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Abstract. This paper presents an approach for substantial reduction of
the training and operating phases of Self-Organizing Maps in tasks of
2-D projection of multi-dimensional symbolic data for natural language
processing such as language classification, topic extraction, and ontol-
ogy development. The conventional approach for this type of problem is
to use n-gram statistics as a fixed size representation for input of Self-
Organizing Maps. The performance bottleneck with n-gram statistics is
that the size of representation and as a result the computation time of
Self-Organizing Maps grows exponentially with the size of n-grams. The
presented approach is based on distributed representations of structured
data using principles of hyperdimensional computing. The experiments
performed on the European languages recognition task demonstrate that
Self-Organizing Maps trained with distributed representations require
less computations than the conventional n-gram statistics while well pre-
serving the overall performance of Self-Organizing Maps.

Keywords: Self-organizing maps · n-gram statistics ·
Hyperdimensional computing · Symbol strings

1 Introduction

The Self-Organizing Map (SOM) algorithm [25,41] has been proven to be an
effective technique for unsupervised machine learning and dimension reduction
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Fig. 1. Outline of the conventional approach.

of multi-dimensional data. A broad range of applications ranging from its conven-
tional use in 2-D visualization of multi-dimensional data to more recent develop-
ments such as analysis of energy consumption patterns in urban environments
[6,8], autonomous video surveillance [29], multimodal data fusion [14], incre-
mental change detection [28], learning models from spiking neurons [12], and
identification of social media trends [3,7]. The latter use-case is an example of
an entire application domain of SOMs for learning on symbolic data. This type
of data is typically present in various tasks of natural language processing.

As the SOM uses weight vectors of fixed dimensionality, this dimensionality
must be equal to the dimensionality of the input data. A conventional approach
for feeding variable length symbolic data into the SOM is to obtain a fixed
length representation through n-gram statistics (e.g., bigrams when n = 2 or
trigrams when n = 3). The n-gram statistics, which is a vector of all possible
combinations of n symbols of the data alphabet, is calculated during a pre-
processing routine, which populates the vector with occurrences of each n-gram
in the symbolic data. An obvious computational bottleneck of such approach is
due to the length of n-gram statistics, which grows exponentially with n. Since
the vector is typically sparse some memory optimization is possible on the data
input side. For example, only the indices of non-zero positions can be presented
to the SOM. This, however, does not help with the distance calculation, which is
the major operation of the SOM. Since weight vectors are dense, for computing
the distances the input vectors must be unrolled to their original dimensionality.
In this paper, we present an approach where the SOM uses mappings of n-gram
statistics instead of the conventional n-gram statistics. Mappings are vectors
of fixed arbitrary dimensionality, where the dimensionality can be substantially
lower than the number of all possible n-grams.

Outline of the Proposed Approach

The core of the proposed approach is in the use of hyperdimensional com-
puting and distributed data representation. Hyperdimensional computing is a
bio-inspired computational paradigm in which all computations are done with
randomly generated vectors of high dimensionality. Figure 1 outlines the con-
ventional approach of using n-gram statistics with SOMs. First, for the input
symbolic data we calculate n-gram statistics. The size of the vector s, which con-
tains the n-gram statistics, will be determined by the size of the data’s alphabet
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Fig. 2. Outline of the proposed approach.

a and the chosen n. Next, the conventional approach will be to use s as an input
x to either train or test the SOM (the red vertical line in Fig. 1). The approach
proposed in this paper modifies the conventional approach by introducing an
additional step, as outlined in Fig. 2. The blocks in green denote the elements
of the introduced additional step. For example, the item memory stores the
distributed representations of the alphabet. In the proposed approach, before
providing s to the SOM, s is mapped to a distributed representation h, which is
then used as an input to the SOM (the red vertical line in Fig. 2).

The paper is structured as follows. Section 2 describes the related work.
Section 3 presents the methods used in this paper. Section 4 reports the results
of the experiments. The conclusions follow in Sect. 5.

