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Abstract. The theorem prover KeYmaera allows (1) to describe Cyber-
Physical Systems (CPSs) in terms of a Hybrid Program (HP), (2) to
specify properties for the defined system, and (3) to formally verify these
properties using a tailored logic called Differential Dynamic Logic (DDL).

The syntax of Hybrid Programs is rather poor and covers only the
most basic program statements, such as assignment, test, sequential exe-
cution, and iteration. The decision to keep the syntax of HPs very sim-
ple has different consequences: An advantage is that also the verification
calculus can be kept relatively simple. On the downside we have that
even small programs are hard to understand and that the programmer is
forced to program using a copy-and-paste style, which obviously hampers
maintenance. The most significant drawback, however, is the absence of
modularization and a library concept; making the development and ver-
ification of bigger systems a huge burden.

In this paper, we identify several problems of KeYmaera’s input syn-
tax and illustrate them with examples. To overcome these problems, we
first describe the original syntax in form of a metamodel. Then, we pro-
pose to extend this metamodel with established programming concepts
such as subprogram and abrupt termination. We illustrate our exten-
sions by using a new graphical concrete syntax. Examples from a recent
KeYmaera tutorial serve for our paper as illustration examples.

Keywords: Cyber-Physical System (CPS) · Safety property
verification · Theorem proving · Language design · Domain-Specific
Language (DSL) · Metamodel

1 Motivation

A Cyber-Physical System (CPS) is a system existing in the real world, which
usually consists of both cyber and physical components. The behaviour of a
cyber component is determined by the (computer) program, which is executed
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on this component while the behaviour of a physical component follows laws
from physics, e.g. for torque, acceleration, velocity, etc. An important subset of
CPSs are control systems consisting of sensors, processors, and actuators, whose
correct functioning is of upmost importance and should be assured by formal
verification techniques.

A hybrid system is a formal model of a CPS. To capture the behaviour
of cyber components, the hybrid system needs the notion of programs. The
behaviour of physical components are modelled by law in physics, which are for-
mulated in terms of ordinary differential equations (ODEs). The theorem prover
KeYmaera is able to formally verify properties of hybrid systems formulated in
differential dynamic logic (DDL) [13,18]. In this paper, we analyse DDL as used
by KeYmaera as input format. We point out some obstacles of the chosen input
syntax and make proposals to overcome them.

One of the main problems of the used DDL is, that this single formalism
is used for three different purposes, namely, to (i) describe the system to be
analysed (system description), to (ii) formulate the properties to be hold for the
system (system specification), and to (iii) formulate proofs (system verification).
Note that a proof is a tree of DDL-formulas where each connection between
nodes of the proof tree must be justified by one rule of the used proof calculus.

Thus, the very same DDL formalism serves quite different purposes and there
are some cases, in which it is hard to say, which purpose a given DDL artefact
actually serves. For example, the user of KeYmaera is sometimes forced to refor-
mulate a system description in a non-intuitive way, just to make a property of
this system verifiable. In other words, the property about the system one would
like to prove has a strong influence on the way one describes the system itself!
Note that - ideally - one should be able to formulate the system description
fully independent from the properties one would like to prove - usually later -
about the system. As we illustrate with a model of the very simple bouncing ball
example, this independence is sometimes not possible. This makes the usage of
KeYmaera rather an art than an engineering discipline.

The input syntax for KeYmaera is very rudimentary and forces the user
to describe a system is a Big Blob, since modularization, e.g. by subsystems
or subprograms, is simply syntactically not possible. In our analysis, we identify
also other weaknesses, for example that the correct function of evolutional states
rely on executing the right statement before entering the state or that evolutional
states usually share a high portion of ODEs. Unfortunately, the current syntax
makes it impossible to let an evolutional state ‘inherit’ from an already defined
evolutional state to prevent a copy-paste style in the system description.

