
Nobrainer: An Example-Driven
Framework for C/C++ Code

Transformations

Valeriy Savchenko1(B), Konstantin Sorokin1(B), Georgiy Pankratenko1(B),
Sergey Markov1(B), Alexander Spiridonov1(B), Ilia Alexandrov1(B),

Alexander Volkov2(B), and Kwangwon Sun3(B)

1 Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow 109004, Russian Federation

{vsavchenko,ksorokin,gpankratenko,markov,
aspiridonov,ialexandrov}@ispras.ru
2 Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
asvolkov@ispras.ru

3 Samsung Electronics,
Samsung GEC, 26, Sangil-ro 6-gil, Gangdong-gu, Seoul, South Korea

kwangwon.sun@samsung.com

Abstract. Refactoring is a standard part of any modern development
cycle. It helps to reduce technical debt and keep software projects
healthy. However, in many cases refactoring requires that transforma-
tions are applied globally across multiple files. Applying them manu-
ally involves large amounts of monotonous work. Nevertheless, automatic
tools are severely underused because users find them unreliable, difficult
to adopt, and not customizable enough.

This paper presents a new code transformation framework. It deliv-
ers an intuitive way to specify the expected outcome of a transforma-
tion applied within the whole project. The user provides simple C/C++
code snippets that serve as examples of what the code should look like
before and after the transformation. Due to the absence of any addi-
tional abstractions (such as domain-specific languages), we believe this
approach flattens the learning curve, making adoption easier.

Besides using the source code of the provided snippets, the framework
also operates at the AST level. This gives it a deeper understanding of
the program, which allows it to validate the correctness of the transfor-
mation and match the exact cases required by the user.

Keywords: Code transformation · Global refactoring · C/C++

1 Introduction

The lifecycle of any software project is a constant evolution. Not only does it
mean writing new code while adding new features, but it also includes contin-
uously modifying the existing code. Excessive focus on extending the system’s
c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 140–155, 2019.
https://doi.org/10.1007/978-3-030-37487-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_12

Nobrainer: An Example-Driven Framework for C/C++ Code 141

functionality can lead to a rapid accumulation of the project’s technical debt.
The concept of technical debt is a widespread metaphor for design-wise imper-
fection that boosts initial product development and deployment. With time,
however, the debt grows larger and can potentially stall the whole organization
[3].

A common way to mitigate this problem is refactoring [2,12], which is a
modification of the system’s internal structure that does not change its external
behavior [4]. It helps to eliminate existing architectural flaws and ease further
code maintenance. Murphy-Hill et al. [9] have estimated that 41% of all pro-
gramming activities involve refactoring. The same study also concluded that
developers underuse automatic tools and perform code transformations man-
ually despite the fact that a manual approach is more error-prone. Research
performed on StackOverflow website data [10] found that corresponding tools
can be too difficult and unreliable, as well as require too much human interac-
tion. This reveals a few natural requirements for a beneficial refactoring tool—it
should be easy to use, ask a minimal number of questions from the end user, and
rely on syntactic and semantic information in order to ensure the correctness of
the performed transformations.

Highly customizable refactoring tools typically utilize additional domain-
specific languages (DSL) for describing user-defined transformation rules [5,7,
14]. Such languages need to express both the intended refactoring and the differ-
ent syntactical and semantical structures of the target programming language.
Adopting a DSL can be too overwhelming in the case of C/C++ languages
because the language itself is already complex. Studies show that C and C++
take longer to learn [8], and projects in these languages are more error-prone
[11] compared to other popular languages.

This insight further qualifies the ease-of-use requirement: the tool should not
introduce another level of sophistication on top of C/C++ nor expect additional
knowledge from its user.

This study presents the Clang-based transformation framework nobrainer,
which is built on such principles. The expression a no-brainer refers to something
so simple or obvious that you do not need to think much about it.1,2 This concept
reflects the core idea behind nobrainer, the idea of providing an easy-to-use
framework for implementing and applying a user’s own code transformations.

