfaction rela-
tion M, s |= ϕ as follows:

M, s |= p iff s ∈ V (p),

M, s |= ¬ϕ iff M, s �|= ϕ,

M, s |= ϕ → χ iff M, s |= ϕ implies M, s |= χ,

M, s |= Kaϕ iff for all x ∈ S : sRax implies M, x |= ϕ,

M, s |= Naϕ iff for all x ∈ S : sQax implies M, x |= ϕ,

M, s |= [�ϕ]χ iff M�ϕ, s |= χ,

M, s |= [�ϕ]χ iff M�ϕ, s |= χ,

M, s |= [!ϕ]χ iff M, s |= ϕ implies M!ϕ, s |= χ,

where the notations M�ϕ, M�ϕ and M!ϕ above respectively indicate
the en-models defined by M�ϕ = (S, (Ra)a∈A, (Q�ϕ

a )a∈A, V ), M�ϕ =
(S, (Ra)a∈A, (Q�ϕ

a )a∈A, V ) and M!ϕ = ([[ϕ]]M, (R!ϕ
a )a∈A, (Q!ϕ

a )a∈A, V !ϕ) with

[[ϕ]]M := {x ∈ S | M, x |= ϕ} Q�ϕ
a := Qa ∪ {(s, t) ∈ Ra | t ∈ [[ϕ]]M}

R!ϕ
a := Ra ∩ [[ϕ]]M×[[ϕ]]M Q!ϕ

a := Qa ∩ [[ϕ]]M×[[ϕ]]M

V !ϕ(p) := V ∩ [[ϕ]]M Q�ϕ
a := Qa ∩ S × [[ϕ]]M

where p ∈ P and a ∈ A.

The intuitive meaning of dynamic operators are as follows: the strengthening
operator [�] makes the agent come to notice states which are put out of the
agent’s mind; the weakening operator [�] makes the agent to refuse to face some
states (at the unconscious level); and the truthful operator [!] correct the agent’s
knowledge (a well-known operator in DEL). It should be noted that we do not
think of a mechanism which guides the selection of an announcement operator,
according to which a transition of person’s mental states would be triggered. As
a practical matter, it is beyond a person’s character and standings, and thus this
should be defined outer framework which utilize this logic.

Now, we define the validity of a formula in a usual way.

Definition 2 (Validity). A formula ϕ is valid at M if M, s |= ϕ for any
s ∈ D(M), and we write M |= ϕ. A formula ϕ is valid if M |= ϕ, for any
en-model M, and we write |= ϕ.

We confirm that an en-model, which is modified by announcement operators
[�ϕ], [�ϕ] and [!ϕ], preserves frame properties, i.e., Ra is an equivalence relation
and the subset relation Qa ⊆ Ra.

Proposition 1 (Preserving Frame Properties). Let ϕ ∈ L(KaNa��!) be
any formula. If M = (S, (Ra)a∈A, (Qa)a∈A, V ) is an en-model, then M�ϕ =
(S, (Ra)a∈A, (Q�ϕ

a )a∈A, V ), M�ϕ = (S, (Ra)a∈A, (Q�ϕ
a )a∈A, V ) and M!ϕ =

([[ϕ]]M, (R!ϕ
a )a∈A, (Q!ϕ

a )a∈A, V !ϕ) are also en-models.
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Proof. Consider an arbitrary agent a ∈ A. What we wish to show is that (1) R!ϕ
a

is an equivalence relation (i.e., it satisfies reflexivity, Euclidicity), and (2) the
subset relation Q!ϕ

a ⊆ R!ϕ
a , (3) the subset relation Q�ϕ

a ⊆ Ra and (4) the subset
relation Q�ϕ

a ⊆ Ra. We only treat one of (1) in the following.

(1)-2 R!ϕ
a satisfies Euclidicity. Fix any x, y, z ∈ [[ϕ]]M. Suppose xR!ϕ

a y and
xR!ϕ

a z, and show yR!ϕ
a z. Since Ra is Euclidean i.e., xRay and xRaz jointly

imply yRaz for all x, y, z ∈ S. By the assumption x, y, z ∈ [[ϕ]]M ⊆ S, we
have x, y, z ∈ S and yRaz. So we get the goal R!ϕ

a is also Euclidean with
y, z ∈ X.

	


3 Examples of Formalization of Narrow-Minded Belief

3.1 Comments on Knowledge and Narrow-Minded Belief Operators

Before moving on the topic of narrow-minded belief, we add some comments
on the general features of knowledge operator Ka and accessibility relation Ra

in epistemic logics. Let A = {a} us look at the epistemic model (S,Ra, V ) =
({w, v}, S2, V ) where V (p) = {v} (that can be regarded as an en-model M =
({w, v}, S2, ∅, V )), and the graphic form of this model is as follows.

M �������	wa ��
��

a
��

¬p

�������	v a��
p

In this model, at world w, the agent is ignorant about p’s truth-value. This is
because the formula ̂Kap∧̂Ka¬p, which intuitively means that the agent does not
know whether p, is true at w. As it implies, in epistemic logic, an arrow between
states has a negative meaning in general. In other words, van Ditmarsch et al.
state that “the more worlds an agent considers possible, the less he believes,
and vice versa.” [10, p. 55]. The operator ̂Ka represents at least one arrow in an
epistemic model. The narrow-minded belief operator ̂Na basically preserves these
features; nevertheless, we cannot say that ‘the more worlds an agent considers
possible, the less he believes, and vice versa’ in case of the operator Na since
the narrow-mind belief is affected by uncertain information or even the agent’s
imagination and may be wrong. In other words, to express such capricious belief,
we introduce the operator Na.

Additionally, we note on the frame property of Ra and Qa. The accessibility
relation Ra represents the accessibility relation for knowledge, and so we assume
that the agent is an introspective agent, i.e., Ra is an equivalence relation. More-
over, the formulas of Kaϕ → ϕ, Kaϕ → KaKaϕ (positive introspection) and
¬Kaϕ → Ka¬Kaϕ (negative introspection) are valid at M where its accessibility
relation is equivalence relation. However, since Qa represents a narrow-minded
belief, we do not assume the agent is introspective since introspectiveness is based
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on some kind of rationality, which is the exact opposite of narrow-mindedness.
That is why Qa does not have any frame property. By distinguishing these two
accessibility relations, we formally express the distinction between knowledge
and narrow-minded belief.

3.2 Formalizing Othello’s Narrow-Minded Belief

As mentioned in the introduction, our target, which we consider and formalize,
is Shakespeare’s Othello as it depicts a typical case of the change in a person’s
delicate mental state. Its story depicts how the lives of the four main charac-
ters (Othello, Desdemona, Iago and Cassio) are woven together and driven by
passion. The following is the short summary of the play:

General in the Venetian military Othello was recently married to a rich
senator’s daughter Desdemona. Although there is a great disparity of age
between the two, they build a good relationship of trust, and Othello and
Desdemona love and believe each other from their hearts. However, Oth-
ello’s trusted subordinate Iago who secretly holds a deep grudge against
Othello tells him a rumor that Desdemona is having an affair with a
young handsome soldier named Cassio. This causes Othello to feel uncer-
tain towards his wife’s innocence. Deepening Othello’s doubt against his
wife, Iago steals Desdemona’s handkerchief, a present from Othello, and
leads Cassio up to find it. Using the handkerchief as proof, Iago succeeds
in convincing Othello that Desdemona has engaged in an immoral rela-
tionship with Cassio. Finally, Othello narrow-mindedly believes what Iago
has told him and he feels great jealousy and anger towards his wife. Even
though Desdemona protests her innocence, Othello, who is now mad with
jealousy, kills his wife in a fit of passion. Following her death, Desdemona’s
servant confesses that her mistress was innocent and that Iago fabricated
the story, which resulted in such a tragedy. Othello comes to his senses
and realizes his mistake, at which point he loses hope and takes his own
life.

Of course, this summary is extremely simplified and actual tale is more intri-
cately woven. There are at least four main scenes in the story, which highlight
Othello’s narrow-minded belief, and we would like to focus on these in this paper.
The four main points are as follows:

1. Othello believes Desdemona from the heart.
2. Iago spreads a bad rumor about Desdemona, which causes doubt about her

innocence in Othello’s mind.
3. Iago uses fake evidence (a handkerchief) to convince Othello of Desdemona’s

immoral actions and he narrow-mindedly believes it.
4. A servant truthfully informs Othello that Desdemona is innocent.

Othello’s mind, including narrow-minded belief in each of the four scenes, may
be semantically modeled as follows. We note that, in the graphic form of en-
models, the double circle indicates the actual state. In addition, arrows of the
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straight line represent the line of Ra and arrows of the dotted line represent that
of Qa. Moreover, let an atomic proposition p to read ‘Desdemona is having an
affair,’ and P = {p}, and let A be the singleton set {a} and a represents Othello
(Fig. 1).

Fig. 1. M.

(1) Othello Deeply Believes His Wife. In the initial stage, Othello, who
was recently married, believes his wife from the depth of his heart and does
not doubt her immorality. However, Othello does not have any specific evi-
dence that Desdemona is having an affair and he does not actually know
if she is innocent or not at this stage. Therefore, the initial stage already
includes some contradiction in his mind, i.e., he does not explicitly know if
she is innocent, but he narrow-mindedly believes her. Thus, the mental state
of Othello at the opening of the play may formally be expressed by en-model
M = (S,Ra,Qa, V ) = ({s, t}, S2, {(t, s), (s, s)}, {p �→ {t}}). Therefore, we may
say that, at this stage, formulas ̂Kap ∧ ̂Ka¬p and Na¬p are valid at M (Fig. 2).

Fig. 2. M�p.

(2) Iago Spreads a Bad Rumor about Desdemona, Which Leads to
Doubts in Othello’s Mind. After Iago tells Othello a bad rumor ([�p]) about
Desdemona, he begins to doubt his wife. In other words, he is now unsure about
her constancy and does not know if she is innocent or not. Separately from
Othello’s narrow-minded belief, his state of knowledge remains unchanged since
he has not obtained any new truthful information and can only go by Iago’s
story in which his wife is accused of infidelity. Then the mental state of Othello
at the second stage of the play may formally be expressed by en-model M�p =
(S,Ra,Q�p

a , V ) = ({s, t}, S2, S2, {p �→ {t}}), where the formula ̂Nap ∧ ̂Na¬p is
now valid at this en-model. This formula represents a confusion in his mind
about his wife’s innocence (Fig. 3).
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Fig. 3. M�p�p.

(3) Iago uses Fake Evidence to Convince Othello of Desdemona’s
Immorality. At this stage of the play, Iago attempts to deceive his superior,
Othello, by using fake evidence (Desdemona’s handkerchief) to pretend she spent
her time with Cassio, and Othello is completely taken in. Consequently, Oth-
ello completely loses his self-control, and strongly and narrow-mindedly believes
that his wife is having an affair with Cassio. This is also represented by en-model
M�p�p = (S,Ra,Q�p�p

a , V ) = ({s, t}, S2, {(t, t), (s, t)}, {p �→ {t}}). Formally, in
his mind, the formula ̂Nap is valid at this en-model, but ̂Na¬p is not anymore.
Let us remind the reader that in the case of the operator ̂Na, it does not mean
that if the number of arrows is reduced, then the agent’s ignorance is reduced
(Fig. 4).

Fig. 4. M�p�p!¬p.

(4) A Servant Truthfully Informs that Desdemona is Innocent. In
the last scene of the play, Desdemona’s faithful servant truthfully tells the
fact that Desdemona is innocent, implying that Othello’s narrow-minded belief
regarding his wife is completely erroneous. Othello faces such a surprising fact
and he is heart-broken by the confession. This is represented by en-model
M�p�p!¬p = ([[¬p]]M�p�p ,R!¬p

a ,Q�p�p!¬p
a , V !¬p) = ({s}, {(s, s)}, ∅, ∅}). Formally,

by the truthful information of ¬p, a state t where p holds is eliminated, and as
a result, while the agent (Othello) knows ¬p (his wife is innocent), the arrow
of narrow-minded belief is empty. This means that he narrow-mindedly believes
everything even if it is a contradiction M�p�p!¬p |= ⊥, i.e., he is going crazy. As
a result, the tragedy ends with the suicide of Othello in the final scene.

4 Hilbert-System for LON

We move on the topic of a proof theory for LON. Hilbert-system for LON (HLON),
is defined in Table 1. In (RE) of the rule, the substitution for formula ϕ

(

ψ
χ

)

means
ψ appearing in a formula ϕ is replaced by χ. Axioms (4) and (5) indicate what
we call positive introspection and negative introspection, respectively. Axiom
(Ka&Na) indicates a relation of knowledge and narrow-mined belief, in which if
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the agent knows something, he/she also narrow-mindedly believes. This implies
that narrow-minded belief is one of the bases of our knowledge, and this view of
belief and knowledge can be supported by philosophers and/or psychologists like
Hume and Damasio, as discussed in the introduction. Axioms (RA∗) are called
reduction axioms. Through the reduction axioms and rules, each theorem of HLON
may be reduced into a theorem of the language L(KaNa) which will be shown in
Sect. 4.1.

Table 1. Hilbert-system for LON : HLON.

We provide some basic definitions and properties for proofs in the next
section.

Definition 3 (Derivable).
A derivation in HLON consists of a sequence of formulas of L(KaNa��!) each of
which is an instance of an axiom or is the result of applying an inference rule
to formula(s) that occur earlier. If ϕ is the last formula in a derivation in HLON,
then ϕ is derivable in HLON, and we write HLON ϕ.

4.1 Completeness of H′
LON

Let us move onto a proof of the completeness theorem of HLON with a similar
argument in [10, Section 5].

Let the language L(KaNa) be our formal language L(KaNa��!) without
announcement operators ([�], [�] and [!]). For an en-model M and s ∈ D(M)
and ϕ ∈ L(KaNa), the satisfaction relation M, s |= ϕ is naturally defined by
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following the definition in Sect. 2. Additionally, Hilbert-system H′
LON is also gen-

erated by removing the reduction axioms and inference rules of (Nec[�]), (Nec�)
and (Nec[!]) in Table 1. Note that definitions of the derivation and derivability
of H′

LON are given in the same manner as that of HLON in Definition 3.

Theorem 1 (Soundness and Completeness of H′
LON). For any formula ϕ ∈

L(KaNa),
H′

LON
ϕ if and only if |= ϕ.

Proof. only-if-part (Soundness). Fix any ϕ ∈ L(KaNa) such that ϕ is derivable
in H′

LON. We show that ϕ is valid by induction on the height of the derivation.
In the base case, the derivation height is 0 i.e., it consists of only an axiom.
Therefore, we show the validity of each axiom of HLON. We only confirm the
following case.
Case of (Ka&Na). We show that |= Kaϕ → Naϕ. Fix any en-model M =

(S, (Ra)a∈A, (Qa)a∈A, V ) and s ∈ S, and suppose M, s |= Kaϕ. What we
show is M, s |= Naϕ i.e., for all t ∈ S, sQat implies M, t |= ϕ. So that,
fix any t ∈ S such that sQat and show M, t |= ϕ. Since Qa ⊆ Ra, we
obtain sRat. Therefore, together with M, s |= Kaϕ, we obtain the goal
as desired.

if-part (Completeness). A direct proof of the completeness theorem of H′
LON

can be shown in a usual manner with Lindenbaum’s lemma.
	


4.2 Completeness of HLON

Based on the completeness theorem of H′
LON, we expand the discussion to the

completeness of HLON. A proof of the completeness theorem of HLON is given in
this section by the reduction method whose basic idea was introduced in the
previous work [19, Theorem 2.7]. The essential idea of this method is based on
the fact that every formula in L(KaNa��!) is reducible into a formula in L(KaNa)

which will be shown in Lemma 2.

Remark 1. We note that reduction axioms for sequential announcement opera-
tors e.g.,

(RA!6) [!χ][!ψ]ϕ ↔ [!(χ ∧ [!χ]ψ)]ϕ

are not included since, without them, any formula with announcement operators
can be reducible. It is known that there are at least two strategies to reduce a
formula with announcement operators into a formula without any such operator.
Let us consider the formula [!p][!q]r − (i). One approach, we may call it ‘outer-
most strategy’, focuses on the outermost occurrence of announcement operator,
for example [!p] of the above formula (i). Following this strategy, an axiom like
(RA!6) is required for reducing the formula. By using (RA!6), we may obtain
[!(p ∧ [!p]q)]q. Then (RA!1) becomes applicable, and so we obtain the formula
which does not include any announcement operator but is equivalent to the initial
formula. This approach is introduced by [10]. The other strategy may be called
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‘innermost strategy’ and focuses on the innermost occurrence of announcement
operator, for example [!q] of (i). Thus, by applying (RA!1) to the innermost
occurrence i.e., [!q]r, we obtain [!p](q → r). After that, (RA!3) and (RA!1) are
subsequently applicable, and so we obtain the formula without any announce-
ment operator but equivalent to the initial formula of (i). The latter strategy
does not require reduction axioms for reducing sequential announcement opera-
tors into a single. Therefore, we employ this strategy to avoid introducing many
and messy axioms.1 The idea of this innermost strategy was introduced by [5],
and [4, p. 54]. Furthermore, an attentive proof for reducibility of a formula of
Dynamic logic into a formula of standard modal logic by using the innermost
strategy is given in [2, Proposition 3.3.5].2

At first, we treat the soundness theorem of it.

Theorem 2 (Soundness of HLON). For any formula ϕ ∈ L(KaNa��!),

HLON ϕ implies |= ϕ.

Proof. We prove the soundness theorem of HLON by induction on the height of
the derivation of HLON, and it suffices to show the validity of reduction axioms of
H′
LON and additional inference rules (Nec[�]), (Nec[�]) and (Nec[!]). The validity

of additional rules and axioms are also easily shown by following semantics of
HLON. We confirm the base cases of (RA�5) and (RA�5).

Case of (RA�5). We show that |= [�ψ]Naϕ ↔ Na[�ψ]ϕ ∧ Ka(ψ → [�ψ]ϕ).
Therefore, fix any M = (S, (Ra)a∈A, (Qa)a∈A, V ) and s ∈ S. The following
equivalent relation holds as below.

M, s |= [�ψ]Naϕ

⇐⇒ ∀x ∈ S : sQ�ψ
a x =⇒ M, x |= [�ψ]ϕ

⇐⇒ ∀x ∈ S : sQax or (sRax and x ∈ [[ψ]]M) =⇒ M, x |= [�ψ]ϕ

⇐⇒ ∀x ∈ S : (sQax =⇒ M, x |= [�ψ]ϕ)

and (sRax and x ∈ [[ψ]]M =⇒ M, x |= [�ψ]ϕ)

⇐⇒ M, s |= Na[�ψ]ϕ ∧ Ka(ψ → [�ψ]ϕ)

Case of (RA�5). We show that |= [�ψ]Naϕ ↔ Na(ψ → [�ψ]ϕ). Therefore,
fix any M = (S, (Ra)a∈A, (Qa)a∈A, V ) and s ∈ S. Then we show the the
following equivalence relation.

1 If we follow the outermost strategy, six additional axioms (e.g, axioms for reducing
combination of [�A][�B] and [!A][�B] etc.) are required.

2 We add one more comment for a technical difference between the two strategies. In
the outermost strategy of public announcement logic, we need to include axiom like
(RA!6) to reduce sequential announcement operators into a single, but the inference
rule of (Nec[!]) is derivable. On the other hand, the rule is indispensable in the case
of the innermost strategy, instead of economizing the number of axioms.
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M, s |= [�ψ]Naϕ

⇐⇒ ∀x ∈ S : (s, x) ∈ Qa ∩ S×[[ψ]]M =⇒ M, x |= [�ψ]ϕ

⇐⇒ ∀x ∈ S : ((s, x) ∈ Qa and x ∈ [[ψ]]M) =⇒ M, x |= [�ψ]ϕ

⇐⇒ M, s |= Na(ψ → [�ψ]ϕ)

For induction steps, we require to show the additional cases of (Nec[�]), (Nec[�])
and (Nec[!]) to Theorem 1.

Case Where the Last Applied Rule is (Nec[�]). In this case, we obtain the
part of derivation as follows.

....
HLON ϕ

HLON [�χ]ϕ
(Nec[�])

And we show [�χ]ϕ is valid. So, fix any M and s ∈ D(M). Then we show
M�χ, s |= ϕ. Therefore, we have that ϕ is valid by induction hypothesis.
Then, we obtain M�χ, s |= ϕ.

	

Next, we give some definitions and lemmas for proof of the completeness.

Definition 4 (Length). The length function � : L(KaNa��!) → N is inductively
defined as follows:

�(p) := 1, �(Naϕ) := 1 + �(ϕ),

�(¬ϕ) := 1 + �(ϕ), �([�ϕ]χ) := (4 + �(ϕ))�(χ),

�(ϕ → χ) := 1 + �(ϕ) + �(χ), �([�ϕ]χ) := (4 + �(ϕ))�(χ),

�(Kaϕ) := 1 + �(ϕ), �([!ϕ]χ) := (4 + �(ϕ))�(χ).

With these settings, we may show the following lemma.

Lemma 1. Let ∗ be �, � or !. Then for all reduction axioms [∗ϕ]χ ↔ ψ,
�([∗ϕ]χ) > �(ψ) holds.

Proof. We only confirm the following case.

Case of (RA�5). The less-than relation �(Na[�ψ]ϕ ∧ Ka(ψ → [�ψ]ϕ)) <
�([�ψ]Naϕ) holds as follows. Let k := 4 + �(ψ) (hence, k ≥ 5) and n := �(ϕ).
So, by Definition 4, �(Na[�ψ]ϕ ∧ Ka(ψ → [�ψ]ϕ)) = k+2·kn and �([�ψ]Naϕ) =
k1+n. Then, it obviously holds that if k > 3, then k1+n > k + 2 · kn for any
fixed n ≥ 1.
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Definition 5. �′ : L(KaNa��!) → N is defined as follows.

�′(ϕ) :=

⎧

⎨

⎩

0 if ϕ ∈ L(KaNa)

�(ϕ) otherwise

Lemma 2 (Reduction lemma). For any ϕ ∈ L(KaNa��!), there exists ψ ∈
L(KaNa) such that HLON ϕ ↔ ψ.

Proof. By induction on �′(ϕ). We only treat the following case.

Case: �′(ϕ) > 0. In this case, ϕ ∈ L(KaNa��!) includes at least one subformula
which is of the form [∗χ1]χ2 (where ∗ ∈ {�, �, !} and χ1 ∈ L(KaNa��!), χ2 ∈
L(KaNa)). On the other hand, there is a reduction axiom which has the form
of [∗χ1]χ2 ↔ χ3, and let this reduction axiom be (RA∗). Then we may obtain
the following derivation.
1. �HLON [∗χ1]χ2 ↔ χ3 (RA∗)

2. �HLON ϕ ↔ ϕ
([∗χ1]χ2

χ3

)
1 and (RE)

3. �HLON ϕ
([∗χ1]χ2

χ3

) ↔ ψ Induction hypothesis
4. �HLON (X ↔ Y ) → ((Y ↔ Z) → (X ↔ Z))

for any X, Y, Z ∈ L(KaNa��!) (taut)
5. �HLON ϕ ↔ ψ 2, 3 and 4 with (MP)

Induction hypothesis at the third line is applicable, since the less-than relation
�′(ϕ

([∗χ1]χ2
χ3

)

) < �′(ϕ) holds by Lemma 1.

	

Actually, Lemma 2 is the core of the proof of the completeness theorem. Through
this, we may straightforwardly show the theorem as follows.

Theorem 3 (Completeness of HLON w.r.t. the semantics of L(KaNa��!)). For
any formula ϕ ∈ L(KaNa��!), the following holds:

|= ϕ implies HLON ϕ.

Proof. Fix any ϕ ∈ L(KaNa��!) such that |= ϕ. By Lemma 2, we obtain HLON ϕ ↔
χ for some χ ∈ L(KaNa). Then consider such χ ∈ L(KaNa). By Theorem 2 (the
soundness of HLON), we obtain |= ϕ ↔ χ. With the assumption |= ϕ, we have
|= χ. Next, by Theorem 1 (the completeness of H′

LON), we obtain H′
LON

χ, and so
HLONχ trivially holds; therefore, we obtain HLON ϕ with HLON ϕ ↔ χ again. That
is what we desired. 	


5 Labelled Sequent Calculus for LON

We, in this section, introduce a cut-free sequent calculus GLON for LON. which is
based on the sequent calculus GPAL for public announcement logic given in [17].
Let Var = {x, y, z, ...} be a countably infinite set of variables. Then, given any
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x, y ∈ Var, any list α of formulas and any formula ϕ, we say x:αϕ is a labelled
formula and, for any agent a ∈ A, xRα

ay and xQα
ay are relational atoms. We use

ε for the empty list, and write x:εϕ by x:ϕ if it is clear from the context. We
also use the term, labelled expressions to indicate that they are either labelled
formulas or relational atoms and we denote by A,B, etc. labelled expressions.
A sequent is a pair of finite multi-sets of labelled expressions Γ and Δ, and we
denote the pair by Γ ⇒ Δ. The set of inference rules of GLON is defined in Table 2.
Hereinafter, for any sequent s, if s is derivable in GLON, we write GLON s.

Moreover, G+LON is GLON with the following rule (Cut):

Γ ⇒ Δ,A A, Γ ′ ⇒ Δ′

Γ, Γ ′ ⇒ Δ,Δ′ (Cut),

where A in (Cut) is called a cut expression. We use the term principal expression
of an inference rule of G+LON if a labelled expression is newly introduced on the
left uppersequent or the right uppersequent by the rule of G+LON.

Because, for any labelled expression A and arbitrary finite multi-sets Γ and
Δ of labelled expressions, A, Γ ⇒ Δ,A is provable in GLON by the straightforward
induction on the height of the derivation, we also treat this sequent as an initial
sequent.

5.1 Every Provable Formula in HLON is also Provable in G+LON

Let us define the length of a labelled expression A for a preparation of the
following theorem.

Definition 6. For any labelled expression A, �∗(A) is defined as follows. Note
that the length function for a formula �(ϕ) is already defined in Definition 4.

�∗(α) =

{
0 if α = ε

�∗(β) + �(ϕ) if α = β, ◦ϕ
�∗(A) =

{
�∗(α) + �(ϕ) if A = x:αϕ

�∗(α) + 1 if A = xRα
a y or xQα

a y

where ◦ ∈ {!, �, �}. We define the notion of substitution of variables in labelled
expressions.

Definition 7. Let A be any labelled expression. Then the substitution of x for
y in A, denoted by A[x/y], is defined by

z[x/y] := z (if y �= z) (zRα
aw)[x/y] := (z[x/y])Rα

a (w[x/y])
z[x/y] := x (if y = z) (zQα

aw)[x/y] := (z[x/y])Qα
a (w[x/y])

(z:αϕ)[x/y] := (z[x/y]):αϕ

Substitution [x/y] to a multi-set Γ of labelled expressions is defined by Γ [x/y] :=
{A[x/y] | A ∈ Γ}. For a preparation of Theorem 4, we show the next lemma.

Lemma 3. (i) GLON Γ ⇒ Δ implies GLON Γ [x/y] ⇒ Δ[x/y] for any x, y ∈ Var.
(ii) G+LON

Γ ⇒ Δ implies G+LON
Γ [x/y] ⇒ Δ[x/y] for any x, y ∈ Var.
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Table 2. Labelled Sequent Calculus for LON :GLON.
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Proof. By induction on the height of the derivation. We go through almost the
same procedure in the proof as in Negri et al. [15, p. 194]. 	

We now show that every provable formula in HLON is also provable in G+LON.

Theorem 4. For any formula ϕ, if HLON A, then G+LON
⇒ x:εA (for any x ∈ Var).

Proof. The proof is carried out by the height of the derivation in GLON. Let us
take one direction of (RA�5) and (RA�5) to prove as significant base cases (the
derivation height of GLON is equal to 0).

The case of (RA�5) right to left

The case of (RA�5)left to right

• D1 is as follows.

• D2 is as follows.
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In the inductive step, we show the admissibility of GLON’s inference rules, (MP ),
(NecKa) and (Nec[!]), by G+LON.

The case of (MP ): It is shown with (Cut).
The case of (NecKa) : It is shown by (RKa), (Lw) and Lemma 3.
The case of (Nec[!]): In this case, we show the admissibility of the following
rule:

⇒ x:εϕ

⇒ x:ε[!χ]ϕ
(Nec[!])

.

Suppose GLON⇒ x:εϕ. It is obvious that GLON⇒ x:εϕ implies GLON⇒ x:!χϕ since
if there is a derivation of ⇒ x:εϕ, there can also be a derivation of ⇒ x:!χϕ
where !χ is added to the most left side of restricting formulas of each labelled
expression appeared in the derivation. Therefore, we obtain GLON⇒ x:!χϕ, and
by the application of (Lw) and (R[!]), we conclude GLON ⇒ x:ε[!χ]ϕ.

The case of (Nec[�]) and (Nec[�]): These cases can be shown with a similar
method to the case of (Nec[!]) without the application of (Lw).

	


5.2 Cut Elimination of G+LON

Now, we show the cut-elimination for G+LON.

Theorem 5 (Cut elimination of G+LON). For any sequent Γ ⇒ Δ, if G+LON
Γ ⇒

Δ, then GLON Γ ⇒ Δ.

Proof. The proof is carried out in Ono and Komori’s method [18] of an extended
version of cut where we employ the following rule (Ecut). We denote the n-copies
of the same labelled expression A by An, and (Ecut) is defined as follows:

Γ ⇒ Δ,An Am, Γ ′ ⇒ Δ′

Γ, Γ ′ ⇒ Δ,Δ′ (Ecut)

where 0 ≤ n,m < ω. The theorem is shown by double induction on the height
of the derivation and the length of the cut expression A of (Ecut). The proof is
divided into four cases:

(1) at least one of uppersequents of (Ecut) is an initial sequent;
(2) the last inference rule of either uppersequents of (Ecut) is a structural rule;
(3) the last inference rule of either uppersequents of (Ecut) is a non-structural

rule, and the principal expression introduced by the rule is not a cut expres-
sion;

(4) the last inference rules of two uppersequents of (Ecut) are both non-
structural rules, and the principal expressions introduced by the rules used
on the uppersequents of (Ecut) are both cut expressions.
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We look at one of base cases and one of significant subcases of (4) in which
principal expressions introduced by non-structural rules are both cut expressions.

A case of (4): principal expressions are xQα,�ϕ
a y:

Let us consider the case where both sides of A are xQα,�ϕ
a y and principal

expressions. When we obtain the derivation:
.... D1

Γ ⇒ Δ, (xQα,�ϕ
a y)n

(LQa�)

.... D2

(xQα,�ϕ
a y)m, Γ ′ ⇒ Δ′ (RQa�)

Γ, Γ ′ ⇒ Δ, Δ′ (Ecut)
,

• D1 is as follows:
.... D1-1

Γ ⇒ Δ, (xQα,�ϕ
a y)n−1, xRα

a y, xQα
a y

.... D1-2

Γ ⇒ Δ, (xQα,�ϕ
a y)n−1, y:αϕ, xQα

a y

Γ ⇒ Δ, (xQα,�ϕ
a y)n

(RQa�)

• D2 is as follows:
.... D2-1

xRα
a y, y:αϕ, (xQα,�ϕ

a y)m−1, Γ ′ ⇒ Δ′

.... D2-3

xQα
a y, (xQα,�ϕ

a y)m−1, Γ ′ ⇒ Δ′

(xQα,�ϕ
a y)m, Γ ′ ⇒ Δ′ (LQa�)

Then this derivation is transformed into the following derivation. First, let us
apply (Ecut) to the bottom labelled sequents of (D1 and D2-1), and (D1 and
D2-3), and (D2 and D1-1), and (D2 and D1-2); each application is feasible because
the height of the derivation is reduced. As a result of that, we obtain D′

2-1, and
D′

2-3, and D′
1-1, and D′

1-2, where (xQα,�ϕ
a y)k is removed from the bottom labelled

sequent and Γ and Δ (or Γ ′ and Δ′) are added to it. Then we continue to apply
(Ecut) to construct a derivation as follows.
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The applications of (Ecut) in the above two fragments of a derivation are
allowed because the length of every cut expression is reduced. Again, applying
(Ecut) to the bottom labelled sequents of above two derivations, and then apply
(Lc), (Rc) finite times, we obtain the goal GLON Γ, Γ ′ ⇒ Δ,Δ′.

	


5.3 Soundness of GLON

Now, we switch the subject to the soundness theorem of GLON. At first, we define
the notion of the satisfaction relation for the labelled expressions, i.e., lift the
satisfaction relation for the non-labelled formulas to that of the labelled expres-
sions. Let us say that f : Var → D(M) is an assignment.

Definition 8. Let M = (S, (Ra)a∈A, (Qa)a∈A, V ) be an en-model and f : Var →
D(M) an assignment.

M, f |= x:αϕ iff Mα, f(x) |= ϕ and f(x) ∈ D(Mα)

M, f |= xRε
ay iff (f(x), f(y)) ∈ Ra

M, f |= xRα,!ϕ
a y iff (f(x), f(y)) ∈ Rα

a and Mα, f(x) |= ϕ and Mα, f(y) |= ϕ

M, f |= xRα,∗ϕ
a y iff M, f |= xRα

a y (∗ ∈ {�, �})
M, f |= xQε

ay iff (f(x), f(y)) ∈ Qa

M, f |= xQα,!ϕ
a y iff (f(x), f(y)) ∈ Qα

a and Mα, f(x) |= ϕ and Mα, f(y) |= ϕ

M, f |= xQα,�ϕ
a y iff (f(x), f(y)) ∈ Qα

a or ((f(x), f(y)) ∈ Ra and Mα, f(y) |= ϕ)

M, f |= xQα,�ϕ
a y iff (f(x), f(y)) ∈ Qα

a and Mα, f(y) |= ϕ

In this definition, we have to be careful of the notion of surviveness as suggested
in [17]. In brief, f(x) and f(y) above must be defined in D(Mα) which may
be smaller than D(M) (e.g, consider the case of D(M!ϕ)). It is possible that
f : Var → D(M) assigns a state which is not include in such a restricted model
(e.g., f(x) �∈ D(M!ϕ)), and so we should carefully define the notion of validity
(which is called t-validity) of a labelled expression through a peculiar negation
for a labelled expression.

Definition 9. Let M be an en-model and f : Var → D(M) an assignment. The
satisfaction relation for the negation of labelled expression M, f |= A is defined
as follows.

M, f |= x:αϕ iff Mα, f(x) � |= ϕ and f(x) ∈ D(Mα),

M, f |= xRε
ay iff (f(x), f(y)) /∈ Ra,

M, f |= xRα,!ϕ
a y iff M, f |= xRα

a y or M, f |= x:αA or M, f |= y:αA,

M, f |= xRα,∗ϕ
a y iff M, f |= xRα

a y (∗ ∈ {�, �})
M, f |= xQε

ay iff (f(x), f(y)) �∈ Qa

M, f |= xQα,!ϕ
a y iff M, f |= xQα

a y or M, f |= x:αϕ or M, f |= y:αϕ

M, f |= xQα,�ϕ
a y iff M, f |= xQα

a y and (M, f |= xRα
a y or M, f |= y:αϕ)

M, f |= xQα,�ϕ
a y iff M, f |= xQα

a y or M, f |= y:αϕ

Note that the first item means that f(x) exists at the domain of the restricted
model Mα and ϕ is false at the survived world f(x) in Mα.
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Definition 10 (t-validity). Γ ⇒ Δ is t-valid in M if there is no assignment
f : Var → D(M) such that M, f |= A for all A ∈ Γ , and M, f |= B for all
B ∈ Δ.

Following these, settings, we may show the soundness theorem of GLON straight-
forwardly.

Theorem 6 (Soundness of GLON). Given any sequent Γ ⇒ Δ in GLON, if GLON

Γ ⇒ Δ, then Γ ⇒ Δ is t-valid in every en-model M.

Proof. The proof is carried out by induction of the height of the derivation of
Γ ⇒ Δ in GLON. We only confirm one of base cases of relational atoms and some
cases in the inductive step.

The Case Where the Last Applied Rule is (Rat�): we show the contra-
position. Suppose there is some f : Var → D(M) such that, M, f � A for
all A ∈ Γ , and M, f � B for all B ∈ Δ, and M, f � x:α,�ϕp. Fix such f . It
suffices to show M, f � x:αp. By Definition 9, M, f � x:α,�ϕp is equivalent
to Mα,�ϕ, f(x)�� p and f(x) ∈ D(Mα,�ϕ). Because �ϕ in Mα,�ϕ has an affect
only on the (Qa)a∈A in this en-model, these two items are respectively equiv-
alent to Mα, f(x)�� p and f(x) ∈ D(Mα). These two are also equivalent to
M, f � x:αp by Definition 9. Therefore, the contraposition has been shown.

The Case Where the Last Applied Rule is (RQa�): We show the con-
traposition. Suppose there is some f : Var → D(M) such that, M, f � A

for all A ∈ Γ , and M, f � B for all B ∈ Δ, and M, f � xQα,�ϕ
a y. Fix

such f . By Definition 9 and the distribution of ‘or’, xQα,�ϕ
a y is equivalent to

(M, f � xQα
ay or M, f � xRα

ay) and (M, f � y:αϕ or M, f � xRα
ay). This

is what we want to show, and the contraposition has been shown. 	


Finally, we establish the completeness theorem as follows.

Corollary 1 (Completeness of GLON). Given any formula ϕ and label x ∈ Var,
the following are equivalent: (i) |= ϕ, (ii) H′

LON
ϕ, (iii) HLON ϕ, (iv) G+LON

⇒ x:εϕ,
and (v) GLON⇒ x:εϕ.

Proof. The equivalence of (i), (ii) and (iii) are already established Theorems 1,
2 and 3. The direction from (iii) to (iv) is shown by Theorem 4. The direction
from (iv) to (v) is established by Theorem 5. Finally, the direction from (v) to
(i) is shown by Theorem 6. 	


6 Related Works

In this section, we introduce some related epistemic/doxastic logics. An epistemic
logic for implicit and explicit belief by [20] is perhaps the closest concept we
can find to that of LON. This logic is based on the logic of awareness logic [6],
and it distinguishes the sense of belief into two, implicit and explicit belief, to
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avoid the logical omniscience in epistemic logic. A traditional approach to mix
knowledge and belief operators, sometimes called epistemic-doxastic logic (e.g.,
see [21]), is another system similar to ours since Ka and Na of LON may be
interpreted as a mixture of these two different human tendencies.

One of differences between LON and the above existing works may relate to
the definition of the satisfaction relation of LON:

M, s |= [�ϕ]χ iff M�ϕ, s |= χ,

where M = (S, (Ra)a∈A, (Q�ϕ
a )a∈A, V ) and Q�ϕ

a := Qa ∪ {(s, t) ∈ Ra | t ∈ [[ϕ]]M}.

Here, we include a mechanism of adding arrows i.e., a mechanism in which some
of the information may confuse the agent.

In addition, there are some other attempts to introduce a distinction in
our belief/knowledge from a different point of view. Intuitionistic epistemic
logic [1,22] is one of them; this epistemic logic is based on intuitionistic logic,
which distinguishes knowledge into two: standard knowledge, which normal epis-
temic logics treat and knowledge in the strict sense. In other words, this aims at
introducing a distinction in knowledge, more strict and rational knowledge and
not strict knowledge, which is an opposite perspective to our attempt, which
introduced a distinction between belief with passion and knowledge.

Moreover, [12] combines DEL and probability theory, and this technique
might be utilized for improving our dynamics, i.e., � and � operators, since
whether an announcement strengthen or weaken the agent’s narrow-minded
belief is likely to depend on how probable the announcement is. Similarly, it
might be possible to incorporate with [3] which focuses on an evidence and jus-
tification in support of an agent’s beliefs and knowledge. As you can see from our
example of Othello, [11] is a really interesting work, which attempts to maintain
beliefs of a dramatis personae in a logically consistent way. There are also some
logics which deal with human emotion; for example [14] and [8]. We may, for the
further development, need to consider relevance to these existing logics about
emotion.

7 Conclusion and Further Directions

We introduced Logic Of Narrow-minded belief (LON), a variant of dynamic
epistemic logic. This aims to formally express a human’s passionate and narrow-
minded belief, and as an example of the application of LON, we formalized
Shakespeare’s play Othello. Moreover, we also provide two proof systems which
are semantically complete, such as a Hilbert-style proof system and a labelled
sequent calculus, and a syntactic cut-elimination has been shown for the lat-
ter system. Philosophers and neuropsychologists believe that passion, or belief
affected by passion, is an indispensable factor and even a basis for our reason.
Without passion or emotions, human intelligence may be never realized. There-
fore, we hope that our attempt in the present work will contribute to formal
expressions of the human mind.
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It may be possible to further develop our attempt in various directions. For
example, we did not regard the problem of the logical omniscience; the logic
of awareness is one of the candidates to be added to LON, as it is difficult to
interpret the meaning of awareness in the context of passion. Another interesting
feature that should be considered and added to LON is ‘a lie’ as it pertains to
dynamic epistemic logic by van Ditmarsch [9]. Actually, Iago’s rumor should be
regarded as a lie, as our passion or narrow-mindedness is easily affected by such
dubious information. Therefore, it might be interesting to consider these aspects
in future researches regarding the logic of passion.
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Abstract. This paper presents the application of particle swarm opti-
mization (PSO) based constrained combinatorial optimization technique
to assign tunnel segments and to improve the productivity in shield tun-
neling, a widely used tunnel construction method. This study considers
the amount of soil excavated along a tunnel composed of the segments
as an objective, and the deviation limit as constraints. In this problem,
a feasible solution can be easily found by greedy search, though the con-
straints are very severe. The proposed method utilizes the found feasible
solution to start to search near the feasible region. A two-dimensional
simulation experiment using real-world construction data was performed
to evaluate the effectiveness of the proposed method. The results demon-
strate that the proposed method statistically outperforms the work of
skilled engineers and other comparative methods in all test problems.

Keywords: Constrained combinatorial optimization · Particle swarm
optimization · Shield tunneling

1 Introduction

Labor shortage is a serious problem in the construction industry worldwide. The
United States’ construction industry, which employs more than seven million
workers, has experienced a severe shortage of skilled labor since the early 1980s,
and this shortage is expected to continue [22]. In Hong Kong, the scope and
extent of public and private sector infrastructure is rapidly growing; however,
currently, labor supply cannot keep pace with the demand as 12% of the con-
struction workers in Hong Kong have reached retirement age (60 years) and
another 44% are over 50 years of age, i.e., close to retirement [21].
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The Japanese construction industry is facing problems such as manpower
shortages, aging workers, and reduced international competitiveness. Since
November 2015, the Japanese Ministry of Land, Infrastructure, Transport and
Tourism has promoted i-Construction [29], an initiative to optimize and upgrade
the entire construction process—from investigation and design to construction
and inspection, including maintenance. i-Construction’s primary concepts are
utilization of information and communication technology and the introduction
of innovative technology, such as artificial intelligence (AI) through coopera-
tion between industries, governments, and academia. In this study, a practical
construction support system based on i-Construction principles and focused on
shield tunneling is developed.

The shield tunneling [13,19] is a common tunnel construction method. In the
planning process, tunnel segments are assigned to a predetermined planning line
(curved line along which a tunnel should be constructed), and, conventionally,
to minimize the gaps between segments and the planning line, skilled engineers
assign segments manually. Nevertheless, we have only to reduce each gap less
than a tolerance, and there are assignments that satisfy the gap constraints
and whose construction cost is lower than assignments that minimizes gaps.
Automation and segment assignment optimization will address the problem of
skilled labor shortage and improve productivity. In this study, the amount of soil
excavated according to the segments is taken as construction cost and considered
as an objective. We addressed segment assignment problem as a constrained
combinatorial optimization problem.

This problem has severe constraints, and its feasible region is extremely nar-
row compared with its large search space. Takahama and Sakai proposed the ε
constrained method [32] for optimization problems with such severe constraints.
The ε constrained method adds constraint handling to algorithms that were orig-
inally designed for unconstrained optimization problems. Although this method
has been adapted to several continuous optimizations [1,33,35], to the best of
our knowledge, there has been no report of adapting it to discrete optimizations.
By adapting the ε constrained method to a discrete version of particle swarm
optimization (PSO), which is integer categorical PSO (ICPSO) [27], we propose
an ε constrained ICPSO (εICPSO) method for constrained combinatorial opti-
mization problems. In segment assignment, a feasible solution per a problem
can be easily found by a greedy search. We also present initialization method for
PSO to utilize a heuristic solution such as the feasible solution. Herein, we have
attempted to experimentally verify the effectiveness of the proposed method by
two-dimensional simulations using real-world construction data.

2 Related Work

Shield tunneling techniques have been intensively studied [17] in the civil and
mechanical engineering domains. In addition, previous studies [9,28] have exam-
ined shield tunneling in the AI domain. However, to the best of our knowledge,
no studies have focused on shield tunneling planning processes.
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Previous studies have adapted the ε constrained method to metaheuris-
tics algorithms, such as PSO [14], differential evolution (DE) [26], multiob-
jective evolutionary algorithm based on decomposition (MOEA/D) [36]. Taka-
hama and Sakai proposed an ε constrained differential evolution (εDE) [31],
and its extended version using an archive [33]. Takahama and Sakai pro-
posed an ε constrained particle swarm optimizer (εPSO) [32]. Bonyadi, Li, and
Michalewicz proposed the hybrid method of εPSO and an other constraint han-
dling method [1]. Yang, Cai, and Fan introduced the ε constrained method for
extending MOEA/D to constrained multiobjective optimization [35]. Note that
these methods are only applicable to continuous optimization problems. Few
studies have reported discrete constrained optimization methods that adapt the
ε constrained method.

3 Segment Assignment

In this section, we explain the segment assignment and its formulation as con-
strained combinatorial optimization problem.

3.1 Shield Tunneling

Shield tunneling is a tunnel construction method that uses excavation machines
(shield machines) shown in Fig. 1. The front surface of the shield machine has
cutters (called the cutter head) for ground excavation. The over cut i.e., the
external cutter equipped outside the front surface, is controlled such that the
machine body can pass without contacting the ground wall. A shield machines
is divided to front and rear drums, and the angle between the front drum and
the rear drum (referred to as the joint angle) is controlled to allow the shield
machine to move around curves. Segments are assembled at the rear of the shield
machine, and the shield machine is propelled by the reaction force given from
its jack pushing the located segment.

Rear and Front View)b(Side View)a(

Fig. 1. An example of construction diagrams of a shield machine [12].
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3.2 Segment Assignment Problem

In the planning process, multiple types of segments are provided for each con-
struction project that are assigned along a planning line comprising straight
lines and curves such that gaps between each segment and the planning line fall
within a given tolerance, as shown in Fig. 2. Conventionally, skilled engineers
manually assign segments to minimize these gaps without considering construc-
tion costs; however, this assignment roughly determines the shield machine’s
excavation route. Thus, optimization of this assignment will reduce shield con-
struction costs.

Fig. 2. An example of segment assignment.

There are two primary demands in segment assignment: (1) gaps between
each segment and the planning line should be within the given tolerance, and
(2) the amount of soil excavated by the shield machine along the segments should
be reduced. In this study, the former is treated as an inequality constraint, and
the latter is treated as an objective function. We define segment assignment
as the following constrained combinatorial optimization problem: where xi ∈
{1, · · · , k} corresponds to the type of the segment assigned to i-th position, and
k is the number of segment types. A decision variable vector x = (x1, x2, · · · xn)
expresses the assigned segments. The objective function f(x) is the amount of
soil excavated along to segments x by the shield machine; gi(x) as the gap
between the i-th segment and the planning line; and gt is the gap tolerance.
Segments are assigned such that a center point of the i-th segment’s backward
surface correspond to a center point of the (i − 1)-th segment’s forward surface.
Gap gi(x) are defined as Euclidean distance between a planning line and the
center point of xi’s forward surface when segments x is assigned.

This problem involves an n-dimensional decision variable vector, where n is
generally over several hundreds. Consequently, this problem has an extremely
large search space; however, it is required to earn a solution must be quickly
obtained because the segment assignment plan should be revised when the
actual construction deviates from the plan. Population-based metaheuristics,
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such as swarm intelligence (SI), are frequently used for real-world optimization
problems as they provide easy parallelization and demonstrate good multi-point
search efficiency [5,10,25,37]. Although many discrete optimization algorithms
are based on SI, they often only consider integer problems [15,23]. However, seg-
ment assignment involves variables whose values are categorical and unordered
rather than purely numerical. PSO is one of the most widely used SI algorithms,
and integer categorical PSO (ICPSO) [27], outperforms other discrete versions
of PSO in unordered discrete optimization. In addition, gap tolerance gt is typ-
ically about 50 mm, whereas the diameter of segments is around 10 m. Segment
assignment has n severe constraints. The ε constrained method [32] was pro-
posed to handle such severe constraints: thus, we adapt it to ICPSO to handle
constrained combinatorial optimization.

4 Proposed Method

This section describes constrained combinatorial optimization problems, the ε
constrained method, εICPSO, and a new initialization method for εICPSO.

4.1 Problem Domain

We consider the following constrained optimization problem. where x =
(x1, · · · , xn) is an n-dimensional decision variable vector, f(x) is an objective
function, gj(x) ≤ 0 are q inequality constraints, and hj(x) = 0 are r equality
constraints. f(x), gj(x), and hj(x) are real-valued functions. Integer values li,
and ui are the lower and upper bounds of xi respectively, and the search space is
defined by the lower and upper bounds. Note that the feasible region is defined
by the inequality and equality constraints.

4.2 ε Constrained Method

The ε constrained method [32] adds a constraint handling ability to various algo-
rithms originally designed for unconstrained optimization. This method intro-
duces ε level comparison, which is a comparison operator that considers both
constraints and objective values when ranking candidate solutions. In the ε con-
strained method, constraint violation φ(x) is defined as a measure of how much
constraints are violated by a given solution. Constraint violation can be given
by the maximum of all constraints or the sum of all constraints as follows.

φ(x) = max{max
j

{0, gj(x)},max
j

|hj(x)|},

φ(x) =
∑

j

max{0, gj(x)}p +
∑

j

|hj(x)|p,

where p is a positive number. In this paper, constrain violation is given by the
sum of all constraints in Sect. 4.2.
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The ε level comparison (<ε,≤ε) is defined as an order relation on the set
of (f(x), φ(x)). If f1(f2) and φ1(φ2) are the objective values and constraint
violation, respectively, of solution point x1(x2) then the comparison operators
<ε and ≤ε are defined as follows.

(f1, φ1) <ε (f2, φ2) ⇔

⎧
⎪⎨

⎪⎩

f1 < f2, (φ1, φ2 ≤ ε)
f1 < f2, (φ1 = φ2)
φ1 < φ2, otherwise

(f1, φ1) ≤ε (f2, φ2) ⇔

⎧
⎪⎨

⎪⎩

f1 ≤ f2, (φ1, φ2 ≤ ε)
f1 ≤ f2, (φ1 = φ2)
φ1 < φ2, otherwise

According to this definition, ε level comparison first compares two solutions by
constraint violation value. If both solutions have a violation value that is less
than a given small threshold ε the two solutions are then compared by the
objective function value only.

4.3 εICPSO

Fig. 3. Representation of a particle’s position of ICPSO.

The εICPSO is a constrained combinatorial optimization algorithm based on
ICPSO with candidate solutions ranked by the ε level comparison. The ICPSO
is a novel PSO algorithm that has been shown to surpass other discrete PSO
algorithms [27]. In PSO, particles search for the best position of the search space.
Note that particles have a position and a velocity, and the position corresponds
to a candidate solution. The original PSO assumes continuous state variables. In
contrast, in ICPSO, the representation of the particle’s position is changed such
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that so that each attribute in a particle is a distribution over its possible values
rather than a single value as shown in Fig. 3. A particle is evaluated by sampling
a candidate solution from these distributions and calculating its fitness. εICPSO
is described in further detail as follows.