In addition to identifying problems of KeYmaera’s input syntax, we also
make proposals to overcome these problems. In order to describe our solutions
at the right level of abstraction, our solution proposal will address the abstract
syntax - which we define in form of a metamodel - instead of the textual concrete
syntax. In order to stress the independence of our solution proposals from the
concrete syntax, we will employ also a graphical syntax, which is close to the
Abstract Syntax Tree (AST).
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2 Background

We first review the logical basis of the prover KeYmaera.

2.1 Dynamic Logic (DL)

The term Dynamic Logic (DL) was coined for the first time by Harel et al. in
[7], which is based on the work of Pratt [16] and Hoare/Floyd [4,8]. A recent
review on the history of Dynamic Logic is given by Pratt in [17].

Dynamic Logic has a long tradition in analysing programs running on a
machine. (First-Order) Dynamic Logic allows for a program α to formulate prop-
erties for the pre- and post-state of the program’s execution. Syntactically, DL
formulas are built on top of arithmetic terms and arithmetic atomic formulas,
such as x < 5 + 3. The set of DL formulas is closed under the logical junc-
tors ∧,∨,→,↔, under the quantifiers ∀ ∃, and under the parametrized modal-
ities [α] (box ), <α> (diamond), where α is a program. A program is syntac-
tically defined as a tree of statements. We have assignment (:=), test (?), skip
(skip1) as atomic statements and nondeterministic choice (∪), sequential compo-
sition (;), and iteration (∗) as composed statements. Furthermore, some derived
statements (known as syntactic sugar) are allowed. For example, the program
if c then s1 else s2 endif is defined as an abbreviation for (?c; s1) ∪ (?¬c; s2).
In the version of DL supported by KeYmaera, all terms (e.g. 3 + 8) including
variables are of type Real, so there is no support for a sophisticated type sys-
tem. For a thorough introduction to Dynamic Logic in syntax and semantics,
the reader is referred to [6].

Semantically, a formula of form φ → [α]ψ claims that program α, when
started in a state in which φ holds, might not terminate or, in case it actually
terminates, will result always in a state, in which ψ holds. The second modality
<> (diamond), which can occur in DL-formulas as well, has a different semantics:
<α> ψ claims that program α terminates and that for at least one post-state
the formula ψ holds (note, that α can behave non-deterministically).

As a concrete example, let us consider the formula

x > 0 → [if x > 0 then x := x − 1 else x := −25 endif ;x := x + 1] x > 0 (1)

The program α within the box modality is the sequential composition (opera-
tor ;) of an if-statement and an assignment (operator :=). The claim, formulated
by (1) about program α reads as follows: Whenever α is started in a state, in
which x > 0 holds, then x > 0 must also hold once α has terminated (note,
that termination of α is not part of the claim). Formula (1) is actually valid,
i.e. under all circumstances the formula is evaluated to true (see [6] for a formal
definition of validity).

It is rather easy to argue informally on the validity of (1): This implication
evaluates only to false, when its premise evaluates to true and its conclusion to

1 Since skip can be simulated by ? true it is not supported by all versions of KeYmaera.
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false. The premise is x > 0. Under this assumption, when executing program
α, the then-branch of the first statement (if-statement) is always taken and
decreases variable x by one. In the second statement, the value of x is again
increased by one, so the value of x in the post-state – let us denote it by xpost –
is xpost = xpre−1 + 1, while xpre denotes the value of variable x in the pre-state.
The conclusion of (1) can thus be reduced to the proof obligation xpre−1 + 1 > 0,
which can never evaluate to false if we assume xpre > 0. Fortunately, we do not
have to rely on informal argumentation for showing the validity of (1) but can
also use the theorem prover KeYmaera, which proves (1) fully automatically.

Please note that the formulas of DL do not make any claim about the exe-
cution time of program α, but only formulate properties on the relationship of
α’s pre- and post-states. You might just think all statements within program α
being executed instantaneously, i.e. their execution does not take any time. This
is an important difference to the extension of DL, called Differential Dynamic
Logic (DDL), we consider next.

2.2 Differential Dynamic Logic (DDL)

DDL [12] is an extension of DL, which means that every DL formula is also a
DDL formula. The same way as DL formulas, a DDL formula usually makes
a claim about a program α. However, since DDL formulas are mainly used to
describe the behaviour of Cyber-Physical Systems, we rather say that program
α encodes the behaviour of the CPS instead of α is executed on a machine, as
we do for programs α of pure DL formulas.

