
Nikolaj Bjørner
Irina Virbitskaite
Andrei Voronkov (Eds.)

LN
CS

 1
19

64

12th International Andrei P. Ershov Informatics Conference, PSI 2019
Novosibirsk, Russia, July 2–5, 2019
Revised Selected Papers

Perspectives of
System Informatics

Lecture Notes in Computer Science 11964

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Nikolaj Bjørner • Irina Virbitskaite •

Andrei Voronkov (Eds.)

Perspectives of
System Informatics
12th International Andrei P. Ershov Informatics Conference, PSI 2019
Novosibirsk, Russia, July 2–5, 2019
Revised Selected Papers

123

Editors
Nikolaj Bjørner
Microsoft Research
Redmond, WA, USA

Irina Virbitskaite
AP Ershov Institute of Informatics Systems
Novosibirsk, Russia

Andrei Voronkov
School of Computer Science
University of Manchester
Manchester, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-37486-0 ISBN 978-3-030-37487-7 (eBook)
https://doi.org/10.1007/978-3-030-37487-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-37487-7

Preface

PSI is the premier international forum in Russia for academic and industrial
researchers, developers, and users working on topics relating to computer, software,
and information sciences. The conference serves to bridge the gaps between different
communities whose research areas are covered by, but not limited to, foundations of
program and system development and analysis, programming methodology and soft-
ware engineering, and information technologies.

The previous 11 PSI conferences were held in 1991, 1996, 1999, 2001, 2003, 2006,
2009, 2011, 2014, 2015, and 2017, respectively, and proved to be significant inter-
national events. Traditionally, PSI offers a program of keynote lectures, presentations
of contributed papers and workshops, complemented by a social program reflecting the
amazing diversity of Russian culture and history.

The PSI conference series is dedicated to the memory of a pioneer in theoretical and
system programming research, academician Andrei Petrovich Ershov (1931–1988).
Andrei Ershov graduated from the Moscow State University in 1954. He began his
scientific career under the guidance of Professor Lyapunov – the supervisor of his PhD
thesis. A.P. Ershov worked at the Institute of Precise Mechanics and Computing
Machnery, and later headed the Theoretical Programming Department at the Com-
puting Center of the USSR Academy of Sciences in Moscow. In 1958 the department
was reorganized into the Institute of Mathematics of Siberian Branch of the USSR
Academy of Sciences, and by the initiative of the academician S.L. Sobolev Ershov,
A.P. Ershov was appointed the head of this department, which later became part of the
Computing Center in Novosibirsk Akademgorodok. The first significant project of the
department was aimed at the development of the ALPHA system, an optimizing
compiler for an extension of Algol 60 implemented on a Soviet computer M-20. Later
the researchers of the department created the Algibr, Epsilon, Sigma, and Alpha-6
programming systems for the BESM-6 computers. The list of the achievements also
includes the first Soviet time-sharing system AIST-0, the multilanguage system BETA,
research projects in artificial intelligence and parallel programming, integrated tools for
text processing and publishing, and many more. A.P. Ershov was a leader and par-
ticipant of these projects. In 1974 he was nominated as a Distinguished Fellow of the
British Computer Society. In 1981 he received the Silver Core Award for services
rendered to IFIP. Andrei Ershov’s brilliant speeches were always the focus of public
attention. Especially notable was his lecture on “Aesthetic and Human Factor in
Programming” presented at the AFIPS Spring Joint Computer Conference in 1972.

This edition of the conference attracted 70 submissions from 15 countries. We wish
to thank all their authors for their interest in PSI 2019. Each submission was reviewed
by three experts, at least two of them from the same or closely related discipline as the
authors. The reviewers generally provided high quality assessment of the papers and
often gave extensive comments to the authors for the possible improvement of the
contributions. As a result, the Program Committee selected nine high-quality papers as

regular talks, nine papers as short talks, three papers as system and experimental talks,
and eight poster presers, for presentation at the conference. A range of hot topics in
computer science and informatics are covered by five keynote talks given by prominent
computer scientists from various countries.

We are glad to express our gratitude to all the persons and organizations who
contributed to the conference: the authors of all the papers for their effort in producing
the materials included here; the sponsors for their moral, financial, and organizational
support; the Steering Committee members for their coordination of the conference, the
Program Committee members and the reviewers who did their best to review and select
the papers; and the members of the Organizing Committee for their contribution to the
success of this event and its great cultural program.

The Program Committee work was done using the EasyChair conference manage-
ment system.

October 2019 Nikolaj Bjørner
Irina Virbitskaite
Andrei Voronkov

vi Preface

Organization

Program Committee

Farhad Arbab CWI and Leiden University, The Netherlands
David Aspinall The University of Edinburgh, UK
Marcello Bersani Politecnico di Milano, Italy
Leopoldo Bertossi Universidad Adolfo Ibáñez, Chile,

and RelationalAI Inc., USA
Nikolaj Bjørner Microsoft, USA
Andrea Cali University of London, Birkbeck College, UK
Marsha Chechik University of Toronto, Canada
Volker Diekert University of Stuttgart, Germany
Salvatore Distefano University of Messina, Italy
Nicola Dragoni Technical University of Denmark, Denmark
Schahram Dustdar Vienna University of Technology, Austria
Dieter Fensel University of Innsbruck, Austria
Carlo Furia Università della Svizzera Italiana, Italy
Valentin Goranko Stockholm University, Sweden
Sergei Gorlatch University of Münster, Germany
Damas Gruska Comenius University, Slovakia
Arie Gurfinkel University of Waterloo, Canada
Konstantin Korovin The University of Manchester, UK
Maciej Koutny Newcastle University, UK
Laura Kovacs Vienna University of Technology, Austria
Manuel Mazzara Innopolis University, Russia
Klaus Meer BTU Cottbus-Senftenberg, Germany
Torben Ægidius Mogensen DIKU, Denmark
Peter Mosses Delft University of Technology, The Netherlands
Jose R. Parama Universidade da Coruña, Spain
Gennady Pekhimenko Carnegie Mellon University, USA
Wojciech Penczek Institute of Computer Science of Polish Academy

of Sciences, Poland
Alexander K. Petrenko Ivannikov Institute for System Programming,

Russian Academy of Sciences, Russia
Alberto Pettorossi Università di Roma Tor Vergata, Italy
Qiang Qu Shenzhen Institutes of Advanced Technology, China
Wolfgang Reisig Humboldt-Universitaet zu Berlin, Germany
Andrei Sabelfeld Chalmers University of Technology, Sweden
Davide Sangiorgi University of Bologna, Italy
Cristina Seceleanu Mälardalen University, Sweden
Natalia Sidorova Technische Universiteit Eindhoven, The Netherlands

Giancarlo Succi Innopolis University, Russia
Mark Trakhtenbrot Holon Institute of Technology, Israel
Hans van Ditmarsch LORIA, CNRS, and University of Lorraine, France
Enrique Herrera Viedma University of Granada, Spain
Irina Virbitskaite A.P. Ershov Institute of Informatics Systems, Russia
Andrei Voronkov The University of Manchester, UK
Matthias Weidlich Humboldt-Universität zu Berlin, Germany

Additional Reviewers

Angele, Kevin
Beecks, Christian
Blanck, Jens
De Masellis, Riccardo
Di Iorio, Angelo
Enoiu, Eduard Paul
Fey, Florian
Huaman, Elwin
Jaroszewicz, Szymon
Khazeev, Mansur
Knapik, Michał
Kumar, Vivek

Kunnappilly, Ashalatha
Kuznetsov, Sergei O.
Mahmud, Nesredin
Panasiuk, Oleksandra
Robillard, Simon
Silva-Coira, Fernando
Şimşek, Umutcan
Sourdis, Ioannis
Spina, Cinzia Incoronata
Teisseyre, Paweł
Tomak, Juri
Zubair, Adam

viii Organization

Abstracts

Towards Knowledge Graph Based
Representation, Augmentation

and Exploration of Scholarly Communication

Sören Auer

Leibniz Information Centre for Science and Technology and University Library,
Germany

Abstract. Despite an improved digital access to scientific publications in the last
decades, the fundamental principles of scholarly communication remain
unchanged and continue to be largely document-based. The document-oriented
workflows in science have reached the limits of adequacy as highlighted by
recent discussions on the increasing proliferation of scientific literature, the
deficiency of peer-review and the reproducibility crisis. We need to represent,
analyse, augment and exploit scholarly communication in a knowledge-based
way by expressing and linking scientific contributions and related artefacts
through semantically rich, interlinked knowledge graphs. This should be based
on deep semantic representation of scientific contributions, their manual,
crowd-sourced and automatic augmentation and finally the intuitive exploration
and interaction employing question answering on the resulting scientific
knowledge base. We need to synergistically combine automated extraction and
augmentation techniques, with large-scale collaboration to reach an unprece-
dented level of knowledge graph breadth and depth. As a result,
knowledge-based information flows can facilitate completely new ways of
search and exploration. The efficiency and effectiveness of scholarly commu-
nication will significant increase, since ambiguities are reduced, reproducibility
is facilitated, redundancy is avoided, provenance and contributions can be better
traced and the interconnections of research contributions are made more explicit
and transparent. In this talk we will present first steps in this direction in the
context of our Open Research Knowledge Graph initiative and the Science-
GRAPH project.

On Termination of Probabilistic Programs

Joost-Pieter Katoen

Aachen University, Germany

Abstract. Program termination is a key question in program verification. This
talk considers the termination of probabilistic programs, programs that can
describe randomised algorithms and more recently received attention in machine
learning. Termination of probabilistic programs has some unexpected effects.
Such programs may diverge with zero probability; they almost-surely terminate
(AST). Running two AST-programs in sequence that both have a finite expected
termination time – so-called positive AST – may yield an AST-program with an
infinite termination time (in expectation). Thus positive AST is not composi-
tional with respect to sequential program composition. This talk discusses that
proving positive AST (and AST) is harder than the halting problem, shows a
powerful proof rule for deciding AST, and sketches a Dijkstra-like weakest
precondition calculus for proving positive AST in a fully compositional manner.

Safety Verification for Deep Neural Networks
with Provable Guarantees

Marta Kwiatkowska

University of Oxford, UK

Abstract. Deep neural networks have achieved impressive experimental results
in image classification, but can surprisingly be unstable with respect to adver-
sarial perturbations, that is, minimal changes to the input image that cause the
network to misclassify it. With potential applications including perception
modules and end-to-end controllers for self-driving cars, this raises concerns
about their safety. This lecture will describe progress with developing automated
verification and testing techniques for deep neural networks to ensure safety and
security of their classification decisions with respect to input manipulations. The
techniques exploit Lipschitz continuity of the networks and aim to approximate,
for a given set of inputs, the reachable set of network outputs in terms of lower
and upper bounds, in anytime manner, with provable guarantees. We develop
novel algorithms based on feature-guided search, games and global optimisa-
tion, and evaluate them on state-of-the-art networks. We also develop founda-
tions for probabilistic safety verification for Gaussian processes, with
application to neural networks.
The lecture will be based on the following publications:

1. X. Huang, M. Kwiatkowska, S. Wang and M. Wu, Safety Verification of
Deep Neural Networks. In Proc. 29th International Conference on Computer
Aided Verification (CAV), pages 3–29, LNCS, Springer, 2017.

2. W. Ruan, X. Huang, and M. Kwiatkowska. Reachability Analysis of Deep
Neural Networks with Provable Guarantees. In Proc. 27th International Joint
Conference on Artificial Intelligence (IJCAI’18), pages 2651–2659, 2018.

3. M. Wicker, X. Huang, and M. Kwiatkowska. Feature-Guided Black-Box
Safety Testing of Deep Neural Networks. In Proc. 24th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2018), pages 408–426. Springer, 2018.

4. M. Wu, M. Wicker, W. Ruan, X. Huang and M. Kwiatkowska.
A Game-Based Approximate Verification of Deep Neural Networks with
Provable Guarantees. Accepted to Theoretical Computer Science subject to
revisions. CoRR abs/1807.03571 (2018)

5. L. Cardelli, M. Kwiatkowska, L. Laurenti, A. Patane. Robustness Guarantees
for Bayesian Inference with Gaussian Processes. In Proc. AAAI 2019. To
appear, 2019. CoRR abs/1809.06452 (2018)

https://dblp.uni-trier.de/db/journals/corr/corr1809.html

Automated-Reasoning Revolution:
From Theory to Practice and Back

Moshe Vardi

Rice University, USA

Abstract. For the past 40 years computer scientists generally believed that
NP-complete problems are intractable. In particular, Boolean satisfiability
(SAT), as a paradigmatic automated-reasoning problem, has been considered to
be intractable. Over the past 20 years, however, there has been a quiet, but
dramatic, revolution, and very large SAT instances are now being solved rou-
tinely as part of software and hardware design. In this talk I will review this
amazing development and show how automated reasoning is now an industrial
reality.
I will then describe how we can leverage SAT solving to accomplish other

automated-reasoning tasks. Sampling uniformly at random satisfying truth
assignments of a given Boolean formula or counting the number of such
assignments are both fundamental computational problems in computer science
with applications in software testing, software synthesis, machine learning,
personalized learning, and more. While the theory of these problems has been
thoroughly investigated since the 1980s, approximation algorithms developed
by theoreticians do not scale up to industrial-sized instances. Algorithms used
by the industry offer better scalability, but give up certain correctness guarantees
to achieve scalability. We describe a novel approach, based on universal hashing
and Satisfiability Modulo Theory, that scales to formulas with hundreds of
thousands of variables without giving up correctness guarantees.

The Power of Symbolic Automata
and Transducers

Margus Veanes

Microsoft Research, Redmond, USA

Abstract. Symbolic automata and transducers extend finite automata and
transducers by allowing transitions to carry predicates and functions over rich
alphabet theories, such as linear arithmetic. Therefore, these models extend their
classic counterparts to operate over infinite alphabets, such as the set of rational
numbers. Due to their expressiveness, symbolic automata and transducers have
been used to verify functional programs operating over lists and trees, to prove
the correctness of complex implementations of BASE64 and UTF encoders, and
to expose data parallelism in computations that may otherwise seem inherently
sequential. In this talk, I give an overview of what is currently known about
symbolic automata and transducers as well as their variants. We discuss what
makes these models different from their finite-alphabet counterparts, what kind
of applications symbolic models can enable, and what challenges arise when
reasoning about these formalisms. Finally, I present a list of open problems and
research directions that relate to both the theory and practice of symbolic
automata and transducers.

Contents

Rapid Instruction Decoding for IA-32 . 1
Yauhen Klimiankou

Case-Based Genetic Optimization of Web User Interfaces 10
Maxim Bakaev and Vladimir Khvorostov

Inter-country Competition and Collaboration in the miRNA Science Field . . . 26
Artemiy Firsov and Igor Titov

Archival Information Systems: New Opportunities for Historians 41
Irina Krayneva and Sergey Troshkov

Two-Step Deductive Verification of Control Software Using Reflex 50
Igor Anureev, Natalia Garanina, Tatiana Liakh, Andrei Rozov,
Vladimir Zyubin, and Sergei Gorlatch

Distributed Representation of n-gram Statistics for Boosting
Self-organizing Maps with Hyperdimensional Computing. 64

Denis Kleyko, Evgeny Osipov, Daswin De Silva, Urban Wiklund,
Valeriy Vyatkin, and Damminda Alahakoon

Parallel Factorization of Boolean Polynomials. 80
Vadiraj Kulkarni, Pavel Emelyanov, Denis Ponomaryov,
Madhava Krishna, Soumyendu Raha, and S. K. Nandy

Providing the Sharing of Heterogeneous Ontology Design Patterns
in the Development of the Ontologies of Scientific Subject Domains 95

Yury Zagorulko and Olesya Borovikova

The Analytical Object Model as a Base of Heterogeneous Data Integration 106
Anna Korobko and Anna Metus

Prediction of RNA Secondary Structure Based on Optimization
in the Space of Its Descriptors by the Simulated Annealing Algorithm. 116

Nikolay Kobalo, Alexander Kulikov, and Igor Titov

A Metamodel-Based Approach for Adding Modularization to KeYmaera’s
Input Syntax. 125

Thomas Baar

Nobrainer: An Example-Driven Framework for C/C++
Code Transformations . 140

Valeriy Savchenko, Konstantin Sorokin, Georgiy Pankratenko,
Sergey Markov, Alexander Spiridonov, Ilia Alexandrov,
Alexander Volkov, and Kwangwon Sun

A Logical Approach to the Analysis of Aerospace Images 156
Valeriy Kuchuganov, Denis Kasimov, and Aleksandr Kuchuganov

Data Compression Algorithms in Analysis of UI Layouts
Visual Complexity . 167

Maxim Bakaev, Ekaterina Goltsova, Vladimir Khvorostov,
and Olga Razumnikova

Computable Topology for Reliable Computations . 185
Margarita Korovina and Oleg Kudinov

About Leaks of Confidential Data in the Process of Indexing Sites
by Search Crawlers . 199

Sergey Kratov

An Ontology-Based Approach to the Agile Requirements Engineering. 205
Marina Murtazina and Tatiana Avdeenko

Effective Scheduling of Strict Periodic Task Sets with Given Permissible
Periods in RTOS. 214

Sophia A. Zelenova and Sergey V. Zelenov

Verification and Validation of Semantic Annotations 223
Oleksandra Panasiuk, Omar Holzknecht, Umutcan Şimşek, Elias Kärle,
and Dieter Fensel

Towards Automatic Deductive Verification of C Programs
over Linear Arrays . 232

Dmitry Kondratyev, Ilya Maryasov, and Valery Nepomniaschy

Hermes: A Reversible Language for Writing Encryption Algorithms
(Work in Progress) . 243

Torben Ægidius Mogensen

Causality-Based Testing in Time Petri Nets . 252
Elena Bozhenkova, Irina Virbitskaite, and Louchka Popova-Zeugmann

Author Index . 263

xviii Contents

Rapid Instruction Decoding for IA-32

Yauhen Klimiankou(B)

Department of Software for Information Technologies, Belarusian State University
of Informatics and Radioelectronics, 6 P. Brovki Street, 220013 Minsk, Belarus

klimenkov@bsuir.by

Abstract. This paper explains new performance-oriented instruction
decoder for IA-32 ISA. The decoder provides the functionality required
for program analysis and interpretation and exports simple interface for
the conversion of a code byte stream into a stream of generalized instruc-
tion descriptions. We report measurements comparing our decoder with
well-known alternative solutions to demonstrate its superior efficiency.

Keywords: IA-32 · Instructions decoding

1 Introduction

This paper attempts to shed light on an essential topic of design and imple-
mentation of efficient instruction decoders for CISC-like bytecodes. The fact,
that a wide range of applications including simulators [10], emulators [1], virtual
machines [4], tools for static and dynamic analysis of executables [2,5], disas-
semblers, decompilers [6], and others uses instruction decoders emphasizes their
importance. In the case of its usage in the area of simulators, emulators, and vir-
tual machines, the decoder performance becomes one of the primary contributors
to the efficiency of the entire system.

We draw attention to different approaches used for the design and implemen-
tation of software decoders for complex CISC-like ISAs with variable instruction
length. RISC-like ISAs usually assumes fixed instruction length and few easily
parsable and distinguishable instruction formats. That leads to straightforward
decoders both in hardware and in software implementations. Variable instruc-
tion length and variety of instruction formats pump significant complexity into
decoder design and implementation in the case of CISC-like ISAs with respective
degradation of performance.

We have developed a new instruction decoder for IA-32 ISA [9] which is a
canonical example of CISC ISA. The decoder design focuses on applications in
a broad range of domains, including such as virtual machines and emulators for
which instruction decoding efficiency is critical. For example, such projects as
IBM PC compatible emulator Bosch [1] and hypervisor QEMU [4] can use it
as front-end. The proposed decoder is well-abstracted from back-end logic, pro-
vides a clear interface and preserves universal nature in contrast to the original
instruction decoders used in these projects.
c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 1–9, 2019.
https://doi.org/10.1007/978-3-030-37487-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_1

2 Y. Klimiankou

We have explored various techniques and approaches towards optimization
of instructions decoding performance. Our experience has shown that Mealy
machine-based decoder design leads to pure, flexible, extensible, and efficient
implementations. Our decoder demonstrates that there is a significant perfor-
mance improvement which can be obtained by precaching of decoded instruc-
tions not containing the variable part. Such instructions are most frequently
faced instructions in industrial applications which amplifies the power of such
performance trick.

Finally, we have compared the performance of our decoder implementation
for IA-32 ISA with popular and extensively used analogs. We show that our
decoder demonstrates its advantage in instructions decoding performance on
real industrial quality binary program code.

Our key contributions in this work are:

– To present instruction decoder supporting CISC-like bytecode that repro-
duces IA-32 ISA.

– To explore design principles and optimization tricks towards efficient decoding
of CISC-like bytecodes.

– To present the comparison between different instruction decoders for IA-32
ISA.

– To show that it is practical to use the design based on Mealy machine
automata with use of table-guided dispatching, extensive precaching and sim-
plified output interface.

2 IA-32 Instruction Set Architecture

IA-32, also known as i386, is a 32-bit version of the x86 ISA introduced in
1985. Successive generations of microprocessors have extremely complicated x86
ISA over years. “Manual for Intel 8086” (1979) [7] contains only 43 pages about
instruction set. “Programmer’s Reference Manual for Intel 80386” [8] (1986)
already contains 421 pages. Finally, the current edition of “Intel 64 and IA-32
Architectures Software Developers Manual” (2018) [9] has 2214 pages describing
instructions.

Even Intel 8086 was a processor with CISC design and with a set of instruc-
tions of variable length (from 1 byte and up to 4 bytes) and with variable execu-
tion time. With time going, IA-32 became more and more CISC-like. Currently,
it supports a set of more than 200 instructions with lengths varying starting
from 1 byte and ending by 15 bytes.

IA-32 supports multiple addressing modes and complex memory access mech-
anisms. Most of the instructions in that ISA can reference memory directly. In
contrast to IA-32, RISC ISAs commonly rely on an especial pair of instructions
dedicated to data exchange between memory and registers while rest instructions
operate exclusively on registers. Availability of two memory addressing modes
and two functioning modes bring additional complexity to IA-32 architecture.

Rapid Instruction Decoding for IA-32 3

Argument

Simple Complex

RegisterIn-Memory Value (PRFX [BASE])

GPR:1 {AL,CL,DL,BL,AH,CH,DH,BH}

GPR:2 {AX,CX,DX,BX,SP,BP,SI,DI}

GPR:4 {EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI}

FPU:4 {ST,ST(1),ST(2),ST(3),ST(4),ST(5),ST(6),ST(7)}

SR:2 {ES,CS,SS,DS,FS,GS}

Direct In-Memory Value (PRFX [IMM])

Immediate Value (IMM)

In-Memory BASI (PRFX [BASE+INDX*SCALE+IMM])

In-Memory BSI (PRFX [BASE *SCALE+IMM])

In-Memory BAS (PRFX [BASE+INDX*SCALE])

Fig. 1. Instruction argument types supported by the IA-32 instruction set.

2.1 Instructions on IA-32

Instructions in IA-32 consists of three components: opcode, argument types block
and immediate values block, where only the opcode is mandatory part while
other parts are optional. Opcode bytes not only define instruction behavior but
also guides decoder about rest of the instruction bytes.

IA-32 instruction can have from 0 up to 3 either primitive or composite
arguments, as shown on Fig. 1. The second ones either comes with immediate
value or use multiple registers. BASE INDX are one of the registers from the set
GPR:4. PRFX can accompany any memory-referencing argument to specify the
size of the referenced value explicitly. The list of prefixes includes byte, word,
dword, fword, qword, and tword (1, 2, 4, 6, 8 and 10 bytes respectively). SCALE
can take only values 1, 2, 4, and 8. IMM denotes an immediate value.

From a semantics viewpoint, every instruction in IA-32 consists of a com-
mand, three arguments and two immediate values associated with them. First
one is the only mandatory component. All other instruction parts are optional
and can be void. At the same time, only immediate values explicitly referenced
by arguments become meaningful.

2.2 Classification of IA-32 Instructions

In contrast to RISC systems, IA-32 does not have uniform instruction encoding.
Besides that, there are few families of instructions. Each instruction from the
same family follows the same encoding rules. There are four general families of
instructions which are distributed over IA-32 decoding root map as depicted in
Fig. 2.

Tiny Instructions. Tiny instructions represent a set of instructions for which
one or two bytes define entire semantics of instruction. Almost all commands
(instructions which do not have operands) (std), frequently used predicates
(instructions with only one operand) with in-register arguments (inc) and even
some operations (instructions with two operands) with in-register only argu-
ments (for example xchg eax, ecx) fall into that family.

4 Y. Klimiankou

M M M M F F F F F F F F F F F M
T T T T T T T T T S T T T T T T
S S S S T T T T S S T T T T T T
S S S S S S S S S S S S S S S S
M M S T F F F F S T S T T S T T
M M M M S S T T M M M M M M M M
S S S S S S S S S S S S T T T T
T T T T T T M M T T T T T T M M

F F F F S S T T F F F F S S T X
F F F F S S T T F F F F S S T T
F F F F S S T T F F F F S S T T
F F F F S S T T F F F F S S T T
T T T T T T T T T T T T T T T T
T T T T T T T T T T T T T T T T
T T F F T T T T S F S F T T T T
S S S S S S S S S S S S S S S S

0x00

0x10

0x20

0x30

0x40

0x50

0x60

0x70

0x80

0x90

0xA0

0xB0

0xC0

0xD0

0xE0

0xF0

0x0F

0x1F

0x2F

0x3F

0x4F

0x5F

0x6F

0x7F

0x8F

0x9F

0xAF

0xBF

0xCF

0xDF

0xEF

0xFF

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Fig. 2. Map of IA-32 decoding tree roots.

Snap Instructions. Snap instructions represent a family of instructions which
consist of one command byte and one immediate value following it. There are
two subclasses of snap instructions: predicates with an immediate value (push
imm), and operations with one fixed in-register argument and an immediate
value as a second argument (add eax, imm). The first byte of the instruction
defines its entire semantics, while the immediate value defines its operands.

Instructions with Fixed and Mixed Commands. There is the only differ-
ence between these families. In instructions with fixed command, the first byte of
instruction explicitly defines command encoded. Instructions with mixed com-
mands use at least two bytes for command encoding. Both families consist of
encoding trees each leaf of which contains instructions with particular semantics
and encoding.

2.3 Encoding Trees and Instructions Types

IA-32 includes three types of decoding trees:

– Tree of completely manageable register-based operations.
– Tree of semi-manageable register-based operations.
– Tree of operations with an immediate argument.

Each tree contains four leaves on the first level, where first three leaves create
three stable triplets that define a type of encoding subtree. The fourth leaf
is highly-variable and differs between different decoding trees. Nevertheless, all
decoding trees follow the same structure depicted in Fig. 3. All these complexities
introduced by encoding trees are a direct consequence of support of multiple
addressing modes listed above.

Rapid Instruction Decoding for IA-32 5

Key

Root

L0 Root Root Var

00xxxxxx
01xxxxxx

10xxxxxx
11xxxxxx

0

DA

00rrr101

Tail

RR

00rrrlll

Imm4

DirWI
ssiiilll

xxxxx101

1

2

2

2Tail

00rrr100

3

DI

xx100101
bblll101

Imm4

3

3

4

TailWO

01rrrlll

Imm1

01rrr100

WO

xx100xxx

Imm1

WA

ssiiilll

Tail

Imm1

Tail WO

01rrr100
01rrrlll

Tail Imm4

WO WA

xx100xxx
ssiiilll

Imm4 Imm4

DA

Imm4

Fig. 3. Structure of IA-32 encoding tree.

3 General Architecture of EIDIA Decoder

The best approach to the feeding of IA-32 instruction decoder is feeding in byte-
by-byte fashion. In that case, front-end receives control over decoder and on its
input stream of code bytes after processing of each byte of code. Thus, front-end
forms the input byte stream, while there is no intermediate buffering. More-
over, this feeding scheme completely releases decoder from feeding management
and control tasks. At the same time, the byte-by-byte feeding scheme implies
conditional generation of output instruction description. Figure 4 presents the
scheme of the interaction of front-end with EIDIA decoder. As can be seen
on the figure, the decoder can be in three states: decoding complete, decoding
incomplete, and undefined instruction found. When front-end founds decoder in
“Decoding incomplete” state, it routes self through a fast path to next feed-
ing round. Otherwise, it captures and processes decoded instruction (in case
of “decoding complete” state) or handles the exceptional situation (in case of
“undefined instruction” state).

The architecture of interfacing with decoder depicted in Fig. 4 also reflects
the fact that it can be beneficial to consider decoder as a state machine in
general or as Mealy machine automata in particular and design decoder in the
appropriate way. Automata’s input is bytes of code. Internal states of decoding
can be represented as a graph of handlers, while the internal state of decoder,
in that case, will be represented by function pointer defining the current state
of decoding. The decoder has an initial state which represents start point in
instruction decoding, but it has no distinct finish state. Each time when decoder
either have instruction successfully decoded or have undefined opcode detected
it reports that decoding was finished and switches self to initial state. Therefore,

6 Y. Klimiankou

Decoder

Instruc on
Processor#UD Handler

Invalid
opcode

Decoding
complete

Decoding
incomplete

Feeder

Change
feeder state

Change
feeder state

Code byte

Code byte

Fig. 4. Scheme of interaction with EIDIA decoder.

each state from which decoder can directly transit into the initial state can be
considered finish state.

Mealy machine basis of decoder allows applying extensive table-based dis-
patching of decoding. Multiple tables are in use. Routing tables switch decoder
onto appropriate handler depending on code byte at the input. Additional seman-
tic data table contains a generalized description of the instruction set. Different
parts of decoder use this table which increases the uniformity of decoder code,
thus, improving the efficiency of CPU cache usage. At the same time, during
each decoding step EIDIA accumulates information about instruction decoded,
as well as, information which will guide decision making during next decod-
ing steps. Thus, EIDIA does not use instruction bytes as a path to the complete
instruction description, but assembles the description in a step-by-step way. Fur-
thermore, EIDIA reconfigures itself during each decoding step.

Following the state machine architecture with byte-by-byte feeding eliminates
all external dependencies from EIDIA. For example, EIDIA does not dynami-
cally allocate or manipulate memory and does not use C standard library at all.
Furthermore, EIDIA does not involved into the instruction byte stream man-
agement which eliminates frequently redundant preparations and checks of the
input byte stream.

4 Output Interface of EIDIA

The output interface of decoder should be convenient for use and completely
cover general semantic of instruction. EIDIA returns instruction description rep-
resented in the form of a pointer to the next data structure:

s t r u c t I n s t r u c t i o n {
u in t 32 t command ;
u i n t 32 t args [3] ;
u i n t 32 t imms [2] ;

} ;

Rapid Instruction Decoding for IA-32 7

The output of the decoder has a size of 24 bytes and can incur significant over-
head on memory copying during transfer from the decoder to its front-end. Thus,
the efficient decoder should have an internal buffer which it uses for instruc-
tion construction during decoding. Decoder exports interface for accessing that
buffer to the front-end. Therefore, when the back-end receives status “Decod-
ing complete” that status serves it as a signal that front-end can safely capture
instruction from the internal buffer using the provided interface. Furthermore,
front-end becomes able to perform access only those components of instruction
description which contain actual data. For example, if decoded instruction is a
command (have no arguments), then backend can read command opcode, using
it determine that there are no arguments and finish work with decoder buffer,
hence performing access only to 4 bytes from 24 available bytes of the buffer.

IA-32 has a subset of instructions with a fixed command and which have
encoding trees with reverse order of instruction arguments. They have the same
encoding as regular instruction. Encoding tree itself and hence first byte of
instruction specifies the reverse ordering of arguments. Interface for access to
internal buffer allows simplifying decoder internals because it preserves unifor-
mity of decoding algorithms. Such an especial interface can reverse arguments
order for backend at access time by logical mapping of the external view of the
buffer fields to respective internal implementation.

Especial interface to decoder buffer implements lazy output reset. Lazy reset
moves the burden of internal buffer cleanup from the stage of decoding to the
results fetching stage, which leads to performance penalty reduction. Decoder
front-end can cleanup only those fields of the internal buffer which were set
by decoder during assembling of instruction. At the same time, lazy reset can
eliminate redundant resetting of those fields which were not modified by the
decoder.

Finally, an especial interface provides an opportunity for extensive precaching
of ready-to-use generalized instruction descriptions. In case of decoding of tiny
instructions, the decoder can point output interface onto appropriate already
ready-to-use instruction description instead of filling of the default output buffer.

5 Evaluation

Table 1 presents the specification of CPUs of computer systems which we have
used for evaluation.

We have measured the throughput of EIDIA in two scenarios. The first sce-
nario is a pure binary instruction stream decoding. Results achieved for this
scenario show throughput in raw instructions decoding. In the second scenario,
we have measured the performance of the decoder with the attached back-end.
In the role of the back-end, we have used a simple disassembler application that
was designed and implemented from scratch.

Finally, we have used two types of workload. The specially generated file
containing all variants of IA-32 instructions (2.1152 MB and 445215 instructions)
represents a synthetic workload. In the role of real-world workload, we have

8 Y. Klimiankou

Table 1. Hardware used for performance evaluation

Platform A Platform B Platform C

CPU Intel Core i7-4600U AMD Phenom FX-8350 Intel Core i7-7500U

Architecture Haswell Bulldozer Kaby Lake

Codename Haswell-ULT Piledriver Kaby Lake-U

Frequency 2100 MHz 4000 MHz 2700 MHz

L1D cache 2 × 32 KB 8 × 16 KB 2 × 32 KB

L1I cache 2 × 32 KB 4 × 64 KB 2 × 32 KB

L2 cache 2 × 256 KB 4 × 2 MB 2 × 256 KB

L3 cache 4 MB 8 MB 4 MB

Table 2. Speedup of the EIDIA decoder in instruction decoding comparing to other
instruction decoders for IA-32

Task Workload Platform Udis86 Intel XED

Decoding Synthetic A 42,03 4,19

Decoding Synthetic B 31,13 3,58

Decoding Synthetic C 51,11 4,45

Decoding Real-World A 23,08 3,48

Decoding Real-World B 21,09 3,83

Decoding Real-World C 24,64 3,64

Disassembling Synthetic A 12,26 11,15

Disassembling Synthetic B 10,95 13,79

Disassembling Synthetic C 13,48 10,67

Disassembling Real-World A 9,16 6,18

Disassembling Real-World B 7,54 7,51

Disassembling Real-World C 9,15 5,80

used code sections extracted from Linux kernel file of version 3.13.0-37-generic
(6.7546 MB, 2141376 instructions).

To proof performance benefits of EIDIA, we have compared it with two IA-32
instruction decoders: Udis86 [6] and Intel XED [3]. Both decoders have disas-
sembler capabilities.

It would be interesting to compare EIDIA with decoders used in emulators
and virtual machines. However, such decoders are an integral part of VM exe-
cution engines, and their extraction is a nontrivial task. Furthermore, they do
not have disassembler backends which prevent macrobenchmarking.

The results of the measurements are summarized in Table 2. The numbers in
that table show the speedup in processing time achieved by EIDIA in comparison
to respective decoder specified in the column header. As can be seen, EIDIA is
from 21.09 up to 51.11 times more performant than UDis86 in pure instruction

Rapid Instruction Decoding for IA-32 9

decoding and from 7.54 up to 13.48 times more performant in disassembling
tasks. What is more important, the proposed solution provides throughput from
3.48 to 4.45 times better than Intel XED in instruction decoding and from 5.8 to
13.79 times better in disassembling tasks. EIDIA has demonstrated at least 3.48
times better performance in all conducted experiments, and at the same time
stays agnostic to the underlying hardware platform and provides pure isolation
of decoding from front-end logic.

6 Conclusion

In this paper, we have explored techniques of efficient instruction decoding
for IA-32 and have shown that right design decisions in conjunction with
multiple optimizations lead to a significant speedup of instruction decoding.
Our instructions decoder – EIDIA demonstrates that high-throughput general-
purpose decoder based on Mealy machine with byte-by-byte feeding delivers high
performance. Our instruction decoder exploits several performance-oriented fea-
tures including extensive precaching of decoded instructions; multi-level table-
guided dispatching; lazy reset of output and compact representation of instruc-
tion semantics. This features in the application to the design of state machine
make decoder performant while preserving its general-purpose nature. We have
compared EIDIA with analogs of industrial quality. The measurements have
shown that EIDIA has from 3.5 up to 4.5 times higher throughput than Intel
XED in case of pure decoding, and from 5.8 up to 13.8 times better in case of
disassembling. At the same time, EIDIA, in contrast to Intel XED, is agnostic
to host CPU.

References

1. bochs: The Open Source IA-32 Emulation Project (2017). http://bochs.source
forge.net/

2. gem5 (2017). http://gem5.org/Main Page
3. Intel XED (2017). https://intelxed.github.io/
4. QEMU (2017). https://www.qemu.org/
5. GitHub - dyninst/dyninst: DyninstAPI: tools for binary instrumentation, analysis,

and modification (2018). https://github.com/dyninst/dyninst
6. Udis86 Disassembler Library for x86/x86–64 (2018). http://udis86.sourceforge.

net/
7. Intel Corporation: The 8086 Family Users Manual. No. 9800722–03, October 1979
8. Intel Corporation: Intel 80386 Programmer’s Reference Manual. No. 230985 (1986)
9. Intel Corporation: IntelR© 64 and IA-32 Architectures Software Developer’s Manual:

Instruction Set Reference. No. 325383–066US, March 2018
10. Reshadi, M., Dutt, N.D., Mishra, P.: A retargetable framework for instruction-set

architecture simulation. ACM Trans. Embed. Comput. Syst. 5, 431–452 (2006)

http://bochs.sourceforge.net/
http://bochs.sourceforge.net/
http://gem5.org/Main_Page
https://intelxed.github.io/
https://www.qemu.org/
https://github.com/dyninst/dyninst
http://udis86.sourceforge.net/
http://udis86.sourceforge.net/

Case-Based Genetic Optimization
of Web User Interfaces

Maxim Bakaev(&) and Vladimir Khvorostov

Novosibirsk State Technical University, Novosibirsk, Russia
{bakaev,xvorostov}@corp.nstu.ru

Abstract. The combination of case-based approach and genetic optimization
can provide significant boost to effectiveness of computer-aided design of web
user interfaces (WUIs). However, their integration in web design domain
requires certain sophistication, since parts of available solutions cannot be
reused directly, due to technical and legal obstacles. This article describes
evolutionary algorithm for automatic generation of website designs, which treats
parameters of functionality, layout and visual appearance as the variables. The
structure of the chromosome is devised, allowing representation of websites’
properties in the above three manipulated aspects and facilitating easy appli-
cation of the genetic operators. We also describe organization and population of
repository of filler-up content, which is compulsory for evaluation of WUI
fitness with regard to the needs and preferences of users. We demonstrate
retrieval of web designs as cases and propose using similarity measure in the
fitness function to adapt the generated WUI to these examples. Finally, imple-
mentation of the approach is illustrated based on the popular Drupal web
framework. The results of the study can empower case-based reuse of existing
web designs and therefore be of interest to both AI researchers and software
engineers.

Keywords: Web user interface design � Case-based reasoning � Software
engineering � Drupal framework

1 Introduction

The continuing exponential growth in the amount of data is accompanied by increase in
diversity of data sources and data models. This, together with the forthcoming “Big
Interaction”, with its multiplicity of user tasks and characteristics, of interface devices
and contexts of use, may soon render hand-making of all the necessary human-
computer interfaces unfeasible. Discrete optimization methods are seen quite promising
for intelligent computer-aided design of interaction, but the combinatorial number of
possible solutions is huge even for relatively simple user interface (UI) design prob-
lems (Oulasvirta 2017).

Increasingly, genetic algorithms are used as effective tool for solving optimization
problems, and there are reports of their successful use for conventional websites
designs (Qu 2015), whose UIs are not particularly creative, but mostly provide data
I/O. Most types of EAs rely on special data structures that represent properties of a

© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 10–25, 2019.
https://doi.org/10.1007/978-3-030-37487-7_2

http://orcid.org/0000-0002-1889-0692
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_2

candidate solution – chromosomes, in which concrete values comprise the solution’s
genotype. Individual genes that constitute the chromosome may be of different types,
depending of a particular problem, and the genetic operators need to take into con-
sideration the types’ boundaries and the allowed values – alleles. Hence, just as design
of data structures is of crucial importance in software engineering, the choice of the
chromosome structure can remarkably affect EA’s convergence, speed and the end
result’s quality (Michalewicz and Hartley 1996).

Another crucial part of EA is fitness function (FF): it must both fully represent the
optimization goal and be as easily computable as possible. In domains that deal with
human preferences and capacities, such as WUI design, specification of FF is far from
trivial, especially given the diversity of user characteristics and tasks. Such customary
workarounds as Interactive Evolutionary Computation (delegation of fitness evaluation
to humans) and trained user behavior models (simulation of humans’ evaluations) have
their limitations. We believe that FF evaluation could well exploit operating websites,
since “surviving” web projects have presumably adapted to their target users’ prefer-
ences and needs. The degree of this adaptation’s successfulness can be automatically
estimated from website’s interaction statistics and popularity, representing the dynamic
quality-in-use (Bakaev et al. 2017), while the static quality-as-is can be assessed based
on static design metrics (Ivory and Hearst 2002).

The number of operational websites accessible on the World Wide Web is currently
estimated as 100–250 millions, so there should be no shortage of well-fit design
examples for any kind of target users and tasks. The problem is actually the opposite:
even despite the recent emergence of design mining field that focuses on extraction of
design patterns and trends from large collections of design examples, there is lack of
repositories or services capable of finding existing solutions relevant to a new project’s
UI design context. We believe that the problem could be resolved by supplementing the
WUI evolutionary optimization algorithm with case-based reasoning (CBR) approach
that has shown successful use in both software and web engineering (Rocha et al. 2014;
De Renzis et al. 2016), WUI development (Marir 2012), as well as in many non-IT
domains. More detailed justification on CBR applicability for WUI design can be found
in one of our previous works (Bakaev 2018a). The classically identified stages in CBR
can be summarized as follows (Mantaras et al. 2005):

• Retrieve: describe a new problem and find similar problems with known solutions
in a case base (CB);

• Reuse: adapt the solutions of the retrieved problems to the current problem, in an
assumption that similar problems have similar solutions;

• Revise: evaluate the new solution and possibly repeat the previous stages;
• Retain: store the results as a new case.

Case thus equals parameterized problem plus one or several solutions, each of
which can be supplemented with quality – i.e. how good the solution was in resolving
the problem.

The retrieval stage is arguably what most today’s CBR-related research focuses on,
but the existing infrastructure in WUI design domain remains problematical. For
instance, the database of the compelling design mining Webzeigeist tool (Kumar et al.
2013) that implemented a kind of design scraping and searching engine, presumably

Case-Based Genetic Optimization of Web User Interfaces 11

contained millions of web pages at the time of the publication. However, it allows
searching by technicalities, such as page aspect ratio or element styles, but not by
domain- or user-related aspects. This, effectively, does not allow supporting the CBR
approach, as no designs appropriate for a particular problem specification can be
retrieved. Moreover, direct employment of retrieved well-fit web design examples as
parents in the EA or reuse of their parts within CBR is further restricted due to technical
(lack of access to the website’s back-office and server-side code) and legal (copyright
protection) reasons. Web design frameworks and template libraries do provide rich
collections of WUIs and their elements (icons, buttons, form fields, etc.), but cannot aid
in adaptation of a chosen design for a particular user group or to resemble exemplary
solutions.

Our paper is dedicated to integration of case-based reasoning and evolutionary
approaches in web design, which we consider necessary for practical feasibility of UI
optimization in this design field. Particularly, we focus on development of the case base
and the data structures that the EA relies on. In Sect. 2, we outline the proposed EA for
CBR-based web design and justify our approach to genetic representation of the
solutions. In Sect. 3, we highlight some particulars of the implementation, specify the
concrete chromosome structure, and provide some examples. In the Conclusion, we
summarize the contribution of our article and provide final remarks.

2 Methods

2.1 Background and Related Work

Genetic algorithms are based on repeated application of the genetic operators – gen-
erally these are selection of candidates for reproduction, crossover (producing child
solutions incorporating features of numerous parents) and mutation (introduction of
random or directed variations in the features). Their superset is evolutionary algorithms
(EAs), which are being successfully used in programming, engineering, website design
(Guo et al. 2016), data mining and classification (Freitas 2013), natural language
processing, machine learning, intelligent and recommender systems, as well as many
other domains (Coello 2015). An archetypal EA incorporates the following stages:

1. Initialization – creation of the first generation (initial population), which can be
either random or based on some distinguished existing cases (Kazimipour et al.
2014), for better convergence to global optimum or faster performance.

2. Selection of best-fit individuals for reproduction (parents) based on evaluation of
their fitness, which is performed either in real world context or, more commonly,
with specially formulated fitness functions.

3. Reproduction of parents to create individuals of the next generation, in which
mutation and crossover are used. If the algorithm’s termination condition (sufficient
quality of the final solution or time limit) is not met, it goes back to the previous
step and repeats.

Within CBR approach, Reuse and Revise stages can be naturally implemented as
EA, but to the extent of our knowledge there is lack of techniques for adaptation of the

12 M. Bakaev and V. Khvorostov

retrieved WUI designs. Or rather, due to the technical and legal impediments we’ve
mentioned above, it’s the new solution that has to be adapted to the exemplary designs.
A measure of genotypic or phenotypic similarity with the example solutions can be
included as one of the components in the FF. A notable example of such approach was
once implemented in SUPPLE intelligent system for UI automatic generation (Gajos
et al. 2005): the optimized goal function could incorporate the metric of similarity with
the previous version of UI design – in SUPPLE’s case, to maintain familiarity for its
users. The metric was linear combination of pairwise similarities between interface
widgets, whose features included language, orientation, geometry, etc. Subjective
perception of WUI similarity is rather more sophisticated (Bakaev 2018a), but the
general approach should be feasible for our CBR and EA integration.

2.2 The Evolutionary Algorithm for WUI Design

The combination of the case-based reasoning approach and the genetic optimization
algorithm for WUI design (for detailed description and justification of the algorithm see
Bakaev and Gaedke, 2016) can be outlined in the following process:

1. Designer, who initiates the process, creates a new web project (case) in the CB and
specifies the problem features and other input information. We will address this in
the subsequent sub-section.

2. The CBR algorithm retrieves relevant projects from the CB: based on similarity
measures for the cases and the assessed quality of the currently operational solution.
We outline the retrieval process based on problem similarity in Sect. 3.

3. The EA (re-)produces new solutions (web designs), dealing with the following
major aspects of a web design:

– Functionality: since the EA is suitable for creating relatively simple websites, we
can assume there is no need of generating any new programming code. Instead,
we can rely on assembling existing pieces of web functionality, saving their
configuration in the chromosome. We justified and detailed the use of functional
components through their meta-repository in (Bakaev 2018c). In Sect. 3 of the
current paper we demonstrate their specification in the chromosome.

– Content: by definition, web content is very changing and it does not actually
relate to a website’s structure, although it may be perceived as related to its
design by users. So, it makes little sense to store the content-related properties in
the chromosome, they should rather correspond to the phenotype – the indi-
vidual solutions’ properties, which can vary for the same genotype. The content
repository is described in Sect. 3.

– Page structure (layout): in modern websites, pages are composed from elements
that are organized hierarchically and consistently ordered within their siblings.
This is essential part of the design and its usability, and the corresponding
information needs to be saved in the chromosome, which we also describe in the
subsequent sub-section.

– Visual appearance: it is potentially the vastest part of the design space, since the
combinatorial number of all possible colors, font styles and sizes, etc. is enough
to make every website out of the existing billion unique. The elements do have

Case-Based Genetic Optimization of Web User Interfaces 13

constraining relations between them (e.g. font’s and background’s colors must
provide enough contrast), but attempts to specify formal rules for web design
have so far been rather fruitless in practice. So, the initial values are quite
important for the EA’s convergence, and the algorithm should better start from a
reasonable visual solution. We representation of the visual appearance in the
chromosome is demonstrated in Sect. 3.

4. The EA evaluates fitness functions for the new solutions, based on their similarity
with the reference solutions in the retrieved projects and quality assessed with the
pre-trained target users’ behavior models, and selects the best fit solutions. The
corresponding approach was detailed in (Bakaev 2018a).

5. If the EA’s finishing conditions aren’t met, the algorithm applies the genetic
operators and goes again to step 3 to create new generation of solutions, with the
new genotypes. We provide an example of applying the mutation genetic operator
to website’s visual appearance in Sect. 3.

6. The CBR algorithm retains the best solution(s) produced by the EA in the CB,
specifying it as prototype. If the web project later goes live, the CB daemons start
collecting the quality attributes for the solution (website), e.g. on the basis of the
Web Intelligence approach that we previously proposed (Bakaev 2017).

So, in the subsequent sub-section we consider the specificity of the problems and
solutions for CBR in the WUI design domain.

2.3 CBR: The Problem Features and the Solutions’ Chromosome
Structure

Devising the accurate structure to represent the problem’s properties is seen as crucial
for machine learning and automated reasoning tasks (Anderson et al. 2013). With
respect to CBR, this feature engineering also plays important part in shaping the
structure of the CB. The process generally includes: forming the excessive list of
potential features, implementing all or some of them in a prototype, and selecting
relevant features by optimizing the considered subset. In our feature engineering for
WUI design problem, we considered web project as corresponding to a case (as design
- and goal-wise complete entity) and website to a solution (as several versions of
operational and prototype websites are often created in attempts to meet the web
project’s goals). We relied upon three models selected from the ones prescribed in WUI
development: Domain, Tasks, and User (the Platform and Environment models were
excluded since they rather relate to website’s back-office). The detailed description of
the feature engineering for web projects can be found in (Bakaev 2018a).

Unlike reusable programming code, existing website designs differ dramatically in
eminence, so the quality aspects must be stored for the solutions, to be considered in
the retrieval in addition to similarity. Website quality is best described as collection of
attributes, whose relative importance can vary depending of the particular project’s
goals and context (Glass 2002). Thus, the set of quality-related features must be
extendable and provide flexibility for different formulations of the overall quality
function. The quality-related values for the cases collected from the WWW (i.e. for
someone else’s websites) can be obtained e.g. based on the Web Intelligence approach
(Bakaev 2017).

14 M. Bakaev and V. Khvorostov

As we mentioned before, the key data structure in EA is chromosome, which
contains code for the important properties of solutions. Most traditionally, EAs just use
linear binary representations for chromosomes, particularly in web design (Qu 2015).
However, this implies that knowledge about the design space (the interrelations between
the genes) has to be delegated to the procedures responsible for reproduction, crossover,
etc.; otherwise the EA may end up trying combinatorial matches and lose in the con-
vergence speed. So it is sensible to separate out this knowledge in an appropriate data
structure – domain ontology effectively representing the design space for WUI. Prop-
erties (attributes) of the ontology classes thus correspond to genes, while their datatypes
and alleles, crucial for the genetic operators’ proper application, are defined via the
facets’ values. WUI design support ontology that we developed in the popular Protégé-
Frames editor can be used to represent the functionality, layout and visual appearance. In
Fig. 1, we show a fragment of the ontology with some classes related to the genes
responsible for web page’s visual appearance, relying on the accepted CSS specification.

3 Implementation

In this section we present some highlights of the proposed approach that we imple-
mented (see at our dedicated portal (http://wuikb.info). We used Drupal web content
management framework as the platform for the implementation. Despite the usual
drawbacks associated with the use of frameworks, such as lower performance and
flexibility, the following advantages motivated our choice:

Fig. 1. Ontology classes and properties for a webpage layout and visual appearance.