In εICPSO, particle p’s position Xp is represented as follows:

Xp = [Dp,1,Dp,2, · · · ,Dp,n],

where each Dp,i is the probability distribution for variable Xi. In other words,
each component of the position vector is a set of probabilities expressed as
follows:

Dp,i = [da
p,i, d

b
p,i, · · · , dk

p,i],

where dj
p,i denotes the probability by which variable Xi takes on value j for

particle p. Particle p’s velocity, Vp, is a vector of n vector ϕ, which control the
particle’s probability distributions:

Vp = [ϕp,1, ϕp,2, · · · , ϕp,n],
ϕp,1 = [ψa

p,i, ψ
a
p,i, · · · , ψa

p,n],

where ψj
p,i corresponds to particle p’s velocity for variable i in state j. The

velocity and position update equations are directly applied to values in the dis-
tribution as follows:

Vp = ωVp + U(0, φ1) ⊗ (pBest − Xp)
+U(0, φ2) ⊗ (gBest − Xp),

Xp = Xp + Vp,

where each operator is performed in a component-wise manner over each vari-
able in the vector, and U(0, φ1) and U(0, φ2) are uniformly distributed random
numbers between 0 and φ1 and 0 and φ2, respectively. The vector pBest is the
best position in the search space that this particle has reached, and gBest is
the best position in the search space any particle in the swarm has ever reached.
The particle moves in the search space by adding the updated velocity to the
particle’s position vector in the current iteration. The particle’s behavior is con-
trolled by adjusting parameters ω, φ1, and φ2 (i.e., inertia, cognitive component
and social component, respectively).

After the velocity and position update, any value outside [0,1] is mapped to
the nearest boundary to maintain a valid probability. In addition, the distribu-
tion is normalized to ensure that its values sum to 1.

To evaluate a particle p, its distributions are sampled to create a candidate
solution Sp = [sp,1, sp,2, · · · , sp,n], where sp,j denotes the state of variable Xj .
The samples are evaluated by the fitness function. Then, the distributions are
evaluated by their own sample’s fitness value.
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When a sample produced by a particle exceed the global or local best values
in the ε level comparison, the best values are updated using both the distri-
bution from the particle position Pp and sample Sp. Formally, for all states
j ∈ V als(Xi), the global best’s probability is updated as follows:

dj
gB,i =

⎧
⎪⎨

⎪⎩

εs × dj
p,i (j �= sp,i)

dj
p,i +

∑

k∈V als(Xi)∧k �=j

(1 − εs) × dk
p,i (j = sp,i)

where εs (the scaling factor) is a user-controlled parameter that determines the
magnitude of the shift in the distribution restricted to [0, 1), and dj

gB,i is the
global best position’s probability signifying that variable Xi takes value j. This
update increases the probability of the distribution producing samples that are
similar to the best sample while maintaining a valid probability distribution.
Thus, the update ensures that the best position’s probability of producing a
variable identical to the best sample’s greater than 1 − εs, which can be shown
as follows:

dk
gB,i = dk

p,i +
∑

j∈Sv(Xi,k)

(1 − εs) × dj
p,i

= εs × dk
p,i + (1 − εs) × dk

p,i +
∑

j∈Sv(Xi,k)

(1 − εs) × dj
p,i

= εs × dk
p,i + (1 − εs),

where Sv(Xi, k) = {j|j ∈ V als(Xi) ∧ j �= k} and k = sp,i. The scaling factor
should be controlled according to the dimension of the decision variable because
a large dimension increases the difference between the best sample and a sample
expected to be produced by the updated distribution. The local best is updated
in exactly the same way. At the end of the algorithm, the global best sample is
returned as the solution.

Algorithm 1 shows the pseudo code of εICPSO, where step 11 and 15 update
best positions according to Sect. 4.3, and step 21 and 22 update velocity and
position vectors according to Sects. 4.3 and 4.3 respectively.

4.4 Greedy Initialization

In segment assignment problems, a feasible solution per a problem can be easily
found via a greedy search where segments are assigned to minimize gaps. Algo-
rithm 2 shows a pseudo code of the greedy algorithm to find a feasible solution
for segment assignment, where x = {x1, · · · , xn} is a decision variable vector,
xi is a segment assigned to the i-th position, n is the number of segments, and
k is the number of segment types. Pi is a center point of segment xi’s forward
surface, and corresponds to a point at which segment xi+1 should be assigned
and a point used to calculate gap gi(x). Step 1 sets point P0 to the start point
of the given planning line. Step 4 calculates the next point when segment j is
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Algorithm 1 . εICPSO.

1: for i = 1 to n particle
2: initialize particle(pi)
3: end for
4: while (termination condition not met)
5: ε ← control epsilon level()
6: for i = 1 to n particle
7: Spi ← sample(Xpi)
8: f ← evaluate fitness(Spi)
9: φ ← constraint violation(Spi)

10: if (f, φ) <ε (fpBi , φpBi) then
11: pBesti ← update best(Xpi , Spi , pBesti)
12: (fpBi , φpBi) ← (f, φ)
13: end if
14: if (f, φ) <ε (fgBi , φgBi) then
15: gBest ← update best(Xpi , Spi , gBest)
16: (fgB , φgB) ← (f, φ)
17: SgB ← Spi

18: end if
19: end for
20: for i = 1 to n particle
21: Vpi ← update velocity(Xpi , Vpi , pBesti, gBest)
22: Xpi ← update position(Xpi , Vpi)
23: end for
24: end while
25: return SgB

Algorithm 2 . Greedy Search for Segment Assignment.

1: initialize position(P0)
2: for i = 1 to n
3: for j = 1 to k
4: P j

i ← next position(Pi−1, Segmentj)
5: gj ← gap(P j

i )
6: end for
7: xi ← arg minj∈{1,...,k} gj

8: Pi ← P xi
i

9: end for
10: return x

assigned to point Pi−1. Step 5 calculates Euclidean distance between P j
i and the

planning line. Step 7 selects a segment whose next point’s gap is minimum.
Initialization of population plays an important role in any optimization

algorithms. Classical PSO works [2,16] consider an initial randomly generated
population. It has proven that initialization by random selection of solutions
from a given solution space can result in exploiting the fruitless areas of the
search space [24]. Intelligent initialization techniques have been intensively devel-
oped [8,18,34], which mainly aim to improve the diversity of initial swarm.
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In constrained optimization problems, however, algorithms should explore in or
near the feasible region rather than all over the search space, particularly when
the feasible region is narrow. Thus, we propose greedy initialization method uti-
lizing the feasible solution discovered by the greedy method (Algorithm 2) to
narrow search area down to near the feasible region. In our greedy initialization,
position and velocity vectors are randomly initialized in the same way as classi-
cal PSOs. Then, a particle p is randomly chosen from initial swarm, and p’s local
best and global best were updated according to Sect. 4.3) under the assumption
that the greedy feasible solution was earned by sampling p’s position. Since this
procedure does not change position and velocity of any other particles, the diver-
sity of initial swarm is maintained, and future particles get to explore near the
feasible region as drawn toward the global best.

5 Experimental Studies

We attempted to verify the effectiveness of εICPSO to segment assignment
through the two-dimensional simulation experiment using real construction data.
At first, experiments are conducted to empirically understand the influence of
the scaling factor εs. Then, εICPSO is compared with the skilled engineer’s
conventional method and the ε constrained genetic algorithm (εDGA) [11].

A set of experiments was conducted on six segment assignment problems [12],
which is made from real construction sites. The six problems involves three
planning line pl01, pl02, and pl03, and two set of segments sg01 and sg02
for each planning line. The planning lines are shown in Fig. 4a, b, and c, where
R and L denotes a radius and length, respectively, of a curve. Figure 4d shows
five segments, and segment sets sg01 and sg02 include segments whose type
numbers are one to three, and one to five, respectively. Here, the shield machine
shown in Fig. 4e was used and the gap tolerance gt was set to 50 mm for each
problem.

(a) pl01

(b) pl02

(c) pl03

(d) segments

(e) shield machine

Fig. 4. Dimensions [mm] of the planning lines, segments, and shield machine used in
the experiments, which is same setting with [12].
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Candidate solutions (assigned segments) were evaluated by the two-
dimensional simulator we developed. The simulator evaluated segments based
on the area of the region where a shield machine passed when constructing the
segments under the assumption that the amount of excavated soil is proportional
to the area. Here, the area of the region through which the front of the shield
machine passes was determined by the product of the shield machine’s width
and the planning line’s total length. Thus, we define the area of the excavated
field excluding this field as the fitness because this field does not depend on
segment assignment. This fitness is equivalent to the amount of soil excavated
by the overcut.

All statistical results are based on 50 independent runs. For each independent
run, the maximum number of fitness evaluations is set to 500,000. In the compar-
isons between different statistical result, two-tailed Student t-test are conducted
at a significance level of α = 0.01

εICPSO used a swarm of size 50, and the swarm is evolved for 10, 000 iter-
ations owing to the recommendation of [4], which demonstrated that a large
swarm may, counterintuitively, have difficulty exploring the search space. The
cognitive component φ1 and social component φ2 were both set to 1.49618, and
the inertia ω was 0.729, which has been found to encourage convergent trajec-
tories [3]. The ε level is set to 0 through the evolution.

The experiments have been run on a computer with an Intel Core i7-6950X
@3.00 GHz CPU, 64 GB RAM and a Linux Ubuntu 14.04.5 LTS 64-bit operating
system. The simulator and algorithms was implemented in Java language.

5.1 Parameter Settings

We investigate the influence of the scaling factor εs by varying it. Simulations
have been conducted on the six problem with εs varying in {1.0 × 10−1, 1.0 ×
10−2, 1.0 × 10−3, 5.0 × 10−4, 1.0 × 10−4, 5.0 × 10−5, 1.0 × 10−5, 1.0 × 10−6, 1.0 ×
10−7}.

Figure 5 summarizes the experimental results as box plots, where boxes rep-
resent the 25th to 75th percentiles, lines within the boxes represent the median,
and lines outside the boxes represent the minimum and maximum values. We
found that the scaling factor should be set to smaller to achieve good perfor-
mance in a target problem involving larger dimensions, as εICPSO performs the
best with εs = 5.0 × 10−4, 1.0 × 10−3, and 1.0 × 10−4 on pl01, pl02, and pl03
problems, respectively. Additionally, we can see that smaller εs works slightly
worse than the best one, and that bigger εs make it almost impossible to find
a good solution. The reason might be that with a small εs a sampling proce-
dure tends to generate a exactly similar solution to the current best solution,
thus leading to premature convergence; however, with a big εs the sampling
procedure tends to generate completely different solutions, particularly in large
dimension problems, which prevents to explore the feasible region.
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Fig. 5. Box plots of fitness scores obtained εICPSO on six problems with different
scaling factors εs varying in {1.0×10−7, 1.0×10−6, 1.0×10−5, 5.0×10−5, 1.0×10−4, 5.0×
10−4, 1.0 × 10−3, 1.0 × 10−2, 1.0 × 10−1} for each problem with 50 trials. Note that n
denotes the number of segments (dimension number) and k denotes the number os
segment types in each problem.

5.2 Comparisons with Previous Works

In order to verify the effectiveness of εICPSOfor segment assignment, εICPSOhas
been compared with existing methods on the six problems. The scaling factor is
set based on the previous empirical analysis . In problems that use pl01, pl02,
and pl03, scaling factor εs = 5.0×10−4, 1.0×10−3, and 1.0×10−4 respectively.
The comparative methods are described in the following.

Conventional Method. In a construction site, segments are manually assigned
by skilled engineers; however, comparing the proposed methods with real skilled
engineers’ assignments is difficult because engineers spend significant time
assigning segments in each problem. Skilled engineers assign segments to mini-
mize gaps without considering the amount of excavated soil; thus, their methods
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are approximately equivalent to the greedy method (Algorithm 2), where seg-
ments are assigned to minimize gaps. Hence, we compared the proposed methods
to the greedy method rather than assignments made by skilled engineers.

Algorithm 3 . εDGA.

1: initialize population(P )
2: evaluate population(P )
3: while (termination condition not met)
4: ε ← control epsilon level()
5: Pmating ← selection(Pt, ε)
6: while (Pmating is not empty)
7: parents ← pop(Pmating)
8: offspring ← crossover(parents)
9: offspring ← mutate(offspring)

10: add offspring to Poffspring

11: end while
12: Poffspring ← evaluate(Poffspring)
13: P ← replacement(P, Poffspring, ε)
14: end while
15: return the best individual ranked by <0

εDGA Ihara et al. proposed the εDGA [11] for segment assignment. εDGA is
a combination of the ε constraint method and discrete genetic algorithm. εDGA
is based on standard genetic algorithms in which individuals are ranked by the
ε level comparison with the ε level controlled in each generation. Parents are
selected using selection methods based on the comparison of individuals, such
as tournament selection [20] and ranking selection [7], using ε level comparison
rather than a general comparison. Elite individuals are also selected by ε level
comparison to carry over to the next generation. Algorithm 3 summarizes the
flow of this method. Initial individuals are created by applying uniform muta-
tion to the feasible solution found by a greedy search (Algorithm 2). In this
experiments, populations were evolved for 500 generations, with a population
of size 1, 000. Uniform crossover [30] is applied 95% of the time offspring are
produced, and each offspring performed uniform mutation [6] wherein each gene
has a 5% chance of changing to a random value. The ε level is set to 0 through
the evolution.

5.3 Results

The experimental results demonstrate that the proposed method has the poten-
tial to find a segment assignment that reduces the amount of excavated soil as
compared to the conventional method (assignment by skilled engineer) while
keeping the all gaps between segments and the planning line falling within the
given tolerance. The experimental results for the six problems (Fig. 4) are shown
in Table 1, where only fitness scores are summarized because every algorithm
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obtained feasible solutions on every trial of every problem. In the table, “Mean”,
“Std dev”, “Best”, “Worst” indicate the mean values, standard deviations, best
values, and worst values, respectively, obtained over 50 trials of each problem.
Bold values indicate algorithms that, statistically, significantly outperformed all
other methods (two-tailed Student t-Test, α = 0.01). Figure 6 shows the perfor-
mance of the εICPSO and εDGA. Their fitness scores are shown as box plots
and the conventional method’s scores are represented by the horizontal dashed
lines.

Clearly, εICPSO is advantageous over εDGA. In all problems, εICPSO statis-
tically performed the best. Note that the worst εICPSO scores exceeded both, the
εDGA’s best scores and the skilled engineer’s score. In complex problems with
large n or k, the difference in performance is particularly remarkable. Although
the εDGA has potential to find the solution superior to the skilled engineer in

Table 1. Statistical results (Mean, Best, and Worst Values and Standard Deviations)
of Fitness Scores [m2].

Problem Skilled

engineer

εICPSO εDGA

Segment set Planning line (greedy

method)

Mean(Std dev) Best Worst Mean(Std dev) Best Worst

sg01 (k = 3) pl01 (n = 267) 107.48 106.86(1.54e−1) 106.56 107.21 107.42(4.33e−2) 107.30 107.47

pl02 (n = 210) 102.54 102.27(1.41e−2) 102.24 102.31 102.47(1.82e−2) 102.39 102.48

pl03 (n = 325) 105.33 105.21(3.77e−2) 105.09 105.27 105.33(1.64e−2) 105.30 105.39

sg02 (k = 5) pl01 (n = 267) 107.35 106.89(7.30e−2) 106.65 107.03 107.32(3.05e−2) 107.24 107.35

pl02 (n = 210) 102.52 102.25(1.72e−2) 102.23 102.30 102.46(2.55e−2) 102.38 102.52

pl03 (n = 325) 105.08 104.95(2.46e−2) 104.88 104.99 105.08(1.60e−2) 105.04 105.11

Fig. 6. Box plots of fitness scores of the εDGA and εICPSO for each problem with 50
trials, with horizontal dashed lines representing the conventional method’s evaluations.
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terms of the best score, its score averagely almost equivalent and at worst inferior
in the pl03 problems.

6 Conclusion

In this study, we have addressed segment assignment in shield tunneling as a
constrained combinatorial optimization problem. We have proposed εICPSO
method, which is the combination of a discrete version of PSO and ε constrained
method, and intelligent initialization method utilizing a feasible solution found
via a greedy search. Two-dimensional simulation experiments were conducted
to investigate influence of scaling factor, and demonstrate our method’s effec-
tiveness for segment assignment problems. The experimental results have shown
εICPSO’s potential to reduce construction costs as compared to the conventional
method. In all test problems, the proposed method exhibited the best perfor-
mance. In the future, we plan to conduct additional experiments using a three-
dimensional simulator for more accurate evaluation of the proposed method.
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tion, Science, Sports and Culture, Grant–in–Aid for Scientific Research under grant
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Abstract. Determining the maximum capacities of shunting yards is an
important problem at Dutch Railways (NS). Solving this capacity deter-
mination problem is computational expensive as it requires to solve an
NP-hard shunting planning problem. Currently, NS uses a shunt plan
simulator where a local search heuristic is implemented to determine
such capacities.

In this paper, we study how to combine machine learning with local
search in order to speed up finding shunting plans in the capacity deter-
mination problem. We investigate this in the following two ways. In the
first approach, we propose to use the Deep Graph Convolutional Neural
Network (DGCNN) to predict whether local search will find a feasible
shunt plan given an initial solution. Using instances generated from the
simulator, we build a classification model and show our approach can
significantly reduce the simulation time in determining the capacity of a
given shunting yard.

In the second approach, we investigate whether we can use machine
learning to help local search decide which promising areas to explore dur-
ing search. Therefore, DGCNN is applied to predict the order of search
operators in which the local search heuristic should evaluate. We show
that accurately predicting the evaluation order could find improved solu-
tions faster, and may lead to more consistent plans.

Keywords: Planning and scheduling · Machine learning -
Convolutional neural networks · Classification · Local search

1 Introduction

The Dutch Railways (NS) operates 4,800 domestic trains every day. Trains are
maintained at specific shunting yards for shunting activities [1] when they are
not needed temporarily. Figure 1 shows an example of a shunting yard.
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Fig. 1. Shunting yard with specific tracks for inspection and cleaning activities Source:
www.sporenplan.nl.

To cope with the expanding plan of fleet of train units, a shunt plan simulator
has been developed to help solve the capacity determination problem, which
studies whether the capacity of existing shunting yards is sufficient to handle
the increased train units. The simulator is used to both determine the capacity
of shunting yards as well as analyze different scenarios on each shunting yard.
In the simulator, a local search heuristic (or LS) [2] is implemented. LS takes
an initial solution generated by a simple algorithm and searches for the feasible
solution. After a predefined running time, LS either returns a feasible plan, or
cannot find any feasible plan. Essential to any local search algorithm is a solution
representation that properly captures all important aspects of the solution. The
local search heuristic by [2] models the activities that take place on the shunting
yards as nodes in an activity graph. Representing shunt plans as activity graphs
enables us to use graph classification. Recent research on graph classification
has proven to achieve high accuracy in predicting the class labels of an arbitrary
graph, see e.g., [13,18] and [8].

Compared to the mathematical optimization approach [9], LS can solve the
determination problem much faster. However, given that there are over 30 shunt-
ing yards in The Netherlands, and more than 50 possible scenarios to be eval-
uated for each shunting yard, there is a need for new solutions to speeding up
capacity determination. One promising direction is on using machine learning to
boost local search. In recent years, many studies have investigated boosting opti-
mization using machine learning, see e.g. [6,10,11,17]. In planning and schedul-
ing, [14] develops a Deep Reinforcement Learning (DRL) solution to decide the
best strategy of parking trains. In their work, the existing optimization model
is completely replaced by a machine learning model.

In this paper, we propose to use machine learning techniques to learn the rela-
tion between the input instances and the corresponding outcomes of local search.
In our first line of approach, given any initial solution, we use the constructed
classification model to predict whether LS can find a feasible solution before
actually applying LS. In this way, LS does not have to evaluate every generated
initial solution, and hence its computation time on determining the maximum
capacity of a given shunting yard is greatly reduced. The initial results have

www.sporenplan.nl
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been reported in [16], where we use a Deep Graph Convolutional Neural Net-
work (DGCNN) to train a classification model that predicts whether a schedule
instance is expected to be feasible or infeasible. In [4], we improved the app-
roach of [16] by investigating how to use DGCNN to predict the feasibility of
solutions during the run of the LS heuristic, and then to decide whether to con-
tinue or abort the search process. In our second approach, we investigate the use
of DGCNN on helping local search decide which promising areas to explore next
during search. The LS heuristic attempts to find a feasible shunt plan by apply-
ing search operators in iterations to move through the search space. In every
iteration, the search operators are shuffled in random order. This will be the
order in which the operators will be evaluated. We replace random ordering by
predicting in which order search operators should be evaluated to speed up the
search of LS. The output of DGCNN is a vector of probabilities for each search
operator. These probabilities determine the order in which search operators are
evaluated. The operator with the highest probability will be evaluated first. We
show using proposed method, LS can find improvements faster.

The rest of our paper is organized as follows. In Sect. 2, we describe back-
ground information that helps to understand the capacity determination prob-
lem. Section 3 shows the use of DGCNN on predicting the feasibility of solutions
of the local search heuristic, and describes the experiment setup and results in
terms of prediction accuracy and decreased computation time. Section 4 shows
how to use DGCNN to guide the operator selection for local search during its
search process. Finally, we conclude in Sect. 5.

2 Background

2.1 Shunt Plan Simulator

The shunt plan simulator at NS consists of three sequential stages: (1) generating
an instance of a given shunting yard, (2) generating an initial solution, and (3)
finding a feasible solution using a local search heuristic. The maximum capacity
of a given shunting yard is determined by repeatedly running the local search
heuristic with different instances of different scenarios. After a sufficient number
of runs, the simulation converges towards a number of train units for which
the heuristic can solve at least 95% of the instances. This number is used to
determine the capacity of the given shunting yard. The capacity is defined as
the number of train units a shunting yard can serve during a 24-h time period.

Figure 2 shows a diagram explaining the software structure of the simulator.
The instance generator is a parameterizable program, which derives instances
for the Train Unit Shunting Problem automatically. Instances can be generated
for each shunting yard individually with parameters specifically based on a day-
to-day schedule at that shunting yard. Examples of parameters are number of
train units, arrival/departure distribution and the set of service tasks that can
be performed. Parameters can be changed to test different scenarios.

The output of the instance generator is a set of arriving trains (AT), a set
of departing trains (DT) and a set of service tasks for each train unit that has
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Fig. 2. Diagram software structure simulator [16].

to be performed. For both (AT) and (DT), train composition, train units and
arrival/departure time are specified. The set of service tasks contains a list of
service tasks for each train unit that has to be done in the time that the train
unit is present on the service site. Trains can be composed of one or more train
units of the same type, which are a set of carriages that form a self-propelling
vehicle that can drive in both directions. Of the same train unit type, there exist
multiple subtypes, where the subtype indicates how many carriages the train
unit consists of. Figure 3 shows a train unit type and corresponding subtypes.
Train composition, train units and arrival/departure time are specified for both
AT and DT. The set of service tasks contains a list of service tasks for each
train unit that has to be done in the time that the train unit is present on the
shunting yard.

Fig. 3. Train unit type VIRM with 6 and 4 carriages.

The output of the instance generator serves as input for the initial solu-
tion generator. The Hopcroft-Karp algorithm [7] is used to produce a matching
between arriving and departing train units. Next, a service task schedule is con-
structed in a greedy way, which forms an initial solution of the given instance.
Note that initial solutions are typically not feasible, that is, an initial solution
may violate the temporal or routing constraints. The purpose of an initial solu-
tion is that it contains all important features to serve as a starting point for the
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local search heuristic to find a feasible solution. In earlier work [2,3], 11 opera-
tors in LS have been defined to move through the search space. LS ends when a
feasible solutions has been found or when the predefined maximum runtime has
been reached. In the latter case, no feasible solutions are found. Experiments
in [3] show that LS is capable to find feasible shunt plans in both artificial and
real-world scenarios. The performance of LS has been compared to a mathemat-
ical optimization model developed at NS that tries to find the optimal solution,
and LS is capable of planning more train units in most experiments. As it is
computationally expensive to use LS to evaluate every instance, in this work, we
evaluate instances using a machine learning model before applying LS.

The position of our work in the shunt plan simulator is between the initial
solution generation and applying initial solutions to local search (Fig. 2). For
the first approach, after generating an initial solution, a trained classification
model (DGCNN) predicts whether LS can find a feasible solution. If the outcome
is positive, LS is applied to find a feasible solution. Otherwise, the negative
outcome leads to discarding the initial solution and drawing a new instance
from the instance generator. Therefore, accurately predicting feasibility leads
to a decrease in computation time since less time is wasted on instances that
may turn out to be infeasible (see Sect. 3). In our second approach, after an
initial solution is generated, a DGCNN model predicts which operators the LS
heuristic should evaluate during each iteration. LS terminates when it finds a
feasible solution, or the maximum running time has been reached (see Sect. 4).

Fig. 4. The activity graph of a shunt plan. The activity nodes in an shunt graph are
encoded with starting and/or ending times. For clarity, only a few starting and ending
times are visualized [16].

3 Boosting LS Using DGCNN

3.1 DGCNN

A shunt plan can be modelled as an activity graph. Figure 4 shows an example of
an activity graph. The activities nodes, including arrival (A), service (S), parking
(P), movement (M) and departure (D), are connected by edges indicating the
precedence relations. The solid, black arcs represent the order of operations of
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one or more train units. The corresponding train units of the nodes are between
parentheses. The blue edges determine the order of the movements, and the
green edge indicates which service task is completed first. The assigned track
for each parking node is shown in subscript. The specific service task for each
service node is shown in subscript.
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Fig. 5. The overall structure of DGCNN used in our problem. An input graph of
arbitrary structure is first passed through multiple graph convolution layers where
node labels are propagated between neighbors, visualized as different colors. Then the
node features are passed to traditional CNN structures to learn a predictive model.
The figure is slightly modified from [18].

We predict whether an initial solution that is represented by a given activity
graph can lead to a feasible solution. To this end, we treat the prediction problem
as a graph classification problem. Given a graph G = (V,E) where V is a finite
set of nodes and E is a finite set of edges. Node features encode information
about tracks, train units, duration and activities. Each graph Gi ∈ G has a
corresponding class yi ∈ C where C is the set of class labels given as C =
0 (infeasible), 1 (feasible). The accuracy of the derived model is assessed by
comparing the predicted label y′

i with the actual label yi.
There are many successful machine learning algorithms that could be used

to predict feasibility of initial solutions. However, most algorithms involve heavy
feature engineering on problem instances. Recently, a Deep Graph Convolutional
Neural Network (DGCNN) has been proposed in [18] for graph classification,
which accepts graphs of arbitrary structure. The proposed architecture addresses
two main challenges: (1) how to extract useful features characterizing the rich
information encoded in graph classification and (2) how to sequentially read a
graph in a meaningful and consistent order.

To tackle the first challenge, graph convolution layers are used to extract local
substructure features from nodes and define a consistent node ordering. Their
graph convolution model effectively mimics two popular kernels, the Weisfeiler-
Lehman Subtree Kernel [15] and the Propagation Kernel [12], explaining its
graph-level classification performance. To address the second challenge, a Sort-
Pooling layer is introduced, which sorts the node features under the previously
defined order and unifies input sizes. This is done because in contrast to images
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graphs lack a tensor representation with fixed ordering, which limits the applica-
bility of neural networks on graphs. Finally, traditional convolutional and dense
layers are added to read the sort graph representations and make predictions.
The authors of [18] show DGCNN can achieve good performance on several
graphs such as social networks. In this paper, we apply a modified DGCNN,
which is described as follows.

The second localized graph convolution step involves appending node labels
of neighbouring nodes to original node labels. The variety of original node labels
defines how many new node labels will be created after appending neighbour-
ing node labels. Local search specifies eight different activities in shunt graphs.
This original representation can be modified to include more information in the
graphs. The amount of original node labels can be increased by including specific
types of activities to effectively exploit the graph structure for a classification
task.

In our problem, shunt graphs contain, among others, Parking (P ) and Service
(S) activity nodes. Instead of just using P and S as original node labels, both can
be encoded with more information. The specific parking track can be appended
to get Pi, where i = 1, ..., T and T is the number of parking tracks on a shunting
yard. The specific service task can be appended to get Si, where i = 1, ..., ST
and ST is the number of service tasks that can be performed on a shunting yard.
Experiments showed that including both Pi and Si is beneficial.

As the train unit shunting problem is a scheduling problem, the activity
nodes in an shunt graph are encoded with starting and ending times. Therefore,
the nodes in an activity graph are implicitly sorted based on the starting time.
Thus, the sorting function of Sortpooling in DGCNN is redundant, and therefore
is removed from our model. Figure 5 shows the network structure that we use in
our problem. It is slightly modified from DGCNN in [18].

3.2 Experiments and Results

We evaluate how much running time can be reduced in determining capacity in
shunting yards with our approach. To this end, we first generate and analyze
data from the simulator. Then we report the performance of the DGCNN model
on predicting whether initial plans would lead to feasible plans. From the perfor-
mance of DGCNN, we can finally estimate the difference of running time with
or without using DGCNN feasibility prediction in the simulator (illustrated in
Fig. 2).

Data Instances. In order to evaluate our method, we generate data instances
from the instance generator in the shunt plan simulator. The instance generator
can be specified according to a set of input parameters based on the day-to-day
schedule at the given service site. The most important parameters include: (1)
number of train units, (2) different train unit types and subtypes, (3) probability
distributions of arrivals per train unit type, and (4) set of service tasks including
duration.



190 A. van de Ven et al.

We generated 10,000 instances with 21 train units based on one of the service
sites operated by NS. The amount of 21 train units has been purposely chosen.
An increasing number of train unit increases the difficulty in finding feasible
solutions. The preliminary experiments have shown that the instances with fewer
train units are rather easy for the local search algorithm to find feasible solutions
and hence, less insightful and valuable to the business. For the shunting yard
that we used in the experiments, the instances with 20 to 22 train units are
most interesting for NS, as they are neither easy nor too difficult for LS. Among
them, initial solutions generated for 21 train units are the hardest to be correctly
classified, and therefore they are considered the most suitable data to explore
the usefulness of our approach to NS.

Initial solutions were created for all instances and LS was applied to solve
them. The maximum running time for LS to solve each instance is set to 300 s.
Among 10,000 instances, LS was not able to find feasible solutions for 2,750
instances. The outcomes (feasible, infeasible) were recorded as classification
labels, where feasible instances (class 1) are initial solutions leading to feasi-
ble plans using LS within 300 s, while infeasible ones (class 0) are those LS could
not find feasible plans within the time limit.

Fig. 6. Distribution of iterations for feasible and infeasible solutions [16].

Figure 6 visualizes the distribution of iterations for both feasible and infeasi-
ble instances. Regarding feasible solutions, the minimum and maximum numbers
of iterations in local search are 108 and 2599 respectively with an average of 733
iterations. The minimum and maximum number of iterations for infeasible solu-
tions are 1057 and 2939 with an average of 1962 iterations. Clearly, the number
of iterations for infeasible solutions are much higher because local search ran for
the maximum time of 300 s and was not able to find a feasible solution. Figure 7
shows a scatterplot with the number of iterations on the x-axis and runtime on
the y-axis. The runtime of feasible instances increases as the number of itera-
tions increases. The spread in the beginning is small, meaning that the time per
iteration is quite similar. As the runtime increases, the spread becomes larger.
Figure 8 shows a histogram of the runtime for all feasible instances. Infeasible
instances are omitted for clarity because their runtime is always around 300 s.
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Fig. 7. Scatter plot of iterations versus runtime [16].

Fig. 8. Histogram of the runtime (in seconds) for feasible solutions [16].

Considering feasible instances, the minimum runtime is 1 s, while the maximum
runtime is 300 s. The average runtime is 96 s. ±80% of all feasible instances has
been found within 150 s.

Results on Predicting Feasibility. The PyTorch (0.4.0) implementation of
DGCNN is used with Python (3.6.4) for the experiments. Training was done
on an 1.7 GHz Intel Core i7 MacBook Air. The DGCNN implementation is not
parallelized, thus only 1 CPU core is used. Every time a new epoch begins,
training data is randomly shuffled and processed in batches of several graphs to
enable faster learning.

When applying DGCNN, we need to determine the level of details, or node
representation, on the node labels in the graph. We apply the Weisfeiler-Lehman
subtree kernel [15] to append node labels of the neighbouring nodes to the orig-
inal node labels. The appended labels are sorted alphabetically and compressed
into new, shorter labels. At the end of an iteration, the counts of the original node
labels and the counts of the compressed node labels are represented as a feature
vector. Neural networks are trained on these feature vectors. The original node
labels define how many new node labels will be created after appending neigh-
bouring node labels. The length of the feature vector depends on the amount of
different node labels in the initial solution. Figure 9 visualizes how the length of
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the feature vector changes if node labels differ for the same graphs. In the left
graph, originally, all nodes have the same node label. The right graph originally
contains three different node labels. The appended and compressed labels after
one iteration of the Weisfeiler-Lehman subtree kernel are visualized below both
graphs. The feature vectors of both graphs contain the counts of the compressed
node labels after one iteration. As can be seen, the length of the feature vector
gets bigger when the level of detail (variety of node labels in the original graph)
increases.

Fig. 9. Different feature vectors for different amounts of node labels [16].

Too many node labels may result in very dissimilar feature vectors. In both
cases, neural networks may not be able to distinguish between feasible and infea-
sible instances. Hence it is important to select the best amount of the original
node labels. Based on the data associated to the nodes (Fig. 4) the level of detail
can be determined in the following three ways: (1) regular labels, (2) regular
labels and service tasks, (3) regular labels, service tasks, and parking locations.
Regular labels are the labels of the 8 node types (7 illustrated in Fig. 4 and one
additional activity called “Saw Move”). This level of detail would result in the
smallest feature vectors. One step further is to specify the service task as a node
type. On the chosen service site, five different service tasks are available: inter-
nal cleaning, soap external cleaning, oxalic external cleaning, technical checkup
A, and technical checkup B. Either one would replace the regular service task
node (S) resulting in 12 different node labels. The most detailed representation
specifies both parking locations and service tasks, which results in 24 different
node labels given 13 different tracks in the service site.

Sampling. The generated instances are not balanced, with 7205 samples in class
1, and 2795 in class 0. Undersampling and oversampling are two commonly used
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Table 1. Accuracy, standard deviation and runtime DGCNN on test sets of 9 datasets
[16].

DGCNN
RESULTS Undersampling Oversampling Undersampling and

Oversampling
# node labels 8 12 24 8 12 24 8 12 24
Accuracy (%) 59.89 60.80 62.10 60.15 60.85 61.28 60.15 60.19 60.89
Standard

deviation (%) ±1.28 ±0.92 ±0.88 ±0.47 ±0.74 ±0.16 ±0.56 ±1.06 ±0.50

runtime (h) 3.6 3.6 3.6 13.1 13.1 13.1 10.4 10.4 10.4

methods dealing with class imbalance problems. The risk of undersampling is
loss of information due to removing potentially important instances. Whereas
oversampling increases the possibility of overfitting. We create three datasets
with different balancing strategies: (1) only undersampling, with 2795 samples
for both classes, (2) only oversampling, with 7205 samples for both classes, (3)
both under- and oversampling, with 5000 samples for both classes.

Together with the three different node representation strategies, we end up
with nine datasets. DGCNN is applied on all nine datasets to find the best
combination of methods dealing with class imbalance and the level of detail
of node labels. We use 5-fold cross validation. Table 1 shows the classification
performance. It shows that the performance increases as we add more detailed
information about the planning instances on the nodes in the graph. The three
datasets with the highest level of detail are highlighted in the table. In addition,
the results show that using undersampling is the best of the methods dealing
with class imbalance. The runtime for undersampled datasets is also significantly
lower than when (a combination with) oversampling is used, which is logical as
the undersampled dataset is smaller.

Hyperparameter Tuning. We use the best performing dataset to tune the hyper-
parameters of DGCNN using grid search. The following combination of param-
eter values has achieved the best performance and is used to generate the final
prediction model: (1) unifying nodes in graph: 0.7; (2) learning rate: 1 × 10−5;
(3) number of convolution layers: 3; (4) number of nodes in convolution layers:
64; (5) number of training epochs: 120; (6) batch size: 100.

Table 2 shows the confusion matrix of the final classification model. Each
column of the matrix represents the instances in a predicted class while each
row represents the instances in an actual class. Each cell counts the number of
instances that corresponds to the row and column value. Correctly predicted
classes are true negatives (TN; top left cell) and true positives (TP; bottom
right cell). Incorrectly predicted classes are false negatives (FN; bottom left cell)
and false positives (FP; top right cell). The final classification model of DGCNN
is able to predict feasibility of an initial solution with 65.1% accuracy. It has
been shown to be a difficult classification problem. A previous study [5] applied
heavy feature engineering and tested various classifiers for this classification task,
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which resulted in a highest accuracy of 66.3%. However, to derive features, that
approach assumes extensive domain knowledge on the shunting services planning
problem. In comparison, DGCNN takes initial solutions directly as inputs.

Despite the difficulty of the classification problem, in the next section, We
show the value of our approach in speeding up finding feasible solutions for
capacity determination.

Table 2. Confusion matrix of the final classification model DGCNN [16].

Predicted labels

0 1 Correct
Incorrect

0 372
33.3%

185
16.5%

67%
33%

Actual
labels

1 205
18.3%

356
31.9%

63%
37%

Correct
Incorrect

64%
36%

66%
34%

65.1%
34.9%

3.3 Evaluation on Accelerating Simulations to Determine Capacities

Being able to predict feasibility of an initial solution before applying local search
may lead to a decrease in computation time when determining the maximum
capacity of a service site. We measure the effect of our approach by calculating
the expected difference in running time with and without using DGCNN. As
every instance was solved by the local search heuristic and its running time was
recorded, we derive in Table 3 the running time of LS without DGCNN for all
four types of instances (TN, FP, FN, and TP), as well as the average running
time of feasible and infeasible instances.

Table 3. Runtime per quadrant and average runtimes [16].

Quadrant Time (sec)
True negatives 110,877
False positives 56,037
False negatives 24,362
True positives 30,434

Averages Time (sec)
Average feasible 97.7
Average infeasible 299.7

The total running time on the testing data without applying DGCNN in
Table 3 is 221,710 s, roughly 62 h. This is the existing situation, where the local
search algorithm has to evaluate every generated instance. We call our approach
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where DGCNN is applied to predict the feasibility of instances before applying
LS “the new situation”.

We use the following process to estimate the running time in the new situ-
ation. For each instance in the test set, DGCNN is used to predict whether it
is feasible or infeasible. If feasible, the local search heuristic is applied to find a
feasible solution (or terminate if it turns out to be infeasible given the predefined
time limit). If, however, the predicted outcome is infeasible, this instance is dis-
carded immediately and a new instance is drawn from the instance generator.
This new instance is again fed to DGCNN, and the prediction of feasibility leads
to either applying LS, or discarding this instance. This process continues until
all instances have been classified as feasible. Figure 10 shows a Markov Transi-
tion Diagram to visualize this process, where the probabilities of transitions are
obtained from Table 2.

Figure 10 shows that if an instance is classified as feasible, it will never leave
that state. Note that being classified as feasible can either be correct (true) or
incorrect (false). Since no new instances will be generated for instances classified
as FP or TP, those runtimes remain the same in the new situation. If an instance
is classified as infeasible, a new instance is drawn. This new instance can be
transferred to any other state based on the probabilities. The runtime for TN
and FN will change in the new situation.

Fig. 10. Markov Transition Diagram transfer probabilities [16].

The total runtime for the TN instances without DGCNN is 110,877 s. The
total runtime decreases to 62,123 s when using DGCNN. A decrease of 44.0%.
The runtime for FN without DGCNN is 24,362 s. The total runtime increases to
34,259 s when using DGCNN. This is because the instances are actually feasible,
but incorrectly classified as infeasible. Therefore, new instances will be generated
and some of those will turn out to be infeasible, causing a longer running time.
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While the runtime for FN instances increased with 40.6%, the total runtime of
all instances decreased with 38,857 s to a total of 182,853 s. This decrease in
runtime will save 17.5% when determining the capacity of a service site.

We have shown that using our approach, roughly 51 h can be saved in deter-
mining whether one given shunting yard has sufficient capacity in handling 21
train units with one particular scenario. Such tests have to be done for more
than 50 scenarios. Hence, our approach will save about 100 days on determining
whether 21 train units can be handled in the testing yard. Furthermore, if it is
concluded that the site has sufficient capacity for 21 trains units, the scenarios
with 22 or more train units will be generated and tested in order to find out the
maximum number of the units that the given shunting yard can deal with. With
35 service sites in the Netherlands, the time reduction using our approach has a
great impact.

4 Guiding Local Search Using DGCNN

4.1 Modeling the Operator Selection Problem

The local search heuristic attempts to find a feasible shunt plan by applying
search operators in iterations to move through the search space. The heuristic
uses 11 search operators to move through the search space. In every iteration,
the search operators are shuffled in random order. This will be the order in
which the operators will be evaluated. Starting with the first search operator,
the heuristic evaluates the set of candidate solutions that can be reached through
that search operator. A candidate solution is immediately accepted as the new
solution for the next iteration if it is an improvement over the current solution. If
the candidate solution is worse, it is selected with a certain probability depending
on the difference in solution quality and the progress of the search process. This
probabilistic technique is called simulated annealing. DGCNN can replace the
random selection of operators by predicting in which order search operators
should be evaluated. Figure 11 shows one iteration for both simulated annealing
and DGCNN within the local search heuristic.

Fig. 11. From random local search to guided local search.
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Similar to predicting feasibility, DGCNN will be trained on graphs and corre-
sponding labels. The difference is that the dataset not only contains graphs from
initial solutions, but also contains graphs of intermediate ones, from initial to
final solutions. Furthermore, 11 different labels are used to represent 11 different
operators. The label for a particular solution is the search operator that has been
applied to that solution to get to the next iteration with an improved solution.
The output of DGCNN will be a vector of probabilities for each search operator.
These probabilities determine the order in which search operators are evaluated.
The operator with the highest probability will be evaluated first. Using DGCNN
to guide search could be beneficial for two reasons: (1) finding improvements
faster, and (2) generating more consistent plans. With regard to the first rea-
son, if DGCNN is able to accurately predict the order, the local search heuristic
is more likely to find an improvement in the first search operator that it eval-
uates. As for the potential of more consistent plans, compared to a random
selection, the prediction model DGCNN is more likely to choose the same oper-
ators for similar initial and immediate solutions that are represented by similar
features, resulting in similar final solutions for similar scheduling instances. This
consistency property on schedules is what the human planners prefer in daily
operations.

4.2 Search Operators

We first describe how we generated the instances. The local search heuristic
was slightly adapted such that it outputted all solutions from initial solution to
final solution in a JSON file. The key/value pair about feasibility was changed
into one representing the search operator. The instances were generated for the
service site “the Kleine Binckhorst” with the default parameters and 21 train
units. The local search heuristic was set up to run 1500 times and every time
a new instance was drawn from the instance generator. This amount of runs
minimally led to 150,000 graphs. The local search heuristic solved 859 out of
1500 instances. The remaining instances were not solvable within the maximum
runtime of 300 s. We disregarded infeasible instances and included only feasible
ones to train the DGCNN model. The reason is that for the infeasible instances,
the heuristic may not apply the correct search operators during solving, which
led to infeasible solutions in the end. Therefore, we decided not use the instances
in which wrong decisions have been made.

Regarding the feasible instances, over 600,000 search operators have been
applied on those 859 instances. On average, 740 operators have been applied
with a minimum amount of 122 operators and a maximum amount of 2527
operators. Figure 12 shows a plot that has been made to check whether there is
a pattern between the number of iterations and the times a search operator has
been applied. The number of times an operator is applied increases linearly as
the number of iterations increases. No unusual patterns can be observed. Box
plots have been made to find out if there are major differences in the application
of search operators between feasible instances with a low and high number of
iterations. No major differences were observed. This could indicate that the
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major cause affecting the number of iterations is the initial solution and not the
applied search operators. Figure 13 shows the distribution of search operators
that have been applied in all feasible instances. Out of 11 operators, three are
responsible for almost 90% of all applied operators.

Fig. 12. Scatter plot three biggest operators against number of iterations.

Fig. 13. Distribution of the search operators applied in the feasible instances by LS.

4.3 Predictive Modelling

We model the problem of learning which operators to select as a classification
problem. This distribution in Fig. 13 indicates that it might be beneficial to focus
on the top three operators. Hence, we take the following two different modelling
strategies:

– Single-classifier approach: in this modelling approach, we train one classifier
that predicts all 11 search operators, i.e., there are 11 classes to predict.

– Sequential-classifier approach: in this approach, we train multiple, sequential
classifiers. The first classifier is a binary classifier, which predicts whether one
of the three largest operators should be selected or one of the eight others
should be chosen. Dependent on the output of the first classifier, either the
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second or third classifier will be applied. If the first classifier predicts that
one of the three largest operators should be applied, the second classifier will
be used to predict which of the three. If the first classifier predicts otherwise,
the third classifier will be used to predict which of the other eight operators
will be applied. The idea of this modelling approach is that it may yield good
prediction results if the first classifier performs well.

4.4 Experiments of Using DGCNN to Determine Operator Order

We discuss the results of two modelling approaches.

Single-classifier. We first create a balanced dataset. The least applied search
operator has been applied just over 1100 times in all 859 runs. To create a bal-
anced dataset, all search operators are undersampled to 1100 samples. Under-
sampling is done randomly, but in such a way that all graphs in the dataset are
unique. Consequently, the dataset contains 12,100 unique graphs. The perfor-
mance is validated by applying cross validation. Training the model on this
amount of graphs took ±25 h. Figure 14 shows the performance of training
DGCNN directly on 11 search operators.

Fig. 14. Performance of the single-classifier approach.

Fig. 15. Performance of the first classifier in the sequential-classifier approach.
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We plot the development of loss since loss starts increasing after around 145
epochs, which indicates that the model starts overfitting. The accuracy at that
point is around 26.9%. This percentage means that in 26.9% of the instances,
DGCNN places the search operator, that the heuristic applied, on top of the
list. Meaning that if DGCNN would be implemented, the heuristic only needs to
evaluate one search operator in 26.9% of the instances to find an improvement
over the current solution. Even though this percentage does not seem very high,
consider the fact that immediately picking the best search operator by randomly
shuffling the order results in a probability of 9.1%. Because the heuristic accepts
the first candidate solution that is an improvement over the current solution, it
could be that there were better search operators to apply. The chosen operator
could even be one that worsened the current solution. 26.9% accuracy is achieved
by comparing the operator that got the highest probability by DGCNN with the
operator that the heuristic choose. When also looking at the operator with the
second highest probability given by DGCNN, the accuracy would increase to
41.5%.

Sequential-classifier. Similar to the single-classifier approach, we create a bal-
anced dataset. 4000 graphs are randomly sampled from the three largest search
operators. Another 4000 graphs are randomly sampled from the other eight
search operators. As a result, the dataset contains 8000 unique graphs. Figure 15
shows the performance of the first classifier.

The first classier shows a good performance with an classification accuracy
of 86.5%. Clearly, DGCNN is able to find patterns in the data such that it can
accurately distinguish between applying one of the three largest search operators
and one of the eight others. Figure 16 shows the performance of both the second
and third classifier. Note that the number of classes are three and eight respec-
tively. Meaning that randomly predicting the correct classes would be 33.3% and
12.5%.

The second classifier is trained on a balanced dataset with 12,000 randomly
sampled, unique graphs. The third classifier is trained on a balanced dataset
with 8000 randomly sampled, unique graphs. The performance of the second
classifier before overfitting is 75%, while the performance of the third classifier
is 35.9%. These percentages have to be multiplied by the accuracy of the first
classifier to be able to compare this approach with the basic approach, i.e. single-
classifier. The average accuracy of the sequential-classifier approach is computed
as: (0.865×0.75+0.865×0.359)/2 = 48%. The performance of both approaches
seems quite fair, especially the results of the second approach.
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Fig. 16. Performance of the (a) second and (b) third classifier in the sequential-classifier
approach.

5 Conclusion

In this work we have demonstrated how existing research in machine learning
can be used to boost optimization algorithms in several ways in an industrial
application.

First, we have shown the value of using machine learning models as approx-
imation functions of optimization algorithms in finding solutions. The results
demonstrate that combining a Deep Graph Convolutional Neural Network with
local search leads to a decrease in computation time in determining capacities in
shunting yards. The computation time was decreased by 17.5% determining the
capacity of one shunting yard if DGCNN is used to predict whether an initial
solution will become feasible after applying local search.
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Second, we have shown that we can use machine learning to help local
search decide which promising areas to explore during the search process. The
experiment results illustrate that using DGCNN to evaluate and determine the
search operators leads to faster improvements on solutions and less randomness.
Furthermore, DGCNN is able to accurately predict the search operator that
improves a solution with 48%. We show using proposed method, LS can find
improvements faster. In the future, we plan to investigate the consistency of the
generated plans, and validate it with the human planners at NS.
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Real-time data-driven maintenance logistics (project number: 628.009.012).

References

1. Boysen, N., Fliedner, M., Jaehn, F., Pesch, E.: Shunting yard operations: theoret-
ical aspects and applications. Eur. J. Oper. Res. 220(1), 1–14 (2012)

2. van den Broek, R., Hoogeveen, H., van den Akker, M., Huisman, B.: A local search
algorithm for train unit shunting with service scheduling. Transportation Science
(2018, submitted)

3. van den Broek, R.: Train Shunting and Service Scheduling: an integrated local
search approach. Master’s thesis, Utrecht University (2016)

4. de Oliveira da Costa, P.R., Rhuggenaath, J., Zhang, Y., Akcay, A., Lee, W.J.,
Kaymak, U.: Data driven policy on feasibility determination for train shunting
problem. In: ECML PKDD 2019 (2019)

5. Dai, L.: A machine learning approach for optimization in railway planning. Master’s
thesis, Delft University of Technology, March 2018

6. Defourny, B., Ernst, D., Wehenkel, L.: Scenario trees and policy selection for mul-
tistage stochastic programming using machine learning. J. Comput. (2012)

7. Hopcroft, J., Karp, R.: An algorithm for maximum matchings in bipartite graphs.
Ann. Symp. Switching and Automata Theory 2(4), 225–231 (1973)

8. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional net-
works. CoRR abs/1609.02907 (2016)

9. Kroon, L.G., Lentink, R.M., Schrijver, A.: Shunting of passenger train units: an
integrated approach. Transp. Sci. 42(4), 436–449 (2008)

10. Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine
learning. In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI-18), pp. 5472–5478 (2018)

11. Meisel, S., Mattfeld, D.: Synergies of operations research and data mining. Eur. J.
Oper. Res. 206(1), 1–10 (2010)

12. Neumann, M., Garnett, R., Bauckhage, C., Kersting, K.: Propagation kernels:
efficient graph kernels from propagated information. Mach. Learn. 102(2), 209–
245 (2016)

13. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for
graphs. CoRR abs/1605.05273 (2016)

14. Peer, E., Menkovski, V., Zhang, Y., Lee, W.J.: Shunting trains with deep reinforce-
ment learning. In: Proceeding of 2018 IEEE International Conference on Systems,
Man, and Cybernetics. IEEE (2018)

15. Shervashidze, N., Schweitzer, P., van Leeuwen, E., Mehlhorn, K., Borgwardt, K.:
Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)



Boosting Local Search Using Machine Learning 203

16. van de Ven, A., Zhang, Y., Lee, W.J., Eshuis, H., Wilbik, A.: Determining capacity
of shunting yards by combining graph classification with local search. In: Steels, L.,
Rocha, A., van den Herik, J. (eds.) 11th International Conference on Agents and
Artificial Intelligence (ICAART 2019), vol. 2, pp. 285–293. SCITEPRESS-Science
and Technology Publications, Lda. (2019)

17. Verwer, S., Zhang, Y., Ye, Q.C.: Auction optimization using regression trees and
linear models as integer programs. Artif. Intell. 244, 368–395 (2017). https://doi.
org/10.1016/j.artint.2015.05.004

18. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: AAAI, pp. 4438–4445 (2018)

https://doi.org/10.1016/j.artint.2015.05.004
https://doi.org/10.1016/j.artint.2015.05.004


Bipartite Split-Merge Evolutionary Clustering

Veselka Boeva1, Milena Angelova2(B), Vishnu Manasa Devagiri1,
and Elena Tsiporkova3

1 Blekinge Institute of Technology, Karlskrona, Sweden
{veselka.boeva,vishnu.manasa.devagiri}@bth.se

2 Technical University of Sofia, Plovdiv, Bulgaria
mangelova@tu-plovdiv.bg

3 EluciDATA Lab, Sirris, Brussels, Belgium
elena.tsiporkova@sirris.be

Abstract. We propose a split-merge framework for evolutionary clustering. The
proposed clustering technique, entitled Split-Merge Evolutionary Clustering is
supposed to be more robust to concept drift scenarios by providing the flexibil-
ity to consider at each step a portion of the data and derive clusters from it to
be used subsequently to update the existing clustering solution. The proposed
framework is built around the idea to model two clustering solutions as a bipar-
tite graph, which guides the update of the existing clustering solution by merg-
ing some clusters with ones from the newly constructed clustering while others
are transformed by splitting their elements among several new clusters. We have
evaluated and compared the discussed evolutionary clustering technique with two
other state of the art algorithms: a bipartite correlation clustering (PivotBiCluster)
and an incremental evolving clustering (Dynamic split-and-merge).