The only difference between DL and DDL is a new kind of statement called
continuous evolution statement (or simply evolution statement), which is allowed
to occur in programs α. When during the execution of α a continuous evolution
statement is reached, then the execution of this statement takes time and the
system will stay in the corresponding evolution state for a while. Note that this
is a new semantic concept of DDL and marks an important difference to pure
DL!

Executing the evolution statement means for the modelled CPS to stay in
the evolution state as long as it wishes (the time to stay is - in general - chosen
non-deterministically). However, the modeller has two possibilities to restrict the
time period the system stays in the evolution state: The first possibility is to add
a so-called domain constraint to the evolution statement, which is a first-order
formula and which is separated from the rest of the statement by & (ampersand).
The domain constraint semantically means that the system cannot stay longer
in the evolution state than the time at which the constraint is evaluated to true.
In other words: at latest when the evaluation of the domain constraint switches
from true to false, the system has to leave the evolution state.

The second possibility to restrict the time period is to have a sequential com-
position of an evolution statement followed by a test statement. Theoretically,
the machine can leave the evolution state at any time, but if the following test
evaluates to false, then this branch of execution is dismissed for the logical anal-
ysis of the system behaviour. Thus, an evolution statement immediately followed
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by a test statement is a general technique to force the system to remain in the
evolution state as long as the test condition is evaluated to false.

Bouncing Ball as a Simple CPS. We illustrate both the usage of an evolution
statement as well as the two mentioned techniques to control the time the system
will stay in the evolution state by the following bouncing ball example:

αBB ≡ ({x′ = v, v′ = −g & x ≥ 0}; ?x = 0; v := −cv)∗ (2)

The behaviour of the bouncing ball is described with the help of a new kind
of variables, called continuous variables. For example, variable x is always a non-
negative number and encodes the ball’s position and variable v encodes velocity,
which can be both positive (going up) or negative (going down). The constant
g is the gravitation acceleration and greater 0. The constant c is the damping
coefficient, a number between 0 and 1.

Fig. 1. Sample trajectory of a bouncing ball (Source: [13, p. 98])

The structure of αBB is that of an iteration (operator *) over a sequence
(operator ;) of an evolution statement (enclosed by the curly braces), followed by
a test (operator ?), followed by an assignment (operator :=). The program αBB

is read as follows: The systems starts in a state with given values for variables
x and v. These values are not specified yet, but later, we will force the start
position x0 to be a positive number while the start velocity v0 is allowed to be
positive, zero, or negative. As long as the system stays in the first evolution
state, the values of x, v will change continuously over time according to physical
laws. Thus, the continuous variables x, v represent rather functions x(t), v(t) over
time t. The relevant physical laws for x, v are expressed by the two differential
equations: x′ = v, v′ = −g.
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The latter means that the velocity decreases constantly over time due to the
gravitational force of the earth. Fortunately, this ODE has a simple polynomial
solution, which facilitates the analysis of the whole system considerably: v(t) =
v0 + −g ∗ t. Analogously, depending on the changing velocity v, the position x
of the bouncing ball changes with x(t) = x0 + v0 ∗ t + −g

2 t2.
The domain constraint x ≥ 0 mentioned in the evolution statement allows

the system to remain in the evolution state only as long as x is non-negative.
Theoretically, the system can leave at any time the evolution state, but the next
statement is the test ?x = 0. Thus, if the system leaves the evolution state with
x > 0, then this computational branch will be discarded. Thus, when verifying
properties of the system we can rely on the system leaving the evolution state
only when x = 0, meaning when the ball touches the ground. The following
assignment v := −cv encodes that the ball goes up again: The negative value
v due to the ball falling down will change instantaneously to a positive value
(multiplication with −c) but the absolute value of v decreases since the ball loses
energy when touching the ground and changing the move direction. Figure 1
shows how the position x of a bouncing ball might change over time (sample
trajectory).