Individual nobrainer rules are written in C/C++ without any DSLs. Each
rule is a group of examples that represents situations that should be refactored
and illustrates the way they should be refactored. They look exactly like devel-
oper’s code, thus flattening the learning curve of the instrument.

In this paper, we describe the main principles behind nobrainer, illustrate
the most interesting design and implementation solutions, and demonstrate the
tool’s application in real-world scenarios.

1 https://www.merriam-webster.com/dictionary/no-brainer.
2 https://dictionary.cambridge.org/dictionary/english/no-brainer.

https://www.merriam-webster.com/dictionary/no-brainer
https://dictionary.cambridge.org/dictionary/english/no-brainer

142 V. Savchenko et al.

2 Related Work

This section covers the various approaches on code transformation and automatic
refactoring presented in the literature. We distinguish two key points in the
current review. The first point is the form, in which the transformations are
described. The second point is the way these transformations are performed.
There are a few similar approaches that can be combined and compared.

Most of the tools reviewed here rely on a separate syntax for describing
transformation or refactoring rules. For example, Waddington et al. [5] introduce
their language YATL; whereas, Lahoda et al. [7] extend the Java language to
simplify rule descriptions. We believe that various types of DSLs can confuse the
user and introduce another layer of complexity. Wright and Jasper [14] describe
a different approach. Their tool ClangMR adopts Clang AST matchers [1] as a
mechanism for describing the parts of the user’s code that should be transformed.
The user must define replacements in terms of AST nodes. The authors imply
that the user is familiar with the principles of syntax trees and how it is built
for C/C++ programming languages. We believe that this requirement is rarely
met, and that is why the adoption of ClangMR can be challenging for a regular
user.

Wasserman [13], on the other hand, introduces a tool (Refaster) that does
not involve any DSLs. He suggests using the target project’s programming lan-
guage for describing transformations. This allows the user to embed transforma-
tion rules into the project’s code base, which leads to simpler syntax checks
and symbol availability validations. Transformation rules are written in the
form of classes and methods with either @BeforeTemplate or @AfterTemplate
annotations. Each class represents a transformation and should contain one
or more @BeforeTemplate methods and a single @AfterTemplate method.
Then the tool treats the transformation as follows: match the code that is
written in @BeforeTemplate method and replace it with the code written in
@AfterTemplate method.

We consider Wasserman’s tool design to be clear and user-friendly because
it uses the language of the project’s code base to define transformations. We use
a similar approach in nobrainer.

We decided that the best method for matching the C/C++ source code is
the approach used in ClangMR. However, because using Clang AST matchers
directly can be challenging, we provide a higher level framework that utilizes
AST matchers internally.

Regarding the code transformation, a common solution is to generate an
AST, transform it, and restore the source code in the end. This kind of app-
roach is used by Proteus [5], Jackpot [7] and Eclipse C++ Tooling Plugin [6].
The main problem of implementing such an approach is code generation. We
should remember all the nuances of the original source code in order to repli-
cate them when restoring the resulting code. This includes preserving comments,
redundant spaces, etc. On the other hand, in ClangMR [14], the authors suggest

Nobrainer: An Example-Driven Framework for C/C++ Code 143

using the Clang3 framework for code transformation because it allows developers
to directly modify the source code token wise. We also use the Clang framework
because we believe it is the best solution to transform C/C++ source code.

3 Design

In this section, we describe the overall design and the user’s workflow. Running
the tool on a real project involves the following list of actions:

– writing transformation rules as part of the target project
– providing compilation commands for the target project (the currently sup-

ported format is the Clang compilation database4)

Nobrainer either applies all the replacements or generates a YAML file con-
taining these replacements. In the latter case, replacements can be applied later
with the clang-apply-replacements tool (part of the Clang Extra Tools5).

Figure 1 provides an insight into the internal nobrainer structure. Each num-
bered block represents a work phase of the tool. Boxes at the bottom correspond
to each phase’s output.