2 Related Work

The SOM algorithm [25] was originally designed for metric vector spaces. It
develops a non-linear mapping of a high-dimensional input space to a two-
dimensional map of nodes using competitive, unsupervised learning. The output
of the algorithm, the SOM represents an ordered topology of complex entities
[26], which is then used for visualization, clustering, classification, profiling, or
prediction. Multiple variants of the SOM algorithm that overcome structural,
functional and application-focused limitations have been proposed. Among the
key developments are the Generative Topographic Mapping based on non-linear
latent variable modeling [4], the Growing SOM (GSOM) that addresses the pre-
determined size constraints [1], the TASOM based on adaptive learning rates and
neighborhood sizes [40], the WEBSOM for text analysis [17], and the IKASL
algorithm [5] that addresses challenges in incremental unsupervised learning.
Moreover, recently an important direction is the simplification of the SOM algo-
rithm [2,19,39] for improving its speed and power-efficiency.

However, only a limited body of work has explored the plausibility of the
SOM beyond its original metric vector space. In contrast to a metric vector
space, a symbolic data space is a non-vectorial representation that possesses an
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Fig. 3. Illustration of a self-organizing map with nine nodes organized according to the
grid topology.

internal variation and structure which must be taken into account in computa-
tions. Records in a symbolic dataset are not limited to a single value, for instance,
each data point can be a hypercube in p-dimensional space or Cartesian product
of distribution. In [26], authors make the first effort to apply SOM algorithm to
symbol strings, the primary challenges were the discrete nature of data points
and adjustments required for the learning rule, addressed using the general-
ized means/medians and batch map principle. Research reported in [42] takes a
more direct approach to n-gram modeling of HTTP requests from network logs.
Feature matrices are formed by counting the occurrences of n-characters cor-
responding to each array in the HTTP request, generating a memory-intensive
feature vector of length 256n. Feature matrices are fed into a variant of the
SOM, Growing Hierarchical SOMs [9] to detect anomalous requests. Authors
report both accuracy and precision of 99.9% on average, when using bigrams and
trigrams. Given the limited awareness and availability of research into unsuper-
vised machine learning on symbolic data, coupled with the increasing complexity
of raw data [27], it is pertinent to investigate the functional synergies between
hyperdimensional computing and the principles of SOMs.

3 Methods

This section presents the methods used in this paper. We describe: the basics
of the SOM algorithm; the process of collecting n-gram statistics; the basics
of hyperdimensional computing; and the mapping of n-gram statistics to the
distributed representation using hyperdimensional computing.

3.1 Self-organizing Maps

A SOM [25] (see Fig. 3) consists of a set of nodes arranged in a certain topology
(e.g., a rectangular or a hexagonal grid or even a straight line). Each node j is
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characterized by a weight vector of dimensionality equal the dimensionality of
an input vector (denoted as x). The weight vectors are typically initialized at
random. Denote a u × k matrix of k-dimensional weight vectors of u nodes in a
SOM as W. Also denote a weight vector of node j as Wj and i’th positions of
this vector as Wji. One of the main steps in the SOM algorithm is for a given
input vector x to identify the winning node, which has the closest weight vector
to x. Computation of a distance between the input x and the weight vectors
in W, the winner takes all procedure as well as the weight update rule are the
main components of SOM logic. They are outlined in the text below.

In order to compare x and Wj , a similarity measure is needed. The SOM
uses Euclidian distance:

D(x,Wj) =

√
√
√
√

i=k∑

i=1

(xi − Wji)2, (1)

where xi and Wji are the corresponding values of ith positions. The winning
node (denoted as w) is defined as a node with the lowest Euclidian distance to
the input x.

In the SOM, a neighborhood M of nodes around the winning node w is
selected and updated; the size of the neighborhood progressively decreases:

γ(j, w, t) = e−l(j,w)/2σ(t)2 , (2)

where l(j, w) is the lateral distance between a node j and the winning node w
on the SOM’s topology; σ(t) is the decreasing function, which depends of the
current training iteration t. If a node j is within the neighborhood M of w then
the weight vector Wj is updated with:

�Wj = η(t)γ(j, w, t)(x − Wj), (3)

where η(t) denotes the learning rate decreasing with increasing t. During an
iteration t, the weights are updated for all available training inputs x. The
training process usually runs for T iterations.