3 Problems in Using KeYmaera’s Input Syntax

Differential Dynamic Logic as introduced above is supported by KeYmaera and
allows to verify formally important properties of technical system as demon-
strated in numerous case studies from different domains, e.g. aircrafts [9,14],
trains [15], and robots [11].

However, the used input syntax to formulate properties in form of DDL
formulas suffers from numerous problems that are described in the following.
The solutions we propose to overcome these problems are discussed in Sect. 4.

(1) Invariant specification is not directly supported in DDL. Besides
describing the behaviour of hybrid systems as done with program αBB for
the bouncing ball, the main purpose of DDL is to specify also properties
of such systems. Typical and in practice very important properties are so-
called safety properties, saying that the system never runs into a ‘bad sit-
uation’. Let’s encode a ‘bad situation’ with ¬ψ. We can show the absence
of ¬ψ by proving that in all reachable system states formula ψ holds, i.e.
ψ is an invariant. If we assume all statements except the evolution state
are executed instantaneously, then showing invariant ψ actually means to
show that ψ holds while the system stays in any of its evolution states.
However, the modality operators provided by DDL allow only to describe
the state after the program has terminated. For example, for the bouncing
ball system αBB defined in (2) we can prove very easily

x = 0 → [αBB ]x = 0 (3)
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Note, however, that x = 0 has not been proven to be an invariant! If we
want to express the interesting invariant, that position x remains all the
time within the interval [0,H], while H encodes the system’s initial position
and if velocity v is initially 0, we have to admit that the formula

H > 0 ∧ v = 0 ∧ x = H ∧ 0 < c ∧ c < 1 → [αBB ]x ≤ H (4)

is provable, but does NOT encode x ≤ H being an invariant because this
formula does not say anything about x and H while the system stays in the
evolution state {x′ = v, v′ = −g & x ≥ 0}, which is part of αBB . In order
to prove x ≤ H being an invariant the user is forced to reformulate αBB to

α′
BB ≡ ({x′ = v, v′ = −g & x ≥ 0}; (skip ∪ (?x = 0; v := −cv))∗ (5)

This, however, would be an example for choosing the system description
depending on the property we would like to prove! We consider this as bad
style.

(2) Evolution state definition cannot be reused. Evolution statements
have to contain all ODEs that should hold in the corresponding states. If
a program contains multiple evolution statements, then all ODEs usually
have to be copied for all these statements, since an ODE normally encodes a
physical law that holds in each of the evolution states. Currently, the syntax
of KeYmaera does not allow to define all ODEs once and then to reuse this
definition for all occurring evolution statements. This lack of reuse results
in a copy-and-paste style for describing a system. As an example, we refer
to Example 3a from the KeYmaera-tutorial [18], page 10, Eq. (20): {p′ =
v, v′ = −a & v ≥ 0 ∧ p + v2

2B ≤ S} ∪ {p′ = v, v′ = −a & v ≥ 0 ∧ p + v2

2B ≥ S}
Here, the definition of the two evolution states (in curly braces) are very
similar and defined by copy-and-paste.

(3) Evolution state definition is not encapsulated. In the KeYmaera-
tutorials [12,18], there is a frequently applied pattern to ensure that the
system stays in an evolution state ev ≡ {. . . & . . .} for at most time ε. This
is achieved by extending the definition of ev to ev′ ≡ {. . . , t′ = 1& . . .∧t ≤ ε}
while t is a fresh continuous variable. Together with the ODE t′ = 1, the
additional domain constraint t ≤ ε forces the system to leave ev′ at latest
after time ε has elapsed. However, this refined definition of ev works only,
if the value of t has been set beforehand to 0. In order to achieve this, the
statement ev is usually substituted by t := 0; ev′. While this pattern works
basically in practice, the definition of ev′ is not encapsulated and prevents
compositionality of programs.