Keywords: Data mining · Dynamic clustering · Evolutionary clustering ·
Bipartite clustering · Split-merge framework · Unsupervised learning

1 Introduction

The problem addressed in this article deals with the development of evolutionary clus-
tering algorithm that can be used to (continuously) adjust existing clustering solution
to match newly arrived data. For example, in many real-world applications such as per-
sonalizing customer recommendations, the information available in the system database
is periodically updated by collecting new data. The available data elements, e.g., cus-
tomers of a retailing company, are usually partitioned into a number of segments (clus-
ters of customers with similar product preferences). As the data increases we need to
re-group existing data and also accommodate new customers in the existing customer
segments. However, the existing original segments (clusters) can become outdated due
to shifts in preferences and characteristics of the newly attracted customers. Another
example is profiling of users with wearable applications with the purpose to provide
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personalized recommendations. As more users get involved one needs to update the
division of the initial set of users into groups of characteristic profiles and also assign
new incoming users to these groups.

In the context of profiling of machines (industrial assets) for the purpose of condi-
tion (health) monitoring the existing original clusters can become outdated caused by
aging of the machines and degradation of performance due to influence of changing
external factors. This gradual or abrupt (e.g. due to software update) model invalidation
is in fact known as a concept drift and requires that the clustering techniques, used for
deriving the original machine profiles, can deal with such a concept drift and enable
reliable and scalable model update.

Evolving clustering models are good candidate to tackle concept drift scenarios as
discussed above. They have been designed to mine very large datasets or online continu-
ous data streams [8] in an unsupervised learning context by grouping and summarizing
data in a fast incremental manner. Evolving clustering models are also referenced as
incremental or evolving (dynamic) clustering methods, because they can process data
step-wise and update and evolve cluster partitions in incremental learning steps [12].
Incremental clustering methods process one data element at a time and maintain a good
solution by either adding each new element to an existing cluster or placing it in a new
singleton cluster while two existing clusters are merged into one [1,15,38]. Incremen-
tal algorithms also bear a resemblance to one-pass stream clustering algorithms [33].
Although, one-pass stream clustering methods address the scalability issues of the clus-
tering problem, they are not sensitive to the evolution of the data, because they assume
that the clusters are to be computed over the entire data stream. This implies that
changes in the characteristic of newly arriving data are not well reflected while building
the clustering solution.

Dynamic clustering is also a form of online/incremental unsupervised learning.
However, it considers not only the incremental fashion of building the clustering model,
but also self-adaptation of the built model. In that way, the incremental model construc-
tion deals with the problem of model re-training over time and memory constrains,
while dynamic aspects (e.g., data behavior, clustering structure) of the model to be built
can be captured via adaptation of the current model. Notice that the dynamic (evolving)
clustering paradigm is also close to the ideas of stream reasoning [17]. Stream reasoning
studies the application of inference techniques to data streams to perform continuous
reasoning tasks. The access to the stream is managed by creating time-dependent finite
views over the streams (windows) over which the tasks are performed. Window con-
tains a portion of the input streams, i.e. a set of timestamped data items, that represents
the data needed to solve the task at the current time instant.

The clustering scenario discussed in this work is different from the one treated by
incremental clustering methods. Namely, we are interested in clustering techniques that
enable to compute clusters on a new portion of data collected over a defined time period
(window) and to update the existing clustering solution by the computed new one. Such
an updating clustering should better reflect the current characteristics of the data by
being able to examine clusters occurring in the considered time period and eventually
capture interesting trends in the area. In [10], we have studied two different clustering
algorithms to be suited for the discussed scenario: PivotBiCluster [2] and Split-Merge
Evolutionary Clustering. Both algorithms are bipartite correlation clustering algorithms
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that do not need prior knowledge about the optimal number of clusters in order to pro-
duce a good clustering solution. Notice that in our considerations the input graph nodes
of PivotBiCluster algorithm are clusters. In the final clustering generated by the Piv-
otBiCluster algorithm some clusters are obtained by merging clusters from both side
of the graph, i.e. some of existing clusters will be updated by some of the computed
new ones. However, existing clusters cannot be split by the PivotBiCluster algorithm
even the corresponding correlations with clusters from the newly extracted data ele-
ments reveal that these clusters are not homogeneous. This has motivated us to develop
our Split-Merge Evolutionary Clustering algorithm that overcomes this disadvantage.
Namely, our algorithm is able to analyze the correlations between two clustering solu-
tions and based on the discovered patterns it treats the existing clusters in different ways.
Thus some clusters will be updated by merging with ones from newly constructed clus-
tering while others will be transformed by splitting their elements among several new
clusters.

An interesting dynamic clustering algorithm which is also equipped with dynamic
split-and-merge operations and which is dedicated to incremental clustering of data
streams is proposed by Lughofer in [30]. We have found a resemble between this algo-
rithm, entitled Dynamic split-and-merge algorithm, and our Split-Merge Evolutionary
Clustering. Hence, in this study the Split-Merge Evolutionary Clustering and the Piv-
otBiCluster are further evaluated and compared against the Dynamic split-and-merge
algorithm in two different experiment scenarios. Compared to the previous paper [10],
the bibliography and related work section have also been extended with more recent
works on the studied problem. We have also added a discussion on the computational
complexity of our Split-Merge Evolutionary Clustering algorithm.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 states the problem and briefly describes the PivotBiCluster and Dynamic split-
and-merge algorithms. In addition, it introduces the proposed Bipartite Split-Merge
Evolutionary Clustering technique. Section 4 gives an overview of the experimental
setup. Section 5 discusses the results from the evaluation of the three clustering algo-
rithms. Section 6 is devoted to conclusions and future work.

2 Related Work

The model of incremental algorithms for data clustering is motivated by practical appli-
cations where the demand sequence is unknown in advance and a hierarchical cluster-
ing is required. Incremental clustering methods process one data element at a time and
maintain a good solution by either adding each new element to an existing cluster or
placing it in a new singleton cluster while two existing clusters are merged into one
[15]. Incremental algorithms also bear a resemblance to one-pass clustering algorithms
for data stream problems [33]. Several incremental clustering techniques have been pro-
posed in the past [3,13,18,20]. Such algorithms need to maintain a substantial amount
of information so that important details are not lost. For example, the algorithm in [33]
is implemented as a continuous version of k-means algorithm which continues to main-
tain a number of cluster centers which change or merge as necessary throughout the
execution of the algorithm.
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To qualify the type of cluster structure present in data, Balcan introduced the notion
of clusterability [5]. It requires that every element be closer to data in its own cluster
than to other points. In addition, Balcan showed that the clusterings that adhere to this
requirement are readily detected offline by classical batch algorithms. On the other
hand, it was proven by Ackerman [1] that no incremental method can discover these
partitions. Thus, batch algorithms are significantly stronger than incremental methods
in their ability to detect cluster structure. This is mainly due to the fact that the latter
methods consider incrementality by dealing with the problem of model re-training over
time and memory constrains, but they are not robust to the model dynamics.

Dynamic clustering is also a form of incremental unsupervised learning. However,
it considers not only incrementality of the methods to build the clustering model, but
also self-adaptation of the built model. Lughofer has proposed an interesting dynamic
clustering algorithm which is equipped with dynamic split-and-merge operations and
which is also dedicated to incremental clustering of data streams [30]. In [19] similarly
to the approach of Lughofer a set of splitting and merging action conditions are defined,
where optional splitting and merging actions are only triggered during the iterative pro-
cess when the conditions are met. Wang et al. also propose a split-merge-evolve algo-
rithm for clustering data into k number of clusters [36]. This algorithm has the ability to
optimize the clustering result in scenarios where new data samples may be added in to
existing clusters. However, a k cluster output is always provided by the algorithm, i.e.
it is also not sensitive to the evolution of the data. In general, incremental and one-pass
stream clustering methods address the scalability issues of the clustering problem, but
they are not sensitive to the evolution of the data because they assume that the clusters
are to be computed over the entire data stream.

In [14] an adaptive clustering approach that can apply to re-cluster a set of pre-
viously clustered objects when the feature set characterizing the objects increases has
been proposed. The authors have developed adaptive extensions for k-means and hierar-
chical agglomerative clustering algorithms. Further it has been shown how these exten-
sions can be used for adjusting a clustering, that was established by applying the cor-
responding non-adaptive clustering algorithm before the feature set changed [14]. Such
adaptive clustering techniques could be necessary in some applied scenarios, e.g., in the
expertise mining context when the recently gathered information reveals that some of
the known experts have expanded their competence. However, in this case the cluster-
ing scenario will be different from one considered in [14], because usually the expert
expertise profiles are not presented by fixed-length feature vectors. Moreover, not all
expert profiles will be affected by this expansion.

Gionis et al. proposed an approach to clustering that is based on the concept of
aggregation [22]. They are interested in a problem in which a number of different clus-
terings are given on some data set of elements. The objective is to produce a single
clustering of the elements that agrees as much as possible with the given clusterings.
Clustering aggregation provides a framework for dealing with a variety of clustering
problems. For instance, it can handle categorical or heterogeneous data by producing
a clustering on each available attribute and then aggregating the produced clusterings
into a single result. Another possibility is to combine the results of several clustering
algorithms applied on the same dataset etc. Clustering aggregation can be thought as a
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more general model of multi-view clustering proposed in [7]. The multi-view approach
considers clustering problems in which the available attributes can be split into two
independent subsets. A clustering is produced on each subset and then the two clus-
terings are combined into a single result. Consensus clustering algorithms deal with
similar problems to those treated by clustering aggregation techniques. Namely, such
algorithms try to reconcile clustering information about the same data set coming from
different sources [11] or from different runs of the same algorithm [23]. The both clus-
tering techniques are not suited for our scenario, since they are used to integrate a num-
ber of clustering results generated on one and the same data set.

The idea for the proposed Split-Merge Evolutionary Clustering algorithm is inspired
by the work of Xiang et al. [37]. They have proposed a split-merge framework that can
be tailored to different applications. The framework models two clusterings as a bipar-
tite graph which is decomposed into connected components, and each component is
further decomposed into subcomponents. Pairs of related subcomponents are then taken
into consideration in designing a clustering similarity measure within the framework.

3 Methods and the Proposed Solution

3.1 Problem Description

Let us formalize the cluster updating problem we are interested in. We assume that
X is the available set of data points and each data point is represented by a vector of
attributes (features). In addition, the data points are partitioned into k groups, i.e. C =
{C1, C2, . . . , Ck} is an existing clustering solution of X and each Ci (i = 1, 2, . . . , k)
can be considered as a disjoint cluster. In addition, a new set X ′ of recently collected
data elements (instances) is created, i.e. X ∩ X ′ is an empty set. Each data point in X ′

is again represented by a list of attributes and C ′ = {C ′
1, C

′
2, . . . , C

′
k′} is a clustering

solution ofX ′. The objective is to produce a single clustering ofX ∪X ′ by combining
C and C ′ in such a way that the obtained clustering realistically reflects the current
distribution in the domain under interest.

3.2 Pivot Bi-Clustering Algorithm

Two existing correlation clustering techniques are suitable for the considered context:
correlation clustering [6] and bipartite correlation clustering [2]. The latter algorithm
seems to be better aligned to our clustering scenario. In Bipartite Correlation Clustering
(BCC) a bipartite graph is given as input, and a set of disjoint clusters covering the
graph nodes is output. Clusters may contain nodes from either side of the graph, but
they may possibly contain nodes from only one side. A cluster is thought as a bi-clique
connecting all the objects from its left and right counterparts. Consequently, a final
clustering is a union of bi-cliques covering the input node set. We compare our Split-
Merge Evolutionary Clustering algorithm described in Sect. 3.4 with PivotBiCluster
realization of the BCC algorithm [2]. The PivotBiCluster algorithm is implemented
according to the original description given in [2].

Notice that in our considerations the input graph nodes of the PivotBiCluster algo-
rithm are clusters and in the final clustering some clusters are obtained by merging
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clusters (nodes) from both sides of the graph, i.e. some of the existing clusters will be
updated by some of the computed new ones. However, existing clusters cannot be split
by the PivotBiCluster algorithm even when the corresponding correlations with clusters
from the new data elements reveal that these clusters are not homogeneous.

3.3 Dynamic Split-and-Merge Clustering Algorithm

The proposed algorithm, described in Sect. 3.4, is also compared with the Dynamic
split-and-merge clustering algorithm proposed by Lughofer in [30]. The Dynamic split-
and-merge algorithm of Lughofer can be used as an extension to any existing incre-
mental and evolutionary clustering algorithm provided it stores details regarding clus-
ter centers, spread, elements of a cluster [30]. Once the newly arriving data points are
assigned to existing clusters by applying some incremental clustering algorithm, all the
modified clusters are then examined in order to identify whether they need to be split
or merged. Optional splitting and merging actions are only triggered during the itera-
tive process if predefined action conditions are met. For example, a cluster is merged
with another existing cluster if both of them are homogeneous and the clusters touch or
overlap with each other. Whereas a cluster is split into two if the quality criterion of the
clustering solution after the split is better than that of before it.

Although, the dynamic split-and-merge algorithm addresses the clustering dynam-
ics, it is not very sensitive to concept drift phenomenon, because it assigns the newly
arriving data points to the existing clusters in an incremental way and then improves
the clustering solution by either splitting or merging the modified clusters. In compari-
son our split-merge clustering technique provides the flexibility to compute clusters on
a new portion of data collected over a defined time period and to update the existing
clustering solution by the computed new one [10]. Such an updating clustering should
better reflect the current characteristics of the data by being able to examine clusters
occurring in the considered time period and eventually capture interesting trends in the
area.

3.4 Bipartite Split-Merge Evolutionary Clustering Algorithm

In this paper, we propose an evolutionary clustering algorithm that overcomes the
above mentioned disadvantage of the two discussed state of the art algorithms. Namely,
our algorithm is able to analyze the correlations between two clustering solutions
C and C ′ and based on the discovered patterns it treats the existing clusters (C =
{C1, C2, . . . , Ck}) in different ways. Thus, some clusters will be updated by merg-
ing with ones from newly constructed clustering (C ′) while others will be transformed
by splitting their elements among several new clusters. One can find some similarity
between our idea and an interactive clustering model proposed in [4]. In this model, the
algorithm starts with some initial clustering of data and the user may request a certain
cluster to be split if it is overclustered (intersects two or more clusters in the target clus-
tering). The user may also request to merge two given clusters if they are underclustered
(both intersect the same target cluster).

As it was already mentioned in Sect. 2 our evolutionary clustering algorithm is
inspired by a split-merge framework proposed by Xiang et al. in [37]. By modeling
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Fig. 1. Split-Merge Framework: (a) a bi-clique that contains underclustered nodes (C1 and C2

intersect C′
1); (b) a bi-clique that contains an overclustered node (C3 intersects C′

2, C
′
3 and C′

4);
(c) a bi-clique that has to be decomposed into subcomponents in the second step of the algorithm.
It is transformed into a tripartite graph that has split (left) and merge (right) subcomponents.

the intrinsic relation between two clusterings as a bipartite graph, they have designed a
split-merge framework that can be used to obtain similarity measures to compare clus-
terings on different data sets. The problem addressed in this article is different from
the one considered by Xiang et al. [37]. Namely, we concern with the development
of split-merge framework that can be used to adjust the existing clustering solution to
newly arrived data. Our framework also models two clusterings (the existing and the
newly constructed one) as a bipartite graph which is decomposed into connected com-
ponents (bi-cliques) (see Fig. 1(a), (b) and (c)). Each component is further analysed and
if it is necessary it is decomposed into subcomponents (see Fig. 1(c)). The subcompo-
nents are then taken into consideration in producing the final clustering solution. For
example, if an existing cluster is overclustered (Fig. 1(b)), i.e. it intersects two or more
clusters in the new clustering, it is split between those. If several existing clusters inter-
sect the same new cluster, i.e. they are underclustered (Fig. 1(a)), they are merged with
that cluster. Notice that in comparison with the dynamic split-and-merge algorithm of
Lughofer [30], the splitting and merging operations of our algorithm can be conducted
on more than two clusters.

Let us formally describe the proposed Split-Merge Evolutionary Clustering algo-
rithm. The input bipartite graph is G = (C,C ′, E), where C and C ′ are sets of clusters
of left and right nodes and E is a subset of C ×C ′ that represents correlations between
the nodes of two sets. The two main steps of the algorithm are as follows:

1. At the first step, all bi-cliques of G are found. Then we consider and treat three
different scenarios:
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(i) If a bi-clique is an unreachable node it is made a singleton in the final clustering
solution.

(ii) If a bi-clique connects a node from the left side of G with several nodes from
C ′ the elements of this node are split among the corresponding nodes from C ′

(see Fig. 1(b)).
(iii) In the opposite case, i.e., when we have a bi-clique that connects a node from

the right side of G with several nodes from left those nodes have to be merged
with that node (cluster) (see Fig. 1(a)).

All clustered nodes are removed from the graph.
2. At the second step, the remained bi-cliques are decomposed into split/merge sub-

components. Each bi-clique, which is a bipartite graph, is transformed into a
tripartite graph constructed by two (split and merge) bipartite graphs. Suppose
Gi = (Ci, C

′
i, Ei) is the considered bi-clique. Then the corresponding tripartite

graph is built by the following two bipartite graphs: GiL = (Ci, Ei, EiL) and
GiR = (Ei, C

′
i, EiR), where Ci, C ′

i and Ei are ones from Gi, EiL is a subset of
Ci × Ei that represents correlations between the nodes of Ci and Ei, and EiR is
a subset of Ei × C ′

i representing correlations between the nodes of Ei and C ′
i (see

Fig. 1(c)). For example, ci ∈ Ci will be correlated with all pairs (cj , c′
k) ∈ Ei such

that ci ≡ cj , and c′
i ∈ C ′

i will be correlated with all pairs (cj , c′
k) ∈ Ei such that

c′
i ≡ c′

k. Then splitting and merging sub-steps are sequentially conducted:
(i) First all overclustered nodes of GiL are split and new temporary clusters are

formed as a result. This can be implemented, e.g., by calculating the distance
between each data point of the overclustered node from C and the centroids of
its adjacent nodes (cluster) from C ′. Then the data point in question is assigned
to the closest cluster.

(ii) Then we perform the corresponding merging for all underclustered nodes in
GiR.

For example, in Fig. 1(c) cluster C5 will first be split among clusters C ′
5, C

′
6 and

C ′
7, i.e. three new clusters, denoted by (C5, C

′
5), (C5, C

′
6) and (C5, C

′
7), will be

obtained. Then at the next step of the algorithm clusters (C5, C
′
5) and (C6, C

′
5) will

be merged together.

The pseudocode of the proposed Split-Merge Evolutionary Clustering algorithm is
given in Algorithm 1. In addition, the algorithm is illustrated with an example in Fig. 2.
The clustering solution generated by the Split-Merge Clustering is compared to one
produced by the PivotBiCluster. It is interesting to notice that the two algorithms will
produce very different clustering solutions on the same input graph. For example, the
Split-Merge Clustering will generate a 4-cluster solution while one obtained by the Piv-
otBiCluster will have only 2 clusters. The latter number is quite low taking into account
the number of clusters in the two input clusterings. Moreover, as it was mentioned in
the previous section the PivotBiCluster algorithm cannot produce a clustering solution
in which existing clusters are split among new clusters.

We now discuss the computational complexity of the Split-Merge Evolutionary
Clustering. Suppose that n is the number of instances in the existing data set and n′

(n′ < n) is the number of instances in the new data set. In addition, we assume that
the instances of the existing data set have already been grouped in k (k << n) cate-
gories. Initially, the new data elements have to be clustered into k′ (k′ << n′) clusters.
The computational complexity of this part depends on the used clustering algorithm.
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Algorithm 1. Split-Merge Evolutionary Clustering Algorithm.

1: function SPLIT-MERGE(G = (C,C′, E))
2: for all nodes c ∈ C ∪ C′ do (*First step*)
3: if c is an unreachable node then
4: Turn c into a singleton and remove it from G (*First step (i)*)
5: end if
6: end for
7: for all nodes c ∈ C ∪ C′ do
8: if c1 is the only node fromC that takes part in a bi-clique connecting it with one or several nodes

from C′ then
9: Split c1 among the corresponding nodes from C′ (*First step (ii)*)
10: Remove the clustered nodes from G
11: end if
12: end for
13: for all nodes c ∈ C ∪ C′ do
14: if c′

1 is the only node from C′ that takes part in a bi-clique connecting it with one or several
nodes from C then

15: Merge c′
1 with the corresponding nodes from C (*First step (iii)*)

16: Remove the clustered nodes from G
17: end if
18: end for
19: for all nodes c ∈ C do (*Second step*)
20: Split c1 among its adjacent nodes from C′ and form new temporary clusters (*Second step (i)*)
21: end for
22: for all nodes c′ ∈ C′ do
23: Merge c′

1 with its adjacent nodes from the built set of temporary clusters (*Second step (ii)*)
24: Remove the clustered nodes from G
25: end for
26: return all connected components (bi-cliques) as clusters of X ∪ X′
27: end function

It will be O(n′k′mi) in case of k-means clustering algorithm [27], where m and i are
the dimensionality of the learning problem and the number of iterations, respectively.
According to Gan et al. [21], k-means usually converges quickly, i.e. the number of
iterations is usually low and the algorithm complexity can be reduced to O(n′k′m). In
order to build the bipartite graph we calculate the similarity between the centroids of
each pair of clusters belonging to C×C ′. Any pair of clusters which centroids’ similar-
ity is above a given threshold are considered connected by an edge. Hence, the compu-
tational complexity of building the bipartite graph is equal to O(kk′). We further focus
our discussion on the computational complexity of the main steps of our algorithm,
given in Algorithm 1. The first part of the algorithm (steps 2 to 18) requires execution
time that is proportional to k + k′. The computational complexity of the remainder
part of the algorithm (from step 19 downwards) depends on the average size of clus-
ters that have to be split. Suppose that l (l << n) is the average number of instances
in those clusters. Then the computational complexity of this part can be approximated
to O((k + k′)l). Finally, the total computational complexity of the Split-Merge Evo-
lutionary Clustering is O(n′k′m + kk′ + (k + k′) + (k + k′)l) and n′ >> (k + k′),
i.e. it can be simplified to O(n′k′m + kk′ + (k + k′)l). In addition, l >> k′, i.e. we
can further simplify to O(n′k′m + (k + k′)l) and finally reduce to O(n′(k + k′)m),
as n′ >> l. The latter expression is very close to the computational complexity of the
Dynamic split-and-merge algorithm evaluated to O(n′km) in [30]. The complexity of
PivotBiCluster, commented in [2], cannot be directly compared to the complexity of our
algorithm, since the former algorithm is not originally defined to work with clusters.
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Fig. 2. Clustering solutions generated by Split-Merge Clustering (left) and PivotBiCluster (right),
respectively: (a) the input bipartite graph; (b) temporary clusters formed by Split-Merge Clus-
tering after splitting overclustered nodes from the left set (above) ({C1, C2, C3 }) of the graph
among corresponding nodes from the right set (below) ({C′

1, C
′
2, C

′
3, C

′
4}); (c) the final clus-

tering solution produced by Split-Merge Clustering, (d) the final clustering solution produced by
PivotBiCluster.

4 Experimental Setup

In [10], we have evaluated the Split-Merge Evolutionary Clustering and PivotBiCluster
algorithms in two different case studies. We have compared the performance of the algo-
rithms in expertise retrieval domain by applying them on data extracted from PubMed
repository. In addition, a case study in profiling patients in healthcare domain has been
conducted. The Split-Merge Clustering algorithm has shown better performance than
the PivotBiCluster in most of the studied experimental scenarios.

In the current work we further study and compare the two clustering algorithms
with the Dynamic split-and-merge algorithm, proposed in [30], on four different data
sets (explained in the following section) under two different experiment scenarios (see
Sect. 4.3).

4.1 Data

Anthropometric Data Set. This dataset is publicly available and published in [24].
The data contains 400 undergraduate students aged between 16 and 63 years old,
where a 56.3% are women. The following features describe the data: age, obesity,
BMI, WC, HC, WHR, Systolic Blood Pressure (SBP), Diastolic Blood Pressure
(DBP), preh for women and hyper for men, where the preh and hyper are classifi-
cation labels that show what kind of blood pressure the individual has (e.g., regular
or hyper). According to the results published in [29] people can be grouped into
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six clusters depending on their blood pressure. This grouping is considered as the
ground truth to benchmark the results generated by the three studied clustering algo-
rithms.
Yeast Data Set. The yeast data set obtained from the UCI machine learning reposi-
tory is used to predict the cellular localization site of protein [32]. Data set consists
of 1484 instances of data with 8 attributes, divided into 10 classes.
Wine Quality Data Set. The wine quality-data set obtained from the UCI machine
learning repository includes two data sets, related to red and white vinho verde wine
samples, from the north of Portugal. The goal is to model wine quality based on
physicochemical tests [16]. These data sets are labelled and can be used for classifi-
cation tasks.
Cover-Type Data Set. The cover-type data set obtained from the UCI machine
learning repository is created to predict the forest cover type [9]. The data set con-
tains cartographic values of a forest. It is a labeled data set primarily designed to
validate classification algorithms. Data set consists of 581012 instances of data with
54 attributes, divided into 7 classes.

Notice that anthropometric data set has been used in [10] for our case study in
healthcare domain, while cover-type data set has been used by Lughofer in [30]. The
selected data sets are labelled and their characteristics are summarized in Table 1. One
of the advantages of using labeled data is that the available class labels could be used
as a benchmark while validating the obtained clustering solution.

Table 1. Characteristics of the used test data sets.

Data sets #Instances #Attributes #Clusters

Antropometric 400 9 6

Yeast 1484 8 10

Wine quality 6498 12 7

Cover-type 581,012 54 7

4.2 Metrics

The data mining literature provides a range of different cluster validation measures,
which are broadly divided into two major categories: external and internal [27]. Exter-
nal validation measures have the benefit of providing an independent assessment of
clustering quality, since they validate a clustering result by comparing it to a given
external standard. However, an external standard is rarely available. Internal validation
techniques, on the other hand, avoid the need for using such additional knowledge, but
have the alternative problem to base their validation on the same information used to
derive the clusters themselves. Furthermore, internal measures can be split with respect
to the specific clustering property they reflect and assess to find an optimal clustering
scheme: compactness, separation, connectedness, and stability of the cluster partitions.
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External validation measures can be two types: unary and binary [25]. Unary exter-
nal evaluation measures take a single clustering result as the input, and compare it with
a known set of class labels to assess the degree of consensus between the two. Com-
prehensive measures like the F-measure provide a general way to evaluate this [34].
In addition to unary measures, the data-mining literature also provides a number of
indices, which assess the consensus between a produced partitioning and the existing
one based on the contingency table of the pairwise assignment of data items. Most of
these indices are symmetric, and are therefore equally well-suited for the use as binary
measures, i.e., for assessing the similarity of two different clustering results.

In this work, we have implemented three different validation measures for esti-
mating the quality of clusters, produced by the three studied clustering algorithms:
F-measure, Jaccard Index and Silhouette Index.

We have used the F-measure as an external (unary) validation metric [28]. The
F-measure is the harmonic mean of the precision and recall values for each clus-
ter. Let us consider two clustering solutions C = {C1, C2, . . . , Ck} and C ′ =
{C ′

1, C
′
2, . . . , C

′
l} of the same data set. The first solution C is a known partition of

the considered data set while the second one C ′ is a partition generated by the applied
clustering algorithm. The F-measure for a cluster C ′

j is then given as

F (C ′
j) =

2
∣
∣Ci

⋂
C ′

j

∣
∣

|Ci| +
∣
∣C ′

j

∣
∣
,

where Ci is the cluster that contains the maximum number of objects from C ′
j . The

overall F-measure for clustering solution C ′ is defined as the mean of cluster-wise
F-measure values, i.e.

F (C ′) =
1
l

l∑

j=1

Fj . (1)

For a perfect clustering, when l = k, the maximum value of the F-measure is 1.
In addition, we have applied Jaccard Index (Jaccard similarity coefficient) [26] to

evaluate the stability of the clustering algorithms. Given a pair of clustering solutions of
the same data set, C and C ′, we define a as the number of data point pairs that belong
to the same cluster in C as well as in C ′. Let b be the number of data point pairs that
belong to the same cluster in C but not in C ′. Further, c is defined to be the number of
data point pairs that belong to the same cluster in C ′ but not in C. The Jaccard Index
(JI) between C and C ′ is then defined as:

J(C,C ′) =
a

a+ b+ c
. (2)

The Jaccard Index ranges from 0 to 1, where a higher value indicates a higher simi-
larity between cluster solutions. Jaccard Index has been used to measure the similarity
between the generated clustering solutions and the corresponding benchmark partition-
ings of the used test data sets.

Furthermore, Silhouette Index (SI) has been applied as an internal measure to assess
compactness and separation properties of the generated clustering solutions [35]. It is a
cluster validation index that can be used to judge the quality of any clustering solution
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C. Suppose ai represents the average distance of object i from the other objects of its
assigned cluster, and bi represents the minimum of the average distances of object i
from objects of the other clusters. The Silhouette Index for clustering solution C of m
objects is defined as:

s(C) =
1
m

m∑

i=1

(bi − ai)
max{ai, bi} . (3)

The values of Silhouette Index vary from −1 to 1 and higher values indicate better
clustering results.

4.3 Experiments

We have studied two different experiment scenarios. In the first scenario we compare
the three clustering algorithms on cover-type and wine quality data sets described in
Sect. 4.1. Each data set is used to generated 10 test data set couples by randomly sep-
arating the data points in two sets. One set (containing 70% of data) of each couple
presents the available data set and the other one (30% of data) is the set of newly col-
lected data objects. In that way 10 test clustering couples are created for each data set.

In the second scenario we examine whether the three studied algorithms are sensi-
tive to the size of the new portion of data. For this purpose we use the other two data
sets (anthropometric and yeast) described in Sect. 4.1. For each data set we produce 4
times 10 test data set couples by randomly separating its data points in two sets in a
ratio 50/50, 60/40, 70/30 and 80/20, respectively.

4.4 Implementation and Availability

The three studied clustering algorithms (Split-Merge Evolutionary Clustering, PivotBi-
Cluster and Dynamic split-and-merge) are implemented in Python. We have selected
the MiniBatchKMeans algorithm available in scikit-learn library1 as an incremental
clustering used in the implementation of the Dynamic split-and-merge. F-measure, Jac-
card Index and Silhouette Index (see Sect. 4.2) used to validate the clustering solutions
generated in our experiments are also implemented in scikit-learn library.

Notice that in the experiments conducted on cover-type data set we have used only
the 14 non-binary attributes from all 54 attributes of this data. We have not considered
the soil type data, since they are very sparse. In addition, we have used a sample set of
50 000 instances.

Supplementary information is available at GitLab2.

5 Results and Discussion

The results produced by the three studied clustering algorithms in the first experiment
scenario are given in Tables 2 and 3. The performance of the algorithms is studied with

1 Scikit-learn is a Python library for data mining and data analysis.
2 https://gitlab.com/machine learning vm/clustering techniques.

https://gitlab.com/machine_learning_vm/clustering_techniques
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respect to three different cluster validation measures: Silhouette Index (SI), F-measure
and Jaccard Index. The results from the evaluation of the algorithms on cover-type data
set are given in Table 2. As one can see, the PivotBiCluster and Split-Merge Cluster-
ing have generated significantly higher F-measure scores than the Dynamic split-and-
merge. However, the latter algorithm slightly outperforms the other two with respect to
SI. Notice that the PivotBiCluster behaviors significantly better then the other two algo-
rithms with respect to F-measure and Jaccard Index. In general, the PivotBiCluster can
be considered as the best performing algorithm on cover-type data set. It is further inter-
esting to discuss that although, the incremental algorithm (MiniBatchKMeans) used by
the Dynamic split-and-merge has modified all the 7 initial clusters in each test data
couple no split and merge actions have been performed. For example, if we compare
it with the other two algorithms on one and the same data set couple the PivotBiClus-
ter has performed 2 merges while the Split-Merge Clustering has done 4 merges and
7 splits. In addition, the PivotBiCluster has generated a cluster solution with 5 cluster
while the clustering solution produced by the Split-Merge Clustering has 7 cluster. This
supports our discussion in Sect. 3.3 that the Dynamic split-and-merge algorithm is not
very sensitive to concept drift scenarios compared to the other two algorithms, which
update the existing clustering solution by considering the clustering extracted from the
new portion of data.

Table 2. Experiment 1: Average cluster validation metrics scores generated on the clustering
solutions of the 10 cover-type test data set couples.

Metrics PivotBiCluster Split-merge clustering Dynamic split-and-merge

SI 0.194 0.034 0.196

F-measure 0.903 0.759 0.376

Jaccard Index 0.231 0.021 0.161

Table 3 contains the results obtained from the evaluation of the three clustering algo-
rithms on wine quality data set with respect to the three used cluster validation criteria.
The PivotBiCluster is again the best performing algorithm according to the results pro-
duced by F-measure and Jaccard Index. However, this is not supported by the generated
SI scores. Namely, the Dynamic split-and-merge has the highest average SI score. How-
ever, it is outperformed by the Split-Merge Clustering with respect to Jaccard Index and
F-measure. It is also interesting to observe that the number of clusters of the clustering
solutions generated on the wine quality test data set couples varies from 5 to 8 for the
PivotBiCluster, and between 1 and 7 (seven data set couples have generated clustering
solutions with 4 or less clusters) for the Dynamic split-and-merge. This might be the
main reason for the higher SI scores generated by the Dynamic split-and-merge algo-
rithm, since the SI score generated on the benchmark clustering of wine quality data
set is −0.06. In the case of the Split-Merge Clustering the data points are grouped into
7 or 8 clusters, i.e. much closer to the benchmark clustering of wine quality data set.
The latter one has 7 clusters (see Table 1). This trend has been noticed also for the other
three data sets (see the discussion below about the results generated on antropometric
data set).
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(a) PivotBiCluster: 4 clusters,
SI = - 0.23, F-measure = 0.544

(b) Split-Merge Clustering: 5 clusters,
SI = - 0.05, F-measure = 0.594

(c) Dynamic split-and-merge: 3 clusters,
SI = 0.24, F-measure = 0.369

(d) Benchmark clustering: 6 clusters,
SI = 0.017

Fig. 3. Clustering solutions generated by the three studied clustering algorithms on an antropo-
metric 70/30 test data set couple versus the benchmark clustering.

Table 3. Experiment 1: Average cluster validation metrics scores generated on the clustering
solutions of the 10 wine quality test data set couples.

Metrics PivotBiCluster Split-merge clustering Dynamic split-and-merge

SI −0.111 −0.129 0.143

F-measure 0.676 0.461 0.311

Jaccard Index 0.269 0.143 0.137

The results obtained in the second experiment scenario are given in Tables 4, 5
and 6. For example, Table 4 presents the evaluations of the clustering solutions gen-
erated by the three algorithms on antropometric and yeast data sets with respect to
F-measure. The obtained results support the better performance of PivotBiCluster and
Split-Merge Clustering compared to the Dynamic split-and-merge. The PivotBiClus-
ter even slightly outperforms the Split-Merge Clustering with respect to this evaluation
criterion (F-measure).
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Table 4. Experiment 2: Average F-measure scores generated on the clustering solutions of the
4× 10 antropometric data set couples (above) and 4× 10 yeast test data set couples (below).

Antropometric 50/50 60/40 70/30 80/20

PivotBiCluster 0.677 0.624 0.544 0.676

Split-merge clustering 0.546 0.504 0.519 0.481

Dynamic split-and-merge 0.374 0.389 0.442 0.482

Yeast

PivotBiCluster 0.700 0.710 0.821 0.858

Split-merge clustering 0.576 0.522 0.496 0.489

Dynamic split-and-merge 0.419 0.423 0.426 0.410

In line with the results obtained on cover-type and wine quality data sets the
Dynamic split-and-merge outperforms the other two algorithms with respect to the SI
evaluation criteria (see Table 5). As it was already discussed above we believe that this
is due to the fact that it generates the clustering solutions with less number of clusters
compared to the other two algorithms. For example, we have compared the three algo-
rithms on the ten 60/40 test couples of antropometric data set. The number of clusters
of the clustering solutions generated by the Dynamic split-and-merge varies from 1 to
3, in the case of the PivotBiCluster all ten clustering solutions have 4 clusters, while the
Split-Merge Clustering has grouped the data points into 6, 7 or 8 clusters. Evidently,
the three clustering algorithms have generated clustering solutions with very different
number of clusters. However, the clustering solutions of the Split-Merge Clustering are
most close to the benchmark clustering of antropometric data set (Sect. 4.1), which has
6 clusters. This trend has been noticed also for the other three data sets (see the dis-
cussion on wine quality data set). Figure 3 further illustrates this by plotting clustering
solutions generated by the three algorithms on an antropometric 70/30 test data set cou-
ple. The corresponding benchmark clustering and its SI score are given in Fig. 3d. As
one can see the three algorithms have generated clustering solutions that have different
number of clusters. In addition, they have produced different SI and F-measure scores.
The clustering solutions produced by the Split-Merge Clustering (Fig. 3b) and Dynamic
split-and-merge (Fig. 3c) seem close to each other and they are visually more similar
to the benchmark clustering than the PivotBiCluster solution (Fig. 3a). This is also sup-
ported by the calculated SI scores. We further observe that the PivotBiCluster is the
worst performing algorithm according to SI on antropometric data set while its perfor-
mance on yeast data set is almost comparable to that of the Dynamic split-and-merge
algorithm. It is interesting to notice that the performance of the Split-Merge Clustering
is influenced by the size of the new data set, while this is not clearly demonstrated by
the other two algorithms, even in some experiments they have been improving their
performance.

The evaluations of the clustering solutions produced by the three algorithms on
antropometric and yeast data sets with respect to Jaccard Index are given in Table 6.
The Dynamic split-and-merge is the best performing algorithm with respect to this
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Table 5. Experiment 2: Average SI scores generated on the clustering solutions of the 4 × 10
antropometric test data set couples (above) and 4× 10 yeast test data set couples (below).

Antropometric 50/50 60/40 70/30 80/20

PivotBiCluster −0.344 −0.327 −0.231 −0.178

Split-merge clustering −0.212 −0.189 −0.108 −0.096

Dynamic split-and-merge 0.2 0.238 0.188 0.170

Yeast

PivotBiCluster 0.142 0.068 0.044 0.076

Split-merge clustering −0.061 −0.061 −0.048 −0.036

Dynamic split-and-merge 0.164 0.157 0.158 0.150

Table 6. Experiment 2: Average Jaccard Index scores generated on the clustering solutions of the
4× 10 antropometric data set couples (above) and 4× 10 yeast test data set couples (below).

Antropometric 50/50 60/40 70/30 80/20

PivotBiCluster 0.021 0.015 0.068 0.058

Split-merge clustering 0.077 0.164 0.107 0.074

Dynamic split-and-merge 0.156 0.199 0.119 0.094

Yeast

PivotBiCluster 0.014 0.022 0.034 0.020

Split-merge clustering 0.086 0.089 0.090 0.086

Dynamic split-and-merge 0.099 0.136 0.105 0.118

evaluation criterion. However, the generated values are very close to ones of the Split-
Merge Clustering, particularly for the 70/30 data test couples. It is also interesting to
notice that in contradiction to the behaviour of PivotBiCluster on cover-type and wine
quality data sets, it is the worst performing algorithm under Jaccard Index on antropo-
metric and yeast data sets.

In [31], Luxburg et al. argue that clustering should not be treated as
an application independent mathematical problem, but should always be stud-
ied in the context of its end-use. The authors further discuss that the clus-
ter evaluation methods can produce contradictory results and often do not serve
their purpose. The main point of the authors is that clustering algorithms can-
not be evaluated in a problem independent way, i.e. the known cluster val-
idation measures cannot be used to evaluate the usefulness of the linebreak
clustering. However, it is still not clear how we can measure the usefulness of a newly
developed clustering algorithm.

The results obtained in this study support the above mentioned arguments of
Luxburg et al. [31]. Namely, the conducted experiments have not clearly pointed out an
algorithm that we can consider and recommend as the best performing one compared to
the other two algorithms with respect to the used cluster validation criteria. For exam-
ple, SI has favoured the Dynamic split-and-merge algorithm in most of the performed
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experiments. On the other hand, the PivotBiCluster and Split-Merge Evolutionary Clus-
tering have generated higher values for F-measure than the Dynamic split-and-merge
algorithm. Moreover, the Split-Merge Clustering and Dynamic split-and-merge algo-
rithms have performed better compared to the PivotBiCluster algorithm with respect
to Jaccard Index on two of the used data sets. However, on the other two data sets the
PivotBiCluster algorithm is the best performing one under this evaluation criterion. The
PivotBiCluster has slightly outperformed the Split-Merge Evolutionary Clustering with
respect to F-measure. However, the Split-Merge Evolutionary Clustering algorithm has
shown to be more robust than the other two algorithms in producing clustering solutions
with cluster number close to that of the benchmark clustering solutions. Evidently, the
three clustering algorithms need to be further studied and validated on different applied
scenarios in order to get better understanding of their specific characteristics, behaviour
and further evaluate the usefulness.

6 Conclusion and Future Work

In this work, we have studied and evaluated a novel evolutionary clustering technique,
entitled Split-Merge (Evolutionary) Clustering. The proposed algorithm is supposed
to be more robust to concept drift scenarios by providing the flexibility to update the
existing clustering solution by considering the clusters derived from a new portion of
data. The proposed technique has been compared with other two state of the art clus-
tering algorithms: PivotBiCluster and Dynamic split-and-merge. The three algorithms
have been evaluated and demonstrated in two experiment scenarios on four different
data sets using three cluster validation indices: Silhouette Index (SI), F-measure and
Jaccard Index. The obtained results have not clearly prioritized any of the three studied
clustering algorithms. The Dynamic split-and-merge algorithm has been favoured by
SI in the most of conducted experiments. The PivotBiCluster and Split-Merge Evolu-
tionary Clustering have produced higher F-measure scores than the Dynamic split-and-
merge algorithm in all the experiments. The PivotBiCluster algorithm has demonstrated
a slightly better performance than the Split-Merge Evolutionary Clustering under this
evaluation criterion. Jaccard Index has not clearly pointed out an algorithm that can be
considered as the best performing one. The Split-Merge Evolutionary Clustering algo-
rithm has shown to be more robust to producing clustering solutions that have number
of clusters close to that of the benchmark clustering solutions.

Our future plans are to pursue further study and evaluation of our Split-Merge Evo-
lutionary Clustering technique by comparing it with the other two state of the art algo-
rithms on richer data sets and in case studies from different application domains. For
example, we are currently interested in evaluating the algorithms on household electric-
ity consumption data. We study whether they can be applied for modelling and moni-
toring evolving user behavior.

In a long-term perspective, we are interested in building upon the proposed split-
merge evolutionary algorithm and develop measures for monitoring clusters evolution
and mining changes. This might be treated as time-series forecasting problem where
we need to forecast the changes in the clustering solution that might occur. Other inter-
esting future direction is to use the proposed split-merge framework for developing a
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continual and shared learning technique that enable to learn from multiple data sources
by continual updating and evolving of the model.
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Abstract. For the last decade, Deep Reinforcement Learning (DRL) has under-
gone very rapid development. However, less has been done to integrate linear
methods into it. Our research aims at a simple and practical Wide and Deep
Reinforcement Learning framework to extend DRL algorithms by combining
linear (wide) and non-linear (deep) methods. This framework can help to inte-
grate expert knowledge or to fuse sensor information while at the same time
improving the performance of existing DRL algorithms. To test this framework
we have developed an extension of the popular Deep Q-Networks Algorithm,
which we call Wide Deep Q-Networks. We analyze its performance compared to
Deep Q-Networks and Linear Agents, as well as human agents by applying our
new algorithm to Berkeley’s Pac-Man environment. Our algorithm considerably
outperforms Deep Q-Networks both in terms of learning speed and ultimate per-
formance, showing its potential for boosting existing algorithms. Furthermore, it
is robust to the failure of one of its components.

Keywords: Wide and deep reinforcement learning · Wide deep Q-networks ·
Value function approximation · Reinforcement learning agents · Model fusion
reinforcement learning

1 Introduction

A prominent objective of Artificial Intelligence is to create rational agents which “act so
as to achieve the best outcome or, when there is uncertainty, the best-expected outcome”
[14, p. 6]. In the subarea of Reinforcement Learning (RL), the aim is to develop ratio-
nal agents that learn from their environment by seeking to maximize their outcomes
w.r.t. a reward system. RL agents, especially if based on a functional approximation
of the (action) valuations, have been able to accomplish different kinds of tasks such
as autonomous driving [8], playing games [11], and directing robots [7]. In the last
decade, RL has been developing very rapidly, especially in the area of Deep Reinforce-
ment Learning (DRL) [6].

Some RL agents incorporated linear and non-linear functions to improve and extend
the RL framework. Noteworthy examples include Stanford University’s early work on
an autonomous helicopter [8], where the agent learns to hover in place and to fly sev-
eral maneuvers by applying RL via linear function approximation. This implementation
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exhibits efficient training and solves as well as generalizes the problem of flying and
hovering. However, it also assumes implicitly that the problem is linearly solvable and
thus has limited use for real-world problems, which are often non-linear. In 2015, Deep
Mind’s algorithm enabled RL agents to successfully play 49 Atari games using a sin-
gle algorithm, fixed hyperparameters, and deep learning [11]. Most recently, RL agents
controlling robotic arms learned by applying similar principles to generalize from their
grasping strategies so as to respond dynamically to perturbations [7]. The used network
architectures are robust and can adapt to many real-world problems. However, they
inherit the already well-studied difficulties of structuring, parameterizing and training
neural networks that require a lot of computation power [4].

To the best of our knowledge, up to now researchers have mainly developed lin-
ear function approximation and deep learning approaches separately. However: Why
not combine linear function approximation and non-linear deep learning to improve
the performance of RL algorithms? Such a combination may be referred to as a wide
and deep approach. Here “wide” refers to the linear component, which is improved by
adding more features. The computations of this component remain “shallow,” though,
namely linear combinations. On the other hand, “deep” refers to the non-linear com-
ponent represented by an artificial neural network. The depth of this component is the
number of layers and it can be made more powerful by adding layers. Fortunately, a
wide and deep machine learning framework has already been developed in the field of
recommendation systems [2]. Our research aims to transfer this approach to RL and
thus to develop a framework that will make it easier for researchers to extend already
existing DRL algorithms. It may also be used for sensor fusion tasks, rendering the sys-
tem more robust w.r.t. sensor failures or collapse of one of the components.

To evaluate our framework we developed an extension of the popular Deep Q-
Networks (DQN) algorithm, which we call Wide Deep Q-Networks (WDQN). We
tested WDQN using a grid-based action game: Berkeley’s Pac-Man environment. We
chose this environment because it is highly scalable and computationally efficient. Fur-
thermore, playing Pac-Man is more difficult than may be expected at first sight and far
from trivial. Actually, the DQN results for this game are some of the worst among the
49 ATARI games and worse than the performance of professional human players [11],
even though they already manage to outperform amateur human players as our own
results indicate (see Sect. 5).

Using the simple idea of combining linear and non-linear learning approaches, we
demonstrate that our WDQN trained agent has a significantly higher winning rate and
produces much better results compared to solely linear or non-linear agents, and learns
faster compared to a pure DQN. In comparison to our past work [12], we now demon-
strate that combining both functions makes the non-linear model more efficient, as if
trained independently. In addition, the agent becomes tolerant to a failure of one of the
two functions.

The remainder of this paper is structured as follows: Sect. 2 briefly reviews lin-
ear function approximation and standard Deep Q-Networks. In Sect. 3 we present our
theoretical framework for wide and deep reinforcement learning, in which we develop
the core WDQN algorithm. In Sect. 4, we show how WDQN performs compared to
pure DQN, pure linear function approximation, and humans. For this, we explain how
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our test suite—Berkeley’s Pac-Man environment—works and present our experimental
setup for WDQN. Furthermore, we discuss extended experiments aimed at demonstrat-
ing that our agent is robust to the failure of one of its components. In Sect. 5 we report
the results of our experiments and finally we draw conclusions in Sect. 6.

2 Background

Our research builds on Reinforcement Learning (RL), especially Q-learning, which is
briefly reviewed in Sect. 2.1. In order to make it applicable to real-world problems,
functional policy map approximations are needed (Sect. 2.2), which can take a linear
form (Sect. 2.3) or the form of a deep neural network (Deep Q-Network), allowing for
non-linear functions (Sect. 2.4).

2.1 Reinforcement Learning and Q-Learning

RL agents receive feedback from their actions in the form of rewards that result from
their interaction with the environment. The agents aim to solve a sequential decision
problem by optimizing their (expected) cumulative future rewards [15]. One of the most
popular methods for this is Q-learning [6,16].

In Q-learning, a so-called quality map is created, which assigns to each pair of state
and action possible a so-called q-value. This value measures the quality (hence q-value)
of executing an action in a state. The q-values are denoted by Q(S,A), where S is a
state and A is an action. In a given state S, the agent chooses the action A∗ with the
highest q-value, i.e. A∗ = argmaxA∈A(S)Q(S,A), where A(S) is the set of actions
possible in state S. In many cases, the set of actions is the same for all states and may
then simply be denoted as A.

Initially, the quality policy is unknown (usually represented by all q-values being
0). The goal is to learn its values from experience, that is, by (randomly) trying out
actions (or sequences of actions) in various states, observing the reward, and updating
the q-values in the policy map accordingly. Instead of always choosing the action with
the highest q-value (which is how a fully trained agent behaves), here, this usually
requires a random element being introduced in order to ensure a proper exploration of
the state space. This random element is usually reduced over time as more information
is gathered.

Although very successful for small problems, a core challenge of tackling any real-
world problem with such an approach is the size of the state space. Thus, also the size
of the quality map, which is the number of states times the number of actions. Hence,
standard Q-learning alone cannot solve such problems [14], because the quality map is
simply too large to make learning feasible.

2.2 Functional Quality Map Approximations

A very popular way of tackling the challenge of the size of a quality map is to approx-
imate the q-values Q(S,A) by a function Q̂(S,A;θ), where θ is the set of parameters
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of this function. That is, instead of looking up q-values in a quality table (“material-
ized” quality map), which stores the (learned) q-values of all state/action combinations
explicitly, they are computed with a (parameterized) function from the properties of a
given state S and a considered action A. As a consequence, only the parameters θ need
to be stored and updated to account for reward information gathered from explorations.
This may also simplify the task of training (or estimating) the quality map (function)
considerably.