Fig. 1. Nobrainer workflow

During the first phase, the tool analyzes all of the translation units that are
extracted from the given compilation commands. For each translation unit, it
searches for and collects templates that represent our transformation examples.
Then nobrainer filters invalid templates. The result of the first phase is a list
of valid templates.

In the second phase, we group conforming templates into rules. Nobrainer
also checks each rule for consistency and then processes each rule to generate
internal template representation.

In the third phase, we work with the list of preprocessed rules. Nobrainer
tries to match each rule against the project’s source code. For each match, we
construct a special data structure, which we use to generate a replacement. As
a result, we obtain a set of replacements.

For more details on each phase, see Sect. 4.
3 https://clang.llvm.org/.
4 https://clang.llvm.org/docs/JSONCompilationDatabase.html.
5 https://clang.llvm.org/extra/index.html.

https://clang.llvm.org/
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/extra/index.html

144 V. Savchenko et al.

4 Detailed Description

The core idea of nobrainer is the use of examples, which are code snippets
written in C/C++ languages. Because each snippet may represent a whole fam-
ily of cases, we call them templates. The user submits the situations she wants
to change in the Before templates and the substituting code in the After tem-
plates. These templates can be defined anywhere in the project.

Nobrainer offers a special API for writing such examples, which is subdi-
vided into C and C++ APIs. Both provide the ability to write expression and
statement templates to match C/C++ expressions or statements respectively.

For a clearer explanation of what a template is, let us proceed with an exam-
ple. Suppose the user wants to find all calls to function foo with an arbitrary int
expression as the first argument and global variable globalVar as the second
argument and replace the function with bar, while keeping all the same argu-
ments. Listing 1 demonstrates how such a rule can be specified (using nobrainer
C API).

int NOB_BEFORE_EXPR(ruleId)(int a) {

return foo(a, globalVar);

}

int NOB_AFTER_EXPR(ruleId)(int a) {

return bar(a, globalVar);

}

Listing 1: Expression template example
Expressions for matching and substitution reside inside of return state-

ments. We force this limitation intentionally because it allows us to delegate
the type compatibility check of Before and After expressions to the compiler.

Nobrainer’s transformations are based on the concept that two valid expres-
sions of the same type are syntactically interchangeable. This statement is correct
with the exception of parenthesis placement. In certain contexts, some expres-
sions must be surrounded with parentheses. However, we introduce a simple set
of rules that solve this issue and are not covered in this paper.

In order to properly define the term template, we first need to introduce the
following notations (with respect to the given program):

– Θ is a finite set of all types defined
– Σ is a finite set of all defined symbols (functions, variables, types)
– A is a finite set of all AST nodes representing the program
– C is a finite set of characters allowed for C/C++ identifiers
– P is a finite set of all function parameters p = 〈np, tp〉 where np ∈ C∗ is the

parameter’s name and tp ∈ Θ is its type.

An expression template can be formally defined as a 6-tuple

Texpr = 〈k, n, r, P,B, S〉 (1)

where

Nobrainer: An Example-Driven Framework for C/C++ Code 145

– k ∈ {before, after} is the template’s kind
– n ∈ C∗ is the rule’s identifier, it is used for pairing corresponding

before/after templates
– r ∈ Θ is the return type
– B ⊂ A is the body
– P ⊆ P is the set of parameters
– S ⊆ Σ is the set of symbols used in B.

The last two elements of the tuple require additional commentary.
Template parameters P represent generic placeholders for different situa-

tions encountered in the real source code. Nobrainer reads these parameters as
arbitrary expressions of the corresponding type. For example, parameter a from
Listing 1 corresponds to any expression of type int.

The set of symbols S is important for the correctness affirmation (see
Sects. 4.4 and 4.6).

Fig. 2. Before template deconstruction

Figure 2 dissects the Before template from Listing 1.
The following subsections cover nobrainer’s phases in more detail.

4.1 Template Collection

The first phase is to collect all the templates from the project. Nobrainer scans
each file and tries to find functions that were declared using the API. This can
only be done for parsed source files. Doing so for the whole project can have a
drastic impact on the tool’s performance. In order to avoid checking all the files,
we only process files that contain inclusion directives of nobrainer API header
files.