(4) Missing notion of subprogram (or function call in general). Once
the examples in the KeYmaera-tutorials [12,18] become a little bit more
complicate, they are given in a composed form, e.g. Example 3a from [18,
p. 10]: init → [(ctrl ; plant)∗]req where init ≡ . . ., ctrl ≡ . . ., plant ≡ . . .,
req ≡ . . . Presenting a DDL problem in such a composed form highly
improves readability. However, the usage of such a composed notation is
impossible for the input file of KeYmaera. While one could imagine to
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introduce new relational symbols init , req and to constrain their interpre-
tation by subformulas init ↔ . . ., req ↔ . . ., it is currently impossible to
define subprograms ctrl and plant and to compose the resulting program
from these subprograms.

4 A Metamodel-Based Approach to Solve Identified
Problems

The problems identified above can be overcome by incorporating language con-
cepts from object-oriented programming languages and statecharts into the input
syntax of KeYmaera. In order to discuss the incorporated new language concepts
at the right level of abstraction, we formulate our proposal in form of a changed
metamodel for KeYmaera’s input syntax. As a starting point, we present the
metamodel of the current syntax.

4.1 Metamodel of Current KeYmaera Syntax

Metamodeling [5] is a widely adopted technique to specify the abstract syntax
of modelling and programming languages. One well-known language definition
is that of the Unified Modeling Language (UML) [19].

SkipTest

BinaryOpUnaryOp

BinaryExpUnaryExpLiteral

ODE

«abstract»
Exp

Var

EvolutionChoiceIterationSequenceAssignment

«abstract»
Statement

 fml

 0..1  constraint 

2

2..*2..*

rhs

lhs

*

rhs

lhs

Fig. 2. Metamodel of KeYmaera’s input syntax

Figure 2 shows a sketch of the metamodel of KeYmaera’s current input syn-
tax with focus on statements within a program. All meta-associations with
multiplicity greater than 1 are assumed to be ordered. If the multiplicity on
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a meta-association is missing, then 1 is the default value. The metaclass Exp
represents expressions of both type Real (e.g. 5 + x) and of type Boolean (e.g.
x < 10).

A concrete program α for KeYmaera can be represented by an instance of
the metamodel. This instance is equivalent to the result obtained by parsing this
program, i.e. the abstract syntax tree (AST).

:Assignment
(v:=-cv)

:Exp
(x=0)

:Test

:Exp
(x>=0)

:ODE
(v'=-g)

:ODE
(x'=v)

:Evolution

:Sequence

:Iteration

:Assignment

:Test

:Evolution

:Sequence

:Assignment

:Test

:Evolution

:Sequence

:Iteration

Fig. 3. Instance of the metamodel (left) and control-flow inspired graphical syntax
(right) for bouncing ball program (αBB )

The left part of Fig. 3 shows the metamodel instance for the bouncing ball
program αBB ≡ ({x′ = v, v′ = −g & x ≥ 0}; ?x = 0; v := −cv)∗ as defined
in (2). In the right part we see an AST-aligned graphical representation of the
same program: Each kind of statement is represented by a block with input and
output pins. The control flow is visualized by directed edges connecting two pins.
The pre-/post-states of the program execution are represented by the symbol for
start/final state known from UML’s statemachine [19].

4.2 Solutions for Identified Problems

Based of the graphical notation introduced above we discuss now solutions for
the problems listed in Sect. 3.

(1) Invariant specification is not directly supported in DDL. As
described in Sect. 3, the modal operator [α] refers always to the post-state
represented by the final state node in Fig. 3, right part. However, for check-
ing an invariant we need a reference to the state after each evolution state-
ment has been finished. This moment in the execution is represented by the
output-pin of the Evolution state. What is needed in the program seman-
tics is a direct edge from each output-pin of each Evolution state to the
final state, as shown in Fig. 4 by the green edge. This concept is known as
abrupt termination.
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:Assignment:Test:Evolution

:Sequence

:Assignment:Test:Evolution

:Sequence

:Iteration

Fig. 4. Solution for invariant specification problem

Note that abrupt termination could be realized without any change of the
input syntax of KeYmaera since it requires merely a changed control-flow
for the existing statements.