In such an approach, one has to specify how the state S and the action A enter
into the computation of the q-value Q̂(S,A;θ). Two schemes are typical: in the
first, the function Q̂ is composed of multiple sub-functions Q̂A(S;θA), one for each
action A ∈ A, each of which has its own set θA of parameters, with θ =

⋃
A∈A θA.

These functions take (numerical) features f(S) = [f1(S), . . . , fn(S)] as arguments,
which are generated from a given state S. These features are combined with the param-
eters θ, so that we have Q̂A(S;θA,f) in this case.

In the second scheme, which is sometimes referred to as a “reflective” agent, the
considered action A is hypothetically executed in the given state S to obtain (an approx-
imation of) an expected successor state s(S,A). This is in line with the characteri-
zation of thinking on a basic level as trial acting in a conceptional space in order to
evaluate the consequences of different possible paths of action. In this case, features
f(s(S,A)) = [f1(s(S,A)), . . . , f1(s(S,A))] are generated, from which the q-values
are computed by a single function Q̂(s(S,A);θ,f).

Note that in the first scheme the generated features depend only on the current state,
while the action enters the computation of the q-values via multiple functions, one for
each action. In the second scheme, however, there is only one function that computes the
q-values, while the action enters by hypothetical “trial acting”, thus obtaining multiple
states from which features are generated. In our application, we will make use of both
schemes (see Sect. 4).

Note also that employing differentiable functions for Q̂, such as linear combinations
of features or artificial neural networks (which allow for non-linear functions), offers
us the additional possibility of using Stochastic Gradient Descent (SGD) as an intu-
itive method to optimize the action value function Q̂. Then a Q-learning update after
executing action At in state St observing the immediate rewards Rt+1 and subsequent
state St+1 is given by

θt+1 = θt + α(yt − Q̂(St, At;θt)) ∇θtQ̂(St, At;θt), (1)

where α is a scalar step size (“learning rate”), θt are the values that the param-
eters θ of the function Q̂ have at time t, and the target function yt is defined as
Rt+1 + γ maxA Q̂(St+1, A;θt) [15]. A gradient descent scheme is applied to a loss
function derived from the difference of yt and Q̂(St, At;θt).

It should be noted, though, that convergence is a problem of a functional represen-
tation of the quality map: it is no longer guarantee that the learning process converges
to the optimal solution, even if enough time is available to explore the whole state space
(which, in case of large state spaces, is a fundamental problem as well). With a func-
tional approximation the danger arises that learning converges only to a local optimum.
For example, due to limited capacity or flexibility of the chosen functional representa-
tion of the quality map.
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2.3 Linear Function Approximation

The simplest approach to functional quality map approximation is via a linear combi-
nation of features f = [f1, . . . , fn]. The q-value function is then constructed, accord-
ing to the two schemes outlined in the preceding section: Either as Qlin

A (S;θlin
A ,f) =

f(S)�θlin
A , using a separate linear function for each action A. Or as a single function

Qlin(s(S,A);θlin,f) = f(s(S,A))�θlin, where the features are generated from hypo-
thetical successor states s(S,A), which are reached by executing action A in state S. In
both cases, we have [15]

ylin
t = Rt+1 + γ max

A
Q̂lin(St+1, A; θ̂lin

t ). (2)

Specifically for the second scheme (“trial acting”), we thus obtain

θlin
t+1 = θlin

t + α(ylin
t − Qlin(St, At;θlin

t ))f(s(St, At)).

Therefore it is a very simple matter to compute the update rule in this case. For the first
scheme the update rule is analogous but refers separately to the parameters θA of the
different linear functions, one per action A.

In practice, linear methods can be very efficient in terms of both data and computa-
tion. Nevertheless, prior domain knowledge is usually needed to create useful features,
representing interactions between features can be difficult, and convergence guarantees
are limited to linear problems [15].

2.4 Deep Q-Networks

A straightforward approach allowing q-values to depend in a non-linear way on state
features is to substitute a linear approximation function Q̂lin by a non-linear function.
This may be represented, for example, by an artificial neural network. However, this
first “naive” approach under-performed because of problems with non-stationary, non-
independent, and non-identically distributed data [11].

The Deep Q-Network (DQN) tackles these problems by using an experience replay
memory and target networks. A DQN relies on an Artificial Neural Network (ANN) to
map a state St to a vector of action values, again using either separate functions for each
action A (first scheme outlined in Sect. 2.2) or using “trial acting” (second scheme out-
lined in Sect. 2.2). The value function is Qdqn(S,A;θdqn), where θdqn are the parame-
ters (e.g. weights and bias values) of the ANN. The experience replay memory [10] saves
observed state transitions for some time in a dequeue. These transitions are later uni-
formly sampled and used to update the parameters θdqn. The parameters θ̂dqn of the tar-
get network Q̂dqn are copied from the online network every τ steps, setting θ̂dqn = θdqn,
while fixing θ̂dqn on all other steps. The target function of a DQN is [11]

ydqn
t = Rt+1 + γ max

A
Q̂dqn(St+1, A; θ̂dqn). (3)

The most important advantage of using Deep Q-Networks instead of linear functions is,
of course, their ability to represent or at least approximate a wide variety of non-linear
functions. Thus, the capacity and flexibility of functional quality map representations
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is considerably enhanced. These algorithms have been successfully extended in various
ways since their creation [6].

However, DQN and its variants inherit all the problems of artificial neural networks,
such as the difficulty of interpreting the decision making of the networks, the necessity
to tune multiple hyperparameters [4], and the complexity of the computation with no
guarantees of convergence [15].

3 Wide and Deep Reinforcement Learning

The core idea of our approach is to combine linear function approximation with Deep
Q-Networks. The former allows for simple incorporation of background knowledge
through expert-designed features. The latter accommodate non-linear functions and
have the added benefit that based on more basic properties of states, they may be able
to learn useful features in their internal structure. This can enhance the performance
of the agent considerably. In this section, we consider the structure (Sect. 3.1) and the
training procedure (Sect. 3.2) of such a combined approach, which we call Wide Deep
Q-Networks.

3.1 Structure of Wide Deep Q-Networks

Figure 1 shows the general structure of our Wide and Deep Reinforcement Learning
(WDRL) framework, which can be used for already existing DRL algorithms. This
framework consists of combining a “wide” component (left side) and a “deep” compo-
nent (right side). The “wide” component consists of a linear combination of features
and may be improved by increasing its width, that is, by adding features. The “deep”
component is an artificial neural network (ANN) and may be improved by adding lay-
ers and thus increasing its depth. Both components together compute the action values
a = [a1, ..., am].

Initially, the state S (or states s(S,A), one for each action A) is preprocessed to
obtain the features for the wide and the deep component. Since the needed features may
be different for each of these components, the preprocessing function φ may have to be
able to map the state S (or s(S,A)) differently for these components. Whether only the
current state S or several hypothetical successor states s(S,A) are evaluated, depends
on whether the first scheme (one function for each action A) or the second scheme
(“trial acting” and thus only a single mapping function to outputs) is used. Note that the
wide and the deep component may or may not use the same computation scheme. For
example, the wide component may use the second scheme (“trial acting”), while the
deep component may use the first scheme (separate function for each action).

For the first scheme, only the current state S is evaluated, which yields a feature
vector f(S) = [f1(S), . . . , fn(S)] or two separate feature vectors f lin and fdqn, one
for each component. In the wide component this feature vector is used directly, while
in the deep component it is first processed by the deep neural network, producing val-
ues x = [x1, . . . , xk] as the outputs of the output neurons ur1, . . . , urk, which enter
the computation of the action values a = [a1, ..., am]. In this case the parameters
θlin as well as the weights wdqn are matrices, that is, θlin = Θ = (θij) i=1,...,n

j=1,...,m
and
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Fig. 1. Wide and Deep Reinforcement Learning Framework showing the connections from the
outputs of the wide and deep components to action value ai, i = 1, . . . ,m. These connections are
weighted with different parameter vectors θlin

i and wdqn
i for each output ai if the first scheme

described in Sect. 2.2 (and hence only the current state S) is used, and with single parameter
vectors θlin and wdqn for the second scheme (where computations are separated for each action A
and therefore state s(S,A)).

wdqn = W = (wij) i=1,...,n
j=1,...,m

. If both components use this scheme, the action values are

computed as a = f�Θ + x�W.
For the second scheme, the hypothetical successor state s(S,A) is constructed for

each action A and evaluated by computing features, which yields a feature matrix
F(S,A) = (fij) i=1,...,n

j=1,...,m
with fij = fi(s(S,Aj)) (or two separate feature matri-

ces Flin and Fdqn, one for each component). For the wide component, this feature
matrix is used directly, while for the deep component it is processed row by row by
the deep neural network, yielding an output matrix X = (xij) i=1,...,n

j=1,...,m
. In this case,

the parameters θlin as well as the weights wdqn are simple vectors (“shared” weights):
θlin = [θ1, . . . , θn] and wdqn = [w1, . . . , wn]. If both components use this scheme, the
action values are computed as a = F�θlin + X�wdqn. Note again that it is not
required for both components to use the same scheme. If the wide component uses the
second and the deep component uses the first scheme, the action values may be com-
puted as a = F�θlin + x�W. In the experiments reported in Sect. 4 we actually use
this mixed approach.

The advantage of this framework is that it flexibly combines both linear and non-
linear methods in order to obtain better, faster and more comprehensive results using
DQN algorithms. Cheng et al. [2] already showed that such a wide and deep learning
model is viable and significantly improves the results for recommendation systems.



Wide and Deep Reinforcement Learning Extended for Grid-Based Action Games 231

Table 1. Semi-ensemble training algorithm for WDQN [12].

Initialize: replay memory D to size N ;
action-value functions Qwd, Qlin, Qdqn

with random weights θwd, θlin, θdqn, respectively;
target action-value functions Q̂wd, Q̂lin, Q̂dqn with weights

θ̂wd = θwd, θ̂lin = θlin, θ̂dqn = θdqn, respectively;
for episode = 1 to M

initialize sequence S1 = [x1];
preprocess sequence φ1 = φ(s1)
for t = 1 to T

with probability ε select a random action at ∈ At

otherwise select at = argmaxaQwd(φ(s1), a;θ
wd);

execute action at, observe reward Rt and image xt+1;
set St+1 = St, at, xt+1 and preprocess φt+1 = φ(St+1);
store transition (φt, at, Rt, φt+1) in D;
sample random mini-batch of transitions (φt, at, Rt, φt+1) from D;
set ydqn

j , ylin = rj for terminal φ(Sj+1) and non terminal φ(Sj+1):
ydqn
j = Rt+1 + γ maxA Q̂dqn(St+1, A; θ̂wd),

ylin
j = Rt+1 + γ maxA Q̂lin(St+1, A; θ̂lin);

perform gradient descent on (ydqn
j − Q(St+1, a;θ

dqn))2 and
(ylin

j − Q(St+1, a;θ
lin))2 with respect to θlin and θdqn;

every C steps reset θ̂lin = θlin, θ̂wd = θwd and θ̂dqn = θdqn;
end for

end for

As a consequence, an analogous approach could yield improvements in this domain
as well.

Note that this structure may also be used for approximating simple state valuations
instead of a quality map. Formally, this results from a combination of a state S with
a simple parameter vector θ and w, or by using a single dummy null action A. Here,
however, we focus on approximating quality maps.

3.2 Training Wide Deep Q-Networks

In order to train a combined functional representation, two approaches can be imple-
mented. The first approach is called joint ensemble training and executes stochastic
gradient descent (SGD) jointly for the linear and non-linear functions. That is, the gra-
dient directing the parameter changes is computed from the joint influence that the wide
and deep component have on the error.

The second approach may be called semi-ensemble training. Here SGD is executed
separately for the two component functions. That is, the wide and the deep compo-
nent produce separate errors and their parameters are then adapted using separate SGD
processes. However, this does not lead to independent training of the two components
(which is why it is still a form of ensemble training), because predictions of the wide
and the deep component influence each other [2]. The reason is that the outputs of the
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wide and the deep component are combined for generating the actions of the agent, cre-
ating experiences that are influenced by both components and subsequently considered
during the training for both components. Therefore errors made by one component also
influence the other component, namely through the generated training examples.

What both approaches, joint ensemble training and semi-ensemble training, have
in common, however, is that both use the combined suggestions of the linear and non-
linear function to determine the action to execute.

In our case, DQN algorithms are extended by integrating the wide component Qlin

with the deep component Qdqn creating the combined function Qwd, needed for our
Wide Deep Q-Networks (WDQN) algorithm. For our WDQN, the wide component
uses the target function for the linear combination of features shown in Eq. (2). Mean-
while, the deep component uses the target function of Eq. (3). Therefore, the combined
function is Qwd(St, At;θwd) = Qlin(St, At;θlin) + Qdqn(St, At;θdqn), where θwd

comprises the parameters of the wide and the deep component: θwd = θlin ∪ θdqn.
The update step can easily be inferred from Eq. (1). Each layer of the artificial neural

network (see the box labeled “deep component” in Fig. 1) performs a standard neuron
activation computation x(l) = fact(W(l)x(l−1) + b(l)), where l ∈ {2, . . . , r} is the
layer index, fact is a neuron activation function (e.g. a sigmoid or a ramp function), and
x(l), b(l), and W(l) are the activations, bias values, and connection weights, respec-
tively, of the l-th layer. The output of the deep neural network are the activations x(r)

of its last (r-th) layer.
For the computation of (the contribution to) the action values (connections from

the neurons ur1, . . . , urk to the action values a1, . . . , am), however, a simple linear
computation is used: a = Wx(r) + b(r). That is, there is no activation function. A
concrete example of a WDQN is discussed in Sect. 4.4.

For the joint training, the algorithm remains almost identical to the original DQN
algorithm. Only the online Qdqn and target network Q̂dqn need to be replaced by Qwd

and Q̂wd, respectively. The target is defined as

ywd
t = Rt+1 + γ max

A
Q̂wd(St+1, A; θ̂wd), (4)

where θ̂wd are the target parameters of the combined function [12]. Stochastic gradient
descent (SGD) is then executed directly on this joint function.

For semi-ensemble training, the algorithm needs to save the resulting action values,
but also the separate outputs of the wide and the deep component (see the algorithm in
Table 1). Although actions are chosen by the combined function Qwd, SGD training is
executed in this case separately on Qlin and Qdqn by implementing both targets from
Eqs. (2) and (3).

4 Experiments

In order to evaluate our framework and to compare different agents and training proce-
dures, we chose to train agents for grid-based actions games. As a specific example
we used the well-known Pac-Man game, even though the approach is easily trans-
ferable to other grid-based action games. We first recall the basic gameplay of Pac-
Man (Sect. 4.1) and then describe UC Berkeley’s Pac-Man environment [3] (Sect. 4.2).
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Fig. 2. Initial states of the small (a) and medium (b) maps of Berkeley’s Pac-Man environment.
Map (c) shows shows a last dot that has to be eaten in order to finish the game [12]. (Color figure
online)

Section 4.3 briefly reviews basics of convolutional neural networks, which we use for
the deep component of our WDQN approach. Section 4.4 describes the setup of our
concrete experiments. In Sect. 4.5, we discuss the problem of learning to eat ghosts and
in Sect. 4.6 we describe extended experiments that we added compared to [12].

4.1 The Pac-Man Game

Pac-Man is a classic computer game that was originally released by the Japanese com-
pany Namco in 1980. A human player controls an agent, the Pac-Man, by steering it
through a grid-based maze, moving it horizontally or vertically to neighboring grid
cells, unless such a cell is occupied by a wall of the maze. Example maps of such a
maze (smaller than that used in the original game, but employed in our experiments)
are shown in Fig. 2. Pac-Man is the yellow agent.

Initially, the maze is largely filled with many small dots, known as Pac-Dots, and
a few larger dots called Power-Pellets (e.g. in the corners of the maze in Fig. 2(b)).
Both serve as “food” and are collected by Pac-Man if it moves over them. Additionally,
ghosts rove the maze, shown in red and blue.

The goal of Pac-Man is to score as many points as possible by eating Pac-Dots and
Power-Pellets. When a Pac-Man meets with ghost on the same square, the game is lost.
Therefore, one goal is to avoid collisions with ghosts. This situation changes when Pac-
Man eats a Power-Pellet; at this moment all ghosts are rendered edible for a limited
period of time, which is indicated by a color change. During this time, colliding with a
ghost does not lose the game but gives extra scores instead and removes the ghost. Eaten
ghosts reappear at their initial position as inedible ghosts (that must again be avoided).
An episode is finished when Pac-Man has eaten all Pac-Dots (see Fig. 2(c), in which
only one dot is left to be eaten to finish the game) or gets killed by an inedible ghost.

In the original version of the game, additional fruit appears at random, granting
bonus score when eaten. Further, it features a bigger map and four ghosts. A fully
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realistic Pac-Man environment based on the original game is Atari’s Ms. Pac-Man,
which was used in Mnih et al. [11] and Hasselt et al. [5]. However, this environment
requires image processing to analyze a pixel-based image of the maze as input and
to derive the locations of Pac-Man, the ghosts, the Pac-Dots and the Power-Pellets.
In order to sidestep this additional complication, we rely on an open source Pac-Man
environment made available by UC Berkeley. We made this choice, since our goal is
not to use a fully realistic simulator to achieve superhuman results, but rather to have a
scalable and computer efficient environment to test our Deep and Wide Reinforcement
framework.

4.2 UC Berkeley’s Pac-Man Environment

The Pac-Man environment of UC Berkeley is suitable for our purposes, because it
guarantees scalability providing customizable map sizes. Moreover, the preprocessing
of the game states is more efficient than using raw pixel images as input, because it
allows reading the state of the grid cells directly. We test our approach only on small
and medium maps (see Fig. 2) due to limitations of computing power for the time-
consuming training.

In both of the maps shown in Fig. 2(a) and (b), Pac-Man starts in the bottom middle
part of the map. The map also contains two ghosts, many Pac-Dots, and two Power-
Pellets. The room where the ghosts start and reappear if they get eaten, is in the middle
of the maze for the medium map and at the top of the maze for the small map. Eating
a Power-Pellet disables the ghosts for 40 units of time, where one unit of time (or one
time step) is the time needed by Pac-Man to move from one grid cell to a neighboring
one.

We employ the original reward system of UC Berkeley’s environment for scoring.
The initial score is zero and resets after each episode. Eating a Pac-Dot or a Power-Pellet
scores 10 points. For each ghost that is eaten during the time they are disabled after a
Power-Pellet has been eaten, the agent scores 50 points. In order to avoid stagnation,
1 point is deducted for each time step spent in the game. At the end of an episode,
Pac-Man either wins by eating the last Pac-Dot, scoring 100 points, or loses by getting
killed by a ghost, forfeiting 500 points.

Apart from providing access to grid cell content, UC Berkeley’s Pac-Man environ-
ment also provides certain features, which are suitable for use in an agent based on
linear function approximation. We use a bias and three features:

1. #-of-ghosts-1-step-away (g): states the number of ghosts one step away (i.e. on a
neighboring square); this feature does not differentiate between active (dangerous)
and disabled (“edible”) ghosts, though.

2. eats-food (f): true if the square, to which an action moves the Pac-Man, contains
food and there is no ghost on a neighboring square (i.e., g is 0).

3. closest-food (c): states the distance to the closest food (measured as the Manhattan
distance between Pac-Man’s position and the food), which often coincides with the
number of steps Pac-Man needs to reach the food.

Note that the third feature, in a “trial acting” approach (see Sect. 2.2), indirectly pro-
vides information about the direction in which Pac-Man may have to move in order to
reach the closest food.
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4.3 Convolutional Neural Networks

In order to easily process grid-based action game states as input, we chose a convolu-
tional neural network (CNN) for the Deep Q-Network as well as for the deep component
of our Wide Deep Q-Network. CNNs were originally developed for processing images,
which is very similar to processing a game screen.

In a CNN, the input as well as each layer is a three-dimensional neuron array, with
two dimensions referring to the image dimensions and a third dimension referring to
different pieces of information per pixel. This third dimension is usually referred to as
channels for the input (e.g. color channels for images) and as filters for the subsequent
layers. In a CNN each neuron receives input not from all neurons of the preceding
layer, but only from a limited subset of neurons that are spatially co-located, called
the receptive field of the neuron. Furthermore, the connection weights are shared for all
neurons in the same filter. In this way a layer of a CNN implements several convolutions
(with the receptive field specifying the convolution kernel size), namely one per filter.

Such a network can more easily learn the occurrence of localized features that,
however, may appear anywhere in the input. This is an advantage compared to fully
connected neural networks having the same amount of layers [4]. A CNN also has the
advantage that it accelerates training due to the reduced number of parameters (com-
pared to fully connected layers). Reassuringly, the use of CNNs has been a standard
tool for DRL research for some time [5,6,11].

Figure 3 shows the WDRL framework for our specific use case—that is, playing
grid-based action games like Pac-Man—that uses a CNN architecture for its deep com-
ponent (as well as for the pure DQN agent). In order to save computational power, we
do not use a raw pixel image as input for the DQN and the deep component of our
WDQN.1 Rather, we use the maze grid directly and construct the input as a tensor that
stacks six binary matrices, indicating for each grid cell whether it contains (1) ghost,
(2) wall, (3) Pac-Dot, (4) Power-Pellet, (5) Pac-Man and (6) “edible” ghost [13]. These
matrices are easily retrievable for each state and are a distinctive feature of UC Berke-
ley’s Pac-Man environment.

This direct access allows us to bypass the interpretation of a raw pixel image of
the game screen and therefore avoids all image analysis and processing problems. The
input tensor, therefore, has the dimensions w × h × 6 (see Fig. 3) and permits a fast
identification of important game elements.

The CNN we use as the deep component of our WDQN has two convolutional lay-
ers and one fully connected layer that finally connects to the four outputs. The first layer
applies 16 filters with kernel size 3 × 3 with full padding of the input and stride 1 (in
order to maintain the grid dimensions w and h), while the second applies 32 filters with
kernel size 3 × 3, also with full padding and stride 1. The fully connected layer has
k = 256 neurons.

This architecture permits us to keep the network small but with the capacity of
making complex decisions. By using convolution kernels of size 3 × 3 in two layers,
which results in a 5× 5 field of view in the input, the agent can “see” at least two steps
away from its current cell. This is important to avoid being killed by a ghost. The two

1 For agents that learn directly from pixel images, see [5,11].



236 J. M. Montoya et al.

state S

state s(S, A)

f c g b

linear features

wide component

w

h 6

h 16

h 32

3
3

3
3

u1 u2 ukk=256

neural network features

d
ee
p
co
m
p
o
n
en
t

lft rgt up dn

θlin Wdqn

action values

Fig. 3. Wide Deep Q-Network for the Pac-Man experiments with wide (linear) and deep (CNN)
components. The connection parameters are shared for the wide component (vector θlin), while
the output neurons are fully connected to the action values (matrix Wdqn). The linear features
are those described in Sect. 4.2 (i.e. eats-food f, closest-food c and #-of-ghosts-1-step-away g)
plus a simple constant bias b.

layers with a depth of 16 and 32 dimensions, respectively, allow the agent to be able
to abstract from a combination of 32 different base maze patterns. A similar architec-
ture was implemented for a DQN in [13] and was confirmed to be effective during our
preliminary experiments.

4.4 Experimental Setup

In our experiments, we compare agents based on a linear function approximation, a pure
Deep Q-Network (DQN), and our Wide Deep Q-Network. All of these agents produce
values for the same set of four actions, i.e. the four possible directions in which Pac-
Man can move: left, right, up, down (see Fig. 3).

To tune the hyperparameters of the agents and their training process, we performed
around 100 preliminary experiments for the linear and DQN agent in different maps.
Among the hyperparameters we adjusted are the size of the experience replay memory,
the learning rates, the update rate of the target function, the network structure, and the
exploration value ε with its final exploration frame. We consistently maintained the final
hyperparameters shared between the linear and DQN agent. Afterward, we used these
hyperparameters for the WDQN. However, our pure DQN agent does not use the same
hyperparameters but rather the algorithm structure as described in [11].

The linear function approximation agent chooses, in state St, the action that likely
yields (according to the current approximation of the quality map) the highest q-value
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in the next state St+1 (using “trial acting”, see Sect. 2.2). The training of this linear
function approximation follows the DQN’s algorithmic structure (i.e. target function,
memory replay etc.).

Figure 3 shows our Pac-Man WDQN structure: The wide component (left) pro-
cesses the features for the linear function approximation (obtained via “trial acting”, that
is, from hypothetical states s(S,A)), while the deep component (right) is provided with
the image-like representation of the map (in tensor form as described above), which is
to be processed by the CNN.

The WDQN is trained using semi-ensemble training based on the knowledge about
learning rates obtained for linear function and CNN from the preliminary experiments.
The linear features described in Sect. 4.2 are used for the wide component in different
combinations. We test our WDQN with different wide components, using only one,
two, or all three feature(s), respectively:

1. An agent denoted by WDQN[f,c,g] combines all three available features with the
CNN-based DQN. This is the fully-fledged WDQN agent.

2. An agent denoted WDQN[g] that uses only the feature #-of-ghosts-1-step-away (g),
which helps to avoid ghosts and thus to survive the game.

3. An agent denoted by WDQN[f,c] that omits the feature #-of-ghosts-1-step-away (g).
Although this features helps to avoid ghosts, we conjectured that it may also prevent
the agent from learning to eat ghosts (see below). The other two features closest-
food (c) and eats-food (f) are maintained.

The deep component uses the ADAM optimizer [9] and a learning rate of 0.001. In the
wide component, we apply standard SGD with a learning rate of 0.1.

In order to guarantee transparency and reproducibility, our Python code using Ten-
sorFlow, is available on GitHub.2 Following the recommendations of Henderson et al.
[6], this also includes the exact description of the used hyperparameters and random
seeds.

The actual training was done on a server with an NVIDIA Titan GPU, which allows
for high parallelism and speedy training. Nevertheless, we confined our experiments
to the small and medium maps (see Fig. 2) in order to limit the computational over-
head of processing the input and the back-propagation training of the deep component.
Even with these restrictions the training takes considerable time. One training run, with
11,000 episodes, took about two hours for the small map and four hours for the medium
map.

We found that the learning curve (score) started to stagnate after around 11000 train-
ing episodes. Therefore, we chose this value as the training limit for the final experi-
ments. In order to compare the agent’s performance, we use the averaged score and
the win rate of each agent from 100 episodes. Finally, we repeat multiple randomly
seeded experiments with the same hyperparameters for each selected agent to guarantee
consistency.

2 https://github.com/JuanMMontoya/WDRL-ext.

https://github.com/JuanMMontoya/WDRL-ext
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4.5 The Problem of Learning to Eat Ghosts

When observing the linear agent, we noticed that it does not eat ghosts. One reason for
this behavior could be the inability of #-of-ghosts-1-step-away to distinguish the ghost
type. This creates a dichotomy: either learning to eat ghosts or to avoid them. Since
the reward incentives are higher to survive, the agent evades them. However, eating
ghosts is highly desirable, because it allows the agent to achieve higher scores due to the
comparatively high rewards received from eating ghosts. However, the original DQN
algorithm also did not learn to eat them [11], which explains to some extent the poor
scores of DQN in this game. Furthermore, the DQN agent received a clipped reward of
either +1 or −1 at each state St. For example, the agent gets 1 point for eating either
a ghost or a Pac-Dot, and a negative score (−1 point) for dying. The agent, therefore,
did not learn the significance of eating ghosts because of the indistinctive reward [5].
However, the agent did learn to eat disabled ghosts in two other approaches: Hasselt
et al. [5] tackled this problem by adaptively normalizing the targets of the network,
making it possible to process all types of rewards. Meanwhile, van der Ouderaa [13]
used the incoming reward of Berkeley’s environment at each state St to train the DQN
algorithm. For our approach, we use van der Ouderaa’s method, because it keeps our
implementation as small as possible and because it was successfully tested using the
same reward system.

Whether Pac-Man eats ghosts or not may strongly influence the score. Hence, we
measure this in our experiments by observing at least 10 games for each of the selected
agents. We consider that an agent has learned to eat ghosts when it actively hunts the
edible ghosts and not only eats them purely by chance.

4.6 Extended Experiments

The agent’s actions are memorized as replays, which are buffered and used later to
change the agent’s actions again. Hence there is a mutual dependency of the actions the
agent takes and the available training data. Unfortunately, in the preliminary results, it
cannot be distinguished whether a good (or bad) performance of an agent is caused by
good (or bad) replays. Further, replays of another source might be special examples,
which might help to overcome a situation where an agent is stuck and unable to signif-
icantly improve its performance.

As we use two components within our agent, we developed the idea to try to turn
the wide component off and on again. This creates replays for both a pure DQN and a
WDQN and thus forces the deep component to work independently (namely when the
wide component is switched off). This approach has both similarities with as well as
differences to the work of Bohez et al. [1] on fusing sensors in DRL: On the one hand
both approaches should result in models that are more robust towards sensor or even
model failures. On the other hand Bohez et al. apply two non-linear models and test it
in a robotic setup, while we apply one linear and one non-linear model in a simulation.

In our extended experimental setup, the wide component is first active for 3000
episodes and then alternatingly switched off and on again for 1000 episodes each. More
precisely, the training starts with a random exploration phase of 800 episodes, then
uses more and more replays created by the movements of the agent. At episode 2000,
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Fig. 4. Each agent is evaluated during training on the small (left side) and medium map (right
side). Five randomly seeded training sessions are conducted for each agent with the same hyper-
parameters for 11,000 episodes and averaged pointwise [12].

the replay buffer does not contain any random exploration instances anymore. After
another 1000 episodes we switch off the wide component for the first time, lasting
1000 episodes. During this time, the WDQN agent relies exclusively on the deep com-
ponent, but uses the buffered replays created by the actions of the full WDQN agent. At
4000 episodes, the wide component is switched on again, after 5000 episodes switched
off etc. Thus, we force the models be able to work independently as well as jointly,
hoping that in this way the components benefit from both experiences and are trained
better. In the end, we evaluate all of our WDQN models twice: once with an activated
wide component (WDQN[g], WDQN[f,c], and WDQN[f,c,g]) and once with a deacti-
vated wide component (DQN[g], DQN[f,c] and DQN[f,c,g]). The latter are DQN mod-
els (deep components) which used wide components and their replays during training,
but were evaluated as stand-alone DQN models.

5 Results

For reliability, we have repeated all of our experiments at least eight times. The visu-
alizations in Figs. 4 and 5 average over these repetitions. Figure 4 shows the scores for
each agent on the small (left side) and medium map (right side) during training. The
linear agent learns faster than all other agents but stabilizes once a certain threshold
is reached. For the small map, this threshold is at a score of about −100 points and
is reached after only 2200 episodes. For the medium map, training is completed even
faster: The score converges at 200 points after only 1900 episodes. All other agents use
a neural network, which takes longer to train but then they exceed the score threshold
of the linear agent.

The DQN and WDQN[g] agents are the slowest learning agents in our experiments.
On the medium map, they behave similarly: They reach the quality of the linear agent
after 4900 to 5700 episodes but afterward can only increase their score slowly. On the
small map, similar training results are attained for 5000 episodes. But DQN surpasses
the score threshold earlier and in further training extends its lead, gaining scores above
100, while WDQN[g] stays around zero. We conjecture that the feature [g] makes Pac-
Man too scared of ghosts.
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Table 2. Win rate, average total score, average score when the agent won (score+), average
score when the agent lost (score−) for the small and the medium map, as well as whether the
agents learned to eat ghosts. The agents presented are the linear function approximation, the
random agent, a human amateur player, as well as the DQN and WDQN with 3, 2 and 1 features
respectively. For each algorithm, the best training run is chosen and evaluated for 100 episodes.
The human amateur played 100 games.

Small map Medium map Eats ghost

Wins Score Score+ Score− Wins Score Score+ Score−
Linear 17 −114.6 572.3 −255.3 54 481.6 933.1 −48.5 No

DQN 32 105.0 608.8 −132.0 47 625.3 1005.4 288.2 Yes

WDQN[g] 50 211.6 550.7 −127.5 61 618.6 879.9 210.1 No

WDQN[f,c] 60 350.6 639.5 −82.7 66 733.5 973.9 266.8 Yes

WDQN[f,c,g] 59 293.2 567.9 −102.1 64 669.9 910.4 242.3 No

Human 11 −99.3 601.1 −185.9 12 125.1 957.8 11.5 Yes

Random 0 −462.8 n/a −462.8 0 −443.8 n/a −443.8 No

The agents with two and three features (green and blue) learn faster than the other
neural network based agents. On the medium map, their scores always differ less than
100 points. On the small map, these agents reach the threshold of the linear agent’s
performance after around 4500 episodes. WDQN[f,c] performs better than the agent
with three features in the early episodes but is outperformed afterward. WDQN[f,c] is
only able to narrow the performance gap toward the end, scoring more than 200 while
WDQN[f,c,g] fluctuates around 240.

At episode 4000, WDQN[f,c,g] scores about 100 points less than WDQN[f,c].
However, between episode 4000 and 8000, WDQN[f,c,g] trains clearly faster than
WDQN[f,c]. One may speculate that this is caused by certain replays which help to
overcome the slow training between episodes 2000 and 4000. This effect continues,
even after WDQN[f,c,g] exceeds the performance attained by WDQN[f,c].

The scores for the medium map are generally higher compared to those for the
small map. This is not surprising as the bigger map uses a larger grid that contains more
Pac-Dots allowing a higher maximal score. Furthermore, Pac-Man has more space to
evade ghosts, as the map also uses (only) two ghosts. Overall, the agents with a wide
component using the features [f,c] outperform the DQN in both maps. This performance
gap is bigger in the medium map.

Table 2 shows the winning rate and averaged score for WDQN, DQN, random and
linear agents, and human players on the small and medium map for 100 episodes.
We refrain from showing the standard deviation of the score, as this would implicitly
assume a single mode distribution. However, since 100 points are scored for winning
and 500 points forfeited for losing, the distribution is clearly bimodal. Thus, the disper-
sion is better captured by showing the average scores for episodes won (score+) and
episodes lost (score−). In contrast to Figs. 4 and 5, Table 2 shows results from the best
training run of each agent, not the average. The score is computed as the average over
100 episodes.
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Fig. 5. Results of normal and switch training, on the left side for the small map, on the right side
for the medium map. The pure DQN is shown in all plots as a comparison. Each row contains the
curves measured for one version of the WDQN agents and for the corresponding agent, when the
wide component is switched on and off. A white background indicates episodes during which the
wide component was deactivated in the switch training approach. The top row shows WDQN[g],
middle row WDQN[f,c] and bottom row WDQN[f,c,g]. (Color figure online)

The ability to eat ghosts does not depend on the map. The linear agent, the human as
well as all agents without the feature [g] eat ghosts, while the others do not. As expected,
the random agent performs badly on both maps and only establishes a baseline. For the
human row, we selected the best player of a round-robin tournament with 9 volunteers
(see our GitHub repository for the recorded human’s games). This demonstrates that
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Table 3. Results on the small map comparing normal and switch training. WDQN models are
evaluated twice. Once, as before, with the active wide component and once when it is deacti-
vated during testing. When deactivated, we call it DQN[x], with x being the set of wide fea-
tures used during training. For each algorithm, the best training run is chosen and averaged over
100 episodes.

Normal training Switch training

Wins Score Score+ Score− Wins Score Score+ Score−

DQN 32 105.0 608.8 −132.0

WDQN[g] 50 211.6 550.7 −127.5 41 149.9 558.3 −133.8

WDQN[f,c] 60 350.6 639.5 −82.7 65 408.6 643.8 −28.4

WDQN[f,c,g] 59 293.2 567.9 −102.1 65 319.1 557.7 −124.1

DQN[g] 0 −333.4 n/a −333.4 36 197.7 660.1 −62.4

DQN[f,c] 6 −258.3 560.0 −310.5 38 233.1 658.0 −27.2

DQN[f,c,g] 2 −130.6 617.5 −145.8 30 91.0 598.1 −126.4

Table 4. Results for normal and switch training, here for the medium map.

Normal training Switch training

Wins Score Score+ Score− Wins Score Score+ Score−

DQN 47 625.3 1005.4 288.2

WDQN[g] 61 618.6 879.9 210.1 36 376.2 831.6 120.0

WDQN[f,c] 66 733.5 973.9 266.8 63 670.2 974.3 152.5

WDQN[f,c,g] 64 669.9 910.4 242.3 71 684.0 909.1 132.7

DQN[g] 51 626.8 976.2 263.1 45 534.7 907.6 229.6

DQN[f,c] 22 375.6 930.1 219.2 55 645.9 992.5 222.4

DQN[f,c,g] 13 162.5 846.7 60.2 47 596.6 968.9 266.4

the problem is not trivial for humans. However, the human amateur plays better than a
random agent and wins 11 times on the small and 12 times on the medium map. When
winning, the scores are high. However, the remaining 88 and 89 losing episodes cause a
low average score. The linear agent is about as bad as the human on the small map win-
ning only 17 of 100 games. On the medium map, on the other hand, it wins 54 episodes,
scoring 933 points on average. Unfortunately, when losing, it scores −48 points on
average—resulting in an overall average score of 481. WDQN[f,c], WDQN[f,c,g] and
WDQN[g] show the highest win rate and excellent average scores for both maps. DQN
wins less often, but achieves the best score+ of more than 1000 and also the highest
score− of 288 on the medium map. With only 32 wins, the win rate on the small map is
too low to enter the top ranks. Best ranked here are again the WDQN agents, achieving
50 to 60 wins. DQN’s score+ is second highest with 608. So if winning, the DQN agent
gets a high average score that may also be caused by its ability to eat ghosts.
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The influence of feature [g] can be seen in two comparisons: (1) In DQN vs.
WDQN[g] we see that [g] increases the win rate but lowers the average scores. It fur-
ther removes the ability to eat ghosts. (2) WDQN[f,c] outperforms WDQN[f,c,g] in all
measures, even in win rate. Here, [g] reduces the quality in the long run. Overall, the
wide and deep model beats the purely deep one.

Figure 4 and Table 2 present almost equivalent outcomes. Yet, the most notable dif-
ference is that when averaging over the repetitions WDQN[f,c,g] in Fig. 4 (left side) is
the best. When taking the model with the highest win rate (Table 2), the best scores in
are produced by WDQN[f,c].

Tables 3 and 4 compare the results of normal and switch training for the WDQN
models. The top left (normal training) parts are shown again to simplify the comparison
with the switch training on the right. The bottom three rows contain the evaluation
results when the wide component is inactive.

Starting with the small map, the switch training of WDQN[g] has a lower win rate—
reduced from 50 to 41 wins—and similar values for score+ and score−. Thus, the over-
all score is reduced from 212 to 150. The other two wide and deep models improve
their win rates. Although WDQN[f,c,g] has reduced score− and score+, the overall
score improves by 26 points. The switch training on WDQN[f,c] boosts its score−,
while score+ stays roughly the same. This results in an overall score of 408 points—the
best performance on the small map.

Testing the WDQN models without their wide component, when they were never
trained this way, may seem unfair, but builds a baseline for the question as to which of
the two parts of the model is more important. On the small map, the deep component
is lost without the wide part, winning only zero to six of 100 games and when losing,
forfeiting up to 333 points per match.

With switch training, the comparison is fair, as the models were at least trained for
some episodes on the identical task. This pushes the win rate to values between 30
and 38 and high scores for score+ around 660. Compared with the pure DQN model
at normal training, this shows extraordinary performance and indicates that the DQN
model alone cannot reach its peak performance without the examples created by the
WDQN model.

On the medium map (Table 4), there are some differences: The switch training for
the WDQN models decreases their score− by approximately 100 points, keeps the
score+ constant for the two and three feature model and reduces the score+ by nearly
50 for WDQN[g]. The latter’s win rate decreases from 61 to only 36 making its score
even worse than that of the linear model.

The DQN models with normal training show surprisingly good results, although
they were trained with an active wide component and tested without. While on the
small map the win rates were below 10 out of 100, here they are 13 (for [f,c,g]), 22 (for
[f,c]) and even as high as 51 (for [g]) out of 100 episodes. The latter is even on a similar
level as plain DQN, which seems to be caused by its wide component using only one
feature.

Switch training improves the two and three feature DQN models to win rates of 47
and 55 out of 100, while DQN[g] loses 6. Score− is very good with values over 220,
especially when compared with WDQN, whose scores are always below 160. Here,
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deactivating the wide component seems to make the agents play more cautiously, being
caught by the ghosts later in the match, after more Pac-Dots are already eaten. The
average score when winning is also increased between 18 and 76 points. Only the win
rates tend to be smaller.

Just like for the small map, the DQN can reach a higher quality when trained with
additional wide features, and performs best when those features are [f,c]. Models with
active wide components show higher win rates with and without switch training. The
results are inconclusive w.r.t. the question whether switch training or normal training is
better—it seems to depend on the wide features as well as on the map size.

Figure 5 compares the performance of the models when the wide component is
always off (DQN), when the wide component is always on (WDQN), and when the
wide component is switched on and off (switch). In contrast to the Tables 3 and 4, the
average models are depicted here and the focus lies on the quality during training as
opposed to at the end of training. Plots on the left show the small map, those on the
right show the medium map. The WDQN[g] model and DQN (shown in the upper two
plots) only differ in one feature and are therefore expected to perform similarly. The
corresponding similar curves are shown on the right for the medium map, less simi-
lar, with more fluctuation also for the small map. WDQN[g] is outperformed by the
other WDQN models. Also, the WDQN switch model is not promising in this case. We
expected a spike in the performance whenever the switch is toggled, but this is shown
in the results. For the medium map, switch training starts to perform similarly to the
others, but after 4000 episodes cannot keep up. On the small map, it performs well until
around episode 9200, then the performance drops from an average score of 150 to −30.
We think this is a random fluctuation.

In the other four plots, we can see the expected spike. Whenever the wide compo-
nent is switched off (at episodes 3000, 5000, 7000 and 9000), performance drops by
some points. When switched back on (episodes 4000, 6000, 8000, 10000) the corre-
sponding spike occurs and increases the score. This increase is bigger than the previ-
ous decrease, though, meaning that the pure training of the deep component positively
influences the combined model. One strong example is the WDQN[f,c] on the medium
map between episodes 3000 and 4000, where the score increases by 200 points. When
the switch models are turned on for the medium map they perform similarly to their
WDQN counterpart and even converge to nearly identical scores. On the small map,
they even beat the pure WDQN models by 60 to 100 points. With average scores of 270
(WDQN[f,c], switch) and 320 points (WDQN[f,c,g] switch), they show best scores.

6 Conclusion

Summing up the results, we see that switch training decreases the performance of
WDQN[g]. Our conjecture that WDQN[g] would learn faster is thus proven wrong.
This feature has the opposite effect on performance as it prevents the agent from learn-
ing to eat ghosts. The #-of-ghosts-1-step-away feature helps to develop the capacity to
survive in the short-term but restricts the capacity to achieve high scores in the long
term. Features [f,c] on the other hand improve the learning speed and the quality of
the final model. Although this result was not clear in the tables, the figures show that
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switch training leads not to worse, but sometimes (in our case on the small map) even to
better final results. Models trained with active and tested with inactive wide component
perform similar or better than the pure DQN. This indicates that the pure DQN alone
is unable to reach the best possible model. Thus, we recommend using wide and deep
models instead of only deep models and to use switch training in both cases: when the
final model has to be a deep model, and when it may be wide and deep.
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Abstract. For more than a decade Vytelingum’s Adaptive-Aggressive (AA) algo-
rithm has been recognized as the best-performing automated auction-market
trading-agent strategy currently known in the AI/Agents literature; in this paper,
we demonstrate that it is in fact routinely outperformed by another algorithm when
exhaustively tested across a sufficiently wide range of market scenarios. The novel
step taken here is to use large-scale compute facilities to brute-force exhaustively
evaluate AA in a variety of market environments based on those used for testing
it in the original publications. Our results show that even in these simple environ-
ments AA is consistently outperformed by IBM’s GDX algorithm, first published
in 2002. We summarize here results from more than one million market simulation
experiments, orders of magnitude more testing than was reported in the original
publications that first introduced AA. A 2019 ICAART paper by Cliff claimed
that AA’s failings were revealed by testing it in more realistic experiments, with
conditions closer to those found in real financial markets, but here we demonstrate
that even in the simple experiment conditions that were used in the original AA
papers, exhaustive testing shows AA to be outperformed by GDX. We close this
paper with a discussion of the methodological implications of our work: any results
from previous papers where any one trading algorithm is claimed to be superior
to others on the basis of only a few thousand trials are probably best treated with
some suspicion now. The rise of cloud computing means that the compute-power
necessary to subject trading algorithms to millions of trials over a wide range of
conditions is readily available at reasonable cost: we should make use of this;
exhaustive testing such as is shown here should be the norm in future evaluations
and comparisons of new trading algorithms.

Keywords: Automated trading · Auction markets · Adaptive bidding agents

1 Introduction

For hundreds of years regional, national, and international financial markets involved
human traders interacting with one another to negotiate and agree details of transac-
tions. In the past 15 years the number of human traders in financial markets has fallen
very sharply, as humans have been systematically replaced by automated trading sys-
tems. These automated systems, known in the industry as “algorithmic traders” (often
abbreviated simply to “algos”) or “robot traders”, can employ artificial intelligence (AI)
and machine learning (ML) techniques to adapt their responses over multiple timescales
ranging from milliseconds to years. In a large investment bank, a single robot trader
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might routinely handle daily order flows of US$20Bn or more. This is manifestly a big
business, and the replacement of highly-paid humans (whom, it seems reasonable to
assume, were also highly intelligent) with more cost-efficient robot traders is potentially
a notable success story for AI/ML. Major investment banks and fund-management com-
panies no longer compete to hire only the best traders; now they compete to hire the best
trading-algorithm designers too. See [16] for an entertaining first-hand account of these
changes.

Because of the large sums of money at stake, precise details of the specific robot
traders used in industry are closely guarded commercial secrets. If a robot is making
millions of dollars for a bank, the last thing the bank wants is for someone to publish an
academic paper describing how that robot works: any commercial advantage would be
immediately lost. Nevertheless, there is a body of work in the academic AI/ML literature
stretching back to the late 1990s that describes a sequence of adaptive automated trading
algorithms which have stood the test of time and remain influential to this day.

Although a few significant publications contributing to the development of robot-
trading systems came from academic economists, the landmark papers largely appeared
in AI and autonomous-agent publication venues such as the International Joint Con-
ference on Artificial Intelligence (IJCAI), the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), the International Conference on Agents
and Artificial Intelligence (ICAART), and the prestigious Artificial Intelligence journal
(AIJ): Sect. 2 reviews in more detail eight major publications in the development of this
field. The review in Sect. 2 is important, because there we trace the way in which the
methodology of initial experiments published in 1962 by a young economist, Vernon
Smith (who 40 years later would be awarded the Nobel Prize for his empirical research
work) have since come to be fixed, or fixated upon, in the AI/agents literature on robot
traders. Motivated by what it seems fair to assume was a wholly well-intentioned desire
to show each set of the latest results in the context of what had gone before, papers sub-
sequent to Smith’s replicated much or all of his 1962 experiment design and analysis.
And this, it seems, may have led down something of a dead end.

More details are given in Sect. 2 but for the purposes of this introduction it is sufficient
to summarize the key events as follows: at the 2001 IJCAI a team of researchers at IBM
published results [7] which showed that two robot trading algorithms, known as MGD
[23] and ZIP [3], could consistently out-perform human traders when tested in rigorous
laboratory-style experiments; in the years after this, several other trading algorithms were
published, each being claimed as the best-performing algorithm in the public domain at
the time of its publication; and the most recent of these is Vytelingum’sAA algorithm [26]
which was described in a 2006 paper in the AIJ [27], and was later shown to outperform
human traders in a 2011 IJCAI paper [9]. Put simply, AA is widely believed to be the
best-performing trading algorithm in the published literature.

In this paper we demonstrate that belief to be wrong: we show here that AA is not
the best. Our demonstration builds on recently-published work by Vach [25] and by Cliff
[6]. As far as we are aware, Vach’s 2015 MSc thesis [25] was the first to publicly question
whether AA is indeed dominant: Vach reported results in which he populated markets
with a variety of different robot traders (i.e., some traders running AA and other traders
running different strategies, such as MGD or ZIP), that then interacted with one another;



248 D. Snashall and D. Cliff

Vach found that whether AA was the best-performing algorithm or not in any particular
trial depended on the relative proportions of the different trading agents present in the
market for that trial. But if AA was truly dominant then it should have outperformed
other robot traders regardless of what the mix of strategies is in the market at any one
time. Inspired by Vach, and seeking to independently replicate his results, Cliff’s 2019
ICAART paper [6] presented results from exhaustive brute-force testing in which, for
a market with N traders active in it, and with a selection of T robot-trader algorithms
(including AA) available, the performance of AA in every possible permutation of the T
different trader types was studied over a variety of values of N. Cliff’s results, gathered
from more than 3 million individual market simulation trials, confirmed and extended
Vach’s observation: for each value of N that Cliff studied, there was some permutation
of the T different robot-trader strategies in which AA is outperformed by one or more
of the other strategies. Cliff assumed that this result was attributable to his use of test
environments that were more realistic (i.e., closer to real-world financial markets) than
those that had been used by Vytelingum in his 2006 [26] and 2008 [27] publications
introducing AA. In this paper we present results demonstrating that Cliff’s assumption
in [6] was incorrect. Here we go back to the original test-cases used by Vytelingum [26,
27], but we follow Cliff’s [6] method of running brute-force exhaustive testing of all
possible permutations of AA and other strategies: whereas Vytelingum published results
from fewer than 30,000 simulation trials, in this paper we show results from more than
1,000,000 market sessions: a 30-fold increase over the original publications. Our results
here are consistent with those reported by Vach [25] and by Cliff [6]: AA can be routinely
outperformed by other strategies, depending on the relative proportions of the different
strategies in the market; thus the claims of AA’s dominance in earlier publications seem
now to be due entirely to an insufficient number of trials having been conducted, even
in the original test-cases used in the initial publications on AA. If the exhaustive testing
we used here had been conducted at the time of the original publications, AA would not
have been mistakenly described as the best-known strategy.

The testing we use is not complicated: it just requires some nested loops to iterate
through all possible permutations of the various trader-types, but its combinatorics are
truly explosive and hence performing all the necessary trials is highly computationally
expensive, and would have taken an awful long time on a single desktop computer.
Possibly these high computational costs are why such exhaustive testing has not pre-
viously been commonplace in the evaluation of trading algorithms. For computing the
brute-force simulation studies described here we used our University’s in-house Blue
Crystal supercomputer, to which we have free access; but all of our experiments could
just as easily have been run instead on commercial cloud computing services such as
those available from Amazon, Google, Microsoft, or Oracle, incurring only modest fees
(a few hundred dollars at most, at today’s prices). And so, while the results from our
experiments constitute the empirical contribution in this paper, we also offer the style
of testing used here as a methodological contribution: given the present-day ready avail-
ability of cheap large-scale computing via cloud service providers, we argue later in this
paper that the kind of brute-force studies reported here should from now on be adopted
as the norm in any work that evaluates and compares trading algorithms.
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The rest of this paper is structured as follows. Section 2 covers the necessary back-
ground material, and Sect. 3 describes how AA can be modified to work in contempo-
rary market simulators. The text in those two sections is taken verbatim from [6], and
readers familiar with that paper can safely skip straight to Sect. 4, which is where we
describe our methods and results for exhaustive testing of AA. Section 5 then discusses
methodological implications, and conclusions are drawn in Sect. 6.