As the output, this phase has a set of all templates defined by the user. We
denote it as T .

4.2 Template Validation

After the template collection phase, we validate each template individually. We
need to check that the collected templates in T are structurally valid. First it is
important to note that the syntactic correctness of a template is guaranteed by
the compilation process. Templates are implemented as the part of the existing
code base, which implies that they are actually parsed and checked during the

146 V. Savchenko et al.

collection phase. This includes checks for the availability of all symbols, type
checks, etc.

In every separate case, nobrainer replaces a single expression with another
single expression. Considering this fact, each template Texpr should define exactly
one expression. This requirement is transformed into a syntax form as: a tem-
plate’s body B should consist of a single return statement with a non-empty
return expression. During the template validation stage, we check this constraint.
Thus, nobrainer filters out templates without a body (i.e. declarations), tem-
plates with an empty body, and templates with a single statement return;.

Currently there are some limitations regarding the usage of functional style
macros and the usage of C++ lambda expressions in template bodies. For this
reason, we validate the absence of either of these language features.

Thus, if nobrainer encounters invalid templates, it filters them out and
proceeds to the next phase with the set of valid ones T+.

4.3 Rule Generation

For an arbitrary id ∈ C∗, we define two sets of templates Bid and Aid as follows:

Bid = {T ∈ T+|nT = id, kT = before} (2)

Aid = {T ∈ T+|nT = id, kT = after} (3)

These two groups describe exactly one user-defined transformation scenario
because they include all of the Before and After examples under the same name.
However, in order for Bid and Aid to form a transformation rule, the following
additional conditions must be met:

⎧
⎪⎨

⎪⎩

|Bid| ≥ 1
Aid = {aid} (i.e. |Aid| = 1)
∀b ∈ Bid → aid ≺ b

(4)

where

∀x, y ∈ T+ → x ≺ y ⇔
{

Px ⊆ Py

rx = ry
(5)

We refer to operator ≺ as the compatibility operator. It indicates that the
snippet defined in x can safely replace the code matching y. The equality of
return types r ensures that the substituting expression has the same type as
the original one, while condition Px ⊆ Py guarantees that nobrainer will have
enough expressions to fill all of the x’s placeholders.

As a result, we define transformation rule as a pair Rid = 〈Bid, Aid〉 where
Bid and Aid meet conditions (4). Additionally we denote the set of all project
rules as R.

Nobrainer: An Example-Driven Framework for C/C++ Code 147

4.4 Rule Processing

Before Template Processing. As mentioned before, we convert Before tem-
plates to Clang AST matchers. These provide a convenient way to search for
sub-trees that fit the given conditions. They describe each node, its properties,
and the properties of its children. Thus, this structure resembles the structure of
the AST itself. In order to generate matchers programmatically, we exploit this
fact. Each node of the template’s sub-tree is recursively traversed and paired
with a matcher. As a result, we encapsulate the logic related to different AST
nodes and avoid the necessity of supporting an exponential number of possible
node combinations.

Fig. 3. Recursive AST matcher generation

Figure 3 demonstrates a simplified example of such a conversion. It depicts
three stages of Before template processing: source code, AST, and AST match-
ers. Bold arrows reflect parent-child relationships, while dashed arrows stand for
node-matcher correspondence. Because matchers are represented by a series of
nested function calls, we construct the innermost matchers first, traversing the
tree in a depth-first fashion.

Matching Identical Sub-Trees. Consider the Before template from Listing 2.
It is unlikely that the user expects the system to match two arbitrary expressions
as foo’s arguments. In fact, the most intuitive interpretation of this template is
matching calls to function foo with identical arguments only.

int before(int x) {

return foo(x, x);

}

Listing 2: An example of reusing a template parameter

Clang does not provide a matcher that can do the job. However, nobrainer
already has a mechanism to find identical sub-trees for Before templates without
parameters. During the matching process, we reuse this mechanism to dynami-
cally generate a matcher. Thus, for the given example, we bind the first argument
to x, generate a matcher, and check if the second argument fits.