Case-Based Genetic Optimization of Web User Interfaces 15

http://wuikb.info

• Drupal has robust architecture that allows handling high number of components.
• Drupal has lots of components (modules) ready for reuse, they are well-organized

and centralized in the single repository with API access (http://drupal.org), they
have auto-maintained quality attributes (# of downloads, actual installs, open bugs,
etc.).

• Drupal has programmable (via command line, API, etc.) support for installment of
websites, the layout of interface elements on webpage, handling web forms, menus,
content items, adjustment of visual appearance styles, and so on.

A notorious disadvantage of Drupal is high system requirements – particularly,
rather complex and costly functionality assembly process. However, its effect in EA
can be minimized relatively easily, as there is no need to perform it on each step of the
algorithm. Drupal is also renowned for scarcity of high-quality designs in free access,
but since our CBR approach retrieves existing web projects, this is a minor concern as
well.

3.1 The Case-Based Retrieval

The case base is the registry of projects each of which correspond to a case and can be
either automatically scrapped from the web or specially created (Bakaev 2018c). The
problem description are Domain, User and Task features, whose values are either
directly specified when a new project is created, mined by the supplementary tools, or
provided by human annotators. As conventional websites of the same domain have
fairly predictable functionality, there was no need to employ full-scale task modeling
notations, such as W3C’s CTT or HAMSTERS (Martinie et al. 2015). So, the Task
model is represented as the structured inventory of website chapters, for which simi-
larity can be calculated fairly easily (see example in Fig. 2). The solutions (websites)
have quality attributes, which are either provided by users or experts, or obtained
automatically by the supplementary tools in the course of the CB population. So, the
CBR algorithm retrieves the cases from the CB based on the following sequence:

1. Pre-selects a set of cases based on the domain similarity
2. For each case in the set it calculates the distance measure that incorporates domain

similarity, task similarity and target user similarity (see in Bakaev 2018a).
3. For the most similar cases it calculates the normalized quality values in the range (0;

1) and retrieves similar cases with the highest qualities.

After the retrieval of cases, the “classical” CBR prescribes adapting their solutions,
but as we noted above, in web design this process (the Reuse and Revise stages) can’t
be performed directly due to legal and technical obstacles. Instead, the EA will consider
similarity with the retrieved solutions as part of the new solutions’ fitness.

3.2 The Chromosome Structure Specification

Our design of the chromosome structure for the EA was based upon the following
previously justified theoretical premises and technical considerations:

16 M. Bakaev and V. Khvorostov

http://drupal.org

1. there are three distinct dimensions of a website: functionality, layout (page struc-
ture) and visual appearance;

2. representation of design space-related knowledge should be minimized in the code
implementing the genetic operators, but moved to the chromosome instead;

3. the chromosome structure design should allow maximal use of the means provided
by the framework (without relying on its GUI), particularly Drush project of Drupal.

Based on the above, instead of the classic binary strings we have chosen to rely on
the popular “name: value” representation for each of the genes, since it also allows
expressing classes and properties from the developed ontology. We subsequently use
the Backus-Naur form to describe the parts of the chromosome per the three website
dimensions. In one of the following sub-sections we also provide example of using
chromosome to specify website features.

The representation of website functionality in the chromosome is based on Drush’s
makefile syntax (http://docs.drush.org/en/8.x/make/) that in turn corresponds to
YAML. The website Domain is selected from DMOZ classification. Task names come
from the Tasks model, and Drupal modules (themes are not allowed, unlike in the
makefile) implement the tasks on a many-to-many relationship basis. Custom config-
uration for a component can be stored in the string that concatenates the project options
from the makefile (by default, most recent production versions of the modules are

Fig. 2. Retrieved cases based on Task similarity (screenshot from http://wuikb.info)

Case-Based Genetic Optimization of Web User Interfaces 17

http://docs.drush.org/en/8.x/make/
http://wuikb.info

used). Since the functionality install is the most time-consuming action in the whole
EA, the genetic operators are only applied to the modules if the alternatives (alleles)
have comparable quality. The resulting data structure in the chromosome can be
specified as follows:

<functionality_genes> := <domain> | <functionality_item>
| <component_configuration>
<domain> := "domain" ": " <dmoz_domain_name>
<functionality_item> ::= <task_name> ":"

<component_configuration> ::= "_" <drupal_module_name> ":"
<configuration_string> | <component_configuration>

<drupal_module_name> | <functionality_item>

Generally, each functionality item implemented for the website’s front office has
one or several related user interface elements. Correspondingly, in Drupal most front-
office modules have blocks (groups of UI elements) placed in one of webpage’s regions
and ordered within a region by their weight. The currently default list of regions in
Drupal (Twig template engine) has 10 items: page.header, page.primary_menu,
page.content, etc., which are sufficient for many conventional websites. The names of
the blocks are created by Drupal, so they become accessible for the EA after the
website functionality is assembled. The part of the chromosome describing the layout
can then be specified as follows:

<layout_genes> ::= <blocks_placement> | <blocks_order>
<blocks_placement> ::= <region_name> ": " <block_name> |
<blocks_placement>
<blocks_order_in_region> ::= <block_name> ": " <weight> |
<blocks_order_in_region>
<region_name> ::= "page.header" | "page.primary_menu" |
"page.secondary_menu" | "page.highlighted" | "page.help"
| "page.content" | "page.sidebar_first" |
"page.sidebar_second" | "page.footer" | "page.breadcrumb"

The genetic operators are applied to the blocks’ placement and order, which can be
programmatically set via Drush extras commands, such as:

drush block-configure --module=block --delta=block_delta
--region=page.header --weight=10

In Drupal, themes are responsible for visual appearance of the website, and many of
them have adjustable parameters (stored in JSON format) shaping their visual pre-
sentation, such as colors, font sizes and families, etc. In the EA, after the website
functionality and layout genes are initialized, the algorithm selects the basic theme that
has the number of parameters appropriate for the project (more parameters mean more
flexibility, but EA’s convergence may take much longer time). The visual appearance-
related part of the chromosome can be specified as follows:

18 M. Bakaev and V. Khvorostov

The genetic operators can be applied to the parameter values, and for each new
solution the corresponding sub-theme is created. Although the theme parameters are
mechanism very native for Drupal, there’s no built-in universal solution for managing
the parameters. So, we implemented the dedicated Drush module to adjust themes’
parameters from command line (see https://github.com/vkhvorostov/subtheme_color).

3.3 Repository of Content

In the eyes of end users, content is not entirely detachable from design, so auto-
assessment of the candidate solutions’ quality in the EA’s fitness function cannot be
performed with wireframe designs, lacking any textual and graphic materials. Obvi-
ously, the assessment of the solutions’ similarity with the CBR-retrieved designs also
calls for filler-up content resembling the one of the reference websites. As we men-
tioned before, there’s barely the need to store content-related properties of solutions in
the chromosome (they should rather relate to phenotype). Thus, content items are to be
drawn from the respective repository and assigned to the solutions on a stochastic basis.
The concrete use cases for such repository are the following:

1. Extracting “original” content items from solutions in projects:
a. manually by human annotators;
b. automatically from the solutions’webpage code and screenshot (our corresponding

supplementary tool, the visual analyzer, is described in Bakaev et al. 2018b).
2. Creating filler-up content items (linked to the original ones):

a. manually by human annotators;
b. automatically using online services for similar images search, text generators, etc.

3. Manual organization and management of the content items.
4. Usage of the content by the EA:

a. drawing the filler-up content items similar to the original ones in the retrieved
projects;

b. considering the degree of similarity in defining the probability for selecting a
particular filler-up content item;

c. considering the content type and placement in the webpage.

Correspondingly, the Content Item has the following attributes (see in Fig. 3):

• type (text, image, label, header, etc.);
• status (original, filler-up, outdated, etc.);
• content (piece of HTML code);
• links to Projects (mostly for filler-up content) and to their solutions (mostly for

original content);
• links to other Content Items (with weights indicating of the degree of similarity).

<visual_appearance_configuration> ::= <theme_name>
<theme_parameters>
<theme_name> ::= "theme" ": " <drupal_theme_name>
<theme_parameters> ::= | <parameter_name> ": "
<parameter_value> | <theme_parameters>

Case-Based Genetic Optimization of Web User Interfaces 19

https://github.com/vkhvorostov/subtheme_color

In Fig. 4 we show (a) part of a reference website’s design, (b) an extracted content
item – logo; (c) related filler-up content – a similar image collected via Google, with
color similarity constraint (red); (d) related filler-up content – a similar image collected
via Google, without the color similarity constraint.

3.4 Example of the EA Data Structures

In the example we show some data structures from genetic optimization of an edu-
cational website project. Extract from the part of chromosome responsible for the
functionality generation is presented below (its specification was previously described
in The Chromosome Structure sub-section). “Drupal” module name implies that
functionality is in Drupal core.

Fig. 3. The list of content items in the repository (screenshot from http://wuikb.info)

20 M. Bakaev and V. Khvorostov

http://wuikb.info

The Component picker also produces the list of alleles for the shopping_cart task
(with the quality value being the number of websites using the module) outside of the
chromosome:

Subsequently, the Website installer additionally installs Drupal’s commerce mod-
ule (as dependency for dc_cart_ajax module).

The layout part of the chromosome is naturally created after the functionality part,
and we present the extract below:

Fig. 4. The related items in the content repository (Color figure online)

domain: "Career and Education"
about_us: drupal
_drupal: "version 7.59"
contact_us: webform
shopping_cart: dc_cart_ajax
…

shopping_cart:
dc_cart_ajax: 1874
commerce_ajax_cart: 1375
basic_cart: 1288
uc_ajax_cart: 1278

…

Case-Based Genetic Optimization of Web User Interfaces 21

The number of genes responsible for the visual appearance is potentially unlimited
and defined by the theme parameters. An extract of the chromosome’s corresponding
part is shown below:

Our subtheme_color module generated the following command to mutate two of
the above genes:

Fig. 5. Theme’s mutated visual appearance in generation N (left) vs. N+1 (right).

page.header: site-logo
page.header: site-name
site-logo: -10
site-name: 10
page.primary_menu: topbar
page.sidebar_first: content-block-1
page.content: user-login
page.footer: content-block-2
…

theme: bartik
top: '#dada4a'
bg: '#ffffff'
footer: '#161617'
text: '#3b3b3b'
link: '#0073b6'
…

22 M. Bakaev and V. Khvorostov

In Fig. 5 we illustrate the mutation, showing the visual appearance before and after
application of the genetic operator.

4 Conclusion

Computer-aided design of user interfaces is increasingly seen as discrete optimization
problem, but the design space remains prohibitively large for most tasks of practical
importance. Yet the web design domain that our paper specifically considers has the
benefits of (a) most web projects having fairly conventional functionality, and (b) the
number of accessible cases (the operational websites on the WWW) potentially
available for reuse having the order of 108. In our work, we proposed combining the
time-honored case-based reasoning approach with evolutionary algorithms to generate
web user interfaces, and contemplated several domain-specific complicated points:

1. Currently existing web design repositories are rather poorly organized and do not
allow selecting solutions for a particular use context. Based on the features we
engineered for web projects as cases in CB, we proposed mechanism for their
retrieval based on domain-, task- and target user similarity. The indexing of cases in
the CB can be largely automated using supplementary tools that we developed, but
should involve human annotators for the User-related features.

2. Web designs available from the WWW cannot be reused directly, due to technical
and legal obstacles. So, we suggested instead to adapt the newly generated solution
to the retrieved examples, by embracing their alikeness in the EA’s fitness function.
The similarity measure can be calculated automatically, based on pre-trained user
behavior models, as we demonstrated in one of our previous works. Relevant filler-
up content can be auto-delivered from the extendable content repository.

3. Specification of the enormous design space and intertwined constraints for a WUI,
so that the genetic operators could be applied, would be a great endeavor. As a
substitute, we proposed relying on pre-existing Drupal framework’s data structures,
components, and manipulation tools. We specified the structure of the chromosome
based on YAML and demonstrated the usage of Drush commands (with some
extensions that we programmed) for the purposes of the EA.

In the current paper we only demonstrated operation of some principal parts of the
EA: how the WUI functionality, layout, visual appearance and content are created and
manipulated. Our further plans include training user behavior models to be employed in
the EA’s fitness function, performing the genetic optimization to produce the final
solutions and assessing their quality with representatives of the target users.

/drush.sh -r projects/test/ stc bartik
'{"top": "#daba4a", "footer": "#361617"}'

Case-Based Genetic Optimization of Web User Interfaces 23

Acknowledgement. The reported study was funded by Russian Ministry of Education and
Science, according to the research project No. 2.2327.2017/4.6, and by RFBR according to the
research project No. 16-37-60060 mol_a_dk.

References

Anderson, M.R., et al.: Brainwash: a data system for feature engineering. In CIDR (2013)
Bakaev, M.: Assessing similarity for case-based web user interface design. In: Alexandrov, D.,

Boukhanovsky, A., Chugunov, A., Kabanov, Y., Koltsova, O. (eds.) Digital Transformation
and Global Society. DTGS 2018. Communications in Computer and Information Science,
vol. 858. Springer, Cham (2018a). https://doi.org/10.1007/978-3-030-02843-5_28

Bakaev, M., Gaedke, M.: Application of evolutionary algorithms in interaction design: from
requirements and ontology to optimized web interface. In: IEEE Young Researchers in
Electrical and Electronic Engineering Conference (EIConRusNW 2016), pp. 129–134 (2016)

Bakaev, M., Heil, S., Khvorostov, V., Gaedke, M.: HCI vision for automated analysis and
mining of web user interfaces. In: Mikkonen, T., Klamma, R., Hernández, J. (eds.) Web
Engineering. ICWE 2018. LNCS, vol 10845, pp. 136–144. Springer, Cham (2018b). https://
doi.org/10.1007/978-3-319-91662-0_10

Bakaev, M., Khvorostov, V.: Component-based engineering of web user interface designs for
evolutionary optimization. In: 19th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD),
pp. 335–340. IEEE (2018c)

Bakaev, M., Khvorostov, V., Heil, S., Gaedke, M.: Web intelligence linked open data for website
design reuse. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360,
pp. 370–377. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60131-1_22

Coello, C.A.C.: Multi-objective evolutionary algorithms in real-world applications: some recent
results and current challenges. In: Greiner, D., Galván, B., Périaux, J., Gauger, N.,
Giannakoglou, K., Winter, G. (eds.) Advances in Evolutionary and Deterministic Methods for
Design, Optimization and Control in Engineering and Sciences, pp. 3–18. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-11541-2_1

Mantaras, D., et al.: Retrieval, reuse, revision and retention in case-based reasoning. Knowl. Eng.
Rev. 20(3), 215–240 (2005)

De Renzis, A., Garriga, M., Flores, A., Cechich, A., Zunino, A.: Case-based reasoning for web
service discovery and selection. Electron. Notes Theoret. Comput. Sci. 321, 89–112 (2016)

Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer,
Heidelberg (2013)

Gajos, K., Wu, A., Weld, D.S.: Cross-device consistency in automatically generated user
interfaces. In: 2nd Workshop on Multi-User and Ubiquitous User Interfaces, pp. 7–8 (2005)

Glass, R.L.: Facts and Fallacies of Software Engineering. Addison-Wesley Professional, Boston
(2002)

Guo, F., Liu, W.L., Cao, Y., Liu, F.T., Li, M.L.: Optimization design of a webpage based on
Kansei engineering. Hum. Fact. Ergon. Manuf. Serv. Ind. 26(1), 110–126 (2016)

Ivory, M.Y., Hearst, M.A.: Statistical profiles of highly-rated web sites. In: ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI), pp. 367–374 (2002)

Kazimipour, B., Li, X., Qin, A.K.: A review of population initialization techniques for
evolutionary algorithms. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2585–
2592 (2014)

24 M. Bakaev and V. Khvorostov

http://dx.doi.org/10.1007/978-3-030-02843-5_28
http://dx.doi.org/10.1007/978-3-319-91662-0_10
http://dx.doi.org/10.1007/978-3-319-91662-0_10
http://dx.doi.org/10.1007/978-3-319-60131-1_22
http://dx.doi.org/10.1007/978-3-319-11541-2_1

Kumar, R., et al.: Webzeitgeist: design mining the web. In: Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI), pp. 3083–3092 (2013)

Marir, F.: Case-based reasoning for an adaptive web user interface. In: The International
Conference on Computing, Networking and Digital Technologies (ICCNDT2012), pp. 306–
315. The Society of Digital Information and Wireless Communication (2012)

Martinie, C., Navarre, D., Palanque, P., Fayollas, C.: A generic tool-supported framework for
coupling task models and interactive applications. In: 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS), pp. 244–253 (2015)

Michalewicz, Z., Hartley, S.J.: Genetic algorithms+ data structures= evolution programs. Math.
Intell. 18(3), 71 (1996)

Oulasvirta, A.: User interface design with combinatorial optimization. Computer 50(1), 40–47
(2017)

Qu, Q.X.: Kansei knowledge extraction based on evolutionary genetic algorithm: an application
to E-commerce web appearance design. Theoret. Issues Ergon. Sci. 16(3), 299–313 (2015)

Rocha, R.G., Azevedo, R.R., Sousa, Y.C., Tavares, E.D.A., Meira, S.: A case-based reasoning
system to support the global software development. Procedia Comput. Sci. 35, 194–202
(2014)

Case-Based Genetic Optimization of Web User Interfaces 25

Inter-country Competition
and Collaboration in the miRNA

Science Field

Artemiy Firsov1,3(B) and Igor Titov2,3(B)

1 Institute of Informatics Systems,
6, Acad. Lavrentjev pr., Novosibirsk 630090, Russia

artemijfirsov@mail.ru
2 Institute of Cytology and Genetics,

Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
titov@bionet.nsc.ru

3 Novosibirsk State University, 1, Pirogova str., Novosibirsk 630090, Russia
https://www.iis.nsk.su, https://nsu.ru/, http://www.bionet.nsc.ru

Abstract. Many digital libraries, such as PubMed, Scopus, appeared
with the growth of the Internet: thus, many scientific articles became
available in the digital form. We got an opportunity to query arti-
cles metadata, gather statistics, build co-authorship graphs, etc. This
includes estimating the authors/institutions activity, revealing their
interactions and other properties.

In this work we present the analysis of the characteristics of insti-
tutions interactions in the miRNA science field using the data from
PubMed digital library. To tackle the problem of the institution name
writing variability, we proposed the k-mer/n-gram boolean feature vec-
tor sorting algorithm -KOFER. We identified the leaders of the field -
China, USA -, characterized the interactions and described the country
level features of co-authorship. We observed that the USA were lead-
ing in the publication activity until China took the lead 4 years ago.
However, the USA are the main co-authorship driver in this field.

Keywords: K-Mer · n-gram · DBSCAN · Identification · miRNA ·
Timsort · KOFER · Digital library · Co-authorship

1 Introduction

Many digital libraries appeared with the growth of the Internet, thus, the format
of representation of many scientific articles changed. We got an opportunity to
query articles metadata, gather some statistics, etc. This includes understanding
the authors/institutions activity, their interactions, and other characteristics.
One can also prove that the Paretto rule for the institutions’ publication activity

The work of I.T. was supported by the Federal Agency of Scientific Organizations
(project #0324-2019-0040).

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 26–40, 2019.
https://doi.org/10.1007/978-3-030-37487-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_3&domain=pdf
http://orcid.org/0000-0002-7681-1032
https://doi.org/10.1007/978-3-030-37487-7_3

Inter-country Competition and Collaboration 27

holds true [2], or that the idea spreads from one author to another like the virus
spreads from one person to the others. Having this information, we can further
use it to predict the new science field creation, popularity of the particular science
field. In general, it can be used in social informatics.

Moreover, right now the new science field is emerging – “science of science”
[12]. It is a transdisciplinary field of science that aims to understand the evolu-
tion of ideas, choice of a research problem of particular scientist, etc. Without
analyzing interactions between authors, institutions, and other, such a field just
cannot exist.

However, to do that one should know to which real author/institution the
authors name/affiliation from the paper corresponds to. The more precise cor-
respondence we have, the better accuracy of statistics we can get. This disam-
biguation issue is not that simple considering big datasets, such as PubMed
with 2 ∗ 107 articles. It becomes more complicated when you consider errors
in the author name/affiliation made either by author, or by editor. Moreover,
sometimes author/institution name might be changed, or the affiliation from
the papers metadata may have mixed institution names for different authors.
E.g. if the Author1 has “Institute of Cytology and Genetics, Novosibirsk, Rus-
sia” institution and the Author2 has “Institute of Mathematics, Novosibirsk,
Russia” institution, their resulting affiliation for collaborative paper might be
“Institute of Cytology and Genetics, Institute of Mathematics, Novosibirsk, Rus-
sia”. Moreover, affiliation can contain email, postal address and other insertions
not related to institution name.

1.1 Author Disambiguation Overview

To disambiguate the authors, many sophisticated algorithms were proposed.
Some base on the similarity function [13], others use clustering techniques [14],
web information [15], etc. Different approaches are reviewed well in Ferreiras’ et
al. paper [16].

Although they utilize different algorithms and methods, almost all of them
have one thing in common – they use affiliation as the author feature. That means
that similarity between two different records of authors from different articles
is measured using affiliation also. Moreover, there is no uniform algorithm to
process affiliation entry, in different papers researchers use different similarity
measures. However, one may think of another use of affiliation.

1.2 Affiliation Disambiguation Problem

We know that the researchers can work in different places, thus, can have multiple
affiliations in their papers. We also know that they leave/get fired from/change
their institution rarely. By that means, one may identify the author having the
knowledge of his affiliations, or at least propose a hypothesis. On the other
hand, affiliation is represented by its” authors/workers. That means that having
a set of author names, one can deduce, in which institution these authors work,
or at least propose a hypothesis. I.e. people are the feature of institution and

28 A. Firsov and I. Titov

institutions are the feature of a person. Using this statement, we can think of the
author disambiguation issue and the affiliation disambiguation issue as of two
separate issues. Moreover, results of one issue solution can be used to enhance
the results of the other.

Having this in mind, we in Molecular Genetics Department of Institute of
Cytology and Genetics propose an idea that iterative, self-consistent solution of
the author disambiguation issue, the affiliation disambiguation, and the paper
topic extraction issue can increase the accuracy of all these issues.

In this paper, we aim to provide the solution for Affiliation Disambigua-
tion problem. In addition, the whole self-consistent project is currently under
development in the laboratory of molecular genetic systems in the Institute of
Cytology and Genetics under I.I. Titov supervision.

The organization name disambiguation problem has already been addressed
in several works, in which authors aimed to disambiguate organization names
mined in the social web-data. Authors used web data [3], and sophisticated algo-
rithms [4]. However, we are aiming to find the simple and yet precise solution,
basing on the simple input data - just affiliations. That way we can get compu-
tationally effective algorithm, which can be specified using results of the author
name disambiguation problem solution.

2 Methods and Materials

2.1 Prerequisites

The basic idea of the work is to get the groups of organizations mentions, which
contain only mentions of one institution. After that we may use that informa-
tion to build the co-authorship graph of organizations/countries, get static and
dynamic characteristics of the science field, etc. So on the first step we solved
the clustering problem of institutions names writings:

maxf(C) subject to C = (C1, ...Ck), C1 ∪ ... ∪ Ck = S, (1)

where S - the set of affiliations extracted from the publications, Ci - group of
similar affiliations. So we want to assign a label to each of the affiliations in the
dataset, so that the final grouping by labels maximizes some function f . This f
can be constructed in many ways, however in our case, the closer the grouping
is to the ground-truth grouping (i.e. one group contains all and only affiliations
that refer to the same institution), the higher the value of the function. So the
previous problem statement will transform:

maxf(C,R) subject to R = (R1, ...Rk), C = (C1, ...Ck) (2)

C1 ∪ ... ∪ Ck = S,R1 ∪ ... ∪ Rk = S,

where R – is the ground-truth grouping of the affiliation set S, labeled by the
author, m – the ground-truth number of labels. The function f that provides such
characteristics is discussed in the Evaluation Metrics section of this chapter.

Inter-country Competition and Collaboration 29

2.2 Dataset

To conduct experiments, we have gathered two datasets from PubMed [1] dig-
ital library using MEDLINE file format. First one is the Novosibirsk dataset,
that consists of the preprocessed affiliations of the Novosibirsk institutions. This
dataset was gathered in the Titovs’ and Blinovs’ work [2] dedicated to the author
disambiguation problem. We labeled this dataset to have the ground-truth affil-
iation clustering to further use it for clustering algorithm hyperparameters fine-
tuning. Second one is the miRNA dataset gathered on the following search query
on the PubMed website over Title and Abstract fields:

(((((((miRNA) OR mi-RNA) OR microRNA) OR micro-RNA) OR miRNAs)
OR mi-RNAs) OR microRNAs) OR micro-RNAs.

The miRNA dataset contains the publications available on the PubMed dig-
ital library as of 11/11/2018 (Table 1).

Table 1. Characteristics of the datasets used in the work

Novosibirsk dataset miRNA dataset

of articles ∼6,000 77,800

Year ... - 2014 ... - 2018

of affiliations 951 387,793

of unique organizations 62 ∼20,000

2.3 Evaluation Metrics

We used homogeneity (h), completeness (c) and v-measure score (v) [5] to eval-
uate the clustering results for Novosibirsk dataset.

h = 1 − H(C|K)
H(C)

(3)

c = 1 − H(K|C)
H(K)

(4)

v = 2 ∗ h ∗ c

h + c
, (5)

where H(C|K) = −∑|C|
n=1

∑|K|
n=1

nc,k

n
∗ log(nc,k

nk
), H(C) = −∑|C|

c=1

nc

n
∗ log(nc

n
);

H(K|C),H(K) are constructed the same way.
These metrics are analogous to precision, recall and f-metric used in super-

vised learning. Homogeneity equals one if every cluster contains only all data
points from one class. Completeness equals one if all data points from one class

30 A. Firsov and I. Titov

are assigned to the same cluster for every cluster. In addition, v-measure is
derived from homogeneity and completeness. The closer these metrics are to
one, the better the solution is.

Although we aimed to increase this parameters, it is pretty hard to have
them be near 1 if you work with affiliation entry only. So, we introduced addi-
tional metric to choose from different clustering results. As we aim to create an
instrument that reveals some statistics of institutions activity basing on their
names only, it is reasonable to try to cluster affiliations in the way that final
cluster count is equal to ground-truth class count. Thus, we chose those hyper-
parameters that gave clusters count close to real class count. All the clustering
quality metrics were calculated using the most significant clusters (cluster vol-
ume ≥ 10), as we want to be aware only on those institutions that are actively
publishing in a certain field.

2.4 Data Preprocessing

Pre-processing stage of all algorithms is performed before actual calculations. As
discussed in introduction, affiliations have some additional information, which
relate to the author, not institution. This leads to the big number of variations of
institution name writing. On that stage, we remove emails/zip/phone/numbers
from affiliation using regular expressions. We also perform standard operations,
like preserving only alphabetical characters, expanding the abbreviations, remov-
ing stopwords, etc.

During the research we tried several NLP frameworks hoping they can fix
errors described in some points above. These include NLTK [7], language check
[8] and others. We found out that affiliations (or institutions references) cannot
be fully considered as manifestations of natural language, and NLP frameworks
perform poorly on them, giving a lot of errors on each affiliation. However, they
still can be used to fix errors inside words such as “institue” and others.

So far we eliminated explicit artifacts, however, there may be implicit arti-
facts, like name of the laboratory where the author works. We call this an
“implicit” artifact as this name can be different for different institutions and
it is hard to provide deterministic algorithm that will work for every situation.

To handle such artifacts, we introduced regular expression based algorithm
based on keywords and country names. We provide our algorithm with keywords,
such as “center”, “institute”, etc. We also provided our algorithm with full list
of country names. Now, having all that information, we can represent our affili-
ation as a sequence of numbers. We split affiliation by commas and assign each
part 0 number. If any keyword is in a particular part, we assign it number 1. If
any country is in a particular part, we assign it number 3. Thus, “Institute of
Cytology and Genetics, Novosibirsk, Russia” is represented as “103”; “Institute
of Cytology and Genetics, Institute of Mathematics, Novosibirsk, Russia” is rep-
resented as “1103”. Number of ones represents the number of institution names
in the affiliation, which can further be handled with a simple regular expression
– “(0?1+0?0*0?3?0?)”.

Inter-country Competition and Collaboration 31

Fig. 1. Example of normalized and split affiliation

The advantage of such approach is that new notions can be introduced into
this algorithm, e.g. cities. Moreover, it is extensible and modifiable, as providing
new keywords and country/city names, we can wider our algorithm configuration
to work with bigger domain of affiliations.

2.5 Clustering and Similarity

After the pre-processing stage, the clustering stage is performed. We tried differ-
ent techniques for the clustering – K-Means and DBSCAN [10] – and different
popular similarity functions – Levenshtein, Jaccard, Smith-Waterman. We used
scikit-learn [9] implementation of those.

We also tried using K-Mers feature vectors to find similarity between affilia-
tions. K-Mer is a notion that came from genetics. It is a substring of a certain
string of length K. Geneticists use it to analyze DNA/RNA sequences. In Nat-
ural Language Processing there is a similar notion – n-gram. Building K-Mer
feature vector is described below and in section K-Mers Boolean Feature Vector
Sorting (KOFER) based Clustering. However, it is important to notice that we
used letter K-Mers, not word K-Mers in the work.

Similarity functions were used to create the distance matrix, and also K-Mers
were used to create features of a certain affiliation. As K-Mer is a substring of
a string of length K, one can assign the Boolean vector to the affiliation. In this
vector each bit represents the presence of a certain K-Mer in the affiliation. As
K-Mer dictionary power exponentially grows with the K number, this dictionary
upon K-Mers consists only of K-Mers present in the certain dataset that is being
processed in the experiment.

Basically, similarity function for strings is a function that takes as an input
two terms and outputs the value between 0 and 1:

f(x, y) = z, (6)

where z ∈ [0, 1], x, y ∈ V ∗, V - alphabet. However, for Boolean vectors - x, y ∈
Bm, m - the size of the K-Mer dictionary.

During experiments we found out that KMeans and DBSCAN perform poorly
on affiliations data, so we proposed another method based on the K-Mer boolean
feature vectors clustering.

The idea of the method is based on the consistency of affiliation writing. E.g.
if an author works in “Institute of Cytology and Genetics”, it is highly likely

32 A. Firsov and I. Titov

that this particular words with some additional information will be present as
affiliation in his work. Moreover, we can assume that these words should usually
be placed in the “first position” of affiliation, like in “Novosibirsk Institute of
Cytology and Genetics, Novosibirsk, Russia”.

The naive idea would be to sort affiliations strings, find distance between
current and next neighbors, and then set a threshold for the distance. If the
distance exceeds the threshold, we can consider this pair to belong to different
clusters, e.g. Table 2.

Table 2. 10 affiliation entries sorted by name. d(i, i+1) is the demonstrative distance.
5th line has high distance as affiliations refer to different organizations. The last row
is automatically assigned to the latest cluster as there is no next row to calculate
similarity with.

i Affiliation d(i, i + 1)

1 Institute of cytology and genetics 0.1

2 Institute of cytologyand genetics 0.2

3 Institute of cytology and gnetics 0.3

4 Instiute of cytologyand genetics 0.2

5 Institute of cytology and genetics 0.8

6 Institue of bioorganic chemistry 0.1

7 Institue of biorganic chemistry 0.2

8 Institue of bioorganicchemistry 0.1

9 Institue of bioorganic chemistry 0

10 Institue of bioorganic chemistry

Such an approach benefits in performance time. DBSCAN complexity is
O(n2) in the worst case (running ahead, we note that we observed such sit-
uation running experiments), as well as sorting (however we did not observe
that problem during experiments). Distance calculation time grows linearly with
increasing number of records, as well as comparison time. Thus, performance
complexity would be O(nlog(n)) ideally. However, the naive approach performs
badly in the following situations:

1. There exists preceding part in affiliation name – “Institute of Cytology and
Genetics” vs “Novosibirsk Institute of Cytology and Genetics”.

2. There is an error in the beginning of the affiliation – “Lnstitute of Cytology
and Genetics”.

In both cases, entries are assigned into different clusters, as they start with
different characters.

Inter-country Competition and Collaboration 33

2.6 K-Mer Boolean Vector Sorting

To tackle the problems pointed above, we decided to perform sorting on K-
Mers vector instead of plain text. Here and further, we mean letter K-Mer when
mention K-Mer, not word K-Mer. K-Mer vector can be constructed in different
ways, but firstly, one should calculate K-Mer dictionary:

1. Take the dataset with affiliations
2. Calculate K-Mers for each string
3. Take only unique K-Mers and reorder them from frequent to rare

We need reordering to provide each K-Mer with its place and to provide position
invariance.

Having this done, we then proceed to feature vector calculation, which can
be done using one of the following approaches:

1. Create the binary vector, that represents the presence of all K-Mers in the
affiliation

2. Create natural vector, that represents the number of occurrences of all K-Mers
in the affiliation

Further, we discuss the first approach and provide the results of clustering using
binary K-Mer features. Then, we can lexicographically sort these vectors so
that affiliations with similar contents will be aligned together in the array of all
affiliations. And moreover, this procedure can restore the conformity between
affiliation substrings, as we can see from the Table 4.

E.g., assume that the dataset contains only two words – “institute” and
“institue”. We use the simple example here for the ease of understanding. Then
the K-Mer dictionary and K-Mer Boolean feature vectors would look like this:

Table 3. K-Mers dictionary and K-Mers boolean feature vectors for the simple case

Dictionary K-Mer occurrences in
2

ns
2

st
2

ti
2

it
2

tu
2

ut
1

tu
1

ue
1

For the word “institute” 1 1 1 1 1 1 1 1 0

For the word “institue” 1 1 1 1 1 1 0 0 1

Having this done, we can further lexicographically sort the K-Mer Boolean
feature vectors and find the distance between two neighboring vectors using
Boolean distance metrics, as we did in the Results chapter, for the use in clus-
tering by the threshold. For example, below is the table showing words sorted
by their K-Mer Boolean feature vectors representation. Here, we use five words
to show how we reach the threshold of the distance in the sorted list of vectors
- “institute”, “institute”, “institute”, “center”, “centre”. We also eliminate the
explanation of the K-Mers dictionary construction, as it was explained before.
The distance was calculated using Dice distance [11].

We can see that similar words grouped and the distance reaches its peak
when there is a change from the word “institue” to the word “center”. If we

34 A. Firsov and I. Titov

Table 4. Affiliations sorted lexicographically by the K-Mer boolean feature vectors
with distances between neighboring records calculated with Dice distance

Word K-Mer Boolean feature vector Distance between current and next

Institute 1111111100000000 0.2

Institute 1111100100001000 0.43

Institute 1111011000010000 0.83

Center 0000100011100100 0.4

Centre 0000000011100011 0.2

than say that the distance threshold should be bigger than 0.43 to consider
previous and further records to belong to different clusters, we than can validly
assign different words to different clusters.

2.7 Country Identification

To identify countries in affiliations we used the open data [17] with the list of
countries and cities provided. If the country or city was present in the affiliation,
than the affiliation was assigned the corresponding country

3 Results

In this paper, we present the results for country level co-authorship in the miRNA
field. Using the K-Mer Boolean vector sorting algorithm we were able to cluster
the miRNA affiliations data. From the 387,793 affiliations we got 23,655 clusters.
i.e. institutions.

3.1 PubMed Statistics

To have the properties to compare with, we got the statistics from the PubMed
website in Fig. 2. All the plots were generated using the matplotlib software [19].
The growth of the articles available in the PubMed is different from the ones foe
the miRNA science field - for all the publications in the miRNA field the linear
model does not fit. The beginning of the growth is different from the remainder
part.

The logistic function estimation on the remainder part gives
a

1 + b ∗ exp−c∗x =
19603.09

1 + 31.09 ∗ exp−0.42∗x (7)

parameter values. And the exponential estimation at the beginning

expa∗x+b = exp3.62∗x+0.74 (8)

In these formulae the x ∈ N represents the offset between the first publication
year and others, i.e. x ∈ 0, 1, ... This shows that likely the miRNA field is in the
saturation state. All the graphs are built using the 2003–2016 data, because the
2017, 2018 years are the years when the field reaches it’s plateau.

Inter-country Competition and Collaboration 35

(a) Number of publications added to the PubMed digital library per year

(b) Number of publications per year in the
miRNA science field

(c) Log number of publications per year
in the miRNA science field

Fig. 2. Publications activity of PubMed. Lines are built using approximation functions
in the boxes starting at x = 0, x ∈ 0, 1, ...

3.2 Countries Publication Activity

It would be interesting now to see per country publication activity (Fig. 3). We
may see that the USA had the rapid start of publication in this field, reaching 100
publications in 2004. However, the growth started to reduce over time, whereas
China had higher growth, which led to China becoming the new leader in 2013.
The numeric growth estimations for separate countries are available in Fig. 4 and
Table 5.

Fig. 3. Number of publications of USA, China, Germany in the miRNA science field
added to the PubMed per year

36 A. Firsov and I. Titov

Fig. 4. Log number of publications of USA, China, Germany, Italy in the miRNA
science field added to the PubMed per year. Left-upper corner contains exponential
estimation of the first 3 years of publication activity. Right-bottom corner contains
logistic estimation of the rest of the years of publication activity

The logistic parameters estimations for publication activity of different coun-
tries is presented in the table below:

3.3 Countries Interaction Graph

To see how countries interact, we have built the graph using the gephi software
[18]. We used only those countries that have published more than 500 articles
to reduce the noisiness of the graph in Fig. 5.

The graph shows that the USA and China are the leaders in this field, as
well as they publish together a lot. Although connections are quite dense, and
there are many joint publications between different country pairs, the number
of joint publications seems to be quite low, and it is not clear whether some
country is the driver of joint publications, or it is the common practice in the
field to publish together. This problem will be addressed in the Sect. 3.4.

3.4 Joint Publications

During the 2002–2016 period, there were 52,407 publications, 5,412 of which
were international, i.e. joint. The field until some time did not have much joint
publications, however things changed in 2013. That year USA and China started
actively publish together (Fig. 6).

However, the main driver for joint publications is the USA, as it has more
publications with different countries than China (Table 6). Also, it is interesting
to notice that major part of all USA joint publications appeared after the 2013,
when it started actively publishing with China.

Inter-country Competition and Collaboration 37

Table 5. Parameter of the logistic function estimation for publication activity of dif-
ferent countries

Country a b c

Australia 397,04 44,51 0.49

Canada 396,36 36,44 0.42

China 5,610.52 156,97 0.65

France 270,78 56,34 0.42

Germany 668,37 15,56 0,41

India 300,92 93,69 0.61

Italy 669,29 16,41 0,42

Japan 400,22 25,3.1 0.54

Korea 277,04 150,24 0,68

Netherlands 237,04 10,57 0.38

Spain 268,22 47,5 0.47

Switzerland 193,1 14.26 0.38

UK 961,07 29.11 0.36

USA 2798,78 10,04 0.37

Fig. 5. Co-authorship of countries in the miRNA field. The label text, as well as the size
of the point reflects the number of published articles, edges thickness shows the number
of articles published together. If there were more than 2 countries in the publication,
each pair of countries is considered to have had the joint publication.

38 A. Firsov and I. Titov

Fig. 6. The log portion of international publications relative to overall number of pub-
lications. Blue color - within all countries. Red color - within USA only (Color figure
online)

Table 6. Most active countries pairs sorted by the number of joint publications

Country 1 Country 2 Joint publications

USA China 1,084

USA UK 324

USA Italy 227

USA Germany 223

USA Canada 190

UK Germany 182

USA Korea 165

USA Japan 145

USA Australia 131

China Canada 110

UK Italy 103

China UK 101

USA France 100

4 Discussion

Getting the implicit properties of science field has major research interest as it
reveals the current state of the field, provides the opportunity to compare dif-
ferent science fields with uniform instrument and gives the possibility to predict
the creation of new fields or the future of the particular one.

And although metrics are the subject of the disputes - whether they are
needed or not, useful or harmful - they are still of peoples interest. Whether
government or companies support the research, they also rely on information
environment surrounding the science field, which is often quantified to, e.g.
number of publications within a science field, the impact of the research on

Inter-country Competition and Collaboration 39

the market, etc. Having more possibilities to reveal the “true” state of the sci-
ence field would help researchers to show the importance of their field, as well
as the funding organizations to distribute their funds efficiently. Thus, this work
aims to reveal the quantitative metrics of the science field.

In our worked we used K-Mer Boolean feature vector sorting algorithm, which
performed fast, however it still has the drawback of splitting the cluster into 2
separate cluster if there appears the different affiliation with common k-mer/n-
gram inside the cluster. This problem can be tackled using the numeric feature
vector, which will consider not only the presence of the k-mer/n-gram, but also
the count of them present in the affiliation.

This work yet does not cover the affiliation level properties of the miRNA
science field. It would be interesting to see the leaders of the field, track their
history and also get the properties of the co-authorship graph.

The points mentioned above will be considered in the upcoming paper.

5 Conclusion

In this work we have implemented the algorithm for fast institution name clus-
tering based on the K-Mer Boolean feature vector sorting - KOFER. Using that
algorithm we managed to cluster the miRNA science field affiliations data.

Using the clustering results, we were able to get properties of country level
interactions, see that China is currently the leading country in this field, however
the USA is the biggest driver of joint publications.

The linear growth model does not fit the publication activity of countries
- the relaxation should be taken into account. That tells us that the field is
currently reaching it’s peak.

References

1. Ncbi.nlm.nih.gov. Home - PubMed - NCBI (2019). https://www.ncbi.nlm.nih.gov/
pubmed/. Accessed 17 Jan 2019

2. Titov, I., Blinov, A., Research of the structure and evolution of scientific co-
authorship based on the analysis of Novosibirsk institutes publications in the biol-
ogy and medicine science field. Vavilov J. Genet. Sel. 18 (2014)

3. Zhang, S., Wu, J., Zheng, D., Meng, Y., Yu, H.: An adaptive method for organiza-
tion name disambiguation with feature reinforcing. In: 26th Pacific Asia Conference
on Language, Information and Computation, pp. 237–245 (2012)

4. Polat, N.: Experiments on company name disambiguation with supervised classifi-
cation techniques. In: 2013 International Conference on Electronics, Computer and
Computation (ICECCO) (2013). https://doi.org/10.1109/ICECCO.2013.6718248

5. Bell Hirschberg, J., Rosenberg, A.: V-Measure: a conditional entropy-based exter-
nal cluster evaluation. In: EMNLP, Prague (2007)

6. Rajaraman, A., Ulman, J.: Data mining. In: I.stanford.edu (2011). http://i.
stanford.edu/ullman/mmds/ch1.pdf. Accessed 20 Jan 2019

7. Natural Language Toolkit - NLTK 3.4 documentation. In: Nltk.org. https://www.
nltk.org/. Accessed 20 Jan 2019

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
https://doi.org/10.1109/ICECCO.2013.6718248
http://i.stanford.edu/ullman/mmds/ch1.pdf
http://i.stanford.edu/ullman/mmds/ch1.pdf
https://www.nltk.org/
https://www.nltk.org/

40 A. Firsov and I. Titov

8. Language-check. In: PyPI. https://pypi.org/project/language-check/. Accessed 20
Jan 2019

9. Scikit-learn: machine learning in Python - scikit-learn 0.20.2 documentation. In:
Scikit-learn.org. https://scikit-learn.org/stable/. Accessed 20 Jan 2019

10. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. AAAI Press (1996)

11. Dice, L.R.: Measures of the Amount of Ecologic Association Between Species (1945)
12. Fortunato, S., et al.: Science of science. Science (2018). https://doi.org/10.1126/

science.aao0185
13. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance

metrics for name-matching tasks. IIWeb (2003)
14. Kamber, H.J.: Data Mining: Concepts and Technique. Morgan Kauffman, Burling-

ton (2005)
15. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.

Surv. 31, 264–323 (1999)
16. Ferreira, A.A., Gonçalves, M.A., Laender, A.H.F.: A brief survey of automatic

methods for author name. SIGMOD Rec. 41, 15–26 (2012)
17. Usoltcev, E.: meMo-Minsk - Overview. In: GitHub (2016). https://github.com/

meMo-Minsk. Accessed 25 Jan 2019
18. Gephi - The Open Graph Viz Platform. In: Gephi.org. https://gephi.org/. Accessed

25 Jan 2019
19. Matplotlib: Python plotting - Matplotlib 3.0.2 documentation. In: Matplotlib.org.

https://matplotlib.org/. Accessed 25 Jan 2019

https://pypi.org/project/language-check/
https://scikit-learn.org/stable/
https://doi.org/10.1126/science.aao0185
https://doi.org/10.1126/science.aao0185
https://github.com/meMo-Minsk
https://github.com/meMo-Minsk
https://gephi.org/
https://matplotlib.org/

Archival Information Systems: New
Opportunities for Historians

Irina Krayneva and Sergey Troshkov(B)

A.P. Ershov Institute of Informatics Systems,
Lavrentiev ave. 6, 630090 Novosibirsk, Russia

cora@iis.nsk.su, kamronis@xtech.ru

Abstract. This paper presents a brief summary of the twenty years of
research carried out at the A. P. Ershov Institute of Informatics Systems
SB RAS in the area of developing electronic archives for heterogeneous
documents. The phenomenon of electronic archives emerged and has been
developing as part of the Novosibirsk school of informatics, which has
always been oriented towards the contracting of social services. In the
1970s, the first social service projects launched by the Institute were edu-
cational initiatives for school education, accordant with the well-known
thesis of Andrey Ershov: “Programming is the second literacy”. Over the
years, the IIS SB RAS has completed a range of projects on digitizing
historical and cultural heritage of the Siberian Branch of the Russian
Academy of Sciences: the Academician A. P. Ershov Electronic Archive,
SB RAS Photo Archive and the SB RAS Open Archive. This work has
become especially relevant in view of the ongoing restructuring of the
Russian academic science.

Keywords: A.P. Ershov · Digital archives · Digital historical
factography · Drupal

1 Introduction

The current information boom has brought up a number of challenges dealing
with the problem of relevance of the information produced by a researcher; pro-
viding quality information to the scientific community has become a cornerstone
task. James Nicolas Gray, an American researcher in computational systems and
a Turing Award holder, suggested the concept of the fourth paradigm of research,
a grid-technology based science that uses big data. Even though Gray and his
followers stress the importance of systematization and free access to scientific
archives (including experimental data and modeling results), the notion of a
big virtual archive for humanities studies is no less relevant [1]. This highlights
the relevance of free access to information since scientific workers are known to
benefit from information and communication technologies (ICT) [2].

The demand for novelty and relevance of scientific research as a socio-
cognitive institute stresses the need for a better and quicker access to archives,
c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 41–49, 2019.
https://doi.org/10.1007/978-3-030-37487-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_4

42 I. Krayneva and S. Troshkov

libraries, museums and other types of heritage content. Informatization as well
as commercialization of state-run archives in Russia was propelled even further
by the emergence of the Internet in the 1990s. Evidently, there should be alter-
native options of free access to information as well. The IIS SB RAS research
team was among the first to complete several projects on the creation, scientific
interpretation, organization and development of the methodology of digitizing
scientific heritage; our experience can be viewed as technology-intensive, scien-
tifically based, successfully tested and implemented [3].

Interdisciplinary collaboration of specialists in human studies and IT at the
dawn of the Internet relied predominantly on the concept of open scientific com-
munications. In essence, this is a cluster of civil society supported by profes-
sionals. Museums, libraries, universities and research institutions getting access
to the Internet boosted user experience and the emergence of Internet-oriented
resources: published museum collections, online library systems and catalogs,
archival tools for research and reference, and select collections. For instance, in
the Novosibirsk Scientific Center, projects on the creation of electronic archives
of different types of documents became possible as part of the project called
“The Internet of Novosibirsk Scientific Center” in 1994–1998, funded by the
Soros Foundation, Russian Foundation of Basic Research, and INTAS. As result,
research institutions and other organizations of the NSC got free access to the
Internet.

2 Tools

The emergence and distribution of special tools – information systems (IS) –
facilitates the development and systematization of information in professional
communities, including those engaged in humanities studies [4]. Electronic cat-
alogs and knowledge bases became an integral part of scientific community pro-
cesses by the end of the 20th century. Specialized information systems appeared
aimed at presenting, storing and organizing historical sources and texts, i.e.
history-oriented IS’s. We understand information systems as a complex of tech-
nical, program, organizational and financial utilities as well as the personnel
capable of working with this complex and complete the project [5]. The minimal
staffing of such projects, based on the experience of the IIS SB RAS, is about
10 people, including programmers, historians, information specialists (operators)
and translators.

Specialists from Perm State University whose interest is the application of
the IT in humanities suggested a specification of history-oriented systems [6].
Of special interest are systems containing, in addition to historical information,
a set of research tools (search, analytics, text recognition, etc.). We see two
approaches to creating the IS’s: history-oriented, when a system is based on an
array of documents from a single source, and the system is modeled according to
the structure of this source, and problem-oriented, when a model is built based
on the structure of the studied field of knowledge. According to this classification,
the systems created in the IIS SB RAS are history-oriented. The SB RAS Photo

Archival Information Systems: New Opportunities for Historians 43

Archive integrates two sources on its platform: scans of photographic documents
and archives of the Nauka v Sibiri (Science in Siberia) newspaper. There is an
organic and thematic connection between the two sources, because the news-
paper staff reporters took many of the photos. In addition to documents, the
A. P. Ershov’s Electronic Archive and the SB RAS Open Archive contain pho-
tographs and research papers. We consider our IS’s source-oriented for another
reason, too: the archives contain images (scans) of original documents with tran-
scriptions supplied as an additional feature allowing to read compromised and
poorly legible scans. Finally, our IS’s support remote workspaces for document
description.

3 Analogies and Problems

Currently there are many resources created for the accumulation of historical
and cultural heritage in a digital format. Millions of photographs from the LIFE
photo archive, stretching from the 1750s to today, are now available for the first
time through the joint work of LIFE and Google (2008). Digital collections of the
Science History Institute (https://digital.sciencehistory.org/) includes 6,508 dig-
itized items: artifacts, photographs, advertisements, letters, rare books. Library
of Congress (https://www.loc.gov/) and digital collections of UNESCO (https://
digital.archives.unesco.org/en/collection) are the most impressive ones. Though,
they have no available catalogue to help determine the connections between doc-
uments.

One of the main problems faced by the creators of these projects was financ-
ing. In 2015, UNESCO launched a fundraising project to digitize the archives of
the Organization belonging to its predecessors, including the League of Nations
International Institute for Intellectual Cooperation. Two years later, thanks to
the generous support of the Japanese government, UNESCO launched a major
two-year initiative. In partnership with the digitization company Picturae BV,
a laboratory was established at the site of UNESCO Headquarters in Paris in
February 2018.

Financing a project is a painful question for us as well. Russian foundatians
are willingly provide finance for the launch of the project but not for its sup-
port and development. At present, the attraction of sponsor funds has not been
undertaken, since the project A. P. Ershov’s Archive has been practically com-
pleted. The remaining digital projects of the Institute of Informatics Systems of
the SB RAS are carried out within the framework of the government assignment
to the Institute on the theme “Research of the fundamentals of data structur-
ing, information resources management, creation of information and computing
systems and environments for science and education” The purpose of this study
is the development of automated support methods for ontology design. The bot-
tleneck in this direction so far is the creation of more accurate search tools, text
recognition tools, involving qualified personnel.

https://digital.sciencehistory.org/
https://www.loc.gov/
https://digital.archives.unesco.org/en/collection
https://digital.archives.unesco.org/en/collection

44 I. Krayneva and S. Troshkov

4 Technology and Method of Digital Historical
Factography

As part of Internet-oriented professional IS’s, the IIS SB RAS team has devel-
oped a technology and method of electronic historical factography, which allows
working with arrays of heterogeneous documents and their further structuring
by establishing connections between the entities reflected in the documents. The
Internet resources developed at the IIS focus on the materials on the history
of science and technology in Siberia – the Siberian Branch of the Russian (for-
merly Soviet) Academy of Sciences. Electronic historical factography dates back
to 1999, when the IIS team began working on an automated information sys-
tem for the creation and support of the Academician Andrey P. Ershov digital
archive.