2 Traders, Markets, and Eight Key Papers

The 2002 Nobel Prize in Economics was awarded to Vernon Smith, in recognition of
Smith’s work in establishing and thereafter growing the field ofExperimental Economics
(abbreviated hereafter to “ExpEcon”). Smith showed that the microeconomic behavior of
human traders interacting within the rules of some specified market, known technically
as an auction mechanism, could be studied empirically, under controlled and repeatable
laboratory conditions, rather than in the noisy messy confusing circumstances of real-
world markets. The minimal laboratory studies could act as useful proxies for studying
real-world markets of any type, but one particular auction mechanism has received the
majority of attention: the Continuous Double Auction (CDA), in which any buyer can
announce a bid-price at any time and any seller can announce an offer-price at any time,
and in which at any time any trader in the market can accept an offer or bid from a
counterparty, and thereby engage in a transaction. The CDA is the basis of most major
financial markets worldwide.

Smith’s initial set of experiments were run in the late 1950’s, and the results and
associated discussion were presented in his first paper on ExpEcon, published in the
highly prestigious Journal of Political Economy (JPE) in 1962 [18]. It seems plausible
to speculate that when his JPE paper was published, Smith had no idea that it would
mark the start of a line of research that would eventually result in him being appointed as
a Nobel laureate. And it seems even less likely that he would have foreseen the extent to
which the experimental methods laid out in that 1962 paper would subsequently come
to dominate the methodology of researchers working to build adaptive autonomous
trading agents by combining tools and techniques from AI, ML, agent-based modelling
(ABM), and agent-based computational economics (ACE). Although not a goal stated
at the outset, this strand of AI/ML/ABM/ACE research converged toward a common
aim: specifying an artificial agent, an autonomous adaptive trading strategy, that could
automatically tune its behavior to different market environments, and that could reliably
beat all other known automated trading strategies, thereby taking the crown of being the
current best trading strategy known in the public domain, i.e., the “dominant strategy”.
Over the past 20 years the dominant strategy crown has passed from one algorithm to
another. Here, we demonstrate that the current holder of the title, Vytelingum’s [26, 27]
AA strategy, does not perform nearly so well as was previously believed from earlier
successes in small numbers of trials.

Given that humans who are reliably good at trading are generally thought of as
being “intelligent” in some reasonable sense of the word, the aim to develop ever more
sophisticated artificial trading systems is clearly within the scope of AI research, although
some very important early ideas came from the economics literature: a comprehensive
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review of relevant early research was given in [3]. Below in Sect. 2.1 we first briefly
introduce eight key publications leading to the development of AA; then describe key
aspects of ExpEcon market models in Sect. 2.2; and then discuss each of the eight key
publications in more detail in Sect. 2.3. After that, Sect. 2.4 summarizes the results of
Vach [25] and Cliff [6], which together cast doubts on the hitherto apparently resolved
issue of which trading agent is the best.

2.1 A Brief History of Trading Agents

If our story starts with Smith’s 1962 JPE paper, then the next major step came 30
years later, with a surprising result published in the JPE by Gode and Sunder in 1993
[14]: this popularized a minimally simple automated trading algorithm now commonly
referred to as ZIC. A few years later two closely related research papers were published
independently and at roughly the same time, each written without knowledge of the
other: the first was a Hewlett-Packard Labs technical report [3] describing the adaptive
AI/ML trading-agent strategy known as the ZIP algorithm; the second summarized
the PhD thesis work of Gjerstad, in a paper [11] co-authored with his PhD advisor
Dickhaut, describing an adaptive trading algorithm now widely known simply as GD.
After graduating his PhD, Gjerstad worked at IBM’s TJ Watson Labs where he helped
set up an ExpEcon laboratory that his IBM colleagues used in a study that generated
world-wide media coverage when the results were published by Das et al. at IJCAI-
2001 [7]. This paper presented results from studies exploring the behavior of human
traders interacting with GD and ZIP robot traders, in a CDA with a Limit Order Book
(LOB: explained in more detail in Sect. 2.2, below), and demonstrated that both GD
and ZIP reliably outperformed human traders. Neither GD nor ZIP had been designed
to work with the LOB, so the IBM team modified both strategies for their study. A
follow-on 2001 paper [23] by Tesauro and Das (two co-authors of [7]) described a more
extensively Modified GD (MGD) strategy, and later Tesauro and Bredin [23] described
the GD eXtended (GDX) strategy. Both MGD and GDX were each claimed to be the
strongest-known public-domain trading strategies at the times of their publication.

Subsequently, Vytelingum’s 2006 thesis [26] introduced the Adaptive Aggressive
(AA) strategy which, in an AIJ paper [27], and in later ICAART and IJCAI papers [8,
9], was shown to be dominant over ZIP, GDX, and also human traders. Thus far then,
AA holds the title.

However Vach [25] presented results from experiments with the OpEx market sim-
ulator [10], in which AA, GDX, and ZIP were set to compete against one another, and
in which the dominance of AA is questioned: Vach’s results indicate that whether AA
dominates or not can be dependent on the ratio of AA:GDX:ZIP in the experiment: for
some ratios, Vach found AA to dominate; for other ratios, it was GDX. Vach studied only
a relatively small sample from the space of possible ratios, but his results prompted Cliff
[6] to exhaustively step through a wide range of differing ratios of four trading strategies
(AA, ZIC, ZIP, and the minimally simple SHVR strategy described in Sect. 2.2), doing
a brute-force search for situations in which AA is outperformed by the other strategies.
The combinatorics of such a search are quite explosive: Cliff reported on results from
over 3.4 million individual simulations of market sessions. Cliff’s findings indicated
that Vach’s observation was correct: AA’s dominance does indeed depend on how many
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other AA traders are in the market; and, in aggregate, AA was routinely outperformed
by ZIP and by SHVR.

2.2 On Laboratory Models of Markets

Smith’s early experiments were laboratory models of so called open-outcry trading pits,
a common sight in any real financial exchange before the arrival of electronic trader-
terminals in the 1970s. In a trading pit, human traders huddle together and shout out
their bids and offers, and also announce their willingness to accept a counterparty’s most
recent shout. It was a chaotic scene, now largely consigned to the history books. In the
closing quarter of the 20th Century, traders moved en masse to interacting with each
other instead via electronic means: traders “shouted” their quote-prices (offer or bid) or
acceptances by typing orders on keyboards and then sending those orders to a central
server that would display an aggregate summary of all orders currently “shouted” (i.e.,
quoted) onto the market. That aggregate summary is very often in the form of a Limit
Order Book or LOB: the LOB summarizes all bids and offers currently live in the market.
At its simplest, the LOB is a table of numbers, divided into the bid side and the ask side
(also known as the offer side). Both sides of the LOB show the best price at the top, with
less good prices arranged below in numeric order of price: for the bid side this means
the highest-priced bid at the top with the remaining bid prices displayed in descending
order below; and for the ask side the lowest-priced offer is at the top, with the remaining
offers arranged in ascending order below. The arithmetic mean of the best bid and best
ask prices is known as the mid-price, and their difference is the spread. For each side of
the LOB, at each price on the LOB, the quantity available on that side at that price is also
indicated, but with no indication of who the relevant orders came from: in this sense the
LOB serves not only to aggregate all currently live orders, but also to anonymize them.

Traders in LOB-based markets can usually cancel existing orders to delete them
from the LOB. In a common simple implementation of a LOB, traders can accept the
current best bid or best offer by issuing a quote that crosses the spread: i.e., by issuing
an order that, if added to the LOB, would result in the best bid being at a higher price
than the best ask. Rather than be added to the LOB, if a bid order crosses the spread then
it is matched with the best offer on the ask side (known as lifting the ask), whereas an
ask that crosses the spread is matched with the best bid (hitting the bid); and in either
case a transaction then occurs between the trader that had posted the best price on the
relevant side of the LOB, and the trader that crossed the spread. The price of the resulting
transaction is whatever price was hit or lifted from the top of the LOB.

Smith’s earliest experiments pre-dated the arrival of electronic trading in real finan-
cial markets, and so they can be thought of as laboratory models of open-outcry trading
pits. Even though the much later work by Gode and Sunder [14], Cliff [3], Gjerstad and
Dickhaut [11], and Vytelingum [26] all came long after the introduction of electronic
LOBs in real markets, these academic studies all stuck with Smith’s original methodol-
ogy, of modelling open-outcry markets (often by essentially operating a LOB with the
depth fixed at 1, so the only information available to traders is the current best, or most
recent, bid and ask prices).

Nevertheless, the studies by IBM researchers [7, 23, 24], and also the replication
and confirmation of AA results by De Luca and Cliff [8–10] and by Stotter et al. [21,
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22], all used LOB-based market simulators. The IBM simulator Magenta seems to have
been proprietary to IBM; developed at TJ Watson Labs and not available for third-party
use, but De Luca made an open-source release of his OpEx simulator [10] which was
subsequently used by Vach [25] in the studies that prompted our work reported here.
Also of relevance here is the ExPo simulator described by Stotter et al. [21, 22]: in the
work by De Luca [8–10], by Vach [25], and by Stotter et al. [21, 22], Vytelingum’s
original AA needed modifications to make it work in a LOB-based market environment:
this is discussed further in Sect. 3.

In the work reported here we used neither OpEx nor ExPo, but instead BSE [1,
5] which is another open-source ExpEcon market simulator, initially developed as a
teaching aid but subsequently used as a platform for research (see, e.g. [15]). BSE has
the advantage of being relatively lightweight (a single Python script of c.2500 lines)
and hence readily deployable over large numbers of virtual machines in the cloud.
BSE maintains a dynamically updated LOB and also publishes a tape, a time-ordered
record of all orders that have been executed, and other significant events such as the
cancellation of earlier orders (which are deleted from the LOB). BSE comes with pre-
defined versions of ZIC and ZIP, and also some additionally minimally-simple non-
adaptive trading strategies that can be used for benchmarking against other more complex
strategies added by the user. One of these, the Shaver strategy (referred to in BSE by
the “ticker symbol” SHVR) simply reads the best prices on the LOB and, if it is able to
do so without risking a loss-making deal, then issues an order that improves the current
best bid or best ask by 0.01 units of currency (i.e., one penny/cent), which is BSE’s tick
size, i.e. the minimum change in price that the system allows.

2.3 Eight Key Papers, One Methodology

Smith [18]. Although precedents can be pointed to, Smith’s 1962 JPE paper [18] is
widely regarded as the seminal study in ExpEcon. In it he reported on experiments in
which a group of c.12-25 human subjects were each randomly assigned to be either
a buyer or a seller in the market experiment. Buyers were given a supply of artificial
money, and sellers were given one or more identical items, of no intrinsic value, to sell.
Each trader in the market was assigned a private valuation, a secret limit price: for a buyer
this was the price above which he or she should not pay when purchasing an item; for a
seller this was the price below which he or she should not sell an item. These limit-price
assignments model the client orders executed by sales traders in real financial markets;
we’ll refer to them just as assignments in the rest of this paper. After the allocation of
assignments to all traders, the traders then interacted via an open-outcry CDA while
Smith and his assistants made notes on the sequence of events that unfolded during the
experiment: typically, buyers would gradually increase their bid-prices, and sellers would
gradually lower their offer-prices (also known as ask-prices) until transactions started
to occur. Eventually, usually within a few minutes, the experimental market reached a
position in which no more trades could take place, which marked the end of a trading
period or “trading day” in the experiment; any one experiment typically ran for n= 5–10
periods, with all the traders being resupplied with fresh assignments of limit prices and
money-to-buy-with and items-for-sale at the start of each trading period. The sequence
of n contiguous trading periods (or an equivalently long single-period experiment with
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continuous replenishment, as discussed further in Sects. 2.4 and 4.4) is referred to here
as one market session. Smith could induce specific supply and demand curves in these
experimental markets by appropriate choices of the various limit-prices he assigned to the
traders. As any high-school student of microeconomics knows, the market’s theoretical
equilibrium price (denoted hereafter by P0) is given by the point where the supply curve
and the demand curve intersect. Smith found that, in these laboratory CDA markets
populated with only remarkably small groups of human traders, transaction prices could
reliably and rapidly converge on the theoreticalP0 value despite the fact that each human
trader was acting purely out of self-interest and knew only the limit price that he or she
had been assigned. Smith’s analysis of his results focused on a statistic that he referred
to as α, the root mean square deviation of actual transaction prices from the P0 value
over the course of an experiment. In his early experiments, P0 was fixed for the duration
of any one experiment; in later work Smith explored the ability of the market to respond
to “price shocks” where, in an experiment of N trading days, on a specific day S< N the
allocation of limit prices would be changed, altering P0 from the value that had been in
place over trading periods 1, 2, …, S, to a different value of P0 that would then remain
constant for the rest of the experiment, i.e. in trading periods S + 1, S + 2, …, N. For
brevity, in the rest of this paper Smith’s initial style of experiments will be referred to as
S’62 experiments.

ZIC: Gode and Sunder [14]. Gode and Sunder’s JPE paper [14] used the S’62 method-
ology, albeit with the CDA markets being electronic (a move Smith himself had made in
his experiments many years earlier), so each trader was sat at a personal terminal, a com-
puter screen and keyboard, from which they received all information about the market
and via which they announced their orders, their bids or offers, to the rest of the traders
in the experiment. Gode and Sunder first conducted a set of experiments in which all
the traders were human, to establish baseline statistics. Then, all the human traders were
replaced with automated trading systems, absolute-zero minimally-simple algo traders
which Gode and Sunder referred to as Zero Intelligence (ZI) traders. Gode and Sunder
studied markets populated with two type of ZI trader: ZI-Unconstrained (ZIU), which
simply generated random prices for their bids or offers, regardless of whether those prices
would lead to profitable transactions or to losses; and ZI-Constrained (ZIC), which also
generated random order prices but were constrained by their private limit prices to never
announce prices that would lead them to loss-making deals. Gode and Sunder used fixed
supply and demand schedules in each experiment, i.e. there were no price-shocks in their
experiments.

Not surprisingly, the market dynamics of ZIU traders were nothing more than noise.
But the surprising result in Gode and Sunder’s paper was the revelation that a commonly
used metric of market price dynamics known as allocative efficiency (AE, hereafter) was
essentially indistinguishable between the human markets and the ZIC markets. Because
AE had previously been seen as a marker of the degree to which the traders in a market
were behaving intelligently, the fact that ZIC traders scored AE values largely the same
as humans was a shock. Gode and Sunder proposed that a different metric should instead
be used as a marker of the intelligence of traders in the market. This metric was profit
dispersion (PD, hereafter) which measures the difference between the profit each trader
accrued in an experiment, compared to the profit that would be expected for that trader
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if every transaction in the market had taken place at the market’s theoretical equilibrium
price P0: humans typically showed very low values of PD (which is assumed to be good)
while ZIC traders did not. On this basis, Gode and Sunder argued that PD should be
used in preference to AE in future.

Other researchers were quick to cite Gode and Sunder’s ZIC result, and often used it
to support the claim that, given the ZIC traders have no intelligence, then for transaction
prices to converge toward the theoretical equilibrium price and/or for a group of traders
to score highly on AE, somehow the “intelligence” required to do this must reside
within the rules of the CDA market system rather than within the heads of the traders.
Strangely, Gode & Sunder’s 1993 paper [14] provides no concrete causal mechanistic
explanation of how their striking ZIC results arise; they describe their methods, and the
results observed, but the internal mechanisms that give rise to those results are left as
something of a mystery, as if the CDA market was an impenetrable black-box.

A causal mechanistic analysis of markets populated by ZIC traders was subsequently
developed by Cliff [3], who considered the probability mass functions (PMFs) of prices
generated by ZIC buyers and sellers, and the joint PMF of transaction prices in ZIP
markets, which is given by the intersection of the bid-price and offer-price PMFs: the
shape of the transaction-price PMF is determined by the nature of the supply and demand
curves in the market, and Cliff demonstrated that the supply and demand curves in a ZIC
market experiment could be arranged so that the expected value of the transaction prices
(computable as an integral over the PMF) is identical to the theoretical equilibrium price
given by the intersection point of the supply and demand curves. This was why the five
ZIC experiments reported in Gode and Sunder’s [14] paper showed transaction prices
that were centered on the theoretical equilibrium price in each case: the supply and
demand curves were arranged in such a way that this was the expected outcome. Cliff
showed that with different arrangements of supply and demand curves, such as situations
where one or both curves were flat (as had been used in Smith’s original 1962 JPE
paper [18]), the expected price of transactions in ZIP markets could differ considerably
from the theoretical equilibrium price, and so transaction prices in those ZIC markets
would fail to exhibit human-like convergence toward the theoretical equilibrium value.
In these differently-designed experiments, ZIC traders would be revealed for exactly
what they are: simple stochastic processes that only coincidentally exhibit human-like
market dynamics when the experimenters happen to have chosen to impose just the right
kind of supply and demand curves. Cliff’s analysis showed that the level of intelligence
in the ZIC traders was insufficient to recreate human-like market dynamics more broadly,
and so a more intelligent automated trading strategy was required.1

ZIP: Cliff [3]. Taking direct inspiration both from Smith’s work and from the ZI paper
by Gode and Sunder, Cliff [3] developed a ZI trading strategy that used simple machine-
learning techniques to continuously adapt the randomly-generated prices quoted by the

1 Independently, and via a wholly different line of attack, Gjerstad and Shachat [13] also demol-
ished the argument that Gode and Sunder’s [14] ZIC results indicate that the efficiency or intel-
ligence in the market system lies solely within the CDA mechanism. Nevertheless, Gode and
Sunder’s results continue to be cited uncritically by various authors in the economics literature:
we can only assume that such authors prefer a nice fairy story, rather than hard facts.
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traders: this strategy, known as ZI-Plus (ZIP) was demonstrated to show human-like mar-
ket dynamics in experiments with flat supply and/or demand curves: Cliff also showed
theoretical analyses and empirical results which demonstrated that transaction prices in
markets populated only by ZIC traders would not converge to the theoretical equilibrium
price when the supply and/or demand curves are flat (or, in the language of microeco-
nomics, “perfectly elastic”). ExpEcon studies in which the supply and/or demand curve
was flat had previously been reported by Smith and others, but Gode and Sunder had not
explored the response of their ZIC traders to this style of market. Cliff’s work involved
no human traders: all the focus was on markets populated entirely by autonomous agents,
by ZIP traders. In total Cliff [3] reported on fewer than 1,000 simulated market sessions.
The focus on homogenous markets can fairly be interpreted as continuing the tradition
established by Gode and Sunder (who studied markets homogeneously populated with
either human, ZIU, or ZIC traders) and by Smith (who studied all-human markets). In
all other regards Cliff continued the S’62 tradition: key metrics were Smith’s α, AE, and
PD.

GD: Gjerstad and Dickhaut [11]. Gjerstad’s PhD studies of price formation in CDA
markets also involved creating an algorithm that could trade profitably by adapting its
behavior over time, in response to market events [11]. In contrast to the ZI work, Gjer-
stad’s trading algorithm uses frequentist statistics, gradually constructing and refining
a belief function that estimates the likelihood for a bid or offer to be accepted in the
market at any particular time, mapping from price of the order to its probability of suc-
cess. Gjerstad did not explicitly name his strategy, but it has since become known as
the GD strategy. In all other regards, as with Cliff’s work [3] and Gode and Sunder’s
[14], Gjerstad’s [11] work was firmly in the S’62 tradition: homogenous markets of GD
traders interacting in a CDA, buying and selling single items, with the metrics being
Smith’s α, AE, and PD. In a later paper [12], Gjerstad made some refinements to the GD
algorithm, adding a time-sensitivity or pace parameter, and named it HBL (for Heuristic
Belief Learning), although the original GD form remains by far the most cited.

MGD: Das et al. [7]. In their landmark 2001 IJCAI paper [7], IBM researchers Das,
Hanson, Kephart, and Tesauro studied the performance of GD and ZIP in a series of
ExpEcon market experiments where, for the first time ever in the same market, some of
the traders were robots while others were human (recall that the earlier work of Smith, of
Gode and Sunder, of Cliff, and of Gjerstad and Dickhaut had all studied homogeneous
markets: either all-human or all-robot). Das et al. used a LOB-based market simulator
called Magenta, developed by Gjerstad, and ran a total of six experiments, six market
sessions, in which humans and robots interacted and where there were three shock-
changes to P0, i.e. four phases in any one experiment, each phase with a different P0
value that was held static over that phase. The surprising result in this paper was that robot
trading strategies could consistently outperform human traders, by significant margins: a
result that attracted worldwide media attention. Both GD and ZIP outperformed human
traders, and in the six experiments reported by Das et al. the results from the two robot
strategies are so similar as to not obviously be statistically significant. A subsequent paper
by IBM’s Tesauro and Das [23], reported on additional studies in which a Modified GD
(MGD) strategy was exhibited what the authors described in the abstract of their paper
as “…the strongest known performance of any published bidding strategy”.
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GDX: Tesauro and Bredin [24]. Extensions to MGD were reported by IBM researchers
Tesauro and Bredin at AAMAS 2002 [24]. This paper described extensions to MGD,
using dynamic programming methods: the extended version was named GDX and its
performance was evaluated when competing in heterogenous markets with ZIP and other
strategies. Tesauro and Bredin reported that GDX outperformed the other strategies and
claimed in the abstract of their paper that GDX “…may offer the best performance of
any published CDA bidding strategy.”

AA: Vytelingum [26]. Vytelingum developed AA and documented it in full in his
PhD thesis [26] and in a major paper in the AIJ [27]. The internal mechanisms of
AA are described in greater detail in Sect. 3 of this paper. Although Vytelingum’s
work came a few years after the IBM publications, the discussion within Vytelingum’s
publications is phrased very much in terms of the S’62 methodology: the P0 value in his
AA experiments was either fixed for the duration of each market session, or was subjected
to a single “price shock” partway through the session (as described in Sect. 2.3); and
again the primary metrics studied are Smith’s α, AE, and PD. Vytelingum presented
results from heterogeneous market experiments where AA, GDX, and ZIP traders were
in competition, and the published results indicated that AA outperformed both GDX and
ZIP by small margins. In total, results from c.25,000 market sessions are presented in
[27].

AA Dominates: De Luca and Cliff [8, 9]. As part of the research leading to his 2015
PhD thesis [10], De Luca used his LOB-based OpEx market simulator system to study
the performance of AA in heterogeneous market experiments where some of the traders
were AA, some were other robot strategies such as ZIP, and some were human traders
sat at terminals interacting with the other traders (human and robot) in the market via
the OpEx GUI, in the style introduced by the IBM team in their IJCAI 2001 paper. De
Luca and Cliff [8] had previously published results from comparing GDX and AA in
OpEx, at ICAART-2011; and the first results from AA in human-agent studies were
then published in a 2011 IJCAI paper [9], in which AA was demonstrated to dominate
not only humans but also GDX and ZIP. For consistency with what was by then a
well-established methodology, in De Luca’s experiments the P0 value was static for
sustained periods with occasional “shock” step-changes to different values. Continuing
the tradition established by the IBM authors, the abstract of [9] claimed supremacy for
AA: “We… demonstrate that AA’s performance against human traders is superior to
that of ZIP, GD, and GDX. We therefore claim that… AA may offer the best performance
of any published bidding strategy”. And, until the publication of Vach’s 2015 MSc thesis
[25], that claim appeared to be plausibly true.

2.4 Actually, AA Doesn’t Dominate: Vach [25]; Cliff [6]

Vach’s Master’s Thesis [25] tells the story of his design of a new trading strategy based
on ZIP and called ZIPOJA, which he then tested against AA, GDX, and ZIP. The test-
ing revealed that ZIPOJA did not consistently outperform any of the three pre-existing
strategies. But, in the course of that testing, as Vach checked and calibrated his imple-
mentations of the three pre-existing strategies, he found that AA could fail to dominate
ZIP or GDX, depending on the proportions of the two strategies in the market: this runs
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counter to the established story that AA is the best-performing strategy. Tables 6.2 and
6.3 on p. 47 of Vach’s thesis show results from tests in which the performance of two
trading strategies were tested in trials with proportions of the two trader strategies set at
6:0, 5:1, 4:2, 3:3, 2:4, 5:1, and 0:6. The ratios 6:0 and 0:6 are homogenously populated
by one strategy or the other and hence are of little interest, because that single strategy
necessarily dominates in those markets. In Vach’s Table 6.2, AA is outperformed by ZIP
when the ZIP:AA ratio is 1:5 – i.e., if one in six of the traders in the market are ZIP
with the rest AA, then the ZIP traders will outperform the AAs: the efficiency of the ZIP
traders was 99.5% while the efficiency of the AAs was 88.5%. In Vach’s Table 6.3, AA
is outperformed by GDX when the GDX:AA ratio is 3:3, 2:4, and 1:5.

Vach then performed three-way simulations systematically varying the ratios of
AA:GDX:ZIP over all possible permutations and, in his Fig. 6 1i [25, p. 53] he shows a
2D simplex diagram which summarizes those results: a 28-node regular isometric mesh
is drawn over the surface of the simplex as a co-ordinate frame, and AA is the dominant
strategy in only 11 of those 28 nodes. Each of the three strategies is by definition domi-
nant at the node representing a homogeneous ratio (i.e., either 1:0:0 or 0:1:0 or 0:0:1), so
AA actually only dominates at 10 of the 25 nodes where it is actually contesting with the
other two strategies: ZIP dominates one of the remaining nodes; and GDX dominates
the remaining 14.

In a final four-way study, with AA, GDX, ZIP, and ZIPOJA competing against
each other, Vach [25, Table 6.7, p. 60] declares GDX the overall winner although in
that experiment the scores of GDX and AA are sufficiently close that, in our opinion,
the difference between the two may not be statistically significant. Nevertheless, it is
undeniable that in Vach’s four-way study AA again fails to clearly dominate. To the best
of our knowledge, Vach’s results are the first such exhaustive study of AA’s performance
as the number and proportion of competitor strategies is systematically varied, and he
was the first to demonstrate that AA is in fact not the best-performing strategy.

Subsequently Cliff [6] set out to replicate and extend Vach’s results, using a finer-
grained analysis, varying the proportions of AA, SHVR, ZIP, and ZIC, and also studying
the effects of altering other aspects of the experiment design such as whether the replen-
ishment of assignments to the traders is periodic or continuous-stochastic (as in [4]);
and whether the equilibrium price P0 is largely constant with occasional shock-jumps,
or continuously varying according to price-movements taken from real-world markets.
Cliff’s results from conventional S’62-style experiments, with periodic replenishment
and with P0 largely constant, confirmed the established view: when AA was tested in
the kind of simple market environment as has traditionally been used in the previous
literature, AA scored just as well as well-known other trading strategies and was not
dominated by them.

But, merely by altering the nature of the market environment to have continuous
stochastic replenishment (which is surely what happens in real markets) and to have the
equilibrium price P0 continuously varying over time (which is also surely what happens
in real markets), Cliff’s results from AA became very poor indeed. Cliff [6] wrote:

“It seems very hard to avoid the conclusion that AA’s success as reported in
previous papers is largely due to the extent to which its internal mechanisms are
designed to fit exactly the kind of experiment settings first introduced by Vernon
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Smith: AA is very well suited to situations in which all assignments are issued
to all traders simultaneously, and in which the equilibrium price remains constant
for sustained periods of time, with only occasional step-change “shocks”. Real
markets are not like this, and when AA is deployed in the more realistic market
setting provided by BSE, its dominance disappears.”

Cliff did not test AA against GDX, but we do here. The results that we present in
Sect. 4 demonstrate that actually, even in the S’62 style of experiment that AA was first
tested in, if it actually is tested exhaustively across a wide range of proportions, then
AA can be outperformed by trading algorithms that predated it, specifically by GDX.
Before that, in Sect. 3 we briefly discuss the issue of modifying AA to operate in realistic
LOB-based markets.

3 Modifying AA for LOB Markets

Taking the AA algorithm and attempting to run it in a LOB-based market reveals the
extent to which AA seems designed to fit very well in the Smith’62 style of experiments
with periodic replenishment, and is less well suited to a continuously varying market
dynamic. In brief, AA’s internal mechanisms revolve around three questions that each
AA trader attempts to answer: (1) What is my best estimate of the current equilibrium
price P0? (2) What is my best estimate of the current volatility of transaction prices
around P0? And (3) is the limit price on my current assignment intramarginal (i.e.,
could be sold/bought at P0 and still make a profit) or extramarginal? For its estimate of
P0, the original AA trader computes a moving average of recent transaction prices. For
its volatility estimate, it computes Smith’s α metric, taking the difference between recent
transaction prices and the trader’s current estimate of P0 (i.e., ignoring any trend in P0,
which is safe to do if, as in the S’62 experiments, P0 changes rarely or never). Deciding
on whether the current assignment is intra/extra marginal is done by comparing its limit
price to its P0 estimate.

In MAA, our modified implementation of AA, these questions can instead each be
answered by reference to information that is routinely available from an exchange: the
LOB and the exchange’s “tape” (the record of timestamped transactions). P0 can be
better estimated by using the volume-weighted mid-price at the top of the book (known
as the microprice: see e.g. [2, 20]): this is a better metric because it can be sensitive to
shifts in the P0 value before any transactions go through that reflect the shift. Volatility
can be estimated by reference not to only the current estimate ofP0 but also to BSE’s tape
data: a time-series of transaction-price values correlated with a time series of microprice
values is better to use in situations where the P0 value is continuously changing: for each
transaction on the tape, the microprice at the time of that transaction (or immediately
before) is the better reference value for calculating Smith’s α. Extra-/intra-marginality
is still decided by reference to the trader’s P0 estimate, but in MAA that estimate can
come from the microprice.

Previous authors have also needed to adapt AA for LOB-based markets: De Luca
[8–10] and Vach [25] each used AA in theOpEx simulator, and Stotter et al. [20, 21] used
AA in the ExPo simulator. However, the modified AA proposed here is novel insofar as
prior authors don’t report using the exchange’s tape data or the microprice.
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There is a tension between modifying AA in an attempt to better fit it to a LOB-based
market, and making claims about AA’s poor performance in those markets: the more
heavily AA is modified, the more one is open to accusations that the modifications them-
selves are the cause of the poor performance, rather than that poor performance being a
reflection of the original AA being badly-suited to LOB markets. For that reason, in this
paper, we keep AA very close to the original, using only the microprice modification in
generating the results presented here.

The Python source-code used to generate the results in this paper has been made
publicly available on the main BSE GitHub site [1].

4 Exhaustive Testing of AA

4.1 Market Supply and Demand Schedules

Vytelingum [26, 27] tested AA using the methods first established by Smith [18] and then
followed by all of the key papers reviewed in Sect. 2: he did some studies with markets
in which the supply and demand schedules (SDSs) were constant for the duration of
each experiment, which we will refer to as static markets; and he did other studies in
which part-way through the experiment there was a sudden “market-shock” change from
the initial static SDS to some other static SDS that remained in place from the point of
the shock to the end of the experiment – we will refer to those experiments as market
shocks. Vytelingum studied AA’s response in four static SDSs, which he referred to as
M1, M2, M3, and M4; and his market shock studies involved switching from one of
these four to one of the three other SDSs. The market shock studies were referred to
using multi-character codes of the form MSnmwhere n is the single-digit identifier of the
initial static SDS, and m is the single-digit identifier of the static SDS that is switched
to at the time of the shock. For example, MS31 denotes an experiment in which the
traders are initially given allocations according to M3, which switches to M1 at the
point of the shock-change. Each of the experiments were conducted over 20 trading
periods or “days”, and when shocks were imposed they occurred at the start of Day
11 (i.e., halfway through the session). After carrying out preliminary tests on the SDSs
used by Vytelingum, we decided that the Vytelingum’s market-shock scenarios were not
sufficient to completely test the algorithms: each trading algorithm adapted relatively
quickly to a single shock, and hence to fully compare the trading strategies we decided
to introduce more challenging markets, some containing more shocks, and also some
with a continuously changing equilibrium price.

Static Markets. First we tested the trading agents using static SDSs based on M1 to
M4 as used by Vytelingum [26, 27]: the supply and demand curves for each market are
shown in Fig. 1.

Complex Markets. We tested market shocks introduced in the manner described by
Vytelingum [26, 27], specifically MS14, MS21, MS31, MS23, and MS1231. We then
also explored the responses of the traders in situations where all prices on assignments
came from M1 with a time-varying offset function F(t) added to them over the course
of the experiment. We refer to these as follows:
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Fig. 1. Supply and Demand curves for M1, M2, M3, and M4. The expected equilibrium price is
marked: for M1, M2, and M3 it is 30; for M4 it is 40.

• M6: F(t) = c sin(t/30) (a sinusoid of constant amplitude and frequency).
• M7: F(t) = ct(1 + sin(wt)) (a sinusoid of increasing amplitude and frequency).
• M8: F(t) = (t %75)/2 (a sawtooth wave of constant amplitude and frequency).
• M9: F(t) = c sgn(sin(t/30)) (a square wave of constant amplitude and frequency).

4.2 Verification

Although the source-code for ZIP was published as an appendix to the technical report
that introduced that algorithm [3], no standard reference implementations exist for either
GDX or AA: in both cases, the papers that introduced the algorithm gave verbal descrip-
tions of how the algorithm works, along with associated equations. To verify that the
implementations of the algorithms used in this paper are correct, we conducted experi-
ments whose purpose was to replicate results achieved in the algorithms’ original papers.
Full details of these verification experiments are given in [19], to which the reader is
referred for further details. It is sufficient to note here that our results from GDX and
AA were in both cases very close but not identically equal to the results published in the
relevant original paper. We believe that the differences in results are more likely to be due
to differences in test environment than due to any problems with our implementation of
the algorithms. The original papers for GDX and for AA say very little about the nature
of the market simulator that was used to generate the results. We use the public-domain
BSE simulator, but GDX was tested on IBM’s in-house Magenta market simulator, about
which nothing was ever published; and Vytelingum [26, 27] discusses his own market



Adaptive-Aggressive Traders Don’t Dominate 261

simulator only in very scant terms. Thus, to the best of our ability, we believe the imple-
mentations of GDX and AA used here to be faithful to the original specification. The
source-code used to generate the results in this section (which summarizes the results
presented in [19]) has been made publicly available in the BSE GitHub repository [1]:
see the script snashall2019.py.

4.3 Experiment Design

As each market scenario has a different expected profit, and we used allocative effi-
ciency as the measure of performance, for ease of comparison across all experiments. As
described in above, this is the percentage of the maximum expected profit the algorithm
has been able to extract from the market.

Each trial involves 16 traders on each side (32 in total). It is known that the different
trader ratios can have a profound and significant effect on their respective performance.
For example, a single ZIP agent in a market populated by ZIC agents will do exceedingly
well, however a single ZIP agent in a market otherwise saturated with GDX agents will
not do as well. To eliminate this effect, the experiments here are conducted with every
possible permutation of trader ratios, and the results are averaged over every experiment.
We conducted 100 i.i.d trials per ratio, which equates to around 2 million trading days in
total. We then compute summary statistics, such as average efficiency, across all trials,
and present those in tabular form; for ease of identification we use a bold-face font to
highlight the highest (best) value in each row.

4.4 Results

Static Markets.
Tables 1, 2, 3 and 4 show various results from simple static market experiments.

Tables 1 and 2 are from S’62-style experiments in which the assignments to buy and
sell are refreshed periodically, with all traders receiving their updates simultaneously.
Tables 3 and 4 are from experiments in which the assignments are instead stochasti-
cally drip-fed into the population of traders in a continuous-replenishment approach as
described by [4].

Table 1 shows results from markets populated by mixes of AA, ASAD, GDX, and ZIP
traders, with periodic allocation: the overall average has AA scoring a shade higher than
GDX, but GDX scores slightly higher than AA in markets M1 and M3. Because ASAD
and ZIP are very closely related, and AA is arguably also an extension of the basic ZIP
algorithm (i.e., it shares the same heuristic decision tree, but adds sophistication in how
the trader’s profit margin is altered over time), it might be argued that the experiments
summarized in Table 1 are essentially GDX versus three variants of ZIP-style algorithms.
Indeed, if (as we believe) it is fair to characterize ASAD as ZIP with extensions to detect
shock-changes in market prices and act appropriately, the absence of any market shocks in
these simple experiments mean that ZIP and ASAD are essentially functionally identical.
To increase the heterogeneity, we ran the same experiments again but replaced ZIP with
the simpler, more noisy, ZIC strategy: results from that are shown in Table 2. Now only
in M5 does AA still dominate: GDX wins in M1, M2, and M3.
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Table 1. Efficiencies in AA/ASAD/GDX/ZIP experiments with periodic replenishment.

Market AA ASAD GDX ZIP

M1 97.03 79.97 98.85 80.95

M2 103.21 54.57 100.01 55.92

M3 99.13 85.80 99.41 85.23

M5 99.52 60.32 97.13 58.67

Average 99.73 70.16 98.85 70.19

Table 2. Efficiencies in AA/ASAD/GDX/ZIC experiments with periodic replenishment.

Market AA ASAD GDX ZIC

M1 94.47 87.90 96.78 59.82

M2 96.51 75.98 100.2 77.49

M3 94.39 84.69 94.77 43.06

M5 95.18 72.53 91.58 50.12

Average 95.14 80.27 95.82 57.64

When we switch from periodic to continuous replenishment, the summary data show
broadly the same pattern: Table 3 shows that when GDX is pitted against three ZIP-style
strategies, it is out-scored by AA in half of the markets studied, and AA scores best
overall; but Table 4 shows that when we replace ZIP with ZIC, this alters the market
dynamics and GDX now dominates in three of the four markets and also in aggregate
score.

Table 3. Efficiencies in AA/ASAD/GDX/ZIP experiments with continuous replenishment.

Market AA ASAD GDX ZIP

M1 92.70 80.34 98.43 80.26

M2 105.27 60.71 105.24 60.53

M3 100.66 87.17 103.80 87.43

M5 97.40 52.54 92.01 52.53

Average 99.01 70.19 99.87 70.19



Adaptive-Aggressive Traders Don’t Dominate 263

Table 4. Efficiencies in AA/ASAD/GDX/ZIC experiments with continuous replenishment.

Market AA ASAD GDX ZIC

M1 88.58 89.33 94.60 59.82

M2 99.71 82.41 102.07 77.49

M3 97.87 97.99 102.91 43.05

M5 94.94 83.44 93.18 50.18

Average 95.28 88.29 98.19 57.64

Complex Markets. Tables 5 and 6 respectively summarize our results from testing
in the complex markets introduced in Sect. 4.1, with ZIP and ZIC. Here there are no
subtleties in the outcomes: GDX is clearly dominant in all markets reported on in Table 5,
and again in Table 6.

The nonparametric Wilcoxon-Mann-Whitney U-Test was used to evaluate the sta-
tistical significance of the differences in scores between AA and GDX in Tables 5 and
6. This indicated that the difference is significant in all cases except for M2 in Table 6,
and for M7 in Table 7. In all cases where a significant difference was detected, GDX
had the better score: for further details see [19, pp. 29–30].

Table 5. Efficiencies in complex markets, with ZIP.

Market AA ASAD GDX ZIP

MS14 93.40 75.36 96.22 73.30

MS21 91.18 73.17 94.43 73.24

MS31 93.06 83.55 98.10 83.63

MS23 104.46 50.72 105.79 50.69

MS1231 102.18 87.76 104.37 84.51

M6 Sin 70.53 55.62 72.87 55.56

M7 99.21 92.09 102.18 91.12

M8 Saw 86.52 91.79 95.80 91.71

M9 Sqr 69.30 63.46 74.61 63.70

Average 89.98 74.84 93.82 75.92

To summarize, the results presented here show that GDX routinely and reliably
dominates AA. That reinforces the message from Vach [25] and Cliff [6]: AA does not
dominate.
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Table 6. Efficiencies in complex markets, with ZIC.

Market AA ASAD GDX ZIC

MS14 85.08 87.14 91.12 42.05

MS21 92.68 89.04 96.76 68.45

MS31 89.64 91.16 95.83 51.50

MS23 100.62 97.74 104.57 61.76

MS1231 94.34 95.52 101.52 60.56

M6 Sin 69.93 65.98 72.89 44.58

M7 75.86 69.58 77.71 50.68

M8 Saw 86.77 91.59 95.02 64.69

M9 Sqr 70.93 64.35 72.56 53.03

Average 85.10 83.57 89.78 55.25

5 Methodological Issues

Having demonstrated that AA does not always dominate other trading strategies, it is
worth reflecting on the methods that have been used here, how they compare to current
real-world financial markets, and how they compare to the S’62 methods that were
described in Sect. 2.

5.1 Real-World Relevance

BSE, the open-source public-domain CDA market simulator that we have used as the
platform for our studies, was introduced in Sect. 2.2. There are numerous differences
between BSE and real financial markets: BSE is not intended to be a perfect imitation of
a real stock exchange; indeed it was initially created to support graduate-level teaching,
conducting experiments in the same vein as S’62. It is designed to provide an environment
in which experiments can be reliably repeated and controlled, rather than providing an
environment which is as close as possible to real-world market scenarios.

BSE does not simulate communications latency: it assumes all traders receive infor-
mation updates from the exchange instantaneously, and similarly it assumes that any
message sent by a trader to the exchange takes zero time to arrive. In the real world,
things are not so simple: it takes finite time for the market information published by an
exchange to reach any given trader, and it takes finite time for a trader’s order to reach the
exchange. Communications latency of this form can play a large part in the performance
of an algorithm. For example, if a trader is designed to execute an arbitrage strategy
(that is to take advantage of price difference between markets, e.g. buying something
on Exchange A and then immediately selling it on Exchange B for a higher price), the
trader may have only milliseconds to act before parity is restored.

Another form of real-world latency that BSE fails to simulate is the processing laten-
cies of the trading algorithms themselves, i.e. their reaction-time. The reaction time of
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an algorithm can play just as an important role in its performance as the communications
delay. In real markets, the traders must respond as quickly as possible to the market. If,
for example, ZIP is able to respond more quickly than GDX and therefore put an ask/bid
in earlier, it will steal the opportunity for GDX to make a trade. In the currently available
version of BSE, this is not captured, because each algorithm is allowed to take as long as
it wants to respond (the simulation is single-threaded, and simulates parallel activity by
allowing all traders to settle on a response to any change in the market before processing
the responses of each trader). Each algorithm implemented in BSE was written with the
assumption that the state of the market will not change while the algorithm is ‘think-
ing’. In the real world this is absolutely not the case. The market is changing constantly,
and any trader can submit a fresh ask or bid at any time. In the case of both GDX and
AA, their designs mean that each time a new ask/bid is submitted, they must start their
processing again from the beginning. GDX must re-compute its belief function, and AA
must re-compute all of its various calculations. Due to the frequency of submission of
quotes in CDAs dominated by ‘high frequency’ traders, it could be argued that neither
AA nor GDX would ever be quick enough to submit an ask/bid before the market has
significantly changed again, forcing them to re-start their calculations. This lack of any
modelling of reaction-times runs the risk of incorrect conclusions about dominance rela-
tionships being drawn when trading agents are evaluated only in the simple S’62 style
scenarios used here.

It could be argued that the aim of algorithms such as AA is not necessarily to perform
well in the real world, but instead just to beat their competitor algorithms in the kind
of comparative studies described here (on in actual international trading-agent contests,
popular with academics around the world, as described in e.g. [28]). We don’t agree with
that view: our opinion is that if a trading agent does well in academic research contests
but is not applicable in real-world deployments, it is of little interest to us.

To test the extent to which actual reaction-times could affect our results, we conducted
an experiment where, for the various trading strategies used here, we measured how long
it takes for our implementation of that strategy in BSE to respond with an order after
it is sent updated market information. We conducted this in four of the markets used
previously, over 500 trials each, and with a fixed ratio of 5 buyers and 5 sellers using
each strategy: the results are shown in Table 7.

Table 7. Efficiencies in complex markets, with ZIP.

Market AA ASAD GDX ZIP

M7 czy 6.20 μs 5.00 μs 80.83 μs 5.27 μs

M6 sin 5.14 μs 5.69 μs 87.56 μs 4.73 μs

M1 6.27 μs 5.33 μs 57.18 μs 4.94 μs

MS23 5.96 μs 5.44 μs 87.43 μs 5.44 μs

Average 5.89 μs 5.37 μs 78.25 μs 4.96 μs
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Clearly, the implementation of GDX used here is consistently an order of magnitude
slower than the other strategies when deciding on its next ask/bid price. In the experiments
in this paper, of course this is of no significance. However, in a real market, this could very
easily cause the GDX strategy to fail to generate a profit because AA, ZIP, and ASAD
all have at least 10 opportunities to trade while GDX is calculating a single ask/bid
price. BSE does not yet include functionality for multi-threading which makes it a poor
platform for studying time-sensitive responses. We should also note here that in our
implementation of these algorithms very little thought was given to run-time efficiency.
GDX requires the creation of a 2D data structure containing expected values, and also
computes the argmax of a relatively complicated function, which is understandably
slow as the program must traverse every possible input. Our implementation of this is
simplistic and written to be easy to follow, rather than to be quick. A more time-efficient
implementation might reduce the disparity between GDX and its competitor strategies,
e.g. by using precomputed look-up-tables.

5.2 Perpetuation of Smith’62-Style Norms

We find it hard to avoid the conclusion that AA’s success as reported in previous papers
is largely due to the extent to which its internal mechanisms are designed to fit exactly
the kind of experiment settings first introduced by Vernon Smith: AA is very well suited
to situations in which all assignments are issued to all traders simultaneously, and in
which the theoretical equilibrium price remains constant for sustained periods of time,
with only occasional step-change “shocks”. Real markets are not like this, and as Cliff
showed in [6], when AA is deployed in the more realistic market setting provided by
BSE, its dominance disappears. The novel aspect of the results we present here is that
we have now demonstrated that even in the simple style of experiments that AA was
first tested in, AA can be shown not to dominate if sufficiently many tests are run.

Surely then the broader methodological lesson here is that we should not allow
ourselves to be seduced by results from small-scale studies in minimally simple approx-
imations to real-world markets. Smith developed his experimental methods in the late
1950’s when there were no realistic alternative ways of doing things. Running experi-
ments with human subjects is laborious and slow, but experiments in electronic markets
populated entirely by robot traders can proceed in appropriate simulators at speeds much
faster than real-time, and are “embarrassingly parallelizable”: the more computational
cores or virtual machines dedicated to the task, the faster the exhaustive experiments
complete.

At this point in time, 20% of our way into the 21st Century, surely trading-agent
researchers should collectively abandon the simple minimal test-environments that
worked well for Vernon Smith in the middle of the 20th Century and instead start to
tolerate the minor inconvenience of running very large numbers of trials on reasonably
accurate simulations of realistic market situations: the methods used here should be the
norm, not the exception. The availability of open-source public-domain exchange sim-
ulators such as BSE as a common platform for experiments and as a source of reference
implementations, coupled with readily available cheap cloud-computing for doing the
necessary processing, means that there are now really no excuses for not doing so.



Adaptive-Aggressive Traders Don’t Dominate 267

6 Conclusions

The design of trading agents has been a research topic within AI/ML for over two decades,
with the initial work taking place in the research labs of major technology companies
such as IBM and HP, and at peak involved 20 or more teams of researchers around the
world, some of whom would compete in the various trading agent competitions (TAC)
held at AAAI and AAMAS conferences (see e.g. [28] for a summary of TAC research).
Anyone reading the published literature might reasonably come to the conclusion that
Vytelingum’s AA strategy [26, 27] has remained unchallenged for more than a decade as
the best-known public domain strategy for trading in continuous double auctions (CDAs)
such as those found in the global financial markets; and in that sense CDA trading-agent
design may have been thought by many to have been consigned to AI’s list of “solved
problems”.

In this paper we have demonstrated that the apparent success of AA was in fact due
to it not having been tested sufficiently. Our experiments were inspired by, and extend,
those of Vach [25] and Cliff [6] but the AA source-code we used to generate the results
presented here was developed independently of those two authors’ work. That is, there
are now three independent studies that each indicate AA to not be a dominant strategy.

We do not intend this paper to cast any doubts on the scientific or engineering merits
of the previous work that we here call into question. In the decade that has passed
since Vytelingum first published his AA work, the continuing Moore’s Law fall in the
real cost of computing hardware, combined with the rise of cheap and readily scalable
remotely accessed cloud computing, gives today’s researchers access to compute-power
that would arguably have been unimaginable, or at least prohibitively expensive, over
a decade ago when the first tests were being run on AA. As our brute-force exhaustive
evaluation of AA competing with other strategies across all possible permutations shows,
we are now in the lucky position to be able to ask, and to answer, questions that would
not have been practicable to attempt to explore 10 or 15 years ago.

And the conclusion that we have arrived at is this: AA is clearly not the dominant,
best-performing CDA trading strategy; in the experiments reported here, it is outper-
formed by GDX (as in [25]), and in [6] it is outperformed by ZIP. This reverses the
solidly-stated conclusions of previous papers, asserting AA’s dominance.2

Methodologically, all of the studies reviewed here (including our own experiments)
are firmly in the same minimally simple frame of reference first established by Vernon
Smith in his 1962 experiments: agents are assigned a right to buy or sell only a small
number of items (typically only one) at any one time; and none of AA or ZIP or ASAD or
GDX or ZIC have any sense of size-sensitivity (larger-sized orders being more significant
than smaller ones) nor of time-sensitivity (some orders being more urgent to get executed
than others). The strategies that have been studied in the CDA trading-agent literature are
(with the notable exceptions of the famous Kaplan Sniper algorithm described in [17];
and Gjerstad’sHBL strategy [12]) almost exclusively focused solely on price. Yet traders
in real-world markets need to reason about price, and quantity, and time, making dynamic
tradeoffs as the market moves over time. There is a clear need for further research

2 At least two of those papers were co-authored by one of us, Dave Cliff. So this present paper is
offered as something of a mea culpa from Cliff.
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directed at creating such more sophisticated, and hence more real-world-relevant, trading
strategies, and then comparing and evaluating them appropriately.

But, as we have argued here, there is also a clear need for future research to be
conducted in such a way that erroneous conclusions are less likely to be drawn and
promulgated. One way of doing that is to burn through very large numbers of compute-
cycles, working exhaustively through all permutations of different strategies that might
reasonably be found in a CDA market somewhere sometime. A CDA trading strategy
should only be described as dominant, or the best-performing, if it really is; and some-
times, more often than not, the only way of determining that is to run an awful lot of
experiments. If all those experiments take a lot of money to run on a lot of machines, we
just need to bear that cost; and if they take a long time to run, we just need to be patient.
But, thankfully, the availability of low-cost cloud computing services means that we
don’t need to spend as much money on supercomputers, and nor do we need to wait as
long as if we only had a few cores available. Now that the results we’ve presented here
have overturned long-held beliefs about which is the best-performing public-domain
trading strategy, running large-scale exhaustive experiments on contemporary scalable
cloud services (or equivalent locally-available hardware) seems like the only reasonable
way forward in future.
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Abstract. We propose a learning method that decides the period of
activity according to environmental characteristics and the behavioral
strategies in the multi-agent continuous cooperative patrol problem.
With recent advances in computer and sensor technologies, agents, which
are intelligent control programs running on computers and robots, obtain
high autonomy so that they can operate in various fields without pre-
defined knowledge. However, cooperation/coordination between agents
is sophisticated and complicated to implement. We focus on the activity
cycle length (ACL) which is the time length from when an agent starts
a patrol to when the agent returns to a charging base in the context of
a cooperative patrol where agents, like robots, have batteries with lim-
ited capacity. A long ACL will enable an agent to visit distant locations,
but the agent will require a long rest time to recharge. The basic idea
of our method is that if agents have long-life batteries, they can appro-
priately shorten the ACL, and thus can visit important locations with
a short interval of time by recharging frequently. However, appropriate
ACL must depend on many elements such as environmental size, number
of agents, workload in an environment, and other agents’ behavior and
ACLs. Therefore, we propose a method in which agents autonomously
learn the appropriate ACL on the basis of the number of events detected
per cycle. We experimentally indicate that our agents are able to learn
appropriate ACL depending on established spatial divisional coopera-
tion. We also report the details of the analysis of the experimental results
to understand the behaviors of agents with different ACLs.