Once the SOM has been trained it could be used in the operating phase.
The operating phase is very similar to that of the training one except that the
weights stored in W are kept fixed. For a given input x, the SOM identifies the
winning node w. This information is used depending on the task at hand. For
example, in clustering tasks, a node could be associated with a certain region.
In this paper, we consider the classification task, and therefore, each node would
have an assigned classification label.

3.2 n-gram Statistics

In order to calculate n-gram statistics for the input symbolic data D, which is
described by the alphabet of size a, we first initialize an empty vector s. This vec-
tor will store the n-gram statistics for D, where the ith position in s corresponds
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to an n-gram N i = 〈S1,S2, . . . ,Sn, 〉 from the set N of all unique n-grams; Sj

corresponds to a symbol in jth position of N i. The value si indicates the number
of times N i was observed in the input symbolic data D. The dimensionality of
s is equal to the total number of n-grams in N , which in turn depends on a
and n (size of n-grams) and is calculated as an (i.e., s ∈ [an × 1]). The n-gram
statistics s is calculated via a single pass through D using the overlapping sliding
window of size n, where for an n-gram observed in the current window the value
of its corresponding position in s (i.e., counter) is incremented by one. Thus, s
characterizes how many times each n-gram in N was observed in D.

3.3 Hyperdimensional Computing

Hyperdimensional computing [16,31,33,34] also known as Vector Symbolic
Architectures is a family of bio-inspired methods of representing and manipulat-
ing concepts and their meanings in a high-dimensional space. Hyperdimensional
computing finds its applications in, for example, cognitive architectures [10], nat-
ural language processing [20,38], biomedical signal processing [22,35], approxi-
mation of conventional data structures [23,30], and for classification tasks [18],
such as gesture recognition [24], physical activity recognition [37], fault isola-
tion [21]. Vectors of high (but fixed) dimensionality (denoted as d) are the basis
for representing information in hyperdimensional computing. These vectors are
often referred to as high-dimensional vectors or HD vectors. The information is
distributed across HD vector’s positions, therefore, HD vectors use distributed
representations. Distributed representations [13] are contrary to the localist rep-
resentations (which are used in the conventional n-gram statistics) since any
subset of the positions can be interpreted. In other words, a particular position
of an HD vector does not have any interpretable meaning – only the whole HD
vector can be interpreted as a holistic representation of some entity, which in
turn bears some information load. In the scope of this paper, symbols of the
alphabet are the most basic components of a system and their atomic HD vec-
tors are generated randomly. Atomic HD vectors are stored in the so-called item
memory, which in its simplest form is a matrix. Denote the item memory as H,
where H ∈ [d × a]. For a given symbol S its corresponding HD vector from H
is denoted as HS . Atomic HD vectors in H are bipolar (HS ∈ {−1,+1}[d×1])
and random with equal probabilities for +1 and −1. It is worth noting that an
important property of high-dimensional spaces is that with an extremely high
probability all random HD vectors are dissimilar to each other (quasi orthogo-
nal).

In order to manipulate atomic HD vectors hyperdimensional computing
defines operations and a similarity measure on HD vectors. In this paper, we
use the cosine similarity for characterizing the similarity. Three key operations
for computing with HD vectors are bundling, binding, and permutation.

The binding operation is used to bind two HD vectors together. The result
of binding is another HD vector. For example, for two symbols S1 and S2 the
result of binding of their HD vectors (denotes as b) is calculated as follows:

b = HS1 � HS2 , (4)
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where the notation � for the Hadamard product is used to denote the bind-
ing operation since this paper uses positionwise multiplication for binding. An
important property of the binding operation is that the resultant HD vector b
is dissimilar to the HD vectors being bound, i.e., the cosine similarity between
b and HS1 or HS2 is approximately 0.