148 V. Savchenko et al.

After Template Processing. Our goal is to construct a text that represents
the result of a replacement. Therefore, we convert After templates into plain
strings. However, there are some parts of the After template’s body that cannot
be taken as is and placed into the desired location. We call such parts mutable.
During the traversal of the After template’s body, we extract the ranges that
represent mutable parts. Each range consists of the start and the end locations
of the certain AST node. There are two cases of mutable parts.

The first case is the use of a template parameter inside of an After template’s
body. We treat each template parameter as a placeholder that we fill during
replacement generation (see Sect. 4.6).

The second case is the use of a symbol. Inserting symbols in arbitrary places
in the source code can be syntactically incorrect. Indeed, in the location of
insertion, the symbol may not yet have been declared. Thus, we collect symbol
information that is used during replacement generation (see Sect. 4.6).

Given these points, for the After template from Listing 3, we construct the
following format string: "#{bar}(${x}) + 42". In this example, nobrainer dis-
tinguishes the symbol bar and the template parameter x, and handles them
accordingly. The tool treats all the remaining parts of the string as immutable,
and, with this in mind, constructs the resulting format string.

int after(int x) {

return bar(x) + 42;

}

Listing 3: An example of an After template

4.5 Rule Application

The next step is to identify all situations, in which to apply rules R. In order to
do this across the whole project, nobrainer independently parses all the source
files. After that, the tool applies AST matchers generated for each rule.

Each time a match is found, nobrainer obtains a top-level expression that
should be replaced and a list of AST sub-trees bound to parameters from the
corresponding Before template. Using this information and the After template,
nobrainer generates an actual code change called a replacement.

4.6 Replacement Generation

Replacement is a sufficient specification for a complete textual transformation.
It consists of four components:

– the file where current replacement is applied
– the byte offset where the replaced text starts
– the length of the replaced text
– the replacement text

Nobrainer: An Example-Driven Framework for C/C++ Code 149

Nobrainer extracts the first three components from the expression marked
for substitution. The replacing text is composed from the After template and
AST nodes bound to parameters. For each node, nobrainer gathers the cor-
responding source code and fills placeholders from the After template. This
operation results in plain text for the substitution. Figure 4 demonstrates this
procedure using a real code snippet.

Fig. 4. Replacement generation

Such a transformation may nevertheless cause compilation errors due to sym-
bol availability. Nobrainer should check that each symbol that comes with a
substitution is declared and has all required name qualifiers. In order to ensure
this, we:

– add inclusion directives for the corresponding header files
– add namespace specifiers.

The resulting code incorporates only the pieces of real source code that have
been checked by Clang at different stages of the analysis.

4.7 Type Parameters

Parametrization with arbitrary expressions provides a flexible instrument for
generic rule definition. However, this may not be enough. Exact type specifica-
tion can significantly limit the rule’s expressiveness and reduce the number of
potential use cases.

In order to combat this shortcoming, we introduce a set of type parameters
Φ ⊂ C∗ to a template syntax. This extends the template definition (1) to

Texpr = 〈k, n, r, P,B, S, Φ〉 (6)

and compatibility operator ≺ (5) to

∀x, y ∈ T+ → x ≺ y ⇔

⎧
⎪⎨

⎪⎩

Φx ⊆ Φy

Px ⊆ Py

rx = ry

(7)

Note that type parameters Φ are fully symmetrical to parameters P .

150 V. Savchenko et al.

template <class T> T *before() {

return (T *)malloc(sizeof(T));

}

template <class T> T *after() {

return new T;

}

Listing 4: An example of a type-parametrized rule
Listing 4 demonstrates a rule parametrized with type.

5 Results

In this section, we describe how we test nobrainer, provide some transformation
rule examples and present the performance results.

5.1 Testing

Our tests can be divided into two main groups. First, we have a group of unit-
and integration-tests for each phase described in Sect. 3. These are mainly used
to check the correctness of AST matcher generation (Sect. 4.4) and format string
generation (Sect. 4.4) for various AST nodes.