Keywords: Continuous cooperative patrol problem · Cycle learning ·
Multi-agent · Division of labor · Battery limitation

1 Introduction

Coordination in a shared environment is one major issue in the research on
multi-agent systems because it heavily affects the entire performance of coop-
erative activities. However, identifying what coordination regime and behavior
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are appropriate is quite complicated because it depends on the nature of the
environment and the structure of the tasks that multiple agents have to work
on. In addition, agents are often required for better coordination to infer oth-
ers’ plans and goals because agents are autonomous, having their own behavioral
strategies and different computational skills and costs. Therefore, creating meth-
ods for establishing cooperation among multiple agents is challenging due to the
difficulty of realizing advanced autonomy and various complex interaction pat-
terns between agents with limited communication opportunity. To tackle these
issues, the multi-agent patrol problem (MAPP) has attracted attention as a good
case study on many multi-agent systems because it has essential issues, such as
autonomy, dispersibility, communication restriction, and scalability, all of which
are required to realize intelligent autonomous distributed systems [6].

We extend this problem to the multi-agent continuous cooperative patrol
problem (MACCPP) in which multiple autonomous agents with limited bat-
tery capacities continuously move around in an environment where events occur
at a certain probability [17]. In the MAPP, all nodes (locations) are visited with
the same priority/frequency because the purpose of the conventional MAPP
is to minimize idleness which is the interval of two visits for every node. In
comparison, agents in the MACCPP are required to visit individual nodes with
different visitation requirements, which reflect that events that should be mon-
itored or observed in the nodes occur with different probabilities or reflect the
importance of nodes. Thus, high visitation requirements indicate, for example,
locations that require a high-security level at which no events must be missed in
security patrolling applications. Thus, the objective of agents in the MACCPP
is to minimize the duration of unawareness which is the length of time for which
agents remain unaware of occurred events by not visiting the locations of these
events.

There are a number of studies that have tackled MAPPs and MACCPPs
in multi-agent system contexts because of their applicability to many real-world
problems. For example, Cheva [5] classified various classes of patrolling strategies
and compared these strategies. David and Rui [6] summarized developments of
patrolling methods and indicated issues that must extensively be studied regard-
ing the MAPPs. Sugiyama et al. [16] proposed a learning method, in which agents
individually decide where they should work by using lightweight communications
and by learning which locations they should visit more frequently than others.
They found that the agents with their methods could effectively move around the
environment by identifying their responsible areas, i.e., the agents finally formed
a certain cooperation structure based on the division of labor by autonomous
area segmentation.

Although this method [16] could improve efficiency in patrolling the given
environment to detect/observe events occurring there, we found that agents have
to consider the temporal aspect, i.e., the interval of visits to some important
locations in their coordinated behaviors to minimize the duration of unaware-
ness of events, if we assume that agents are (the control programs of) robots
and often stop operation for battery charging and/or periodic inspections. This
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interruption in operation usually negatively affects patrolling, such as security
surveillance and cleaning tasks. Because temporarily stopping for charging is
frequent and inevitable in actual operation, strategic behavior is required to
minimize the influence of stopping by taking into account a robots’ capability
and the characteristics of the areas in which they move around. Although a few
studies discussed the battery capacity of agents (robots) [2,8,10,14], the appro-
priate timing for when to return to charge and when to resume operation for
autonomous agents was not clarified in their methods.

The cyclic behavior of agents, in which agents move around until their batter-
ies become empty and then charge to make the batteries full in different periodic
phases is one of the simplest ways of coordination, but it is somewhat doubtful
whether this behavior contributes to reducing the duration of unawareness in
the MACCPP. In this paper, a sequence of actions from the agent leaving the
charging base with a full battery, moving around the environment, returning to
the base, and completing the charge is called a round and the time length to
complete a round is called an activity cycle length (ACL). The system’s perfor-
mance seems to be affected by cyclic strategies based on the battery capacity. For
example, agents with a small battery capacity cannot cover distant tasks/events,
and the cumulative return cost for recharging is high in a large environment due
to frequent charging. In contrast, agents with long-life batteries can be expected
to move more effectively and cover distant events, but they must stop operations
for a long time for recharging, resulting in a long duration of unawareness. In
addition, because appropriate ACL may depend on the environmental charac-
teristics they will be deployed in, and the behaviors of other cooperative agents,
as well as the agent’s own behavioral strategies, it is almost impossible to decide
the ACL in the design phase of the systems. Therefore, agents are required to
autonomously learn which ACL will lead to better results through actual coop-
erative behavior from the viewpoint of the entire performance.

In this paper, we extend the method proposed in [16] to learn appropri-
ate ACL in the MACCPP model to adapt other agents’ cooperative strategies
and ACLs as well as the characteristics of the areas in which individual agents
mainly move around. In this method, we assume that agents have long-life bat-
teries and they can adaptively decide their ACL by returning/restarting regard-
less of their remaining battery capacities because it is easy to shorten ACL. Of
course, they must not run out of battery during operations. The features of our
method is that, like the method in [16], it does not require tight communication
and deep inference for cooperation, meaning that frequent message exchange
and the sophisticated reasoning of others’ internal intentions are not used; this
makes our method efficient and lightweight. For this reason, our method is appli-
cable to dynamic environments. We experimentally indicate that agents with our
method are able to identify appropriate ACL. Furthermore, we found that agents
established a division of labor by spatial segmentation, as in [16]; thus, agents
individually identify where they should move around according to the nodes they
are responsible for. This enables agents to decide ACL differently and appropri-
ately for their own specific situations. We have already reported some results
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along this line about the learning of ACLs elsewhere [18], but in this study, we
added more detailed experimental results with reasonable assumptions and we
extensively analyzed the benefits and features of the proposed method.

2 Related Work

Cooperation in a distributed manner by multiple agents has received increasing
demands for continuous and sustainable real-world systems. Cao et al. [3] sum-
marized some main results of distributed multi-agent coordination techniques
in control systems and robotics. They mentioned that many benefits can be
obtained when a single complicated robot is equivalently replaced by simpler
multi-robots. They also mentioned that distributed approaches are more useful
to cope with many constraints such as limited resources and available energy in
real-world applications. In many social insects and animals including humans,
individuals must adjust the consumption of limited energy for continuous behav-
ior of the group. For example, Hasegawa et al. [7] observed ant behavior and
obtained the results which suggested that lazy ant workers that consumed less
energy than other ants were indispensable for long-term sustainability of the ant
group. This kind of coordination and cooperation by multiple agents also seem
to be required in artificial systems. However, common theories for cooperation
are not clarified due to diversity of real-world environments and the complexity
of interactive relationships between many agents. Therefore, studies using one
of simplified and analyzable problems, like the MACCPP, will help clarify how
we realize a sustainable artificial system.

Various approaches, especially approaches based on reinforcement learning
for the MAPP and MACCPP, have been examined so far. David and Rui [6] sum-
marized the development of patrolling methods. They stated that non-adaptive
solutions such as methods based on the traveling salesman problem often outper-
form other solutions in many cases except in large or dynamic environments. To
adapt to these environments, they insisted that agents must have high autonomy.
Machado et al. [9] evaluated reactive agents and cognitive agents that have differ-
ent depths to analyze patrol graphs and investigated the characteristics of these
agents. In actual patrol problems, because cognitive agents have greater per-
ception, they can do more sophisticated operations due to recent developments
in technology. Santana et al. [13] modeled a patrolling task as a reinforcement
learning problem and proposed adaptive strategies for autonomous agents. Then,
they showed that their strategies were not always the best but were superior in
most of the experiments.

The MACCPP assumes a dynamic environment in which events occur with
certain probabilities and the duration of unawareness is considered instead of
idleness as in the MAPP. According to Ahmadi and Stone [1], by assuming that
events to be found were generated stochastically, the proposed agents learned the
probability of events and adjusted their area of responsibility to minimize the
average required time to detect events. Chen and Yum [4] modeled a patrolling
environment with a non-linear security level function in the context of a security
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problem. In this model, agents have to visit each node with a different frequency
according to the values of the function. Pasqualetti et al. [11] studied a patrol
problem in which all nodes have different priorities, but their model was a sim-
ple cyclic graph with a small number of nodes. Popescu et al. [12] proposed a
patrolling method for a wireless sensor network in which agents independently
collect saved data from sensors with limited storage. Agents in this model decide
the priorities of nodes to visit on the basis of the accumulated amount of data
and data generation rate. Stump and Michael [15] considered a persistent surveil-
lance problem where six quad-rotor robots patrol around buildings through some
points in three-dimensional space that have different priorities. In this problem,
robots have to repeatedly visit each point for continuous surveillance, so we can
regard this problem as a kind of MACCPP.

Sugiyama et al. [16] proposed a method called the adaptive meta-target deci-
sion strategy with learning of dirt accumulation probabilities (AMTDS/LD) by
combining the learning of a target decision strategy in the planning process and
the learning of the importance of each location for cleaning tasks. Agents with
AMTDS/LD indirectly cooperate with other agents by learning the importance
of nodes, which is partly taken into account and reflects the visiting frequen-
cies of other agents. The researchers also extended their method by introducing
simple negotiation to enhance the division of labor in a bottom-up manner [17].
However, they did not discuss the intervals of visits, which is another key issue
of the MACCPP. In the MACCPP, agents with limited capacity batteries have
to stop their operation to recharge, so agents have to coordinate with each other
by adjusting timings of starting and recharging for appropriate visiting patterns.

Other researchers also take into account battery capacity in the multi-robot
patrol problem. Jensen et al. [8] presented strategies for replacing robots that
have almost empty batteries with other robots that have fully charged ones
to keep coverage and minimize interruptions for sustainable patrol. Bentz and
Panagou [2] proposed an energy-aware global coverage technique that shifts
distributions of effort networks according to the degree of an agent’s energy
constraints. Sipahioglu et al. [14] proposed a path planning method that cov-
ers an environment by considering energy capacity in multi-robot applications.
This method partitions a complete coverage route into sub-routes and assigns
them to robots by considering the energy capacities of the robots. Mersheeva
and Friedrich [10] proposed a negotiation mechanism between aerial vehicles in
a monitoring problem with limited energy resources and different priorities of
locations. In many multi-robot problems, limited energy resources of robots was
considered, but the number of robots was not so many because they assumed
strict limitation of robotics such as processing capability and communication
bandwidth/noise. However, we can expect that many more agents will work in a
shared environment in the near future. Additionally, these methods are mainly
focused on how to divide work areas for cooperative activities. However, they
do not focus on controlling the phases of ACL on the basis of an agent’s battery
capacity. Therefore, we propose a learning method with which each agent decides
the appropriate duration of activity (so appropriate charging time) depending
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on the characteristics of the tasks of agents for more effective cooperation. We
have already reported some results by taking into account the learning ACLs
elsewhere [18], but we added more detailed experimental results and analysis on
the benefits and features of the proposed method.

3 Model

3.1 Environment

We introduce discrete time with units called ticks. The environment in which
agents patrol is described by graph G = (V,E), which can be embedded into a
two-dimensional plane with a metric, where V = {v1, . . . vm} is a set of nodes.
An agent, an event, and an obstacle can exist on node v. E is a set of edges. An
edge connecting vi and vj is expressed by ei,j ∈ E. By adding dummy nodes if
necessary, we assume that agents can move one of their neighbor nodes along an
edge in one tick. An environment may have obstacles, Ro (⊂ V ). Agents cannot
move to and events do not occur on the nodes in Ro. Therefore, nodes with
obstacles and edges that contain obstacles are removed from V and E.

Node v ∈ V has the event occurrence probability value p(v), where 0 ≤ p(v) ≤
1, and it indicates that an event occurs on v with probability p(v). The number
of unaware events without processing on v at time t is expressed by Lt(v), where
Lt(v) is a non-negative integer. Lt(v) is updated on the basis of p(v) every tick by

Lt(v) ←
{

Lt−1(v) + 1 (if an event occurs)
Lt−1(v) (otherwise).

(1)

Lt(v) becomes 0 when an agent visits v. In one tick, events occur on nodes,
agents decide their target nodes, agents move to neighbor nodes, and agents
process events on the move destination.

3.2 Agent

Before we describe the agent model, we explain one assumption which we intro-
duce to simplify our problem. In this study, we assume that agents always get
their own and others’ locations. An environment with this assumption can be
realized, for example, by equipping agents with indicators, such as infrared emis-
sion and reflection devices and detecting them using cameras. We believe that
this is a reasonable assumption because technology for sensors and positioning
systems are being rapidly developed. However, we do not assume that agents can
get others’ internal information such as the adopted strategies and the target
nodes selected with planning processes in individual agents because inference and
reasoning by using/estimating others’ internal information seems complicated.
Because we want to focus on the period of cyclic behavior for better cooperative
work, we do not consider such costly reasoning.

Let A = {1, . . . , n} be a set of agents. When agents obtain p(v) in advance,
they can use p(v) for their patrol. However, in actual patrol problems, p(v) may
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be unknown. Moreover, the appropriate frequency to visit depends not only on
p(v) but also on the frequencies of other agents’ visits.

Therefore, agents have to learn priorities to visit nodes from their local view-
points through their actual patrols. Agent i has the degree of importance (simply,
importance after this) pi(v) for all nodes in an environment, and it reflects both
p(v) and other agents’ behaviors. When i visits node v at t and detects events
Lt(v), i updates pi(v), as

pi(v) ← (1 − β)pi(v) + β
Lt(v)
Iit(v)

, (2)

where Iit(v) is the elapsed time from tvvisit which is the time of the last visit to
v and calculated as

Iit(v) = t − tvvisit . (3)

β (0 < β ≤ 1) is the learning rate. If the initial value of pi(v) is in interval [0, 1],
pi(v) is always in [0, 1], because Lt(v) ≤ Iit(v) from the definition of Lt(v).

3.3 Target Decision and Path Generation Strategy

Agents repeatedly generate paths to follow through a planning process. The
planning usually consists of two subprocesses: target decision and path genera-
tion (e.g., [19]). Agent i first decides the next target node vi

tar ∈ V by using
the target decision process and then generates the appropriate path from the
current node to vi

tar by using the path generation process. Because our pur-
pose is to extend the AMTDS/LD and to compare our proposed method with
AMTDS/LD, we will briefly explain it. Agent i with AMTDS/LD simultaneously
learns the appropriate strategy s in Splan and pi(v) with Formula (2), where Splan

is the set of target decision strategies described below. The policy for selecting
the target decision strategy from Splan is adjusted based on Q-learning with the
ε-greedy learning strategy. Thus, i updates the Q-value for selecting s ∈ Splan

on the basis of the sum of detected events until i arrives at vi
tar , which is the

target decided by s. The details of Q-learning for this policy and AMTDS/LD
are outside the scope of this paper; please refer to [16].

We will explain the elements of Splan , i.e., the target decision strategies used
in the experiments below.

– Random Selection (R)
Agent i randomly selects vi

tar among all nodes V .
– Probabilistic Greedy Selection (PGS)

Agent i selects vi
tar in which i estimates the value of unaware events ELi

t(v)
at time t using pi(v) and elapsed time from last visit Iit(v) by

ELi
t(v) = pi(v) · Iit(v). (4)

Then, i selects vi
tar randomly from the Ng highest nodes in V according to

the values of ELi
t(v), where Ng is a positive integer.
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– Prioritizing Unvisited Interval Selection (PI)
Agent i selects vi

tar randomly from the Ni highest nodes according to the
value of interval Iit(v) for v ∈ V , where Ni is a positive integer. Agents with
this strategy are likely to prioritize nodes that have not been visited recently.

– Balanced Neighbor-Preferential Selection (BNPS)
Agent i estimates if many unaware events may exist near nodes by using
the learned threshold value, and i selects vi

tar from such nodes. Otherwise, i
selects vi

tar by using the PGS. The details are described elsewhere [20].

Note that we can also regard AMTDS, AMTDS/LD, and our proposed method
as target decision strategies.

We use the gradual path generation (GPG) method as the path generation
strategy in this research [20]. Agent i with the GPG first calculates the shortest
path from current node to vi

tar and then regenerates a path to vi
tar by adding

nodes nearby the shortest path and whose values of ELi
t(v) are identified as

high. We do not explain the GPG method in detail because it is beyond the
scope of this paper, but it is also described elsewhere [20].

Battery Setting. Agent i has a battery with a limited capacity, so it must
periodically return to its charging base vi

base ∈ V to charge its battery for
continuous patrolling. The battery specifications of agent i are denoted by
(Bi

max , Bi
drain , ki

charge), where Bi
max (> 0) is the maximal capacity of the battery,

Bi
drain(> 0) is the amount of battery consumption per one tick, and ki

charge(> 0)
is the time taken to charge one battery at charging base vi

base . The remaining
amount of the battery of agent i at time t is expressed in bit(0 ≤ bit ≤ Bi

max );
therefore, it takes ki

charge(B
i
max − bit) to charge to full, when i starts to charge

at time t.
Agents in this model must go back to vi

base before bi(t) becomes 0 as shown
below. Agent i calculates the potential, P(v), for all nodes in advance. P(v) is
the minimal amount of battery consumption necessary to return from node v to
vi
base and is calculated as

P(v) = d(v, vi
base) × Bi

drain , (5)

where d(vk, vl) is the shortest path length from node vk to node vl. After agent
i decides vi

tar on the basis of the target decision strategy, i judges whether i can
arrive at vi

tar before i moves to vi
tar using

bit ≥ P(vi
tar ) + lenGPG(vi

t, v
i
tar ) × Bi

drain , (6)

where vi
t ∈ V is current node of agent i at time t and lenGPG(vi

t, v
i
tar ) is the

length of the path generated by the GPG (so it takes lenGPG(vi
t, v

i
tar ) ticks for

i to follow the path to the target). If this inequation does not hold, i changes
vi
tar as

vi
tar ← vi

base , (7)

and immediately returns to vi
base . Agents recharge batteries at charging bases

until they are full and then restart patrol.
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Our purpose is to appropriately decide ACL depending on the characteristics
of their working environments, the recognition of the importances of all locations,
and the behavior of other agents. Because agents can return to the charging base
earlier, it is easy to shorten ACL if they have long-life batteries.

3.4 Performance Measure and Requirement of MACCPP

The requirement of the MACCPP is to minimize the duration of unaware events,
Lt(v), by visiting important nodes without being aware of event occurrences. For
example, in cleaning tasks, agents should vacuum accumulated dirt as soon as
possible without leaving it and keep the amount of dirt low. Therefore, we define
a performance measure when agents adopted strategy s ∈ Splan , Dts,te(s), for
the interval from ts to te to evaluate our method.

Dts,te(s) =
∑
v∈V

te∑
t=ts+1

Lt(v), (8)

where ts < te. Dts,te(s) is the cumulative unaware duration in (ts, te], so a
smaller Dts,te indicates better system performance.

We can also consider another performance measure. For example, in security
patrol applications, agents should keep the maximal number of events Lt(v) as
low as possible, because a high value for Lt(v) indicates significant danger. This
measure is defined by

Uts,te(s) = max
v∈V,ts<t≤te

Lt(v). (9)

Therefore, agents in the MACCPP are required to lower one or both of the
performance measures, Dts,te(s) or Uts,te(s), depending on the type of application.

4 Proposed Method

We explain our method with which agents learn the appropriate ACL to improve
their own performance [18]. We named our method, which is an extension of
AMTDS/LD [16], AMTDS with cycle learning (AMTDS/CL). Agent i has ACL
as sic (0 < sic ≤ �Bi

max/Bi
drain�) (we normalize the value in (Bi

max , Bi
drain) so

that Bi
drain = 1 hereafter). Agent i with AMTDS/CL regards its battery capacity

Bi
max as sic and then uses the battery control algorithm in Sect. 3.3. The length

of ACL is a trade-off because a longer ACL enables agents to act for a long time,
but agents also require a long charging time. In our method, agent i selects sic
from a set of possible ACLs, Si

c = {sc1, sc2, . . . }, where maxs∈Si
c
(s) = Bi

max .
For simplicity, s ∈ Si

c is a divisor of Bi
max in this paper, but we can select any

number between 0 and Bi
max .

The learning process of deciding the ACL consists of two learning subpro-
cesses. The purpose of the first subprocess is to decide the initial Q-values for
all possible ACLs in Si

c because the initial Q-values offset the performance of
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Q-learning and, in general, their appropriate values are dependent on the char-
acteristics of the working areas in the environment. In this subprocess, agents
calculate the average number of detected events per one tick while active as fol-
lows. First, i selects an ACL from Si

c at random and starts patrol. Then, when
i returns to the base to charge, it calculates ei1 by using

ei1 = Ei
1/li1, (10)

where Ei
1 is the number of detected events in the first round and li1 is time length

when agent i moved in the first round.
Agents repeat this pair of the patrol and the computation; i.e., they randomly

select an ACL in each round and calculate the average of the detected events per
tick in the k-th round, eik = Ei

k/lik, where Ei
k is the number of detected events

in the k-th round and lik is the time length of the k-th round. Agent i continues
this process for the initial Tinit ticks, where Tinit is a positive integer. Then, at
the end of the first subprocess, i calculates ei, which is the average of the values
of ei1, e

i
2, . . . obtained by Formula (10) during the first subprocess. The ei will be

set to the initial Q-value Qi(sc) of sc ∈ Si
c) in the second subprocess. Note that

pi(v) is calculated by using Eq. (2).
If agent i finds that the current time t is larger than Tinit , it enters the second

learning subprocess. Before i starts to patrol from its charging base, i decides sc
with probability 1 − ε as

sc ← arg max
s′
c∈Sc

Qi(s′
c), (11)

where 0 < ε 	 1 is the greedy parameter for the e-greedy strategy; otherwise, i
randomly selects sc from Sc . When there is a tie break in Eq. (11), agents select
one of the candidates at random.

In the proposed method, i will continuously use the selected sc for several
times without updating Q-value to balance the weights of Q(sc) for ∀sc ∈ Sc .
In the MACCPP, it is better for agents to visit individual nodes, especially
important nodes, in shorter intervals when their battery levels are high. However,
when agents visit nodes so frequently, they may find a smaller number of events;
therefore, the Q-values of the short ACLs tend to be small, even if i visits the
important nodes where i must find as many events as possible and keep the
number of unaware events low. This means that if agents update Qi(sc) every
short round, they cannot correctly evaluate the ACL. Therefore, we introduce
the parameter Ci

sc to make the weights of their activity time identical regardless
of the value of sc ; this achieves fair learning results. When agent i decides its
ACL with Formula (11), i calculates Ci

sc by

Ci
sc = Bi

max/sc . (12)

After that, i selects the sc in Ci
sc rounds continuously without updating the

Q-value.
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After i finishes Ci
sc rounds of patrol using the selected sc , i updates Qi(sc);

Qi(sc) ← (1 − γ)Qi(sc) + γ

∑k0
k=k0−Ci

sc
+1 Ei

k

Ci
sc

, (13)

where k0 indicates the number of the most recent round. We have assumed that
sc is is a divisor of Bi

max but if not, we use Ci
sc = �Bi

max/sc�. Note that the
first learning subprocess is dedicated to calculating the initial Q-values and i
never updates Qi(sc). The calculation of initial Q-values is mandatory for the
fast convergence of Q-learning.

5 Experiments and Discussion

We evaluated our method with two experiments. First, we investigated whether
agents with our method will learn the appropriate ACL, by comparing the results
of our learning method with those of the AMTDS/LD with a fixed ACL. Note
that in this experiment, all agents had a charging base in the same location. In
the second experiment, we investigated the difference in learned ACLs when the
agents’ charging bases were located at different locations. Therefore, they were
likely to be affected by the characteristics of the local areas near the charging
bases.

(-34, -50) (0, -50) (34, -50)

(-34, 50) (0, 50) (34, 50)

(b) Office B(a) Office A

Fig. 1. Environments in experiments [18]. (Color figure online)
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Table 1. Parameters and values [18].

Model Parameter Value

PGS Ng 5

PI Ni 5

AMTDS/LD β 0.05

ε 0.05

AMTDS/CL γ 0.05

ε 0.05

Tinit 100,000

5.1 Experimental Setting

We constructed two simulated large environments, called “Office A” and
“Office B,” for agents to patrol as shown in Fig. 1. These environments con-
sisted of six rooms (labeled Rooms 0–5 ), a corridor, and a number of nodes
where events occurred frequently. We set p(v) for v ∈ V as

p(v) =

⎧⎪⎨
⎪⎩

10−3 if v was in a red region,
10−4 if v was in an orange region, and
10−6 otherwise,

(14)

and the colored regions are shown in Fig. 1. The green circles in these environ-
ments are charging bases. In Office A, all agents had charging bases in the same
location. In Office B, we divided agents into six groups, and the charging bases of
each group were assigned to one of six rooms differently. Each room had charging
bases in Office B, but agents had to return to their own assigned charging bases.
The environments can be embedded into a 101 × 101 2-dimensional grid graph
whose center is (0, 0) and nodes are represented by coordinates (x, y), where
−50 ≤ x, y ≤ 50. They may have several obstacles (walls). We set the length
of edges between nodes to one. We introduced the Manhattan distance between
two nodes; this was used to calculate the lengths of path generated by agents.

We deployed 20 agents into each environment. We assumed that agents did
not know pi(v) in advance, so we initially set pi(v) for ∀v ∈ V as 0 and each
agent adjusted their pi(v) using Formula (2). Agents started their patrols from
the assigned vi

base and periodically returned to vi
base to recharge before their

batteries became empty. We set the actual battery specifications of all agents
as (Bi

max , Bi
drain , ki

charge) = (2700, 1, 3) and set Sc to Sc = {300, 900, 2700}.
When agents selected sc to be 2700, the patrol cycle length was at maximum
(10,800 ticks), whose breakdown consists of the active time (2700 ticks) and
the charging time (8100 ticks). Therefore, for the target decision strategy s,
we measured Dts,te(s) and Uts,te(s) every 10800 ticks, which was the length of
maximum cycle length (and the least common multiple) of the recharge and
movements. In the experiments below, we set AMTDS/LD or AMTDS/CL to s.
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The parameter values used in the model are listed in Table 1. The experimental
results shown below are the average values of ten independent experimental runs.
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Fig. 2. Improvement in D(s) over time in Office A.
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Fig. 3. Improvement in U(s) over time in Office A.

5.2 Experiment 1—Office A

Performance Evaluation. In the first experiment, we compared the perfor-
mance results of four types of agents that used AMTDS/LD with one of the
fixed ACLs, sc = 300, 900, or 2700 with those by the agents with AMTDS/CL
in Office A as shown in Fig. 1(a). Hereinafter, AMTDS/LD with fixed ACL sc
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is denoted as AMTDS/LD(sc). Figure 2 plots the performance, D(s), and Fig. 3
plots the performance of U(s) over time. Note that the smaller D(s) and U(s)
are better. We also note that these figures are similar to but different from those
in [18], since we fully conducted the new experiments.

Both figures indicate that agents with AMTDS/LD(900) were the most
efficient, and the agents with AMTDS/CL exhibited almost the same effi-
ciency as that with AMTDS/LD(900). The efficiency of the agents with
AMTDS/LD(2700) was the worst and seemed unstable at first, but it gradu-
ally improved over time. Because AMTDS/LD(2700) requires quite a long time
to recharge, the number of patrolling agents and thereby the number of unaware
events were unstably fluctuated. However, the phases of their periodic cycles
gradually shifted automatically and finally disappeared. In contrast, the con-
verged performance of the agents with AMTDS/LD(300) was always worse than
the others. This is because the ACL was too short to cover the entire environ-
ment, especially areas distant from the charging bases, and the agents in charge
of distant area had to return very frequently to the charging bases. We can say
that in this particular experimental environment, the ACL of 900 seemed the
best. However, this depends on the environmental characteristics and we can-
not decide the appropriate ACL in advance. In comparison, the agents with the
proposed AMTDS/CL can adaptively select ACLs by themselves without such
a prior decision.

scsc scs c

Fig. 4. Number of agents selecting each sc over time in Office A [18].

Breakdown of the Selected ACLs. Figure 4 indicates the number of agents
that selected ∀sc ∈ Si

c with AMTDS/CL over time. Note that we plotted in this
figure the values of every 10,000 ticks from 200,000 to 3,000,000 ticks. Because
agents started from deciding the initial Q-values until 100,000 ticks and then
entered the learning of ACL, the learning results in the first 200,000 were unsta-
ble. We can see from this figure that many agents selected 900 ticks for sc since
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Fig. 5. Working time of Agents 1 and 7 in individual rooms of Office A [18].

AMTDS/LD(900) exhibited the best performance in this environment, and this
was consistent with the results when agents have the fixed ACL.

Additionally, we investigated the characteristics of agents that selected 300
and 2700 as their ACL. Figure 5 shows the working time of agents whose IDs
were 1 and 7, i.e., how long they spent in each room during the last 1,000,000
ticks. Note that Agent 1 selected 300 and Agent 7 selected 2700 for their ACLs
at the end, though 900 was usually the best as the ACL in the environment.
We also note that the data shown in Fig. 5 is one result selected from multiple
experimental trials, but we found that a similar tendency could be observed in
other trials. Agent 1 patrolled Room 2 and Room 3 more often than Agent 7.
Room 2 and Room 3 were near the charging base. Room 2 had specific regions in
which events frequently occurred, and many nodes in Room 3 also had a higher
pi(v). Therefore, Agent 1 could find many events in Room 2 and Room 3; thus,
patrolling with a short ACL was better from the viewpoint of Agent 1 to keep
the number of unaware events low.

Meanwhile, Agent 7 frequently patrolled many rooms, some of which were
distant from the charging base. We confirmed that, unlike Agent 1, Agent 7
had a high value of pi(v) in more and farther nodes, so Agent 7 selected a
long ACL to move around in a large area. This analysis indicates that, from
a global viewpoint, agents with a short sc and long sc covered different areas
in a complementary manner. That is because some agents with AMTDS/CL
did not select 900 for sc and deterioration of efficiency did not occur, although
AMTDS/LD(900) was best in terms of efficiency. These results showed that
agents with our method learned the appropriate ACL sc without prior knowl-
edge of the environments. Instead, agents decided ACLs on the basis of their
learned pi(v) and working area. We believe that such diversity in agent strate-
gies also enhances the response capabilities to environmental changes as well as
the improvement in efficiency.



Improvement of Multi-agent Continuous Cooperative Patrolling 285

Table 2. Converged performance on different numbers of agents in Office A.

Number of agents |A|(= n)

5 10 15 20

Performance D(s) AMTDS/LD(900) 4600101 2154396 1451049 1116220

AMTDS/CL 4558343 2218133 1486534 1157499

Performance U(s) (AMTDS/LD(900)) 60.15 13.36 6.56 5.06

(AMTDS/CL) 54.58 12.22 6.56 5.18

Effect of Number of Agents on Performance. To show that the proposed
method can effectively determine the ACL even if the number of agents is dif-
ferent, we conducted the same experiment using different numbers of agents
and compared the results with those under the condition in which all agents
had the fixed ACL. Table 2 lists the average performance D(s) and U(s) of
ATMDS/LD(900) and AMTDS/CL between 2,500,000 and 3,000,000 ticks when
the number of agents, |A|, is 5, 10, 15 or 20. This table indicates that the agents
with the AMTDS/CL could exhibit comparable performance in all cases by
deciding their own ACL values. Note that we only conducted the experiment
using AMTDS/LD(900) because the performance with ACL = 900 was better
than those with other ACL values.

We can also see from Table 2 that when the number of agents was small
(|A| = 5 or 10), the performance of AMTDS/CL was better than that of
AMTDS/LD(900). When |A| was not small, agents with the fixed ACL had
the same activity duration, but the phase of their cycle had gradually shifted;
thus, they could patrol in the environment with the different phases of activity
cycles. However, conditions were different when the number of agents was small.
First, it was not possible for agents to compensate for each other by shifting the
phase of the activity cycle. Second, they could find sufficient number of events
just moving around the nodes whose p(v) was higher; thus, they were likely to
identify these nodes as important nodes. Additionally, they have the same ACL.
Under this situation, agents’ explorations were limited and biased, and then
their convergence became slow. In contrast, agents with the AMTDS/CL had a
variety of ACLs; and then, agents with the smaller ACL visited the areas not
so far, and those with the larger ACL visited the distant areas. Agents with the
AMTDS/CL seem better at compensating for each other when there are only a
few agents.

Selected Strategies and ACL Values. Next, we investigated the relation-
ships between the ACL values and the selected target decision strategies because
the activity time seemed to affect agents’ behaviors. The results were indi-
cated in Fig. 6. This figure shows that almost all agents selected the PGS or
BNPS as the target decision strategies and this result is consistent with that in
AMTDS/LD [16].
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300                  900                  2700

Fig. 6. Selected Target Decision Strategies.

If we look at this figure more carefully, we can notice that agents with
the larger ACL tended to select BNPS. So relatively, the agents selecting PGS
decreased according to the length of the activity cycle. This is because the agents
with a short activity cycle had to eagerly visit the locations (near the charging
bases) that were important and had been left unvisited for a long time based on
the values of ELi

t(v). Of course, such agents have the important locations near
the charging base, and thus, selecting the greedy strategy was advantageous to
observe more events. In contrast, agents with the longer cycle length visited the
locations while observing the neighborhood firmly. This strategy might delay
the visits of distant important locations somewhat, but they could afford to
behave that way. In particular, firm visits by this method was clearly better for
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Fig. 7. Improvement in D(s) over time in Office B.
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Fig. 8. Improvement in U(s) over time in Office B.

scsc sc

s c

Fig. 9. Number of agents selecting each sc over time in Office B [18].

patrolling far from the charging base because it was costly to visit far locations.
This analysis suggested that agents could decide the target decision strategies
according to the ACL values.

5.3 Experiment 2—Effect of Base Locations

Adaptation to Environmental Characteristics. In the second experiment,
we evaluated the four types of agents in a slightly different environment where
there were six charging bases for each room named “Office B,” as shown in
Fig. 1(b) because the ACLs may be affected by the distance between the charging
bases and the working areas. A charging base in Room n (n = 0, . . . , 5) is denoted
by vbase-n. We set Agents 0, 1, 2, and 3 to vbase-0, Agents 4, 5, and 6 to vbase-1,
Agents 7, 8, and 9 to vbase-2, Agents 10, 11, 12, and 13 to vbase-3, Agents 14, 15,
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and 16 to vbase-4, and Agents 17, 18, and 19 to vbase-5. The improvement D(s)
is plotted in Fig. 7, and U(s) over time in Office B is plotted in Fig. 8.

We can confirm that the efficiency of AMTDS/CL and AMTDS/LD(900)
was almost identical from these figures. If we carefully compare Fig. 7 with
Fig. 2, the converged performances of D(s) for all methods were almost identi-
cal for both performances. However, the convergence of the AMTDS/LD(2700)
in Fig. 7 seemed faster, and the performance also seemed stabler than those of
AMTDS/LD(2700) in Fig. 2. In Office B, the charging bases were distributed,
so the patrol patterns of individual agents differed even if agents had the same
length of ACL. Meanwhile, Fig. 8 indicates that agents with AMTDS/LD(300)
were the worst and the performance converged very slowly, which differed from
the results of the first experiment (see Fig. 3). This indicates that the perfor-
mance, U(s), also depended on the distance between the charging bases and
the work locations. In the second experiment, the areas individual agents vis-
ited were distinct, so nodes were covered by a smaller number of agents than in
Office A.

Table 3. Number of agents selecting an ACL sc in Office B [18].

Room of charging base

Room 0 Room 1 Room 2 Room 3 Room 4 Room 5

sc = 300 1.2 0.3 0.2 1.7 0.0 0.0

sc = 900 2.1 1.7 2.3 2.2 2.1 1.0

sc = 2700 0.7 1.0 0.5 0.1 0.9 2.0

Analysis of the Learned ACLs. The number of agents that selected each
sc for AMTDS/CL as shown in Fig. 9, was similar characteristic to Fig. 4. In
this experiment, we were interested in the differences in ACL learned on the
basis of the locations of agents’ charging bases. Table 3 lists the average number
of agents that selected sc ∈ Si

c for AMTDS/CL for each charging base location
between 2,000,000 and 3,000,000 ticks in Office B. This table shows that 900 was
mainly selected as the value of sc by many agents, but we can observe different
characteristics according to agents’ base locations. We already knew that 900
was appropriate for this environment; thereby, we focused on and analyzed the
agents that selected other ACLs. Table 3 indicates that agents whose charging
bases are Room 1, Room 2, and Room 4 were likely to select 900 as ACLs. On
the other hand, agents whose charging base was in Room 5 obviously learned
that the long ACLs were better. Because they could find only a few events near
their base (Room 5 did not have a node with a high p(v)), they had to explore
nodes farther away to help other agents. Relatively more agents whose bases
were in Rooms 0 and 3 selected 300 as their ACL. In these rooms, there were
many nodes near the walls with a high p(v) as shown in Fig. 1. Thus, these agents
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Fig. 10. Number of selected ACLs by agents in Room 2, Room 3 and Room 5.

could find many events near their bases. They could reduce the cost of moving
to other rooms and focused on specific nodes in the local rooms by selecting
the shorter ACLs. In addition, they could visit nearby nodes at an appropriate
and shorter frequency by improving the accuracy of the estimated pi(v) for the
specific nodes.

We also plot in Fig. 10 the selected ACLs by agents whose charging bases
were Room 2, Room 3, and Room 5 to identify the differences in the selected
ACLs in more detail. First, we could see that agents whose base was in Room 5
selected 900 as their ACL at first, but after that, they gradually changed to 2700.
We can explain this change as follows. At first, all agents were likely to select
900 as the ACL since it seemed more appropriate than others. Then, agents
whose bases were not in Room 5 focused on nodes near their base and improved
their patrol performance. In contrast, agents whose base was Room 5 could find
no nodes with high importance values pi(v) nearby and had to visit more of
the other distant rooms to find events. Therefore, it is disadvantageous to select
the small ACL (sc = 300) to find more unaware events. This suggests indirect
communication through learning of the importance value; therefore, agents could



290 A. Sugiyama et al.

perform the learning of the ACLs for the entire system’s performance in a real-
time manner thanks to the simultaneous learning of importance pi(v).

Another finding from Table 3 is that agents whose charging bases were in the
centrally located rooms (i.e., Rooms 2 and 3) tended not to choose the longer
ACLs, presumably because they do not need a longer cycle to reach the edges
of the environment, and the longer ACL was disadvantageous due to the longer
charging time. Agents in other rooms have longer ACLs to visit other edges of
the environment, and thus, only a few agents chose 2700 as their ACLs.

)003(3tnegA)0072(1tnegA)009(0tnegA

Fig. 11. Heatmap for Visited Locations.

Visited Locations. From our intuition and also from the experimental results,
agents with the longer activity cycle length tended to patrol distant locations.
To confirm this consideration, we counted the number of the detected events
by individual agents. As an example, we show the results of Agents 0, 1, and 3
whose charging base was in Room 0 and their ACLs were 900, 2700, and 300,
respectively in Fig. 11, which is the heatmap showing where they found events
between 2,000,000 and 3,000,000. Note that agents’ behaviors were likely to be
affected by the size of areas with high values of p(v). Therefore, their main
locations to work were Room 0 because there were many nodes near the walls
there.

Figure 11 indicates that agents decided the lengths of ACLs on the basis
of their working locations. Agent 3 whose ACL was 300 usually was moving
around and found events in Room 0. On the other hand, Agent 1 visited other
rooms, especially Room 3 and moved around the area near the walls. Agent 0
also visited Room 3 but moved around near its entrance. Note that the size of
the environment was 101 × 101, so Agent 3 could reach any locations in this
environment.

6 Conclusion

We proposed an autonomous method for deciding the activity cycle length
(ACL), which is how long individual agents act to work in collaborative envi-
ronments by using reinforcement learning. This method reflects the activities of
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other collaborative agents, which are also learning mutually to contribute to the
entire performance. Although we already reported the preliminary results of the
proposed method [18], we have totally recaptured the experimental results for
evaluations and have added the detailed analysis and consideration to clarify its
effects on the agents’ behaviors.

The proposed method to decide their ACLs consists of two learning subpro-
cesses. The first subprocess is dedicated to decide the initial Q-values for possible
ACLs because appropriate Q-values are affected by the environmental charac-
teristics and their initial values affect the convergence speed of learning. The
second subprocess is to identify their own ACL values with the simultaneous
learning of the target decision strategies and the importance of each node, pit(v).

Then, we found that agents with our method, AMTDS/CL, performed effec-
tively comparable with the same efficiency as the best case with a fixed ACL,
without giving any prior knowledge on the best ACL and the environmental char-
acteristics in advance. We also analyzed the relationships between the selected
ACL and agents’ behaviors such as the selected target decision strategies and
the locations of working areas. Nodes were covered with a number of agents
with different visiting cycles. These results indicated effective covering of the
environments without direct communications with each other.

Our future work is to find an activity control strategy in which agents esti-
mate a workload with high accuracy and flexibility to control their activities
while taking into account their remaining energy.
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Abstract. When people evacuate from a room with two identical exits,
it is known that these exits are often unequally used, with evacuees gath-
ering at one of them. This inappropriate and irrational behavior some-
times results in serious loss of life. In this paper, this symmetry breaking
in exit choice is discussed from the viewpoint of herding, a cognitive bias
in humans during disaster evacuations. The aim of this paper is to show
that simple herd behavior is sufficient to reproduce symmetry breaking
in exit choice, whereas many models in the literature adopt predefined
rules, scenarios, or some models representing rational decision making
processes such as utility functions or payoff matrices. The evacuation
decision model, based on the response threshold model in biology, is
presented to reproduce human herd behavior. Simulation with the evac-
uation decision model shows that almost all agents gather at one exit
at some frequency, despite individual agents choosing the exit randomly.
Moreover, the social force model is employed in conjunction with the
evacuation decision model to take physical factors such as clogging and
collisions into account. The effects of physical factors on both evacuation
decisions and evacuation times are analyzed.

Keywords: Response threshold model · Exit choice · Evacuation
behavior · Social force model · Emergency decision making

1 Introduction

One of the most critical issue in emergency evacuations is the choice of the right
exit. The wrong choice will cause inefficient evacuations which are possible to
result in serious loss of life. Much work have been done investigating human exit
choice in evacuations. Some of these works point to symmetry breaking in exit
choice [10,16].

Symmetry breaking in exit choice is a phenomenon observed when people
evacuate from a room with two identical exits, in which the exits are often
unequally used and evacuees gather at one of them. These behaviors result in
c© Springer Nature Switzerland AG 2019
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the inefficient use of exits, increasing the total evacuation time. This inefficient
use of exits is not necessarily limited to panic situations. It was observed that,
even in an evacuation drill conducted at the New National Theater in Tokyo [30],
with incorrect routing of the people at the front, all subsequent people followed,
resulted in inappropriate evacuation.

Many researchers consider herd behavior, one of the most representative and
important cognitive biases in disaster evacuations, to be an underlying mech-
anism of symmetry breaking in exit choice [2,15,25,31]. Herd behavior, which
is caused by the mental tendency to decide one’s behavior based on the behav-
ior of others, has been observed in many evacuations including the Three Mile
Island nuclear power plan accident [7] and football stadium disasters in the
United Kingdom [10]. It has been studied extensively in numerous fields such
as economics, sociology, psychology, and biology, and is also known as crowd
behavior, conformity bias, peer effect, bandwagon effect and majority syncing
bias [9,18,34].

Numerous models have been proposed to represent exit choice in evacuations.
However, many of these models consider the major cause of symmetry breaking
in exit choice to be either panic [15] or rational behaviors [28]. The aim of this
paper is twofold. First, in contrast to the previous works, we show that it can
be reproduced by simple herd behaviors without assuming any rational decision
making processes or predefined rules or scenarios. Second, we also investigate
the effects of physical factors such as collisions, clogging, and disturbances on
this phenomenon.

A method is proposed to reproduce symmetry breaking in evacuation through
two exits with the use of the evacuation decision model which represents herd
behavior in humans [39]. The evacuation decision model is based on the response
threshold model in biology. Furthermore, the model does not incorporate prede-
fined rules or scenarios nor assumes the ratio of individualistic and herd behaviors
in advance. The model is totally distributed and can automatically coordinates
the dynamics of the interaction between leader agents and follower agents.

This paper extends the recent study [40] by taking physical factors surround-
ing agents into account and analyzed the impact of these physical factors on
evacuation decisions and evacuation times. The social force model [15,16] is
employed in conjunction with the evacuation decision model to deal with these
physical factors. In order to examine the effect of physical factors on symme-
try breaking in exit choice, the results are analyzed by comparison with those
without the social force model. With varying the population size, the effects of
physical factors on evacuation times, another important factors in evacuation,
are also analyzed.

The remainder of this paper is organized as follows. Section 2 shows the
models of exit choice in the literature. Section 3 discusses herd behavior from the
viewpoint of leaders and followers. Section 4 introduces the response threshold
model and Sect. 5 presents the evacuation decision model. The simulation model
of exit choice is stated in Sect. 6 and the simulation results are analyzed in Sect. 7.
In order to take physical factors into account, the new model which incorporates
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the social force model with the evacuation decision model is proposed in Sect. 8.
The results using the new model are presented and analyzed in Sect. 9. The
discussion and the conclusion are given in Sects. 10 and 11, respectively.

2 Related Works

Symmetry breaking in exit choice is first introduced by Helbing et al. [15], fol-
lowed by numerous studies in several fields. Evacuation experiments with human
subjects were conducted to investigate several features of human exit choice
behaviors [11,22] and a database containing evacuation data including exit choice
was developed [37]. It was also found that symmetry breaking in emergency exit
choice is not peculiar to human beings, as observed in non-intelligent animals
such as ants [2,20] and mice [35].

Multi-agent simulations and cell automaton models have been used to study
efficient evacuations in disaster situations. Many models to reproduce human exit
choice in evacuations have been proposed by several authors and these models
can be categorized into the following five classes.

Rule Based Model
Agents in this class have predefined rules, scenarios, or sequences of actions,
and their choice of exits is made by these rules. One example of such a rule
is “if an agent detects two exits and its uncertainty level is high, then the
agent pursues the exit that has the most crowds” [32]. These rules are built
by surveys conducted at target sites and some literature [3], or based on theories
such as Cialdini’s social proof theory [31], the OCC (Ortony, Clore and Collins)
model [36,42], etc. The choice of rules are arbitrary made by designers though
there is no widely accepted general way of choosing these rules.

Cell Automaton Model
The cell automaton (CA) model represents collective behaviors of evacuees using
a two dimensional matrix with simple rules. This model can efficiently reproduce
dynamics of self-organization phenomena such as jamming, clogging, oscillation
and so on. The relation between evacuation time and exit width or door sepa-
ration was studied using the CA model [33]. The floor field model was also used
to analyze herd behaviors by varying the length between two exits [21] and in
environments with multiple exits and obstacles [19]. One of the strengths of the
CA model is its high computational efficiency since the model itself is simple
and abstract. However, none of the above was able to reproduce the symmetry
breaking in exit choice.

Social Force Model
Helbing et al. introduced the phenomenon of inefficient use of alternative exits in
evacuations. They conducted simulations of evacuation from a room with mul-
tiple exits filled with smoke using the social force model [15,16]. They showed
that some mixture of individualistic and herd behaviors is more efficient than
purely individualistic or herd behaviors. However, in their simulations, the rela-
tion between exit choice and evacuation efficiency is unclear. What they have
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shown is the efficiency of finding unknown exits in invisible environments, not
the evacuation efficiency of choosing alternative exits. The agents in their model
do not choose exits in any meaningful way since, in the social force model, the
desired direction of an agent is predetermined via input to the model.

Game Theory Based Model
Some models assume the existence of a utility function in an agent, with the agent
behaving to maximize its utility. In the game theory based model, agents inter-
act with each other and try to achieve Nash equilibrium for the game in order
to maximize mutual utilities. In [24] the choice of exits was formulated as a non-
cooperative game, and the mixed strategy solution of the game was analyzed. In
exit choice experiments using ants, the number of ants escaping from different
exits was found to be equal to the ratio between the widths of the exits; and this
finding was analyzed from the viewpoint of Nash equilibrium [20].

Discrete Choice Model
The discrete choice model assumes that agents make exit choices decisions based
on a finite set of attributes associated with the exit alternatives. The utility
function of an agent consists of two terms: the first part is the expected value
of the perceived utility derived from the attributes, and the second term is its
random residual from the real value. A mixed logit model or multinomial logit
model is often used to formulate the utility function, and data collected from
human subjects are applied to estimate its coefficients. For example, the following
factors are used as attributes to formulate the utility function [27].

– Number of evacuees close to the exits
– Flow of evacuees through the exits
– Number of evacuees close to the decision maker towards one of the exits
– Smoke near the exits
– Evacuation lights above the exits
– Distance of the decision maker from the exit

The relation between evacuation time and exit choice strategies (e.g, least dis-
tance, least travel time, hive, vision field) was studied using multinomial logit
models and an internet survey [8]. Paper-based surveys and face-to-face inter-
views have been conducted using the SP-off-RP method to formulate the exit
choice behaviors using multinomial logit models and mixed logit models [12]. The
difference between behavioral features of emergency and non-emergency egress
was analyzed using a mixed logit model and face-to-face interviews [13]. Online
surveys using video simulations were conducted to formulate a mixed logit model
[25,26]. In [27] the effect of the presence of smoke and emergency lighting was
analyzed using online surveys with virtual reality and a mixed logit model.

Utility-based models (e.g. game theory-based models and discrete choice
models) consider the exit choice decisions as rational behaviors, whereas other
models consider them as the result of panic or irrational behaviors [28]. The
major limitation of utility based approaches is the assumption that decisions in
emergency evacuations can be obtained through surveys and interviews. This
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is because it is difficult to reproduce the imminent situation of real evacua-
tions, and subjects are only able to respond to questionnaires based on conscious
decisions.

In this paper, we propose a novel approach to reproduce the symmetry break-
age in exit choice. Our approach, which is able to reproduce herd behaviors in
evacuations, is based on the response threshold model in biology. It shows that
symmetry breaking in exit choice can be reproduced without assuming any deci-
sion making process including rules, scenarios, or utilities. In this approach, the
symmetry breaking in exit choice emerges as the result of herd behaviors, even
though agents choose the exit randomly.

Fig. 1. The leader and follower simulations. (a) Experiment 1 or 2 - initial state, (b)
Experiment 1 - terminal state, (c) Experiment 2 - state near the end of the experiment
(thin lines following agents indicate their trails) [40].

3 Leaders and Followers in Herding

Raafat et al. [34] defined herding as “the alignment of thoughts or behaviors of
individuals in a group (herd) through local interactions rather than centralized
coordination.” According to this definition, when determining its own behavior,
every individual is affected by other surrounding individuals in some way. Mean-
while, no one would be able to act, without assuming that there must at least
be one individual that can behave by its own intentions and affects others.

Thus it is reasonable to assume that a herd consists of leaders and followers,
where the leaders determine their behaviors through their own intentions and
the followers determine their behaviors through the behavior of other leaders or
followers. In addition, no individual shall affect or be affected by all the members
of the group.

This leads to several questions. How is a leader or follower determined? Is
there an appropriate ratio of leaders to followers? Are the roles of the leaders
and followers fixed, or do they change dynamically? If they change, what rules
affect those changes? To answer to these questions is difficult unless assuming
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privileged and centralized control mechanisms. This can be called the leader and
follower problem.

If the leader and follower problem is focused on evacuation, where a room
with a single exit is filled with randomly distributed agents, the goal would be
to evacuate all the agents from the room. A leader will be intent on leaving the
room and be able to adjust its behaviors accordingly, so clearly it is able to leave
the room. On the other hand, a follower determines its own behavior through
the behavior of others, regardless of its own intention. In this case, a follower
will move toward the exit if many agents move, but will stay put if they do not.
Thus, it is unclear whether a follower will be able to leave the room.