An alternative approach to binding when there is only one HD vector is to
permute (rotate) the positions of the HD vector. It is convenient to use a fixed
permutation (denoted as ρ) to bind a position of a symbol in a sequence to an
HD vector representing the symbol in that position. Thus, for a symbol S1 the
result of permutation of its HD vector (denotes as r) is calculated as follows:

r = ρ(HS1). (5)

Similar to the binding operation, the resultant HD vector r is dissimilar to HS1 .
The last operation is called bundling. It is denoted with + and implemented

via positionwise addition. The bundling operation combines several HD vectors
into a single HD vector. For example, for S1 and S2 the result of bundling of
their HD vectors (denotes as a) is simply:

a = HS1 + HS2 . (6)

In contrast to the binding and permutation operations, the resultant HD vector
a is similar to all bundled HD vectors, i.e., the cosine similarity between b
and HS1 or HS1 is more than 0. Thus, the bundling operation allows storing
information in HD vectors [11]. Moreover if several copies of any HD vector are
included (e.g., a = 3HS1 +HS2), the resultant HD vector is more similar to the
dominating HD vector than to other components.

3.4 Mapping of n-gram Statistics with Hyperdimensional
Computing

The mapping of n-gram statistics into distributed representation using hyper-
dimensional computing was first shown in [15]. At the initialization phase, the
random item memory H is generated for the alphabet. A position of symbol Sj

in N i is represented by applying the fixed permutation ρ to the corresponding
atomic HD vector HSj

j times, which is denoted as ρj(HSj
). Next, a single

HD vector for N i (denoted as mN i) is formed via the consecutive binding of
permuted HD vectors ρj(HSj

) representing symbols in each position j of N i.
For example, for the trigram ‘cba’ will be mapped to its HD vector as follows:
ρ1(Hc) � ρ2(Hb) � ρ3(Ha). In general, the process of forming HD vector of an
n-gram can be formalized as follows:

mN i
=

n∏

j=1

ρj(HSj
), (7)

where
∏

denotes the binding operation (positionwise multiplication) when
applied to n HD vectors.
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Once it is known how to map a particular n-gram to an HD vector, mapping
the whole n-gram statistics s is straightforward. HD vector h corresponding to
s is created by bundling together all n-grams observed in the data, which is
expressed as follows:

h =
an
∑

i=1

simN i
=

an
∑

i=1

si

n∏

j=1

ρj(HSj
), (8)

where
∑

denotes the bundling operation when applied to several HD vectors.
Note that h is not bipolar, therefore, in the experiments below we normalized it
by its �2 norm.

4 Experimental Results

This section describes the experimental results studying several configurations of
the proposed approach and comparing it with the results obtained for the conven-
tional n-gram statistics. We slightly modified the experimental setup from that
used in [15], where the task was to identify a language of a given text sample
(i.e., for a string of symbols). The language recognition was done for 21 European
languages. The list of languages is as follows: Bulgarian, Czech, Danish, German,
Greek, English, Estonian, Finnish, French, Hungarian, Italian, Latvian, Lithua-
nian, Dutch, Polish, Portuguese, Romanian, Slovak, Slovene, Spanish, Swedish.
The training data is based on the Wortschatz Corpora [32]. The average size of
a language’s corpus in the training data was 1, 085, 637.3 ± 121, 904.1 symbols.
It is worth noting, that in the experiments reported in [15] the whole training
corpus of a particular language was used to estimate the corresponding n-grams
statistics. While in this study, in order to enable training of SOMs, each lan-
guage corpus was divided into samples where the length of each sample was set
to 1, 000 symbols. The total number of samples in the training data was 22, 791.
The test data is based on the Europarl Parallel Corpus1. The test data also rep-
resent 21 European languages. The total number of samples in the test data was
21, 000, where each language was represented with 1, 000 samples. Each sample
in the test data corresponds to a single sentence. The average size of a sample
in the test data was 150.3 ± 89.5 symbols.

The data for each language was preprocessed such that the text included only
lower case letters and spaces. All punctuation was removed. Lastly, all text used
the 26-letter ISO basic Latin alphabet, i.e., the alphabet for both training and
test data was the same and it included 27 symbols. For each text sample the n-
gram statistics (either conventional or mapped to the distributed representation)
was obtained, which was then used as input x when training or testing SOMs.
Since each sample was preprocessed to use the alphabet of only a = 27 symbols,
the conventional n-gram statistics input is 27n dimensional (e.g., k = 729 when
n = 2) while the dimensionality of the mapped n-gram statistics depends on the

1 Available online at http://www.statmt.org/europarl/.

http://www.statmt.org/europarl/
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Fig. 4. The classification accuracy of the SOM trained on the conventional bigram
statistics (n = 2; k = 729) against the number of training iterations T . The grid size
was set to ten (u = 100). T varied in the range [5, 100] with step 5.

dimensionality of HD vectors d (i.e., k = d). In all experiments reported in this
paper, we used the standard SOMs implementation, which is a part of the Deep
Learning Toolbox in MATLAB R2018B (Mathworks Inc, Natick, Ma).