Second, we have a group of regression tests consisting of several open source
projects.

For each project, we have created files with predefined nobrainer templates.
Our testing framework runs the tool, measures the execution time, checks that
all the predefined transformations have been performed as expected, and verifies
that the project can be compiled afterwards.

5.2 Examples

In this section, we present three notable transformation rules that are supported
by nobrainer.

The first example (Listing 5) shows the transformation rule that changes
the order of arguments inside of the compose method call. Specifically,
nobrainer will replace each call of the compose method of the Agent class
a.compose(x, y) with the call a.compose(y, x).

Thus, we demonstrate how to perform an argument swap automatically when
method’s signature changes.

Nobrainer: An Example-Driven Framework for C/C++ Code 151

int NOB_BEFORE_EXPR(ChangeOrder)(Agent a, char *x, char *y) {

return a.compose(x, y);

}

int NOB_AFTER_EXPR(ChangeOrder)(Agent a, char *x, char *y) {

return a.compose(y, x);

}

Listing 5: An example template for the argument swap
The second example (Listing 6) shows that nobrainer can be used to

perform simplifying code transformations.

class EmptyCheckRefactoring : public nobrainer::ExprTemplate {

public:

bool beforeSize(const std::string x) {

return x.size() == 0;

}

bool beforeLength(const std::string x) {

return x.length() == 0;

}

bool after(const std::string x) {

return x.empty();

}

};

Listing 6: An example template for a string emptiness check
Recall that each rule can have an arbitrary number of before templates,

but only one after template. Writing several before expressions helps to group
common transformations.

The third example contains type and expression parameters. Listing 7
shows the corresponding rule.

class ConstCastRefactoring : public nobrainer::ExprTemplate {

public:

template <class T>

T *before(const T *x) { return (T *)x; }

template <class T>

T *after(const T *x) { return const_cast<T *>(x); }

};

Listing 7: An example template for const casts
It detects the C-style cast that “drops” the const qualifier from the pointed

type and replaces it with an equivalent C++-style cast. Parameter x should be of
any pointer-to-const type and should be cast to exactly this type, but without a

152 V. Savchenko et al.

const qualifier. Nobrainer captures all of these connections and processes them
as expected.

5.3 Performance

To measure the performance we run our regression tests five times on a machine
with Intel(R) Core(TM) i7-7700K CPU @ 4.20 GHz CPU, and 64 GB of RAM.
The machine runs on Ubuntu 16.04 LTS. We perform the execution in eight
threads.

Table 1 contains the results. For each project, we list its size in lines of code,
the number of replacements nobrainer applies during the test, and our time
measurements. We distinguish two stages of nobrainer’s workflow and measure
them separately. The first stage incorporates the project’s source code parsing.
The second stage contains all the remaining computations up to replacement
generation. We divide the whole process this way because the parsing process is
performed by the Clang framework. For this reason, we can only minimize the
time nobrainer spends in the second stage.

Table 1. Performance results

Project KLOC Replacements Parsing time (s) Remaining operation time (s)

CMake 493 24 31.36 7.13

curl 129 7 3.17 2.01

json 70 7 13.99 1.34

mysql 1170 10 9.54 3.12

protobuf 264 8 16.62 2.97

v8 3055 6 281.57 28.52

xgboost 43 14 6.75 1.18

It should be noted that the execution time does not directly correlate with
the project’s size. Other factors, such as translation unit sizes may also influence
the overall performance.

As can be seen in Table 1, the elapsed time varies significantly between
projects. In particular, this behavior applies both to the parsing time and to
remaining processing time. Therefore, comparing the elapsed time of different
projects offers few insights. Thus, in our evaluations, we consider the percentage
of time that the file parsing takes from the whole process. Then, we compare
this proportion among different projects. Figure 5 demonstrates the correspond-
ing rates for the regression projects. Our results show that parsing takes up
more than 81% of the whole execution time on average. For a global refactor-
ing, all files must be parsed. The fact that the remaining procedure takes less
than 20% of the execution time means that nobrainer has reached near-optimal
performance.