Two simulation experiments1 were conducted to investigate the nature of the
leader and follower problem. The aim of these experiments is to show that simple
rules of assigning the role of leaders and followers are inadequate to reproduce
evacuation behaviors. In these experiments, 200 agents are distributed in a room
(33 × 33 units) with an exit (Fig. 1a). A leader agent (white) moves toward the
exit but a follower agent (gray) randomly chooses an agent in its vicinity and
mimics its movement.

Experiment 1
In experiment 1, 10% of the agents are randomly selected as the leaders and
the remaining agents are followers. The roles of the leader and follower are fixed
during simulation.

Figure 1b shows the terminal state of experiment 1. All leaders and some
followers have evacuated but most of the followers are still in the room. Since
they are all followers, they cannot move through their own intention, and thus
all of them are unable to move. This is because most followers choose to follow
other followers, but only some follow leaders. Chains of followers who do not
have a leader will not be able to exit under these conditions. Only followers
following a leader will be able to exit.

It is obvious that the assumptions of experiment 1 are not suitable as a
solution to the leader and follower problem.

Experiment 2
In experiment 2, 10% of agents are chosen as leaders as in experiment 1, but
the roles of the leaders and followers dynamically change during the simulation.
Therefore, an agent acts as a leader at certain moments, but acts as a follower
at other times. Only the ratio of the leaders and followers is constant.

At the end of the simulation, all agents have left the room. Thus experiment
2 may be a candidate solution of the leader and follower problem. However, as
shown in Fig. 1c, some unnatural and wasteful movements (e.g. oscillating back
and forth between the two walls) of the followers are observed just before the
end of the simulation. Such unnatural movements can be avoided by increasing
the ratio of leaders, but it is not obvious what ratio is appropriate. Also, the
assumption that the ratio of the leaders and followers is always constant is
unrealistic.

1 NetLogo 6.0.2 [41] is used to implement the models presented in this paper.
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Derek Sivers pointed out the importance of the first follower in his famous
talk at TED2010 and said “the first follower is what transforms a lone nut into
a leader”2. This implies that there is no leader without any follower, and vice
versa. Therefore, leader and follower is a mutual dependence relation since the
existence of one can only be supported by the existence of the other.

From the above, we conclude that

– the roles of leaders and followers should change over time
– the assumption that the ratio of leaders to followers is constant is unrealistic.
– leaders and followers is a mutual dependence relation

Hasegawa et al. showed a similar kind of mutual relation between hardworking
ants and lazy ants using the response threshold model. There was a negative
correlation between hardworking and lazy workers. Lazy workers automatically
replaced hardworking but resting workers in processing tasks when the number of
hardworking workers decreased [14]. Therefore, the existence of inactive workers
is only supported by the existence of active workers, and vice versa. To take
these points into account, the response threshold model, which is an ideal model
to represent this kind of mutual relationship, is adopted as a model for human
herd behaviors in evacuation situations.

4 The Response Threshold Model

The response threshold model [5] is well known in biology and ecology as a
model for division of labor in eusocial organisms. It is also known as an efficient
distributed algorithm to solve task allocation problems [4] and has a variety of
applications in engineering including the coordination of multiple robots [6,23],
efficient coverage of distributed mobile sensor networks [29], and distributed
allocation of multi-agent systems [1].

The response threshold model consists of agents with response thresholds θ

and an environment with task-related stimuli s. An agent responds to the stimuli
and engages in a task if s exceeds its θ. The intensity of s will increase if the task
is not performed sufficiently and will decrease if a sufficient number of agents are
engaged in the task. An agent i has a random variable X representing its mental
state. The agent is active if X = 1, and inactive if X = 0. The probability Pi

that an agent will be active per unit time is:

Pi(X = 0 → X = 1) =
s2

s2 + θ2i
, (1)

and inactive per unit time is:

Pi(X = 1 → X = 0) = ε, (2)

2 https://www.ted.com/talks/derek sivers how to start a movement.

https://www.ted.com/talks/derek_sivers_how_to_start_a_movement
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where ε is a constant probability with which an active agent gives up task per-
formance [40]. The intensity of s per unit time is given by:

s(t + 1) = s(t) + δ − α
c

C
, (3)

where δ is the increase of the stimulus per unit time, α is a scale factor of the
efficiency of task performance, c is the number of agents engaging in the task,
and C is the total number of agents [40].

Fig. 2. The initial screen of the simulation [40].

5 The Evacuation Decision Model

In this paper, the evacuation decision model [39], based on the response threshold
model, which reproduced the evacuation behaviors observed at the Great East
Japan Earthquake [38], is adopted to study symmetry breaking in exit choice in
evacuations.

By designating the task to be performed as removing all agents from the
room, the evacuation decision model can be applied for solving the leader and
follower problem in order to represent human herd behaviors. The environment
(the room) has a risk value r which represents the level of objective risks in the
environment, and an agent has risk perception parameter μ which represents an
individual’s risk sensitivity.

In contrast to the model (Eq. 3) discussed in Sect. 4, each agent in this model
has its own stimulus si which is the local estimate of the stimulus s instead of
the global stimulus of the environment. The stimulus of the agent i is defined
as:

si(t + 1) = max{si(t) + δ̂ − α(1 − R)F, 0}, (4)

where δ̂ is the increase of the stimulus per unit of time

δ̂ =
{

δ if r > 0
0 otherwise, (5)
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α is a scale factor of the stimulus [40]. R is the risk perception which is the
function of r:

R(r) =
1

1 + e−g(r−µi)
, (6)

where g is the activation gain which determines the slope of the sigmoid function
[40]. F is the task progress function, the local estimate of task performance:

F (n) =
{

1 − n/Nmax n < Nmax

0 otherwise, (7)

where n is the number of agents in the vicinity, and Nmax is the maximum
number of agents in the vicinity [40]. Each agent has a visibility of 120◦ and a
sight distance of five units toward the west direction. This range is considered
the vicinity of an agent.

Algorithm 1 . Follower’s action (X = 0).

1: V ← the set of agents in the vicinity
2: v0 ← the number of agents not moving in V
3: v1 ← the number of agents moving in V
4: if v1 > v0 then
5: M ← a set of the moving agents in the vicinity
6: eN ← the number of agents with d = north in M
7: eS ← the number of agents with d = south in M
8: eW ← the number of agents with d = undecided in M
9: if eN is the maximum then

10: d ← north
11: Solve problem(Find Step North) with respect to Δx(t) and Δy(t)
12: else if eS is the maximum then
13: d ← south
14: Solve problem(Find Step South) with respect to Δx(t) and Δy(t)
15: else if eW is the maximum then
16: d ← undecided
17: Solve problem(Find Step West) with respect to Δx(t) and Δy(t)
18: end if
19: x(t + 1) ← x(t) + Δx(t) , y(t + 1) ← yi(t) + Δy(t)
20: else
21: do nothing
22: end if

6 The Exit Choice Simulation

We assumed a rectangular room (40×128 units) with four walls in the directions
north, east, south, and west clockwise from the top, with two exits at the west
end of the room, where the north and south exits are located at the top left



302 A. Tsurushima

Algorithm 2 . Leader’s action (X = 1).

1: cx ← the X-coordinate of the current position
2: gx ← the X-coordinate of G-line
3: if cx ≤ gx and d = undecided then
4: randV alue ← randomly select a value ∈ [0, 1]
5: if randV alue < 0.5 then
6: d ← north
7: Solve problem(Find Step North) with respect to Δx(t) and Δy(t)
8: else
9: d ← south

10: Solve problem(Find Step South) with respect to Δx(t) and Δy(t)
11: end if
12: else
13: Solve problem(Find Step West) with respect to Δx(t) and Δy(t)
14: end if
15: x(t + 1) ← x(t) + Δx(t) , y(t + 1) ← yi(t) + Δy(t)

and bottom left, respectively (Fig. 2). As shown in Fig. 2, there are 600 agents
initially distributed in the middle of the room in a rectangular shape (14 × 96
units) and start moving to the west according to the risk level r.

The initial coordinates of an agent at time 0 are given by x(0) ∼ U(−32, 64)
and y(0) ∼ U(−7, 7). Assuming Δx(0) = −1 and Δy(0) = 0, the difference
vector to the new coordinates at time t (Δx(t),Δy(t)) will be given by solving
any one of Problem(Find Step North), Problem(Find Step South), or
Problem(Find Step West) where x(t) and y(t) are the x- and y- coordinates
of the agent at time t; GNx and GNy are the x- and y- coordinates of the north
exit; and GSx and GSy are the x- and y- coordinates of the south exit.

Problem (Find Step North)

minimize (x(t) + Δx(t) − GNx)2 + (y(t) + Δy(t) − GNy)2 (8)
subject to Δx(t)2 + Δy(t)2 = 1.0 (9)

Problem (Find Step South)

minimize (x(t) + Δx(t) − GSx)2 + (y(t) + Δy(t) − GSy)2 (10)
subject to Δx(t)2 + Δy(t)2 = 1.0 (11)

Problem (Find Step West)

Δx(t) = Δx(t − 1), Δy(t) = Δy(t − 1) (12)

The northern and southern sections of the room are initially left empty at the
beginning of the simulation because each agent will choose either north or south
direction later (the initial choice of the direction is set to undecided). The gray
vertical line at −48 (G-line) indicates the position where an agent must decide
to go to the northern or southern exit, if its direction is not determined by herd
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behavior (X = 0). This decision is only made if the mental state of the agent is a
leader (X = 1); and the choice of north or south is made at random (choose north
with probability 0.5). Assuming d = undecided and X = 0 as initial settings, an
agent will perform Algorithm1 if it is a follower (X = 0) or Algorithm 2 if it is
a leader (X = 1). An agent executes Algorithm 1 or Algorithm 2 every unit of
time [40].

Thus the follower may determine its direction even though it has not yet
crossed G-line. The parameters of the evacuation decision model are assumed to
be ε = 0.8, δ = 0.5, α = 1.2, Nmax = 10, and g = 1.0.

7 Results and Analysis 1

We conducted the same experiments as in [40] with a few changes. Initial coordi-
nates of agents are in real numbers instead of integers to prevent multiple agents
from being assigned to the same location. Algorithm 2 is performed every time
unit whenever the agent is a leader, whereas it was executed with a probability
of 0.5 in [40].

As shown in Fig. 3, in many cases, the agents are equally divided between
north and south exits. Despite the fact that each agent randomly chooses north
or south, most agents will automatically head toward the closer exit.

Fig. 3. The exit choice simulation [40].

Fig. 4. Symmetry breaking in the exit choice simulation. Notice the arc when agents
choose the same exit [40].
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Sometimes almost all agents happen to choose the same direction and gather
at one exit (Fig. 4). In this figure, the decisions of the white agents, which move
to the south direction, propagate far to the east from G-line (the arc in the
figure). This kind of behavior is commonly observed when many agents choose
the same direction.

The entropy of the agents that select north or south can be expressed by the
following equation:

H = −rnlog(rn) − rslog(rs), (13)

where rn is the ratio of the agents heading north and rs is the ratio of the agents
heading south at the end of the simulation [40]. The range of H is H ∈ [0.0, 1.0].
The ratios of the agents moving north and south are equal if H = 1.0, and all
the agents moving toward the same direction if H = 0.0. The frequency of H
over 300 simulations is shown in Fig. 5. Although the frequency is small, the
phenomenon where most of the agents gathered at a single exit was observed.

Figure 6 shows how the difference between the number of agents choosing
north and south (D) varies with the probability to choose the north exit. For
example, D = 600 means all agents evacuated from the north and D = −600
means all agents evacuated from the south. The figure shows that most agents
may happen to gather at the opposite (south) exit even though leaders chose
the north exit with a probability greater than 0.5. For instance, there was a
case where the leaders chose north with probability 0.8, but 456 agents (76.0%)
gathered at the south exit.

Fig. 5. The frequency of H.
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Fig. 6. The distribution of D with different probabilities.

The value of ε and the position of G-line are major factors that affect the
value of H. Figure 7 shows the results of simulations varying the value of ε from
0.1 to 0.9. The values of H in each simulation are shown in Fig. 7 (small circles
on dotted lines). The means of 100 simulations with different ε are shown by the
broken line and the standard deviations are shown by the dotted line. In Fig. 7,
the symmetry breakings are observed when ε is greater than 0.2 and the means
of H tends to decrease as the values of ε increase. This implies that the greater
chances of herd behavior results in the symmetry breakings.

Figure 8 shows the results of simulations where the position of G-line was
moved from −48 to +48. In Fig. 8, the X-axis shows the position of G-line. The
G-lines in Figs. 3 and 4 are located at −48, and the center of the room is at 0.
The values of H in each simulation are shown in Fig. 8 (small circles on dotted
lines). The means of 100 simulations with different G-line positions are shown
by the broken line and the standard deviations are shown by the dotted line.
This shows that the mean of H tends to decrease as the position of G-line shifts
to east, meaning that an earlier decision results in the uneven use of two exits.
An earlier decision implies that the agents have more chances to be affected
by others because all agents move in the same direction and the traveling time
of an agent moving along with others who have already chosen their direction
increases.

The long arc of white agents in Fig. 4 shows that when symmetry breaking
happens, many agents have already made decisions well before G-line. The results
of 200 simulations in which the position of G-line is set to −48 are given in Fig. 9.
This shows the correlation of the values of H and the maximum distances between
G-line and the positions of decisions made by the agents (X-axis). The correlation
coefficient of −0.3402 suggests that a longer arc will result in a smaller H.
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Fig. 7. Relationship between ε and H over 50 simulations.

Fig. 8. Relationship between position of G-line and H over 50 simulations.

In Fig. 9, some samples with long arcs and large H values are observed,
whereas no samples with short arcs and small H value is observed. This suggest
that the long arc of agents may be an important factor in symmetry breaking in
the exit choice problem.

Figure 10 shows the values of H in 50 simulations each with varying the
number of agents to 200, 300, 400, 500, 600, 700, and 800. The means of H
is close to 1.0 in most cases, meaning that the choices of the exits are nearly
symmetrical besides with a few symmetry breaking cases. This indicates that the
difference in the number of agents has little effect on the value of H (Fig. 10).

Furthermore, we also investigate the evacuation time, one of the most critical
issues in disaster evacuation. Figure 11 shows the evacuation times of the agents
in 50 simulations each with varying the number of agents to 200, 300, 400, 500,
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Fig. 9. Correlation of arc length of agents and H.

Fig. 10. The values of H in different population size.

600, 700, and 800. The upper items are the times that the 90% of the agents
have completed the evacuation and the lower times shows the evacuation times of
the firts 10% of the agents. This means that most agents (80%) have evacuated
between these two periods. The figure shows that the higher the population
density, the shorter the time to complete evacuation.
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Fig. 11. Evacuation Time in different population size.

8 Incorporated Physical Factors

The evacuation decision model discussed so far only deals with cognitive or psy-
chological factors such as decision, perception, and bias; physical factors such as
collision, clogging, and disturbance are not considered at all. An agent can sim-
ply pass through other agents, even though they are positioned in front of it. In
this sense, the results of the evacuation decision model differ from the real evac-
uation. In order to address this problem, other models that can deal with these
physical factors can be employed in conjunction with the evacuation decision
model. The simplicity of the evacuation decision model facilitates integration
with other models. The social force model is adopted for this purpose.

The social force model is developed by Helbing et al. to represent behaviors
of pedestrians [17], and it has been used in a wide variety of pedestrian simula-
tion models including several commercial packages. The social force model was
later extended to represent human behavior in disaster evacuation, and some
evacuation-specific behaviors were analyzed and demonstrated including freez-
ing by heating, arch-like blocking of an exit, faster-is-slower effect, phantom
panics, and symmetry breaking in exit choice [15,16]. The social force model
refers to Newton’s second low of motion; it uses virtual forces, called the social
force, acting between people and other objects. The simple form of the social
force model is given as:

mi
dvi
dt

= mi
v0
i (t)e

0
i (t) − vi(t)

τi
+

∑
j( �=i)

fij +
∑
W

fiW (14)

where mi is the mass of an agent i, dvi/dt is the change of velocity at time t,
v0
i is the desired speed, v0

i is the desired speed, e0i is the desired direction, fij
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is the interaction force acting between the agent i and agent j, and fiW is the
interaction force between the agent i and the walls. In the social force model, the
desired speed v0

i (t) and the desired direction e0i (t) are given as an input. Thus,
assuming that all agents have a constant velocity, the desired vector v0

i (t)e
0
i (t)

of the social force model is given by (Δx(t),Δy(t)) which is the difference vector
to the new coordinates in the evacuation decision model (Fig. 12). The new
coordinates of the agents can be calculated by the social force model base on
(Δx(t),Δy(t)), whereas they are calculated in the step 19 in Algorithm 1 and
the step 15 in Algorithm 2.

Fig. 12. Connecting the evacuation decision model with the social force model.

Since the time step of the social force model is usually smaller than that of
the evacuation decision model, it is necessary to adjust these two in some way. In
our simulation, the time step of the evacuation decision model is set to 1.0 time
unit, while that of the social force model is 0.05. Therefore, the basic time unit of
the simulation is set to 0.05, and the evacuation decision model is executed with
updating the desired vector of the social force model v0

i (t)e
0
i (t) once in every 20

times the social force model is called.
The same simulations stated in Sect. 6 are conducted to examine the effects

of physical factors, the results are given in Sect. 9.

9 Results and Analysis 2

Figure 13 is a simulation result when the social force model is incorporated. As
shown in this figure, almost all agents select the same (south) exit even if the
social force model is employed in conjunction with the evacuation decision model.
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Fig. 13. Symmetry breaking when the social force model is incorporated.

Fig. 14. The frequency of H when the social force model is incorporated.

This figure demonstrates that physical factors do not prevent the occurrence of
symmetry breaking in exit choice.

Figure 14 shows the frequency of the values of H, which indicate symmetry
or asymmetry of the exit choices, over 180 simulations when adopting the social
force model. In contrast to Fig. 5, this figure reveals that rather than symmetri-
cal exit choice, asymmetrical exit choice occurs significantly more frequently if
physical factors are taken into account.

Figure 15 shows that the values of H over 50 simulations each when the
number of agents is changed to 200, 300, 400, 500, 600, 700, and 800. Compared
with Fig. 10, the values of H in Fig. 15 are much smaller, symmetry breaking
occurs more frequently, especially in the higher population ranges, and the means
of H decrease as population increase. This implies that physical factor has a
significant effect on exit choice decision in evacuation.

Figure 16 shows the evacuation completion times in 50 simulations varying
the number of agents to 200, 300, 400, 500, 600, 700, and 800. The upper items are
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Fig. 15. The values of H in different population size when the social force model is
incorporated.

Table 1. The mean evacuation time and H with varying V .

V 10% 90% 100% H

0.5 75.86 136.92 268.80 0.5202

1.0 84.92 166.94 259.14 0.5084

1.5 93.68 233.40 280.98 0.4911

2.0 107.60 264.60 340.22 0.5261

the evacuation completion times of the first 90% of the agents and the lower items
are those of the first 10% of the agents. Compared with Fig. 11, the evacuation
completion times increase significantly in the higher population ranges, while
they are almost equivalent in the lower population ranges, if physical factors are
taken into account.

Note that the parameter sensitivity of the social force model may result in
different results. In our implementations of the social force model, there is a
parameter V which controls the distance from which an agent will take other
agents into account when computing interaction forces. In the simulations dis-
cussed so far, the parameter V was set to 1.0 unit. Table 1 shows the mean
evacuation times of the first 10%, 90%, and 100% of the agents and the values
of H in 50 simulations with different V values. Table 1 shows that evacuation
times increase as the value of V increase, however the means of H are indiffer-
ent even if the parameter V is changed. Figure 16 might be changed depending
on the parameter V . In contrast, the results of Fig. 15, the effects of physical
factors on evacuation decisions, are unchanged because they are independent of
the parameter V .
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10 Discussion and Future Work

Lovreglio et al. stated that the evacuation decision of choosing the most crowded
exit can be the result of a rational decision making process instead of an
“irrational-panic” decision [28]. In our exit choice simulation, the evacuation
decision model shows that even though an agent selects exits randomly, with
some frequency we can observe almost all agents gathering at one exit. This
shows that symmetry breaking in exit choice during evacuation can be the result
of simple herd behavior, disregarding any rational decision making processes.
The fact that the same phenomenon can be observed in experiments using organ-
isms without intelligence such as ants and mice [2,20,35] also supports our result.
Furthermore, our results also show that herd behavior is a major factor of this
phenomenon and that the parameter ε and the arc length of agents, indicating
early decision making, especially affect the occurrence of symmetry breaking in
the exit choice.

Fig. 16. The evacuation times in different population size when the social force model
is incorporated.

Physical factors surrounding an agent such as collisions, clogging, and distur-
bances are taken into account by incorporating the social force model with the
evacuation decision model. Figures 10 and 15 show that physical factors increase
the value of H, meaning that uneven exit choice occurs more frequently, espe-
cially when population density increases. Figures 11 and 16 show that physical
factors also increase evacuation times in the higher population ranges, whereas
evacuation times in the lower population ranges are indifferent. Thus, the effect
of physical factors on evacuation time is considered to be somewhat moderate.
It is intriguing that physical factor have a greater impact on evacuation deci-
sion than evacuation time, since the fact that physical factors such as collision
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and clogging increase evacuation time is obvious, while the correlation between
physical factor and evacuation decision is unknown. Table 1 suggests that the
results of evacuation time might be parameter dependent, while the results of
evacuation decision do not. The fact that physical factors have major impact on
evacuation decisions remains unchanged.

The evacuation decision model is a bio-inspired distributed task allocation
algorithm based on the response threshold model. The model itself is simple,
simply switching between two mental states, X = 0 and X = 1, in some proba-
bilistic manner. What to do in these states is not stated and is open to the user,
giving broad generality to the model. In the case of the exit choice simulation,
we chose Algorithms 1 and 2 for X = 0 and X = 1, respectively. The evacu-
ation decision model only represents the cognitive bias in evacuation, but for
actual evacuation scenarios, the consideration of physical factors is necessary;
and, especially in the case of human evacuation, higher cognitive functions such
as choosing the shortest route are also very important to consider.

The generality of the evacuation decision model allows these factors to be eas-
ily incorporated. By assuming the output as a movement vector, the evacuation
decision model can be employed easily in conjunction with a physical pedestrian
dynamics model such as Helbing’s social force model, as shown in this paper.
The higher cognitive model which represents intentional decision making can be
incorporated in the state X = 1. This can be done easily by replacing the Algo-
rithm2, the leader’s action by this model. The following models may be able
to used to represent human higher cognitions: the utility theory based model,
the game theory based model, or the BDI (Belief-Desire-Intension) model. The
analysis of the effects of the higher cognitive model will be an important issue
for future research.

In this paper, we do not claim that rational decisions are irrelevant to evac-
uation decision making. It is rather natural for evacuees to choose the closest
exit when choosing an emergency exit. What we mean here is that herding is a
sufficient condition to reproduce symmetry breaking in emergency exit choice.
Rational decision making processes can easily be incorporated in the leader’s
action (X = 1) of the evacuation decision model, if it is necessary.

The evacuation decision model can be viewed as a platform that separates a
higher cognitive model and a physical model, and then naturally connects these
two by introducing the layer of cognitive bias.

11 Conclusion

The evacuation decision model, based on the response threshold model in biol-
ogy, represents human herd behavior in evacuation situations. The exit choice
simulation with the evacuation decision model shows that almost all evacuees
gather at one exit at a non-negligible frequency even though they choose exits
randomly. The results show that exit choice decision can be the result of simple
herd behaviors disregarding any rational decision. The simulation also showed
the relation between these inappropriate uses of exits and earlier decision mak-
ing. Furthermore, in order to examine the effects of physical factors, the social
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force model is incorporated with the evacuation decision model. Physical fac-
tors such as collision, clogging, and disturbance increase both the frequency of
asymmetrical exit choices and evacuation times. The effect of physical factors
on evacuation decision making is stronger than evacuation times.
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Abstract. Practical optimization problems from engineering often suf-
fer from non-convexity and rugged, multi-modal fitness or error land-
scapes and are thus hard to solve. Especially in the high-dimensional
case, a lack of derivatives entails additional challenges to heuristics. High-
dimensionality leads to an exponential increase in search space size and
tightens the problem of premature convergence. Parallelization for accel-
eration often involves domain-specific knowledge for data domain par-
tition or functional or algorithmic decomposition. On the other hand,
fully decentralized agent-based procedures for global optimization based
on coordinate descent and gossiping have no specific decomposition needs
and can thus be applied to arbitrary optimization problems. Premature
convergence can be mitigated by introducing laziness. We scrutinized the
effectiveness of different levels of laziness on different types of optimiza-
tion problems and for the first time applied the approach to a real-world
optimization problem: to predictive scheduling in virtual power plant
orchestration. The lazy agent approach turns out to be competitive and
often superior to the non-lazy one and to standard heuristics in many
cases including the real world problem.

Keywords: Global optimization · Distributed optimization ·
Multi-agent systems Lazy agents · Coordinate descent optimization ·
Predictive scheduling

1 Introduction

Many real-world optimization problems from engineering are hard to solve and
can be formulated as global optimization problem [65], i.e. as a problem with non-
convex objective functions and multiple (local) minima where the task is to find
the global minimum. Global optimization comprises many problems in practice
as well as in the scientific community. These problems are often hallmarked by
presence of a rugged fitness landscape, high dimensionality and non-linearity.
Thus optimization algorithms are likely to become stuck in local optima and
guaranteeing the exact optimum is often intractable.

Some global optimization problems have so far been successfully solved by
exact solvers and a number of software packages can be found that reliably
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solve many global optimization problems in small (and sometimes larger) dimen-
sions [44]. Complete methods reach a global optimum with certainty, assuming
exact computations and indefinitely long run time, but are in general not effi-
cient enough for industrial size, high-dimensions problems when applied to online
problem solving [65].

Global optimization of non-convex, non-linear problems has long been sub-
ject to research [4,33]. Approaches can roughly be classified into determinis-
tic and probabilistic methods. Deterministic approaches like interval methods
[21], Cutting Plane methods [67], or Lipschitzian methods [25] often suffer from
intractability of the problem or getting stuck in some local optimum [60]. In case
of a rugged fitness landscape of multi-modal, non-linear functions, probabilistic
heuristics are often indispensable. For many problems, derivative free methods
are needed, too [56].

Many optimization approaches have so far been proposed for solving these
problems; among them are evolutionary methods or swarm-based methods [4,
19,22,35,60,63]. Sometimes model-based or response surface methods are used
where a model of the objective function is concurrently learned and improved in
case no closed form of the objective is available [42]. Such problems for example
occur in Smart Grid management [72].

In order to accelerate execution, parallel implementations based on a distri-
bution model on an algorithmic level, iteration level, or solution level can be
harnessed [64] to parallelize meta-heuristics. The iteration level model is used to
generate and evaluate different off-spring solutions in parallel, but does not ease
the actual problem. The solution level parallel model always needs a problem
specific decomposition of the data domain or a functional decomposition based
on expert knowledge. In [7], an agent-based method has been proposed with
the advantaged of good scaling properties as with each new objective dimension
an agent is added locally searching along the respective dimension [7]. In this
approach, the agents perform a decentralized block coordinate descent [73] and
self-organized aggregate locally found optima to an overall solution. The app-
roach is based on the protocol of the combinatorial optimization heuristics for
distributed agents (COHDA) [31].

Agents in the COHDA protocol act after the receive-decide-act metaphor [31].
When applied to local optimization, the decide process decides locally on the best
parameter position with regard to just one respective dimension of the objective
function. Thus, each agent performs a 1-dimensional optimization along an inter-
section of the objective function and takes the other dimensions (his belief on the
other agent’s local optimizations) as fixed for the moment. This approach has
been further improved by a mechanism that postpones the decision process in
[11]. With this extension, each agent gathers more information from other agents
(including transient ones with more communication hops) and may decide on a
more solid basis. In this way, in [11] a concept of laziness has been introduced in
this agent concept. Lazy agents postpone some decision with a given likelihood.
Depsite this simple mechanism, the observed effect on solution quality was sig-
nificant and is further scrutinized and applied to Smart Grid problems in this
contribution.
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The rest of the paper is organized as follows. We start with a description of
the base algorithms and on other related work. After a recap and discussion of
the most important results from [11] we extend the evaluation by scrutinizing
the sensitivity of the convergence process to different laziness factors. Practical
applicability is finally studied by applying the extended algorithm to a use case
from the Smart Grid domain: namely predictive scheduling in virtual power
plant coordination.

2 Related Work

Global optimization comprises many problems in practice as well as in the sci-
entific community. These problems are often hallmarked by presence of a rugged
fitness landscape with many local optima and non-linearity. Thus optimization
algorithms are likely to become stuck in local optima and guaranteeing the exact
optimum is often intractable; leading to the use of heuristics.

Evolution Strategies [54] for example have shown excellent performance in
global optimization especially when it comes to complex multi-modal, high-
dimensional, real valued problems [36,68]. Each of these strategies has its own
characteristics, strengths and weaknesses. A common characteristic is the gener-
ation of an offspring solution set by exploring the characteristics of the objective
function in the immediate neighborhood of an existing set of solutions. When the
solution space is hard to explore or objective evaluations are costly, computa-
tional effort is a common drawback for all population-based schemes. Real world
problems often face additional computational efforts for fitness evaluations; e.g.
in Smart Grid load planning scenarios, fitness evaluation involves simulating a
large number of energy resources and their behaviour [5].

Especially in high-dimensional problems, premature convergence [37,58,66]
entails additional challenges onto the used optimization method. Heuristics often
converge too early towards a sub-optimal solution and then get stuck in this local
optimum. This might for instance happen if an adaption strategy decreases the
mutation range and thus the range of the currently searched surrounding sub-
region and possible ways out of a current trough are no longer scrutinized.

On the other hand, much effort has been spent to accelerate convergence
of these methods. Example techniques are: improved population initialization
[53], adaptive populations sizes [2] or exploiting sub-populations [55]. Some-
times a surrogate model is used in case of computational expensive objective
functions [41] to substitute a share of objective function evaluations with cheap
surrogate model evaluations. The surrogate model represents a learned model of
the original objective function. Recent approaches use Radial Basis Functions,
Polynomial Regression, Support Vector Regression, Artificial Neural Network or
Kriging [20]; each approach with individual advantages and drawbacks.

Recently, the number of large scale global optimizations problems grows as
technology advances [38]. Large scale problems are difficult to solve for several
reasons [71]. The main reasons are the exponentially growing search space and
a potential change of an objective function’s properties [38,59,71]. Moreover,
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evaluating large scale objectives is expensive, especially in real world problems
[61]. Growing non-separability or variable interaction sometimes entail further
challenges [38].

For faster execution, different approaches for parallel problem solving have
been scrutinized in the past; partly with a need for problem specific adaption for
distribution. Four main questions define the design decisions for distributing a
heuristic: which information to exchange, when to communicate, who communi-
cates, and how to integrate received information [45,64]. Examples for traditional
meta-heuristics that are available as distributed version are: Particle swarm [69],
ant colony [16], or parallel tempering [39]. Distribution for gaining higher solu-
tion accuracy is a rather rare use case. An example is given in [6].

Algorithm 1 . Basic scheme of an agent’s decision on local optima in the extension

of COHDA to global optimization; cf. [7, 12].

1: // let x ∈ R
d an intermediate solution

2: xk ←
{

xk if xk ∈ Kaj

x ∼ U(xmin, xmax) else
∀k �= j

3: // solve with Brent optimizer:
4: xj ← arg min fj(x) = f(x, x) = f(x1, . . . , xj−1, x, xj+1, . . . , xd)
5: if f(x) < f(xold) then
6: update workspace Kj

7: end if

Another class of algorithms for global optimization that has been popular
for many years by practitioners rather than scientists [73] is that of coordinate
descent algorithms [49]. Coordinate descent algorithms iteratively search for the
optimum in high dimensional problems by fixing most of the parameters (compo-
nents of variable vector x) and doing a line search along a single free coordinate
axis. Usually, all components of x a cyclically chosen for approximating the
objective with respect to the (fixed) other components [73]. In each iteration,
only a lower dimensional or even scalar sub-problem has to be solved. The multi-
variable objective f(x) is solved by looking for the minimum in one direction
at a time. There are several approaches for choosing the step size for the step
towards the local minimum, but as long as the sequence f(x0), f(x1), . . . , f(xn)
is monotonically decreasing the method converges to an at least local optimum.
Like any other gradient based method this approach gets easily stuck in case of
a non-convex objective function.

In [31] an agent based approach has been proposed as an algorithmic level
decomposition scheme for decentralized problem solving [32,64], making it espe-
cially suitable for large scale problems.

Each agent is responsible for one dimension of the objective function. The
intermediate solutions for other dimensions (represented by decisions published
by other agents) are regarded as temporarily fixed. Thus, each agent only
searches along a 1-dimensional cross-section of the objective and thus has to
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solve merely a simplified sub-problem. Nevertheless, for evaluation of the solu-
tion, the full objective function is used. In this way, the approach achieves an
asynchronous coordinate descent with the ability to escape local minima by par-
allel searching different regions of the search space. The approach uses as basis
a protocol from [31].

In [31] a fully decentralized agent-based approach for combinatorial optimiza-
tion problems has been introduced. Originally, the combinatorial optimization
heuristics for distributed agents (COHDA) had been invented to solve the prob-
lem of predictive scheduling [62] in the Smart Grid.

The key concept of COHDA is an asynchronous iterative approximate best-
response behavior, where each participating agent – originally representing a
decentralized energy unit – reacts to updated information from other agents
by adapting its own action (select an energy production scheme that enables
group of energy generators to fulfil an energy product from market as good as
possible). All agents ai ∈ A initially only know their own respective search space
Si of feasible energy schedules that can be operated by the own energy resource.
From an algorithmic point of view, the difficulty of the problem is given by the
distributed nature of the system in contrast to the task of finding a common
allocation of schedules for a global target power profile.

perceive:
update knowledge

act:
send workspace

integrate

subset of 1-
dimensinal 
solu�ons

decide:
op�mize sub-problem

Fig. 1. Internal receive-decide-act architecture of an agent with decision process. The
agent receives a set of optimum coordinates from another agent, decides on the best
coordinate for the dimensions the agent accounts for and sends the updated information
to all neighbors; cf. [7].
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Thus, the agents coordinate by updating and exchanging information about
each other. For privacy and communication overhead reasons, the potential flexi-
bility (alternative actions) is not communicated as a whole by an agent. Instead,
the agents communicate single selected local solutions (energy production sched-
ules in the Smart Grid case) within the approach as described in the following.

First of all, the agents are placed in an artificial communication topology
based on the small-world scheme, (e.g. a small world topology [70], such that
each agent is connected to a non-empty subset of other agents. This overlay
topology might be a ring in the least connected variant.

Each agent collects two distinct sets of information: on the one hand the
believed current configuration γi of the system (that is, the most up to date
information ai has about currently selected schedules of all agents), and on the
other hand the best known combination γ∗

i of schedules with respect to the
global objective function it has encountered so far.

Beginning with an arbitrarily chosen agent by passing it a message containing
only the global objective (i.e. the target power profile), each agent repeatedly
executes the three steps perceive, decide, act (cf. [46]):

1. perceive: When an agent ai receives a message κp from one of its neighbors
(say, ap), it imports the contents of this message into its own memory.

2. decide: The agent then searches Si for the best own local solution regarding
the updated system state γi and the global objective function. Local con-
straints are taken into account in advance if applicable. Details regarding
this procedure have been presented in [47]. If a local solution can be found
that satisfies the objective, a new solution selection is created. For the fol-
lowing comparison, only the global objective function must be taken into
account: If the resulting modified system state γi yields a better rating than
the current solution candidate γ∗

i , a new solution candidate is created based
on γi. Otherwise the old solution candidate still reflects the best combination
regarding the global objective, so the agent reverts to its old selection stored
in γ∗

i .
3. act: If γi or γ∗

i has been modified in one of the previous steps, the agent
finally broadcasts these to its immediate neighbors in the communication
topology.

During this process, for each agent ai, its observed system configuration γi as
well as solution candidate γ∗

i are filled successively. After producing some inter-
mediate solutions, the heuristic eventually terminates in a state where for all
agents γi as well as γ∗

i are identical, and no more messages are produced by the
agents. At this point, γ∗

i is the final solution of the heuristic and contains exactly
one schedule selection for each agent.

The COHDA protocol has meanwhile been applied to many different opti-
mization problems [8,9]. In [7] COHDA has also been applied to the continuous
problem of global optimization.

In [3,28], the effect of communication delays in message sending and the
degree of variation in such agent systems on the solution quality has been scru-
tinized. Increasing variation (agents with different knowledge interact) leads to
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better results. An increase in inter-agent variation can also be achieved by letting
agents delay individual decisions. Hence, we combine the ideas from [7] and [28]
and extend the agent approach to global optimization by integrating a decision
delay into the agents. In this way, the agents sort of behave lazy with regard to
their decision duty. The effectiveness has already been shown in [11].

3 Lazy COHDAgo

In [7] the COHDA protocol has been applied to global optimization (COHDAgo)
for the first time. Each agent is responsible for solving one dimension xi of a
high-dimensional function f(x) as global objective. Each time an agent receives
a message from one of its neighbors, the own knowledgebase with assumptions
about optimal coordinates x∗ of the optimum of f (with x∗ = arg min f(x))
is updated. Let aj be the agent that just has received a message from agent
ai. Then, the workspace Kj of agent aj is merged with information from the
received workspace Ki. Each workspace K of an agent contains a set of coor-
dinates xk such that xk reflects the kth coordinate of the current solution x
so far found from agent ak. Additionally, information about other coordinates

perceive:
update knowledge

act:
send workspace

integrate

subset of 1-
dimensinal 
solu�onsdecide:

op�mize sub-problem

postpone

Fig. 2. Extended agent protocol for integrating laziness into the protocol from Fig. 1;
cf. [11].
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xk1 , . . . , xkn
reflecting local decisions of ak1 , . . . , akn

that ai has received mes-
sages from is also integrated into Kj if the information is newer or outdates the
already known. Thus each agent gathers also transient information; finally about
all local decisions.

In general, each coordinate x� that is not yet in Kj is temporarily set to a
random value x� ∼ U(xmin, xmax) for objective evaluation. W.l.o.g. all unknown
values could also be set to zero. But, as many of the standard benchmark objec-
tive function have their optimum at zero, this would result in an unfair compari-
son as such behavior would unintentionally induce some priori knowledge. Thus,
we have chosen to initialize unknown values with a random value.

After the update procedure, agent aj takes all elements xk ∈ x with k �= j
as temporarily fixed and starts solving a 1-dimensional sub-problem: xj =
arg min f(x,x); where f is the objective function with all values except element
xj fixed. This problem with only x as the single degree of freedom is solved using
Brent’s method [14]. Algorithm 1 summarizes this approach.

Brent’s method originally is a root finding procedure that combines the previ-
ously known bisection method and the secant method with an inverse quadratic
interpolation. Whereas the latter are known for fast convergence, bisection pro-
vides more reliability. By combining these methods – a first step was already
undertaken by [17] – convergence can be guaranteed with at most O(n2) iter-
ations (with n iterations for the bisection method). In case of a well-behaved
function the method converges even superlinearly [14]. We used an evaluated
implementation from Apache Commons Math after a reference implementation
from [15].

After xj has been determined with Brent’s method, xj is communicated
(along with all x� previously received from agent ai) to all neighbors if f(x∗)
with xj gains a better result than the previous solution candidate. Figure 1
summarizes this procedure.

Into this agent process, the concept of laziness has been integrated [11].
Figure 2 shows the basic idea. As an additional stage within the receive-decide-
act protocol, a random decision is made whether to postpone a decision on local
optimality based on aggregated information. In contrast to the approach of [3],
aggregation is nevertheless done with this additional stage. Only after informa-
tion aggregation and thus after belief update it is randomly decided whether to
continue with the decision process of the current belief (local optimization of
the respective objective dimension) or with postponing this process. By doing
so, additional information – either update information from the same agent, or
additional information from other agents – may meanwhile arrive and aggre-
gate. The delay is realized by putting the trigger message in a holding stack
and resubmitting it later. Figure 3 shows the relative frequencies of delay (addi-
tional aggregation steps) that occur when a uniform distribution U(0, 1) is used
for deciding on postponement. The likelihood of being postponed is denoted by
λ. In this way, information may also take over newer information and thus may
trigger a resumption at an older search branch that led to a dead-end. In general,
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the disturbance within the system increases, and thus premature convergence is
better prevented. This extension has been denoted lazyCOHDAgo [11].

0 10 20 30 40 50

10−5

10−4

10−3

10−2

10−1

100

delay/ no. negotiation rounds

re
l.
fr
eq
ue
nc
y

λ = 0.3
λ = 0.6
λ = 0.9

Fig. 3. Probability density of postponement delay for different laziness factors λ denot-
ing the probability of postponing an agent’s decision process; modified after [11].

4 Results

For evaluation, a set of well-known test functions that have been developed for
benchmarking optimization methods has initially been used: Elliptic, Ackley [68],
Egg Holder [34], Rastrigin [1], Griewank [40], Quadric [34], and examples from
the CEC ’13 Workshop on Large Scale Optimization [38]. We added Alpine [52]

In this field, many well tested implementation are readily available [51].
In a first experiment, the effect of lazy agents has been tested. To achieve

this, a set of test functions with agents of different laziness λ has been solved.
Tables 1 and 2 shows the result for 50-dimensional versions of the test functions.
In this rather low dimensional cases the effect is visible, but not that prominent.
In most cases a slight improvement can be seen with growing laziness factor
(λ = 0 denotes no laziness at all and thus responds to the original COHDAgo).
The Elliptic function for example shows no improvement. In some cases, e.g. for
the Quadric function the result quality deteriorates. But, also an overshoot can
be observed with the Griewank function where the best result is obtained with
a laziness of λ = 0.3.

When applied to more complex and higher-dimensional objective functions
the effect is way more prominent as can be seen in Table 3. The CEC f1 function
[38] is a shifted elliptic function which is ill-conditioned with condition number
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Table 1. Performance of the lazy agent approach on different 50-dimensional test
functions for laziness factors λ = 0 and λ = 0.3.

Function λ = 0.0 λ = 0.3

Elliptic 1.527 × 10−21 ± 2.876 × 10−28 1.527 × 10−21 ± 1.976 × 10−28

Ackley 1.306 × 101 ± 2.988 × 10−1 1.217 × 101 ± 1.665 × 10−1

EggHolder 1.453 × 104 ± 8.639 × 102 1.423 × 104 ± 8.81 × 102

Rastrigin 2.868 × 102 ± 2.493 × 100 2.87 × 102 ± 1.569 × 100

Griewank 2.95 × 10−3 ± 9.328 × 10−3 1.478 × 10−3 ± 4.674 × 10−3

Quadric 6.51 × 10−26 ± 6.525 × 10−26 1.196 × 10−25 ± 8.128 × 10−26

Table 2. Performance of the lazy agent approach on different 50-dimensional test
functions continued for laziness factors λ = 0.6 and λ = 0.9.

Function λ = 0.6 λ = 0.9

Elliptic 1.527 × 10−1 ± 2.594 × 10−29 1.527 × 10−21 ± 7.48 × 10−28

Ackley 1.205 × 101 ± 1.86 × 10−1 1.124 × 101 ± 2.088 × 10−1

EggHolder 1.384 × 104 ± 9.119 × 102 1.345 × 104 ± 9.441 × 102

Rastrigin 2.868 × 102 ± 2.427 × 100 2.858 × 102 ± 3.088 × 100

Griewank 1.59 × 10−3 ± 3.219 × 10−2 3.07 × 10−2 ± 4.132 × 10−2

Quadric 3.65 × 10−5 ± 5.141 × 10−25 4.43 × 10−15 ± 1.40 × 10−14

≈106 in the 1000-dimensional case. Due to dimensionality best results have been
obtained with a laziness of λ = 0.99. From the wide range of solution qualities
for λ = 0.9 – the achieved minimum result out of 20 runs was (200-dimensional
case) 3.40 × 10−19, which is almost as good as the result for λ = 0.9 – it can be
concluded that the lazy agent system is less susceptible to premature convergence
and thus yields better mean results. The used Rosenbrock function in Table 4 is
a asymmetrically, non-linearly shifted version of the original test function [57]
multiplied by the Alpine function (Table 4).

Next, the results of the lazy agent approach have been compared with other
established meta-heuristics for functions where the agent approach was success-
ful. Please note that for some function (e.g. the result in Tables 1 and 2) were
not that promising. For comparison we used the co-variance matrix adaption
evolution strategy (CMA-ES) from [24] with a parametrization after [23], Differ-

Table 3. Performance of the lazy agent approach on different high-dimensional, ill-
conditioned test functions for different laziness factors λ.

Function λ = 0.0 λ = 0.9 λ = 0.99

CEC f1, d = 200 1.81 × 1010 ± 5.78 × 109 2.20 × 108 ± 4.11 × 108 3.40 × 10−19 ± 1.54 × 10−23

CEC f1, d = 500 4.28 × 109 ± 8.28 × 109 6.55 × 104 ± 1.85 × 105 3.76 × 10−19 ± 1.31 × 10−21

Rosenbrock∗d = 2501.01 × 10−5 ± 1.71 × 10−52.41 × 10−7 ± 5.37 × 10−75.68 × 10−8 ± 1.60 × 10−7
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Table 4. Comparison of the lazy agent approach with different established meta-
heuristics.

f CMA-ES DE PSO

Elliptic 3.41× 10−5 ± 7.47× 10−5 4.48× 10−9 ± 2.24× 10−9 2.65× 105 ± 8.37× 105

Ackley 1.02× 101 ± 7.07× 100 4.73× 10−2 ± 7.06× 10−5 2.0× 101 ± 0.0× 100

Alpine 4.2× 100 ± 3.96× 100 2.82× 10−3 ± 9.18× 10−5 6.61× 10−9 ± 1.29× 10−8

Griewank 9.99× 10−4 ± 3.11× 10−3 4.41× 10−4 ± 1.51× 10−5 8.92× 10−3 ± 4.54× 10−3

Table 5. Results for lazyCOHDAgo for the comparison from Table 4.

f Lazy COHDAgo

Elliptic 1.14 × 10−21 ± 2.64 × 10−27

Ackley 1.54 × 101 ± 1.01 × 10−1

Alpine 4.51 × 10−12 ± 1.32 × 10−13

Griewank 5.11 × 10−16 ± 9.2 × 10−16

Table 6. Respective best results (residual error) out of 20 runs each for the comparison
from Table 4.

f CMA-ES DE PSO lazy COHDAgo

Elliptic 9.28 × 10−7 1.89 × 10−9 1.04 × 10−4 1.14 × 10−21

Ackley 6.02 × 10−6 4.73 × 10−2 2.0 × 101 1.52 × 101

Alpine 1.28 × 10−1 2.7 × 10−3 1.2 × 10−15 4.3 × 10−12

Griewank 3.57 × 10−6 4.23 × 10−4 1.51 × 10−5 0.0 × 100

ential Evolution [63] and Particle Swarm Optimization [35]. The lazy COHDAgo
approach has been parametrized with a laziness of λ = 0.9. Table 4 shows the
result.

As the agent approach terminates by itself if no further solution improvement
can be made by any agent and no further stopping criterion is meaningful in an
asynchronously working decentralized system, we simply logged the number of
used function evaluations and gave this number as evaluation budget to the other
heuristics. In this way we ensured that every heuristics uses the same budget of
maximum objective evaluations. As CMA-ES was not able to succeed for some
high-dimensional functions with this limited budget, this evolution strategy was
given the 100 fold budget.

The agent approach is competitive for the Ackley function. In most of the
cases lazyCOHDAgo succeeds in terms of residual error, but also, when looking
at the absolute best solution out of 20 run each (Table 6), the lazy agent-approach
is successful.

The experimental results in Fig. 4 give a first impression on the convergence
process. The whole agent optimization process usually runs with asynchronously
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Fig. 4. Results for the 150-dimensional CEC function for laziness λ ∈ {0.0, 0.5,
0.9, 0.99} (scenario 1–4).

acting agents. Thus, in order to be able to measure the course of convergence, we
run the process in a quasi-asynchronous manner with discrete synchronization
points at which the intermediate result from each agent is requested from the
agents and logged. Although, a single agent does not represent a complete solu-
tion, each agent has a specific belief about what schedule other agents are going
to select for their energy unit. This belief is the basis for an agent’s decision and
also used for local solution evaluation. The result of this local solution evaluation
is logged together with the time tick at which the decision for a schedule that
led to this solution was made.

Figure 4 shows the convergence of the 150 dimensional CEC f1 function for
different laziness factors. For the low laziness factors the improvement is rather
low and is achieved basically due to the fact that the process is kept alive for
some longer time. For the laziness factor λ = 0.99 another effect of the laziness
can be observed. Several times, a significant jump in error degradation is note-
worthy. At these incidents, obviously a postponed and so far abandoned search
path comes back into play, leading with the meanwhile done decisions of other
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Fig. 5. Results for the combined CEC and Alpine function for laziness λ ∈ {0.9, 0.99,
0.999, 0.9999} (scenario 1–4).
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Fig. 7. Results of the non-lazi and the lazy algorithm from three scenarios of the virtual
power plant use case. The residual error is given as mean absolute percentage error
(MAPE).

agents to a sudden improvement. Due to these jumps and the followed (standard)
improvements, the process converges to a significantly better solution.

On the other hand, this is not always the case and depends presumably on
the structure of the fitness- or error landscape. Figure 5 shows another example.
Here the objective was constructed by multiplying the CEC f1 function with
the Alpine function. Again, with increasing laziness, jumps can be observed; but
this time they are not leading to better result than the earlier convergence with
less laziness. Thus the invest of a higher evaluation budget is not rewarding here.
Moreover, with a too high laziness of λ = 0.9999 the solution quality massively
degrades. Thus, one can overshoot the mark with too lazy agents.

Figure 6 shows the best (out of 20) results for the 200-dimensional Alpine
function. Again, increasing the laziness does not work out, but this time without
overshoot.

Finally, we applied the lazy algorithm to a practical problem from engineer-
ing, namely from the Smart Grid domain. For many use cases in the Smart Grid
domain, it is advantageous to bundle energy resources within a local region. A
single energy resource like a renewable generator or a battery storage usually has
neither the size nor the flexibility to take on responsibility for control tasks within
the electricity grid. One way to cope with volatility and small size is bundling of
different energy resources and orchestrating them via communication and com-
mon control. This concept is known as virtual power plant (VPP) [50].

Predictive scheduling terms the problem of finding an operation schedule
(determining the individual course of generated power) for each energy resource
within a VPP for a given future time horizon, e.g. the next day. This constitutes
a distributed combinatorial optimization problem [27]. For solving this problem
within VPPs solutions for appropriate orchestration of generation (and sometime
also consumption) are already known [18,29,50]. Due to the problem size that
results from the huge number of controllable energy resources in some VPP,
decentralized algorithms are seen as a promising approach. Gossiping-based,
decentralized algorithms like the COHDA can easily cope with this problem [30],
and in fact COHDA had originally been designed for this specific problem. Here,
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we extend the lazy agent approach to the original COHDA and test it on pre-
dictive scheduling.

It is the goal of the predictive scheduling problem to find exactly one schedule
for each energy unit such that

1. each assigned schedule can be operated by the respective energy unit without
violating any hard technical constraint, and

2. the difference between the sum of all targets and a desired given target sched-
ule is minimized.

A schedule in this context is simply a real-valued vector with each element
denoting the mean generated (or consumed) power during the respective time
interval. The target schedule usually comprises 96 time intervals of 15 min each
with a given amount of energy (or equivalently mean active power) for each time
interval, but might also be constituted for a shorter time frame by a given energy
product that the coalition has to deliver.