The method of electronic, or digital, historical factography consists in the
publication of historical sources in Internet-oriented information systems accord-
ing to the rules of working with conventional archival documents: properties such
as the document source, type, author, addressee (either a person or an organi-
zation), dates, geographic data, etc., must be provided. The IS makes use of
the technology allowing to establish connections between these entities of the
subject field. Document quoting s from a digital archive is possible by means of
web links as well as by indicating a specific volume and page of the archive (this
is the case with the A. P. Ershov Electronic Archive and with other archives of
the SB RAS where documents originate from the state-run storages).

While working on the first academic project of an Internet-oriented IS
referred to as the A. P. Ershov Electronic Archive (http://ershov.iis.nsk.su), the
IIS SB RAS team developed original software tools based on the client-server
technology using predominantly Microsoft solutions. The archivist’s workspace is
written in Perl [7]. The specialized IS was created not only as a means of making
a body of documents available to science, but also as a tool allowing a historian
of science to perform a range of research tasks, such as organizing historical
documents, providing remote access to these documents, keyword-based queries
search, accumulating thematically connected sources from different storages, sci-
entific description, etc. Almost all the documents from the Ershov’s archive were
digitalized with the exception of some personal letters.

The software tools created at the IIS SB RAS ensure stable functioning and
continuous maintenance of virtual content. The developers wanted the visual
archive in the public interface to correspond to the physical archive created
by A. P. Ershov. He formed the cases on the thematic-chronological and the-
matic principles. His approach remained almost unchanged. Some corrections
were made in order to remove duplicates, build chronology, establish authorship
and dating of documents. The archive, formed by A. P. Ershov, was supple-
mented by some new documents received from the state archives. The electronic
version supports two types of systematization: on the basis of cases and on the
basis of thematic-chronological approach in the form of a corresponding catalog.

http://ershov.iis.nsk.su

Archival Information Systems: New Opportunities for Historians 45

Document types that were digitalized included letters, drafts of scientific arti-
cles, photos, reports, diaries, paperwork documents, reviews on scientific works,
etc.

The Electronic Archive framework also contains documents on the history of
IIS SB RAS, VTNK “Start” (Temporary scientific and technical team “Start”)
and the A.P. Ershov Informatics Conference (PSI’). The pupils of the correspond-
ing member of the USSR Ac. of Sci. S. S. Lavrov (1923-2004, St. Petersburg),
transferred his archive to Novosibirsk. It is also presented on the platform of
Ershov’s archive.

The use of digitized documents is of communicational as well as of ergonom-
ical importance, since many researchers with year of hands-on experience with
archives suffer from the chronic disease caused by long-term contact with old
paper, glue and dust, which at times prevents them from working directly in
the archives. From this point of view, digital archives are safe and convenient to
use. During the existence of the archive in the public domain, we did not receive
objections to the publication of any documents.

5 Expansion of Project Activities

Upon the completion of the A. P. Ershov Electronic Archive project, in the run-
up to the 50th Anniversary of the Siberian Branch of the RAS, an initiative
group from the IIS SB RAS led by Dr. Alexander Marchuk began working on
a new project – the SB RAS Electronic Photo Archive (http://www.soran1957.
ru) (2005–2009). The project united a large number of separate photograph col-
lections on the history of science in Siberia into a single volume of documents,
which came from photoreporters, organizations (such as the SB RAS Museum,
SB RAS Expo Center, SB RAS Press Center as well as a number of research
institutes), and private collections. A landmark event in the history of Novosi-
birsk of the 20th century was setting up a town of science: Akademgorodok
of Novosibirsk. We owe the existence photographic records of Akademgorodok
from the moment of searching for a location for the new town to the foresight of
Mikhail Lavrentiev, its founding father, who ordered that a cinema and photo-
laboratory be organized and invited Rashid Akhmerov (1926–2017) to be the
staff photographer.

Especially for the Photo Archive a new IS was created– the SORAN1957
system [8]. It supports collecting, structuring and digital publication of histor-
ical data and documents using specially developed software and organizational
mechanisms. The SORAN1957 includes a system of structured data reflecting
real-world entities and their relationships. Methodologically, the system is based
on the ideology of Semantic Web. This approach allows structuring data accord-
ing to an ontology. An ontology is a formal specification of a shared conceptual
model – an abstract model of the subject area describing a system of its con-
cepts. A shared model is a conventional understanding of a conceptual model by
a certain community (a group of people). “Specification” is an explicit descrip-
tion of the system of concepts, and “formal” means that the conceptual model

http://www.soran1957.ru
http://www.soran1957.ru

46 I. Krayneva and S. Troshkov

is machine-readable. An ontology consists of classes of entities of a subject area,
properties of these classes, connections between these classes and statements
made up of classes, their properties and connections. The resulting software
tools enable input and editing of data as well as import of data from other
sources, such as newspapers.

The SORAN1957 system features a public interface to the database and
to the photographic documents. Users can study photographs, documents and
database facts and their interconnections. For instance, by using text search the
user can find a person of interest and their personal data, linked photographs,
organizations (for instance, where that person worked), titles, etc. A nonspe-
cific information ontology is used here, which allows avoiding the duplication
of information contents in general-purpose and specialized information systems.
The system is based on the Semantic Web concept and .NET technologies and
can be installed on a server or an end user machine.

Our experience with the projects described above allowed us to cover a
broader range of historical sources. In 2012, an integrative project of the SB
RAS Presidium Fundamental Research, “The SB RAS Open Archive as a sys-
tem of presenting, accumulation and systematization of scientific heritage” began
(2012–2014, http://odasib.ru/). In this project, IIS SB RAS collaborated with a
number of research institutes of the Siberian Branch specializing in humanities.
Currently the SB RAS Open Archive contains 17 collections with 54,362 docu-
ment scans (as of March 28, 2018). Documents added to each collections are sys-
tematized based on the internal logics of the content type. The system allows the
creation of topic-based collections and sub-collections containing linked sources.

6 “Migration” Policy

It follows from the above descriptions of the projects that for each of them an
original information system was developed, supported by grants from funds and
sponsors (proprietary software). Some experts predicted over a dozen years ago
that “in the future applied programs might not be developed but ‘assembled’
from ready-made components, a job that will not require a programmer but a
qualified user who can formulate what he/she wants to receive at the output
in the terms understood by the component management system. The center of
gravity will shift from programming to design” [9]. Real life, however, has turned
out to be much more complicated, and the key word here is a “qualified user.”

In 2001, the open-source software expanded with the Drupal content man-
agement system (https://www.drupal.org/), developed and supported by pro-
grammers from all over the world [10]. The Drupal architecture allows for the
construction of various web-applications like blogs, news sites, archives and social
nets. Drupal contains over 40,000 modules that can be used to create an appli-
cation necessary for solving the developers’ problems. To achieve this, however,
the developers need to learn how to find and install the necessary modules and
how to write their own modules to solve highly specialized tasks. This means
that using information technologies by humanities-minded people is not a trivial
task, and help from programmers is welcome if not a must.

http://odasib.ru/
https://www.drupal.org/

Archival Information Systems: New Opportunities for Historians 47

In 2016, the A.P. Ershov Electronic Archive was migrated to the Drupal plat-
form (the graduate project of Sergey N. Troshkov, Mechanics and Mathemat-
ics Department, Novosibirsk State University, supervised by Doctor of Physics
and Mathematics Alexander G. Marchuk and programmer Marina Ya. Philip-
pova) [11,12]. Parenthetically, following the migration of the Electronic Archive
was the migration of the Library system developed by Ya. M. Kourliandchik for
the A.P. Ershov Programming Department in the mid-1980s. Until recently, the
latter system had been used by the IIS SB RAS but as it was not written in the
client-server architecture and both the database and application were on installed
the same computer, it could not be accessed from another computer [13].

The experience of developing the IS has revealed two approaches to project
work. The approach to the creation of the A. P. Ershov’s Electronic Archive
is engineering: its creators used quite complex tools. Nevertheless, they have
created a convenient and multifunctional system in the service and user inter-
faces. Achieving a workable version was a one-step process and did not require
significant additions to the working tools. Changes and additions to the system
architecture were made imperceptibly for operators and users, eliminating the
loss or duplication of data. The tools were improved in the direction of increas-
ing the speed of access to the database. All the developers of this system are
currently the leading specialists of foreign software companies.

The approach of the creators of IS SORAN1957 and Open archive SB RAS
can be called as researching. The system was developed with the help of com-
plex Semantic Web tools. At the same time there was a search for the most
optimal solutions in the creation of software. Variants of platform solutions have
repeatedly changed, which sometimes led to duplication and loss of information,
slowed down the work of operators, for some time stopped the filling of IS. The
creators of the IS “Open archive SB RAS” did not provide short links to scans
of documents.

7 Conclusion

An important scientific problem of electronic archives is the reliability of con-
tent. Professional historians believe that the researcher needs to see the original
document in order to get the most complete picture of it. But the existing archiv-
ing system cannot provide a wide coverage of valuable archives. The creation
of professional IS involves the responsibility of its developers for the quality of
reproduction of documents. Modern means of representation allow the researcher
to get enough information about the source. It is no coincidence that facsimiles
and scans of rare books are being actively published.

Since the mid-1980s, the European community has launched projects sup-
porting specialists engaged in the preservation, conservation and dissemination
of knowledge about the heritage with the help of digital reality: Framework Pro-
gramme for Research & Technological Development FR1, 1984–1987, continued
until 2013, and then HORIZON 2020 became its successor [14]. In addition to
the programmes supporting appropriate research, special-purpose centers were

48 I. Krayneva and S. Troshkov

set up in some countries like the U.K. and France to provide the long-term stor-
age of software and access to it [15,16]. Moreover, the European Commission is
planning to launch a single European Open Science Cloud for storing, exchang-
ing and reusing research data in a variety of areas and support its infrastruc-
ture. In Russia, apparently, the critical mass required for making such decisions
at the national level has yet to be achieved. The Russian State Archives have
begun publicizing their meetings and reference apparatus fairly recently, later
than other institutions keeping historical sources. The Archive of the Russian
Academy of Sciences (RAS) is the umbrella association for launching a universal
corporate resource (http://www.isaran.ru). The Science Archive of the Siberian
Branch, RAS, however, neither digitizes its collections nor is represented in the
Internet. This is an urgent issue of the SB RAS and Russian Ministry for Science
and Education.

The structural changes undergoing in the RAS Siberian Branch in connec-
tion with reforming the Russian Academy of Sciences have so far ignored the
SB RAS archival activity. Therefore, the future of the SB RAS Science Archive
is uncertain. This most valuable collection of documents on the development
of Siberian science is in danger of neglect because the SB RAS Presidium has
no funds to maintain or, more importantly, to develop it. The SB RAS Sci-
ence Archive established simultaneously with the RAS Siberian Branch in 1958
possesses a richest array of representative sources on the history of science in
Siberia. It includes 86 library collections and 52,219 files including 9,356 personal
files. Until now, the Archive’s library collections have not been digitized for pro-
fessional or public purposes, and the Archive has no electronic resources of its
own (even though the SB RAS State Public Scientific-Technical Library has the
Internet connection). With a view to preserving the unique historical documents,
we need to digitize them and establish permanent repositories of datasets using
cloud technologies. Within the framework of the project SB RAS Open Archive,
which is in line with the all-Russia trend for the extensive use of information
and communication technologies in the cultural and scientific spheres, the IIS
has pioneered the organization of archival work in the RAS Siberian Branch. We
expect that our experience will be in demand.

Acknowledgements. Natalia Cheremnykh, Alexander Marchuk, Vladimir Philippov,
Marina Philippova, Mikhail Bulyonkov, Andrey Nemov, Sergey Antuyfeev, Konstantin
Fedorov, Irina Pavlovskaya, Alexander Rar, Natalia Poluydova, Igor Agamirzian, Ivan
Golosov, Irina Adrianova. The study was carried out with the financial support of the
Russian Foundation for Basic Research and the Novosibirsk Region, project №19-49-
540001.

http://www.isaran.ru

Archival Information Systems: New Opportunities for Historians 49

References

1. Lynch, C.: Jim Gray’s fourth paradigm and the construction of the scientific record.
In: Hey, T., Tansley, S., Tolle, K. (eds.) The Fourth Paradigm: Data-Intensive
Scientific Discovery, pp. 175–182. Microsoft Research, Redmond (2009)

2. Mirskaya, E.Z. : New information technologies in Russian science: history, results,
problems and prospects. In: Rakhitov, A.I. (ed.) Science Research: Coll. Proceed-
ings, pp. 174–200. INION RAN, Moscow (2011)

3. Krayneva, I.A.: Electronic archives on the history of science. Vestnik NSU Ser.:
Hist. Philol. 12(1), 76–83 (2013)

4. Chrictofer, J.D.: An Introduction to Database System. Dialektika, Moscow (1998).
1070 p

5. ISO/IEC 2382:2015 Information technology - Vocabulary: Information system - An
information processing system, together with associated organizational resources
such as human, technical, and financial resources, that provides and distributes
information. http://www.morepc.ru/informatisation/iso2381-1.html#s

6. Gagarina, D.A., Kiryanov, I.K., Kornienko, S.I.: History-oriented information sys-
tems: “perm” project experience. Perm University Herald. History 16, 35 (2011)

7. Srinivasan, S.: Advanced Perl Programming. O’Reily Media Inc., Newton (1997).
404 p

8. Marchuk, A.G., Marchuk, P.A. : Archival factographic system. Digital libraries:
advanced methods and technologies, digital collections. In: Proceedings of the XI
All-Russian Scientific Conference (RCDL-2009), pp. 177–185 (2009)

9. Evtushkin, A.: Dialectics and life of information technology. Computerra, 21, 31
(2001). http://old.computerra.ru/197835/

10. Mercer, D.: Drupal 7, p. 403. Packt Publishing, Birmingham-Mumbai (2010)
11. James, T.: Migration to Drupal 7, p. 145. Packt Publishing, Birmingham-Mumbai

(2012)
12. Troshkov, S.N. : Migrating web applications to the freely distributable open source

software. Bachelor’s final qualifying work. Novosibirsk, NSU, 25 p. Scientific adviser
M.Y. Fillipova, programmer IIS SB RAS. Authors archive (2016)

13. Troshkov, S.N.: On expirience in migrating applications to the freely distributable
open source software. Vestnik NSU Seri.: Inform. Technol. 16(2), 86–94 (2018)

14. Ioannides, M., et al. (eds.): Digital Heritage: Progress in Cultural Heritage: Doc-
umentation, preservation and protection. 6th International Conference, EuroMed
2016, Nicosia, Cyprus, October 31 – November 5, 2016, Proceedings, Part II. LNCS,
vol. 10058, pp. V–VII. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-319-48974-2d

15. Doorn-Moiseenko, T.L.: Electronic archives and their role in the development of
the information infrastructure of historical science. In: Vorontsova, E.A., Aiani,
V.Y., Petrov, Y.A. (eds.) Role of Archives in Information Support of Historical
Science: A Collection of Articles, pp. 101–117. ETERNA, Moscow (2017)

16. Schurer, K., Anderson, S.J., Duncan, J.A.: A Guide to Hictorical Datafiles Held
in Machine-Readable Form, 339 p. Assocoation for History and Computing, Cam-
bridge (1992). http://www.aik-sng.ru/text/bullet/8/89-95.pdf

http://www.morepc.ru/informatisation/iso2381-1.html#s
http://old.computerra.ru/197835/
https://doi.org/10.1007/978-3-319-48974-2d
https://doi.org/10.1007/978-3-319-48974-2d
http://www.aik-sng.ru/text/bullet/8/89-95.pdf

Two-Step Deductive Verification
of Control Software Using Reflex

Igor Anureev1,3(B), Natalia Garanina1,2,3, Tatiana Liakh2,3, Andrei Rozov2,3,
Vladimir Zyubin2,3, and Sergei Gorlatch4

1 A. P. Ershov Institute of Informatics Systems,
Acad. Lavrentieva prosp. 6, 630090 Novosibirsk, Russia

anureev@gmail.com, garanina@iis.nsk.su
2 Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia

3 Institute of Automation and Electrometry,
Acad. Koptyuga prosp. 1, 630090 Novosibirsk, Russia

{rozov,zyubin}@iae.nsk.su
4 University of Muenster, Einsteinstr. 62, 48149 Münster, Germany

gorlatch@uni-muenster.de

Abstract. In this paper, we introduce a new verification method for
control software. The novelty of the method consists in reducing the ver-
ification of temporal properties of a control software algorithm to the
Hoare-like deductive verification of an imperative program that explic-
itly models time and the history of the execution of the algorithm. The
method is applied to control software specified in Reflex—a domain-
specific extension of the C language developed as an alternative to IEC
61131-3 languages. As a process-oriented language, Reflex enables con-
trol software description in terms of interacting processes, event-driven
operations, and operations with discrete time intervals. The first step
of our method rewrites an annotated Reflex program into an equivalent
annotated C program. The second step is deductive verification of this
C program. We illustrate our method with deductive verification of a
Reflex program for a hand dryer device: we provide the source Reflex
program, the set of requirements, the resulting annotated C program,
the generated verification conditions, and the results of proving these
conditions in Z3py – a Python-based front-end to the SMT solver Z3.

Keywords: Control software · Process-oriented languages · Deductive
verification · SMT solver · Reflex language · Z3

1 Introduction

The increasing complexity of control systems used in our everyday life requires a
reassessment of the design and development tools. Most challenging are safety-
critical systems, where incorrect behavior and/or lack of robustness may lead
to an unacceptable loss of funds or even human life. Such systems are widely

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 50–63, 2019.
https://doi.org/10.1007/978-3-030-37487-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_5

Two-Step Deductive Verification of Control Software Using Reflex 51

spread in industry, especially, in chemical and metallurgical plants. Since behav-
ior of control systems is specified in software, the study of control software is
of great interest. Correct behavior under various environmental conditions must
be ensured. In case of a hardware failure, e.g. plant damage or actuator fault,
the control system must automatically react to prevent dangerous consequences.
This is commonly referred to as fault tolerant behavior [1]. Because of the domain
specificity, control systems are usually based on industrial controllers, also known
as programmable logic controllers (PLCs), and specialized languages are used
for designing control software.

PLCs are inherently open (i.e. communicate with external environment via
sensors and actuators), reactive (have event-driven behaviour) and concurrent
(have to process multiple asynchronous events). These features lead to special
languages being used in the development of control software, e.g. the IEC 61131-
3 languages [2] which are the most popular in the PLC domain. However, as
the complexity of control software increases and quality is of higher priority,
the 35 years old technology based on the IEC 61131-3 approach is not always
able to address the present-day requirements [3]. This motivates enriching the
IEC 61131-3 development model with object-oriented concepts [4], or developing
alternative approaches, e.g. [5–8].

To address the restrictions and challenges in developing present-day com-
plex control software, the concept of process-oriented programming (POP) was
suggested in [9]. POP involves expressing control software as a set of interact-
ing processes, where processes are finite state automata enhanced with inac-
tive states and special operators that implement concurrent control flows and
time-interval handling. Compared to well-known FSA modifications, e.g. Com-
municating Sequential Processes [10], Harel’s Statecharts [11], Input/Output
Automata [12], Esterel [13], Hybrid Automata [14], Calculus of Communicating
Systems [15], and their timed extensions [16,17], this technique both provides
means to specify concurrency and preserves the linearity of the control flow at
the process level. Therefore, it provides a conceptual framework for developing
process-oriented languages suitable to design PLC software. The process-oriented
approach was implemented in domain-specific programming languages, such as
SPARM [18], Reflex [19], and IndustrialC [20]. These languages are C-like and,
therefore, easy to learn. Translators of these languages produce C-code, which
provides cross-platform portability. With their native support for state machines
and floating point operations, these languages allow PLC software to be conve-
niently expressed.

The SPARM language is a predecessor of the Reflex language and is now out
of use. IndustrialC targets strict utilization of microcontroller peripherals (regis-
ters, timers, PWM, etc.) and extends Reflex with means for handling interrupt.
A Reflex program is specified as a set of communicating concurrent processes.
Specialized constructs are introduced for controlling processes and handling time
intervals. Reflex also provides constructs for linking its variables to physical I/O
signals. Procedures for reading/writing data through registers and their mapping
to the variables are generated automatically by the translator.

52 I. Anureev et al.

Reflex assumes scan-based execution, i.e. a time-triggered control loop, and
strict encapsulation of platform-dependent I/O subroutines into a library, which
is a widely applied technique in IEC 6113-3 based systems. To provide both
ease of support and cross-platform portability, the generation of executable code
is implemented in two stages: the Reflex translator generates C-code and then
a C-compiler produces executable code for the target platform. Reflex has no
pointers, arrays or loops. Despite its very simple syntax, the language has been
successfully used for several safety-critical control systems, e.g., control software
for a silicon single-crystal growth furnace [21]. Semantic simplicity of the lan-
guage together with the continuing practical applicability makes Reflex attrac-
tive for theoretical studies.

Currently, the Reflex project is focused on design and development tools for
safety-critical systems. Because of its system independence Reflex easily inte-
grates with LabVIEW [22]. This allows to develop software combining event-
driven behavior with advanced graphic user interface, remote sensors and actu-
ators, LabVIEW-supported devices, etc. Using the flexibility of LabVIEW, a set
of plant simulators was designed for learning purposes [23]. The LabVIEW-based
simulators include 2D animation, tools for debugging, and language support for
learning of control software design. One of the results obtained in this direction
is a LabVIEW-based dynamic verification toolset for Reflex programs. Dynamic
verification treats the software as a black-box, and checks its compliance with
the requirements by observing run-time behavior of the software on a set of
test-cases. While such a procedure can help detect the presence of bugs in the
software, it cannot guarantee their absence [24].

Unlike dynamic verification, static methods are based on source code analysis
and are commonly recognized as the only way to ensure required properties of
the software. It is therefore very important to adopt static verification methods
for Reflex programs.

In this paper, we propose a method of deductive verification of Reflex pro-
grams. The original two-step scheme of the method allows us to reduce the
verification of temporal properties of a control algorithm written in Reflex to
the Hoare-like deductive verification of a C program that explicitly models time
and the history of the execution of the algorithm.

The paper has the following structure. In Sect. 2, we describe the language for
specifying of temporal properties of Reflex programs and an example of a Reflex
program controlling a hand dryer with its properties. Section 3 presents the algo-
rithm of transforming an annotated Reflex programs into a very restricted subset
of annotated C programs called C-projections of Reflex programs. We illustrate
this algorithm by the example of the C-projection of the dryer-controlling pro-
gram. Rewriting an annotated Reflex program into its C-projection is the first
step of our deductive verification method. The second step—generation of verifi-
cation conditions for C-projection programs of this subset—is defined in Sect. 4.
Examples of verification conditions for the C-projection of the dryer-controlling
program illustrate the rules of this generation. In the concluding Sect. 5, we
discuss the features of our method and future work.

Two-Step Deductive Verification of Control Software Using Reflex 53

2 Specification of Properties of Reflex Programs

Our verification method reduces the verification of Reflex programs to the veri-
fication of C-projection programs. A Reflex program, together with its require-
ments for verification, is translated into an equivalent C-projection program and
a corresponding set of properties. In this section, we define the specification
method for the properties of Reflex programs. This method is illustrated with
an example Reflex program for a hand dryer controller.

We specify properties of Reflex programs using two kind of languages: an
annotation language and an annotating language. The annotation language is a
language of logic formulas that describe program properties. These formulas are
called annotations. The annotating language is a markup language for attributing
annotations to a program. Constructs of this language are called annotators. A
program extended with annotators is an annotated program.

Annotations of Reflex programs are formulas of a many-sorted first-order
logic. The specific formula syntax in the example uses the language of the python-
based front-end Z3py [25] to the SMT solver Z3 [26] used in deductive verification
of the resulting C-projection programs.

Temporal properties of Reflex programs can be expressed in the annotations.
The discrete-time model used in the annotations is based on the periodicity of
interaction between a Reflex program and its object under control. A Reflex
program and its controlled object interact via input and output ports associated
with the program variables. Every time-triggered control loop the program reads
input ports and then writes the values to the corresponding variables. Changing a
variable value as a result of writing to an input port is called its external update.
At the end of control loop, the program writes new values to output ports.
Writing values from input ports to variables and reading values from variables
to output ports occur periodically with a fixed period (program cycle) specified
in milliseconds. Time in the annotations is modeled by the implicit variable
tick (which is not used in Reflex programs explicitly) specifying the number
of program cycles. Thus, tick is an analogue of the global clock, counting the
number of interactions of the Reflex program with its controlled object. One tick
of the clock corresponds to one program cycle.

Each program variable x is interpreted in the annotations as an array in
which indexes are values of tick, and elements are values of x associated with
tick. Thus, in the annotation context, x stores a history of its changes. We denote
a set of annotations by F , such that f ∈ F is an annotation specifying some
Reflex program property.

The annotating language for Reflex programs includes three kinds of annota-
tors. The invariant annotator INV f; specifies that the property f must be true
before each program cycle. The initial condition annotator ICON f; specifies that
the property f must be true before the first program cycle. The external con-
dition annotator ECON f; constrains external updates: the property f must be
true after each external update.

Let us illustrate our approach by using a simple example of a program con-
trolling a hand dryer like those often found in public restrooms (Fig. 1, Listing 1).

54 I. Anureev et al.

Fig. 1. Hand dryer

Here, the program uses the input from an infrared sen-
sor, indicating presence of hands under the dryer and it
controls the fan and heater with a joint output signal. The
first basic requirement is that the dryer is on while hands
are present and it turns off automatically otherwise. Trivial
at first sight, the task becomes complicated because of dis-
continuity of the input signal caused by the users rubbing
and turning their hands under the dryer. To avoid erratic
toggling of the dryer heater and fan, the program should
not react to brief interruptions in the signal, and the actu-
ators should only be turned off once the sensor reading is
a steady “off”. The control algorithm can only meet this
requirement by measuring the duration of the off state of
the sensor. In this case, a continuous “off” signal longer than
a certain given time (for example, 1s) would be regarded as

a “hands removed” event. The second requirement is more simple and formu-
lated as ‘dryer never turns on spontaneously’. These two requirements (specified
by the formulas p1 and p2 below) we will verify to demonstrate the proposed
approach.

PROGR HandDryerController {
/* =========================== */
/* == ANNOTATIONS : */
/* INV inv; */
/* ICON icon; */
/* ECON econ; */
/* == END OF ANNOTATIONS */

TACT 100;
CONST ON 1;
CONST OFF 0;

/* ============================= */
/* I/O ports specification */
/* direction , name , address , */
/* offset , size of the port */
/* ============================= */

INPUT SENSOR_PORT 0 0 8;
OUTPUT ACTUATOR_PORT 1 0 8;

/* ============================= */
/* processes definition */
/* ============================= */

PROC Ctrl {
/*===== VARIABLES ============= */

BOOL hands = {SENSOR_PORT [1]} FOR ALL;
BOOL dryer = {ACTUATOR_PORT [1]} FOR ALL;

/*===== STATES ================ */
STATE Waiting {

IF (hands == ON) {
dryer = ON;
SET NEXT;

} ELSE dryer = OFF;
}
STATE Drying {

IF (hands == ON)
RESET TIMEOUT;
TIMEOUT 10

Two-Step Deductive Verification of Control Software Using Reflex 55

SET STATE Waiting;
}

} /* \PROC */
} /* \PROGRAM */

Listing 1. Hand dryer example in Reflex

In Reflex programs, the PROGR construct specifies the name and body of the
program. The annotators are added at the beginning of the program body as the
special kind of comments. In our case the annotators are INV inv;, ICON icon;,
and ECON econ;, where inv, icon, and econ are annotations defined below. The
TACT construct specifies the number of milliseconds corresponding to one program
cycle. The CONST construct is used to specify program constants. Constructs INPUT
and OUTPUT describe the input and output ports, respectively. Program variables
are specified by variable declarations. For example, the variable declaration BOOL

hands = SENSOR_PORT[1] FOR ALL; associates the boolean variable hands with
the first bit of the port SENSOR_PORT and specifies that all processes can use this
variable. The PROC construct is used to describe processes of the program. Our
example program has one process Ctrl (controller) that controls a hand dryer,
i.e. its fun and heater. The STATE construct specifies process states. Process Ctrl

can be in two states WAITING and DRYING. Actions executed by the process in
a state are described in the body of that state by statements and operators.
In addition to C-statements and operators, there are Reflex-specific ones. Each
process has its own time counter (local clock), which is also counted in ticks (the
number of program cycles). Statement RESET TIMEOUT; resets the local clock of
the process. Statement TIMEOUT x stm; launches the execution of statement stm
when the local clock is equal to x. Statement SET NEXT; moves the process to
the next state in the text of the program, and statement SET STATE s; sets the
process to the state s. These two statements also reset the local clock of the
process.

The initial condition icon of the form (in the format of formulas in Z3py [25])

And(Or(dryer[0] == 0, dryer[0] == 1), Or(hands[0] == 0, hands[0] == 1))

specifies that variables dryer and hands can only have values 0 or 1. The external
condition econ of the form

Or(hands[tick] == 0, hands[tick] == 1)

expresses the fact that external updates of hands return 0 or 1.
Invariant inv of the form And(p1, p2, ap) includes properties p1 and p2 which

specify the desirable behaviour of the program and the conjunction ap of aux-
iliary properties necessary to verify them. These auxiliary properties are as fol-
lows: (1) the values of the program constants are equal to their predefined values,
(2) counter tick is non-negative, (3) all previous and current values of variables
hands and dryer are 0 or 1, (4) the current values of the latter variables are the
same as their previous values (since they have not yet been modified by external
updates), (5) the dryer can only be in two states WAITING and DRYING, and 6)

56 I. Anureev et al.

the dryer in state DRYING is always on. We omit the notation for ap because it is
rather cumbersome.

Property p1 of the form

ForAll(i, Implies(And(0 <= i, i < tick),
Implies(And(Implies(i > 0, hands[i − 1] == 0), hands[i] == 1),
dryer[i] == 1)))

refines the first hand-dryer requirement that the dryer is turned on (dryer[i] = 1)
no later than 100 ms (1 tick) after the appearance of hands.

Property p2 of the form

ForAll(i, Implies(And(0 <= i, i < tick − 1),
Implies(And(dryer[i] == 0, hands[i + 1] == 0), dryer[i + 1] == 0)))

corresponds to the second requirement that the dryer never turns on sponta-
neously.

In the next section, we present the method of rewriting an annotated Reflex
program to the annotated C-projection to generate the verification conditions
and subsequently check them with a theorem proving tool which can handle
the many-sorted first-order logic. We apply this method to the Reflex program
describing the hand dryer controller.

3 Rewriting Annotated Reflex Programs into
C-Projections

Reflex programs and their C-like projections share the same annotation lan-
guage. The annotating language for C-projections of Reflex programs includes
four annotators. The assume annotator ASSUME f; specifies that f is supposed to
be true at the location of this annotator in the program. The assert annotator
ASSERT f; states that f must be true at the location of this annotator in the
program. The invariant annotator INV l f; is a special variant of the named
assert annotator with the name l which is processed by our verification condi-
tion generator in a special way. The function annotator REQUIRES Pf; ENSURES

Qf; must be placed directly after the function prototype t f (t1 x1, . . . , tnxn).
The function prototypes are used to call functions written in other programming
languages in Reflex programs. This annotator specifies the precondition Pf and
postcondition Qf of the function f . Formulae Pf and Qf depend on x1, . . . , xn.
Postcondition Qf also depends on the special variable ret f which stores the
value returned by f . The variables x1, . . . , xn and ret f are considered to be
global variables of the C-projection program.

The C-projection of the Reflex program for a hand dryer controller reads as
follows:

#define TACT 100
#define ON 1
#define OFF 0
#define STOP_STATE 0

Two-Step Deductive Verification of Control Software Using Reflex 57

#define ERROR_STATE 1
#define Ctrl_Waiting 2
#define Ctrl_Drying 3

int Ctrl_state;
int Ctrl_clock;
int tick;
int hands [];
int dryer [];

inline void init() {
tick = 0;
Ctrl_state = Ctrl_Waiting;
Ctrl_clock = 0;
ASSUME icon;

}

inline void Ctrl_exec () {
switch (Ctrl_state) {

case Ctrl_Waiting:
if (hands[tick] == ON) {

dryer[tick] = ON;
Ctrl_clock = 0;
Ctrl_state = Ctrl_Drying;

}
else

dryer[tick] = OFF;
break;

case Ctrl_Drying:
if (hands[tick] == ON) {

Ctrl_clock = 0;
Ctrl_state = Ctrl_Drying;

}
if (Ctrl_clock >= 10) {

Ctrl_clock = 0;
Ctrl_state = Ctrl_Waiting;

}
break;

}
}

void main() {
init();
for (;;) {

INV lab inv;
havoc hands[tick];
ASSUME econ;
Ctrl_exec ();
Ctrl_clock = Ctrl_clock + 1;
tick = tick + 1;
hands[tick] = hands[tick -1];
dryer[tick] = dryer[tick -1];

}
}

Listing 2. Hand dryer example in C-projection

This program is the result of applying program transformation rules that
are used for generating an equivalent program that must include the following
constructs which replace the source Reflex constructs.

The macro constant TACT specifying the time of the program cycle replaces the
TACT construct. Reflex constants (for example, ON and OFF) are replaced by macro

58 I. Anureev et al.

constants as well. The macro constants STOP_STATE and ERROR_STATE encode the
stop state (specifying that the program terminates normally) and the error state
(specifying that the program terminates with an error). For each program process
p and for each state s of this process, the macro constant s_p encodes this state.
The variable tick specifies the global clock. For each program process p, the
variables p_state and p_clock specify the current state and the current value
of the local clock of the process p. Like tick, these variables are also implicit
variables of the Reflex program, and so they can be found in its annotations.
The type t of each Reflex variable x is replaced by the dynamic array type t[].

Function init() initializes the program processes. It sets the global clock
and all local clocks to 0, sets all processes to their initial states and imposes
restrictions on the initial values of Reflex variables, using the assume annotator
ASSUME f (for the hand-dryer program ASSUME icon).

For each program process p, function p_exec specifies the actions of the pro-
cess p during the program cycle. The body of function p_exec represents the
switch statement where labels are macro constants coding states of the process
p_exec. All Reflex-specific statements and operators in bodies of process states
are replaced by C constructs in accordance with their semantics.

The infinite loop for(;;) specifying the actions of all processes during the
program cycle is the last statement of the resulting program. Its body starts with
the invariant annotator INV lab inv; specifying the invariant inv of the Reflex
program. The next fragment havoc hands[tick]; ASSUME econ; specifies external
updates of Reflex variables (in our case, hands) and the constraint econ for them.
We add the special statement havoc x; [27] to the standard C language in order
to model assigning an arbitrary value to the variable x. The third fragment
is a sequence of calls of the functions p_exec() for each program process p.
The next fragment increments the values of global clock and all local clocks.
The last fragment specifies that values of Reflex variables are preserved after
incrementing the global time and before executing external updates. For the
hand-dryer program, this fragment is hands[tick] = hands[tick-1]; dryer[tick

] = dryer[tick-1];.
The definition of the transformational semantics of a Reflex program (the

rules for its transformation into C projection) and proving transformation cor-
rectness (equivalence of the Reflex program and its C projection) are beyond the
scope of this paper. The equivalence means functional equivalence of the Reflex
program and its C projection, where the inputs of both programs are the external
updates vector for each Reflex variable, and the outputs are the vector of values
for each Reflex variable, as well as the current process states and the values of
global clock and local clocks. It is based on the operational semantics of Reflex
programs, their C projections, and annotators of both annotation languages.

Thus, we reduce the verification of Reflex programs to the verification of
programs of a very restricted subset of C extended by the havoc statement.
Next we describe the rules of generating the verification conditions for programs
of this subset. These verification conditions can further be checked by some
theorem proving tool that can handle many-sorted first-order logic.

Two-Step Deductive Verification of Control Software Using Reflex 59

4 Generating Verification Conditions for C-Projections
of Reflex Programs

Like many other deductive verification engines, such as FramaC [28], Spark [29],
KeY [30], Dafny [31], etc., our algorithm for generating verification conditions
implements a predicate transformer. We use Z3 to prove such verification con-
ditions. Let us consider the features of its implementation especially taking into
account the fact that it is applied to a program which is an infinite loop and
some variables of this program are externally changed at each iteration of the
loop. The algorithm sp(A,P) recursively calculates the strongest postcondition
[32] expressed in the many-sorted first-order logic for program fragment A and
precondition P . It starts with the entire program and the precondition True. Its
output is the set of verification conditions saved in the variable vcs. The algo-
rithm uses service variables vars and reached. Variable vars stores information
about variables and their types as a set of pairs of the form x : t, where x is
a variable, and t is its type. Variable reached stores the set of names of invari-
ant annotators that have been reached by the algorithm. It is used to ensure
termination of the algorithm. The initial values of these variables are empty
sets.

We define the generation algorithm sp as the ordered set of equalities of the
form sp(A,P) = [a1; . . . ; an; e]. This notation means that the actions a1, . . . , an
are sequentially executed before the expression e is computed. Every action ai
of the form v + = S adds the elements of the set S to the set v. The equality
sp(A,P) = e is an abridgement for sp(A,P) = [e].

We use the following notation in the algorithm definition. Let array(t) denote
the array type with the elements of type t. Let expression e have type t, {x :
t, y : array(t)} ⊆ vars, {z : t, v : t} ∩ vars = ∅ for each t, and e′ be the result of
conversion of C expression e to a Z3py expression. Function Store(a, i, v) is the
array update function from Z3 language.

Since the syntax of C-projections of annotated Reflex programs is very
restricted, algorithm sp has the following compact form:

1. sp(t f(t1 x1, . . . , tn xn); , P) =
[vars + = {x1 : t1, . . . , xn : tn, ret f : t}; P];

2. sp(t x; , P) = [vars + = {x : t}; P];
3. sp(#define c e; , P) = [vars + = {c : t}; And(P, c == e′)];
4. sp(havoc y[i]; , P) =

[vars + = {z : t, v : t}; And(P (y ← z), y == Store(z, i, v))];
5. sp(havoc x; , P) = [vars + = {z : t}; And(P (x ← z), x == z)];
6. sp(x[i] = e; , P) =

[vars + = {z : array(t)}; And(P (y ← z), y == Store(z, i, e′(y ← z)))];
7. sp(x = e; , P) = [vars + = {z : t}; And(P (x ← z), x == e′(x ← z))];
8. sp({B}, P) = sp(B, P);
9. sp(if (e) B else C, P) =

Or(sp(B,And(P, econv(e))), sp(C,And(P,Not(econv(e))));

60 I. Anureev et al.

10. sp(switch (e) l1 : B1 break; . . . ln : Bn break; , P) =
Or(sp(B1, And(P, e′ == l1)), . . . , sp(Bn, And(P, e′ == ln)),

And(P, e′! = l1, . . . , e
′! = ln));

11. sp(for(; ;) B, P) = sp(B for(; ;) B, P);
12. sp(x = f(e1, . . . , en); , P) =

sp(x1 = e1; . . . xn = en; ASSERT Pf ; havoc ret f ;
ASSUME Qf ; x = ret f ; , P);

13. sp(ASSUME e; , P) = And(P, e);
14. sp(ASSERT e; , P) = [vcs+ = {Implies(P, e)}; And(P, e)];
15. if l /∈ reached, sp(INV l e; A, P) =

[reached + = {l}; vcs + = Implies(P, e); sp(A, e)];
16. if l ∈ reached, sp(INV l e; A, P) = [vcs + = Implies(P, e); e];
17. sp(s A, P) = sp(A, sp(s, P)).

This algorithm terminates because sp recursively reduces the input program
in all cases except for(; ;) (case 11), and due to case 16 the algorithm can pass
the invariant annotator at the begin of body of for(; ;) only once.

The computation of verification conditions for the trace of the annotated
hand dryer program (Listing 2) starting at the point #define TACT 100 and end-
ing at the point INV lab inv; results in

– vcs = {Implies(And(true, TACT == 100, ON == 1, OFF == 0,
STOP STATE == 0, ERROR STATE == 1, Ctrl WAITING == 2,

Ctrl DRY ING == 3, tick == 0, init state == INIT WAITING,
init clock == 0, dryer[0] == 0, icon), inv)};

– vars = {TACT : int,ON : int,OFF : int, STOP STATE : int,
ERROR STATE : int, Ctrl WAITING : int, Ctrl DRY ING : int,
Ctrl state : int, Ctrl clock : int, dryer : array(int), hands : array(int),

tick : int, tick 1 : int, Ctrl state 1 : int, Ctrl clock 1 : int};
– reached = {lab}.

Here x i, where i is a natural number, is a fresh variable generated by algorithm
sp in the case of the assignment of the form x = . . . or x[. . .] =

Other seven verification conditions starting at the point INV lab inv; and
ending at the same point and corresponding to different branches of the switch
statement and if statements are generated likewise. All generated verification
conditions are successfully proved in Z3py.

The generation of verification conditions for C-projections of annotated
Reflex programs and proving them complete the description of our two-step
method of deductive verification for Reflex programs.

Currently, we prepare for publication a description of the transformational
semantics of Reflex programs (including a formal proof of its correctness) and a
formal proof of the soundness of the axiomatic semantics of C projections w.r.t.
their operational semantics. Software tools automating the steps of the method
are being developed on their basis.

Two-Step Deductive Verification of Control Software Using Reflex 61

5 Discussion and Conclusion

In this paper we propose a two-step method of deductive verification of Reflex
programs. This method includes the annotation and annotating languages for
Reflex programs, the algorithm for transforming an annotated Reflex program
into the annotated program written in restricted C (the C-projection of the
Reflex program), the annotating language, and the algorithm of generating ver-
ification conditions for C-projections of Reflex programs. Our method can be
applied to the so-called pure Reflex programs that do not contain definitions of
functions written in other languages.

In practice, Reflex programs often include definitions and calls of C functions.
We can extend our method to this more general case of Reflex, because such
programs must also include a prototype for each C function. Verification of such
Reflex programs is reduced to separate verification of definitions of C functions
and a pure Reflex program extended by calls of functions. These functions are
considered black boxes and their prototypes are annotated with preconditions
and postconditions treated as specifications of these black boxes. The definitions
of C functions can be verified by any C program verification method or tool. For
verification of Reflex programs with function calls, we use our two-step method.

Our verification method has several remarkable properties. Firstly, it mod-
els the interaction between a Reflex program and its controlled object through
the input and output ports associated with the program variables. The havoc
statement in the C-projection of the Reflex program allows to represent writ-
ing values from input ports to variables. These external variable updates are
constrained by the assume annotator. Checking values read from variables to
output ports is specified by the assert and invariant annotators. Secondly, this
method reduces the verification of some time properties of Reflex programs to
Hoare-like deductive verification by explicitly modeling time in C-projections of
Reflex programs with variables which specify the global clock, local clocks of
program processes and history of values of Reflex variables. Thirdly, our ver-
ification conditions generation algorithm can handle infinite loops intrinsic to
control systems.

There are several directions for further development of the method. We plan
to extend it to the textual languages of the IEC 61131-3 family. Like Reflex,
these languages are used for programs that interact with the controlled object
only between program cycles. The other research direction is to investigate new
temporal properties for which verification can also be reduced to Hoare-like
deductive verification. Especially, we are interested in temporal aspects asso-
ciated with the histories of values of process states and process clocks, which
would allow to evaluate the performance of control sofware algorithms. Explicit
time modeling in Reflex annotations is not a very natural way to represent the
time properties of Reflex programs. We plan to use temporal logics (LTL, CTL
and MTL) and their extensions to describe these properties and develop an algo-
rithm for translating such descriptions into formulas with explicit time modeling.
To make this task feasible, we plan to use specialized ontological patterns [33]
instead of arbitrary formulas of these logics. In addition to Z3 solver, we intend

62 I. Anureev et al.

to use in our method other provers and solvers in order to extend the class of
verifiable properties. In particular, Z3 solver cannot prove that dryer will work
for at least 10 seconds after hands have been removed because this property
requires advanced induction. The interactive theorem prover ACL2 [34] with
advanced induction schemes is a good candidate to solve this problem. Finally,
we plan to consider new case studies on control software algorithms.

Acknowledgement. The reported study was funded by the Russian Ministry of Edu-
cation and Science; RFBR, project number 17-07-01600; RFBR, project number 20-
01-00541; and RFBR, project number 20-07-00927.

References

1. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-
Tolerant Control, 2nd edn. Springer, Heidelberg (2006). https://doi.org/10.1007/
978-3-540-35653-0

2. IEC 61131–3: Programmable controllers Part 3: Programming languages. Rev. 2.0.
International Electrotechnical Commission Standard (2003)

3. Basile, F., Chiacchio, P., Gerbasio, D.: On the Implementation of industrial
automation systems based on PLC. IEEE Trans. Autom. Sci. Eng. 4(10), 990–
1003 (2013)

4. Thramboulidis, K., Frey, G.: An MDD process for IEC 61131-based industrial
automation systems. In: 16th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA11), Toulouse, France, pp. 1–8 (2011)

5. IEC 61499: Function Blocks for Industrial Process Measurement andControl Sys-
tems. Parts 1–4. Rev. 1.0. International Electrotechnical Commission Standard
(2004/2005)

6. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with
Finite State Machines. Auerbach Publications, Boston (2006)

7. Samek, M.: Practical UML Statecharts in C/C++: Event-driven Programming for
Embedded Systems, 2nd edn. Newnes, Oxford (2009)

8. Control Technology Corporation. QuickBuilderTMReference Guide (2018). https://
controltechnologycorp.com/docs/QuickBuilder Ref.pdf. Accessed 20 Jan 2019

9. Zyubin, V.E.: Hyper-automaton: a model of control algorithms. In: Proceedings
of the IEEE International Siberian Conference on Control and Communications
(SIBCON-2007), pp. 51–57. The Tomsk IEEE Chapter & Student Branch, Tomsk
(2007)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Int., Upper
Saddle River (1985)

11. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

12. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Q. 2(3),
219–246 (1989)

13. Berry, G.: The foundations of Esterel. In: Proof, Language and Interaction: Essays
in Honour of Robin Milner. Foundations of Computing Series, pp. 425–454. MIT
Press (2000)

14. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series (Series F: Com-
puter and Systems Sciences), vol. 170, pp. 265–292. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-59615-5 13

https://doi.org/10.1007/978-3-540-35653-0
https://doi.org/10.1007/978-3-540-35653-0
https://controltechnologycorp.com/docs/QuickBuilder_Ref.pdf
https://controltechnologycorp.com/docs/QuickBuilder_Ref.pdf
https://doi.org/10.1007/978-3-642-59615-5_13

Two-Step Deductive Verification of Control Software Using Reflex 63

15. Milner, R.: Communication and Concurrency. Series in Computer Science. Prentice
Hall, New Jersey (1989)

16. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O automata: a
mathematical framework for modeling and analyzing real-time systems. In: 24th
IEEE International Real-Time Systems Symposium (RTSS 2003), pp. 166–177.
IEEE Computer Society Cancun, Mexico (2003)

17. Kof, L., Schätz, B.: Combining aspects of reactive systems. In: Broy, M., Zamulin,
A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 344–349. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-39866-0 34

18. Zyubin, V.: SPARM language as a means for programming microcontrollers. Opto-
electron. Instr. Data Process. 2(7), 36–44 (1996)

19. Liakh, T.V., Rozov, A.S., Zyubin, V.E.: Reflex language: a practical notation for
cyber-physical systems. Syst. Inform. 12(6), 85–104 (2018)

20. Rozov A.S., Zyubin V.E.: Process-oriented programming language for MCU-based
automation. In: Proceedings of the IEEE International Siberian Conference on
Control and Communications, pp. 1–4. The Tomsk IEEE Chapter Student Branch,
Tomsk (2013)

21. Bulavskij, D., Zyubin, V., Karlson, N., Krivoruchko, V., Mironov, V.: An auto-
mated control system for a silicon single-crystal growth furnace. Optoelectron.
Instr. Data Process. 2(5), 25–30 (1996)

22. Travis, J., Kring, J.: LabVIEW for Everyone: Graphical Programming Made Easy
and Fun, 3rd edn. Prentice Hall PTR, Upper Saddle River (2006)

23. Zyubin, V.: Using process-oriented programming in LabVIEW. In: Proceedings
of the Second IASTED Intern. Multi-Conference on “Automation, control, and
information technology”: Control, Diagnostics, and Automation, Novosibirsk, pp.
35–41 (2010)

24. Randell, B.: Software engineering techniques. Report on a conference sponsored by
the NATO Science Committee, p. 16. Brussels, Scientific Affairs Division, NATO,
Rome, Italy (1970)

25. Z3 API in Python. https://ericpony.github.io/z3py-tutorial/guide-examples.htm.
Accessed 20 Jan 2019

26. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

27. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

28. FramaC Homepage. https://frama-c.com/
29. Spark Pro Homepage. https://www.adacore.com/sparkpro
30. The KeY project Homepage https://www.key-project.org/
31. Dafny Homepage. https://www.microsoft.com/en-us/research/project/dafny-a-

language-and-program-verifier-for-functional-correctness/
32. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.

Springer, Heidelberg (1990). https://doi.org/10.1007/978-1-4612-3228-5
33. Garanina, N., Zyubin, V., Lyakh, V., Gorlatch, S.: An ontology of specification pat-

terns for verification of concurrent systems. In: New Trends in Intelligent Software
Methodologies, Tools and Techniques. Proceedings of the 17th International Con-
ference on SoMeT-18. Series: Frontiers in Artificial Intelligence and Applications,
pp. 515–528. IOS Press, Amsterdam (2018)

34. ACL2 Homepage. http://www.cs.utexas.edu/users/moore/acl2/

https://doi.org/10.1007/978-3-540-39866-0_34
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/11804192_17
https://frama-c.com/
https://www.adacore.com/sparkpro
https://www.key-project.org/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://doi.org/10.1007/978-1-4612-3228-5
http://www.cs.utexas.edu/users/moore/acl2/

Distributed Representation of n-gram
Statistics for Boosting Self-organizing

Maps with Hyperdimensional Computing

Denis Kleyko1(B), Evgeny Osipov1, Daswin De Silva2, Urban Wiklund3,
Valeriy Vyatkin1, and Damminda Alahakoon2

1 Lule̊a University of Technology, Lule̊a, Sweden
{denis.kleyko,evgeny.osipov,valeriy.vyatkin}@ltu.se

2 La Trobe University, Melbourne, Australia
{d.desilva,d.alahakoon}@latrobe.edu.au

3 Ume̊a University, Ume̊a, Sweden
urban.wiklund@umu.se

Abstract. This paper presents an approach for substantial reduction of
the training and operating phases of Self-Organizing Maps in tasks of
2-D projection of multi-dimensional symbolic data for natural language
processing such as language classification, topic extraction, and ontol-
ogy development. The conventional approach for this type of problem is
to use n-gram statistics as a fixed size representation for input of Self-
Organizing Maps. The performance bottleneck with n-gram statistics is
that the size of representation and as a result the computation time of
Self-Organizing Maps grows exponentially with the size of n-grams. The
presented approach is based on distributed representations of structured
data using principles of hyperdimensional computing. The experiments
performed on the European languages recognition task demonstrate that
Self-Organizing Maps trained with distributed representations require
less computations than the conventional n-gram statistics while well pre-
serving the overall performance of Self-Organizing Maps.