(2) Evolution state definition cannot be reused. Often, the very same
ODEs and constraints occur again and again in multiple evolution state-
ments, which hampers readability. To prevent this, our proposal is to intro-
duce the declaration of named evolution statements which can be referenced
by other evolution statement to - for example - inherit from them ODEs
and constraints. The relevant change of the metamodel is shown in Fig. 5.

ODE

«abstract»
Exp

Var

EvolutionEvolutionDecl
name:String

«abstract»
Statement

0..1 parent

 0..1  constraint 

rhs
lhs

*

Fig. 5. Solution for evolution state reuse problem

One problem still to be discussed is, whether the declaration of an evolution
state can occur at an arbitrary location in the program or should be rather
done prior to the program as a global declaration. This question refers to the
important issue of which scope the identifier introduced by the declaration
(see metaattribute name) should actually have. Since resolving the scope of
an identifier is rather a problem when parsing a program, this issue is out
of scope for this paper.

(3) Evolution state definition is not encapsulated. As demonstrated in
the problem definition, an evolution statement sometimes works only as
intended when a variable has been set beforehand to the right value. Prac-
tically this means, the evolution state EV is always prepended by an assign-
ment ASGN, so (ASGN ; EV ) has to occur always for correctness. In order
to get rid of dependencies of evolution state to assignments from the context
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(which prevents a simple reuse of EV within a different context), we pro-
pose to extend the evolution state with optional additional statements that
are always executed when entering or leaving the state. This state extension
is well-known as entry-/exit-actions from UML statemachines. The relevant
change of the metamodel is shown in Fig. 6.

ODE

«abstract»
Exp

Var

Evolution

«abstract»
Statement

0..1 entry
0..1 exit

 0..1  constraint 

rhs
lhs

*

Fig. 6. Solution for evolution state encapsulation problem

(4) Missing notion of subprogram. One of the most basic concepts in pro-
gramming is the possibility to encapsulate (a block of) statements with
a given name and to reuse these statements at various locations of the
program. This concept is usually called subprogram, procedure, or method ;
depending whether parameters are used or not. In general, this is a very old,
proven and well understood concept, so that we introduce only the most
simple variant in our solution proposal here (cmp. Fig. 7).

SubprogramCallSubprogramDecl
name:String

«abstract»
Statement

Fig. 7. Solution for missing subprogram problem

5 Towards the Realization of Solution Proposals

In this section we review possible realization options for the proposed solution.
Finally, we give a recommendation for one realization option.

5.1 Realization by Extending the Prover KeYmaera

The prover KeYmaera mainly consists of a parser for the input syntax and
a calculus in form of proof rules, which even can be changed by the user. In
addition, there are some technical components such as (i) a prover engine for
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applying proof rules to create a formal proof, (ii) adapters to incorporate external
proof systems such as Z3 or Mathematica, and (iii) a GUI to control the proof
editing process. However, all these technical components are out of scope for this
paper.

For our proposals it is worth to distinguish pure syntactic changes from those,
that have an impact on the calculus used by KeYmaera. To the latter belong
the support of abrupt termination (problem (1)) and the possibility to invoke
subprograms (problem (4)). These changes would require to considerably extend
KeYmaera’s calculus. While such an extension requires intimate knowledge of
the underlying proof engine, it is nevertheless possible, as the prover KeY [1]2

demonstrates. KeY is an interactive verification tool for programs implemented
in the language Java and its calculus covers all the subtleties of a real world
programming language, including function calls, call stack, variable scope, abrupt
termination by throwing an exception, heap analysis, etc.

Pure syntactic changes among our proposals, i.e. addressing problems (2),
(3), could be realized in KeYmaera just by extending the parser. Note that
the creation of an alternative concrete input syntax is also topic of the ongoing
project called Sphinx [10] carried out by the authors of KeYmaera. Sphinx aims
to add a graphical frontend to the prover and will allow the user to specify a
program in a pure graphical syntax (similar to our graphical notation proposed
in Fig. 3, right part).