A basic formulation of the scheduling problem is given by

δ

(
m∑

i=1

si, ζ

)
→ min (1)

such that
si ∈ F (Ui) ∀Ui ∈ U . (2)

In Eq. (1) δ denotes an (in general) arbitrary distance measure for evaluating the
difference between the aggregated schedule of the group (sum

∑
si

of individual
schedules) and the desired target schedule ζ. W.l.o.g., in this contribution we
use the Euclidean distance ‖ · ‖2. To each energy unit Ui exactly one schedule
si has to be assigned. The desired target schedule is given by ζ. F (Ui) denotes
the individual set of feasible schedules that are operable for unit Ui without
violating any (technical) constraint.

The objective function is quite simple. The crucial part of this problem is con-
straint handling. Schedules may be chosen only from a very specific feasible region
F (Ui) of the individual phase spaces of the energy units [10]. Each unit has indi-
vidual technical (and other) operation constraints. Usually so called decoders are
used for constraint handling [13]. A decoder is trained e.g. by a machine learn-
ing approach to learn a function that maps any (probably infeasible) schedule to
the feasible region. Due to such space mapping, the optimization algorithm might
operate in an unconstrained search space. On the other hand, ruggedness and non-
linearity are induced into the objective due to mapping the search space [48].

For our simulations we used the model of a co-generation power plant that
has already been used and evaluated in different projects, e.g. [9,12,26,43].

Figure 7 presents the results for the Smart Grid use case. The approach has
been tested on three different scenarios. In scenario 1 and scenario 2 to we sim-
ulated a virtual power plant with 5 co-generation plants each and a planning
horizon of 96 15-min intervals covering a whole day. This results in a 5 ·96 = 480
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dimensional planning problem. In scenario 1 we selected the wanted target sched-
ule in a way that the plants could operate it without violating any technical con-
straints. Thus, the optimum is known to be zero. In scenario 2 the target schedule
was selected such that it cannot be operated exactly. Here, the real optimum
is unknown. For scenario 3 we simulated a virtual power plant consisting of 25
plants resulting in a problem dimension of 25·96 = 2400! All scenarios are solved
20 times with and without laziness (λ = 0.9). Improvements can be observed
for the harder cases where the target schedule cannot be reached exactly by the
energy units. Especially for the larger case scenario 3 a significant improvement
can be observed when laziness is introduced.

5 Conclusion

Global optimization is a crucial task for many real world applications in industry
and engineering and many practical problems are of a high-dimensional struc-
ture. Most meta-heuristics deteriorate rapidly with growing problem dimension-
ality. Exact methods can often not be applied due to the ruggedness of the
objective function. But also statistical heuristics need mechanisms to escape
local minima and prevent premature convergence.

We scrutinized a laziness extension to an agent-based algorithm for global
optimization that achieves a way better performance compared with the non-lazy
base algorithm when applied to large scale problems. Randomly postponing the
agent’s decision on local optimization leads to less vulnerability to premature
convergence, obviously due to an increasing inter-agent variation [3] and thus
to the incorporation of past (outdated) information. This re-stimulates a search
in already abandoned paths. Delaying the reaction of the agents in Gossiping
algorithms is known to increase the diversity in the population [28]. On the one
hand, this diversity leads to better results – especially in large scale problems, but
the number of necessary negotiation rounds increases on the other. For a better
understanding of the convergence process and its sensitivity to different degrees
of laziness and type of objective, we studied and compared the convergence
processes.

The lazy COHDAgo approach has shown good and sometimes superior per-
formance especially regarding solution quality for standard testbed objectives
from the computational intelligence community as well as for a practical prob-
lem from the Smart Grid domain. In future work, it may also be promising to
further scrutinize the impact of the communication topology asa further design
parameter.
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Optimization. LNCS, vol. 350, pp. 1–24. Springer, Heidelberg (1989). https://doi.
org/10.1007/3-540-50871-6 1

https://doi.org/10.1109/IJCNN.2008.4634035
https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1016/j.camwa.2006.07.013
http://www.sciencedirect.com/science/article/pii/S0898122107001344
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1109/4235.942534
https://doi.org/10.1162/106365606776022733
https://doi.org/10.1007/BF01197554
https://doi.org/10.1023/A:1008202821328
https://books.google.de/books?id=SIsa6zi5XV8C
https://books.google.de/books?id=SIsa6zi5XV8C
https://doi.org/10.1007/3-540-50871-6_1
https://doi.org/10.1007/3-540-50871-6_1


The Effect of Laziness on Agents for Large Scale Global Optimization 337

66. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and
parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003). https://doi.org/10.
1016/S0020-0190(02)00447-7

67. Tuy, H., Thieu, T., Thai, N.: A conical algorithm for globally minimizing a concave
function over a closed convex set. Math. Oper. Res. 10(3), 498–514 (1985). https://
doi.org/10.1287/moor.10.3.498

68. Ulmer, H., Streichert, F., Zell, A.: Evolution strategies assisted by Gaussian pro-
cesses with improved pre-selection criterion. In: IEEE Congress on Evolutionary
Computation, CEC 2003, pp. 692–699 (2003)

69. Vanneschi, L., Codecasa, D., Mauri, G.: A comparative study of four parallel and
distributed pso methods. New Gener. Comput. 29(2), 129–161 (2011)

70. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393,
440–442 (1998)

71. Weise, T., Chiong, R., Tang, K.: Evolutionary optimization: Pitfalls and booby
traps. J. Comput. Sci. Technol. 27(5), 907–936 (2012). https://doi.org/10.1007/
s11390-012-1274-4

72. Wipke, K., Markel, T., Nelson, D.: Optimizing energy management strategy and
degree of hybridization for a hydrogen fuel cell SUV. In: Proceedings of 18th Elec-
tric Vehicle Symposium, pp. 1–12 (2001)

73. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015).
https://doi.org/10.1007/s10107-015-0892-3

https://doi.org/10.1016/S0020-0190(02)00447-7
https://doi.org/10.1016/S0020-0190(02)00447-7
https://doi.org/10.1287/moor.10.3.498
https://doi.org/10.1287/moor.10.3.498
https://doi.org/10.1007/s11390-012-1274-4
https://doi.org/10.1007/s11390-012-1274-4
https://doi.org/10.1007/s10107-015-0892-3


Conversational Agents for Insurance
Companies: From Theory to Practice

Falko Koetter1, Matthias Blohm1(B), Jens Drawehn1, Monika Kochanowski1,
Joscha Goetzer2, Daniel Graziotin2, and Stefan Wagner2

1 Fraunhofer Institute for Industrial Engineering,
Nobelstr. 12, 70569 Stuttgart, Germany

{falko.koetter,matthias.blohm,jens.drawehn,
monika.kochanowski}@iao.fraunhofer.de

2 University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany
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Abstract. Advances in artificial intelligence have renewed interest in conversa-
tional agents. Additionally to software developers, today all kinds of employees
show interest in new technologies and their possible applications for customers.
German insurance companies generally are interested in improving their cus-
tomer service and digitizing their business processes. In this work we investigate
the potential use of conversational agents in insurance companies theoretically by
determining which classes of agents exist which are of interest to insurance com-
panies, finding relevant use cases and requirements. We add two practical parts:
First we develop a showcase prototype for an exemplary insurance scenario in
claim management. Additionally in a second step, we create a prototype focusing
on customer service in a chatbot hackathon, fostering innovation in interdisci-
plinary teams. In this work, we describe the results of both prototypes in detail.
We evaluate both chatbots defining criteria for both settings in detail and com-
pare the results and draw conclusions for the maturity of chatbot technology for
practical use, describing the opportunities and challenges companies, especially
small and medium enterprises, face.

Keywords: Conversational agents · Intelligent user interfaces · Hackathon ·
NLP chatbot · Insurance

1 Introduction

With the digital transformation changing usage patterns and consumer expectations,
many industries need to adapt to new realities. The insurance sector is next in line to
grapple with the risks and opportunities of emerging technologies, in particular Artifi-
cial Intelligence [31]. Additionally, innovation methods like design thinking and open
innovation are on the rise. In unsecure market times innovation is crucial, and all orga-
nizations and also traditional companies need to keep up to date by using new technolo-
gies for innovative business processes [27].
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Fraunhofer IAO as an applied research institution supports digital transformation
processes in an ongoing project with multiple insurance companies [35]. The goal of
this project is to scout new technologies, investigate them, rate their relevance and eval-
uate them (e.g. in a model trial or by implementing a prototype). While insurance has
traditionally been an industry with very low customer engagement, insurers now face
a young generation of consumers with changing attitudes regarding insurance prod-
ucts and services [32]. Another goal of the project is the establishment of innovation
methods within the companies and enable them to develop new products and services
themselves.

Traditionally, customer engagement uses channels like mail, telephone and local
agents. In 2016, chatbots emerged as a new trend [16], making it a topic of interest
for Fraunhofer IAO and insurance companies. With the rise of the smartphone, many
insurers started offering apps, but success was limited [33], which may stem from app
fatigue [38]. App use has plateaued, as users have too many apps and are reluctant to
add more [13]. In contrast, conversational agents require no separate installation, as they
are accessible via messaging apps, which are likely to be already installed on a user’s
smartphone. Conversational agents are an alternative to improve customer support and
digitize processes like claim handling or managing customer data.

The objective of this work is to describe the creation of conversational agents in
theory and practice and show the outcomes of both views. We facilitate the creation of
conversational agents by defining the traits of an agent more clearly using a (1) classifi-
cation framework, which is based on current literature and research topics, and system-
atically analyzing (2) use cases and requirements in an industry, shown in the example
insurance scenario. We frame two application scenarios with this theoretical founda-
tion. Prototype 1 is a claim-handling scenario, which shows technological progress for
a conversational agent. In this extended version of our former paper [23], we present
prototype 2. This new prototype has been created for the scenario of customer service
and cross selling. It is created in the setting of a chatbot hackathon event that Fraun-
hofer IAO organized in 2018. The goal is to gain more insights about conversational
agent creation while examining the practicability of chatbot implementation for small
insurance scenarios. Furthermore, we enriched the evaluation chapter of both prototypes
and compare the results of both activities. We derive possible applications, knowledge
about challenges and success factors as learnings from both activities. We apply this
knowledge in a new project for supporting small and medium enterprises in adoption of
new technologies.

2 Related Work

In this section we investigate work in the area of conversational agents, dialog manage-
ment, and research applications in insurance. In extension to the previous paper [23],
we add theory on hackathons at the end of the section.

[26] offer detailed explanations about background and history of conversational
interfaces as well as techniques to build and evaluate own agent applications. Another
literature review about chatbots was provided by [4], where common approaches and
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design choices are summarized followed by a case study about the functioning of IBM’s
chatbot Watson, which became famous for winning the popular quiz game Jeopardy!
against humans.

Many chatbot applications have already been built nowadays with the goal to solve
actual problems. One example is PriBot, a conversational agent, which can be asked
questions about an application’s privacy policy, because users tended to skip reading
the often long and difficult to understand privacy notices. Also, the chatbot accepts
queries of the user which aim to change his privacy settings or app permissions [17].

In the past there have already been several studies with the goal to evaluate how a
conversational agent should behave for being considered as human-like as possible. In
one of them, conducted by [22], fourteen participants were asked to talk to an existing
chatbot and to collect key points of convincing and unconvincing characteristics. It
turned out that the bot’s ability to hold a theme over a longer dialog made it more
realistic. On the other hand, not being able to answer to a user’s questions was regarded
as an unsatisfying characteristic of the artificial conversational partner [22].

In another experiment, which was done by [40], eight users had to talk to two differ-
ent kinds of chatbots, one behaving more human-like and one behaving more robotic.
In this context, they had to fulfill certain tasks like ordering an insurance policy or
demanding an insurance certification. All of the participants instinctively started to chat
by using natural human language. In cases in which the bot did not respond to their
queries in a satisfying way, the users’ sentences continuously got shorter until they
ended up with writing key words only. Thus, according to the results of this survey,
conversational agents preferably should be created human-like, because users seem to
be more comfortable when feeling like talking to another human being, especially in
cases in which the concerns are crucial topics like their insurance policies [40].

Dialog management strategies (DM) define the conversational behaviors of a sys-
tem in response to user message and system state [26].

In industry applications, DM often consists of a handcrafted set of rules and heuris-
tics, which are tightly coupled to the application domain [26] and improved iteratively.
One problem with handcrafted approaches to DM is that it is challenging to antici-
pate every possible user input and react appropriately, making development resource-
intensive and error-prone. But if few or no recordings of conversations are available,
these rule-oriented strategies may be the only option.

As opposed to the rule-oriented strategies, data-oriented architectures work by using
machine learning algorithms that are trained with samples of dialogs in order to repro-
duce the interactions that are observed in the training data. These statistical or heuris-
tical approaches to DM can be classified into three main categories: Dialog model-
ing based on reinforcement learning, corpus-based statistical dialog management, and
example-based dialog management (simply extracting rules from data instead of man-
ually coding them) [26,41]. [41] highlights neural networks, Hidden-Markov Mod-
els, and Partially Observable Markov Decision Processes as possible implementation
technologies.

The following are common strategies for rule-based dialog management:

– Finite-state-based DM uses a finite state machine with handcrafted rules, and per-
forms well for highly structured, system-directed tasks [26].
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– Frame-based DM follows no predefined dialog path, but instead allows to gather
pieces of information in a frame structure and no specific order. This is done by
adding an additional entity-value slot for every piece of information to be col-
lected and by annotating the intents in which they might occur. Using frames, a
less restricted, user-directed conversation flow is possible, as data is captured as it
comes to the mind of the user [37].

– Information State Update represents the information known at a given state in a dia-
log and updates the internal model each time a participant performs a dialog move,
(e.g. asking or answering). The state includes information about the mental states of
the participants (beliefs, desires, intentions, etc.) and about the dialog (utterances,
shared information, etc.) in abstract representations. Using so-called update moves,
applicable moves are chosen based on the state [43].

– Agent-based DM uses an agent that fulfills conversation goals by dynamically using
plans for tasks like intent detection and answer generation. The agent has a set of
beliefs and goals as well as an information base which is updated throughout the
conversation. Within this information framework the agent continuously prioritizes
goals and autonomously selects plans that maximize the likelihood of goal fulfill-
ment [29].

[6] describes how multiple DM approaches can be combined to use the best strategy
for specific circumstances.

A virtual insurance conversational agent is described by [46], utilizing TEATIME,
an architecture for agent-based DM. TEATIME uses emotional state as a driver for
actions, e.g. when the bot is perceived unhelpful, that emotion leads the bot to apolo-
gize. The shown example bot is a proof of concept for TEATIME capable of answering
questions regarding insurance and react to customer emotions, but does not implement
a full business process.

[25] describe a text-based healthcare chatbot that acts as a companion for weightloss
but also connects a patient with healthcare professionals. The chat interface supports
non-textual inputs like scales and pictorials to gather patient feedback. Study results
showed a high engagement with the chatbot as a peer and a higher percentage of auto-
mated conversation the longer the chatbot is used.

Overall, these examples show potential for conversational agents in the insurance
area, but lack support for complete business processes.

Considering hackathons previous research has been done on (examples include [27]
and [3]). Important for hackathons are goals of a hackathon as well as success fac-
tors. Hackathons are problem-focused computer programming events in which teams
of programmers and other stakeholders prototype a software solution within a limited
timeframe [3]. Hackathons usually are characterized by three features: (1) intensive
collaborative work experience (2) solution of a concrete problem with a demonstrable
solution (3) and a short time span. Depending on the focus and target group several spe-
cific formats are possible, like internal or external or application or technology specific
hackathons [3]. Much work apart from the work cited here on hackathons has been pub-
lished. To the best of our knowledge, an internal but company-spanning conversational
agent hackathon in the insurance industry has not been described yet. We will com-
pare the resulting prototypes based on the same technology of the hackathon with the
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prototype developed within a traditional project setting for deriving potentials and suc-
cess factors for conversational agent creation. Furthermore, we will compare techno-
logical progress of the resulting prototypes.

3 Theory on Conversational Agents and Insurance Industry

3.1 Application Scenarios and Types of Agents

The idea of conversational agents that are able to communicate with human beings
is not new: In 1966, Joseph Weizenbaum introduced Eliza, a virtual psychotherapist,
which was able to respond to user queries using natural language and which could be
considered as the first chatbot [45]. However, Eliza used quite simple structures by just
picking up keywords and asking more questions, not serving a purpose itself. Nowa-
days, the idea of speaking machines has experienced a revival with the emergence of
new technologies, especially in the area of artificial intelligence. Novel machine learn-
ing algorithms allow developers to create software agents in a much more sophisticated
way and in many cases they already outperform previous statistical NLP methods [26].
Additionally, the importance of messaging apps such as WhatsApp or Telegram has
increased over the last years. In 2015, the total number of people using these messaging
services outran the total number of active users in social networks for the first time.
Today, each of these app has about between 200 million and 1.5 billion users [19]. Cur-
rently the topic voice is on the rise - not only Gartner considers the breakthrough of
voice applications in the next years.

Conversational agents can be basically employed in these settings:

– Customer Service. In 2016 [16] the topic of customer service chatbots lead to a
great variety with a wide range of terminology.

– Recruitment. Recruitment chatbots become more popular, also the insurance com-
pany Allianz launched a recruitment bot recently.

– Marketing. Chatbots can be used for giving a company an innovative and up-to-date
view without really serving a business process.

– Internal Support. Before chatbots became so popular, many companies already
used chatbots for internal purposes. One example is IBM with its’ “Whatis Bot”1,
which answered questions by instant messaging about acronyms already many years
ago. The requirements for internal chatbots tend to be lower than for external ones,
as customers usually have the choice of a communication channel or provider.

This paper focuses on customer service only for demonstration purposes and sim-
ple explainability. However, in the insurance project mentioned beforehand, the second
category of internal support by NLP chatbots or voice systems has gathered even more
interest.

For being able to draw a big picture of the current trends in the area of conversational
agents, we divide them into the following four common categories:

1 https://www.academia.edu/35150361/IBM whatis.

https://www.academia.edu/35150361/IBM_whatis
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– (Virtual, Intelligent, Cognitive, Digital, Personal) assistants (VPAs). Agents ful-
filling tasks intelligently based on spoken or written user input and with the help
of data bases and personalized user preferences [7] (e.g. Apple’s Siri or Amazon’s
Alexa [8]).

– Specialized Digital Assistants (SDAs). Focused on a specific domain of expertise,
goal-oriented behavior [8]. SDAs can be used in customer service as well as for
internal support tasks.

– Embodied Conversational Agents (ECAs). Visually animated agents, e.g. in form
of avatars or robots [34], where speech is combined with gestures and facial
expressions.

– Chatterbots. Bots with focus on small talk and realistic conversations, not task-
oriented, e.g. Cleverbot [5].

Figure 1 shows the results of evaluating these four classes in terms of different char-
acteristics such as realism or task orientation based on own literature research. Chat-
terbots provide a high degree of entertainment since they try to imitate the behavior
of human beings while chatting, but there is no specific goal to be reached within the
scope of these conversations. In contrast, general assistants like Siri or Alexa are usu-
ally called by voice in order to fulfill a specific task. Specialized assistants concentrate
even more on achieving a specific goal, which often comes at the expense of realism
and user amusement because their ability to respond to not goal-oriented conversational
inputs like small talk is mostly limited. The best feeling of companionship can be expe-
rienced by talking to an embodied agent, since the reactions of these bots are closest to
human-like behavior.

Taking a look at the insurance project, it was decided to create prototypes for cus-
tomer service in the type of specialized digital assistants. In the next paragraph, the
processes in the insurance domain which might be chosen for this implementation are
described. As shown in Fig. 1, it has shown that although the goal was to created a spe-
cialized digital assistant, humans have their own goals in prototype creation. Adding
small talk in a limited scope affected the prototype creation and led to a more real-
istic and human-like user experience and more entertainment for the prototype in the
hackathon as well.

3.2 Insurance Processes and Requirements for Prototypes

Insurance is an important industry sector in Germany, with 560 companies that manage
about 460 million policies [39]. However, the insurance sector is under a high cost pres-
sure, which shows in a declining employee count and low margins [42]. The insurance
market is saturated and has transitioned from a growth market to a displacement mar-
ket [1]. For the greater part, German insurance companies have used conservative strate-
gies, caused by risk aversion, long-lived products, hierarchical structures, and prof-
itable capital markets [47]. As these conditions change, so must insurance companies.
One effort is the insurance project [35] with the goal of innovation and new technolo-
gies performed by Fraunhofer IAO since several years as described in Sect. 1. The two
touch points of interest in the insurance industry are selling a product and the claims
process. A study found that consumers interact less with insurers than with any other
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Fig. 1. Classification of conversational agents with their characteristics (based on own presenta-
tion from [23]). Values between 0 and 7 indicate how strong a characteristic applies for the given
type of agent. Additionally to the classification, the prototype implementations are shown by the
black box.

industry [30]. This is the reason why although chatbots become more popular in other
use cases like recruitment, the focus of this paper is the application in customer service.

Many insurance companies have heterogeneous IT infrastructures incorporating
legacy systems (sometimes from two or more companies as the result of a merger) [44].
These grown architectures pose challenges when implementing new data-driven or AI
solutions, due to issues like data quality, availability and privacy. Nonetheless, the high
amount of available data and complex processes make insurance a prime candidate for
machine learning and data mining. The adoption of AI in the insurance sector is in early
stages, but accelerating, as insurance companies strive to improve service and remain
competitive [31].

Conversational agents are one AI technology at the verge of adoption. In 2017,
ARAG launched a travel insurance chatbot, quickly followed by bots from other insur-
ance companies [15]. Examples are a chatbot on moped insurance by wgv2 and a chat-
bot on car insurance by Allianz3.

To identify areas of possible chatbot support, we surveyed the core business pro-
cesses of insurance companies as described in [1] and [18]. Three core areas of insur-
ance companies are customer-facing: marketing/sales, contract management and claim
management. Figure 2 shows the main identified processes related to this area.

We identified all these processes as possible use cases for conversational agent sup-
port, in particular support by SDAs. As two prototypes are planned, the criteria are
analyzed for both settings. The chosen scenario for prototype 1 is a special case of
the damage claim process: The user has a damaged smartphone or tablet and wants to
make an insurance claim. The scenario for prototype 2 in the hackathon is: The user has
received an annual bill. Answer frequently asked questions concerning the annual bill
for car insurance and combine with change of personal data and cross selling activities
(see also Fig. 2).

2 https://www.wgv.de/versicherungen/kfz/moped/.
3 https://www.facebook.com/AllianzCarlo/.

https://www.wgv.de/versicherungen/kfz/moped/
https://www.facebook.com/AllianzCarlo/
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Fig. 2. Customer-facing insurance processes (original in [23] based on [1] and [18]) with addi-
tional information on the prototypes as described in this paper shown in grey.

Furthermore, we investigated general requirements for conversational agents in
these processes:

Availability and Ease-of-use. Conversational agents are an alternative to both conven-
tional customer support (e.g. phone, mail) as well as conventional applications (e.g.
apps and websites). Compared to these conventional solutions, chatbots offer more
availability than human agents and have less barriers of use than conventional appli-
cations, requiring neither an installation nor the ability to learn a new user interface,
as conventional messaging services are used [10]. This includes the requirement of
understanding and answering to human language, which applies to both prototypes
developed.

Guided Information Flow. Compared to websites, which offer users a large amount
of information they must filter and prioritize themselves, conversational agents offer
information gradually and only after the intent of the user is known. Thus, the search
space is narrowed at the beginning of the conversation without the user needing to be
aware of all existing options. This is done for both prototypes by narrowing the scope.

Smartphone Integration. Using messaging services, conversational agents can inte-
grate with other smartphone capabilities, e.g. making a picture, sending a calendar
event, setting a reminder or calling a phone number. This applies for both prototypes.

Customer Call Reduction. Customer service functions can be measured by reduction
of customer calls and average handling time [16]. SDAs can help here by automating
conversations, handling standard customer requests and performing parts of conversa-
tions (e.g. authentication). This is relevant for projects, but out of scope for the proto-
type. However, questions about the annual bill arise very frequently.
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Human Handover. Customers often use social media channels to escalate an issue in
the expectation of a human response, instead of an automated one. A conversational
agent thus must be able to differentiate between standard use cases it can handle and
more complicated issues, which need to be handed over to human agents [28]. One
possible approach is to use sentiment detection, so customer who are already stressed
are not further aggravated by a bot [16]. Being out of scope for the prototype, this
has only be investigated for some technology providers that have different levels of
experience with this question.

Digitize Claim Handling. Damage claim handling in insurance companies is a com-
plex process involving multiple departments and stakeholders [24]. Claim handling pro-
cesses are more and more digitized within the insurance companies [18], but paper still
dominates communication with claimants, workshops and experts. [12] defines maturity
levels of insurance processes, defining virtual handling as a process where claims are
assessed fully digitally based on digital data from the claimant (e.g. a video, a filled dig-
ital form), and touchless handling as a fully digital process with no human intervention
on the insurance side. SDAs help moving towards these maturity levels by providing a
guided way to make a claim digitally and communicate with the claimant (e.g. in case
additional data is needed). Prototype 1 covers this area.

Conversational Commerce. Is the use of Conversational Agents for marketing and
sales related purposes [11]. Conversational Agents can perform multiple tasks using
a single interface. Examples are using opportunities to sell additional products (cross-
sell) or better versions of the product the customer already has (up-sell) by chiming
in with personalized product recommendations in the most appropriate situations. One
example would be to note that a person’s last name has changed during an address
update customer service case and offer appropriate products if the customer has just
married. Prototype 2 covers this area.

Internationalization. Is an important topic for large international insurance companies.
However, most frameworks for implementing conversational agents are available in
more than one language. To the best of our knowledge, the applied conversational agents
in German insurance today are optimized only for one language. So this topic is future
work in respect to both prototypes, but will become more important in the future.

Compliance. to privacy (GDPR) is usually guaranteed by the login mechanisms on
the insurance sites, therefore the topic is out of scope for our research prototype. For
broader scenarios not requiring identification on the insurance site and the usage of
the data for non-costumers, this is an area of ongoing research on compliant technical
solutions or workarounds.

4 Practice in Two Prototypes in Insurance Industry

4.1 Technical Requirements and Framework Options for the Prototypes

For dialog design within prototype 1, experimenting with machine learning algorithms
was the preferred implementation strategy. For this purpose, discussions with insur-
ance companies were held to assess the feasibility of receiving existing dialogs with
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customers, for example for online chats, phone logs or similar. However, such logs gen-
erally seem to be not available at German insurers, as the industry has self-regulated
to only store data needed for claim processing [14]. As a research institute represents a
third party not directly involved in claims processing, data protection laws forbid shar-
ing of data this way without steps to secure personal data. During our talks we have
identified a need for automated or assisted anonymization of written texts as a precon-
dition for most customer-facing machine learning use cases, at least when operating
in Europe [20]. However, these issues go beyond the scope of our current project, but
provide many opportunities for future research.

To still build a demonstrator in face of these challenges as outlined in [2], dialogs for
both prototypes were manually designed without using real-life customer conversations
and fine-tuned by user testing with fictional issues. As this approach entails higher
manual effort for dialog design, a narrower scenario was chosen for both prototypes to
still allow for the full realization of a customer-facing process.

Based on the work presented in the last sections and our talks with insurance com-
panies, we arrived at the following non-functional requirements that the chatbot proto-
type 1 ideally should fulfill:

– Interoperability: The agent should be able to keep track of the conversational con-
text over several message steps and messengers.

– Portability: The agent can be run on different devices and platforms (e.g. Facebook
Messenger, Telegram). Therefore it should use a unified, platform-independent mes-
saging format.

– Extensibility: The agent should provide a high level of abstraction that allows
designers to add new conversational content without having to deal with compli-
cated data structures or code.

For natural language understanding, we compared four possible frameworks
(Microsoft’s LUIS, Google’s Dialogflow, Facebook’s wit.ai and IBM’s Watson) regard-
ing important criteria for prototype implementation in a first step just for prototype 1.
The comparison was extended for the frameworks moni.ai and Kauz.net for prototype 2
in the hackathon. All six frameworks support textual input and output, this was amongst
others a basic requirement, but not all support complex conversation flows for advanced
use cases. A comparison table for these criteria is shown in Table 1. As a result of the
comparison, Google Dialogflow was chosen as a basic framework for prototype 1 based
on the fulfillment of all requirements of prototype 1, one of which was the free avail-
ability. For prototype 2 and the hackathon, Google Dialogflow and IBM Watson Assis-
tant were chosen, as an important factor next to the available user interface to enable
non-programmers to work with the software was the fact that the providers agreed to
accompany the hackathon event by sending experts for local support.

4.2 Prototype 1: Claim Management with Technological Extensions

Prototype 1 fulfills the following scenario: The user has a damaged smartphone or
tablet and wants to make an insurance claim. The goal here is to focus on technol-
ogy and build a demonstratable prototype in a ‘traditional’ project setting. We describe
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Table 1. Comparison of Microsoft’s LUIS, Google’s Dialogflow, Facebook’s wit.ai, and IBM’s
Watson (from the requirements for the technical prototype (1) as in the original paper [23], based
on [9]) and extended for prototype 2 by additional hackathon requirements and two new providers
nameley moni.ai and Kauz.net (n.c. stands for Not Considered anymore or not yet for the proto-
type 1 or 2 as of early in 2018).
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Overall (1,2) Textual in-/output yes yes yes yes yes yes

Overall (1,2) German language yes yes in Beta yes yes yes

Technical (1) Python bindings no yes yes yes n.c. n.c.

Technical (1) Free service no yes yes partlya n.c. n.c.

Technical (1) Remember state yes yes yes yes n.c. n.c.

Technical (1) Service bound yes yes yes yes n.c. n.c.

Technical (1) Simple training partly yes yes yes n.c. n.c.

Hackathon (2) Complex conversation flows no yes n.c. yes n.c. n.c.

Hackathon (2) Provider support n.c. yes n.c. yes no yes

Hackathon (2) User Interface yes yes n.c. yes yes no
a10 000 free messages per month

the results technically in the following. Figure 6 shows the main components of the
prototype and their operating sequence when processing a user message. To provide
extensibility prototype architecture strictly separates service integration, internal logic
and domain logic.

The user can interact with the bot over different communication channels which are
integrated with different bot API clients. To integrate a different messaging service, a
new bot API client needs to be written. The remainder of the prototype can be reused.
See Fig. 3 for an example of the prototype on different communication channels.

Once a user has written a message, a lookup of user context is performed to deter-
mine if a conversation with that user is already in progress. User context is stored in
a database so no state is kept within external messaging services. Afterwards, a typ-
ing notification is given to the user, indicating the bot has received the message and
is working on it. This prevents multiple messages by a user who thinks the bot is not
responsive.

In the next step, the message has to be understood by the bot. In case of a
voice message, it is transcribed to text using a Google speech recognition web ser-
vice. Dialogflow is used for intent identification, which determines the function of
a message and based on that a set of possible parameters [26]. For example, the
intent of the message “the display of my smartphone broke” may have the intent
phone broken with the parameter damage type as display damage, while the
parameter phone type is not given. Together, this information given by Dialogflow
is a MessageUnderstanding.
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Fig. 3. Top: The system is mirrored on both the Facebook and Telegram Messengers. Bottom left:
Additional view with customer data input and intelligent recognition of words like yesterday.
Bottom right: Dialog excerpt of the prototype, showing the possibility to clarify the phone model
via multiple-choice input. Extended version of figures in [23].
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As soon as the message is understood, the user context is updated. Afterwards, a
response needs to be generated. This process, which was labeled with Plan and Realize
Response in Fig. 6, is shown in detail in Fig. 7.

In the prototype, an agent-based strategy was chosen in order to combine the
capabilities of the frame-based entities and parameters in Dialogflow with a custom
dialog controller based on predefined rules in a finite state machine. This machine
allows to define rules that trigger handlers and state transitions when a specific intent
or entity-parameter combination is encountered. That way, both intent and frame
processing happen in the same logically encapsulated unit, enabling better main-
tainability and extensibility. The rules are instances of a set of *Handler classes
such as an IntentHandler for the aforementioned intent and parameter matching,
supplemented by other handlers, e.g. an AffirmationHandler, which consolidates
different intents that all express a confirmation along the lines of “yes”, “okay”,
“good” and “correct”, as well as a NegationHandler, a MediaHandler and an
EmojiSentimentHandler (to analyze positive, neutral, or negative sentiment
of a message with emojis). Each implements their own matches (Message
Understanding) method.

The following types of rules (handlers) are used within the dialog state machine:

1. Stateless handlers are checked independently of the current state. For example, a
RegexHandler rule determines whether the formality of the address towards the
user should be changed (German differentiates the informal “du” and the formal
“Sie”)

2. Dialog States map each possible state to a list of handlers that are applicable
in that state. For instance, when the user has given an answer and the system
asks for explicit confirmation in a state USER CONFIRMING ANSWER, then an
AffirmationHandler and a NegationHandler capture “yes” and “no”
answers.

3. Fallback handlers are checked if none of the applicable state handlers have yielded a
match for an incoming MessageUnderstanding. These fallbacks include
static, predefined responses with lowest priority (e.g. small talk), as well as handlers
to repair the conversation by bringing the user back on track or changing the topic.

At first, the system had only allowed a single state to be declared at the same time
in the router. However, this had quickly proven to be insufficient as users are likely to
want to respond or refer not only to the most recent message, but also to previous ones in
the chat. With only a single contemporaneous state, the user’s next utterance is always
interpreted only in that state. In order to make this model resilient, every state would
need to incorporate every utterance that the user is likely to say in that context. As this
is not feasible, the prototype has state handlers that allow layering transitions on top of
each other, allowing multiple simultaneous states which may advance individually.

To avoid an explosion of active states, the system has state lifetimes: new states
returned by callbacks may have a lifetime that determines the number of dialog moves
this state is valid for. On receiving a new message, the planning agent decreases the life-
times of all current dialog states by one, except for the case of utter non-understanding
(“fallback” intent). If a state has exceeded its lifetime, it is removed from the priority
queue of current dialog states.
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Figure 7 contains details about how the system creates responses to user queries.
Based on the applicable rule, the conversational agent performs chat actions (e.g. send-
ing a message), which are generated from response templates, taking into account dia-
log state, intent parameters, and information like a user’s name, mood and preferred
level of formality.

RuleHandlers, states and other dialog specific implementations are encapsulated, so
a new type of dialog can be implemented without needing to change the other parts of
the system.

Generated chat actions are stored in the user context and performed for the user’s
specific messenger using the bot API. As the user context has been updated, the next
message by the user continues the conversation.

The prototype explains its functionality and offers limited small talk. As soon as the
user wants to make a damage claim, a predetermined questionnaire is used about type of
damage, damaged phone, phone number, IMEI, damage time, damage event details, etc.
Interpretation results of answers have to be confirmed by the user. For specific questions
domain specific actions for clarification are implemented (see bottom right in Fig. 3). In
a real-life application, claim management systems would be integrated to automatically
trigger subsequent processes.

4.3 Prototype 2: Customer Service and Cross-selling in Hackathon

For receiving more insights about the practicability of introducing chatbots to the insur-
ance domain and for gaining experience with the usage of conversational frameworks,
Fraunhofer IAO organized a four-day hackathon with five German insurance companies
participating [21]. This results in prototype 2 for the given task: Create a chatbot using
IBM Watson Assistant or Google Dialogflow for answering questions about the annual
bill of car insurance and leveraging cross-selling opportunities.

In the scope of the event four minimal products were created by four interdisci-
plinary teams of IT specialists, sales experts and other employees of the insurance com-
panies. Doing so, in contrast to posing the challenge to external developers, our insur-
ance partners were directly involved and could profit from the lessons learned from this
internal hackathon [36]. One impression from the resulting video is shown in Fig. 4 and
also described in a blog article [21].

Following four prototypes can be characterized as the teams worked independently:

Prototype A Voice Focus. One more technically oriented team started by adding voice
technology to the chatbot for output purposes. Analogously, voice input could be
used - although findings in the insurance project show that the input direction is
more difficult to handle than the output direction. It showed that the focus is very
entertaining in presentation and that the presentation especially of voice technology
has to be performed carefully. In addition, the chatbot has been made more human-
like by adding personal opinions on sports.

Prototype B Multimedia Focus. Team B integrated several resources for better multi-
media presentation, like images, videos, and the like. This already started with using
an QR-code for accessing the prototype. The idea of using sophisticated multime-
dia content for explaining the annual bill like clickable graphics with videos has
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Fig. 4. Hackathon impressions (www.youtube.com/watch?v=yHRLYJ olZ8, [21]).

impressed the jury. The team focused therefore on customer experience and fine-
tuned their interaction patterns by introducing delay in the response times.

Prototype C Stability and Scope Focus. The C-team focused on building a stable pro-
totype for the complete task, achieving a large coverage of topics. The team spent
most time in designing entities and intents as well as dialogue flow. This led to
a comprehensive design and the most resilient result. The team was successful in
maintaining background knowledge in a database and integrate it into the conversa-
tion flow.

Prototype D Customer Identification Focus. The team D focused on solving the cus-
tomer identification issue. Using this information, they could give very detailed
information on the current contract of the customer and the bill and use customer
specific information for guiding the conversation itself. Another demonstration was
the change of customer data. Additionally, some small talk was introduced for enter-
tainment purposes.

Concerning the results, it is worth mentioning that all four groups succeeded in cre-
ating a usable product within the given timeframe that was able to handle the required
use case of answering questions about annual bills for a small set of predefined queries.
However, when letting a chatbot talk to people of other groups who were not involved
in its development and thus not aware of the underlying dialog structure, the solutions
proved to be error prone since they could not handle these unexpected inputs. This
stems from hardcoding parts of the scenario due to time constraints. In some cases,
more expertise in dialog design would have helped anticipate typical user inputs. All
teams worked with the entities and intents as are defined in most chatbot technolo-
gies, adding no programmable extensions (as compared to prototype 1). Therefore, the

www.youtube.com/watch?v=yHRLYJ_olZ8
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dialogue structure is static and creating the chatbot is done by adding intents and enti-
ties as well was if-then like programming of the dialogue. The teams got only the plain
frameworks of the providers and no specific extensions as for example for thorough test-
ing. Working in teams on a chatbot proved to be helpful, but added organizational com-
plexity, since resource access had to be shared and organized. Additionally, it turned out
that professional content designers that build appropriate conversation models may be
even more important than programmers, at least in case the used technology is enhanced
enough. A final survey among the participants showed that they enjoyed working in the
chosen hackathon format and could benefit a lot from its results and lessons learned.

5 Evaluation

Both prototypes were evaluated using appropriate methods. For prototype one, a
questionnaire-based approach with 14 participants was chosen. For prototype two, an
expert commission had to choose and rate all four prototypes based on a very short
questionnaire and come up with a point rating in a very short time span, as is typical
for hackathons. We will first describe the results of both evaluation processes and then
compare the results in the overall conclusion of this paper (see Sect. 6).

5.1 Evaluation of Prototype 1 Claim Management

To evaluate the produced prototype’s quality and performance, we conducted a model
trial with the goal to report a claim by using the chatbot without having any further
instructions available.

Of the 14 participants (who all had some technical background), 35.7% claimed to
regularly use chatbots, 57.1% to use them occasionally, and only 7.1% stated that they
had never talked to a chatbot before. However, all participants were able to report a
claim within a range of about four minutes, resulting in an overall task completion rate
of 100%.

Additionally, the users had to rate the quality of their experiences with the conver-
sational agent by filling out a questionnaire. For each question they could assign points
between 0 (did not apply at all) and 10 (did apply to the full extent). The most impor-
tant quality criteria, whose choice was oriented on the work of [34], are listed with their
average ratings in Fig. 5 and are discussed in detail.

Ease of Use. With an average of 8 points for Ease of Use, the users had no problems
with using the bot to solve the task, since none of them gave less than 5 points. How-
ever, a variance of 2.46 still indicates a strong gap among the participants’ experi-
enced degree of usability.

Appropriate Formality. 8.3 points on average for Appropriate Formality indicate that
the participants were comfortable with the formal and informal language the bot
talked to them. Nonetheless, this criteria was also rated with points of only one and
two. One of these users stated that he felt worried about permanently being called
by his first name after he told it. Therefore, development of a more fine-grained
detection mechanism for formal and informal language sould be considered in future
versions of the chatbot, since for now we only rely on simple regular expressions.
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Natural Interaction. The rating for convincing Natural Interaction with 7.9 points may
be due to the fact that the conversation was designed in a strongly questionnaire-
oriented way, which might have restricted the feeling of having a free user conver-
sation. Therefore, improving the flexibility of the conversational flow and granting
more freedom for user-centric dialog control might strengthen the authentic feeling
during interaction with the agent.

Response Quality. The satisfaction with given answers to users’ domain specific ques-
tions was considered quite (but not totally) convincing with 7.6 points. Note that the
high number of points might not be justified entirely, because the chatbot’s imple-
mented ability to answer questions is still very basic and restricted to concerns of
claim handling. But, since the whole conversation is strongly driven by the agent
itself, the users probably didn’t find the time to ask many questions that went beyond
the current limits of understanding. Connecting any kinds of knowledge bases might
serve as a first future step towards extending the agent’s response qualities.

Personality. The least convincing experience was that chatbot’s Personality, which was
rated with only 5.2 points on average. This is not surprising, since during this work
we put comparatively less efforts in strengthening the agent’s personal skills as it
does not even introduce itself with a name, but instead mainly acts on a professional
level, always concentrating on the fulfillment of its task. Facing these facts, a profes-
sional copywriter should have no problems developing a more convincing character
for the chatbot.

Funny and Interesting. With 7.2 points, talking to the chatbot was experienced as quite
Funny & Interesting, but still with a lot of room for further improvement. Again, the
key here stays to loosen the strict procedure of forcing the user to finish the process
and to allow more room for smalltalk and off topic contents.

Entertainment. The agent’s Entertainment capabilities, which are at 7.7 points on aver-
age, could be upgraded by extending the conversational contents with additional
enjoyable features not related to the questionnaire. At the moment, the chatbot is
only able to tell some jokes from the insurance domain, but does not provide a holis-
tic concept for customer entertainment.

No Deception Feeling. The agent’s lack of deceptiveness, i.e. the degree to which users
know it is not human, which at 9.6 points show that the bot’s statements made its
nature clear to users.

5.2 Evaluation of Prototype 2 as in the Hackathon

Typically, the evaluation in hackathons is done by a very short demo and questions from
the audience by an expert committee. After four days, the resulting prototypes were
examined by a jury considering the following predefined criteria. These differ strongly
from the criteria in the first evaluation due to the time-constrained focused question.
Most of the questions tackle the aforementioned response quality, with a second thought
on natural interaction. They clarify what is actually a focus of the hackathon and what
is not, putting emphasis on getting done. The formality is just a subcriterion if the
language style is adapted. All further going criteria like personality, fun, entertainment
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etc. have explicitly not been stated, but it is interesting that all groups put a strong focus
on this during their presentation, trying to stand out from the field and enjoying to add
human-like behavior.
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Fig. 5. Survey results for prototype 1: average user experience ratings (fourteen participants, 0..10
points) from [23].

Language Support
– Is the chatbot able to recognize the user input?
– Are the outputs of the chatbot adequate and understandable?
– Is the language style used by the bot adequate and consistent?
– Is the language style used by the bot adapted individually to user properties?

Flexibility
– Is the chatbot able to correctly recognize input even in unusual phrases?
– Is the chatbot able to respond appropriately to unexpected input?

Scope of Functions
– How well has the scenario Annual fee bill been covered by the prototype?
– How well are extensions and transitions implemented leading to other topics

such as cross selling?
Presentation

– Is the presentation convincing? Are there any differences to the other groups?
– Did the team manage to explain the chatbot in a timely manner?
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The expert committee had difficulties finding a winner in the given time span, as
all of the four prototypes fulfilled certain aspects that were identified as interesting to
the jury. Altogether the participants and experts learned a lot about chatbot design and
technologies and were satisfied with the results. Both technologies led to good results in
the hackathon, but most of the participants felt they needed provider support and expert
knowledge on dialogue design for creating a real product for customers. More overall
conclusions follow in the next section.

Fig. 6. Sequence diagram of the conversational agent prototype from [23].
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Fig. 7. Detailed sequence diagram of the response generation in the conversational agent proto-
type from [23].
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6 Conclusions and Outlook

In this work we have shown how conversational agents can be applied for different
use cases in theory and practice. We showed how our classification of conversation
agents applies for the prototypes generated for our two scenarios: (1) claim manage-
ment process support in traditional project setting as well as (2) customer service and
cross selling in an interdisciplinary hackathon. The potential processes to employ chat-
bots have been shown in general for the insurance companies and focused on customer
service processes. One key result of our former paper [23] containing prototype 1 is
a system of multiple conversational states enabling more flexible conversations. We
extended the evaluation with real users and additionally showed the prototype to vari-
ous customer groups, small businesses and more insurance companies. Altogether, the
prototype is able to handle the scenario satisfactory. One possible improvement is the
point of realism, for example by more human-like behavior in a consistent persona
and better determination of the desired degree of formality. The newly performed and
described activity is the creation of prototype 2 for customer service consisting of actu-
ally four prototypes in an interdisciplinary hackathon. It has shown that the results here
differ strongly form prototype 1 due to different goals, different time span and different
skills. No extensions to the entity-intent concept were performed, but several innovative
ideas have been included like multimedia integration, voice integration, several enter-
taining aspects and especially persona design. Prototype 1 did not have a name in the
beginning, whereas all teams came up with innovative names for prototype 2 at the
beginning of the hackathon.

Altogether, after two years of chatbot experience, we can summarize the potentials
for the conversational agent technology:

Maturity of Technology. Technology matures and is more often perceived in all day
activities, most people know chatbots and how they can be used. Many people have
already tried out a chatbot.

Service Enhandement. Agents can be used for better availability (24/7/365) and to
reduce the workload of the service staff.

Tools. Tools are available especially for good English language support. More lan-
guages and features are added as time passes. New technological frameworks are
available, the existing ones are improved.

Simple Tasks. Easy application for simple tasks and simple prototype creation is possi-
ble in a short time span. Transfer from prototype to live system is still more difficult.

Applicability. Many application scenarios are possible.

We have identified following challenges for new conversational agents and espe-
cially for transitioning from demo to prototype to live service:

Testing. Is time-consuming and error-prone
Domain Language. Has to be usually hardcoded or added manually supported by

machine learning in an optimal case
Handovers. Designing handovers is a challenging tasks that not all frameworks fulfill

perfectly
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Maintenance. Of the chatbot and further development is a challenging tasks and the
process has to be defined

Self-learning. Is not available in the expected scope as lots of people have very high
and unrealistic expectations to machine learning

High Expectations. To chatbot technology in general which might not be fulfilled in
the begining

Security and Integration. Issues as with most technologies

As a result of our two prototypes, the evaluations and the hackathon participant
surveys, we came up with the following success factors that we believe need to be
respected when planning to introduce conversational agents to companies:

Clear Scope Definition. Use cases and functionality of the conversational agent should
be predefined as detailed as possible.

Customer-oriented development. Tests with intended audience and changing test par-
ticipants to prevent them getting used to the dialog structure.

Careful Improvements and Testing. Sufficient time and care should be invested in
testing and improving the agent. A nonfunctional or only partly functional bot
deployed to the public too early might cause a negative reception that cannot be
corrected with future improvements.

Perform Regression Tests. Especially for self-learning agents it is crucial to ensure
that the bot does not “unlearn” skills that once worked successfully.

Facilitate Maintenance. Provide high-level (graphical) dialog customization options
for the employees of the related department for supporting easy extension and
improvement of the agent.

Choice of Technology Provider. Technology providers should be compared and chosen
according to the company environment and its conditions. One partner should be
selected for longer cooperation.

The model trial covering two prototypes has shown that conversational agents are
ready for productive use. However, the effort in creating and maintaining a conversa-
tional agent is not to be underestimated. While a successful conversation with a chat-
bot provides a satisfying customer experience, errors and gaps in dialog flow let user
satisfaction drop rather quickly. While users do not expect a human like conversation
and phrase their statements accordingly, they expect clearly formulated requests and
answers to be readily understood. Currently we are working on supporting small and
medium enterprises with evaluation of the technology and potential use cases for their
businesses. In future research, we would like to implement a real-life conversational
agent as well as perform a real-life evaluation with an insurance partner to quantify the
benefits of agent use, e.g. call reduction, success rate, and customer satisfaction as well
as support small and medium businesses with agent creation.

Acknowledgements. The work is partially based on work carried out in the project ‘Busi-
ness Innovation Engineering Center’, which is funded by the Ministry of Economic Affairs,
Labour and Housing Baden-Wuerttemberg under the reference number 3-4332.62-IAO/56.
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Versicherungen’ [35]. The authors want to thank all participants for their contributions and
feedback.



360 F. Koetter et al.

References

1. Aschenbrenner, M., Dicke, R., Karnarski, B., Schweiggert, F.: Informationsverarbeitung
in Versicherungsunternehmen. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-04321-5

2. Blohm, M., Dukino, C., Kintz, M., Kochanowski, M., Koetter, F., Renner, T.: Towards a pri-
vacy compliant cloud architecture for natural language processing platforms. In: Proceedings
of the 21st International Conference on Enterprise Information Systems, ICEIS, vol. 1, pp.
454–461. INSTICC. SciTePress (2019). https://doi.org/10.5220/0007746204540461

3. Briscoe, G., Mulligan, C.: Digital innovation: the Hackathon phenomenon (2014). http://
www.creativeworkslondon.org.uk/wp-content/uploads/2013/11/Digital-Innovation-The-
Hackathon-Phenomenon1.pdf

4. Cahn, J.: CHATBOT: Architecture, Design, & Development (2017)
5. Carpenter, R.: Cleverbot (2018). https://www.cleverbot.com/
6. Chu, S.W., O’Neill, I., Hanna, P., McTear, M.: An approach to multi-strategy dialogue man-

agement. In: Ninth European Conference on Speech Communication and Technology, pp.
865–868 (2005)

7. Cooper, R.S., McElroy, J.F., Rolandi, W., Sanders, D., Ulmer, R.M., Peebles, E.: Personal
virtual assistant. US Patent 7,415,100, 19 August 2008

8. Dale, R.: Industry watch: the return of the Chatbots. Nat. Lang. Eng. 22(5), 811–817 (2016)
9. Davydova, O.: 25 Chatbot platforms: a comparative table (2017). https://chatbotsjournal.

com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
10. Derler, R.: Chatbot vs. app vs. website - chatbots magazine, December 2017. https://

chatbotsmagazine.com/chatbot-vs-app-vs-website-en-e0027e46c983
11. Eeuwen, M.: Mobile conversational commerce: messenger Chatbots as the next interface

between businesses and consumers. Master’s thesis, University of Twente (2017)
12. Fannin, T., Brower, B.: 2017 future of claims study. Tech. rep. LexisNexis (2017)
13. Gartner: Market trends: mobile app adoption matures as usage mellows (2015). https://www.

gartner.com/newsroom/id/3018618
14. GDV: Verhaltensregeln für den Umgang mit personenbezogenen Daten durch die

deutsche Versicherungswirtschaft (2012). http://www.gdv.de/wp-content/uploads/2013/03/
GDV Code-of-Conduct Datenschutz 2012.pdf. datum des Aufrufes des Dokumentes:
11.02.2015

15. Gorr, D.: Ein Versicherungsroboter für gewisse Stunden. Versicherungswirtschaft
Heute (2018). http://versicherungswirtschaft-heute.de/schlaglicht/ein-versicherungsroboter-
fur-gewisse-stunden/

16. Guzmán, I., Pathania, A.: Chatbots in customer service. Tech. rep. Accenture (2016)
17. Harkous, H., Fawaz, K., Shin, K.G., Aberer, K.: Pribots: conversational privacy with Chat-

bots. In: Twelth Symposium on Usable Privacy and Security (SOUPS 2016). USENIX
Association, Denver, CO (2016). https://www.usenix.org/conference/soups2016/workshop-
program/wfpn/presentation/harkous

18. Horch, A., Kintz, M., Koetter, F., Renner, T., Weidmann, M., Ziegler, C.: Projekt
openXchange: Servicenetzwerk zur effizienten Abwicklung und Optimierung von Reg-
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