Nobrainer: An Example-Driven Framework for C/C++ Code 153

CMake curl json mysql protobuf v8 xgboost
Project

0

25

50

75

100
O

pe
ra

ti
on

 t
im

e
pe

rc
en

ta
ge

File parsing time
Remaining operation time

Fig. 5. File parsing percentage in nobrainer operation

Nevertheless, in certain cases, it is possible to avoid parsing files when it is
sure that the file contains nothing to transform. The next section explains this
and other directions in our future work.

6 Limitations and Future Work

Currently nobrainer supports expression templates and type parameterization.
It can be used to perform transformations in continuous integration environ-
ments (CI). However, the execution time is still unsuitable for running it on
large projects as a background task in IDE. There is still room for improvement.
Thus, we consider three main directions for future work:

1. Full statement support
2. Performance improvements
3. Usability improvements

At the moment, we have already designed infrastructure for statement sup-
port. This includes API, validation and stubs for processing Before and After
templates. We have also added support for if statements, compound statements,
and variable declaration nodes. Our next task is to implement processing for
each remaining statement node.

Regarding performance, we plan to research methods for reducing the pars-
ing time. We are considering two directions. Firstly, we would like to improve
the matching phase by skipping files that do not contain symbols used in Before
templates. Secondly, we will explore automatic precompiled header (PCH) cre-
ation, which is expected to speed up the process of parsing the project’s header
files.

154 V. Savchenko et al.

Further, the usability of our tool can be improved in two ways. Currently
nobrainer performs found transformations only for the whole code base. We
would like to add support for executing on user-defined parts of the project.
We are also considering integrating with other developer tools. For example,
nobrainer can be used as an IDE plugin to enhance user experience and the
convenience of usage. Another possible scenario is to use nobrainer to assist
static analyzers for fixing errors or defects.

7 Conclusion

In this paper, we presented nobrainer—a transformation and refactoring frame-
work for C and C++ languages based on the Clang infrastructure. Its design is
built on two main principles: ease-of-use and the extensive validation of trans-
formation rules. A substantial part of this article includes describing its design
and implementation, accompanied with examples and results.

Our results showed that nobrainer already supports real-world transfor-
mation examples and can be successfully applied to large C/C++ projects in
continuous integration environments. We also highlighted the current limitations
of the tool and some directions for later improvements. In the future, we plan
to enhance the usability of nobrainer and integrate with other developer tools.

Acknowledgments. This work resulted from a joint project with Samsung Research.
The authors of this paper are grateful to the colleagues from Samsung for their valuable
ideas and feedback.

References

1. Clang documentation: Matching the clang AST. https://clang.llvm.org/docs/
LibASTMatchers.html

2. Brown, N., et al.: Managing technical debt in software-reliant systems. In: Pro-
ceedings of the FSE/SDP Workshop on Future of Software Engineering Research,
FoSER 2010, pp. 47–52. ACM, New York (2010). https://doi.org/10.1145/1882362.
1882373, http://doi.acm.org/10.1145/1882362.1882373

3. Cunningham, W.: The WyCash portfolio management system. SIGPLAN OOPS
Mess. 4(2), 29–30 (1992). https://doi.org/10.1145/157710.157715. http://doi.acm.
org/10.1145/157710.157715

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, Boston (1999)

5. Waddington, D.G., Yao, B.: High-fidelity C/C++ code transformation. Electron.
Notes Theoret. Comput. Sci. 141, 35–56 (2007). https://doi.org/10.1016/j.entcs.
2005.04.037

6. Graf, E., Zgraggen, G., Sommerlad, P.: Refactoring support for the C++ develop-
ment tooling. In: OOPSLA Companion (2007)