The general problem with any deep change of the prover KeYmaera is the
technical knowledge it requires. Furthermore, there are good reasons to keep a
version of the tool with the original syntax due to its simplicity, what makes it
much simpler to use KeYmaera for teaching than, for example, its predecessor
KeY. However, a new version of KeYmaera with deep changes is hard to maintain
as the original KeYmaera might evolve in future. For these reasons, deep changes
can hardly be done by others than the original authors of KeYmaera themselves.

5.2 Realization by Creating a Frontend-DSL

An alternative and flexible approach is the development of a frontend-DSL to
incorporate the new language concepts introduced in Sect. 4.2. The main idea is
to develop a new Domain-Specific Language according to the given metamodel.
Note that the metamodel covers merely the abstract syntax and keeps some
flexibility for the concrete syntax. Modern frameworks for defining DSLs such as
Xtext and Sirius even allow to have for one DSL multiple representations (i.e.
concrete syntaxes) supported by corresponding editors, e.g. a textual syntax and
a graphical syntax. Figure 8 shows the general architecture of such a tool. Note
that the new tool will allow the user to interact synchronously with both a textual
and a graphical editor to create a model. However, the new models cannot be
simply transformed to input files for the original KeYmaera, because the new
syntax supports some semantically new concepts such as abrupt termination or
subprogram invocation stack. It is the task of the ProofManagement component

2 Historically, the prover KeY is the predecessor of KeYmaera.
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Proof Management

User
Graphical Editor

Textual Editor

Tools of Frontend DSL

Proof Management

Graphical Editor

Textual Editor

Tools of Frontend DSL

Tailored KeYmaera

KeYmaera
(Original)

verificationBackend

«syncronizes»
«interacts»

Fig. 8. Architecture of solution using a frontend-DSL

to split tasks - for instance to prove an invariant - into smaller proof obligations,
which can be formulated as formulas of differential dynamic logic (DDL) and
to pass these obligations to the original KeYmaera tool as verification backend.
How an invariant task can be split into smaller proof obligations is demonstrated
based on a concrete example in [2].

6 Related Work

The definition of DSLs can be done with numerous technologies, e.g. Xtext,
Spoofax, Metaedit, MPS. For realizing a DSL with both a textual and a graphical
concrete syntax, the combination Xtext and Sirius is very attractive.

Enriching the prover KeYmaera with a graphical syntax for DDL programs
is done in the project Sphinx [10]. The architecture of this tool is pretty similar
to our proposal in Fig. 8, but the focus is - in difference to our approach - not
the improvement of readability and modularization by making the input syntax
richer, but to enable the user to graphically construct a program for DDL.

While enriching a plain, imperative language with concepts from object-
oriented programming has been done many times in computing science’s history
(take the transition from C to C++ or from Modula to Oberon as examples),
it is still considered as a challenge. There is an excellent tutorial by Bettini
in [3] on how to incorporate into a plain sequential language based on simple
expressions additional concepts from object-oriented programming (e.g. class,
attribute, method, visibility). The resulting language in this tutorial is called
SmallJava and illustrates almost all technical difficulties when realizing a Java-
like programming language in form of a DSL.

7 Conclusion and Future Work

The syntax of programs of differential dynamic logic as supported by the theorem
prover KeYmaera have been kept very simple and low level. An advantage of this
decision is that also the calculus for proving such programs being correct could be
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kept relatively simple and that proofs can be constructed and understood easily.
At the downside we have that - once the examples become a little bit more
complicate - programs are hard to read, poorly structured, and are impossible
to reuse within a different context.

In this paper, we identified four general problems when applying the current
program syntax in practice. Furthermore, we made proposals to overcome the
identified problems by incorporating proven language concepts from program-
ming languages and from UML’s statemachines into KeYmaera’s input syntax.
These concepts have the potential to make programs scalable and easier to be
understood since they foster readability and modularization.

Our proposals have been formulated in form of a changed metamodel repre-
senting the abstract syntax of programs. The chosen form for formulating the
proposal has the advantage of being very precise while leaving it open, how
the changes should actually be realized in a given concrete syntax. Currently,
the implementation of a frontend DSL being the main constituent of a Tailored
KeYmaera tool set is under construction, but not finished yet.

References
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