Keywords: Self-organizing maps · n-gram statistics ·
Hyperdimensional computing · Symbol strings

1 Introduction

The Self-Organizing Map (SOM) algorithm [25,41] has been proven to be an
effective technique for unsupervised machine learning and dimension reduction

This work was supported by the Swedish Research Council (VR, grant 2015-04677)
and the Swedish Foundation for International Cooperation in Research and Higher
Education (grant IB2018-7482) for its Initiation Grant for Internationalisation, which
allowed conducting the study.

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 64–79, 2019.
https://doi.org/10.1007/978-3-030-37487-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_6

Distributed Representation of n-gram Statistics for Boosting SOM 65

Fig. 1. Outline of the conventional approach.

of multi-dimensional data. A broad range of applications ranging from its conven-
tional use in 2-D visualization of multi-dimensional data to more recent develop-
ments such as analysis of energy consumption patterns in urban environments
[6,8], autonomous video surveillance [29], multimodal data fusion [14], incre-
mental change detection [28], learning models from spiking neurons [12], and
identification of social media trends [3,7]. The latter use-case is an example of
an entire application domain of SOMs for learning on symbolic data. This type
of data is typically present in various tasks of natural language processing.

As the SOM uses weight vectors of fixed dimensionality, this dimensionality
must be equal to the dimensionality of the input data. A conventional approach
for feeding variable length symbolic data into the SOM is to obtain a fixed
length representation through n-gram statistics (e.g., bigrams when n = 2 or
trigrams when n = 3). The n-gram statistics, which is a vector of all possible
combinations of n symbols of the data alphabet, is calculated during a pre-
processing routine, which populates the vector with occurrences of each n-gram
in the symbolic data. An obvious computational bottleneck of such approach is
due to the length of n-gram statistics, which grows exponentially with n. Since
the vector is typically sparse some memory optimization is possible on the data
input side. For example, only the indices of non-zero positions can be presented
to the SOM. This, however, does not help with the distance calculation, which is
the major operation of the SOM. Since weight vectors are dense, for computing
the distances the input vectors must be unrolled to their original dimensionality.
In this paper, we present an approach where the SOM uses mappings of n-gram
statistics instead of the conventional n-gram statistics. Mappings are vectors
of fixed arbitrary dimensionality, where the dimensionality can be substantially
lower than the number of all possible n-grams.

Outline of the Proposed Approach

The core of the proposed approach is in the use of hyperdimensional com-
puting and distributed data representation. Hyperdimensional computing is a
bio-inspired computational paradigm in which all computations are done with
randomly generated vectors of high dimensionality. Figure 1 outlines the con-
ventional approach of using n-gram statistics with SOMs. First, for the input
symbolic data we calculate n-gram statistics. The size of the vector s, which con-
tains the n-gram statistics, will be determined by the size of the data’s alphabet

66 D. Kleyko et al.

Fig. 2. Outline of the proposed approach.

a and the chosen n. Next, the conventional approach will be to use s as an input
x to either train or test the SOM (the red vertical line in Fig. 1). The approach
proposed in this paper modifies the conventional approach by introducing an
additional step, as outlined in Fig. 2. The blocks in green denote the elements
of the introduced additional step. For example, the item memory stores the
distributed representations of the alphabet. In the proposed approach, before
providing s to the SOM, s is mapped to a distributed representation h, which is
then used as an input to the SOM (the red vertical line in Fig. 2).

The paper is structured as follows. Section 2 describes the related work.
Section 3 presents the methods used in this paper. Section 4 reports the results
of the experiments. The conclusions follow in Sect. 5.

2 Related Work

The SOM algorithm [25] was originally designed for metric vector spaces. It
develops a non-linear mapping of a high-dimensional input space to a two-
dimensional map of nodes using competitive, unsupervised learning. The output
of the algorithm, the SOM represents an ordered topology of complex entities
[26], which is then used for visualization, clustering, classification, profiling, or
prediction. Multiple variants of the SOM algorithm that overcome structural,
functional and application-focused limitations have been proposed. Among the
key developments are the Generative Topographic Mapping based on non-linear
latent variable modeling [4], the Growing SOM (GSOM) that addresses the pre-
determined size constraints [1], the TASOM based on adaptive learning rates and
neighborhood sizes [40], the WEBSOM for text analysis [17], and the IKASL
algorithm [5] that addresses challenges in incremental unsupervised learning.
Moreover, recently an important direction is the simplification of the SOM algo-
rithm [2,19,39] for improving its speed and power-efficiency.

However, only a limited body of work has explored the plausibility of the
SOM beyond its original metric vector space. In contrast to a metric vector
space, a symbolic data space is a non-vectorial representation that possesses an

Distributed Representation of n-gram Statistics for Boosting SOM 67

Fig. 3. Illustration of a self-organizing map with nine nodes organized according to the
grid topology.

internal variation and structure which must be taken into account in computa-
tions. Records in a symbolic dataset are not limited to a single value, for instance,
each data point can be a hypercube in p-dimensional space or Cartesian product
of distribution. In [26], authors make the first effort to apply SOM algorithm to
symbol strings, the primary challenges were the discrete nature of data points
and adjustments required for the learning rule, addressed using the general-
ized means/medians and batch map principle. Research reported in [42] takes a
more direct approach to n-gram modeling of HTTP requests from network logs.
Feature matrices are formed by counting the occurrences of n-characters cor-
responding to each array in the HTTP request, generating a memory-intensive
feature vector of length 256n. Feature matrices are fed into a variant of the
SOM, Growing Hierarchical SOMs [9] to detect anomalous requests. Authors
report both accuracy and precision of 99.9% on average, when using bigrams and
trigrams. Given the limited awareness and availability of research into unsuper-
vised machine learning on symbolic data, coupled with the increasing complexity
of raw data [27], it is pertinent to investigate the functional synergies between
hyperdimensional computing and the principles of SOMs.

3 Methods

This section presents the methods used in this paper. We describe: the basics
of the SOM algorithm; the process of collecting n-gram statistics; the basics
of hyperdimensional computing; and the mapping of n-gram statistics to the
distributed representation using hyperdimensional computing.

3.1 Self-organizing Maps

A SOM [25] (see Fig. 3) consists of a set of nodes arranged in a certain topology
(e.g., a rectangular or a hexagonal grid or even a straight line). Each node j is

68 D. Kleyko et al.

characterized by a weight vector of dimensionality equal the dimensionality of
an input vector (denoted as x). The weight vectors are typically initialized at
random. Denote a u × k matrix of k-dimensional weight vectors of u nodes in a
SOM as W. Also denote a weight vector of node j as Wj and i’th positions of
this vector as Wji. One of the main steps in the SOM algorithm is for a given
input vector x to identify the winning node, which has the closest weight vector
to x. Computation of a distance between the input x and the weight vectors
in W, the winner takes all procedure as well as the weight update rule are the
main components of SOM logic. They are outlined in the text below.

In order to compare x and Wj , a similarity measure is needed. The SOM
uses Euclidian distance:

D(x,Wj) =

√
√
√
√

i=k∑

i=1

(xi − Wji)2, (1)

where xi and Wji are the corresponding values of ith positions. The winning
node (denoted as w) is defined as a node with the lowest Euclidian distance to
the input x.

In the SOM, a neighborhood M of nodes around the winning node w is
selected and updated; the size of the neighborhood progressively decreases:

γ(j, w, t) = e−l(j,w)/2σ(t)2 , (2)

where l(j, w) is the lateral distance between a node j and the winning node w
on the SOM’s topology; σ(t) is the decreasing function, which depends of the
current training iteration t. If a node j is within the neighborhood M of w then
the weight vector Wj is updated with:

�Wj = η(t)γ(j, w, t)(x − Wj), (3)

where η(t) denotes the learning rate decreasing with increasing t. During an
iteration t, the weights are updated for all available training inputs x. The
training process usually runs for T iterations.

Once the SOM has been trained it could be used in the operating phase.
The operating phase is very similar to that of the training one except that the
weights stored in W are kept fixed. For a given input x, the SOM identifies the
winning node w. This information is used depending on the task at hand. For
example, in clustering tasks, a node could be associated with a certain region.
In this paper, we consider the classification task, and therefore, each node would
have an assigned classification label.

3.2 n-gram Statistics

In order to calculate n-gram statistics for the input symbolic data D, which is
described by the alphabet of size a, we first initialize an empty vector s. This vec-
tor will store the n-gram statistics for D, where the ith position in s corresponds

Distributed Representation of n-gram Statistics for Boosting SOM 69

to an n-gram N i = 〈S1,S2, . . . ,Sn, 〉 from the set N of all unique n-grams; Sj

corresponds to a symbol in jth position of N i. The value si indicates the number
of times N i was observed in the input symbolic data D. The dimensionality of
s is equal to the total number of n-grams in N , which in turn depends on a
and n (size of n-grams) and is calculated as an (i.e., s ∈ [an × 1]). The n-gram
statistics s is calculated via a single pass through D using the overlapping sliding
window of size n, where for an n-gram observed in the current window the value
of its corresponding position in s (i.e., counter) is incremented by one. Thus, s
characterizes how many times each n-gram in N was observed in D.

3.3 Hyperdimensional Computing

Hyperdimensional computing [16,31,33,34] also known as Vector Symbolic
Architectures is a family of bio-inspired methods of representing and manipulat-
ing concepts and their meanings in a high-dimensional space. Hyperdimensional
computing finds its applications in, for example, cognitive architectures [10], nat-
ural language processing [20,38], biomedical signal processing [22,35], approxi-
mation of conventional data structures [23,30], and for classification tasks [18],
such as gesture recognition [24], physical activity recognition [37], fault isola-
tion [21]. Vectors of high (but fixed) dimensionality (denoted as d) are the basis
for representing information in hyperdimensional computing. These vectors are
often referred to as high-dimensional vectors or HD vectors. The information is
distributed across HD vector’s positions, therefore, HD vectors use distributed
representations. Distributed representations [13] are contrary to the localist rep-
resentations (which are used in the conventional n-gram statistics) since any
subset of the positions can be interpreted. In other words, a particular position
of an HD vector does not have any interpretable meaning – only the whole HD
vector can be interpreted as a holistic representation of some entity, which in
turn bears some information load. In the scope of this paper, symbols of the
alphabet are the most basic components of a system and their atomic HD vec-
tors are generated randomly. Atomic HD vectors are stored in the so-called item
memory, which in its simplest form is a matrix. Denote the item memory as H,
where H ∈ [d × a]. For a given symbol S its corresponding HD vector from H
is denoted as HS . Atomic HD vectors in H are bipolar (HS ∈ {−1,+1}[d×1])
and random with equal probabilities for +1 and −1. It is worth noting that an
important property of high-dimensional spaces is that with an extremely high
probability all random HD vectors are dissimilar to each other (quasi orthogo-
nal).

In order to manipulate atomic HD vectors hyperdimensional computing
defines operations and a similarity measure on HD vectors. In this paper, we
use the cosine similarity for characterizing the similarity. Three key operations
for computing with HD vectors are bundling, binding, and permutation.

The binding operation is used to bind two HD vectors together. The result
of binding is another HD vector. For example, for two symbols S1 and S2 the
result of binding of their HD vectors (denotes as b) is calculated as follows:

b = HS1 � HS2 , (4)

70 D. Kleyko et al.

where the notation � for the Hadamard product is used to denote the bind-
ing operation since this paper uses positionwise multiplication for binding. An
important property of the binding operation is that the resultant HD vector b
is dissimilar to the HD vectors being bound, i.e., the cosine similarity between
b and HS1 or HS2 is approximately 0.

An alternative approach to binding when there is only one HD vector is to
permute (rotate) the positions of the HD vector. It is convenient to use a fixed
permutation (denoted as ρ) to bind a position of a symbol in a sequence to an
HD vector representing the symbol in that position. Thus, for a symbol S1 the
result of permutation of its HD vector (denotes as r) is calculated as follows:

r = ρ(HS1). (5)

Similar to the binding operation, the resultant HD vector r is dissimilar to HS1 .
The last operation is called bundling. It is denoted with + and implemented

via positionwise addition. The bundling operation combines several HD vectors
into a single HD vector. For example, for S1 and S2 the result of bundling of
their HD vectors (denotes as a) is simply:

a = HS1 + HS2 . (6)

In contrast to the binding and permutation operations, the resultant HD vector
a is similar to all bundled HD vectors, i.e., the cosine similarity between b
and HS1 or HS1 is more than 0. Thus, the bundling operation allows storing
information in HD vectors [11]. Moreover if several copies of any HD vector are
included (e.g., a = 3HS1 +HS2), the resultant HD vector is more similar to the
dominating HD vector than to other components.

3.4 Mapping of n-gram Statistics with Hyperdimensional
Computing

The mapping of n-gram statistics into distributed representation using hyper-
dimensional computing was first shown in [15]. At the initialization phase, the
random item memory H is generated for the alphabet. A position of symbol Sj

in N i is represented by applying the fixed permutation ρ to the corresponding
atomic HD vector HSj

j times, which is denoted as ρj(HSj
). Next, a single

HD vector for N i (denoted as mN i) is formed via the consecutive binding of
permuted HD vectors ρj(HSj

) representing symbols in each position j of N i.
For example, for the trigram ‘cba’ will be mapped to its HD vector as follows:
ρ1(Hc) � ρ2(Hb) � ρ3(Ha). In general, the process of forming HD vector of an
n-gram can be formalized as follows:

mN i
=

n∏

j=1

ρj(HSj
), (7)

where
∏

denotes the binding operation (positionwise multiplication) when
applied to n HD vectors.

Distributed Representation of n-gram Statistics for Boosting SOM 71

Once it is known how to map a particular n-gram to an HD vector, mapping
the whole n-gram statistics s is straightforward. HD vector h corresponding to
s is created by bundling together all n-grams observed in the data, which is
expressed as follows:

h =
an
∑

i=1

simN i
=

an
∑

i=1

si

n∏

j=1

ρj(HSj
), (8)

where
∑

denotes the bundling operation when applied to several HD vectors.
Note that h is not bipolar, therefore, in the experiments below we normalized it
by its �2 norm.

4 Experimental Results

This section describes the experimental results studying several configurations of
the proposed approach and comparing it with the results obtained for the conven-
tional n-gram statistics. We slightly modified the experimental setup from that
used in [15], where the task was to identify a language of a given text sample
(i.e., for a string of symbols). The language recognition was done for 21 European
languages. The list of languages is as follows: Bulgarian, Czech, Danish, German,
Greek, English, Estonian, Finnish, French, Hungarian, Italian, Latvian, Lithua-
nian, Dutch, Polish, Portuguese, Romanian, Slovak, Slovene, Spanish, Swedish.
The training data is based on the Wortschatz Corpora [32]. The average size of
a language’s corpus in the training data was 1, 085, 637.3 ± 121, 904.1 symbols.
It is worth noting, that in the experiments reported in [15] the whole training
corpus of a particular language was used to estimate the corresponding n-grams
statistics. While in this study, in order to enable training of SOMs, each lan-
guage corpus was divided into samples where the length of each sample was set
to 1, 000 symbols. The total number of samples in the training data was 22, 791.
The test data is based on the Europarl Parallel Corpus1. The test data also rep-
resent 21 European languages. The total number of samples in the test data was
21, 000, where each language was represented with 1, 000 samples. Each sample
in the test data corresponds to a single sentence. The average size of a sample
in the test data was 150.3 ± 89.5 symbols.

The data for each language was preprocessed such that the text included only
lower case letters and spaces. All punctuation was removed. Lastly, all text used
the 26-letter ISO basic Latin alphabet, i.e., the alphabet for both training and
test data was the same and it included 27 symbols. For each text sample the n-
gram statistics (either conventional or mapped to the distributed representation)
was obtained, which was then used as input x when training or testing SOMs.
Since each sample was preprocessed to use the alphabet of only a = 27 symbols,
the conventional n-gram statistics input is 27n dimensional (e.g., k = 729 when
n = 2) while the dimensionality of the mapped n-gram statistics depends on the

1 Available online at http://www.statmt.org/europarl/.

http://www.statmt.org/europarl/

72 D. Kleyko et al.

Fig. 4. The classification accuracy of the SOM trained on the conventional bigram
statistics (n = 2; k = 729) against the number of training iterations T . The grid size
was set to ten (u = 100). T varied in the range [5, 100] with step 5.

dimensionality of HD vectors d (i.e., k = d). In all experiments reported in this
paper, we used the standard SOMs implementation, which is a part of the Deep
Learning Toolbox in MATLAB R2018B (Mathworks Inc, Natick, Ma).

During the experiments, certain parameters SOM were fixed. In particular,
the topology of SOMs was set to the standard grid topology. The initial size
of the neighborhood was always fixed to ten. The size of the neighborhood and
the learning rate were decreasing progressively with training according to the
default rules of the used implementation. In all simulations, a SOM was trained
for a given number of iterations T , which was set according to an experiment
reported in Fig. 4. All reported results were averaged across five independent
simulations. The bars in the figure show standard deviations.

Recall that SOMs are suited for the unsupervised training, therefore, an extra
mechanism is needed to use them in supervised tasks such as the considered
language recognition task, i.e., once the SOM is trained there is still a need
to assign a label to each trained node. After training a SOM for T iterations
using all 22, 791 training samples, the whole training data were presented to the
trained SOM one more time without modifying W. Labels for the training data
were used to collect the statistics for the winning nodes. The nodes were assigned
the labels of the languages dominating in the collected statistics. If a node in the
trained SOM was never chosen as the winning node for the training samples (i.e.,
its statistics information is empty) then this node was ignored during the testing
phase. During the testing phase, 21, 000 samples of the test data were used to
assess the trained SOM. For each sample in the test data, the winning node was
determined. The test sample then was assigned the language label corresponding
to its winning node. The classification accuracy was calculated using the SOM

Distributed Representation of n-gram Statistics for Boosting SOM 73

Fig. 5. The classification accuracy of the SOM against the grid size for the case of
bigram statistics. The grid size varied in the range [2, 20] with step 2.

predictions and the ground truth of the test data. The accuracy was used as the
main performance metric for evaluation and comparison of different SOMs. It is
worth emphasizing that the focus of experiments is not on achieving the highest
possible accuracy but on a comparative analysis of SOMs with the conventional
n-gram statistics versus SOMs with the mapped n-gram statistics with varying
d. However, it is worth noting that the accuracy, obtained when collecting an
n-gram statistics profile for each language [15,36] for n = 2 and n = 3 and
using the nearest neighbor classifier, was 0.945 and 0.977 respectively. Thus, the
results presented below for SOMs match the ones obtained with the supervised
learning on bigrams when the number of nodes is sufficiently high. In the case
of trigrams, the highest accuracy obtained with SOMs was slightly (about 0.02)
lower. While SOMs not necessarily achieve the highest accuracy compared to
the supervised methods, their important advantage is data visualization. For
example, in the considered task one could imagine using the trained SOM for
identifying the clusters typical for each language and even reflecting on their
relative locations on the map.

The experiment in Fig. 4 presents the classification accuracy of the SOM
trained on the conventional bigram statistics against T . The results demon-
strated that the accuracy increased with the increased number T . Moreover, for
higher values of T the predictions are more stable. The performance started to
saturate at T more than 90, therefore, in the other experiments the value of T
was fixed to 100.

The grid size varied in the range [2, 20] with step 2, i.e, the number of nodes
u varied between 4 and 400. In Fig. 5 the solid curve corresponds to the SOM
trained on the conventional bigram statistics. The dashed, dash-dot, and dotted
curves correspond to the SOMs trained on the mapped bigram statistics with
k = d = 500, k = d = 300, and k = d = 100 respectively.

74 D. Kleyko et al.

Fig. 6. The training time of the SOM against the grid size for the case of bigram
statistics. The grid size varied in the range [2, 20] with step 2.

The experiment presented in Fig. 5 studied the classification accuracy of the
SOM against the grid size for the case of bigram statistics. Note that the num-
ber of nodes u in the SOM is proportional to the square of the grid size. For
example, when the gris size equals 2 the SOM has u = 4 nodes while when it
equals 20 the SOM has u = 400 nodes. The results in Fig. 5 demonstrated that
the accuracy of all considered SOMs improves with the increased grid size. It is
intuitive that all SOMs with grid sizes less than five performed poorly since the
number of nodes in SOMs was lower than the number of different languages in
the task. Nevertheless, the performance of all SOMs was constantly improving
with the increased grid size, but the accuracy started to saturate at about 100
nodes. Moreover, increasing the dimensionality of HD vectors d was improving
the accuracy. Note, however, that there was a better improvement when going
from d = 100 to d = 300 compared to increasing d from 300 to 500. The perfor-
mance of the conventional bigram statistics was already approximated well even
when d = 300; for d = 500 the accuracy was just slightly worse than that of the
conventional bigram statistics.

It is important to mention that the usage of the mapped n-grams statis-
tics allows decreasing the size of W in proportion to d/an. Moreover, it allows
decreasing the training time of SOMs. The experiment in Fig. 6 presents the
training time of the SOM against the grid size for the case of bigram statis-
tics. Figure 6 corresponds to that of Fig. 5. The number of training iterations
was fixed to T = 100. For example, for grid size 16 the average training time
on a laptop for k = d = 100 was 2.7 min (accuracy 0.86); for k = d = 300 it
was 8.0 min (accuracy 0.91); for k = d = 500 it was 16.9 min (accuracy 0.92);
and for k = an = 729 it was 27.3 min (accuracy 0.93). Thus, the usage of the

Distributed Representation of n-gram Statistics for Boosting SOM 75

Fig. 7. The classification accuracy of the SOM trained on the mapped bigram statistics
(n = 2) against the dimensionality of HD vectors d (k = d). The grid size was set to
16 (u = 256). The number of training iterations T was fixed to 100.

mapping allows the trade-off between the obtained accuracy and the required
computational resources.

In order to observe a more detailed dependency between the classifica-
tion accuracy and the dimensionality of distributed representations d of the
mapped n-gram statistics, an additional experiment was done. Figure 7 depicts
the results. The dimensionality of distributed representations d varied in the
range [20, 1000] with step 20. It is worth mentioning that even for small dimen-
sionalities (d < 100), the accuracy is far beyond random. The results in Fig. 7
are consistent with the observations in Fig. 5 in a way that the accuracy was
increasing with the increased d. The performance saturation begins for the val-
ues above 200 and the improvements beyond d = 500 look marginal. Thus, we
experimentally observed that the quality of mappings grows with d, however,
after a certain saturation point increasing d further becomes impractical.

The last experiment in Fig. 8 is similar to Fig. 5 but it studied the classifica-
tion accuracy for the case of trigram statistics (n = 3). The grid size varied in
the range [2, 20] with step 2. The solid curve corresponds to the SOM trained on
the conventional trigram statistics (k = 273 = 19, 683). The dashed and dash-
dot curves correspond to the SOMs trained on the mapped trigram statistics
with k = d = 5, 000 and k = d = 1, 000 respectively. The results in Fig. 8 are
consistent with the case of bigrams. The classification of SOMs was better for
higher d and even when d < an the accuracy was approximated well.

76 D. Kleyko et al.

Fig. 8. The classification accuracy of the SOM against the grid size for the case of
trigram statistics (n = 3). The number of training iterations T was fixed to 100.

5 Conclusions

This paper presented an approach for the mapping of n-gram statistics into
vectors of fixed arbitrary dimensionality, which does not depend on the size
of n-grams n. The mapping is aided by hyperdimensional computing a bio-
inspired approach for computing with large random vectors. Mapped in this
way n-gram statistics is used as the input to Self-Organized Maps. This novel for
Self-Organized Maps step allows removing the computational bottleneck caused
by the exponentially growing dimensionality of n-gram statistics with increased
n. While preserving the performance of the trained Self-Organized Maps (as
demonstrated in the languages recognition task) the presented approach results
in reduced memory consumption due to smaller weight matrix (proportional to
d and u) and shorter training times. The main limitation of this study is that
we have validated the proposed approach only on a single task when using the
conventional Self-Organized Maps. However, it is worth noting that the pro-
posed approach could be easily used for other modifications of the conventional
Self-Organizing Maps such as Growing Self-Organizing Maps [1], where dynamic
topology preservation facilitates unconstrained learning. This is in contrast to
a fixed-structure feature map as the map itself is defined by the unsupervised
learning process of the feature vectors. We intend to investigate distributed rep-
resentation of n-gram statistics in structure-adapting feature maps in future
work.

Distributed Representation of n-gram Statistics for Boosting SOM 77

References

1. Alahakoon, D., Halgamuge, S., Srinivasan, B.: Dynamic self-organizing maps with
controlled growth for knowledge discovery. IEEE Trans. Neural Netw. 11(3), 601–
614 (2000)

2. Appiah, K., Hunter, A., Dickinson, P., Meng, H.: Implementation and applications
of tri-state self-organizing maps on FPGA. IEEE Trans. Circ. Syst. Video Technol.
22(8), 1150–1160 (2012)

3. Bandaragoda, T.R., De Silva, D., Alahakoon, D.: Automatic event detection in
microblogs using incremental machine learning. J. Assoc. Inform. Sci. Technol.
68(10), 2394–2411 (2017)

4. Bishop, C.M., Svensén, M., Williams, C.K.: GTM: the generative topographic map-
ping. Neural Comput. 10(1), 215–234 (1998)

5. De Silva, D., Alahakoon, D.: Incremental knowledge acquisition and self learning
from text. In: International Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE (2010)

6. De Silva, D., Alahakoon, D., Yu, X.: A data fusion technique for smart home
energy management and analysis. In: Annual Conference of the IEEE Industrial
Electronics Society (IECON), pp. 4594–4600 (2016)

7. De Silva, D., et al.: Machine learning to support social media empowered patients
in cancer care and cancer treatment decisions. PLoS One 13(10), 1–10 (2018)

8. De Silva, D., Yu, X., Alahakoon, D., Holmes, G.: A data mining framework for
electricity consumption analysis from meter data. IEEE Trans. Industr. Inf. 7(3),
399–407 (2011)

9. Dittenbach, M., Merkl, D., Rauber, A.: The growing hierarchical self-organizing
map. In: International Joint Conference on Neural Networks (IJCNN), vol. 6, pp.
15–19 (2000)

10. Eliasmith, C.: How to Build a Brain. Oxford University Press, Oxford (2013)
11. Frady, E.P., Kleyko, D., Sommer, F.T.: A theory of sequence indexing and working

memory in recurrent neural networks. Neural Comput. 30, 1449–1513 (2018)
12. Hazan, H., Saunders, D.J., Sanghavi, D.T., Siegelmann, H.T., Kozma, R.: Unsu-

pervised learning with self-organizing spiking neural networks. In: International
Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2018)

13. Hinton, G., McClelland, J., Rumelhart, D.: Distributed representations. In: Rumel-
hart, D., McClelland, J. (eds.) Parallel Distributed Processing. Explorations in the
Microstructure of Cognition - Volume 1 Foundations, pp. 77–109. MIT Press, Cam-
bridge (1986)

14. Jayaratne, M., Alahakoon, D., De Silva, D., Yu, X.: Bio-inspired multisensory
fusion for autonomous robots. In: Annual Conference of the IEEE Industrial Elec-
tronics Society (IECON), pp. 3090–3095 (2018)

15. Joshi, A., Halseth, J.T., Kanerva, P.: Language geometry using random indexing.
In: de Barros, J.A., Coecke, B., Pothos, E. (eds.) QI 2016. LNCS, vol. 10106, pp.
265–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52289-0 21

16. Kanerva, P.: Hyperdimensional computing: an introduction to computing in dis-
tributed representation with high-dimensional random vectors. Cogn. Comput.
1(2), 139–159 (2009)

17. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM-self-organizing maps
of document collections1. Neurocomputing 21(1–3), 101–117 (1998)

18. Kleyko, D., Osipov, E.: Brain-like classifier of temporal patterns. In: International
Conference on Computer and Information Sciences (ICCOINS), pp. 104–113 (2014)

https://doi.org/10.1007/978-3-319-52289-0_21

78 D. Kleyko et al.

19. Kleyko, D., Osipov, E., De Silva, D., Wiklund, U., Alahakoon, D.: Integer self-
organizing maps for digital hardware. In: International Joint Conference on Neural
Networks (IJCNN), pp. 1–8 (2019)

20. Kleyko, D., Osipov, E., Gayler, R.: Recognizing permuted words with vector sym-
bolic architectures: a cambridge test for machines. Proc. Comput. Sci. 88, 169–175
(2016)

21. Kleyko, D., Osipov, E., Papakonstantinou, N., Vyatkin, V.: Hyperdimensional com-
puting in industrial systems: the use-case of distributed fault isolation in a power
plant. IEEE Access 6, 30766–30777 (2018)

22. Kleyko, D., Osipov, E., Wiklund, U.: A hyperdimensional computing framework for
analysis of cardiorespiratory synchronization during paced deep breathing. IEEE
Access 7, 34403–34415 (2019)

23. Kleyko, D., Rahimi, A., Gayler, R., Osipov, E.: Autoscaling bloom filter: controlling
trade-off between true and false positives. Neural Comput. Appl. 1–10 (2019)

24. Kleyko, D., Rahimi, A., Rachkovskij, D., Osipov, E., Rabaey, J.: Classification and
recall with binary hyperdimensional computing: trade-offs in choice of density and
mapping characteristic. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 5880–5898
(2018)

25. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences.
Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56927-2

26. Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomput-
ing 21(1–3), 19–30 (1998)

27. Kusiak, A.: Smart manufacturing must embrace big data. Nat. News 544(7648),
23 (2017)

28. Nallaperuma, D., De Silva, D., Alahakoon, D., Yu, X.: Intelligent detection of
driver behavior changes for effective coordination between autonomous and human
driven vehicles. In: Annual Conference of the IEEE Industrial Electronics Society
(IECON), pp. 3120–3125 (2018)

29. Nawaratne, R., Bandaragoda, T., Adikari, A., Alahakoon, D., De Silva, D., Yu, X.:
Incremental knowledge acquisition and self-learning for autonomous video surveil-
lance. In: Annual Conference of the IEEE Industrial Electronics Society (IECON),
pp. 4790–4795 (2017)

30. Osipov, E., Kleyko, D., Legalov, A.: Associative synthesis of finite state automata
model of a controlled object with hyperdimensional computing. In: Annual Con-
ference of the IEEE Industrial Electronics Society (IECON), pp. 3276–3281 (2017)

31. Plate, T.A.: Holographic Reduced Representations: Distributed Representation for
Cognitive Structures. Center for the Study of Language and Information (CSLI),
Stanford (2003)

32. Quasto, U., Richter, M., Biemann, C.: Corpus portal for search in monolingual
corpora. In: Fifth International Conference on Language Resources and Evaluation
(LREC), pp. 1799–1802 (2006)

33. Rachkovskij, D.A.: Representation and processing of structures with binary sparse
distributed codes. IEEE Trans. Knowl. Data Eng. 3(2), 261–276 (2001)

34. Rahimi, A., et al.: High-dimensional Computing as a Nanoscalable Paradigm. IEEE
Trans. Circ. Syst. I: Regul. Pap. 64(9), 2508–2521 (2017)

35. Rahimi, A., Kanerva, P., Benini, L., Rabaey, J.M.: Efficient biosignal processing
using hyperdimensional computing: network templates for combined learning and
classification of ExG signals. Proc. IEEE 107(1), 123–143 (2019)

36. Rahimi, A., Kanerva, P., Rabaey, J.: A robust and energy efficient classifier using
brain-inspired hyperdimensional computing. In: IEEE/ACM International Sympo-
sium on Low Power Electronics and Design (ISLPED), pp. 64–69 (2016)

https://doi.org/10.1007/978-3-642-56927-2

Distributed Representation of n-gram Statistics for Boosting SOM 79

37. Rasanen, O., Kakouros, S.: Modeling dependencies in multiple parallel data
streams with hyperdimensional computing. IEEE Signal Process. Lett. 21(7), 899–
903 (2014)

38. Recchia, G., Sahlgren, M., Kanerva, P., Jones, M.: Encoding sequential informa-
tion in semantic space models: comparing holographic reduced representation and
random permutation. Computat. Intell. Neurosci. 1–18 (2015)

39. Santana, A., Morais, A., Quiles, M.: An alternative approach for binary and cate-
gorical self-organizing maps. In: International Joint Conference on Neural Networks
(IJCNN), pp. 2604–2610 (2017)

40. Shah-Hosseini, H., Safabakhsh, R.: TASOM: a new time adaptive self-organizing
map. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 33(2), 271–282 (2003)

41. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Trans.
Neural Netw. 11(3), 586–600 (2000)

42. Zolotukhin, M., Hamalainen, T., Juvonen, A.: Online anomaly detection by using
n-gram model and growing hierarchical self-organizing maps. In: International
Wireless Communications and Mobile Computing Conference (IWCMC), pp. 47–
52 (2012)

Parallel Factorization of Boolean
Polynomials

Vadiraj Kulkarni1(B), Pavel Emelyanov2,3, Denis Ponomaryov2,3,
Madhava Krishna1,4, Soumyendu Raha1, and S. K. Nandy1

1 Computer Aided Design Laboratory, Indian Institute of Science,
Bangalore 560012, India

{vadirajk,madhava,raha,nandy}@iisc.ac.in
2 Ershov Institute of Informatics Systems,

Lavrentiev av. 6, 630090 Novosibirsk, Russia
{emelyanov,ponom}@iis.nsk.su

3 Novosibirsk State University, Pirogova st. 1, 630090 Novosibirsk, Russia
4 Morphing Machines Pvt. Ltd., Bangalore, India

Abstract. Polynomial factorization is a classical algorithmic problem in
algebra, which has a wide range of applications. Of special interest is fac-
torization over finite fields, among which the field of order two is probably
the most important one due to the relationship to Boolean functions. In
particular, factorization of Boolean polynomials corresponds to decom-
position of Boolean functions given in the Algebraic Normal Form. It has
been also shown that factorization provides a solution to decomposition
of functions given in the full DNF (i.e., by a truth table), for positive
DNFs, and for cartesian decomposition of relational datatables. These
applications show the importance of developing fast and practical fac-
torization algorithms. In the paper, we consider some recently proposed
polynomial time factorization algorithms for Boolean polynomials and
describe a parallel MIMD implementation thereof, which exploits both
the task and data level parallelism. We report on an experimental eval-
uation, which has been conducted on logic circuit synthesis benchmarks
and synthetic polynomials, and show that our implementation signifi-
cantly improves the efficiency of factorization. Finally, we report on the
performance benefits obtained from a parallel algorithm when executed
on a massively parallel many core architecture (Redefine).

Keywords: Boolean polynomials · Factorization · Reconfigurable
computing

1 Introduction

Polynomial factorization is a classical algorithmic problem in algebra, [8], which
has numerous important applications. An instance of this problem, which

This work was supported by the grant of Russian Foundation for Basic Research No.
17-51-45125 and by the Ministry of Science and Education of the Russian Federation
under the 5–100 Excellence Program.

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 80–94, 2019.
https://doi.org/10.1007/978-3-030-37487-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_7

Parallel Factorization of Boolean Polynomials 81

deserves a particular attention, is factorization of Boolean polynomials, i.e., mul-
tilinear polynomials over the finite field of order 2. A Boolean polynomial is one
of the well-known sum-of-product representations of Boolean functions known
as Zhegalkine polynomials [14] in the mathematical logic or the Reed–Muller
canonical form [10] in the circuit synthesis. The advantage of this form that has
recently made it popular again is a more natural and compact representation of
some classes of Boolean functions (e.g., arithmetical functions, coders/cyphers,
etc.), a more natural mapping to some circuit technologies (FPGA–based and
nanostructure–based electronics), and good testability properties.

Factorization of Boolean polynomials is a particular case of decomposition
(so–called disjoint conjunctive or AND–decomposition) of Boolean functions.
Indeed, in a Boolean polynomial each variable has degree at most 1, which
makes the factors have disjoint variables: F (X,Y) = F1(X) ·F2(Y), X ∩Y = ∅.

It has been recently shown [4,5] that factorizaton of Boolean polynomials pro-
vides a solution to conjunctive decomposition of functions given in the full DNF
(i.e., by a truth table) and for positive DNFs without the need of (inefficient)
transformation between the representations. Besides, it provides a method for
Cartesian decomposition of relational datatables [3,6], i.e., finding tables such
that their unordered Cartesian product gives the source table. We give some
illustrating examples below.

Consider the following DNF

ϕ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v) ∨ (x ∧ u ∧ v)

It is equivalent to

ψ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v)

since the last term in ϕ is redundant. One can see that

ψ ≡ (x ∨ y) ∧ (u ∨ v)

and the decomposition components x ∨ y and u ∨ v can be recovered from the
factors of the polynomial

Fψ = xu + xv + yu + yv = (x + y) · (u + v)

constructed for ψ.
The following full DNF

ϕ = (x ∧ ¬y ∧ u ∧ ¬v) ∨(x ∧ ¬y ∧ ¬u ∧ v)∨
∨(¬x ∧ y ∧ u ∧ ¬v) ∨ (¬x ∧ y ∧ ¬u ∧ v)

is equivalent to

(x ∧ ¬y) ∨ (¬x ∧ y)
∧

(u ∧ ¬v) ∨ (¬u ∧ v)

82 V. Kulkarni et al.

and the decomposition components of ϕ can be recovered from the factors of the
polynomial

Fϕ = xȳuv̄ + xȳūv + x̄yuv̄ + x̄yūv = (xȳ + x̄y) · (uv̄ + ūv) (1)

constructed for ϕ.
Finally, Cartesian decomposition of the following table

B E D A C

z q u x y

y q u x y

y r v x z

z r v x z

y p u x x

z p u x x

=

A B

x y

x z

×
C D E

x u p

y u q

z v r

can be obtained from the factors of the polynomial

zB · q · u · xA · yC+ yB · q · u · xA · yC+
yB · r · v · xA · zC+ zB · r · v · xA · zC +
yB · p · u · xA · xC+ zB · p · u · xA · xC =

= (xA · yB + xA · zB) · (q · u · yC + r · v · zC + p · u · xC)

constructed for the table’s content.
Decomposition facilitates finding a more compact representation of Boolean

functions and data tables, which is applied in the scope of the Logic Circuit
Synthesis, self-organizing databases, and dependency mining, respectively. Due
to the typically large inputs in these tasks, it is important to develop efficient
and practical factorization algorithms for Boolean polynomials.

In [13], Shpilka and Volkovich showed a connection between polynomial fac-
torization and identity testing. It follows from their results that a Boolean poly-
nomial can be factored in time O(l3), where l is the size of the polynomial
given as a symbol sequence. The approach employs multiplication of polyno-
mials obtained from the input one, which is a costly operation in case of large
inputs. In [4], Emelyanov and Ponomaryov proposed an alternative approach to
factorization and showed that it can be done without explicit multiplication of
Boolean polynomials. The approach has been further discussed in [7].

In this paper, we propose a parallel version of the decomposition algorithm
from [4,7]. In Sect. 2, we revisit the sequential factorization algorithm from these
papers. In Sect. 3, we describe a parallel MIMD implementation of the algorithm
and further in Sect. 4 we perform a quantitative analysis of the parallel algorithm
versus the sequential one. Finally, in Sect. 5 we evaluate our algorithm on a
massively parallel many core architecture (Redefine) and outline the results.

2 Background

In this section we reproduce the sequential algorithm from [4,7] for the ease of
exposition. Let us first introduce basic definitions and notations.

Parallel Factorization of Boolean Polynomials 83

A polynomial F ∈ F2[x1, . . . , xn] is called factorable if F = F1 · . . . · Fk,
where k ≥ 2 and F1, . . . , Fk are non-constant polynomials. The polynomials
F1, . . . , Fk are called factors of F . It is important to realize that since we consider
multilinear polynomials (every variable can occur only in the power of ≤ 1), the
factors are polynomials over disjoint sets of variables. In the following sections,
we assume that the polynomial F does not have trivial divisors, i.e., neither x,
nor x + 1 divides F . Clearly, trivial divisors can easily be recognized.

For a polynomial F , a variable x from the set of variables V ar(F) of F ,
and a value a ∈ {0, 1}, we denote by Fx=a the polynomial obtained from F
by substituting x with a. ∂F

∂x denotes a formal derivative of F wrt x. Given a
variable z, we write z|F if z divides F , i.e., z is present in every monomial of F
(note that this is equivalent to the condition ∂F

∂z = Fz=1). Given a set of variables
Σ and a monomial m, the projection of m onto Σ is 1 if m does not contain any
variable from Σ, or is equal to the monomial obtained from m by removing all
the variables not contained in Σ, otherwise. The projection of a polynomial F
onto Σ, denoted by F |Σ , is the polynomial obtained as the sum of monomials
from the set S projected onto Σ, with duplicate monomials removed.

2.1 Factorization Algorithm

Algorithm 1 describes the sequential version of the factorization algorithm. As
already mentioned, the factors of a Boolean polynomial have disjoint sets of
variables. This property is employed in the algorithm, which tries to compute a
variable partition. Once it is computed, the corresponding factors can be easily
obtained as projections of the input polynomial onto the sets from the partition.

The algorithm chooses a variable randomly from the variable set of F. Assum-
ing the polynomial F contains at least two variables the algorithm partitions the
variable set of F into two sets with respect to the chosen variable:

– the first set Σsame contains the selected variable and corresponds to an irre-
ducible polynomial;

– the second set Σother corresponds to the second polynomial which can admit
further factorization.

The factors of F, Fsame and Fother are obtained as the projections of the input
polynomial onto Σsame and Σother, respectively.

In lines 1–3, we select an arbitrary variable x from the variable set of F and
compute the polynomials A and B. A is the derivative of F wrt x and B is the
polynomial obtained by setting x to zero in F. In lines 4–10, we loop through
the variable set of F excluding x, calculate the polynomials C and D, and check
if the product AD is equal to BC. C is the derivative of polynomial A and D is
the derivative of polynomial B. To check whether AD is equal to BC we invoke
the IsEqual procedure in line 6. We describe the IsEqual procedure in detail
in the next subsection.

84 V. Kulkarni et al.

2.2 IsEqual Procedure

Algorithm 2 describes the sequential version of the IsEqual procedure.

Algorithm 1. Sequential Factorization Algorithm
Input Boolean polynomial to be factored F
Output Fsame and Fother which are the factors of the input polynomial F

1: Take an arbitrary variable x occurring in F
2: Let A = ∂F

∂x
, B = Fx=0

3: Let Σsame = x, Σother = ∅, Fsame = 0, Fother = 0
4: for each y ∈ var(F) \ {x} do
5: Let C = ∂A

∂y
, D = ∂B

∂y

6: if IsEqual(A, D, B, C) then
7: Σother = Σother ∪ {y}
8: else
9: Σsame = Σsame ∪ {y}

10: end if
11: end for
12: If Σother = ∅ then F is non-factorable
13: Return polynomials Fsame and Fother obtained as projections onto Σsame

and Σother respectively.

– The procedure takes input polynomials A,B,C,D and computes whether
AD = BC by employing recursion.

– Lines 1–2, 7–16 implement the base cases when AD = BC can be determined
trivially.

– In Line 3–5, we check whether a variable z divides the polynomials A,B,C,D
such that the condition in Line 4 holds. If this is not the case, then we
can eliminate z from A,B,C,D and check if the products of the resulting
polynomials are equal.

– In Lines 17–25, we recursively invoke IsEqual procedure on polynomials,
whose sizes are smaller than the size of the original ones.

2.3 Scope for Parallelism

The crux of Algorithm 1 is the loop in Lines 4–11. We observe that the different
iterations of the loop are independent of each other. Hence the loop exhibits
thread level parallelism which can be exploited for performance gain. The con-
ditional block inside the loop in Lines 6–10 can be used to exploit the task level
parallelism between the multiple threads.

Multiple sections of Algorithm 2 are amenable for parallelization. Checking
the divisibility of the polynomials A,B,C,D in Lines 3–6 of IsEqual procedure
can be performed independently. In Lines 16–23, the recursive calls to IsEqual
procedure are independent of each other and exhibit thread level parallelism.

In the next section we propose a parallel algorithm using the above observa-
tions.

Parallel Factorization of Boolean Polynomials 85

Algorithm 2. Sequential IsEqual Procedure
Input Boolean polynomials A,B,C,D
Output TRUE if AD is equal to BC and FALSE otherwise.

1: If A=0 or D=0 then return (B=0 or C=0)
2: If B=0 or C=0 then return FALSE
3: for each z occurring in at least one of A,B,C,D do
4: if z|A or z|D xor z|B or z|C then
5: return FALSE
6: end if
7: Replace every X ∈ {A, B, C, D} with ∂X

∂z
, provided z|X

8: end for
9: if A=1 and D=1 then return (B=1 and C=1)

10: end if
11: if B=1 and C=1 then return FALSE
12: end if
13: if A=1 and B=1 then return (D=C)
14: end if
15: if D=1 and C=1 then return (A=B)
16: end if
17: Pick a variable z
18: if not(IsEqual(Az=0, Dz=0, Bz=0, Cz=0)) then return FALSE
19: end if
20: if not(IsEqual(∂A

∂z
, ∂D

∂z
, ∂B

∂z
, ∂C

∂z
)) then return FALSE

21: end if
22: if IsEqual(∂A

∂z
, Bz=0, Az=0,

∂B
∂z

) then return TRUE
23: end if
24: if IsEqual(∂A

∂z
, Cz=0, Az=0,

∂C
∂z

) then return TRUE
25: else return FALSE
26: end if

3 Proposed Approach

3.1 Parallel Factorization Algorithm

Algorithm 3 describes the parallel version of the factorization algorithm. In Lines
1–3, we select an arbitrary variable x from the variable set of F and compute
the polynomials A and B. In Lines 4–11, we perform multiple loop iterations
independently in parallel by spawning multiple threads. Each thread will return
two sets Σtid

same and Σtid
other specific to the scope of the thread designated by

thread identifier tid. In Lines 12–13, the variable sets Σsame and Σother are
computed as the union of the thread specific instances, respectively. Note that
Lines 12–13 perform barrier synchronization of all the parallel threads.

3.2 Parallel IsEqual Procedure

Algorithm 4 describes the parallel version of the IsEqual procedure. This algo-
rithm takes as input four polynomials A,D,B,C and checks whether the product

86 V. Kulkarni et al.

Algorithm 3. Parallel Decomposition Algorithm
Input Boolean polynomial to be factored F
Output Fsame and Fother which are the factors of the input polynomial F

1: Take an arbitrary variable x occurring in F
2: Let A = ∂F

∂z
, B = Fz=0

3: Let Σsame = x, Σother = ∅, Fsame = 0, Fother = 0
4: for each y ∈ var(F) \ {x} do in parallel
5: Let C = ∂A

∂y
D = ∂B

∂y

6: if IsEqual(A, D, B, C) then
7: Σtid

other = Σtid
other ∪ {y}

8: else
9: Σtid

same = Σtid
same ∪ {y}

10: end if
11: end for Wait for all the parallel threads to finish
12: Σother =

⋃
tid Σtid

other

13: Σsame =
⋃

tid Σtid
same

14: If Σother = ∅ then F is non-factorable; stop
15: Return polynomials Fsame and Fother obtained as projections onto Σsame

and Σother, respectively.

AD is equal to the product BC. Lines 1–2 and lines 14–21 describe the cases
when determining AD = BC is trivial. In lines 3–9, we check whether a variable
z divides the input polynomials A,D,B,C such that the condition in Line 5
holds. If this is not the case, we divide them by z to obtain the reduced poly-
nomials. The above operations are performed for each variable independently
in parallel by spawning multiple threads. In Line 8 each thread checks whether
a variable ztid (tid denotes the thread id) is a divisor of any of A,B,C,D.
If ztid divides any of A,B,C,D it computes the corresponding reduced poly-
nomials Atid,Dtid, Btid, Ctid obtained by dividing any of A,D,B,C by ztid,
respectively. In line 10 we wait for all the threads to finish. In Line 13 we take
pairwise intersection of the corresponding monomials of thread specific polyno-
mials Atid,Dtid, Btid, Ctid to form polynomials which are free of trivial divisors.
Intersection of two monomials m1,m2 is 1 if m1,m2 do not contain common vari-
ables and otherwise it is the monomial, which consists of the variables present in
both m1 and m2. In Lines 23–27, we perform four recursive calls to the IsEqual
function independently in parallel by spawning multiple threads. In Line 28–37,
we wait for all the threads to finish and compare the outputs of each threads to
form the final output. Note that lines 10 and 28 perform barrier synchronization
of all the parallel threads.

Parallel Factorization of Boolean Polynomials 87

Algorithm 4. Parallel IsEqual Function
Input Boolean polynomials A,B,C,D
Output TRUE if AD is equal to BC and FALSE otherwise.

1: If A=0 or D=0 then return (B=0 or C=0)
2: If B=0 or C=0 then return FALSE
3: for each z occurring in at least one of A,B,C,D do in parallel
4: set flagtid= True
5: if z|A or z|D xor z|B or z|C then
6: set flagtid= FALSE
7: end if
8: Replace every Xtid ∈ {A, B, C, D} with ∂Xtid

∂z
, provided z|Xtid

9: end for
10: Wait for all threads to finish
11: if

∧

tid

flagtid = FALSE then return FALSE

12: end if
13: X =

⋂
tid Xtid, for X ∈ {A, B, C, D}

14: if A=1 and D=1 then return (B=1 and C=1)
15: end if
16: if B=1 and C=1 then return FALSE
17: end if
18: if A=1 and B=1 then return (D=C)
19: end if
20: if D=1 and C=1 then return (A=B)
21: end if
22: Pick a variable z
23: Do the next 4 lines in parallel
24: x = not(IsEqual(Az=0, Dz=0, Bz=0, Cz=0))
25: y = not(IsEqual(∂A

∂z
, ∂D

∂z
, ∂B

∂z
, ∂C

∂z
))

26: z = IsEqual(∂A
∂z

, Bz=0, Az=0,
∂B
∂z

)
27: w = IsEqual(∂A

∂z
, Cz=0, Az=0,

∂C
∂z

)
28: Wait for all threads to finish
29: if not(x) then return FALSE
30: end if
31: if not(y) then return FALSE
32: end if
33: if z then return TRUE
34: end if
35: if w then return TRUE
36: else return FALSE
37: end if

4 Experiments and Results

Experimental evaluation of the sequential and parallel algorithms was made on
Logic circuit synthesis benchmarks and synthetic Boolean polynomials.

88 V. Kulkarni et al.

4.1 Logic Circuit Synthesis Benchmarks

We used ITC’99 [2], Iscas’85 [9], and n-bit ripple carry adder [12] benchmarks.
RTL designs of the digital logic circuits were converted from Verilog to the full
disjunctive normal form to obtain the corresponding Boolean polynomial. The
sequential and parallel algorithms were evaluated on the obtained Boolean poly-
nomials. Table 1 shows the execution time of sequential and parallel algorithms
executed on Xeon processor running at 2.8 GHz with 4 threads averaged over 5
runs. One can observe a considerable performance speedup of the parallel algo-
rithm over the sequential one.

Table 1. Results on Xeon processor at 2.8 GHz using 4 threads

Benchmark Sequential Multi-threaded Speedup

ITC’99 4324 (s) 1441 (s) 3.01

Iscas’85 7181 (s) 2633 (s) 2.73

EPFL adder 1381 (s) 374 (s) 3.69

4.2 Synthetic Polynomials

Synthetic polynomials of varying complexities were generated at random and
sequential and parallel algorithms were evaluated on them. Table 2 shows execu-
tion times for the sequential and parallel algorithms executed on Xeon processor
running at 2.8 GHz with 4 threads averaged over 5 runs. We observe that the exe-
cution time of both sequential and multithreaded algorithm increases drastically
with the increase in the complexity of Boolean polynomials. We also observe that
the speedup due to parallelization decreases with the increase in the complexity
of Boolean polynomials.