During the experiments, certain parameters SOM were fixed. In particular,
the topology of SOMs was set to the standard grid topology. The initial size
of the neighborhood was always fixed to ten. The size of the neighborhood and
the learning rate were decreasing progressively with training according to the
default rules of the used implementation. In all simulations, a SOM was trained
for a given number of iterations T , which was set according to an experiment
reported in Fig. 4. All reported results were averaged across five independent
simulations. The bars in the figure show standard deviations.

Recall that SOMs are suited for the unsupervised training, therefore, an extra
mechanism is needed to use them in supervised tasks such as the considered
language recognition task, i.e., once the SOM is trained there is still a need
to assign a label to each trained node. After training a SOM for T iterations
using all 22, 791 training samples, the whole training data were presented to the
trained SOM one more time without modifying W. Labels for the training data
were used to collect the statistics for the winning nodes. The nodes were assigned
the labels of the languages dominating in the collected statistics. If a node in the
trained SOM was never chosen as the winning node for the training samples (i.e.,
its statistics information is empty) then this node was ignored during the testing
phase. During the testing phase, 21, 000 samples of the test data were used to
assess the trained SOM. For each sample in the test data, the winning node was
determined. The test sample then was assigned the language label corresponding
to its winning node. The classification accuracy was calculated using the SOM
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Fig. 5. The classification accuracy of the SOM against the grid size for the case of
bigram statistics. The grid size varied in the range [2, 20] with step 2.

predictions and the ground truth of the test data. The accuracy was used as the
main performance metric for evaluation and comparison of different SOMs. It is
worth emphasizing that the focus of experiments is not on achieving the highest
possible accuracy but on a comparative analysis of SOMs with the conventional
n-gram statistics versus SOMs with the mapped n-gram statistics with varying
d. However, it is worth noting that the accuracy, obtained when collecting an
n-gram statistics profile for each language [15,36] for n = 2 and n = 3 and
using the nearest neighbor classifier, was 0.945 and 0.977 respectively. Thus, the
results presented below for SOMs match the ones obtained with the supervised
learning on bigrams when the number of nodes is sufficiently high. In the case
of trigrams, the highest accuracy obtained with SOMs was slightly (about 0.02)
lower. While SOMs not necessarily achieve the highest accuracy compared to
the supervised methods, their important advantage is data visualization. For
example, in the considered task one could imagine using the trained SOM for
identifying the clusters typical for each language and even reflecting on their
relative locations on the map.

The experiment in Fig. 4 presents the classification accuracy of the SOM
trained on the conventional bigram statistics against T . The results demon-
strated that the accuracy increased with the increased number T . Moreover, for
higher values of T the predictions are more stable. The performance started to
saturate at T more than 90, therefore, in the other experiments the value of T
was fixed to 100.

The grid size varied in the range [2, 20] with step 2, i.e, the number of nodes
u varied between 4 and 400. In Fig. 5 the solid curve corresponds to the SOM
trained on the conventional bigram statistics. The dashed, dash-dot, and dotted
curves correspond to the SOMs trained on the mapped bigram statistics with
k = d = 500, k = d = 300, and k = d = 100 respectively.
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Fig. 6. The training time of the SOM against the grid size for the case of bigram
statistics. The grid size varied in the range [2, 20] with step 2.

The experiment presented in Fig. 5 studied the classification accuracy of the
SOM against the grid size for the case of bigram statistics. Note that the num-
ber of nodes u in the SOM is proportional to the square of the grid size. For
example, when the gris size equals 2 the SOM has u = 4 nodes while when it
equals 20 the SOM has u = 400 nodes. The results in Fig. 5 demonstrated that
the accuracy of all considered SOMs improves with the increased grid size. It is
intuitive that all SOMs with grid sizes less than five performed poorly since the
number of nodes in SOMs was lower than the number of different languages in
the task. Nevertheless, the performance of all SOMs was constantly improving
with the increased grid size, but the accuracy started to saturate at about 100
nodes. Moreover, increasing the dimensionality of HD vectors d was improving
the accuracy. Note, however, that there was a better improvement when going
from d = 100 to d = 300 compared to increasing d from 300 to 500. The perfor-
mance of the conventional bigram statistics was already approximated well even
when d = 300; for d = 500 the accuracy was just slightly worse than that of the
conventional bigram statistics.