7. Lahoda, J., Bečička, J., Ruijs, R.B.: Custom declarative refactoring in NetBeans:
tool demonstration. In: Proceedings of the Fifth Workshop on Refactoring Tools,
WRT 2012, pp. 63–64. ACM, New York (2012). https://doi.org/10.1145/2328876.
2328886, http://doi.acm.org/10.1145/2328876.2328886

https://clang.llvm.org/docs/LibASTMatchers.html
https://clang.llvm.org/docs/LibASTMatchers.html
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/1882362.1882373
http://doi.acm.org/10.1145/1882362.1882373
https://doi.org/10.1145/157710.157715
http://doi.acm.org/10.1145/157710.157715
http://doi.acm.org/10.1145/157710.157715
https://doi.org/10.1016/j.entcs.2005.04.037
https://doi.org/10.1016/j.entcs.2005.04.037
https://doi.org/10.1145/2328876.2328886
https://doi.org/10.1145/2328876.2328886
http://doi.acm.org/10.1145/2328876.2328886

Nobrainer: An Example-Driven Framework for C/C++ Code 155

8. Meyerovich, L.A., Rabkin, A.S.: Empirical analysis of programming language
adoption. SIGPLAN Not. 48(10), 1–18 (2013). https://doi.org/10.1145/2544173.
2509515. http://doi.acm.org/10.1145/2544173.2509515

9. Murphy-Hill, E.R., Parnin, C., Black, A.P.: How we refactor, and how we know
it. In: ICSE, pp. 287–297. IEEE (2009). http://dblp.uni-trier.de/db/conf/icse/
icse2009.html#Murphy-HillPB09

10. Pinto, G.H., Kamei, F.: What programmers say about refactoring tools?: An empir-
ical investigation of stack overflow. In: Proceedings of the 2013 ACM Workshop on
Workshop on Refactoring Tools. WRT 2013, pp. 33–36. ACM, New York (2013).
https://doi.org/10.1145/2541348.2541357, http://doi.acm.org/10.1145/2541348.2
541357

11. Ray, B., Posnett, D., Devanbu, P., Filkov, V.: A large-scale study of program-
ming languages and code quality in github. Commun. ACM 60(10), 91–100 (2017).
https://doi.org/10.1145/3126905. http://doi.acm.org/10.1145/3126905

12. Tracz, W.: Refactoring for software design smells: managing technical debt by
Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. ACM SIG-
SOFT Softw. Eng. Notes 40(6), 36 (2015). http://dblp.uni-trier.de/db/journals/
sigsoft/sigsoft40.html#Tracz15a

13. Wasserman, L.: Scalable, example-based refactorings with refaster. In: Proceedings
of the 2013 ACM Workshop on Workshop on Refactoring Tools, pp. 25–28. ACM
(2013)

14. Wright, H., Jasper, D., Klimek, M., Carruth, C., Wan, Z.: Large-scale automated
refactoring using ClangMR. In: Proceedings of the 29th International Conference
on Software Maintenance (2013)

https://doi.org/10.1145/2544173.2509515
https://doi.org/10.1145/2544173.2509515
http://doi.acm.org/10.1145/2544173.2509515
http://dblp.uni-trier.de/db/conf/icse/icse2009.html#Murphy-HillPB09
http://dblp.uni-trier.de/db/conf/icse/icse2009.html#Murphy-HillPB09
https://doi.org/10.1145/2541348.2541357
http://doi.acm.org/10.1145/2541348.2541357
http://doi.acm.org/10.1145/2541348.2541357
https://doi.org/10.1145/3126905
http://doi.acm.org/10.1145/3126905
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft40.html#Tracz15a
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft40.html#Tracz15a

	Nobrainer: An Example-Driven Framework for C/C++ Code Transformations
	1 Introduction
	2 Related Work
	3 Design
	4 Detailed Description
	4.1 Template Collection
	4.2 Template Validation
	4.3 Rule Generation
	4.4 Rule Processing
	4.5 Rule Application
	4.6 Replacement Generation
	4.7 Type Parameters

	5 Results
	5.1 Testing
	5.2 Examples
	5.3 Performance

	6 Limitations and Future Work
	7 Conclusion
	References