4.3 Scaling Results

Figure 1a shows the speedup of the parallel decomposition algorithm over the
sequential one wrt the number of threads. Here, the problem size is fixed to
examine the strong scaling behaviour of the parallel decomposition algorithm.
We observe that the parallel speedup is decreased as the size (complexity) of
the problem increases. As the problem size increases, so does the call to the
sequential bottleneck of the algorithm (simplification of Boolean polynomials),
which causes the speedup to reduce.

Figure 1b shows the speedup of the parallel decomposition algorithm over
the sequential algorithm wrt the number of threads. Here, the problem size per
thread is fixed to examine the weak scaling behaviour of the parallel algorithm.
The increase in the parallel speedup with the increase in the number of threads is
less than the ideal linear speedup. This is due to the sequential bottlenecks in the
decomposition algorithm (simplification of Boolean polynomials) and the com-
munication bottleneck among multiple threads. Note that in these tests number
of variables ranges from tens to two hundreds.

Parallel Factorization of Boolean Polynomials 89

Table 2. Execution time of factoring synthetic polynomials on Xeon processor at
2.8 GHz using 4 threads

Number of monomials Sequential Multi-threaded Speedup

10 0.023 (s) 0.0074 (s) 3.12

50 16.29 (s) 5.07 (s) 3.21

100 103.5 (s) 30.44 (s) 3.4

500 483.6 (s) 178.1 (s) 2.7

1000 1165 (s) 520.9 (s) 2.2

5000 1430 (s) 735.11 (s) 1.91

10000 12614 (s) 8034 (s) 1.57

Fig. 1. (a) Parallel speedup vs number of threads with fixed problem size (b) Parallel
speedup vs number of threads with fixed problem size per thread

5 Implementation on Redefine

The REDEFINE architecture [1] comprises Compute Resources (CRs) connected
through a Network-on-Chip (NoC) (see Fig. 2a). REDEFINE is an application
accelerator, which can be customized for a specific application domain through
reconfiguration. Reconfiguration in REDEFINE can be performed primarily at
two levels, viz. the level of aggregation of CRs to serve as processing cores for
coarse grain multi-input, multi-output macro operations, and at the level of
Custom Function Units (CFU) presented at the Hardware Abstraction Layer
(HAL) as Instruction Extensions. Unlike traditional architectures, Instructions
Extensions in REDEFINE can be defined post-silicon. Post-silicon definition
of Instruction Extensions in REDEFINE is a unique feature of REDEFINE
that sets it aside from other commercial multicores by allowing customization of
REDEFINE for different application domains.

90 V. Kulkarni et al.

Host Interface

RRM Compute Node Router

(a)

L1$: Private L1-cache for global memory address space
CM$: Cache for context memory address space
DSM-bank: Distributed Shared Memory bank, hosts a

L1$L1$L1$L1$

D
SM

-
bank

Router

O
rchestrator

CM$

CE CE CE CE

region of global memory and context memory

(b)

Off-Chip Memory Controller

Fig. 2. (a) A 16 node REDEFINE comprising of a 4 × 4 toriodal mesh of routers and
a redefine resource manager (RRM) for interfacing with the host (b) Composition of a
compute Node

REDEFINE execution model is inspired by the macro-dataflow model. In
this model, an application is described as a hierarchical dataflow graph, as
shown in Fig. 3, in which the vertices are called hyperOps, and the edges rep-
resent explicit data transfer or execution order requirements among hyperOps.
A hyperOp is a multiple-input and multiple-output (MIMO) macro operation.
A hyperOp is ready for execution as soon as all its operands are available and
all its execution order or synchronization dependencies are satisfied. Apart from
the arithmetic, control, and memory load and store instructions, the REDE-
FINE execution model includes primitives for explicit data transfers and syn-
chronization among hyperOps and primitives for adding new nodes (hyper-
Ops) and edges to the application graph during execution. Thus, the execution

Parallel Factorization of Boolean Polynomials 91

model supports dynamic (data-dependent) parallelism. The execution model fol-
lows non-preemptive scheduling of hyperOps; therefore cyclic dependencies are
forbidden among hyperOps. The runtime unit named Orchestrator schedules
ready hyperOps onto CRs. A CR comprises four Compute Elements (CEs). Each
CE executes a hyperOp (see Fig. 2b). All communications among hyperOps are
unidirectional i.e., only producer hyperOp initiates and completes a communi-
cation. Thus with sufficient parallelism, all communications can overlap with
computations. Compared to other hybrid dataflow/control-flow execution mod-
els, REDEFINE execution model simplifies the resource management and the
memory model required to support arbitrary parallelism.

Fig. 3. Macro-dataflow execution model. An application described as a hierarchical
dataflow graph, in which vertices represent hyperOps and edges represent explicit data
transfer or execution order requirements between the connected hyperOps.

5.1 Decomposition Algorithm Using HyperOps

Algorithm 5 describes in pseudo-code the decomposition algorithm when written
using “C with HyperOps”. The code snippet, corresponding to Algorithm 5 is
presented in the listing below. In the code snippet the terms CMAddr, Sync,
kernel, WriteCM, CMADDR are REDEFINE specific annotations. Lines 2–8

and 12–13 of Algorithm 5 are the same as Lines 5–10 and 1–3 of Algorithm 1,
respectively. In Lines 15–17 of Algorithm 5, for each variable y in the variable
set of F (excluding x) we spawn HyperOps in parallel to calculate whether y
belongs to Σsame or Σother. In Lines 1–10, we define the HyperOp. It takes as
input Boolean polynomials A,B and a variable y and adds y to Σsame or Σother.
In Lines 18–20, we wait for the all the HyperOps to finish and output Fsame and
Fother.

92 V. Kulkarni et al.

Algorithm 5. Decomposition Algorithm using HyperOps
Input Boolean polynomial to be factored F
Output Fsame and Fother which are the factors of the input polynomial F
Global variables Σsame, Σother

1: Begin HyperOp
2: Inputs: A, B, variable y
3: Calculate C = ∂A

∂y
, D = ∂B

∂y

4: if IsEqual(A,D,B,C) then
5: Σother = Σother ∪ {y}
6: else
7: Σsame = Σsame ∪ {y}
8: end if
9: Call Sync HyperOp

10: End HyperOp
11: Take an arbitrary variable x occurring in F
12: Let A = ∂F

∂z
, B = Fz=0

13: Let Σsame = x, Σother = ∅, Fsame = 0, Fother = 0
14: for each y ∈ var(F) \ {x} do in parallel
15: Spawn HyperOp with inputs A, B, y
16: end for
17: Wait for the Sync HyperOp to return
18: If Σother = ∅ then F is non-factorable; stop
19: Return polynomials Fsame and Fother obtained as projections onto Σsame and

Σother, respectively.

Table 3. Parallel factoring of synthetic boolean polynomials using REDEFINE emu-
lation running on Intel Xeon processor at 2.8 GHz

Number of
monomials

Sequential
(cpu cycles)

Multi-threaded
(cpu cycles)

Redefine
(cpu cycles)

30 17192 × 103 7896 × 103 6837 × 103

50 45612 × 103 14196 × 103 12320 × 103

Listing 1.1 below shows the decomposition algorithm written in C with
HyperOps. The proposed algorithm with HyperOps was evaluated using REDE-
FINE emulator executed on Intel Xeon processor. Table 3 shows the execution
time of the decomposition algorithm executed on Redefine emulator on synthetic
Boolean polynomials. The Redefine implementation has the lowest CPU cycles.

Parallel Factorization of Boolean Polynomials 93

1 hyperOp void decompose (CMAddr s e l f I d , Op32 a , Op32 b , Op32 p s , Op32
p o , Op32 m, Op32 n , Op32 i , Op32 consumerFrId){

2
3 in t ∗A = a . ptr ;
4 i n t ∗B = b . ptr ;
5 i n t ∗ par t i t i on same = p s . ptr ;
6 i n t ∗ pa r t i t i o n o t h e r = p o . ptr ;
7 i n t I = i . i 32 ;
8 i n t n = n . i32 ;
9 i n t m = m. i32 ;

10 in t I=0,J = 0 ;
11 in t ∗C, ∗D;
12
13 CMAddr con f r Id = consumerFrId . cmAddr ;
14 f o r (I = 0 ; I<n ; I++){
15 ∗(pa r t i t i on same+J) = 0 ;
16 ∗(p a r t i t i o n o t h e r+J) = 0 ;
17 }
18
19 f o r (I = 0 ; I<m; I++){
20 f o r (J=0;J<n ; j++){
21 ∗(C+I∗columns+J) = 0 ;
22 ∗(D+I∗columns+J) = 0 ;
23 }
24 }
25 d e r i v a t i v e (A,B,C, i) ;
26 d e r v i a t i v e (A,B,D, i) ;
27 i f (IsEqual (A,D,B,C)){
28 ∗(p a r t i t i o n o t h e r+i) =1;
29 }
30 e l s e {
31 ∗(pa r t i t i on same+i) =1;
32 }
33 Sync (confr Id , −1) ;
34 }
35
36
37 k e r n e l i n t decompose start (i n t ∗A, in t ∗B, in t ∗ part i t ion same , i n t ∗

pa r t i t i on o th e r , i n t N){
38
39 in t i = 0 , j = 0 ;
40 s t a t i c i n t counter = 0 ;
41 CMAddr decomposeFr ;
42 CMAddr syncFr = Crea t e I n s t (&smd Sync) ;
43 WriteCM(CMADDR(syncFr , 15) , N−1) ;
44
45 f o r (i = 1 ; i<N; i++){
46 decomposeFr = Crea t e I n s t (&smd decompose) ;
47 WriteCM(CMADDR(decomposeFr , 0) , (void ∗) (A)) ;
48 WriteCM(CMADDR(decomposeFr , 1) , (void ∗) (B)) ;
49 WriteCM(CMADDR(decomposeFr , 2) , (void ∗) (par t i t i on same)) ;
50 WriteCM(CMADDR(decomposeFr , 3) , (void ∗) (p a r t i t i o n o t h e r)) ;
51 WriteCM(CMADDR(decomposeFr , 4) , M) ;
52 WriteCM(CMADDR(decomposeFr , 5) , N) ;
53 WriteCM(CMADDR(decomposeFr , 6) , i) ;
54 WriteCM(CMADDR(decomposeFr , 7) , CMADDR(syncFr , 15)) ;
55 }
56 return 0 ;
57 }

Listing 1.1. Snippet of decomposition algorithm using Hyperops

6 Conclusions and Future Work

In this paper, we have reviewed the factorization problem for Boolean polyno-
mials. Factorization provides the basis for decomposition of Boolean functions
in DNF and for decomposition of data tables. Hence, it is important to develop
efficient factorization procedures. We have considered the approach from [4] for
factoring Boolean polynomials and presented a MIMD implementation thereof,
which exploits task and data level parallelism to achieve better performance.
Evaluation of the sequential and parallel algorithms on logic circuit synthesis
benchmarks and synthetic Boolean polynomials showed a considerable speedup
obtained by parallelization. The implementation of the parallel algorithm on a
REDEFINE emulator outlined the performance benefits under execution on a
massively parallel many core architecture. REDEFINE execution model is based

94 V. Kulkarni et al.

on data flow principles and hence, the need for explicit barrier synchronization is
obviated. This results in better performance of MIMD applications (Ex:Boolean
factorization) on the REDEFINE architecture. In the future work we are going to
benchmark the proposed parallel algorithm on REDEFINE hardware. We also
plan to use REDEFINE for an efficient hardware implementation of Boolean
functions given as Boolean polynomials and DNFs in order to efficiently imple-
ment decomposition algorithms for these representations. Finally, we are going
to use these implementations for non-disjoint decomposition of DNFs [11] and
data tables [3], which is based on massive computation of disjoint decompositions
as a subtask.

References

1. Redefine - reconfigurable silicon core description. http://morphing.in/redefine.
Accessed 07 Dec 2018

2. Corno, F., Reorda, M., Squillero, G.: RT-level ITC’99 benchmarks and first atpg
results. IEEE Design Test Comput. 17(3), 44–53 (2000). https://doi.org/10.1109/
54.867894

3. Emelyanov, P.: On two kinds of dataset decomposition. In: Shi, Y., et al. (eds.)
ICCS 2018. LNCS, vol. 10861, pp. 171–183. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93701-4 13

4. Emelyanov, P., Ponomaryov, D.: Algorithmic issues of AND-decomposition of
boolean formulas. Programm. Comput. Softw. 41(3), 162–169 (2015)

5. Emelyanov, P., Ponomaryov, D.: On tractability of disjoint and-decomposition of
boolean formulas. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol.
8974, pp. 92–101. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46823-4 8

6. Emelyanov, P., Ponomaryov, D.: Cartesian decomposition in data analysis. In:
Siberian Symposium on Data Science and Engineering (SSDSE) (2017)

7. Emelyanov, P., Ponomaryov, D.: On a polytime factorization algorithm for multi-
linear polynomials over F2. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov,
E.V. (eds.) CASC 2018. LNCS, vol. 11077, pp. 164–176. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99639-4 11

8. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, New York (2013)

9. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 benchmarks: a case
study in reverse engineering. IEEE Des. Test 16(3), 72–80 (1999). https://doi.org/
10.1109/54.785838

10. Muller, D.E.: Application of boolean algebra to switching circuit design and to
error detection. IRE Trans. Electron. Comput. EC–3, 6–12 (1954)

11. Ponomaryov, D.: A polynomial time delta-decomposition algorithm for positive
DNFs. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp.
325–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5 28

12. Schmidt, J., Fǐser, P.: A prudent approach to benchmark collection
13. Shpilka, A., Volkovich, I.: On the relation between polynomial identity testing and

finding variable disjoint factors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 408–419.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2 35

14. Zhegalkin, I.: Arithmetization of symbolic logics. Sbornik Math. 35(1), 311–377
(1928). (in Russian)

http://morphing.in/redefine
https://doi.org/10.1109/54.867894
https://doi.org/10.1109/54.867894
https://doi.org/10.1007/978-3-319-93701-4_13
https://doi.org/10.1007/978-3-319-93701-4_13
https://doi.org/10.1007/978-3-662-46823-4_8
https://doi.org/10.1007/978-3-662-46823-4_8
https://doi.org/10.1007/978-3-319-99639-4_11
https://doi.org/10.1109/54.785838
https://doi.org/10.1109/54.785838
https://doi.org/10.1007/978-3-030-19955-5_28
https://doi.org/10.1007/978-3-642-14165-2_35

Providing the Sharing of Heterogeneous
Ontology Design Patterns

in the Development of the Ontologies
of Scientific Subject Domains

Yury Zagorulko(B) and Olesya Borovikova

A.P. Ershov Institute of Informatics Systems,
Lavrent’ev av., 6, Novosibirsk 630090, Russia

{zagor,olesya}@iis.nsk.su

Abstract. The paper describes an approach to solving the problems
of using ontology design patterns (ODPs) for the development of the
ontologies of scientific subject domains (SSDs). This approach offers a
system of the heterogeneous ODPs, including both universal patterns
and patterns oriented to the presentation of scientific knowledge, as well
as methods of their joint use for building ontologies of SSDs. The use
of this approach allows us to save resources spent on the development
of ontologies, avoid errors common in ontological modeling, as well as
ensure a consistent presentation of all the entities of the ontologies of
scientific subject domains.

Keywords: Ontology · Scientific subject domain · Ontology design
pattern · Structural pattern · Content pattern

1 Introduction

Currently, ontologies are the main means of formalization and systematization of
knowledge in various subject areas including scientific subject domains (SSDs).
(Note that by “scientific subject domain” we mean a subject area that encom-
passes a branch of science or field of scientific knowledge in all its aspects).

The development of ontology is a very complicated and time-consuming pro-
cess. To simplify and facilitate it, various methods of and approaches to ontology
development [1–4] have been proposed. Recently, an approach based on ontology
design patterns (ODPs) [5–7] has gained popularity. According to this approach,
ODPs are documented descriptions of proven solutions to typical problems of
ontological modeling. Despite the fact that the use of ODPs allows us to greatly
simplify the process of building ontologies and improves their quality, ontology

The work is financially supported by the Russian Foundation for Basic Research (Grant
No. 19-07-00762) and by grant funding for scientific and (or) scientific and technical
research for 2018–2020 MES RK (No. AP 05133546).

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 95–105, 2019.
https://doi.org/10.1007/978-3-030-37487-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_8

96 Y. Zagorulko and O. Borovikova

design patterns have not yet found wide practical application due to a number
of problems arising from their use.

One of the widespread problems of pattern reuse is their complexity: it is
often difficult for the developer of a new ontology to understand the semantics
the authors have laid down in the pattern. Another common problem is that the
patterns are described and used separately and do not constitute a single system.
In the development of ontologies of SSDs, there is yet another important problem,
which is the absence of patterns designed to present scientific knowledge.

The paper presents the approach to the construction of ontologies of scientific
subject domains based on the ODPs. The approach complements and develops
the ontology development methodology proposed by the authors and used in
development of intelligent scientific internet resources [8]. The ODPs used in
this approach emerged as a result of solving the problems of ontological mod-
eling, which the authors of the paper encountered in the process of developing
ontologies for various scientific subject domains [9,10].

This paper is organized as follows. The second section contains a short review
of the ontology design patterns; the third section analyzes the problems of their
use. The proposed approach to the development of ontologies of scientific subject
domains is described in detail in the fourth section. The main advantages and
practical benefits of this approach, as well as plans for the near future, are
discussed in the Conclusion.

2 A Short Review of Ontology Design Patterns

The progenitors of ontology design patterns are design patterns, widely used in
software development [11]. Similar to this design patterns, ODPs are employed to
describe solutions of typical problems arising in the development of ontologies [7].

Depending on the problems for solution of which the ODPs are created,
we distinguish between structural patterns, correspondence patterns, content
patterns, reasoning patterns, presentation patterns and lexico-syntactic patterns.
(Note that this typology of patterns was proposed in the framework of the NeOn
project [12]).

From all types of patterns listed above only structural patterns, patterns of
content and presentation are used in the development of ontologies.

The structural patterns either fix the ways to solve problems caused by the
limitations of the expressive capabilities of ontology description languages or
specify the general (modular) structure of an ontology. Patterns of the first type
are called logical patterns, and patterns of the second type are called architec-
tural patterns.

The content patterns define the ways of representing typical ontology frag-
ments, on the basis of which ontologies of a whole class of subject domains can
be built.

The presentation patterns actually represent the rules (recommendations)
for naming and annotating elements of ontology. The application of these rules

Providing the Sharing of Heterogeneous Ontology Design Patterns 97

should increase the readability of the ontology, as well as the convenience and
ease of its use.

Currently, several catalogs of ODPs have been created and are develop-
ing [13–15]. The most complete of them is posted on the ODPA (Associa-
tion for Ontology Design & Patterns) portal [13], created as part of the NeOn
project [12].

ODPs are most often described in the format proposed on the ODPA associ-
ation portal [13]. According to it, the description of the pattern includes infor-
mation about its author and scope, its graphical representation, text description,
a set of scenarios and examples of usages, and links to other patterns. Content
patterns can also be supplied with a set of competency questions [6,7], which
can be used both in the development of patterns and in the search for the desired
patterns in the development of a specific ontology.

3 Problems of Using Ontology Design Patterns

The first problem of pattern reuse is due to their complexity: it is often difficult
for the developer of a new ontology to understand the semantics that the authors
have laid down in the pattern. Recently there has been a tendency to simplify
patterns [16]. Even so-called meta-patterns, describing very simple entities, were
suggested [17]. However, such simple patterns cannot significantly facilitate the
construction of SSD ontologies.

Another problem is caused by the lack of convenient ontology development
tools supporting the use of ODPs. Here we can note the plugins for the ontology
development tool of the project NeOn [18] and the ontology editor WebProtégé
[19]. However, the first plugin is available only to the participants of the NeOn
project, and the second can be used only in the WebProtégé editor, which is not
yet popular enough among ontology developers due to its limited functionality
(in comparison with the desktop version).

The third problem is that the patterns are described and applied separately
and do not constitute a single system. One more problem associated with this
problem is the lack of systematized sets of patterns targeted at subject matter
experts. Existing catalogs of ontology design patterns do not meet this require-
ment.

In our opinion, the OTTR library (Reasonable Ontology Templates) [20]
is the closest to solving the latter problem. This library provides a language
for the representation of ontology design patterns and software supporting it.
The OTTR library supplies ontology developers with patterns in the form of
high-level OWL macros [21], which makes possible their use by subject matter
experts.

As for the availability of patterns that can be used in the development of
SSD ontologies, the catalogs mentioned above do not even partially cover the
needs of building ontologies of scientific fields since they do not contain patterns
designed to represent scientific knowledge.

98 Y. Zagorulko and O. Borovikova

4 Approach to the Development of Ontologies
of Scientific Subject Domains

This section describes an approach to solving the problem of reusing ODPs in
the development of ontologies of scientific subject domains. This approach offers
a system of heterogeneous ODPs and methods for their sharing (joint use) for
building SSD ontology. At the moment, there are three types of patterns in the
system: structural logical patterns, content patterns and presentation patterns.
One part of these patterns is universal, and the other part is focused on the
presentation of scientific knowledge.

An important feature of this approach is the use of base (core) ontologies,
which include only the most general entities that are not dependent on a par-
ticular SSD. These ontologies were previously developed for the technology for
building subject-based intelligent scientific internet resources [8] and are now
represented by content patterns which were developed for all main entities of
base ontologies. In this regard, the construction of SSD ontology using the base
ontologies is reduced to their specialization and expansion. In particular, the
content patterns presented in the base ontologies are tuned (specialized) to a
specific SSD. As for the population of SSD ontology with actual data, it is per-
formed by instantiation of content patterns. This process is supported by a data
editor developed in the frameworks of this approach.

4.1 An SSD Ontology and Base Ontologies

Usually the ontology of any SSD contains not only descriptions of its inherent
system of concepts and methods for processing and analyzing information, but
also descriptions of relevant information resources. In this regard, an SSD ontol-
ogy can be represented as a system of interrelated ontologies responsible for
representing the above three components of knowledge, namely, the ontology of
the knowledge domain, the ontology of tasks and methods, and the ontology of
scientific Internet resources.

The ontology of the knowledge domain defines the system of concepts and
relations intended for a detailed description of a modeled SSD and its scientific
and research activities. The ontology of tasks and methods describes the tasks
solved in a given SSD and the methods for their solution. The ontology of sci-
entific Internet resources is used to describe the information resources available
on the Internet relevant to this SSD.

Since the development of an ontology of an SSD from scratch is not an
easy task, we have proposed a method for its construction based on a small
but representative set of base ontologies that include only the most general
entities not dependent on a particular SSD. This set includes: (1) the ontology of
scientific knowledge, (2) the ontology of scientific activity, (3) the base ontology
of tasks and methods, (4) the base ontology of information resources.

All base ontologies have specifications in the OWL language [21].

Providing the Sharing of Heterogeneous Ontology Design Patterns 99

The ontology of scientific knowledge contains classes that define structures for
describing concepts included in any SSD. Such concepts are Division of science,
Object of research, Subject of research, Method of research, Scientific result, etc.

The ontology of scientific activity includes classes of concepts related to the
organization of research activities, such as Person, Organization, Event, Activity
(Scientific activity), Project, Publication, etc.

The base ontology of information resources includes the class Information
resource as the main class. The set of properties (attributes and relationships)
of this class is based on the Dublin core standard [22].

Concepts and relations of base ontology of tasks and methods are used to
describe tasks to be solved in a given SSD, methods for their solution and soft-
ware components and algorithms implementing them.

4.2 A System of Ontology Design Patterns

To support the considered approach, a set of ODPs [23] was developed and
implemented in the OWL language. This set includes various types of patterns:
structural logical patterns, content patterns and presentation patterns. All these
patterns are combined into a single system.

Note that in this approach the presentation patterns define the rules for
naming and annotating elements of ontology, which are close to the generally
accepted ones [24].

The need to use structural logical patterns was attributed to the absence
in OWL of expressive means for representing complex entities and structures
required for building SSD ontologies, in particular, the ranges of admissible val-
ues, and n-ary and attributed relations (a binary relation with attributes).

The pattern of representation of the range of admissible values is intended
to specify such structures that are called domains in the relational data model
and are characterized by a name and a set of elementary values. Domains are
convenient to use for describing possible values of class properties when the entire
set of such values is known in advance. In this pattern, the domain is defined by
an enumerated class, which is the successor of the specially introduced service
class called the Domain class and consists of a finite set of different individuals
(objects) determining the possible values of a certain property (see Fig. 1).

Fig. 1. Structural pattern of representation of the range of admissible values.

100 Y. Zagorulko and O. Borovikova

Examples of such domains are “Geographic type”, “Position”, “Type of orga-
nization”, “Type of publication”, which include, respectively, types of localities,
types of positions in organization, types of organizations and publications.

Note that in the figures of the patterns presented in the paper, classes are
shown in the form of ellipses, individuals and attributes are in the form of rectan-
gles. An ObjectProperty type connection (a relation) is shown by a solid straight
line, and a DataProperty type connection (an attribute), by a dash line. At the
same time, classes, attributes and individuals, which must necessarily be present
in the pattern, are represented by figures surrounded by a thick line.

To represent an attributed relation, a structural pattern is proposed. It is
shown in the left side of Fig. 2.

Fig. 2. Structural pattern of the binary attributed relation and an example of its
specialization.

The central place in this pattern is occupied by the service class Attributed
relation with which the base classes of an ontology modeling the arguments of
the binary relation are connected by the links isArgument1 and hasArgument2.
At the same time, the attributes of a binary relation are modeled by the prop-
erties of this class (in OWL notation, either DataProperty or ObjectProperty)
hasAttribute and hasAttributeFromDomain. For this pattern, it is required to
set constraints on the obligatoriness and uniqueness of the arguments of the
attributed relation (Class 1 and Class 2).

To represent a specific type of the attributed relation, a new class, which is
its successor, can be defined.

The right side of Fig. 2 shows an example of a structural pattern for describ-
ing a person’s participation in scientific activities (the attributed relation partic-

Providing the Sharing of Heterogeneous Ontology Design Patterns 101

ipateIn). Here, the Person class serves as the first argument, the Activity class
is the second argument. The pattern also allows us to specify the start and end
dates of the person’s participation in an activity, as well as his/her role in it.

Similarly, we can build a pattern for an n-ary relation. Note that for this
pattern we must also specify the order of the arguments.

For a uniform and consistent presentation of the concepts used in SSD and
their properties, content patterns were constructed for the main concepts of base
ontologies using the structural patterns proposed. Due to this, the development
of an ontology of a specific SSD mainly consists in the specialization of content
patterns and the construction of fragments of a target ontology based on them.

As an example, we give a pattern intended for the description of applied tasks
solved within the framework of a scientific subject domain (see Fig. 3).

Fig. 3. Pattern for describing the applied task.

The following set of competency questions represents the content of this
pattern:

What methods solve the applied task?
What data is used for solving the applied task?
What is the result of solving the applied task?
Who formulates the task?
and etc.
It should be noted that the content patterns included in the proposed set

are interrelated through common concepts and relationships and thus form a
single network of patterns. For example, presented in Fig. 4 content patterns,
describing the concepts of Activity and Person, are interconnected not only by
the attributed relation participateIn, but also through the concepts of Scientific
result, Method of research, Publication, and Organization.

Note that in the Fig. 4 the attributed relations participateIn and workIn are
shown by a dotted line.

102 Y. Zagorulko and O. Borovikova

Fig. 4. Fragment of a network of patterns.

4.3 Methods of Building Ontologies of SSDs

Building an SSD ontology involves two main steps:

1. Construction of the components of SSD ontology using the base ontologies
through their specialization and expansion.

2. Population of SSD ontology with actual data by instantiation of content pat-
terns presented in base ontologies and specialized at step 1.

Note that in this approach the ontology of the knowledge domain is built
on the basis of ontologies of scientific knowledge and scientific activity; ontology
of tasks and methods, on the basis of base ontology of tasks and methods; and
ontology of scientific Internet resources, on the basis of base ontology of Internet
resources.

The use of content patterns is supported by a special editor, which allows
specialists in the subject area to populate the ontology with actual data, i.e.
objects of classes and their properties. When populating an ontology with the
help of the editor, the user selects the required class from the class hierarchy
presented to him, and the editor uses the class name to find the corresponding
pattern. After that, the editor, using the information from the pattern, builds
a form containing the fields for filling in all the properties of the object of this
class. At the same time, the editor can interpret the relations with attributes
described by the patterns. Thanks to this, the user can work with the properties
of the created object that are set by such relations as with “ordinary” object
properties. The difference consists only in the need to specify the values of the
attributes in a separate window.

Providing the Sharing of Heterogeneous Ontology Design Patterns 103

5 Conclusion and Future Work

The paper discusses the problems of applying ontological design patterns for
the development of ontologies of scientific subject domains. An approach to the
development of SSD ontologies that solves most of these problems is presented.
This approach is supported by a system of heterogeneous ontology design pat-
terns, describing the main structures and entities necessary for describing sci-
entific domains, and the data editor, which makes it possible to populate the
ontology with actual data by instantiation of content patterns. Due to the sim-
plicity and clarity of the pattern system and the data editor, this approach can
be used not only by knowledge engineers, but also by specialists in the modeled
area of knowledge.

This approach has shown its practical utility in the development of ontologies
of various scientific subject domains (“Decision Support” [25], “Active Seismol-
ogy” [26], etc.).

In the near future, it is planned to expand this approach in such a way that it
provides automated population of ontology. For this, the pattern system will be
expanded with lexico-syntactic patterns [27], which will be used to facilitate the
population (completion) of ontologies based on texts in the natural language.
Lexico-syntactic patterns are supposed to be automatically generated based on
the existing content and structural patterns using the synonyms dictionary and
subject area thesaurus.

References

1. Fernández-López, M., Gómez-Pérez, A., Pazos, A., Pazos, J.: Building a chemical
ontology using methontology and the ontology design environment. IEEE Intell.
Syst. Appl. 4(1), 37–46 (1999)

2. Sure, Y., Staab, S., Studer, R.: Ontology engineering methodology. In: Staab, S.,
Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 135–152. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-540-92673-3 6

3. Pinto, H., Staab, S., Tempich, C.: DILIGENT: towards a fine-grained methodol-
ogy for DIstributed, loosely-controlled and evolvInG Engineering of oNTologies.
In: The Proceedings of the 16th European Conference on Artificial Intelligence.
Frontiers in Artificial Intelligence and Applications, vol. 110, pp. 393–397. IOS
Press, Amsterdam (2004)

4. De Nicola, A., Missikoff, M., Navigli, R.: A proposal for a unified process for
ontology building: UPON. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.)
DEXA 2005. LNCS, vol. 3588, pp. 655–664. Springer, Heidelberg (2005). https://
doi.org/10.1007/11546924 64

5. Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. IHIS, pp. 221–243. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-92673-3 10

6. Blomqvist, E., Hammar, K., Presutti, V.: Engineering ontologies with patterns:
the eXtreme design methodology. In: Hitzler, P., Gangemi, A., Janowicz, K., Kris-
nadhi, A., Presutti, V. (eds.) Ontology Engineering with Ontology Design Patterns,
Studies on the Semantic Web, vol. 25, pp. 23–50. IOS Press, Amsterdam (2016)

https://doi.org/10.1007/978-3-540-92673-3_6
https://doi.org/10.1007/11546924_64
https://doi.org/10.1007/11546924_64
https://doi.org/10.1007/978-3-540-92673-3_10

104 Y. Zagorulko and O. Borovikova

7. Karima, N., Hammar, K., Hitzler, P.: How to document ontology design pat-
terns. In: Hammar, K., Hitzler, P., Krisnadhi, A., Lawrynowicz, A., Nuzzolese,
A., Solanki, M. (eds.) Advances in Ontology Design and Patterns, Studies on the
Semantic Web, vol. 32, pp. 15–28. IOS Press/AKA Verlag, Amsterdam/Berlin
(2017)

8. Zagorulko, Y., Zagorulko, G.: Ontology-based technology for development of intel-
ligent scientific internet resources. In: Fujita, H., Guizzi, G. (eds.) SoMeT 2015.
CCIS, vol. 532, pp. 227–241. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22689-7 17

9. Zagorulko, Y., Borovikova, O.: Technology of ontology building for knowledge por-
tals on humanities. In: Wolff, K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger,
U. (eds.) KONT/KPP -2007. LNCS (LNAI), vol. 6581, pp. 203–216. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22140-8 13

10. Borovikova, O., Globa, L., Novogrudska, R., Ternovoy, M., Zagorulko, G.,
Zagorulko, Y.: Methodology for knowledge portals development: background, foun-
dations, experience of application, problems and prospects. Joint NCC IIS Bull.
Ser. Comput. Sci. 34, 73–92 (2012)

11. Johnson, R., Vlissides, J., Helm, R.: Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma. Addison-Wesley Professional, Boston (1994)

12. NeOn Project. http://www.neon-project.org. Accessed 2 Feb 2019
13. Association for Ontology Design & Patterns. http://ontologydesignpatterns.org.

Accessed 2 Feb 2019
14. Ontology Design Patterns (ODPs) Public Catalog. http://odps.sourceforge.net.

Accessed 2 Feb 2019
15. Dodds, L., Davis, I.: Linked data patterns (2012). http://patterns.dataincubator.

org/book. Accessed 2 Feb 2019
16. Krisnadhi, A., Hitzler, P.: A core pattern for events. In: Hammar, K., Hitzler, P.,

Krisnadhi, A. (eds.) Advances in Ontology Design and Patterns, vol. 32, pp. 29–37.
IOS Press, Kobe (2017)

17. Krisnadhi, A., Hitzler, P.: The stub metapattern. A core pattern for events. In:
Hammar, K., Hitzler, P., Krisnadhi, A. (eds.) Advances in Ontology Design and
Patterns, vol. 32, pp. 29–45. IOS Press, Kobe (2017)

18. Blomqvist, E., Presutti, V., Daga, E., Gangemi, A.: Experimenting with eXtreme
design. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol.
6317, pp. 120–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16438-5 9

19. Hammar, K.: Ontology design patterns in WebProtégé. In: The Proceedings of
14th International Semantic Web Conference (ISWC-2015). Posters & Demonstra-
tions Track, p. 1486. CEUR Workshop Proceedings (2015). http://ceur-ws.org/
Vol-1486/paper 50.pdf. Accessed 2 Feb 2019

20. Skjæveland, M.G., Forssell, H., Klüwer, J.W., Lupp, D., Thorstensen, E., Waaler,
A.: Pattern-based ontology design and instantiation with reasonable ontology tem-
plates. In: The Proceedings of the 8th Workshop on Ontology Design and Patterns
(WOP 2017), Vienna, Austria, 21 October, p. 2043. CEUR Workshop Proceedings
(2017). http://ceur-ws.org/Vol-2043/paper-04.pdf. Accessed 2 Feb 2019

21. Antoniou, G., Harmelen, F.: Web ontology language: OWL. In: Staab, S., Studer,
R. (eds.) Handbook on Ontologies, pp. 91–110. Springer, Berlin (2009). https://
doi.org/10.1007/978-3-540-24750-0 4

22. DCMI Metadata Terms. http://dublincore.org/documents/dcmi-terms. Accessed
2 Feb 2019

https://doi.org/10.1007/978-3-319-22689-7_17
https://doi.org/10.1007/978-3-319-22689-7_17
https://doi.org/10.1007/978-3-642-22140-8_13
http://www.neon-project.org
http://ontologydesignpatterns.org
http://odps.sourceforge.net
http://patterns.dataincubator.org/book
http://patterns.dataincubator.org/book
https://doi.org/10.1007/978-3-642-16438-5_9
https://doi.org/10.1007/978-3-642-16438-5_9
http://ceur-ws.org/Vol-1486/paper_50.pdf
http://ceur-ws.org/Vol-1486/paper_50.pdf
http://ceur-ws.org/Vol-2043/paper-04.pdf
https://doi.org/10.1007/978-3-540-24750-0_4
https://doi.org/10.1007/978-3-540-24750-0_4
http://dublincore.org/documents/dcmi-terms

Providing the Sharing of Heterogeneous Ontology Design Patterns 105

23. Zagorulko, Y., Borovikova, O., Zagorulko, G.: Development of ontologies of sci-
entific subject domains using ontology design patterns. In: Kalinichenko, L.,
Manolopoulos, Y., Malkov, O., Skvortsov, N., Stupnikov, S., Sukhomlin, V. (eds.)
DAMDID/RCDL 2017. CCIS, vol. 822, pp. 141–156. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96553-6 11

24. Noy, N., McGuinness, D.: Ontology development 101: a guide to creating your first
ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05
and Stanford Medical Informatics Technical Report SMI-2001-0880, March 2001,
Stanford (2001)

25. Zagorulko, Y., Zagorulko, G.: Features of development of internet resource for sup-
porting developers of intelligent decision support systems. In: The Proceedings of
Eight International conference “Open Semantic Technologies for Intelligent Sys-
tems”, Belarus, Minsk, pp. 63–66 (2018)

26. Braginskaya, L., Kovalevsky, V., Grigoryuk, A., Zagorulko, G.: Ontological app-
roach to information support of investigations in active seismology. In: The Pro-
ceedings of the 2nd Russian-Pacific Conference on Computer Technology and
Applications (RPC), Vladivostok, Russky Island, Russia, 25–29 September, pp.
27–29. IEEE Xplore digital library (2017). http://ieeexplore.ieee.org/document/
8168060. Accessed 2 Feb 2019

27. Maynard, D., Funk, A., Peters, W.: Using lexico-syntactic ontology design patterns
for ontology creation and population. In: Proceedings of WOP2009 Collocated with
ISWC2009, vol. 516, pp. 39–52. CEUR-WS.org (2009). http://ceur-ws.org/Vol-
516/pap08.pdf. Accessed 2 Feb 2019

https://doi.org/10.1007/978-3-319-96553-6_11
http://ieeexplore.ieee.org/document/8168060
http://ieeexplore.ieee.org/document/8168060
http://ceur-ws.org/Vol-516/pap08.pdf
http://ceur-ws.org/Vol-516/pap08.pdf

The Analytical Object Model as a Base
of Heterogeneous Data Integration

Anna Korobko(B) and Anna Metus

Institute of Computational Modeling of the SB RAS, Krasnoyarsk, Russia
lynx@icm.krasn.ru

Abstract. When viewed the issue of analytical integration of hetero-
geneous data without warehouse building the unified model of diverse
data sources has to be suggested. The desired model has to take into
account analytical features of original file formats, to provide a construc-
tion of the integral analytical model and to attend to unlimited user data
queries. This paper proposes the analytical object model in terms of a
formal specification as the unified model and presents the mapping of
an XSD schema and a relational database to this model. The model has
been applied to analyze the All-Russia website of procurement that uses
XML and The Local System of procurement that uses relation DB. The
model instances obtained for each format are partly represented in this
paper in the form of JSON.

Keywords: OLAP · Integral analytic model · Analytical integration
of heterogeneous data · MDA · XML

1 Introduction

One of the most important aspects of the evolution of On-Line Analytical Pro-
cessing (OLAP) is developing theoretical approaches to simultaneous analysis of
heterogeneous data. OLAP tools are extensively used in decision support sys-
tems assisting managers of large companies with advanced analysis and report-
ing. As usual, a lot of business information flows from internal sources, that
provides an accumulation of the great amount of operational data [1]. In some
sources [2], the internal data that are owned by the decision-maker and can
be directly incorporated into the decisional process are called stationary. Each
source is a special-purpose data store associated with its data format. Joined
internal sources represent a model for heterogeneous data. However, with sig-
nificant growth of the number of open-access databases, it becomes possible to
involve external data in the decision-making process for extra benefits. Valuable
external data which may be related, for instance, to the market, to competi-
tors, or potential customers, are called situational data [3]. Well-informed and
effective decisions often require a tight relationship between stationary and sit-
uational data [2].

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 106–115, 2019.
https://doi.org/10.1007/978-3-030-37487-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_9

The Analytical Object Model as a Base of Heterogeneous Data Integration 107

Analysis of municipal procurement is the task demanding simultaneous anal-
ysis of heterogeneous data. According to the Federal Law N 44-FZ “Contract
system in the procurement of goods, works and services for state and municipal
needs” the Official All-Russia website of procurement (zakupki.gov.ru) has been
developed. It consolidates municipal demands, ongoing purchases and contracts
all over the country. It sends and receives data in XML format according to
system pre-defined XSD schemas. Otherwise, the Local System of procurement
forms municipal demand orders and scheduled plan of purchases. The Local Sys-
tem has a bidirectional link with the All-Russia website of procurement. Also, the
Local System uses Oracle DBMS to store data and metadata. From the regional
government perspective, the Local System data is an internal data source and
the All-Russia website data is an external one. An analyst, who wants to trace
some purchase from a demand order to a contract, or to analyze some supplier
activity, needs to integrate these heterogeneous data.

Complex analysis of internal and external data together concerns reconciling
(merging) diverse data sources. Often this step is performed by data warehouse
building or integration of separate analysis results while representing. This pro-
cess requires highly qualified analysts to intent and extra time for data actual-
ization and preparation.

We can consider related works from different points of view. Nowadays, the
complex analysis of heterogeneous data is actively discussed by researchers [4–
11]. In speaking about ideology, there are several conceptual foundations for
OLAP technology development which have been suggested by modern lead-
ing researchers. Thus, the concept of self-service Business Intelligence [2,12]
reduces the requirements for user skills. On the other hand, the concept of
exploratory OLAP supports ad-hoc arbitrary query execution [1,13]. The con-
ceptual description of these approaches shows further researches a way forward,
leaving them a wide discretion for realization. From the logical viewpoint, mod-
ern researches unanimously recognize the need for constructing a global (or a
mediated) schema that enables uniform access to the data [14]. The particu-
lar realizations of the approaches are rather different. They fall somewhere on
the spectrum between warehousing and virtual integration [15]. Approaches to
extraction, transformation and loading data to a centralized warehouse are pro-
posed in [16,17]. But it requires highly experienced modelers and designers to
compare a wide variety of domain concepts. Standards of heterogeneous data
interchange have been already developed that provide creating an unified format
of data exchange [18]. However, there aren’t common algorithms for transform-
ing miscellaneous data into this specific standard. As a virtual global schema,
ontology is proposed [15] for information disclosure from integrated data. This
approach isn’t aimed for analytical processing notwithstanding its grace and fea-
sibility. The analytical model of data source [19] has been suggested under the
“virtual schema” approach. Moreover, it allows us to reduce the requirements to
user-analysts skills so that analytical concepts (measures and dimensions) can be
arranged according to their analytical features that mean grouped into the same
request allowed by data consistency. The model serves to view all available data

http://zakupki.gov.ru/

108 A. Korobko and A. Metus

in a multidimensional form and provides unlimited querying without knowledge
specified about database structure, functional dependencies and SQL. Another
technology concept of operational analysis of heterogeneous data was suggested
to avoid warehouse building. This technology constructs the integral analytical
model by comparing and integrating of original data sources automatically. This
integral model supports the design and performance of random user data query
straight to an original data store and delineates author vision of implementation
of heterogeneous data analysis.

Analytical integration of heterogeneous data without warehouse building
requires the unified model of diverse data sources has to be suggested. The
desired model has to take into account the analytical features of original file
formats, to provide a construction of the integral analytical model and to attend
to unlimited user data queries.

This paper proposes the analytical object model (AOM) as the unified model.
The AOM is a metamodel describing the structure for model instances of original
data sources regardless of its format. Mapping of an XSD schema and a relational
database to this model is presented. Matching of source structure items for model
items in municipal procurement analysis is presented.

2 The Formal Specification of the Analytical Object
Model

Development of the analytical object model accords with the model-driven
development (MDD) of information systems, based on 4 level modeling [18].
The highest level (M3) describes a modeling specification and the lowest one
(M0) describes program system data. To develop the analytical object model
model-driven approach allows creating metamodel (M2) for describing the model
instance structure of the original data source regardless of its format. During sys-
tem lifecycle this model services to sources metadata store, sources link details
and instances production and maintain order. At the abstract layer, the analyt-
ical object model is a base of heterogeneous system integration and unifies data
format particularities.

Furthermore, the analytical object model has to take into account the analyt-
ical features of original file formats to provide a multidimensional form for OLAP.
Consortium OMG specifies open standard Common Warehouse Metamodel to
combine multidimensional modeling and model-driven approach for data ware-
houses. The standard consists of the set of metamodels for data interchange
within the conceptual layer and assumes data moving to a warehouse manually.
Model instances production taking into account implementation requirements
are beyond the standard scope, so it needs to be produced additionally. Auto-
matical source integration without warehouse building requires the standard
extension by adding analytical object metamodel. Suggested metamodel deter-
minates the unified structure of a source regardless of its format and consists of
analytical classes such as “AssociationClass”, “DAttribute”, “FAttribute” “Hier-
archy”. “AssociationClass” is a container class for other items. It matches the

The Analytical Object Model as a Base of Heterogeneous Data Integration 109

Fig. 1. The class diagram for the analytical object model for integrating sources.

source items of a top level. The model has been applied to analyze municipal
procurement. There are XML and relational data formats in this task.

So, integration of these two sources model instances is produced from XML
Schema Definition and Oracle database. The class diagram of the analytical
object model is shown in Fig. 1 using UML.

“AssociationClass” instances are created for each table in relation source
and each complex type in XSD. Inner simple types and relation table column
relates “DAttribute” class (descriptive attribute) or “FAttribute” class (fact
attribute) depending on its analytical features and links “AssociationClass” with
the composite association. “Hierarchy” class instances describe analytical rela-
tions between source items, it matches foreign keys in a relational data source and
parent-child relations in XSD. Full rules to produce analytical model instances
for relation DB and XSD metadata are shown in Table 1.

The unified representation of diverse data sources in the form of the ana-
lytical object model allows producing a single algorithm of multidimensional
form constructing and merging structures of heterogeneous data sources into an
integral analytical model. Like traditional multidimensional approach numerical
data produces measures, descriptive attribute forms dimensions and “Hierarchy”
instances arrange dimensions hierarchically. Every model class has features to
facilitate both multidimensional modeling and user query support. “Scheme”
class has the connection properties of physical data sources.

110 A. Korobko and A. Metus

Table 1. Matching of XSD and relation DB metadata and analytical object model
items

Analytical object model Relation DB metadata XSD metadata

class “AssociationClass” a table - a complexType

- a simpleType (enumeration

restricted)

- a choice

*elements with the same name

(type, if exist) and inner

elements relate the same

AssociationClass

+name: String a table name value of a element name

attribute

+descriptions: String [0..*] - a table description or a table

name in Russian;

value of a documentation

element

- a description of foreign keys

to this table

+id an auto increment identifier

+altNames: String [0..*] a foreign key name to this table value of a complexType name

attribute

+classType: [REGULAR,

ENUM, CHOICE]

REGULAR (fixed value) REGULAR - if an element

type is a complexType;

ENUM - if an element is a

restricted by enumeration one;

CHOICE - if it is a choice

element

class “DAttribute” a column, if it’s of string,

boolean or primary key types

an element based on a

simpleType (String, Boolean

Integer type)

+name: String a column name value of an element name attribute

+descriptions: String [0..*] a column description - value of a documentation

element;

- value of a simpleType name

attribute

+type: [BOOLEAN, DATE,

DATETIME, INTEGER,

NUMERIC, STRING]

system data types

+isPK: Boolean TRUE – if the column contains

a primary key, otherwise

FALSE

TRUE – if an element is

required, otherwise FALSE

+altName no value value of an simpleType name

attribute if a type of the

element relates the one

+values no value enumeration values for

restricted simpleType

+address no value a specified wildcard (@) - if an

element is an attribute,

otherwise - no value

+length a data type length a data type length, according

to restrictions:

- facets maxLength,

maxExclusive-1, maxInclusive;

- pattern value

- 0 – unrestricted length

(continued)

The Analytical Object Model as a Base of Heterogeneous Data Integration 111

Table 1. (continued)

Analytical object model Relation DB metadata XSD metadata

class “FAttribute” a column, if it’s of decimal type an element based on a

simpleType (Double, Decimal)

+name: String a column name value of an element name

attribute

+descriptions: String [0..*] a column description - value of a documentation

element;

- value of a simpleType name

attribute

+type system data types NUMERIC – fixed for

“xs:double”, “xs:decimal”

+isPK FALSE – fixed FALSE – fixed

+altName no value value of an simpleType name

attribute if a type of the

element relates the one

+address no value a specified wildcard (@) - if an

element is an attribute,

otherwise

- no value

+precision count of numbers according to facets totalDigits,

pattern. otherwise 0 –

unrestricted

+scale count of digits following the

decimal point

according to facets

ractionDigits, pattern.

otherwise 0 – unrestricted

class “HierarchyAssociation” a foreign key parent-child relation

+className a name of the table related by

the foreign key

a name of an inner

complexType element

+classID an unique id of the table

related by the foreign key

an unique id of the inner

complexType element related

by the foreign key

+identifiers pairs of foreign key - primary

key

no value

+type: [ONE, UNBOUNDED] ONE - fixed ONE - if maxOccures attribute

value of the child element

equals one

UNBOUNDED - if

maxOccures attribute value of

the child element more than

one

Having produced the AOM, an analyst is able to select objects for analysis
regardless of which source owns them. After the objects are selected, the AOM
maintains the query construction process due to preserving structure peculiari-
ties of the data source format.

3 An Example of Analytical Object Model Instance
Producing

According to the approach a program system was developed to produce an
instance of an analytical object model for a source to be integrated automati-
cally. The program system has services specified for XML and relational data
format. Each service is capable to construct AOM for one of the format types

112 A. Korobko and A. Metus

Fig. 2. A part of the analytical object model instance for fcsExtegration.xsd

and to send it to a server in the form of JSON. The server is capable to construct
a multidimensional model and subsequently to produce the integral analytical
model. The AOM instance obtained for XSD format when analyzed the All-
Russia website of procurement (zakupki.gov.ru) is partly shown in Fig. 2 in the
form of JSON.

The hierarchies elements of “product” class accord with the relation between
“Hierarchy” and “AssociationClass”. Particularly according to this instance a
product relates the All-Russian Classifier of Products (OKPD) and the All-
Russia Classifier of Measurement Units (OKEI). The analytical object model
takes into account both XML peculiarities and relational database ones. Another

http://zakupki.gov.ru/

The Analytical Object Model as a Base of Heterogeneous Data Integration 113

AOM instance obtained for relation format when analyzed the Local System of
procurement is partly shown in Fig. 3 in the form of JSON. This part of the
AOM instance presents the All-Russia Classifier of Measurement Units (OKEI)
and its descriptive attributes.

Fig. 3. A part of the analytical object model instance for the Local System of procure-
ment

The popularity of relational and XML data formats allows involving addi-
tional information concerning the business environment from a large number of
open data sources in the analysis. So, XML format is used by Federal State
Statistics Service for social and macroeconomics statistics [19], by the Central
Bank of Russia for financial market indicators [20], by Federal Tax Service for
open governmental data [21]. Also, a large number of research and academic
institutions across the world create relational databases in various fields of sci-
ence and technology, which are available free through web portals [22,23].

Complete deployment of the program system based on the suggested model
and its successful beta testing on analyzing municipal procurement data verify
the approach. Further developing of the technology of integral analytical mod-
eling concern producing and testing of the algorithm of multidimensional view
forming based on AOM.

4 Conclusion

The analytical object model has been suggested. The model formally describes
the analytical and structural peculiarities of heterogeneous data sources to over-
come their diversity and to allow them to be integrated automatically. Possibility
to include some source to the integral model without warehouse building is pro-
vided with analyzing of analytical features and relations of a source format.
Retaining a format metadata arrangement contributes to supporting unlimited
user data queries.