It is important to mention that the usage of the mapped n-grams statis-
tics allows decreasing the size of W in proportion to d/an. Moreover, it allows
decreasing the training time of SOMs. The experiment in Fig. 6 presents the
training time of the SOM against the grid size for the case of bigram statis-
tics. Figure 6 corresponds to that of Fig. 5. The number of training iterations
was fixed to T = 100. For example, for grid size 16 the average training time
on a laptop for k = d = 100 was 2.7 min (accuracy 0.86); for k = d = 300 it
was 8.0 min (accuracy 0.91); for k = d = 500 it was 16.9 min (accuracy 0.92);
and for k = an = 729 it was 27.3 min (accuracy 0.93). Thus, the usage of the
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Fig. 7. The classification accuracy of the SOM trained on the mapped bigram statistics
(n = 2) against the dimensionality of HD vectors d (k = d). The grid size was set to
16 (u = 256). The number of training iterations T was fixed to 100.

mapping allows the trade-off between the obtained accuracy and the required
computational resources.

In order to observe a more detailed dependency between the classifica-
tion accuracy and the dimensionality of distributed representations d of the
mapped n-gram statistics, an additional experiment was done. Figure 7 depicts
the results. The dimensionality of distributed representations d varied in the
range [20, 1000] with step 20. It is worth mentioning that even for small dimen-
sionalities (d < 100), the accuracy is far beyond random. The results in Fig. 7
are consistent with the observations in Fig. 5 in a way that the accuracy was
increasing with the increased d. The performance saturation begins for the val-
ues above 200 and the improvements beyond d = 500 look marginal. Thus, we
experimentally observed that the quality of mappings grows with d, however,
after a certain saturation point increasing d further becomes impractical.

The last experiment in Fig. 8 is similar to Fig. 5 but it studied the classifica-
tion accuracy for the case of trigram statistics (n = 3). The grid size varied in
the range [2, 20] with step 2. The solid curve corresponds to the SOM trained on
the conventional trigram statistics (k = 273 = 19, 683). The dashed and dash-
dot curves correspond to the SOMs trained on the mapped trigram statistics
with k = d = 5, 000 and k = d = 1, 000 respectively. The results in Fig. 8 are
consistent with the case of bigrams. The classification of SOMs was better for
higher d and even when d < an the accuracy was approximated well.
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Fig. 8. The classification accuracy of the SOM against the grid size for the case of
trigram statistics (n = 3). The number of training iterations T was fixed to 100.

5 Conclusions

This paper presented an approach for the mapping of n-gram statistics into
vectors of fixed arbitrary dimensionality, which does not depend on the size
of n-grams n. The mapping is aided by hyperdimensional computing a bio-
inspired approach for computing with large random vectors. Mapped in this
way n-gram statistics is used as the input to Self-Organized Maps. This novel for
Self-Organized Maps step allows removing the computational bottleneck caused
by the exponentially growing dimensionality of n-gram statistics with increased
n. While preserving the performance of the trained Self-Organized Maps (as
demonstrated in the languages recognition task) the presented approach results
in reduced memory consumption due to smaller weight matrix (proportional to
d and u) and shorter training times. The main limitation of this study is that
we have validated the proposed approach only on a single task when using the
conventional Self-Organized Maps. However, it is worth noting that the pro-
posed approach could be easily used for other modifications of the conventional
Self-Organizing Maps such as Growing Self-Organizing Maps [1], where dynamic
topology preservation facilitates unconstrained learning. This is in contrast to
a fixed-structure feature map as the map itself is defined by the unsupervised
learning process of the feature vectors. We intend to investigate distributed rep-
resentation of n-gram statistics in structure-adapting feature maps in future
work.
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