114 A. Korobko and A. Metus

References

1. Ibragimov, D., Hose, K., Pedersen, T.B., Zimányi, E.: Towards exploratory OLAP
over linked open data – a case study. In: Castellanos, M., Dayal, U., Pedersen,
T.B., Tatbul, N. (eds.) BIRTE 2013-2014. LNBIP, vol. 206, pp. 114–132. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46839-5 8

2. Abelló, A., et al.: Fusion cubes: towards self-service business intelligence. Int. J.
Data Warehous. Min. 9, 66–88 (2013)

3. Löser, A., Hueske, F., Markl, V.: Situational business intelligence. In: Castellanos,
M., Dayal, U., Sellis, T. (eds.) BIRTE 2008. LNBIP, vol. 27, pp. 1–11. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03422-0 1

4. Gallinucci, E., Golfarelli, M., Rizzi, S., Abelló, A., Romero, O.: Interactive multi-
dimensional modeling of linked data for exploratory OLAP. Inf. Syst. 77, 86–104
(2018)

5. Alpar, P., Schulz, M.: Self-Service business intelligence. Bus. Inf. Syst. Eng. 58,
151–155 (2016)

6. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big
data to big impact. MIS Q. 36, 1165–1188 (2012)

7. Singh, R., Yoon, V.Y., Redmond, R.T.: Integrating data mining and on-line analyt-
ical processing for intelligent decision systems. J. Decis. Syst. 11, 185–204 (2002)

8. Baranović, M., Kalpić, D., Brkić, L.: Application of semantic and structural simi-
larity for schema reuse in conceptual database design. In: Proceedings 6th WSEAS
European Computing Conference (ECC 2012), pp. 368–373 (2012)

9. Cuzzocrea, A., Bellatreche, L., Song, I.-Y.: Data warehousing and OLAP over
big data: current challenges and future research directions. In: Proceedings of the
Sixteenth International Workshop on Data Warehousing and OLAP - DOLAP
2013, pp. 67–70 (2013)

10. Pe, J.M., Rafael, B., Aramburu, M.J., Pederson, T.B.: Integrating data warehouses
with web data: a survey. IEEE Trans. Knowl. Data Eng. 20, 940–955 (2008)

11. Salem, R., Boussäıd, O., Darmont, J.: Active XML-based web data integration.
Inf. Syst. Front. 15, 371–398 (2013)

12. Varga, J., Romero, O., Pedersen, T.B., Thomsen, C.: Analytical metadata model-
ing for next generation BI systems. J. Syst. Softw. 144, 240–254 (2018)

13. Rizzi, S., Gallinucci, E., Golfarelli, M., Romero, O., Abelló, A.: Towards
exploratory OLAP on linked data. In: In: 24th Italian Symposium on Advanced
Database Systems, SEBD 2016, pp. 86–93 (2016)

14. Benedikt, M., Cuenca Grau, B., Kostylev, E.V.: Logical foundations of information
disclosure in ontology-based data integration. Artif. Intell. 262, 52–95 (2018)

15. Doan, A.H., Alon, H., Zachary, I.: Principles of Data Integration. Elsevier, Ams-
terdam (2012)

16. Luján-Mora, S., Vassiliadis, P., Trujillo, J.: Data mapping diagrams for data ware-
house design with UML. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-
W. (eds.) ER 2004. LNCS, vol. 3288, pp. 191–204. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30464-7 16

17. Kimball, R., Ross, M.: The Data Warehouse Toolkit, The Definitive Guide to
Dimensional Modeling. Wiley, Hoboken (2013)

18. OMG, Object Management Group: Object Management Group, Model Driven
Architecture (MDA), pp. 1–15. OMG Doc. ormsc/2014-06-01. 2.0 (2014)

19. Korobko, A.V., Penkova, T.G.: On-line analytical processing based on formal con-
cept analysis. Procedia Comput. Sci. 1, 2311–2317 (2010)

https://doi.org/10.1007/978-3-662-46839-5_8
https://doi.org/10.1007/978-3-642-03422-0_1
https://doi.org/10.1007/978-3-540-30464-7_16

The Analytical Object Model as a Base of Heterogeneous Data Integration 115

20. Federal State Statistics Service. http://www.gks.ru/wps/wcm/connect/rosstat
main/rosstat/ru/statistics/accounts/

21. Central Bank of Russia for financial market indicators. http://www.cbr.ru/
development/DWS/

22. Federal Tax Service for open governmental data. https://www.nalog.ru/opendata/
23. Listing of Open Access Databases - LOADB. http://www.loadb.org/Control.do?

brse

http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/accounts/
http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/accounts/
http://www.cbr.ru/development/DWS/
http://www.cbr.ru/development/DWS/
https://www.nalog.ru/opendata/
http://www.loadb.org/Control.do?_brse
http://www.loadb.org/Control.do?_brse

Prediction of RNA Secondary Structure Based
on Optimization in the Space of Its Descriptors

by the Simulated Annealing Algorithm

Nikolay Kobalo1(&), Alexander Kulikov1, and Igor Titov2

1 Institute of Computational Mathematics and Mathematical Geophysics
SB RAS, Novosibirsk, Russia

rerf2010rerf@yandex.ru, kulikovai12@gmail.com
2 Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia

titov@bionet.nsc.ru

Abstract. The proportion of genome coding proteins is only a small part of a
whole genome (for example, about 5% in human’s genome). Among other
things the remaining part contains regulatory RNAs whose function depends on
their three-dimensional structure. Secondary structure is the first level of RNA
structure description (three-dimensional structure is approximated by secondary
structure).
Therefore the problem of determining the common secondary structure of

isofunctional RNA sequences (i.e., a set having similar functionality) is an
important and longstanding problem of bioinformatics. In this paper we present
the program which builds the secondary structure model for a such set of non-
homologous RNA sequences.
Secondary structure is described by directed acyclic graph i.e. multitree. The

problem of determining the model of secondary structure is reduced to the
discrete optimization task in the space of structure multitrees. The optimizable
function depends on the energy of the referenced sequences being folded into
this structure.
The optimization task is solved by simulated annealing algorithm. We

developed the program for building a common secondary structure model of
RNA and compared it with the existing solutions on the set of mobile group II
introns.

Keywords: RNA � Secondary structure prediction � Mobile group II intron �
Optimization � Simulated annealing � Software

1 Introduction

The task of determining the common secondary structure of a set of RNA sequences
with the same functionality is an important task of bioinformatics. However, currently
existing methods make it possible to effectively build models of secondary structures
only for small sets of sequences. In addition, they do not work well with sets of low-
homologous sequences and do not allow to take into account a priori information about
the structure of sequences.

© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 116–124, 2019.
https://doi.org/10.1007/978-3-030-37487-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_10

This paper presents a new method for constructing a secondary structure model for
a variety of sequences. This method is based on reducing the problem of constructing a
model to the problem of discrete optimization in the space of all possible models, and
the optimized parameter is the energy of the resulting structure [1].

In Fig. 1 shows an example of a tRNA secondary structure and shows the elements
of which it is composed. As it can be seen, the secondary structure consists of stems
formed by paired nucleotide bases and loops - free RNA segments.

2 Basic Requirements for the Secondary Structure Prediction
Method

The following requirements are imposed on our method.

• Ability to build models for sets of sequences of any size. At the same time, it should
detect and correctly handle the situation when the set is a mixture of sequences that
actually have different secondary structure.

• Ability to build models for sets of low homologous sequences.
• There are cases when some general information about the structure of RNA

sequences belonging to a given set is known in advance. The method should allow
to set this a priori information and take it into account when building a model.

• After setting the initial parameters and a priori information about the structure, the
system should work in automatic mode and not require manual intervention.

• The system must provide a practically acceptable speed of building a model.

Fig. 1. An example of the secondary structure of RNA

Prediction of RNA Secondary Structure Based on Optimization 117

3 Review of Existing Software for Predicting the Secondary
Structure of RNA

Consider a few common methods and software that implements them that meet the
requirements - the ability to work with sets of low homologous sequences and the
ability to set a priori information about the structure.

• RNAStructure Multialign - predicts the secondary structure of a set of three or more
RNA sequences using the minimum energy estimate [2].

• RNAStructure TurboFold - predicts the secondary structure of two or more
sequences. It generates pairwise alignments for the set using a hidden markov
model, which supplies extrinsic information to one of three selectable folding
modes [3].

• PFold - this algorithm allows to specify some a priori information about the sec-
ondary structure, such as the exact position of the nucleotides that should be paired
in the resulting structure or, in contrast, free [4].

4 Used Programs and Real Data

• Our method uses the RScan program [5] to determine the correspondence of the
constructed model of the secondary structure to specific sequences and calculate its
energy.

• To test the program, a set of 40 sequences was used, each 72 nucleotides in length,
with the same secondary structure shown in Fig. 4. These sequences were taken
from rfam [6]. For this set, the value of the optimal secondary structure energy was
calculated [7].

• The sequences of the first domain of the following mobile introns of group II [8, 9]
were used: Pylaiella littoralis cox1.I3 and 8 other introns, with the first domain
similar to it in its secondary structure: Thalassiosira pseudooana cox1.I2, Allomyces
macrogynus cox1.I3, Podaspora anserina cox1.I1, Podaspora anserina cox1.I4,
Podaspora comata cox1.I1, Kluyveromyces lactis cox1.I1, Saccharomyces cere-
visiae cox1.I2 and Schizosaccharomyces pombe cox1.I1. The average length of
these sequences is 405 nucleotides.

• To compare programs, a set of 10 tRNA sequences from rfam tRNA-Sec RF01852
[10] were also used. The average length of the sequences of this set is 89
nucleotides.

118 N. Kobalo et al.

5 Method Description

5.1 Data Representation

The model of the secondary structure of RNA is represented as an oriented acyclic
graph—a multi-tree. In this case, the stems are represented by the edges of a multi-tree,
and the loops – by the vertices.

Each element of the tree has a set of attributes that define restrictions on the
elements of the secondary structure. The following attributes are supported:

• Permitted length range of elements (loops and stems).
• The sequence of nucleotides, which must necessarily be present on this element and

its position relative to the beginning of the element.

For example, in Fig. 2b shows an example of a secondary structure model, and
Fig. 2a - its representation in the form of a multi-tree.

5.2 Reducing to Discrete Optimization Task

The problem of building a model of the secondary structure of a set of RNA sequences
is reduced to the discrete optimization task as follows:

Let be:

• T - is the set of all admissible multi-trees representing the secondary structure.
• S ¼ fsjs 2 n�; n 2 a; u; g; cf gg - is the finite set of words in the alphabet a, u, g, c,

representing the set of RNA nucleotide sequences for which the secondary structure
model is built.

Fig. 2. a: Multi-tree modeling the secondary structure of RNA; b: The corresponding secondary
structure of RNA

Prediction of RNA Secondary Structure Based on Optimization 119

• R t; sð Þ : T � S ! R - is a function that calculates for a given multi-tree and
sequence the value of the energy of a given sequence, folded into a given structure.
R t; sð Þ ¼ 1, if the sequence s cannot be folded into the structure t.

• C t; Sð Þ - is the number of sequences s 2 S, such that R t; sð Þ\1.
• E t; Sð Þ - is the average energy for all sequences s 2 S, such that R t; sð Þ\1.
• T t; Sð Þ - is the average computation time for R t; Sð Þ.

Then the expression F xð Þ ¼ �k1E t; Sð Þ þ k2T t; Sð Þ � k3C t; Sð Þ defines the objec-
tive function for the problem of discrete optimization in the multi-tree space T .
Coefficients k1; k2; k3 are selected in each specific case manually and set when the
program is started.

In this expression, the first term takes into account the energy of the secondary
structure, which is a measure of its stability and should be minimized. The second term
allows to take into account the calculation time of the objective function using the
RScan program. The inclusion of this term in the objective function is important from a
practical point of view, because it allows to speed up the calculation. The third term of
the expression allows to build a model for as many sequences as possible from the
original set. At the same time, it allows the algorithm to correctly handle the situation
when the set of sequences is an actual mixture of sets with different secondary
structure.

6 Solution of the Optimization Task

To solve the optimization task described above, an annealing simulation algorithm was
applied. To start the computation, you must specify some initial model of the secondary
structure. At each iteration, the annealing simulation algorithm applies one or more of
the following mutation operators to a multi-tree:

• Changing the value of a numeric attribute of a multi-tree element (for example, the
range of lengths or the position of the consensus sequence, if specified).

• Adding a leaf to the tree, or deleting an existing one.
• Adding a vertex to an arbitrary multi-tree location, or deleting an existing one.

All the described operators select a part of the tree for modification at random. The
last two operators correspond to the addition or removal from the tree of a random
element of the secondary structure - a stem or loop, as shown in Fig. 3a and b.

The described algorithm was implemented in java and is available on github [11].
To calculate the value of the function R t; sð Þ, the RScan program is used.

120 N. Kobalo et al.

7 Testing

7.1 Evaluation of the Accuracy of the Solution

To verify the accuracy of solving the optimization task found by the implemented
algorithm, a set of 40 sequences with the same optimal secondary structure was formed
and the implemented program was launched on it. The following parameters were used:
k1 ¼ 10; k2 ¼ 1; k3 ¼ 10.

Table 1 shows the optimal and program-determined values of each term of the
objective function.

Fig. 3. a: Modification of the secondary structure by adding or removing a multi-tree leaf; b:
Modification of the secondary structure by adding or removing the inner vertex of a multi-tree.

Table 1. Comparison of optimal and predicted secondary structure models

Structure Time of computation Optimal energy Number of sequences Cost function

Optimal 40 144 40 −1800
Predicted 169 126 40 −1491

Prediction of RNA Secondary Structure Based on Optimization 121

The sensitivity and F-measure were also calculated [12]:

• Sensetivity = 0.9
• F-Measure = 0.95.

In Fig. 4b shows the optimal secondary structure of the considered set of
sequences, and Fig. 4a - predicted by the program.

7.2 Comparison of Programs

The program was also tested on a sample of the rfam family tRNA-Sec sequences. For
each predicted structure, the number of erroneously predicted paired bases was cal-
culated. Then, sensitivity and F-measure were calculated for all sequences. The results
obtained for all compared programs are shown in Table 2.

Fig. 4. a: Predicted secondary structure for test set; b: Optimal secondary structure of the test
set.

Table 2. Comparison of programs on a sample of transport RNA sequences

Program Sensetivity F-measure Time of computation

Simulated annealing 0.79 0.8 13 min
PFold 0.42 0.5 2 s
RNAStructure multialign 0.8 0.82 7 min
RNAStructure TurboFold 0.79 0.82 40 s

122 N. Kobalo et al.

Also, the programs were launched on a set of 9 group II introns. We took introns,
the secondary structure of which best corresponds to the generalized structure of intron
data [13].

Table 3 shows the program comparison

As one can see from the Tables 2 and 3, on the set of small sequences of tRNA
with an average length of 89 nucleotides, the proposed method gives the results
comparable with other existing methods. However, for large sequences of group II
introns with an average length of 405 nucleotides and complex secondary structure, the
developed method gives more accurate results.

Acknowledgements. The work of I.T. was supported by the Federal Agency of Scientific
Organizations (project #0324-2019-0040).

References

1. Skiena, S.: The Algorithm Design Manual, 2nd edn. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-1-84800-070-4

2. Reuter, J., Mathews, D.H.: RNAstructure: software for RNA secondary structure prediction
and analysis. J. Biomol. Struct. Dyn. 26, 831–832 (2009)

3. Harmanci, A.O., Sharma, G., Mathews, D.H.: TurboFold: iterative probabilistic estimation
of secondary structures for multiple RNA sequences. BMC Bioinform. 12, 108 (2011).
https://doi.org/10.1186/1471-2105-12-108

4. Sukosd, Z., Knudsen, B., Kjems, J., Pedersen, C.N.S.: PPfold 3.0: fast RNA secondary
structure prediction using phylogeny and auxiliary data. Bioinformatics 28(16), 2012.
https://doi.org/10.1093/bioinformatics/bts488

5. http://www.softberry.com/freedownloadhelp/rna/rscan/rscan.all.html
6. Rfam family of tRNA. http://rfam.xfam.org/family/RF00005
7. Jaeger, J.A., Turner, D.H., Zuker, M.: Improved predictions of secondary structures for

RNA. Proc. Natl. Acad. Sci. U.S.A. 86, 7706–7710 (1989)
8. Candales, M.A., et al.: Database for bacterial group II introns. Nucleic Acids Res. 187–190

(2012). https://doi.org/10.1093/nar/gkr1043
9. Fontaine, J.M., Goux, D., Kloareg, B., Loiseaux-de Goer, S.: The reverse-transcriptase-like

proteins encoded by group II introns in the mitochondrial genome of the brown alga pylaiella
littoralis belong to two different lineages which apparently coevolved with the group II
ribosyme lineages. J. Mol. Evol. 44, 33–42 (1997). https://doi.org/10.1007/PL00006119

Table 3. Comparison of programs on a sample of group II introns

Program Sensitivity F-measure Time of computation

Simulated annealing 0.51 0.53 *112 h
PFold 0.06 0.07 6 s
RNAStructure multialign 0.38 0.4 *21 h
RNAStructure TurboFold 0.46 0.47 320 s

Prediction of RNA Secondary Structure Based on Optimization 123

http://dx.doi.org/10.1007/978-1-84800-070-4
http://dx.doi.org/10.1007/978-1-84800-070-4
http://dx.doi.org/10.1186/1471-2105-12-108
http://dx.doi.org/10.1093/bioinformatics/bts488
http://www.softberry.com/freedownloadhelp/rna/rscan/rscan.all.html
http://rfam.xfam.org/family/RF00005
http://dx.doi.org/10.1093/nar/gkr1043
http://dx.doi.org/10.1007/PL00006119

10. Rfam family of selenocysteine transfer RNA http://rfam.xfam.org/family/RF01852
11. https://github.com/rerf2010rerf/RNAStructBuilder
12. Powers, D.M.W.: Evaluation: from precision, recall and F-Measure to ROC, informedness,

markedness & correlation (PDF). J. Mach. Learn. Technol. 2(1), 37–63 (2011)
13. Zimmerly, S., Semper, C.: Evolution of group II introns. Mob. DNA 6, 7 (2015). https://doi.

org/10.1186/s13100-015-0037-5

124 N. Kobalo et al.

http://rfam.xfam.org/family/RF01852
https://github.com/rerf2010rerf/RNAStructBuilder
http://dx.doi.org/10.1186/s13100-015-0037-5
http://dx.doi.org/10.1186/s13100-015-0037-5

A Metamodel-Based Approach
for Adding Modularization

to KeYmaera’s Input Syntax

Thomas Baar(B)

Department of Engineering I, Hochschule für Technik und Wirtschaft (HTW) Berlin,
Wilhelminenhofstraße 75A, 12459 Berlin, Germany

thomas.baar@htw-berlin.de

Abstract. The theorem prover KeYmaera allows (1) to describe Cyber-
Physical Systems (CPSs) in terms of a Hybrid Program (HP), (2) to
specify properties for the defined system, and (3) to formally verify these
properties using a tailored logic called Differential Dynamic Logic (DDL).

The syntax of Hybrid Programs is rather poor and covers only the
most basic program statements, such as assignment, test, sequential exe-
cution, and iteration. The decision to keep the syntax of HPs very sim-
ple has different consequences: An advantage is that also the verification
calculus can be kept relatively simple. On the downside we have that
even small programs are hard to understand and that the programmer is
forced to program using a copy-and-paste style, which obviously hampers
maintenance. The most significant drawback, however, is the absence of
modularization and a library concept; making the development and ver-
ification of bigger systems a huge burden.

In this paper, we identify several problems of KeYmaera’s input syn-
tax and illustrate them with examples. To overcome these problems, we
first describe the original syntax in form of a metamodel. Then, we pro-
pose to extend this metamodel with established programming concepts
such as subprogram and abrupt termination. We illustrate our exten-
sions by using a new graphical concrete syntax. Examples from a recent
KeYmaera tutorial serve for our paper as illustration examples.

Keywords: Cyber-Physical System (CPS) · Safety property
verification · Theorem proving · Language design · Domain-Specific
Language (DSL) · Metamodel

1 Motivation

A Cyber-Physical System (CPS) is a system existing in the real world, which
usually consists of both cyber and physical components. The behaviour of a
cyber component is determined by the (computer) program, which is executed

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) - project number 415309034.

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 125–139, 2019.
https://doi.org/10.1007/978-3-030-37487-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_11&domain=pdf
http://orcid.org/0000-0002-8443-1558
https://doi.org/10.1007/978-3-030-37487-7_11

126 T. Baar

on this component while the behaviour of a physical component follows laws
from physics, e.g. for torque, acceleration, velocity, etc. An important subset of
CPSs are control systems consisting of sensors, processors, and actuators, whose
correct functioning is of upmost importance and should be assured by formal
verification techniques.

A hybrid system is a formal model of a CPS. To capture the behaviour
of cyber components, the hybrid system needs the notion of programs. The
behaviour of physical components are modelled by law in physics, which are for-
mulated in terms of ordinary differential equations (ODEs). The theorem prover
KeYmaera is able to formally verify properties of hybrid systems formulated in
differential dynamic logic (DDL) [13,18]. In this paper, we analyse DDL as used
by KeYmaera as input format. We point out some obstacles of the chosen input
syntax and make proposals to overcome them.

One of the main problems of the used DDL is, that this single formalism
is used for three different purposes, namely, to (i) describe the system to be
analysed (system description), to (ii) formulate the properties to be hold for the
system (system specification), and to (iii) formulate proofs (system verification).
Note that a proof is a tree of DDL-formulas where each connection between
nodes of the proof tree must be justified by one rule of the used proof calculus.

Thus, the very same DDL formalism serves quite different purposes and there
are some cases, in which it is hard to say, which purpose a given DDL artefact
actually serves. For example, the user of KeYmaera is sometimes forced to refor-
mulate a system description in a non-intuitive way, just to make a property of
this system verifiable. In other words, the property about the system one would
like to prove has a strong influence on the way one describes the system itself!
Note that - ideally - one should be able to formulate the system description
fully independent from the properties one would like to prove - usually later -
about the system. As we illustrate with a model of the very simple bouncing ball
example, this independence is sometimes not possible. This makes the usage of
KeYmaera rather an art than an engineering discipline.

The input syntax for KeYmaera is very rudimentary and forces the user
to describe a system is a Big Blob, since modularization, e.g. by subsystems
or subprograms, is simply syntactically not possible. In our analysis, we identify
also other weaknesses, for example that the correct function of evolutional states
rely on executing the right statement before entering the state or that evolutional
states usually share a high portion of ODEs. Unfortunately, the current syntax
makes it impossible to let an evolutional state ‘inherit’ from an already defined
evolutional state to prevent a copy-paste style in the system description.

In addition to identifying problems of KeYmaera’s input syntax, we also
make proposals to overcome these problems. In order to describe our solutions
at the right level of abstraction, our solution proposal will address the abstract
syntax - which we define in form of a metamodel - instead of the textual concrete
syntax. In order to stress the independence of our solution proposals from the
concrete syntax, we will employ also a graphical syntax, which is close to the
Abstract Syntax Tree (AST).

Adding Modularization to KeYmaera’s Input-Syntax 127

2 Background

We first review the logical basis of the prover KeYmaera.

2.1 Dynamic Logic (DL)

The term Dynamic Logic (DL) was coined for the first time by Harel et al. in
[7], which is based on the work of Pratt [16] and Hoare/Floyd [4,8]. A recent
review on the history of Dynamic Logic is given by Pratt in [17].

Dynamic Logic has a long tradition in analysing programs running on a
machine. (First-Order) Dynamic Logic allows for a program α to formulate prop-
erties for the pre- and post-state of the program’s execution. Syntactically, DL
formulas are built on top of arithmetic terms and arithmetic atomic formulas,
such as x < 5 + 3. The set of DL formulas is closed under the logical junc-
tors ∧,∨,→,↔, under the quantifiers ∀ ∃, and under the parametrized modal-
ities [α] (box), <α> (diamond), where α is a program. A program is syntac-
tically defined as a tree of statements. We have assignment (:=), test (?), skip
(skip1) as atomic statements and nondeterministic choice (∪), sequential compo-
sition (;), and iteration (∗) as composed statements. Furthermore, some derived
statements (known as syntactic sugar) are allowed. For example, the program
if c then s1 else s2 endif is defined as an abbreviation for (?c; s1) ∪ (?¬c; s2).
In the version of DL supported by KeYmaera, all terms (e.g. 3 + 8) including
variables are of type Real, so there is no support for a sophisticated type sys-
tem. For a thorough introduction to Dynamic Logic in syntax and semantics,
the reader is referred to [6].

Semantically, a formula of form φ → [α]ψ claims that program α, when
started in a state in which φ holds, might not terminate or, in case it actually
terminates, will result always in a state, in which ψ holds. The second modality
<> (diamond), which can occur in DL-formulas as well, has a different semantics:
<α> ψ claims that program α terminates and that for at least one post-state
the formula ψ holds (note, that α can behave non-deterministically).

As a concrete example, let us consider the formula

x > 0 → [if x > 0 then x := x − 1 else x := −25 endif ;x := x + 1] x > 0 (1)

The program α within the box modality is the sequential composition (opera-
tor ;) of an if-statement and an assignment (operator :=). The claim, formulated
by (1) about program α reads as follows: Whenever α is started in a state, in
which x > 0 holds, then x > 0 must also hold once α has terminated (note,
that termination of α is not part of the claim). Formula (1) is actually valid,
i.e. under all circumstances the formula is evaluated to true (see [6] for a formal
definition of validity).

It is rather easy to argue informally on the validity of (1): This implication
evaluates only to false, when its premise evaluates to true and its conclusion to

1 Since skip can be simulated by ? true it is not supported by all versions of KeYmaera.

128 T. Baar

false. The premise is x > 0. Under this assumption, when executing program
α, the then-branch of the first statement (if-statement) is always taken and
decreases variable x by one. In the second statement, the value of x is again
increased by one, so the value of x in the post-state – let us denote it by xpost –
is xpost = xpre−1 + 1, while xpre denotes the value of variable x in the pre-state.
The conclusion of (1) can thus be reduced to the proof obligation xpre−1 + 1 > 0,
which can never evaluate to false if we assume xpre > 0. Fortunately, we do not
have to rely on informal argumentation for showing the validity of (1) but can
also use the theorem prover KeYmaera, which proves (1) fully automatically.

Please note that the formulas of DL do not make any claim about the exe-
cution time of program α, but only formulate properties on the relationship of
α’s pre- and post-states. You might just think all statements within program α
being executed instantaneously, i.e. their execution does not take any time. This
is an important difference to the extension of DL, called Differential Dynamic
Logic (DDL), we consider next.

2.2 Differential Dynamic Logic (DDL)

DDL [12] is an extension of DL, which means that every DL formula is also a
DDL formula. The same way as DL formulas, a DDL formula usually makes
a claim about a program α. However, since DDL formulas are mainly used to
describe the behaviour of Cyber-Physical Systems, we rather say that program
α encodes the behaviour of the CPS instead of α is executed on a machine, as
we do for programs α of pure DL formulas.

The only difference between DL and DDL is a new kind of statement called
continuous evolution statement (or simply evolution statement), which is allowed
to occur in programs α. When during the execution of α a continuous evolution
statement is reached, then the execution of this statement takes time and the
system will stay in the corresponding evolution state for a while. Note that this
is a new semantic concept of DDL and marks an important difference to pure
DL!

Executing the evolution statement means for the modelled CPS to stay in
the evolution state as long as it wishes (the time to stay is - in general - chosen
non-deterministically). However, the modeller has two possibilities to restrict the
time period the system stays in the evolution state: The first possibility is to add
a so-called domain constraint to the evolution statement, which is a first-order
formula and which is separated from the rest of the statement by & (ampersand).
The domain constraint semantically means that the system cannot stay longer
in the evolution state than the time at which the constraint is evaluated to true.
In other words: at latest when the evaluation of the domain constraint switches
from true to false, the system has to leave the evolution state.

The second possibility to restrict the time period is to have a sequential com-
position of an evolution statement followed by a test statement. Theoretically,
the machine can leave the evolution state at any time, but if the following test
evaluates to false, then this branch of execution is dismissed for the logical anal-
ysis of the system behaviour. Thus, an evolution statement immediately followed

Adding Modularization to KeYmaera’s Input-Syntax 129

by a test statement is a general technique to force the system to remain in the
evolution state as long as the test condition is evaluated to false.

Bouncing Ball as a Simple CPS. We illustrate both the usage of an evolution
statement as well as the two mentioned techniques to control the time the system
will stay in the evolution state by the following bouncing ball example:

αBB ≡ ({x′ = v, v′ = −g & x ≥ 0}; ?x = 0; v := −cv)∗ (2)

The behaviour of the bouncing ball is described with the help of a new kind
of variables, called continuous variables. For example, variable x is always a non-
negative number and encodes the ball’s position and variable v encodes velocity,
which can be both positive (going up) or negative (going down). The constant
g is the gravitation acceleration and greater 0. The constant c is the damping
coefficient, a number between 0 and 1.

Fig. 1. Sample trajectory of a bouncing ball (Source: [13, p. 98])

The structure of αBB is that of an iteration (operator *) over a sequence
(operator ;) of an evolution statement (enclosed by the curly braces), followed by
a test (operator ?), followed by an assignment (operator :=). The program αBB

is read as follows: The systems starts in a state with given values for variables
x and v. These values are not specified yet, but later, we will force the start
position x0 to be a positive number while the start velocity v0 is allowed to be
positive, zero, or negative. As long as the system stays in the first evolution
state, the values of x, v will change continuously over time according to physical
laws. Thus, the continuous variables x, v represent rather functions x(t), v(t) over
time t. The relevant physical laws for x, v are expressed by the two differential
equations: x′ = v, v′ = −g.

130 T. Baar

The latter means that the velocity decreases constantly over time due to the
gravitational force of the earth. Fortunately, this ODE has a simple polynomial
solution, which facilitates the analysis of the whole system considerably: v(t) =
v0 + −g ∗ t. Analogously, depending on the changing velocity v, the position x
of the bouncing ball changes with x(t) = x0 + v0 ∗ t + −g

2 t2.
The domain constraint x ≥ 0 mentioned in the evolution statement allows

the system to remain in the evolution state only as long as x is non-negative.
Theoretically, the system can leave at any time the evolution state, but the next
statement is the test ?x = 0. Thus, if the system leaves the evolution state with
x > 0, then this computational branch will be discarded. Thus, when verifying
properties of the system we can rely on the system leaving the evolution state
only when x = 0, meaning when the ball touches the ground. The following
assignment v := −cv encodes that the ball goes up again: The negative value
v due to the ball falling down will change instantaneously to a positive value
(multiplication with −c) but the absolute value of v decreases since the ball loses
energy when touching the ground and changing the move direction. Figure 1
shows how the position x of a bouncing ball might change over time (sample
trajectory).

3 Problems in Using KeYmaera’s Input Syntax

Differential Dynamic Logic as introduced above is supported by KeYmaera and
allows to verify formally important properties of technical system as demon-
strated in numerous case studies from different domains, e.g. aircrafts [9,14],
trains [15], and robots [11].

However, the used input syntax to formulate properties in form of DDL
formulas suffers from numerous problems that are described in the following.
The solutions we propose to overcome these problems are discussed in Sect. 4.

(1) Invariant specification is not directly supported in DDL. Besides
describing the behaviour of hybrid systems as done with program αBB for
the bouncing ball, the main purpose of DDL is to specify also properties
of such systems. Typical and in practice very important properties are so-
called safety properties, saying that the system never runs into a ‘bad sit-
uation’. Let’s encode a ‘bad situation’ with ¬ψ. We can show the absence
of ¬ψ by proving that in all reachable system states formula ψ holds, i.e.
ψ is an invariant. If we assume all statements except the evolution state
are executed instantaneously, then showing invariant ψ actually means to
show that ψ holds while the system stays in any of its evolution states.
However, the modality operators provided by DDL allow only to describe
the state after the program has terminated. For example, for the bouncing
ball system αBB defined in (2) we can prove very easily

x = 0 → [αBB]x = 0 (3)

Adding Modularization to KeYmaera’s Input-Syntax 131

Note, however, that x = 0 has not been proven to be an invariant! If we
want to express the interesting invariant, that position x remains all the
time within the interval [0,H], while H encodes the system’s initial position
and if velocity v is initially 0, we have to admit that the formula

H > 0 ∧ v = 0 ∧ x = H ∧ 0 < c ∧ c < 1 → [αBB]x ≤ H (4)

is provable, but does NOT encode x ≤ H being an invariant because this
formula does not say anything about x and H while the system stays in the
evolution state {x′ = v, v′ = −g & x ≥ 0}, which is part of αBB . In order
to prove x ≤ H being an invariant the user is forced to reformulate αBB to

α′
BB ≡ ({x′ = v, v′ = −g & x ≥ 0}; (skip ∪ (?x = 0; v := −cv))∗ (5)

This, however, would be an example for choosing the system description
depending on the property we would like to prove! We consider this as bad
style.

(2) Evolution state definition cannot be reused. Evolution statements
have to contain all ODEs that should hold in the corresponding states. If
a program contains multiple evolution statements, then all ODEs usually
have to be copied for all these statements, since an ODE normally encodes a
physical law that holds in each of the evolution states. Currently, the syntax
of KeYmaera does not allow to define all ODEs once and then to reuse this
definition for all occurring evolution statements. This lack of reuse results
in a copy-and-paste style for describing a system. As an example, we refer
to Example 3a from the KeYmaera-tutorial [18], page 10, Eq. (20): {p′ =
v, v′ = −a & v ≥ 0 ∧ p + v2

2B ≤ S} ∪ {p′ = v, v′ = −a & v ≥ 0 ∧ p + v2

2B ≥ S}
Here, the definition of the two evolution states (in curly braces) are very
similar and defined by copy-and-paste.

(3) Evolution state definition is not encapsulated. In the KeYmaera-
tutorials [12,18], there is a frequently applied pattern to ensure that the
system stays in an evolution state ev ≡ {. . . & . . .} for at most time ε. This
is achieved by extending the definition of ev to ev′ ≡ {. . . , t′ = 1& . . .∧t ≤ ε}
while t is a fresh continuous variable. Together with the ODE t′ = 1, the
additional domain constraint t ≤ ε forces the system to leave ev′ at latest
after time ε has elapsed. However, this refined definition of ev works only,
if the value of t has been set beforehand to 0. In order to achieve this, the
statement ev is usually substituted by t := 0; ev′. While this pattern works
basically in practice, the definition of ev′ is not encapsulated and prevents
compositionality of programs.

(4) Missing notion of subprogram (or function call in general). Once
the examples in the KeYmaera-tutorials [12,18] become a little bit more
complicate, they are given in a composed form, e.g. Example 3a from [18,
p. 10]: init → [(ctrl ; plant)∗]req where init ≡ . . ., ctrl ≡ . . ., plant ≡ . . .,
req ≡ . . . Presenting a DDL problem in such a composed form highly
improves readability. However, the usage of such a composed notation is
impossible for the input file of KeYmaera. While one could imagine to

132 T. Baar

introduce new relational symbols init , req and to constrain their interpre-
tation by subformulas init ↔ . . ., req ↔ . . ., it is currently impossible to
define subprograms ctrl and plant and to compose the resulting program
from these subprograms.

4 A Metamodel-Based Approach to Solve Identified
Problems

The problems identified above can be overcome by incorporating language con-
cepts from object-oriented programming languages and statecharts into the input
syntax of KeYmaera. In order to discuss the incorporated new language concepts
at the right level of abstraction, we formulate our proposal in form of a changed
metamodel for KeYmaera’s input syntax. As a starting point, we present the
metamodel of the current syntax.

4.1 Metamodel of Current KeYmaera Syntax

Metamodeling [5] is a widely adopted technique to specify the abstract syntax
of modelling and programming languages. One well-known language definition
is that of the Unified Modeling Language (UML) [19].

SkipTest

BinaryOpUnaryOp

BinaryExpUnaryExpLiteral

ODE

«abstract»
Exp

Var

EvolutionChoiceIterationSequenceAssignment

«abstract»
Statement

 fml

 0..1 constraint

2

2..*2..*

rhs

lhs

*

rhs

lhs

Fig. 2. Metamodel of KeYmaera’s input syntax

Figure 2 shows a sketch of the metamodel of KeYmaera’s current input syn-
tax with focus on statements within a program. All meta-associations with
multiplicity greater than 1 are assumed to be ordered. If the multiplicity on

Adding Modularization to KeYmaera’s Input-Syntax 133

a meta-association is missing, then 1 is the default value. The metaclass Exp
represents expressions of both type Real (e.g. 5 + x) and of type Boolean (e.g.
x < 10).

A concrete program α for KeYmaera can be represented by an instance of
the metamodel. This instance is equivalent to the result obtained by parsing this
program, i.e. the abstract syntax tree (AST).

:Assignment
(v:=-cv)

:Exp
(x=0)

:Test

:Exp
(x>=0)

:ODE
(v'=-g)

:ODE
(x'=v)

:Evolution

:Sequence

:Iteration

:Assignment

:Test

:Evolution

:Sequence

:Assignment

:Test

:Evolution

:Sequence

:Iteration

Fig. 3. Instance of the metamodel (left) and control-flow inspired graphical syntax
(right) for bouncing ball program (αBB)

The left part of Fig. 3 shows the metamodel instance for the bouncing ball
program αBB ≡ ({x′ = v, v′ = −g & x ≥ 0}; ?x = 0; v := −cv)∗ as defined
in (2). In the right part we see an AST-aligned graphical representation of the
same program: Each kind of statement is represented by a block with input and
output pins. The control flow is visualized by directed edges connecting two pins.
The pre-/post-states of the program execution are represented by the symbol for
start/final state known from UML’s statemachine [19].

4.2 Solutions for Identified Problems

Based of the graphical notation introduced above we discuss now solutions for
the problems listed in Sect. 3.

(1) Invariant specification is not directly supported in DDL. As
described in Sect. 3, the modal operator [α] refers always to the post-state
represented by the final state node in Fig. 3, right part. However, for check-
ing an invariant we need a reference to the state after each evolution state-
ment has been finished. This moment in the execution is represented by the
output-pin of the Evolution state. What is needed in the program seman-
tics is a direct edge from each output-pin of each Evolution state to the
final state, as shown in Fig. 4 by the green edge. This concept is known as
abrupt termination.

134 T. Baar

:Assignment:Test:Evolution

:Sequence

:Assignment:Test:Evolution

:Sequence

:Iteration

Fig. 4. Solution for invariant specification problem

Note that abrupt termination could be realized without any change of the
input syntax of KeYmaera since it requires merely a changed control-flow
for the existing statements.

(2) Evolution state definition cannot be reused. Often, the very same
ODEs and constraints occur again and again in multiple evolution state-
ments, which hampers readability. To prevent this, our proposal is to intro-
duce the declaration of named evolution statements which can be referenced
by other evolution statement to - for example - inherit from them ODEs
and constraints. The relevant change of the metamodel is shown in Fig. 5.

ODE

«abstract»
Exp

Var

EvolutionEvolutionDecl
name:String

«abstract»
Statement

0..1 parent

 0..1 constraint

rhs
lhs

*

Fig. 5. Solution for evolution state reuse problem

One problem still to be discussed is, whether the declaration of an evolution
state can occur at an arbitrary location in the program or should be rather
done prior to the program as a global declaration. This question refers to the
important issue of which scope the identifier introduced by the declaration
(see metaattribute name) should actually have. Since resolving the scope of
an identifier is rather a problem when parsing a program, this issue is out
of scope for this paper.

(3) Evolution state definition is not encapsulated. As demonstrated in
the problem definition, an evolution statement sometimes works only as
intended when a variable has been set beforehand to the right value. Prac-
tically this means, the evolution state EV is always prepended by an assign-
ment ASGN, so (ASGN ; EV) has to occur always for correctness. In order
to get rid of dependencies of evolution state to assignments from the context

Adding Modularization to KeYmaera’s Input-Syntax 135

(which prevents a simple reuse of EV within a different context), we pro-
pose to extend the evolution state with optional additional statements that
are always executed when entering or leaving the state. This state extension
is well-known as entry-/exit-actions from UML statemachines. The relevant
change of the metamodel is shown in Fig. 6.

ODE

«abstract»
Exp

Var

Evolution

«abstract»
Statement

0..1 entry
0..1 exit

 0..1 constraint

rhs
lhs

*

Fig. 6. Solution for evolution state encapsulation problem

(4) Missing notion of subprogram. One of the most basic concepts in pro-
gramming is the possibility to encapsulate (a block of) statements with
a given name and to reuse these statements at various locations of the
program. This concept is usually called subprogram, procedure, or method ;
depending whether parameters are used or not. In general, this is a very old,
proven and well understood concept, so that we introduce only the most
simple variant in our solution proposal here (cmp. Fig. 7).

SubprogramCallSubprogramDecl
name:String

«abstract»
Statement

Fig. 7. Solution for missing subprogram problem

5 Towards the Realization of Solution Proposals

In this section we review possible realization options for the proposed solution.
Finally, we give a recommendation for one realization option.

5.1 Realization by Extending the Prover KeYmaera

The prover KeYmaera mainly consists of a parser for the input syntax and
a calculus in form of proof rules, which even can be changed by the user. In
addition, there are some technical components such as (i) a prover engine for

136 T. Baar

applying proof rules to create a formal proof, (ii) adapters to incorporate external
proof systems such as Z3 or Mathematica, and (iii) a GUI to control the proof
editing process. However, all these technical components are out of scope for this
paper.

For our proposals it is worth to distinguish pure syntactic changes from those,
that have an impact on the calculus used by KeYmaera. To the latter belong
the support of abrupt termination (problem (1)) and the possibility to invoke
subprograms (problem (4)). These changes would require to considerably extend
KeYmaera’s calculus. While such an extension requires intimate knowledge of
the underlying proof engine, it is nevertheless possible, as the prover KeY [1]2

demonstrates. KeY is an interactive verification tool for programs implemented
in the language Java and its calculus covers all the subtleties of a real world
programming language, including function calls, call stack, variable scope, abrupt
termination by throwing an exception, heap analysis, etc.

Pure syntactic changes among our proposals, i.e. addressing problems (2),
(3), could be realized in KeYmaera just by extending the parser. Note that
the creation of an alternative concrete input syntax is also topic of the ongoing
project called Sphinx [10] carried out by the authors of KeYmaera. Sphinx aims
to add a graphical frontend to the prover and will allow the user to specify a
program in a pure graphical syntax (similar to our graphical notation proposed
in Fig. 3, right part).

The general problem with any deep change of the prover KeYmaera is the
technical knowledge it requires. Furthermore, there are good reasons to keep a
version of the tool with the original syntax due to its simplicity, what makes it
much simpler to use KeYmaera for teaching than, for example, its predecessor
KeY. However, a new version of KeYmaera with deep changes is hard to maintain
as the original KeYmaera might evolve in future. For these reasons, deep changes
can hardly be done by others than the original authors of KeYmaera themselves.

5.2 Realization by Creating a Frontend-DSL

An alternative and flexible approach is the development of a frontend-DSL to
incorporate the new language concepts introduced in Sect. 4.2. The main idea is
to develop a new Domain-Specific Language according to the given metamodel.
Note that the metamodel covers merely the abstract syntax and keeps some
flexibility for the concrete syntax. Modern frameworks for defining DSLs such as
Xtext and Sirius even allow to have for one DSL multiple representations (i.e.
concrete syntaxes) supported by corresponding editors, e.g. a textual syntax and
a graphical syntax. Figure 8 shows the general architecture of such a tool. Note
that the new tool will allow the user to interact synchronously with both a textual
and a graphical editor to create a model. However, the new models cannot be
simply transformed to input files for the original KeYmaera, because the new
syntax supports some semantically new concepts such as abrupt termination or
subprogram invocation stack. It is the task of the ProofManagement component

2 Historically, the prover KeY is the predecessor of KeYmaera.

Adding Modularization to KeYmaera’s Input-Syntax 137

Proof Management

User
Graphical Editor

Textual Editor

Tools of Frontend DSL

Proof Management

Graphical Editor

Textual Editor

Tools of Frontend DSL

Tailored KeYmaera

KeYmaera
(Original)

verificationBackend

«syncronizes»
«interacts»

Fig. 8. Architecture of solution using a frontend-DSL

to split tasks - for instance to prove an invariant - into smaller proof obligations,
which can be formulated as formulas of differential dynamic logic (DDL) and
to pass these obligations to the original KeYmaera tool as verification backend.
How an invariant task can be split into smaller proof obligations is demonstrated
based on a concrete example in [2].

6 Related Work

The definition of DSLs can be done with numerous technologies, e.g. Xtext,
Spoofax, Metaedit, MPS. For realizing a DSL with both a textual and a graphical
concrete syntax, the combination Xtext and Sirius is very attractive.

Enriching the prover KeYmaera with a graphical syntax for DDL programs
is done in the project Sphinx [10]. The architecture of this tool is pretty similar
to our proposal in Fig. 8, but the focus is - in difference to our approach - not
the improvement of readability and modularization by making the input syntax
richer, but to enable the user to graphically construct a program for DDL.

While enriching a plain, imperative language with concepts from object-
oriented programming has been done many times in computing science’s history
(take the transition from C to C++ or from Modula to Oberon as examples),
it is still considered as a challenge. There is an excellent tutorial by Bettini
in [3] on how to incorporate into a plain sequential language based on simple
expressions additional concepts from object-oriented programming (e.g. class,
attribute, method, visibility). The resulting language in this tutorial is called
SmallJava and illustrates almost all technical difficulties when realizing a Java-
like programming language in form of a DSL.

7 Conclusion and Future Work

The syntax of programs of differential dynamic logic as supported by the theorem
prover KeYmaera have been kept very simple and low level. An advantage of this
decision is that also the calculus for proving such programs being correct could be

138 T. Baar

kept relatively simple and that proofs can be constructed and understood easily.
At the downside we have that - once the examples become a little bit more
complicate - programs are hard to read, poorly structured, and are impossible
to reuse within a different context.

In this paper, we identified four general problems when applying the current
program syntax in practice. Furthermore, we made proposals to overcome the
identified problems by incorporating proven language concepts from program-
ming languages and from UML’s statemachines into KeYmaera’s input syntax.
These concepts have the potential to make programs scalable and easier to be
understood since they foster readability and modularization.

Our proposals have been formulated in form of a changed metamodel repre-
senting the abstract syntax of programs. The chosen form for formulating the
proposal has the advantage of being very precise while leaving it open, how
the changes should actually be realized in a given concrete syntax. Currently,
the implementation of a frontend DSL being the main constituent of a Tailored
KeYmaera tool set is under construction, but not finished yet.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice.
LNCS, vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
319-49812-6

2. Baar, T., Staroletov, S.: A control flow graph based approach to make the verifi-
cation of cyber-physical systems using KeYmaera easier. Model. Anal. Inf. Syst.
25(5), 465–480 (2018)

3. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd
edn. Packt Publisher, Birmingham (2016)

4. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Proceed-
ings of Symposium on Applied Mathematics, pp. 19–32. Mathematical Aspects of
Computer Science, American Mathematical Society (1967)

5. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineer-
ing. Wiley, Hoboken (2008)

6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundation of Computing. MIT
Press, Cambridge (2000)

7. Harel, D., Meyer, A.R., Pratt, V.R.: Computability and completeness in logics of
programs (preliminary report). In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A.
(eds.) Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
4–6 May 1977, Boulder, Colorado, USA, pp. 261–268. ACM (1977)

8. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

9. Jeannin, J.-B., et al.: A formally verified hybrid system for the next-generation
airborne collision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 21–36. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46681-0 2

10. Mitsch, S.: Modeling and Analyzing Hybrid Systems with Sphinx - A User Manual.
Carnegie Mellon University and Johannes Kepler University, Pittsburgh and Linz
(2013). http://www.cs.cmu.edu/afs/cs/Web/People/smitsch/pdf/userdoc.pdf

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1007/978-3-662-46681-0_2
http://www.cs.cmu.edu/afs/cs/Web/People/smitsch/pdf/userdoc.pdf

Adding Modularization to KeYmaera’s Input-Syntax 139

11. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for
autonomous robotic ground vehicles. In: Newman, P., Fox, D., Hsu, D. (eds.)
Robotics: Science and Systems IX, 24–28 June 2013. Technische Universität Berlin,
Berlin (2013)

12. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Com-
plex Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14509-4

13. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-319-63588-0

14. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance
maneuvers: a case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 547–562. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-05089-3 35

15. Platzer, A., Quesel, J.-D.: European train control system: a case study in for-
mal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol.
5885, pp. 246–265. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10373-5 13

16. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: 17th Annual Sym-
posium on Foundations of Computer Science, Houston, Texas, USA, 25–27 October
1976, pp. 109–121. IEEE Computer Society (1976)

17. Pratt, V.: Dynamic logic: a personal perspective. In: Madeira, A., Benevides, M.
(eds.) DALI 2017. LNCS, vol. 10669, pp. 153–170. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73579-5 10

18. Quesel, J.D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and
prove hybrid systems with KeYmaera: a tutorial on safety. STTT 18(1), 67–91
(2016)

19. Rumbaugh, J.E., Jacobson, I., Booch, G.: The Unified Modeling Language Refer-
ence Manuel - Covers UML 2.0. Addison Wesley Object Technology Series, 2nd
edn. Addison-Wesley, Boston (2005)

https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-642-05089-3_35
https://doi.org/10.1007/978-3-642-05089-3_35
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-319-73579-5_10
https://doi.org/10.1007/978-3-319-73579-5_10

Nobrainer: An Example-Driven
Framework for C/C++ Code

Transformations

Valeriy Savchenko1(B), Konstantin Sorokin1(B), Georgiy Pankratenko1(B),
Sergey Markov1(B), Alexander Spiridonov1(B), Ilia Alexandrov1(B),

Alexander Volkov2(B), and Kwangwon Sun3(B)

1 Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow 109004, Russian Federation

{vsavchenko,ksorokin,gpankratenko,markov,
aspiridonov,ialexandrov}@ispras.ru
2 Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
asvolkov@ispras.ru

3 Samsung Electronics,
Samsung GEC, 26, Sangil-ro 6-gil, Gangdong-gu, Seoul, South Korea

kwangwon.sun@samsung.com

Abstract. Refactoring is a standard part of any modern development
cycle. It helps to reduce technical debt and keep software projects
healthy. However, in many cases refactoring requires that transforma-
tions are applied globally across multiple files. Applying them manu-
ally involves large amounts of monotonous work. Nevertheless, automatic
tools are severely underused because users find them unreliable, difficult
to adopt, and not customizable enough.

This paper presents a new code transformation framework. It deliv-
ers an intuitive way to specify the expected outcome of a transforma-
tion applied within the whole project. The user provides simple C/C++
code snippets that serve as examples of what the code should look like
before and after the transformation. Due to the absence of any addi-
tional abstractions (such as domain-specific languages), we believe this
approach flattens the learning curve, making adoption easier.

Besides using the source code of the provided snippets, the framework
also operates at the AST level. This gives it a deeper understanding of
the program, which allows it to validate the correctness of the transfor-
mation and match the exact cases required by the user.

Keywords: Code transformation · Global refactoring · C/C++

1 Introduction

The lifecycle of any software project is a constant evolution. Not only does it
mean writing new code while adding new features, but it also includes contin-
uously modifying the existing code. Excessive focus on extending the system’s
c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 140–155, 2019.
https://doi.org/10.1007/978-3-030-37487-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_12

Nobrainer: An Example-Driven Framework for C/C++ Code 141

functionality can lead to a rapid accumulation of the project’s technical debt.
The concept of technical debt is a widespread metaphor for design-wise imper-
fection that boosts initial product development and deployment. With time,
however, the debt grows larger and can potentially stall the whole organization
[3].

A common way to mitigate this problem is refactoring [2,12], which is a
modification of the system’s internal structure that does not change its external
behavior [4]. It helps to eliminate existing architectural flaws and ease further
code maintenance. Murphy-Hill et al. [9] have estimated that 41% of all pro-
gramming activities involve refactoring. The same study also concluded that
developers underuse automatic tools and perform code transformations man-
ually despite the fact that a manual approach is more error-prone. Research
performed on StackOverflow website data [10] found that corresponding tools
can be too difficult and unreliable, as well as require too much human interac-
tion. This reveals a few natural requirements for a beneficial refactoring tool—it
should be easy to use, ask a minimal number of questions from the end user, and
rely on syntactic and semantic information in order to ensure the correctness of
the performed transformations.

Highly customizable refactoring tools typically utilize additional domain-
specific languages (DSL) for describing user-defined transformation rules [5,7,
14]. Such languages need to express both the intended refactoring and the differ-
ent syntactical and semantical structures of the target programming language.
Adopting a DSL can be too overwhelming in the case of C/C++ languages
because the language itself is already complex. Studies show that C and C++
take longer to learn [8], and projects in these languages are more error-prone
[11] compared to other popular languages.

This insight further qualifies the ease-of-use requirement: the tool should not
introduce another level of sophistication on top of C/C++ nor expect additional
knowledge from its user.

This study presents the Clang-based transformation framework nobrainer,
which is built on such principles. The expression a no-brainer refers to something
so simple or obvious that you do not need to think much about it.1,2 This concept
reflects the core idea behind nobrainer, the idea of providing an easy-to-use
framework for implementing and applying a user’s own code transformations.

Individual nobrainer rules are written in C/C++ without any DSLs. Each
rule is a group of examples that represents situations that should be refactored
and illustrates the way they should be refactored. They look exactly like devel-
oper’s code, thus flattening the learning curve of the instrument.

In this paper, we describe the main principles behind nobrainer, illustrate
the most interesting design and implementation solutions, and demonstrate the
tool’s application in real-world scenarios.

1 https://www.merriam-webster.com/dictionary/no-brainer.
2 https://dictionary.cambridge.org/dictionary/english/no-brainer.

https://www.merriam-webster.com/dictionary/no-brainer
https://dictionary.cambridge.org/dictionary/english/no-brainer

142 V. Savchenko et al.

2 Related Work

This section covers the various approaches on code transformation and automatic
refactoring presented in the literature. We distinguish two key points in the
current review. The first point is the form, in which the transformations are
described. The second point is the way these transformations are performed.
There are a few similar approaches that can be combined and compared.

Most of the tools reviewed here rely on a separate syntax for describing
transformation or refactoring rules. For example, Waddington et al. [5] introduce
their language YATL; whereas, Lahoda et al. [7] extend the Java language to
simplify rule descriptions. We believe that various types of DSLs can confuse the
user and introduce another layer of complexity. Wright and Jasper [14] describe
a different approach. Their tool ClangMR adopts Clang AST matchers [1] as a
mechanism for describing the parts of the user’s code that should be transformed.
The user must define replacements in terms of AST nodes. The authors imply
that the user is familiar with the principles of syntax trees and how it is built
for C/C++ programming languages. We believe that this requirement is rarely
met, and that is why the adoption of ClangMR can be challenging for a regular
user.

Wasserman [13], on the other hand, introduces a tool (Refaster) that does
not involve any DSLs. He suggests using the target project’s programming lan-
guage for describing transformations. This allows the user to embed transforma-
tion rules into the project’s code base, which leads to simpler syntax checks
and symbol availability validations. Transformation rules are written in the
form of classes and methods with either @BeforeTemplate or @AfterTemplate
annotations. Each class represents a transformation and should contain one
or more @BeforeTemplate methods and a single @AfterTemplate method.
Then the tool treats the transformation as follows: match the code that is
written in @BeforeTemplate method and replace it with the code written in
@AfterTemplate method.

We consider Wasserman’s tool design to be clear and user-friendly because
it uses the language of the project’s code base to define transformations. We use
a similar approach in nobrainer.

We decided that the best method for matching the C/C++ source code is
the approach used in ClangMR. However, because using Clang AST matchers
directly can be challenging, we provide a higher level framework that utilizes
AST matchers internally.

Regarding the code transformation, a common solution is to generate an
AST, transform it, and restore the source code in the end. This kind of app-
roach is used by Proteus [5], Jackpot [7] and Eclipse C++ Tooling Plugin [6].
The main problem of implementing such an approach is code generation. We
should remember all the nuances of the original source code in order to repli-
cate them when restoring the resulting code. This includes preserving comments,
redundant spaces, etc. On the other hand, in ClangMR [14], the authors suggest

Nobrainer: An Example-Driven Framework for C/C++ Code 143

using the Clang3 framework for code transformation because it allows developers
to directly modify the source code token wise. We also use the Clang framework
because we believe it is the best solution to transform C/C++ source code.

3 Design

In this section, we describe the overall design and the user’s workflow. Running
the tool on a real project involves the following list of actions:

– writing transformation rules as part of the target project
– providing compilation commands for the target project (the currently sup-

ported format is the Clang compilation database4)

Nobrainer either applies all the replacements or generates a YAML file con-
taining these replacements. In the latter case, replacements can be applied later
with the clang-apply-replacements tool (part of the Clang Extra Tools5).

Figure 1 provides an insight into the internal nobrainer structure. Each num-
bered block represents a work phase of the tool. Boxes at the bottom correspond
to each phase’s output.

Fig. 1. Nobrainer workflow

During the first phase, the tool analyzes all of the translation units that are
extracted from the given compilation commands. For each translation unit, it
searches for and collects templates that represent our transformation examples.
Then nobrainer filters invalid templates. The result of the first phase is a list
of valid templates.

In the second phase, we group conforming templates into rules. Nobrainer
also checks each rule for consistency and then processes each rule to generate
internal template representation.

In the third phase, we work with the list of preprocessed rules. Nobrainer
tries to match each rule against the project’s source code. For each match, we
construct a special data structure, which we use to generate a replacement. As
a result, we obtain a set of replacements.

For more details on each phase, see Sect. 4.
3 https://clang.llvm.org/.
4 https://clang.llvm.org/docs/JSONCompilationDatabase.html.
5 https://clang.llvm.org/extra/index.html.

https://clang.llvm.org/
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/extra/index.html

144 V. Savchenko et al.

4 Detailed Description

The core idea of nobrainer is the use of examples, which are code snippets
written in C/C++ languages. Because each snippet may represent a whole fam-
ily of cases, we call them templates. The user submits the situations she wants
to change in the Before templates and the substituting code in the After tem-
plates. These templates can be defined anywhere in the project.

Nobrainer offers a special API for writing such examples, which is subdi-
vided into C and C++ APIs. Both provide the ability to write expression and
statement templates to match C/C++ expressions or statements respectively.

For a clearer explanation of what a template is, let us proceed with an exam-
ple. Suppose the user wants to find all calls to function foo with an arbitrary int
expression as the first argument and global variable globalVar as the second
argument and replace the function with bar, while keeping all the same argu-
ments. Listing 1 demonstrates how such a rule can be specified (using nobrainer
C API).

int NOB_BEFORE_EXPR(ruleId)(int a) {

return foo(a, globalVar);

}

int NOB_AFTER_EXPR(ruleId)(int a) {

return bar(a, globalVar);

}

Listing 1: Expression template example
Expressions for matching and substitution reside inside of return state-

ments. We force this limitation intentionally because it allows us to delegate
the type compatibility check of Before and After expressions to the compiler.

Nobrainer’s transformations are based on the concept that two valid expres-
sions of the same type are syntactically interchangeable. This statement is correct
with the exception of parenthesis placement. In certain contexts, some expres-
sions must be surrounded with parentheses. However, we introduce a simple set
of rules that solve this issue and are not covered in this paper.

In order to properly define the term template, we first need to introduce the
following notations (with respect to the given program):

– Θ is a finite set of all types defined
– Σ is a finite set of all defined symbols (functions, variables, types)
– A is a finite set of all AST nodes representing the program
– C is a finite set of characters allowed for C/C++ identifiers
– P is a finite set of all function parameters p = 〈np, tp〉 where np ∈ C∗ is the

parameter’s name and tp ∈ Θ is its type.

An expression template can be formally defined as a 6-tuple

Texpr = 〈k, n, r, P,B, S〉 (1)

where

Nobrainer: An Example-Driven Framework for C/C++ Code 145

– k ∈ {before, after} is the template’s kind
– n ∈ C∗ is the rule’s identifier, it is used for pairing corresponding

before/after templates
– r ∈ Θ is the return type
– B ⊂ A is the body
– P ⊆ P is the set of parameters
– S ⊆ Σ is the set of symbols used in B.

The last two elements of the tuple require additional commentary.
Template parameters P represent generic placeholders for different situa-

tions encountered in the real source code. Nobrainer reads these parameters as
arbitrary expressions of the corresponding type. For example, parameter a from
Listing 1 corresponds to any expression of type int.

The set of symbols S is important for the correctness affirmation (see
Sects. 4.4 and 4.6).

Fig. 2. Before template deconstruction

Figure 2 dissects the Before template from Listing 1.
The following subsections cover nobrainer’s phases in more detail.

4.1 Template Collection

The first phase is to collect all the templates from the project. Nobrainer scans
each file and tries to find functions that were declared using the API. This can
only be done for parsed source files. Doing so for the whole project can have a
drastic impact on the tool’s performance. In order to avoid checking all the files,
we only process files that contain inclusion directives of nobrainer API header
files.

As the output, this phase has a set of all templates defined by the user. We
denote it as T .

4.2 Template Validation

After the template collection phase, we validate each template individually. We
need to check that the collected templates in T are structurally valid. First it is
important to note that the syntactic correctness of a template is guaranteed by
the compilation process. Templates are implemented as the part of the existing
code base, which implies that they are actually parsed and checked during the

146 V. Savchenko et al.

collection phase. This includes checks for the availability of all symbols, type
checks, etc.

In every separate case, nobrainer replaces a single expression with another
single expression. Considering this fact, each template Texpr should define exactly
one expression. This requirement is transformed into a syntax form as: a tem-
plate’s body B should consist of a single return statement with a non-empty
return expression. During the template validation stage, we check this constraint.
Thus, nobrainer filters out templates without a body (i.e. declarations), tem-
plates with an empty body, and templates with a single statement return;.

Currently there are some limitations regarding the usage of functional style
macros and the usage of C++ lambda expressions in template bodies. For this
reason, we validate the absence of either of these language features.

Thus, if nobrainer encounters invalid templates, it filters them out and
proceeds to the next phase with the set of valid ones T+.

4.3 Rule Generation

For an arbitrary id ∈ C∗, we define two sets of templates Bid and Aid as follows:

Bid = {T ∈ T+|nT = id, kT = before} (2)

Aid = {T ∈ T+|nT = id, kT = after} (3)

These two groups describe exactly one user-defined transformation scenario
because they include all of the Before and After examples under the same name.
However, in order for Bid and Aid to form a transformation rule, the following
additional conditions must be met:

⎧
⎪⎨

⎪⎩

|Bid| ≥ 1
Aid = {aid} (i.e. |Aid| = 1)
∀b ∈ Bid → aid ≺ b

(4)

where

∀x, y ∈ T+ → x ≺ y ⇔
{

Px ⊆ Py

rx = ry
(5)

We refer to operator ≺ as the compatibility operator. It indicates that the
snippet defined in x can safely replace the code matching y. The equality of
return types r ensures that the substituting expression has the same type as
the original one, while condition Px ⊆ Py guarantees that nobrainer will have
enough expressions to fill all of the x’s placeholders.

As a result, we define transformation rule as a pair Rid = 〈Bid, Aid〉 where
Bid and Aid meet conditions (4). Additionally we denote the set of all project
rules as R.

Nobrainer: An Example-Driven Framework for C/C++ Code 147

4.4 Rule Processing

Before Template Processing. As mentioned before, we convert Before tem-
plates to Clang AST matchers. These provide a convenient way to search for
sub-trees that fit the given conditions. They describe each node, its properties,
and the properties of its children. Thus, this structure resembles the structure of
the AST itself. In order to generate matchers programmatically, we exploit this
fact. Each node of the template’s sub-tree is recursively traversed and paired
with a matcher. As a result, we encapsulate the logic related to different AST
nodes and avoid the necessity of supporting an exponential number of possible
node combinations.

Fig. 3. Recursive AST matcher generation

Figure 3 demonstrates a simplified example of such a conversion. It depicts
three stages of Before template processing: source code, AST, and AST match-
ers. Bold arrows reflect parent-child relationships, while dashed arrows stand for
node-matcher correspondence. Because matchers are represented by a series of
nested function calls, we construct the innermost matchers first, traversing the
tree in a depth-first fashion.

Matching Identical Sub-Trees. Consider the Before template from Listing 2.
It is unlikely that the user expects the system to match two arbitrary expressions
as foo’s arguments. In fact, the most intuitive interpretation of this template is
matching calls to function foo with identical arguments only.

int before(int x) {

return foo(x, x);

}

Listing 2: An example of reusing a template parameter

Clang does not provide a matcher that can do the job. However, nobrainer
already has a mechanism to find identical sub-trees for Before templates without
parameters. During the matching process, we reuse this mechanism to dynami-
cally generate a matcher. Thus, for the given example, we bind the first argument
to x, generate a matcher, and check if the second argument fits.

148 V. Savchenko et al.

After Template Processing. Our goal is to construct a text that represents
the result of a replacement. Therefore, we convert After templates into plain
strings. However, there are some parts of the After template’s body that cannot
be taken as is and placed into the desired location. We call such parts mutable.
During the traversal of the After template’s body, we extract the ranges that
represent mutable parts. Each range consists of the start and the end locations
of the certain AST node. There are two cases of mutable parts.

The first case is the use of a template parameter inside of an After template’s
body. We treat each template parameter as a placeholder that we fill during
replacement generation (see Sect. 4.6).

The second case is the use of a symbol. Inserting symbols in arbitrary places
in the source code can be syntactically incorrect. Indeed, in the location of
insertion, the symbol may not yet have been declared. Thus, we collect symbol
information that is used during replacement generation (see Sect. 4.6).

Given these points, for the After template from Listing 3, we construct the
following format string: "#{bar}(${x}) + 42". In this example, nobrainer dis-
tinguishes the symbol bar and the template parameter x, and handles them
accordingly. The tool treats all the remaining parts of the string as immutable,
and, with this in mind, constructs the resulting format string.

int after(int x) {

return bar(x) + 42;

}

Listing 3: An example of an After template

4.5 Rule Application

The next step is to identify all situations, in which to apply rules R. In order to
do this across the whole project, nobrainer independently parses all the source
files. After that, the tool applies AST matchers generated for each rule.

Each time a match is found, nobrainer obtains a top-level expression that
should be replaced and a list of AST sub-trees bound to parameters from the
corresponding Before template. Using this information and the After template,
nobrainer generates an actual code change called a replacement.

4.6 Replacement Generation

Replacement is a sufficient specification for a complete textual transformation.
It consists of four components:

– the file where current replacement is applied
– the byte offset where the replaced text starts
– the length of the replaced text
– the replacement text

Nobrainer: An Example-Driven Framework for C/C++ Code 149

Nobrainer extracts the first three components from the expression marked
for substitution. The replacing text is composed from the After template and
AST nodes bound to parameters. For each node, nobrainer gathers the cor-
responding source code and fills placeholders from the After template. This
operation results in plain text for the substitution. Figure 4 demonstrates this
procedure using a real code snippet.

Fig. 4. Replacement generation

Such a transformation may nevertheless cause compilation errors due to sym-
bol availability. Nobrainer should check that each symbol that comes with a
substitution is declared and has all required name qualifiers. In order to ensure
this, we:

– add inclusion directives for the corresponding header files
– add namespace specifiers.

The resulting code incorporates only the pieces of real source code that have
been checked by Clang at different stages of the analysis.

4.7 Type Parameters

Parametrization with arbitrary expressions provides a flexible instrument for
generic rule definition. However, this may not be enough. Exact type specifica-
tion can significantly limit the rule’s expressiveness and reduce the number of
potential use cases.

In order to combat this shortcoming, we introduce a set of type parameters
Φ ⊂ C∗ to a template syntax. This extends the template definition (1) to

Texpr = 〈k, n, r, P,B, S, Φ〉 (6)

and compatibility operator ≺ (5) to

∀x, y ∈ T+ → x ≺ y ⇔

⎧
⎪⎨

⎪⎩

Φx ⊆ Φy

Px ⊆ Py

rx = ry

(7)

Note that type parameters Φ are fully symmetrical to parameters P .

150 V. Savchenko et al.

template <class T> T *before() {

return (T *)malloc(sizeof(T));

}

template <class T> T *after() {

return new T;

}

Listing 4: An example of a type-parametrized rule
Listing 4 demonstrates a rule parametrized with type.

5 Results

In this section, we describe how we test nobrainer, provide some transformation
rule examples and present the performance results.

5.1 Testing

Our tests can be divided into two main groups. First, we have a group of unit-
and integration-tests for each phase described in Sect. 3. These are mainly used
to check the correctness of AST matcher generation (Sect. 4.4) and format string
generation (Sect. 4.4) for various AST nodes.

Second, we have a group of regression tests consisting of several open source
projects.

For each project, we have created files with predefined nobrainer templates.
Our testing framework runs the tool, measures the execution time, checks that
all the predefined transformations have been performed as expected, and verifies
that the project can be compiled afterwards.

5.2 Examples

In this section, we present three notable transformation rules that are supported
by nobrainer.

The first example (Listing 5) shows the transformation rule that changes
the order of arguments inside of the compose method call. Specifically,
nobrainer will replace each call of the compose method of the Agent class
a.compose(x, y) with the call a.compose(y, x).

Thus, we demonstrate how to perform an argument swap automatically when
method’s signature changes.

Nobrainer: An Example-Driven Framework for C/C++ Code 151

int NOB_BEFORE_EXPR(ChangeOrder)(Agent a, char *x, char *y) {

return a.compose(x, y);

}

int NOB_AFTER_EXPR(ChangeOrder)(Agent a, char *x, char *y) {

return a.compose(y, x);

}

Listing 5: An example template for the argument swap
The second example (Listing 6) shows that nobrainer can be used to

perform simplifying code transformations.

class EmptyCheckRefactoring : public nobrainer::ExprTemplate {

public:

bool beforeSize(const std::string x) {

return x.size() == 0;

}

bool beforeLength(const std::string x) {

return x.length() == 0;

}

bool after(const std::string x) {

return x.empty();

}

};

Listing 6: An example template for a string emptiness check
Recall that each rule can have an arbitrary number of before templates,

but only one after template. Writing several before expressions helps to group
common transformations.

The third example contains type and expression parameters. Listing 7
shows the corresponding rule.

class ConstCastRefactoring : public nobrainer::ExprTemplate {

public:

template <class T>

T *before(const T *x) { return (T *)x; }

template <class T>

T *after(const T *x) { return const_cast<T *>(x); }

};

Listing 7: An example template for const casts
It detects the C-style cast that “drops” the const qualifier from the pointed

type and replaces it with an equivalent C++-style cast. Parameter x should be of
any pointer-to-const type and should be cast to exactly this type, but without a

152 V. Savchenko et al.

const qualifier. Nobrainer captures all of these connections and processes them
as expected.

5.3 Performance

To measure the performance we run our regression tests five times on a machine
with Intel(R) Core(TM) i7-7700K CPU @ 4.20 GHz CPU, and 64 GB of RAM.
The machine runs on Ubuntu 16.04 LTS. We perform the execution in eight
threads.

Table 1 contains the results. For each project, we list its size in lines of code,
the number of replacements nobrainer applies during the test, and our time
measurements. We distinguish two stages of nobrainer’s workflow and measure
them separately. The first stage incorporates the project’s source code parsing.
The second stage contains all the remaining computations up to replacement
generation. We divide the whole process this way because the parsing process is
performed by the Clang framework. For this reason, we can only minimize the
time nobrainer spends in the second stage.

Table 1. Performance results

Project KLOC Replacements Parsing time (s) Remaining operation time (s)

CMake 493 24 31.36 7.13

curl 129 7 3.17 2.01

json 70 7 13.99 1.34

mysql 1170 10 9.54 3.12

protobuf 264 8 16.62 2.97

v8 3055 6 281.57 28.52

xgboost 43 14 6.75 1.18

It should be noted that the execution time does not directly correlate with
the project’s size. Other factors, such as translation unit sizes may also influence
the overall performance.

As can be seen in Table 1, the elapsed time varies significantly between
projects. In particular, this behavior applies both to the parsing time and to
remaining processing time. Therefore, comparing the elapsed time of different
projects offers few insights. Thus, in our evaluations, we consider the percentage
of time that the file parsing takes from the whole process. Then, we compare
this proportion among different projects. Figure 5 demonstrates the correspond-
ing rates for the regression projects. Our results show that parsing takes up
more than 81% of the whole execution time on average. For a global refactor-
ing, all files must be parsed. The fact that the remaining procedure takes less
than 20% of the execution time means that nobrainer has reached near-optimal
performance.

Nobrainer: An Example-Driven Framework for C/C++ Code 153

CMake curl json mysql protobuf v8 xgboost
Project

0

25

50

75

100
O

pe
ra

ti
on

 t
im

e
pe

rc
en

ta
ge

File parsing time
Remaining operation time

Fig. 5. File parsing percentage in nobrainer operation

Nevertheless, in certain cases, it is possible to avoid parsing files when it is
sure that the file contains nothing to transform. The next section explains this
and other directions in our future work.

6 Limitations and Future Work

Currently nobrainer supports expression templates and type parameterization.
It can be used to perform transformations in continuous integration environ-
ments (CI). However, the execution time is still unsuitable for running it on
large projects as a background task in IDE. There is still room for improvement.
Thus, we consider three main directions for future work:

1. Full statement support
2. Performance improvements
3. Usability improvements

At the moment, we have already designed infrastructure for statement sup-
port. This includes API, validation and stubs for processing Before and After
templates. We have also added support for if statements, compound statements,
and variable declaration nodes. Our next task is to implement processing for
each remaining statement node.

Regarding performance, we plan to research methods for reducing the pars-
ing time. We are considering two directions. Firstly, we would like to improve
the matching phase by skipping files that do not contain symbols used in Before
templates. Secondly, we will explore automatic precompiled header (PCH) cre-
ation, which is expected to speed up the process of parsing the project’s header
files.

154 V. Savchenko et al.

Further, the usability of our tool can be improved in two ways. Currently
nobrainer performs found transformations only for the whole code base. We
would like to add support for executing on user-defined parts of the project.
We are also considering integrating with other developer tools. For example,
nobrainer can be used as an IDE plugin to enhance user experience and the
convenience of usage. Another possible scenario is to use nobrainer to assist
static analyzers for fixing errors or defects.

7 Conclusion

In this paper, we presented nobrainer—a transformation and refactoring frame-
work for C and C++ languages based on the Clang infrastructure. Its design is
built on two main principles: ease-of-use and the extensive validation of trans-
formation rules. A substantial part of this article includes describing its design
and implementation, accompanied with examples and results.

Our results showed that nobrainer already supports real-world transfor-
mation examples and can be successfully applied to large C/C++ projects in
continuous integration environments. We also highlighted the current limitations
of the tool and some directions for later improvements. In the future, we plan
to enhance the usability of nobrainer and integrate with other developer tools.

Acknowledgments. This work resulted from a joint project with Samsung Research.
The authors of this paper are grateful to the colleagues from Samsung for their valuable
ideas and feedback.

References

1. Clang documentation: Matching the clang AST. https://clang.llvm.org/docs/
LibASTMatchers.html

2. Brown, N., et al.: Managing technical debt in software-reliant systems. In: Pro-
ceedings of the FSE/SDP Workshop on Future of Software Engineering Research,
FoSER 2010, pp. 47–52. ACM, New York (2010). https://doi.org/10.1145/1882362.
1882373, http://doi.acm.org/10.1145/1882362.1882373

3. Cunningham, W.: The WyCash portfolio management system. SIGPLAN OOPS
Mess. 4(2), 29–30 (1992). https://doi.org/10.1145/157710.157715. http://doi.acm.
org/10.1145/157710.157715

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, Boston (1999)

5. Waddington, D.G., Yao, B.: High-fidelity C/C++ code transformation. Electron.
Notes Theoret. Comput. Sci. 141, 35–56 (2007). https://doi.org/10.1016/j.entcs.
2005.04.037

6. Graf, E., Zgraggen, G., Sommerlad, P.: Refactoring support for the C++ develop-
ment tooling. In: OOPSLA Companion (2007)

7. Lahoda, J., Bečička, J., Ruijs, R.B.: Custom declarative refactoring in NetBeans:
tool demonstration. In: Proceedings of the Fifth Workshop on Refactoring Tools,
WRT 2012, pp. 63–64. ACM, New York (2012). https://doi.org/10.1145/2328876.
2328886, http://doi.acm.org/10.1145/2328876.2328886

https://clang.llvm.org/docs/LibASTMatchers.html
https://clang.llvm.org/docs/LibASTMatchers.html
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/1882362.1882373
http://doi.acm.org/10.1145/1882362.1882373
https://doi.org/10.1145/157710.157715
http://doi.acm.org/10.1145/157710.157715
http://doi.acm.org/10.1145/157710.157715
https://doi.org/10.1016/j.entcs.2005.04.037
https://doi.org/10.1016/j.entcs.2005.04.037
https://doi.org/10.1145/2328876.2328886
https://doi.org/10.1145/2328876.2328886
http://doi.acm.org/10.1145/2328876.2328886

Nobrainer: An Example-Driven Framework for C/C++ Code 155

8. Meyerovich, L.A., Rabkin, A.S.: Empirical analysis of programming language
adoption. SIGPLAN Not. 48(10), 1–18 (2013). https://doi.org/10.1145/2544173.
2509515. http://doi.acm.org/10.1145/2544173.2509515

9. Murphy-Hill, E.R., Parnin, C., Black, A.P.: How we refactor, and how we know
it. In: ICSE, pp. 287–297. IEEE (2009). http://dblp.uni-trier.de/db/conf/icse/
icse2009.html#Murphy-HillPB09

10. Pinto, G.H., Kamei, F.: What programmers say about refactoring tools?: An empir-
ical investigation of stack overflow. In: Proceedings of the 2013 ACM Workshop on
Workshop on Refactoring Tools. WRT 2013, pp. 33–36. ACM, New York (2013).
https://doi.org/10.1145/2541348.2541357, http://doi.acm.org/10.1145/2541348.2
541357

11. Ray, B., Posnett, D., Devanbu, P., Filkov, V.: A large-scale study of program-
ming languages and code quality in github. Commun. ACM 60(10), 91–100 (2017).
https://doi.org/10.1145/3126905. http://doi.acm.org/10.1145/3126905

12. Tracz, W.: Refactoring for software design smells: managing technical debt by
Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. ACM SIG-
SOFT Softw. Eng. Notes 40(6), 36 (2015). http://dblp.uni-trier.de/db/journals/
sigsoft/sigsoft40.html#Tracz15a

13. Wasserman, L.: Scalable, example-based refactorings with refaster. In: Proceedings
of the 2013 ACM Workshop on Workshop on Refactoring Tools, pp. 25–28. ACM
(2013)

14. Wright, H., Jasper, D., Klimek, M., Carruth, C., Wan, Z.: Large-scale automated
refactoring using ClangMR. In: Proceedings of the 29th International Conference
on Software Maintenance (2013)

https://doi.org/10.1145/2544173.2509515
https://doi.org/10.1145/2544173.2509515
http://doi.acm.org/10.1145/2544173.2509515
http://dblp.uni-trier.de/db/conf/icse/icse2009.html#Murphy-HillPB09
http://dblp.uni-trier.de/db/conf/icse/icse2009.html#Murphy-HillPB09
https://doi.org/10.1145/2541348.2541357
http://doi.acm.org/10.1145/2541348.2541357
http://doi.acm.org/10.1145/2541348.2541357
https://doi.org/10.1145/3126905
http://doi.acm.org/10.1145/3126905
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft40.html#Tracz15a
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft40.html#Tracz15a

A Logical Approach to the Analysis
of Aerospace Images

Valeriy Kuchuganov, Denis Kasimov(&), and Aleksandr Kuchuganov

Kalashnikov Izhevsk State Technical University, Izhevsk, Russian Federation
kuchuganov@istu.ru, kasden@mail.ru, Aleks_KAV@udm.ru

Abstract. The paper proposes algorithms and software tools for the automatic
interpretation and classification of objects and situations on aerospace images by
structural-spatial analysis and iterative reasoning based on fuzzy logic and expert
rules of inference. During iterations, the decision tree is built, the transition to
local rules and additional features is carried out, and the ranges of acceptable
values are adjusted. Particular attention is paid to geometric features of objects.
Quantitative attributes are converted to qualitative ones for ease of perception of
results and forming decision rules. The results of the experiment on the automatic
identification of objects in the aerial image of an urban area are given. The system
is useful for automating the process of labeling images for supervised learning
and testing programs that recognize objects in aerospace images.

Keywords: Image analysis � Object detection � Object features � Decision rule �
Decision tree � Ground truth � Image labeling

1 Introduction

Due to the rapid growth in the volume of aerospace monitoring data, there is an urgent
need for the tools that automate the extraction of knowledge from images, the iden-
tification and structured description of image objects.

Currently, the GEOBIA (Geographic Object-Based Image Analysis) approach [1] is
actively being developed in the field of aerospace image analysis. Within this approach,
the processing of areas obtained as a result of automatic color segmentation and their
classification based on rules set by an expert is implemented. There is an extensive
experience of using the object-oriented approach for solving various tasks: analysis of
changes in territories [2], classification of urban garden surfaces [3], automatic
detection of built-up areas [4], estimation of crop residues [5], etc.

The work [6] is interesting by the proposed method of obtaining the object clas-
sification rules. The rules are formed on the basis of supervised learning: using man-
ually prepared training examples, an automatic synthesis of a decision tree is
performed, from which the most reliable classification rules are then manually
extracted. The process of classifying objects in the image includes color image seg-
mentation, calculation of spectral and geometric characteristics of the obtained seg-
ments, and classifying the segments into the target object categories by checking the
rules that test feature values. In general, the considered work is aimed at maximizing
the effectiveness of the final stage of image analysis, which is associated with decision

© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 156–166, 2019.
https://doi.org/10.1007/978-3-030-37487-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_13

making. It should be noted that the overall effectiveness of the analyzing system is
determined not only by this factor, but also largely depends on the quality of image
segmentation, the completeness of the set of analyzed features and the degree of
consideration of the environment of objects.

In [7], an ontological approach to representing the knowledge of GEOBIA-systems
is proposed. Based on the formalism of description logics, the relationships between the
target categories of objects and their patterns in images are described. From these
logical descriptions, it is then easy to extract the rules for assigning image objects
provided by the segmentation procedure to the desired categories. The advantage of
this approach is that the knowledge of experts is transferred to the analyzing system in
a more systematic way, the subjectivity of the decision rules is leveled, and the pos-
sibility of using automatic means for checking the consistency of the knowledge base
appears. Unfortunately, the approach does not specify any form of contextual analysis
of objects. Identification relies entirely on spectral and geometric characteristics of
individual objects (NDVI, squareness, etc.). The authors noted that automatic seg-
mentation did not always perfectly delineate the boundaries of objects, especially in the
case of shadows and trees. In this regard, the existing free database of cartographic data
was used to refine the results of segmentation.

In existing implementations of the GEOBIA approach, relatively simple classifi-
cation rules are applied that do not take into account the context of an object. The
decision making mechanism is built on the production knowledge model. A significant
drawback is the lack of tools for complex analysis of the shape of objects. Under
conditions of imperfection of automatic image segmentation, it is not always possible
to achieve high identification rates.

The purpose of this work is to develop mechanisms for the automatic interpretation
and classification of objects and situations on aerospace images by structural-spatial
analysis and iterative reasoning based on fuzzy logic and expert rules of inference.
During iterations, the decision tree is built, the transition to local rules and additional
features is carried out, and the ranges of acceptable values are adjusted. Particular
attention is paid to geometric features of objects. Quantitative attributes are converted
to qualitative ones for ease of perception of results and forming decision rules.

2 Formation of a Set of Features

At the stage of image preprocessing, color segmentation and approximation of the
edges of regions by circular arcs and straight line segments are performed. The algo-
rithms of image approximation and extraction of basic features used by us are discussed
in detail in [8]. The result of the stage is the set of color regions represented as the
cyclic lists of straight line segments and circular arcs:

REGIONS ¼ R1; . . .; Rnf g; n 2 N; Ri ¼ Colori; Edgeið Þ; Edgei ¼ ei1; . . .; eikð Þ; k 2 N;

8j 2 1::k½ � LineSegment eij
� � _ CircularArc eij

� �
; Connected eik; ei1ð Þ; 8j 2 1::k � 1½ �

Connected eij; eijþ 1
� �

;

A Logical Approach to the Analysis of Aerospace Images 157

where Colori is the region’s average color; LineSegment(e) is true if e is a straight line
segment; CircularArc(e) is true if e is a circular arc; Connected(e1, e2) is true if any
endpoints of e1 and e2 are the same.

Many of the obtained regions correspond unequivocally to the target objects of the
image or their structural fragments (a typical example is a roof slope of a building). On
the other hand, it is not possible to avoid regions that are incorrect to some degree: a
very tortuous border, the capture of a part of a neighboring object, etc. In a number of
researches [9, 10], it is noted that the inaccuracy, insufficiency or excessiveness of
automatically obtained color segments is a serious problem for object-oriented
approaches, preventing them from achieving a high level of recognition. In view of
this, the subsequent stages of processing and analysis have been designed in such a way
as to minimize the influence of this negative factor.

Next, the adjacency graph of the regions and sections of their edges is constructed.
Each node of the graph corresponds to a certain region of the image. Arcs of the graph
represent relationships between the regions:

BegNode;EndNode;R;V ;AdjChainsð Þ;

where BegNode is the number of the node from which the arc exits; EndNode is the
number of the node to which the arc enters; R is the type of relationship between the
regions: IsNeighbourOf, Contains, IsInsideOf; V is the vector that connects the regions’
centroids, showing relative orientation and distance; AdjChains is the set of adjacent
chains of the regions’ edges.

To describe the image regions, the following features are calculated:

1. Significant elements of the region’s edge:

SignifElsi ¼ fe j e 2 Edgei ^ L eð Þ=P Edgeið Þ � dg;

where L is the length calculation function, L(e) 2 R+, P is the perimeter calculation
function, P(Edgei) 2 R+, d is a threshold, d 2 [0, 1].

2. Significant line segments: SLi = {e | e 2 SignifElsi ^ LineSegment(e)}.
3. Straightness of the region’s edge:

StraightnessðRiÞ ¼

P

e2SLi
LðeÞ

PðEdgeiÞ :

4. The presence of three sides of a rectangle:

9a; b; c 2 SLiða ~?b; b ~?c; aj ~jc;Nearða; bÞ;Nearðb; cÞÞ ! Has3RectSidesðEdgeiÞ

where Near is true if the elements are located relatively close to each other; ~? and

j ~j are the relations of fuzzy perpendicularity and parallelism that allow a slight
deviation of the angle from 90° and 0°, respectively.

5. The presence of significant perpendicular line segments (Has2PerpLines).
6. Area, converted to a relative form through clustering.

158 V. Kuchuganov et al.

7. Average width (AvgWidth), calculated on the basis of creating cross sections and
clustering their lengths. The calculated absolute value is converted to a relative
form, namely, it is considered depending on the size of the region.

8. Elongation of the region: Elongation(Ri) = min(a, b)/max (a, b),
where a and b are the lengths of the sides of MinBoundRect(Ri) – the minimum
rectangle that covers the region Ri.

9. Squareness of the region: Squareness(Ri) = Area(Ri)/Area(MinBoundRect(Ri)),
where Area is the area calculation function, Area(Ri) 2 R+.

10. Circleness – the ratio of the region’s area to the area of a circle of the corre-
sponding radius.

11. Tortuosity of the region’s edge:

Tortuosity Rið Þ ¼ SignChangeCount Edgeið Þ=P Edgeið Þ;

where SignChangeCount is the number of changes of the sign of the element
inclination angle when traversing the edge.

12. Density of contour points: ContourPointDensity(Ri) = |ContourPoints(Ri)|/Area
(Ri),
where ContourPoints is the function that detects contour points in the given region
of the image.

The last feature characterizes the texture of the region: if the value is small, then the
region is homogeneous and smooth, otherwise it has a complex texture.

Quantitative values of the features are translated into qualitative form in order to
simplify the process of forming decision rules and perception of the analysis results.
Conversion can be based on a simple partition of a value range into several subranges.
However, a more flexible approach is to assign membership functions in accordance
with the principles of fuzzy sets [11]. The second method is more laborious and time-
consuming to set up, but the costs pay off to some extent, since some of classification
errors associated with a slight violation of range boundaries are eliminated. At present,
approaches are being developed [12, 13], aimed at simplifying the fuzzification pro-
cess, seeking to eliminate subjectivity and reduce the share of manual labor in the
creation of membership functions.

To facilitate the user’s process of determining the ranges of qualitative values, the
system has a tool for constructing histograms of the distribution of numerical values of
the features. Figure 1 shows a program window in which the Straightness feature is
examined. Initially, the histogram is built with a large number of equal ranges (Fig. 1a)
to give the user a general idea of the shape of the distribution. The task of the user is to
reduce the number of ranges to the required number of qualitative values of the feature.
For example, in Fig. 1b, the user has defined ranges of four qualitative straightness
values that he considers sufficient for classification.

By clicking on any bar of the histogram, the system highlights all the color areas in
the image for which the feature value falls within the range corresponding to this bar.
This feature helps the user to evaluate the correctness of the resulting ranges.

A Logical Approach to the Analysis of Aerospace Images 159

During the interpretation of decision rules, the quantitative values are fuzzified
using simple built-in trapezoidal functions, which are automatically scaled to the width
of the user-defined ranges.

3 Formation of Decision Rules

Decision rules are divided into the following types:

– rules that analyze image regions in isolation from other regions, classifying the most
reliable objects;

– rules that consider aggregates of adjacent regions, classifying less reliable objects
and refining previously detected objects.

Consider some rules of the first type, applied at the beginning of the object clas-
sification stage:

Fig. 1. Interface for converting quantitative values of the features into qualitative ones: (a) the
initial equal ranges; (b) the target ranges Small, Medium, Large, and VeryLarge

160 V. Kuchuganov et al.

Object Category: Building
General requirements: (Color(R) 6¼ Green) ^ (Color(R) 6¼ VeryDark) ^ (Area(R) �
Medium) ^ (Elongation(R) � Medium) ^ (AvgWidth(R) � VeryLarge) ^ (Con-
tourPointDensity(R) � Medium) ^ (¬ 9R2 (Color(R2) = Green ^ Contains(R, R2)).

Variants:

– IF (Straightness(R) � VeryLarge) THEN Building(R, 1.0).
– IF (Squareness(R) � Large) ^ (Has3RectSides(R) _ Has2PerpLines(R)) THEN

Building(R, 1.0).
– IF (Straightness(R) � Large) ^ (Has3RectSides(R) _ Has2PerpLines(R)) ^

(Squareness(R) � Medium) ^ (Tortuosity(R) � Medium) THEN Building(R,
1.0).

– IF (Straightness(R) � Large) ^ (Has3RectSides(R) _ Has2PerpLines(R)) ^
(Tortuosity(R) � Medium) THEN Building(R, 0.7).

– IF (Squareness(R) � Large) THEN Building(R, 0.5).
– IF (9e 2 R.Edge L(e) � VeryLarge) THEN Building(R, 0.5).

Object Category: Shadow of Building
General requirements: (Color(R) = VeryDark).

Variants:

– IF (Straightness(R) � VeryLarge) THEN ShadowOfBuilding(R, 1.0).
– IF (Straightness(R) � Large) THEN ShadowOfBuilding(R, 0.8).
– IF (Straightness(R) � Medium) ^ (Tortuosity(R) � Large) THEN

ShadowOfBuilding(R, 0.6).

When a rule is triggered, the image region obtains a classification variant with the
degree of reliability specified in the rule’s consequent. The reliability value is set by the
expert.

The rules of the second type are repeatedly applied to the results of the previous
classification steps, while new information is added. Below is an example of one of
these rules:

Object Category: Building near ShadowOfBuilding

IF ShadowOfBuilding R2;mð Þ;AdjacentðR;R2Þ ^ ðStraightnessðCommonEdge
ðR;R2ÞÞ� LargeÞ ^ ðOrientationðR2;RÞ ffi SolarAngleÞ ^ . . .THENBuilding

ðR;mÞ; ShadowOfBuilding R2;mþ 0:2ð Þ;

where m is the reliability of classification of the region R2 before executing the rule.
The classification stage has an iterative principle of organization. Different sets of

rules can be used at different iterations. Namely, when setting rules, the expert can
specify on which iterations they can be applied. This principle makes it possible to
implement various image analysis strategies. For example, the rules used in the i-th
iteration can serve the purpose of detecting all potential objects, ensuring maximum
recall rate and not worrying much about the precision. Then the elimination of false

A Logical Approach to the Analysis of Aerospace Images 161

objects can be made on the i + 1 iteration by specifying additional features, checking
the contextual rules and adjusting the ranges of acceptable values.

In our experiments, iterations were used as follows: (1) detection of the most reliable
objects; (2) classification of less reliable objects with the condition that they are
adjacent to reliable objects; (3) identifying buildings near shadows the source of which
has not yet determined; (4) detection of buildings and roads among the remaining
regions on the basis of weakened requirements; (5) classifying the remaining regions
into the categories of trees, grass, and roads (what they are more like, depending on
tortuosity and color).

The results of rule execution are organized as a decision tree, the general structure of
which is shown in Fig. 2. Each color image region has its own decision tree. Of all the
classifications derived, the one with the highest reliability is chosen as the result.
Similarly, when interpreting rules of the second type, the neighbors are substituted in
descending order of the degree of compliance with the specified requirements.

4 Experiment

An experiment on the automatic classification of objects was conducted on an urban
area aerial image taken from Inria Aerial Image Labeling Dataset [14]. The dataset
contains the building ground truth, providing an opportunity to assess the quality of
building identification using the Intersection over Union (IoU) and Accuracy [15, 16]
metrics. These measures are calculated as follows:

IoU ¼ A\Gj j= A[Gj j;Accuracy ¼ A\Gj j= Aj j;

where A is the set of pixels that the program has classified as pixels of target objects;
G is the set of pixels that are related to target objects in the ground truth.

As a result of automatic analysis of the image that has the size 5000 � 5000 and
contains a total of 793 buildings, the following performance values were obtained:

IoU ¼ 0:56;Accuracy ¼ 0:83:

Fig. 2. Decision tree structure

162 V. Kuchuganov et al.

The values obtained can be considered satisfactory. It should be noted that the
applied metrics work at the pixel level and require the most accurate determination of
building boundaries. In this paper, the desire for accurate detection of objects was not
put at the forefront. The most difficult to classify were small buildings partially covered
with trees, since their visible parts often do not have any distinctive elements of
geometric shape. Such situations require special analysis strategies. Neural network
approaches [14] also experience some difficulties on this dataset (the average value of
IoU does not exceed 0.6), leaving considerable room for improvement.

Figure 3 shows examples of the work of our approach and two other approaches in
the literature.

Practice shows that manual creation of the ground truth labeling for a single large
aerospace image takes more than an hour. And additionally it is necessary to prepare a
set of test images. The obtained estimate IoU = 56% indicates the possibility of
reducing labor costs by half. The important point is that the developed system does not
require training and can be relatively easily reconfigured to other images. Thus, the
system can be useful for automating the creation of training datasets to expand the
scope of application of artificial neural networks.

Fig. 3. A visual comparison of the results: (a) the original image; (b) FCN results [14]; (c) MLP
results [14]; (d) our results

A Logical Approach to the Analysis of Aerospace Images 163

The Labor Costs for Setting Up the System. The setting up is carried out on one of
the most representative images and consists in formation of decision rules. Each rule is
designed to recognize one category of objects by checking the values of the features
specified in it. Fine-tuning the color image segmentation involves determining the
optimal combination of values of 3 parameters and takes no more than 30 min. The
current version of the system uses 12 shape features. At the stage of preprocessing,
quantitative values of features are calculated. For the rules to work, they are translated
into qualitative ones. To this end, the user requests a histogram of a feature, sets the
number of ranges and specifies their boundaries. Setting the value ranges of one feature
takes a maximum of 15 min. The formation of a decision rule for the desired category
of objects consists in choosing the necessary features from the set of possible ones and
specifying identifiers of qualitative values. In our experiments, the development of an
object detection strategy and formation of decision rules took one full working day. At
the same time, the action of the well-known Pareto principle was clearly felt: a small
share of the efforts (formulated rules) gave the main share of the result (recognized
objects), and the remaining efforts were associated with the struggle for improving the
detection quality within 10–20%. Given this fact, in the future it is advisable to limit
the rules development process to 4 h. Then the total labor costs for setting up the
system are 7.5 man-hours.

5 Conclusion

Thus, the proposed approach to the analysis of aerospace images is based on structural-
spatial analysis and iterative reasoning with the use of fuzzy logic and expert rules of
inference. During iterations, the decision tree is built, the transition to local (contextual)
rules and additional features is carried out, and the ranges of acceptable values are
adjusted.

Particular attention is paid to geometric features of objects. The set of standard
geometric characteristics (perimeter, area, squareness, circleness, elongation, etc.) of
objects has been supplemented with such more complex features as significant ele-
ments, straightness, presence of three sides of a rectangle, presence of significant
perpendicular line segments, tortuosity, average width, and contour point density.

The advantages of the logical approach to image analysis are the following:
(a) argumentation of the decision; (b) the possibility of context-sensitive analysis;
(c) automatic generation of descriptions of objects and scenes; (d) there is no need for
training on labeled datasets; (e) relatively simple adjustment to the required type of
images and shooting conditions.

Based on the classification results, it is possible to form a training dataset for neural
network type recognition systems. This may require some manual adjustment of the
results: removal of false objects and refinement of the edges of true objects. If nec-
essary, two-stage training can be organized. In this case, at the second level, with the
help of additional features, “specialization” is carried out according to the seasons
(winter, summer, autumn), types of terrain (agricultural grounds, highland), and other
parameters of shooting.

164 V. Kuchuganov et al.

Further enhancement of the system is seen in the organization of flexible search
strategies, for example, specific techniques for large/extended/small objects. Due to
context-sensitive strategies, the system will automatically, depending on the content of
a particular area, adapt to the shooting conditions, the texture of objects, combinations
of objects of different categories, the nature of the edges between them, etc.

Acknowledgment. This work is supported by the Russian Science Foundation under grant
No. 18-71-00109.

References

1. Blaschke, T., et al.: Geographic object-based image analysis – towards a new paradigm.
ISPRS J. Photogramm. Remote Sens. 87, 180–191 (2014). https://doi.org/10.1016/j.
isprsjprs.2013.09.014

2. Souza-Filho, P.W.M., Nascimento, W.R., Santos, D.C., Weber, E.J., Silva, R.O., Siqueira, J.
O.: A GEOBIA approach for multitemporal land-cover and land-use change analysis in a
tropical watershed in the southeastern Amazon. Remote Sens. 10(11), 1683 (2018). https://
doi.org/10.3390/rs10111683

3. Baker, F., Smith, C.: A GIS and object based image analysis approach to mapping the
greenspace composition of domestic gardens in Leicester, UK. Landsc. Urban Plan. 183,
133–146 (2019). https://doi.org/10.1016/j.landurbplan.2018.12.002

4. Lehner, A., Naeimi, V., Steinnocher, K.: Sentinel-1 for object-based delineation of built-up
land within urban areas. In: Ragia, L., Laurini, R., Rocha, J.G. (eds.) GISTAM 2017. CCIS,
vol. 936, pp. 19–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06010-7_2

5. Najafi, P., Navid, H., Feizizadeh, B., Eskandari, I.: Object-based satellite image analysis
applied for crop residue estimating using Landsat OLI imagery. Int. J. Remote Sens. 39(19),
6117–6136 (2018). https://doi.org/10.1080/01431161.2018.1454621

6. Antunes, R.R., Bias, E.S., Costa, G.A.O.P., Brites, R.S.: Object-based analysis for urban
land cover mapping using the InterIMAGE And The SIPINA free software packages. Bull.
Geod. Sci. 24(1), 1–17 (2018). https://doi.org/10.1590/s1982-21702018000100001

7. Belgiu, M., Hofer, B., Hofmann, P.: Coupling formalized knowledge bases with object-
based image analysis. Remote Sens. Lett. 5(6), 530–538 (2014). https://doi.org/10.1080/
2150704X.2014.930563

8. Kasimov, D.R., Kuchuganov, A.V., Kuchuganov, V.N., Oskolkov, P.P.: Approximation of
color images based on the clusterization of the color palette and smoothing boundaries by
splines and arcs. Program. Comput. Softw. 44(5), 295–302 (2018). https://doi.org/10.1134/
S0361768818050043

9. Lhomme, S., He, D.C., Weber, C., Morin, D.: A new approach to building identification
from very-high-spatial-resolution images. Int. J. Remote Sens. 30, 1341–1354 (2009).
https://doi.org/10.1080/01431160802509017

10. You, Y., et al.: Building detection from VHR remote sensing imagery based on the
morphological building index. Remote Sens. 10(8), 1288 (2018). https://doi.org/10.3390/
rs10081287

11. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate
reasoning—I. Inf. Sci. 8(3), 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

12. Liao, T.W.: A procedure for the generation of interval type-2 membership functions from
data. Appl. Soft Comput. 52, 925–936 (2017). https://doi.org/10.1016/j.asoc.2016.09.034

A Logical Approach to the Analysis of Aerospace Images 165

http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014
http://dx.doi.org/10.3390/rs10111683
http://dx.doi.org/10.3390/rs10111683
http://dx.doi.org/10.1016/j.landurbplan.2018.12.002
http://dx.doi.org/10.1007/978-3-030-06010-7_2
http://dx.doi.org/10.1080/01431161.2018.1454621
http://dx.doi.org/10.1590/s1982-21702018000100001
http://dx.doi.org/10.1080/2150704X.2014.930563
http://dx.doi.org/10.1080/2150704X.2014.930563
http://dx.doi.org/10.1134/S0361768818050043
http://dx.doi.org/10.1134/S0361768818050043
http://dx.doi.org/10.1080/01431160802509017
http://dx.doi.org/10.3390/rs10081287
http://dx.doi.org/10.3390/rs10081287
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/j.asoc.2016.09.034

13. Dhar, S., Kundu, M.K.: A novel method for image thresholding using interval type-2 fuzzy
set and Bat algorithm. Appl. Soft Comput. 63, 154–166 (2018). https://doi.org/10.1016/j.
asoc.2017.11.032

14. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling methods
generalize to any city? The Inria aerial image labeling benchmark. In: IEEE International
Geoscience and Remote Sensing Symposium, IGARSS 2017 (2017). https://doi.org/10.
1109/igarss.2017.8127684

15. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification
tasks. Inf. Process. Manag. 45(4), 427–437 (2009). https://doi.org/10.1016/j.ipm.2009.03.
002

16. Fernandez-Moral, E., Martins, R., Wolf, D., Rives, P.: A new metric for evaluating semantic
segmentation: leveraging global and contour accuracy. In: Workshop on Planning,
Perception and Navigation for Intelligent Vehicles, PPNIV17 2017 (2017). https://doi.org/
10.1109/ivs.2018.8500497

166 V. Kuchuganov et al.

http://dx.doi.org/10.1016/j.asoc.2017.11.032
http://dx.doi.org/10.1016/j.asoc.2017.11.032
http://dx.doi.org/10.1109/igarss.2017.8127684
http://dx.doi.org/10.1109/igarss.2017.8127684
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1109/ivs.2018.8500497
http://dx.doi.org/10.1109/ivs.2018.8500497

Data Compression Algorithms in Analysis
of UI Layouts Visual Complexity

Maxim Bakaev(&) , Ekaterina Goltsova, Vladimir Khvorostov,
and Olga Razumnikova

Novosibirsk State Technical University, Novosibirsk, Russia
{bakaev,xvorostov,razumnikova}@corp.nstu.ru

Abstract. Measuring visual complexity (VC) of human-computer user inter-
faces (UIs) sees increasing development, as VC has been found to affect users’
cognitive load, aesthetical impressions and overall performance. Spatial allo-
cation and ordering of UI elements is the major feature manipulated by an
interface designer, and in our paper we focus on perceived complexity of lay-
outs. Algorithmic Information Theory has justified the use of data compression
algorithms for generating metrics of VC as lengths of coded representations, so
we consider two established algorithms: RLE and Deflate. First, we propose the
method for obtaining coded representations of UI layouts based on decreasing of
visual fidelity that roughly corresponds to the “squint test” widely used in
practical usability engineering. To confirm applicability of the method and the
predictive power of the compression algorithms, we ran two experimental sur-
veys with over 4700 layout configurations, 21 real websites, and 149 partici-
pants overall. We found that the compression algorithms’ metrics were
significant in VC models, but the classical purely informational Hick’s law
metric was even more influential. Unexpectedly, algorithms with higher com-
pression ratios that presumably come closer to the “real” Kolmogorov com-
plexity did not explain layouts’ VC perception better. The proposed novel UI
coding method and the analysis of the compression algorithms’ metrics can
contribute to user behavior modeling in HCI and static testing of software UIs.

Keywords: Algorithmic complexity � Static UI analysis � Human-Computer
interaction � Information processing

1 Introduction

1.1 Visual Complexity in Human-Computer Interaction

A few decades ago, with the increasing ubiquity of computers and the growing number
of users, visual complexity (VC) started becoming a research field of its own, detaching
itself from the general studies of complex systems [1]. Nowadays it is well-known in
human-computer interaction (HCI) that perceived user interface VC significantly
affects not just cognitive load, but also user preferences, aesthetical and other affective
impressions [2–5]. The general guideline in HCI is that all other things being equal, VC

© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 167–184, 2019.
https://doi.org/10.1007/978-3-030-37487-7_14

http://orcid.org/0000-0002-1889-0692
http://orcid.org/0000-0002-7831-9404
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_14

should be decreased (in some cases, a certain level of complexity should be maintained,
due to reasons of aesthetic perception). However, we so far lack universally accepted
quantitative measure and the respective techniques for automated assessment of user
interface VC, although their development is largely seen as desirable [6].

One of the obstacles in tackling this problem is that VC is not universal and the
factors and features affecting it depend of the object being perceived. For instance, for
certain signs (hieroglyphs) these factors included area and, correspondingly, the
number of lines and strokes, while for shapes of familiar objects it was the number of
turns [7]. Most current research works seem to focus on images (even more often, on
photos), while publications related to complexity in data visualization and user inter-
faces (UIs) are relatively scarce. As some examples, we can note [8] and [9], where the
authors proposed the formulas and developed software tools for calculating the UI
complexity values, as well as [10].

1.2 Complexity and Data Compression

Still, there are universal approaches in VC research and quantification, and they are
based on Shannon’s Information Theory and on Gestalt principles of perception [11].
The former provides robust quantitative apparatus for measuring information content
(calculating entropy), but it has been repeatedly shown that information-theoretic
complexity does not correspond to human visual perception well, particularly since it
does not consider spatial structures [12]. The latter has the concept of “visual sim-
plicity” as the foundational principle, and has been shown to match the humans’ “top-
down” perception of objects well. However, it used to suffer from lack of quantitative
methods, at least until the emergence of Algorithmic Information Theory (AIT), which
linked this approach to Kolmogorov algorithmic complexity [13].

With AIT it became possible to directly link the concepts of “simplicity” and
“probability” and unite the two corresponding approaches. The complexity of a percept
is the length of the string that generates the percept and at the same time expressed
through Kolmogorov probability of the percept. The compression algorithm acts as a
practical substitute of the universal Turing machine, taking the compressed string
(previously produced with the same algorithm) to reproduce the original string. Kol-
mogorov complexity is defined as the length of the shortest program needed to produce
a string – hence, the length of the compressed string can stand for the pseudo-
Kolmogorov complexity of the original string [11]. Higher compression ratios pre-
sumably allow the compressed string’s length to approach the “real” Kolmogorov
complexity.

1.3 Related Work and Research Question

The compression algorithm probably seeing the widest use for producing VC is JPEG
(as specified e.g. in ISO/IEC 10918-1:1994 standard), which was specifically designed

168 M. Bakaev et al.

to consider particulars of images perception by humans. In relation to complexity, this
mainstream compression algorithm is a subset of spatial-frequency analysis, of which
some more advanced versions are sometimes utilized, such as discrete Fourier analysis
with varying window size and number of harmonics [7]. Some alternatives include
calculating Subband Entropy [14] or Fractal Dimension of the image, using Zipf’s
Law, preliminary edge detection filters application, etc. [15].

In HCI and UI analysis, the above approaches have been successfully applied to
images (JPEG compression algorithm, frequency-based entropy measures, image types
[15], etc.), textual content (characters recognition in fonts, graphic complexity [16],
etc.), high-order UI design measures (e.g. amount of whitespace in [2]) and so on.
Meanwhile, UI layouts have not been in the focus of quantitative VC research, even
though they are known to have significant impact on users’ perception of UIs and are
important for preserving their attained experience with a computer system [17]. To the
best of our knowledge, [18] was the only work to propose a layout complexity metric,
based on spatial allocation and diversity of UI elements, but this research direction
seemingly failed to gain momentum.

One possible reason why studies of UI layouts have been relatively scarce is that
the spatial regularity component in perception is hard to isolate. Indeed, the widely
accepted neurological model is that the “what” and “where” information processing is
rather detached and performed in ventral and dorsal streams of the brain respectively.
Also it was noted that the three basic factors in information complexity metrics:
numeric size, variety, and relation are evaluated in different stages of brain information
processing: perception, cognition, and action. However, in practical UI engineering
these factors are interlinked, and the effect of spatial allocation of UI elements is barely
distinguishable from the others. We in our work, however, propose the method
potentially capable of negating the superfluous effects, perform a model experiment
first, where UI layouts were represented as uniform cells in a 2D grid. Then we validate
the approach with the real web UIs, which are nowadays most often designed as
vertically or horizontally aligned blocks, each consisting of several logically connected
UI elements.

So, the goal of our paper is finding out if humans’ perception of UI layouts
complexity can be well explained with the measures supplied by data compression
algorithms. In Methods, we briefly reiterate on the Hick’s law, acting as the baseline
information-theoretic measure, and describe the compression algorithms used in our
study: RLE-based one and classical Deflate. We further introduce our method for
coding the considered visual objects – UI layouts. Since cases were reported when
vertical or horizontal alignment of the same UI elements mattered in terms of visual
search time [19], we also investigate the different ways to convert two-dimensional
layouts into bit string representations. We conclude the Sect. 2 with the hypotheses
detailing the research question of our work. In Sect. 3, we describe experimental

Data Compression Algorithms in Analysis of UI Layouts Visual Complexity 169

research we performed with the model layouts and analyze the data we obtained from
78 participants. In Sect. 4, we verify our findings with real UIs of 21 operating web-
sites, assessed by 63 subjective evaluators and coded according to the proposed
method. In Conclusions, we summarize our results, note limitations of our study and
outline prospects for further research.

2 Methods

2.1 Entropy and Human Perception

Almost immediately after its emergence, the Shannon’s Information Theory was
applied to psychological and perception problems. The prerequisite for using infor-
mation concepts in visual perception was measuring the information content of stimuli
[11]. Arguably the most influential undertaking with regard to the cognitive aspect was
the one by W.E. Hick (1952), who postulated that reaction time (RT) when choosing
from equally probable alternatives is proportional to the logarithm of their number
(NH):

RT � log2ðNH þ 1Þ ð1Þ

Naturally, (1) is a particular case – with the equiprobable alternatives – of the more
fundamental relation between RT and the entropy of the stimuli set (HT), which was
later noted by Ray Hyman:

RT ¼ aH þ bHHT ; ð2Þ

where aH and bH are empirically defined coefficients.
Some of the popular UI design guidelines are in fact based on the related entropy

minimization principle: grouping of interface elements and aligning them by grid,
importance of consistency and standards, aesthetics of minimalism, etc. However,
despite the demonstrated applicability of the Hick’s law for certain aspects related to UI
design, it currently has little use in HCI [20]. First, calculating the informational
content of stimuli in practice is generally more problematic. Second, it is believed that
since the information-theoretic approach is analytical by nature, it is fundamentally
limited in explaining human perception, which is mostly top-down: that is, focused on
higher-order images and structures. As we mentioned before, AIT made it possible to
bond Information Theory with Gestalt principles of perception, which are concerned
exactly with how visual sensory input is organized into a percept. Within this school, it
was empirically shown that the coded string lengths, the complexity measures, and
performance measures in experiments are highly correlated [11].

170 M. Bakaev et al.

The process of obtaining the complexity measure is as follows. The pre-requisite of
AIT application to perception of a visual form, including a GUI, is translating the form
into a string of symbols. Although there are many ways to convert 2D grid repre-
sentations that we use in our study into 1D strings, we need to do that considering
human perception of regularity. Both theory (see in [17]) and practical UI design agree
that vertical and horizontal alignment best correspond to perceived regularity in UI, so
we will consider both these ways. AIT equate the complexity of the visual form with
the length of the code required to represent the form, and data compression algorithms
can act as practical analogue of the AIT definition of complexity (length of the bit
string required to generate the initial string) [11]. Correspondingly, after processing the
representative string with a compression algorithm, we obtain a complexity measure
(approximated, as the real one is incomputable). Presumably, the complexity measures
for UI layouts will be well correlated with perception of complexity, as is the case for
other types of visual objects.

2.2 The Compression Algorithms

In our work we rely on two algorithms that are classical in lossless image compression,
even though they may well provide worse compression than more advanced methods,
such as based on k-th order entropy. We deliberately use one rather basic method
(RLE), seeking to have significant difference in the compression ratios. The two
employed methods also allow more natural application on rather small 2D grids that we
use in our model experiment and comparison with JPEG-based compression measure,
which we use in the experiment with the real web UIs.

Run-Length Encoding (RLE). RLE is one of the oldest and simplest algorithms for
lossless data compression, which was already in use for handling images in the 1960s.
The idea of the algorithm is relatively straightforward: runs of data are replaced with a
single data value and the count of how many times it’s repeated. Runs are sequences in
which the same data value occurs several times, and these are quite common in icons,
line drawings and other imagery with large mono-colored areas. The algorithm doesn’t
deal with 2D images, but can work with the linear string of bytes containing serialized
rows of the image. In the best case, a string of some 64 repeating value would be
compressed into 2 bits, i.e. providing compression ratio of 32 or data rate saving of
0.96875. It should be noted that for some kinds of files, such as high-quality photo-
graphic images, the RLE algorithm compression may even increase the volume, due to
lack of runs. Based on RLE encoding principle, a number of more sophisticated
algorithms and compressed data file formats were developed (.TGA, .PCX, etc.), but in
our work we are going to employ a simple and straightforward RLE implementation.

The encode function implements simple RLE algorithm compression. The input
variable for the function is binary string.

Data Compression Algorithms in Analysis of UI Layouts Visual Complexity 171

function encode($input)
{

if (!$input) {
return '';

}

$output = '';
$prev = $letter = null;
$count = 1;
foreach (str_split($input) as $letter) {

if ($letter === $prev) {
$count++;

} else {
if ($count > 1) {

$output .= $count;
}
$output .= $prev;
$count = 1;

}
$prev = $letter;

}

if ($count > 1) {
$output .= $count;

}

$output .= $letter;
return $output;

}

Deflate. Deflate is a lossless data compression algorithm that is based on combination
of LZ77 algorithm and Huffman coding. It was developed by P. Katz, who used it in
PKZIP archiving software, and was later defined in RFC 1951 specification. It is free
from patent protections, so many compressed data formats (e.g. .PNG images) rely on
Deflate. Today’s popular implementation of the algorithm is in widely used zlib soft-
ware library, which is also capable of compressing data according to the somewhat
adjusted RFC 1950 and RFC 1952 (gzip) variations.

In the first stage of Deflate, LZ77-based “sliding window” approach is used to
replace duplicate series of data (strings) with back-references to a single copy of that
data. In the second stage, commonly used symbols are replaced with shorted repre-
sentations and less common symbols – with longer ones, based on Huffman coding
method. The Huffman algorithm (which doesn’t guarantee optimal result, but has very
reasonable time complexity) produces a variable-length code table for encoding source

172 M. Bakaev et al.

symbols. The Huffman codes are “prefix-free”, i.e. an encoding bit string is never a
prefix for another encoding bit string. The Huffman coding is now widespread, being
used in compression of many kinds of data, especially photos (JPEG) and multimedia,
as well as in data transmission protocols. At the same time, it does provide good data
compression ratio for small alphabet sizes.

For the purposes of current research work, we relied on PHP’s standard zlib_encode
function, called with ZLIB_ENCODING_RAW parameter (corresponding to the RFC
1951 specification), to obtain the compressed string.

2.3 The “Squint” Coarsening Method

To turn layouts (as visual objects) into string representation, in our study we propose a
novel method, which is based on decrease of UI visual fidelity (coarsening) – over-
laying 2D grid. Layout grids with blocks aligned vertically and/or horizontally, are de-
facto standard in modern interface design, and they are implemented in Bootstrap,
Axure and many other tools. Each cells of the overlaid grid contain either 1 (the area
has interface elements) or 0 (few or no perceived interface elements). Such uniformity
allows focusing on layout and eliminating other factors, such as perception of colors,
diversity of elements, etc. Naturally, it makes the method inadequate for UI studies that
involve user tasks and actual interactions, textual content, etc.

At the same time, the aforementioned coarse model still reflects most layout-related
aspects of real UIs: visual organization (hierarchy), elements’ weights and forms,
edges, whitespace, etc. Perception-wise, Gestalt principles (particularly proximity and
continuation) remain legitimate, while most UI grid quality/layout metrics can be
calculated on the model: balance, symmetry, alignment points, etc. The grid model also
supports scanning (thus matching the users’ prevalent way of interacting with new web
pages), during which the quick but persistent impressions of the UI are known to be
made.

Overall, the method can be said to correspond to the informal “squint test” popular
in practical UI design, which allows estimating the quality of interface elements’ visual
organization (see software implementation of the coarsening e.g. in [21]). The approach
also starts seeing methodological use in research – for instance, in [22] they used
similar method in studying user attention distribution in interaction with 2D graphic
UIs.

2.4 Hypotheses and the Experimental Material

Based on the research objectives and the related work, we formulated the following
hypotheses for our experimental investigation:

1. Lengths of strings output by the data compression algorithms should explain lay-
outs’ complexity perception in humans better than the baseline measure. For the
latter we are using the purely informational Hick’s law, lacking the spatial allo-
cation consideration.

2. The algorithm providing higher data compression ratio better explains the layout
complexity perception, since its output is closer to the algorithmic complexity.

Data Compression Algorithms in Analysis of UI Layouts Visual Complexity 173

3. The conversion of two-dimensional layout into bit string sent to a compression
algorithm is uniform for vertical and horizontal dimensions (as said before, we
consider only these two types of the filling curve) – i.e. it does not consistently
affect the measure’s explanatory power.

Layouts (Experiment 1). For the model testing of the hypotheses and assessment of
the coarsening method’s applicability, we used two-dimensional grids (all square, to
better align with the hypothesis #3). In the grid, square cells of the same sizes were
allocated, most of which were white, corresponding to zeros, while a varying number
of them were filled with blue color, corresponding to ones. In Fig. 1 we show example
of the grid, with the corresponding numerical values overlaying the cells (in the
experiment they did not show to participants). The two-dimension matrix corre-
sponding to the example is: [[0, 0, 1, 0, 0], [1, 0, 0, 0, 1], [0, 0, 1, 0, 0], [0, 1, 0, 1, 1],
[0, 1, 0, 0, 0]].

Websites (Experiment 2). The goals were to check if our model results generalize to
real UIs and if the coarsening method can be feasible in practice. Since there are many
interfering factors, not just layouts, we should expect to find smaller statistical effects
(this is why our first experiment was with models). We chose to focus on web inter-
faces, so that the popular JPEG algorithm could be more dependable in producing the
additional baseline measure. So, we employed 21 operating websites of 11 German
universities and 10 Russian ones – in all cases, English versions were used. The
websites for the experiment were manually selected, with the requirements that (1) the
universities are not too well-known, so that their reputations do not bias the evalua-
tions; (2) the designs are sufficiently diverse in terms of layout, colors, images, etc.

3 Experiment 1: Layouts

3.1 Experiment Description

Participants. The overall number of valid subjects in our experimental sessions
undertaken within one month was 78 (57 females, 20 males, 1 undefined). Most of
them were Bachelor and Master students of Novosibirsk State Technical University,
who took part in the experiment voluntary (no random selection was performed).

Fig. 1. Example of the grid with explanation of the numerical values corresponding to the cells.

174 M. Bakaev et al.

The subjects’ age ranged from 17 to 65, mean 21.7 (SD = 2.03). All the participants
had normal or corrected to normal vision and reasonable experience in IT usage. Most
of the participants worked from desktop computers installed in the university computer
rooms. There were also 17 other registrations with the online surveying system, but
none of those subjects completed the assignment (on average, each of them completed
only 4.4% of the assigned evaluations), so they were discarded from the experiment.

Design. The experiment used within-subjects design. The main independent variables
were:

• Number of filled cells in the grid (the “ones” in the matrix), ranging from 4 to 13: N;
• Number of all cells in the grid (elements in the matrix). We used two levels, 25 (5*5

grid) and 36 (6*6 grid): S0;
• Layout configuration – i.e. allocation of filled cells in the grid, which was performed

randomly.

For the purposes of the compression algorithms application, the layout configura-
tions needed to be converted into bit string. We used two ways to do that: by rows
(matrix [[1, 1], [0, 0]] becomes [1100] string) and by columns (the same matrix
becomes [1010]), in both cases starting from the top left element. So, we also got
several “derived” independent variables in the experiment:

• Lengths of the row- and column-based bit strings compressed with the RLE-based
algorithm: LRLE-R and LRLE-C;

• Lengths of the row- and column-based bit strings compressed with the Deflate
algorithm: LD-R and LD-C;

• The corresponding data compression ratios for the algorithms: CRLE-R, CRLE-C,
CD-R, CD-C.

The dependent variable was Complexity – the subjects’ subjective evaluations of
presented layouts complexity, ranging from 1 (lowest complexity) to 5 (highest
complexity).

Procedure. To support the experimental procedure, we used our specially developed
web-based software. Before the experiment, we used it to collect data on the partici-
pants (gender, age, university major, etc.). In each trial, the subject was shown a layout
with random allocation of the colored cells (configuration) and varying N and S0 and
asked to evaluate it per the Complexity scale. The values of all the variables would be
saved be the software, and the participant moved to the next trial. The configurations
were independent between the trials, and the overall number of layouts to be evaluated
by each subject was set to 100. The interface of the software could be either in Russian
or in English, with the scale also dubbed in German.

3.2 Descriptive Statistics

The total number of layouts used in the experiment was 4734. The subjects submitted
7800 evaluations in total, and averaged evaluations for 4702 layouts (99.3%) were
considered valid. Save for outliers, completing each trial on average took a participant
13.69 s, so the average time spent on an experimental session was 22.82 min.

Data Compression Algorithms in Analysis of UI Layouts Visual Complexity 175

The averaged value for Complexity in the experiment was 2.58 (SD = 0.96)1. The
Pearson correlation between S0 and N was significant, but quite low (r = 0.096,
p < 0.001).

To test the hypothesis #3 (differences for row- and column-based strings com-
pression) we used t-tests, which found no statistically significant differences for LRLE-R

and LRLE-C (t4701 = −0.808, p = 0.419, r = 0.708) or LD-R and LD-C (t4701 = −1.035,
p = 0.301, r = 0.590). So, in the further analysis we used the “best” values, equal to the
minimal length or maximal compression ratio for each string:

LRLE ¼ minfLRLE�R; LRLE�Cg ð3Þ

LD ¼ minfLD�R;LD�Cg ð4Þ

CRLE ¼ maxfCRLE�R;CRLE�Cg ð5Þ

CD ¼ maxfCD�R;CD�Cg ð6Þ

Ranges, means and standard deviations for the considered independent variables
are shown in Table 1. We found statistically significant Pearson’s correlations for LRLE

with LD (r = 0.718, p < 0.001), log2N with LRLE (r = 0.736, p < 0.001), and log2N
with LD (r = 0.702, p < 0.001). At the same time, t-test suggested statistically sig-
nificant difference between CRLE and CD (t4701 = −87.5, p < 0.001, r = 0.734). Since
the compression ratios for the two algorithms in the experiment were different, the
testing of our hypothesis #2 would be possible.

3.3 Effects of Independent Variables

In Table 1 we also show Pearson correlations between Complexity and the respective
independent variables, all of which were significant (p < 0.001).

With respect to the hypothesis #1, we can note that the strongest correlation
(r = 0.539) was found for log2N, which suggests Hick’s law is rather applicable for
explaining the perception of layouts’ complexity. However, the differences in corre-
lations are marginal compared to the ones found for N and LRLE, which implies the
need for further analysis.

With respect to the hypothesis #2, while Deflate algorithm provided significantly
better compression ratio (mean of 2.23 vs. 1.85 for RLE), thus finding more regularities
in the layouts. However, its correlation with the perceived complexity was notably
weaker than for RLE algorithm. We will further elaborate on this in the regression
analysis.

1 We are aware about the controversy existing in the research community about treating Likert and
other ordinal scales as rational ones for some methods. In our analysis we tried to use methods
appropriate for ordinal scales when possible, but nevertheless were not restricted to them, if more
robust analysis could be performed. We ask the readers to judge for themselves whether the potential
bias in the results overweighs their usefulness.

176 M. Bakaev et al.

3.4 Regression Analysis

To explore whether the variables considered in the paper could explain layout com-
plexity perception, we performed regression analysis for Complexity with two groups
of factors. The informational component was log2N, as having the highest correlation
with Complexity and being best theoretically justified by the Hick’s law. The regres-
sion model with this single factor was significant (F1,4700 = 1926, p < 0.001), but had
relatively low R2 = 0.291:

Complexity ¼ �0:95þ 1:24 log2 N: ð7Þ

Further, we attempted regression with all 7 independent variables (see in Table 1)
as factors. We used Backwards variable selection method, which led to the model with
just two significant factors: log2N (Beta = 0.323, p < 0.001) and LRLE (Beta = 0.294,
p < 0.001). With respect to the hypothesis #2, we should specially note that the LD

factor was not significant (p = 0.552). The model had somehow improved R2 = 0.330
(F2,4699 = 1158, Radj

2 = 0.330):

Complexity ¼ �0:9þ 0:74 log2 Nþ 0:08LRLE: ð8Þ

To evaluate the quality of the two models that had different number of factors (k),
we also calculated Akaike Information Criterion (AIC) using the following formulation
for the linear regression:

AIC ¼ 2kþ n lnðRSSÞ; ð9Þ

where n is sample size (in our case, n = 4702), RSS are the respective residual sums of
squares. AIC for (7) amounted to 37758, while AIC for (8) was 37490, which suggests
that the “information loss” of the second model is lower and it should be preferred over
the first one.

Table 1. Descriptive statistics and the correlations for the independent variables (experiment 1).

Variable Range Mean (SD) r (Complexity)

S0 25; 36 – 0.163
N 4–13 7.46 (2.01) 0.535

log2N 2.00–3.70 2.84 (0.42) 0.539
LRLE 8–30 17.14 (3.54) 0.531
LD 8–20 13.95 (1.99) 0.440
CRLE 1.09–4.50 1.85 (0.40) −0.400
CD 1.39–4.00 2.23 (0.42) −0.199

Data Compression Algorithms in Analysis of UI Layouts Visual Complexity 177

4 Experiment 2: Websites

The first stage was experimental survey in which we collected subjective evaluations
for website homepages, per dimensions related to visual complexity (see [23] for more
detail). In the second stage, the web UIs were processed by annotators to be converted
into coded representations.

4.1 Experiment Description (Subjective Complexity)

Participants. In total, 63 participants (30 male, 33 female) provided their evaluations
of the websites’ complexity. The convenience sampling method was applied, with most
of the participants being students or universities staff members. The self-denoted age
ranged from 19 to 72, mean 27.6, SD = 8.07. The self-denoted nationalities were
Russian (65.1%), German (17.5%), Argentinian (4.8%), and others (including Bul-
garian, Vietnamese, Korean, etc.). Submissions by another 13 participants were dis-
carded as being incomplete (none of them had at least 50% of websites evaluated).

Design. Since providing the evaluations in absolute numbers would be unattainable for
the participants who were not web design professionals, we chose to rely on ordinal
values. For each of the following statements, 7-point Likert scale was used (1 being
“completely disagree”, 7 – “completely agree”), resulting in the respective ordinal
variables:

• “This webpage has many elements.” SElements
• “The elements in the webpage are very diverse.” SVocab
• “The elements in the webpage are well-ordered.” SOrder
• “The webpage has a lot of text.” SText
• “The webpage has a lot of graphics.” SImg
• “The webpage has a lot of whitespace.” SWhite
• “The webpage appears very complex.” SComplex

In the current work, we only used SComplex as the dependent variable in the
experiment 2. We also employed SElements and SWhite to extra check the applica-
bility of the proposed coarsening method implementation, which we describe further.

Since for web UIs we can use the JPEG algorithm measure, we introduced two
additional independent variables:

• The size of JPEG-100 compressed file, measured in MB: LJPEG;
• The corresponding compression ratio, calculated as the area S (in pixels) of the

screenshot divided by the JPEG file size (in bytes): CJPEG.

Procedure. The survey to collect data was implemented using LimeSurvey, and the
participants used a web browser to interact with it. Some of them worked in university
computer rooms, while the others used their own computer equipment with varying
screen resolutions, to better represent the real context of use. Each subject was asked to
evaluate the screenshots of the 21 websites’ homepages (presented one by one in
random order) per the 7 subjective scales. On average, it took each participant 30.3 min

178 M. Bakaev et al.

to complete the survey, and the data collection session lasted 19 days overall. We used
screenshots, not the actual websites, to ensure uniformity of the experimental material
between the participants.

4.2 Experiment Description (Layout Annotation)

Participants. In the second stage of the experiment, we employed 8 annotators (4
male, 4 female), whose ages ranged from 18 to 21 (mean 19.0, SD = 1.0). They were
students of Novosibirsk State Technical University who volunteered to participate in
this study as part of their practical training course. All the participants worked
simultaneously in a same room, under instructor’s supervision.

Design. The independent variables resulted from the annotation of the UIs:

• Number of rows in the overlaid grid: W_SR;
• Number of columns in the overlaid grid: W_SC;
• “Configuration” – the placement of 0s and 1s in the grid cells.

From these, we got the “derived” independent variables:

• Number of cells containing 1s: W_N;
• Number of all cells in the grid (W_SR multiplied by W_SC): W_S0;
• Lengths of the row- and column-based bit strings compressed with the RLE-based

algorithm: W_LRLE-R and W_LRLE-C;
• Lengths of the row- and column-based bit strings compressed with the Deflate

algorithm: W_LD-R and W_LD-C;
• The corresponding data compression ratios for the algorithms: W_CRLE-R,

W_CRLE–C, W_CD-R, W_CD-C.

Procedure. The screenshots of the websites were printed out in color on A4 format
paper sheets (since the two websites were not found to be valid, the total number of
annotated websites was 19). The participants were instructed to put the provided
tracing paper A4 format sheets over the printed out screenshots and use the pencils to
draw grid layouts marking 0 or 1 in each cell. The numbers of rows and columns in the
grid were to be chosen individually by each annotator and each screenshot, depending
on their impression of the layout design grid. However, the participants were told that
more rows and columns are generally preferred over less. In the grid cells, 0s and 1s
were also to be assigned subjectively, depending if the cell’s interior was mostly
whitespace (0) or interface elements/content (1). The order in which each of the 8
annotators processed the 19 screenshots was randomized.

4.3 Descriptive Statistics

In the first stage of the experiment, we collected 1323 complexity evaluations for the 21
websites. Websites #9 and #14 were removed from further study due to technical
problems with the screenshots (90.5% valid). In the second stage, we collected 152

Data Compression Algorithms in Analysis of UI Layouts Visual Complexity 179

annotations for the remaining 19 website screenshots. On overall, it took the annotators
about 1 h to finish their job.

The averaged value for SComplex (the complexity scale in this experiment ranged
from 1 to 7) was 3.61 (SD = 0.77). The Pearson correlation between W_S0 and W_N
was highly significant (r = 0.929, p < 0.001).

We used t-tests to check statistical significance of differences in compression for
row- and column-based strings. We found no statistically significant difference between
W_LRLE-R and W_LRLE-C (t151 = 1.222, p = 0.224, r = 0.807). However, the differ-
ence between W_LD-R and W_LD-C was significant (t4701 = −3.873, p < 0.001,
r = 0.951), the mean lengths being 13.37 and 13.97 respectively. Still, we decided to
use the “best” values for both algorithms (W_LRLE and W_LD), in correspondence with
the experiment 1.

Again, we found statistically significant Pearson’s correlations for W_LRLE with
W_LD (r = 0.941, p < 0.001), log2W_N with W_LRLE (r = 0.735, p < 0.001), and
log2W_N with W_LD (r = 0.657, p < 0.001). LJPEG had no significant correlations (at
a = 0.05) with either of these three variables, but its positive correlation with W_S0
was found to be significant (r = 0.486, p = 0.035), which suggests validity of this
“screenshot length” measure provided by the annotators.

In this experiment, t-test showed no statistically significant difference between
W_CRLE and W_CD (p = 0.983). However, CJPEG was found to be significantly dif-
ferent (at a = 0.08) from both W_CRLE (t18 = −1.86, p = 0.08) and W_CD (t18 = −2.1,
p = 0.05).

4.4 Effects of Independent Variables

In Table 2 we show Pearson correlations between SComplex and the respective
independent variables, but in this experiment none of the correlations were significant
at a = 0.05, which is explained in particular by the small sample size.

Just like in the first experiment, the strongest correlation with complexity
(r = 0.349) was found for log2W_N. The correlation for LJPEG that we considered as
the baseline was somehow weaker (r = 0.332).

Table 2. Descriptive statistics and the correlations for the independent variables (experiment 2).

Variable Range Mean (SD) r (SComplex)

W_S0 22.25–54.75 34.22 (9.53) 0.245
W_N 12.5–32.00 21.82 (6.04) 0.343

log2W_N 3.64–5.0 4.39 (0.42) 0.349
W_LRLE 6.75–22.5 15.14 (4.06) 0.149
W_LD 8.25–17.38 12.94 (2.23) 0.269
LJPEG 0.56–9.11 1.68 (1.95) 0.332

W_CRLE 1.80–3.74 2.58 (0.57) 0.058
W_CD 1.82–3.56 2.58 (0.48) 0.126
CJPEG 1.19–3.18 2.22 (0.57) −0.262

180 M. Bakaev et al.

Hypothesis #2 couldn’t be validated by strict analogy with the first experiment,
since in the second one there was no significant difference between the compression
ratios provided by RLE and Deflate algorithms. But we should note that while JPEG
algorithm compression ratio was significantly lower on average, CJPEG had stronger
correlation (r = −0.262) with SComplex, in comparison with W_CRLE and W_CD.

Additional analysis was performed to explore relations between the number of
elements specified by participants of the subjective complexity evaluation stage and the
annotators’ results. We found significant correlations between SElements and W_N
(r = 0.719, p = 0.001), which was stronger than the one between SElements and W_S0
(r = 0.562, p = 0.012). The correlation between SWhite and the calculated whitespace
measure (1 − W_N/W_S0) was also significant (r = 0.531, p = 0.019). These results
suggest that whitespace was mostly annotated as grid cells with 0s, while the interface
elements visible to the complexity evaluators were annotated as grid cells with 1s.

4.5 Regression Analysis

Again, first we performed regression analysis with the baseline factors. The model with
log2W_N was not significant (p = 0.143) and had R2 = 0.122. The model with LJPEG

had lower significance (p = 0.164) and R2 = 0.110. Notably, the regression models for
the other factors we considered (W_S0, W_N, W_LRLE, W_LD) had even lower sig-
nificances and R2 values.

Further, we attempted regression with all 9 independent variables (see in Table 2)
as factors. We used Backwards variable selection method, which now led to the model
with three significant factors (at a = 0.07): log2W_N (Beta = 0.619, p = 0.067),
W_LRLE (Beta = −1.534, p = 0.043), W_LD (Beta = 1.306, p = 0.054). This model
had R2 = 0.339 (F3,15 = 2.57, Radj

2 = 0.207, AIC = 43.2):

SComplex ¼ �2:85þ 1:15 log2 W N � 0:29W LRLE þ 0:45W LD ð10Þ

However, among the intermediate models considered within the Backwards
selection, there was a model with higher Radj

2 = 0.263 and lower AIC = 42.5. The
factors in this model (F4,14 = 2.61, R2 = 0.427) were log2W_N (Beta = 0.498,
p = 0.134), W_LRLE (Beta = −1.694, p = 0.026), W_LD (Beta = 1.471, p = 0.031),
and LJPEG (Beta = 0.328, p = 0.165):

SComplex ¼ �2:37þ 0:92 log2 W N � 0:32W LRLE þ
0:51W LD þ 0:13LJPEG

ð11Þ

5 Conclusion

In our paper we examined perceived visual complexity of UI layouts, which are a major
controlled feature for every human-computer interface designer. Particularly, we
sought to introduce data compression algorithms, which with respect to complexity
have both solid theoretical justification (AIT) and wide practical application

Data Compression Algorithms in Analysis of UI Layouts Visual Complexity 181

(JPEG-based metrics). So, we proposed the UI layouts coding method and employed
the RLE and Deflate algorithms to produce compressed strings. In Experiment 1,
Deflate provided better compression ratio, which was expected from it as the more
advanced algorithm. In Experiment 2, no significant difference in the compression
ratios could be found, probably due to very limited sample size.

Our analysis of the experimental data suggests the following conclusions per the
hypotheses formulated in the study:

Hypothesis #1. The compressed strings’ lengths do explain layouts’ complexity per-
ception in humans, as the corresponding factors were significant in regressions for the
model (8) and real UIs (10). However, the correlations (Tables 1 and 2) suggest that the
Hick’s law factor is even stronger connected to the perceived layout complexity.

Hypothesis #2. Unexpectedly, algorithms that showed higher compression ratios had
weaker connection to the perceived complexity (Tables 1 and 2). LD was not signif-
icant in regression (8), unlike LRLE, while LJPEG had the lowest significance in (11).

Hypothesis #3. Generally, matrix conversion to string representation was no different
by rows or by columns, with the only exception of the 4.4% difference for Deflate
algorithm in experiment 2, where the sample size was relatively small.

Hence, we see the main contributions of our paper as the following:

1. We proposed the novel “squint” coarsening method for coding UI layouts into
binary strings and demonstrated its use with real web interfaces. Practical appli-
cability of the method is supported by highly significant correlation (r = 0.719)
between the subjectively assessed number of interface elements and the number of
annotated cells containing 1s, as well as significant correlation (r = 0.531) between
the subjective amount of whitespace and the share of annotated cells containing 0s.

2. We demonstrated that compression algorithms can provide metrics that improve
prediction of perceived VC of UI layouts. At the same time, we found that the
classical Hick’s law informational metric is well applicable as the main factor,
which may imply its certain “revival” in HCI.

3. We found that better compression algorithms, which presumably come closer to the
“real” Kolmogorov complexity, do not explain layouts VC perception better. It may
mean that layouts are a specific type of visual objects [24], whereas human per-
ception of them doesn’t rely on optimal coding.

4. We found that the way two-dimensional matrix representing the modelled UI layout
is converted into bit string (by rows or by columns) does not affect the compression
measure’s explaining power with regard to layouts VC.

We see the main limitation of our study in employment of ordinal scales to measure
VC of both model representation and web UIs. We plan to develop the approach for
using interval scale, presumably based on tasks performance time. Also, the sample
size in the websites experiment was relatively small, so the found statistical effects were
not always convincing. Finally, the proposed coarsening method was inspired by UI
design practice, and in our study it was applied to web UI layouts only. At the current
point we cannot surmise if it will adequately work for UI on other platforms (mobile,
desktop) or images in general.

182 M. Bakaev et al.

Our further prospects include software implementation of the proposed coarsening
method, so that coded representations for web UI screenshots could be collected
automatically. We also plan to explore whether the coarsening method that we pro-
posed and applied for WUI layouts only, could be suitable for producing coded rep-
resentations for other types of visual objects.

Acknowledgement. The reported study was funded by Russian Ministry of Education and
Science, according to the research project No. 2.2327.2017/4.6.

References

1. Castellani, B.: Brian castellani on the complexity sciences. Theory Cult. Soc. October, 9
(2014). https://www.theoryculturesociety.org/brian-castellani-on-the-complexity-sciences/

2. Reinecke, K., et al.: Predicting users’ first impressions of website aesthetics with a
quantification of perceived visual complexity and colorfulness. In: Proceedings of the
ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 2049–2058 (2013)

3. Machado, P., et al.: Computerized measures of visual complexity. Acta Physiol. 160, 43–57
(2015)

4. Michailidou, E., Harper, S., Bechhofer, S.: Visual complexity and aesthetic perception of
web pages. In: Proceedings of the 26th ACM International Conference on Design of
Communication, pp. 215–224 (2008)

5. Taba, S.E.S., Keivanloo, I., Zou, Y., Ng, J., Ng, T.: An exploratory study on the relation
between user interface complexity and the perceived quality. In: Casteleyn, S., Rossi, G.,
Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 370–379. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08245-5_22

6. Wu, O., Hu, W., Shi, L.: Measuring the visual complexities of web pages. ACM Trans. Web
(TWEB) 7(1), 1 (2013)

7. Chikhman, V., et al.: Complexity of images: experimental and computational estimates
compared. Perception 41(6), 631–647 (2012)

8. Alemerien, K., Magel, K.: GUIEvaluator: a Metric-tool for evaluating the complexity of
graphical user interfaces. In: SEKE, pp. 13–18 (2014)

9. Stickel, C., Ebner, M., Holzinger, A.: The XAOS metric – understanding visual complexity
as measure of usability. In: Leitner, G., Hitz, M., Holzinger, A. (eds.) USAB 2010. LNCS,
vol. 6389, pp. 278–290. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16607-5_18

10. Miniukovich, A., De Angeli, A.: Quantification of interface visual complexity. In
Proceedings of the 2014 ACM International Working Conference on Advanced Visual
Interfaces, pp. 153–160 (2014)

11. Donderi, D.C.: Visual complexity: a review. Psychol. Bull. 132(1), 73 (2006)
12. Yu, H., Winkler, S.: Image complexity and spatial information. In: IEEE Fifth International

Workshop on Quality of Multimedia Experience (QoMEX), pp. 12–17 (2013)
13. Solomonoff, R.: The application of algorithmic probability to problems in artificial

intelligence. Mach. Intell. Pattern Recognit. 4, 473–491 (1986)
14. Rosenholtz, R., Li, Y., Nakano, L.: Measuring visual clutter. J. Vis. 7(2), 1–22 (2007)
15. Carballal, A., et al.: Distinguishing paintings from photographs by complexity estimates.

Neural Comput. Appl. 30(6), 1–13 (2016)
16. Chang, L.Y., Chen, Y.C., Perfetti, C.A.: GraphCom: a multidimensional measure of graphic

complexity applied to 131 written languages. Behav. Res. Methods 50(1), 427–449 (2018)

Data Compression Algorithms in Analysis of UI Layouts Visual Complexity 183

https://www.theoryculturesociety.org/brian-castellani-on-the-complexity-sciences/
http://dx.doi.org/10.1007/978-3-319-08245-5_22
http://dx.doi.org/10.1007/978-3-642-16607-5_18
http://dx.doi.org/10.1007/978-3-642-16607-5_18

17. Heil, S., Bakaev, M., Gaedke, M.: Measuring and ensuring similarity of user interfaces: the
impact of web layout. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang,
Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 252–260. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-48740-3_18

18. Comber, T., Maltby, J.R.: Layout complexity: does it measure usability? In: Howard, S.,
Hammond, J., Lindgaard, G. (eds.) Human-Computer Interaction INTERACT ’97. ITIFIP,
pp. 623–626. Springer, Boston, MA (1997). https://doi.org/10.1007/978-0-387-35175-9_109

19. Michalski, R., Grobelny, J., Karwowski, W.: The effects of graphical interface design
characteristics on human–computer interaction task efficiency. Int. J. Ind. Ergon. 36(11),
959–977 (2006)

20. Seow, S.C.: Information theoretic models of HCI: a comparison of the Hick-Hyman law and
Fitts’ law. Hum.-Comput. Interact. 20(3), 315–352 (2005)

21. Kim, N.W., et al.: BubbleView: an interface for crowdsourcing image importance maps and
tracking visual attention. ACM Trans. Comput.-Hum. Interact. (TOCHI), 24(5) (2017).
Article no. 36

22. Xu, P., Sugano, Y., Bulling, A.: Spatio-temporal modeling and prediction of visual attention
in graphical user interfaces. In: Proceedings of the ACM CHI Conference on Human Factors
in Computing Systems, pp. 3299–3310 (2016)

23. Bakaev, M., Heil, S., Khvorostov, V., Gaedke, M.: HCI vision for automated analysis and
mining of web user interfaces. In: Mikkonen, T., Klamma, R., Hernández, J. (eds.) ICWE
2018. LNCS, vol. 10845, pp. 136–144. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-91662-0_10

24. Simon, H.A.: Complexity and the representation of patterned sequences of symbols.
Psychol. Rev. 79(5), 369 (1972)

184 M. Bakaev et al.

http://dx.doi.org/10.1007/978-3-319-48740-3_18
http://dx.doi.org/10.1007/978-3-319-48740-3_18
http://dx.doi.org/10.1007/978-0-387-35175-9_109
http://dx.doi.org/10.1007/978-3-319-91662-0_10
http://dx.doi.org/10.1007/978-3-319-91662-0_10

Computable Topology for Reliable
Computations

Margarita Korovina1(B) and Oleg Kudinov2

1 A.P. Ershov Institute of Informatics Systems, SbRAS, Novosibirsk, Russia
rita.korovina@gmail.com

2 Sobolev Institute of Mathematics, SbRAS, Novosibirsk State University,
Novosibirsk, Russia
kud@math.nsc.ru

Abstract. Using the framework of computable topology we investigate
computable minimality of lifted domain presentations of computable Pol-
ish spaces, in particular the real numbers, the Cantor and Baire spaces,
the continuous functions on a compact interval, which are widely used in
theoretical computer science, e.g., automata theory, computable analysis
and reliable computations. We prove that all lifted domain presentations
for computable Polish spaces are computably and topologically minimal.
Then we show that a naive adaptation of the notion of stability from
computable model theory does not work in this framework. Instead of
stability we propose another approach based on principal translators and
prove that in the case of the real numbers we can effectively construct a
principal computable translator from the lifted domain presentation to
any other effective domain presentation.

Keywords: Computable topology · Reliable computation ·
Computable analysis · Lifted domain presentation

1 Introduction

Computations over continuous data are central in scientific computing and engi-
neering. This motivates research in investigating properties of different frame-
works for representing computable objects and computations over them. One of
such frameworks is the well established domain theory approach proposed by
Scott [17] and Ershov [3], where computational processes and data types are
modelled using appropriate algebraic or continuous domains.

The research leading to these results has received funding from the DFG grants WERA
MU 1801/5-1 and CAVER BE 1267/14-1 and RFBR grant A-17-01-00247. O. V. Kudi-
nov was supported by the Program of Basic Scientific Research of the Siberian Branch
of the Russian Academy of Sciences (Grant No. I.1.1, Project 0314-2019-0001). M. V.
Korovina was supported by the Program of Basic Scientific Research of the Siberian
Branch of the Russian Academy of Sciences (Grant No. IV.39.1.3, Project 0317-2017-
0003).

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 185–198, 2019.
https://doi.org/10.1007/978-3-030-37487-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_15

186 M. Korovina and O. Kudinov

Informally, any representation of a space X is the factorisation of a part
˜D of an appropriate algebraic domain D up to homeomorphism. The existence
and uniqueness of representations of spaces by (algebraic) Scott-Ershov domains
have been investigated in [4,5], where some canonical representations have been
introduced. However the uniform characterisations of such representations have
not been proposed in details. In this paper, we address similar problems in the
setting of continuous domains which are more suitable, in practice, for con-
tinuous data computations [2,17]. We aim at uniting independently developed
concepts of computability on computable metric spaces and on weakly effective
ω−continuous domains [7,12,20].

In particular, following ideas from [1,9,22], we propose homeomorphic
embeddings of computable Polish spaces into the lifted domains that endow the
original spaces with computational structures and investigate the following nat-
ural problems. One of them whether lifted domain presentations of computable
Polish spaces are computably and/or topologically minimal. Another one con-
cerns a characterisation of translators from lifted domain presentations to other
effective domain presentations of computable Polish spaces. The last problem is
originated in computable model theory [14,16] and is related to stability of struc-
tures and spaces. In particular, we show cases when computable and continuous
translations between different presentations of spaces exist and/or unique.

In this paper we introduce the key notion of a computably minimal domain
presentation and show that the canonical lifted domain presentations are com-
putably minimal. Moreover, since there are infinitely many computable transla-
tors from any computably minimal domain presentation to any computable one
(see Sect. 3.3), using the idea of a principal (maximal) computable numbering
from recursion theory [18] we introduce the notion of a principal computable
(continuous) translator and prove that in the case of the real numbers we can
effectively construct a principal computable translator from the lifted domain
presentation to any other effective domain presentation.

The paper is organised as follows. In Sect. 2 we give some basic concepts from
domain theory, computable Polish spaces and effectively enumerable topological
spaces. We use effectively enumerable T0-spaces as a uniform framework to repre-
sent computability on domains and computable Polish spaces. Section 3 contains
the main contributions of the paper. We first computably embed a computable
Polish space P into a lifted domain D

P that is a weakly effective ω–continuous
domain such that the Scott topology on D

P agrees with the standard topology
on P and the proposed embedding is a homeomorphism between the set of max-
imal elements and the original space. We prove that lifted domain presentations
are computably and topologically minimal. Then we show that while all topo-
logically minimal presentations of computable Polish spaces are not stable there
exist principal translators in the case of the lifted domain presentation of the
reals.

Computable Topology for Reliable Computations 187

2 Preliminaries

We refer the reader to [7,9,10,19–21] for basic definitions and fundamental con-
cepts of computable topology and to [1,2] for basic definitions and fundamental
concepts of domain representations of reliable computations. A numbering of a
set Y is a total surjective map γ : ω → Y . We use the standard notations for
the real numbers R and C([a, b]) for the set of continuous real-valued functions
defined on a compact interval [a, b].

2.1 Weakly Effective ω-continuous Domains

In this section we present a background on domain theory. The reader can find
more details in [2,6]. Let (D;⊥,≤) be a partial order with a least element ⊥.
A subset A ⊆ D is directed if A �= ∅ and (∀x, y ∈ A)(∃z ∈ A)(x ≤ z ∧ y ≤ z).
We say that D is a directed complete partial order, denoted dcpo, if any directed
set A ⊆ D has a supremum in D, denoted

⊔

A. For two elements x, y ∈ D we
say x is way-below y, denoted x � y, if whenever y ≤ ⊔

A for a directed set A,
then there exists a ∈ A such that x ≤ a. A function f : D → ˜D between cpos is
continuous if f is monotone and for each directed set A ⊆ D we have F (

⊔

A) =
⊔{f(x) | x ∈ A}. We say that B ⊆ D is a basis (base) for D if for every x ∈ D
the set approxB(x) = {y ∈ B | y � x} is directed and x =

⊔

approxB(x). We
say that D is continuous if it has a basis; it is ω–continuous if it has a countable
basis. We denote the predicate Cons(a, b) � (∃c ∈ D) (a ≤ c) ∧ (b ≤ c).

Definition 1 [6]. Let D = (D;B, β,≤,⊥) be an ω–continuous domain with a
basis B, the least element ⊥ ∈ B and its numbering β : ω → B such that
β(0) = ⊥. We say that D is weakly effective if the relation β(i) � β(j) is
computably enumerable.

One of the well-known examples of weakly effective ω–continuous domains is the
interval domain IR = {[a, b] | a, b ∈ R, a ≤ b} ∪ ⊥ with the inverse order and
the countable basis that is the collection of all compact intervals with rational
endpoints together with the least element ⊥ (see e.g. [2]).

Proposition 1 (Interpolation Property) [6]. Let D be a continuous domain
and let M ⊆ D be a finite set that (∀a ∈ M) a � y. Then there exists x ∈ D
such that M � x � y holds. If D is ω–continuous then x may be chosen from
the basis.

Definition 2. We say that D = (D;B, β,≤,⊥) is a weakly effective consistently
complete ω–continuous domain if the following requirements hold:

1. D = (D;B, β,≤,⊥) is a weakly effective ω–continuous domain.
2. D = (D;≤) is consistently complete, i.e., for all a, b ∈ D if Cons(a, b) holds

then there exists d � a ∪ b such that ∀ (c ∈ D) (a ≤ c ∧ b ≤ c) → d ≤ c.
3. The predicate Cons(a, b) is computable enumerable on B, i.e., the set {(k, l) |

Cons(β(k), β(l))} is c.e.

188 M. Korovina and O. Kudinov

4. The operator ∪ is partially computable on B, i.e., for some partial computable
function p : ω2 → ω:
(a) (k, l) ∈ dom(p) ↔ Cons(β(k), β(l));
(b) Cons(β(k), β(l)) → β(k) ∪ β(l) = β(p(k, l)).

2.2 Perfect Computable Polish Spaces

In this paper we work with the following notion of a computable Polish space
abbreviated as CPS. A perfect computable Polish space, simply computable
Polish space, is a complete separable metric space P without isolated points
and with a metric d : P × P → R such that there is a countable dense
subset B called a basis of P with the numbering α : ω → B that makes
the following two relations: {(n,m, i) | d(α(n), α(m)) < qi, qi ∈ Q} and
{(n,m, i) | d(α(n), α(m)) > qi, qi ∈ Q} computably enumerable (c.f. [22] see
also [15]).

The standard notations B(a, r) and B(a, r) are used for open and closed balls
with the center a and the radius r. We also use the notation α(n) = bn for a
numbering α : ω → B.

2.3 Effectively Enumerable Topological Spaces

Let (X, τ, α) be a topological space, where X is a non-empty set, Bτ ⊆ 2X is
a base of the topology τ and α : ω → Bτ is a numbering. In notations we skip τ
since it can be recovered by α. Further on we will often abbreviate (X,α) by X

if α is clear from a context.

Definition 3 [12]. A topological space (X,α) is effectively enumerable if there
exists a computable function g : ω × ω × ω → ω such that

α(i) ∩ α(j) =
⋃

n∈ω

α(g(i, j, n)) and

{i | α(i) �= ∅} is computably enumerable.

Definition 4. Let (X,α) be an effectively enumerable topological space.

1. A set O ⊆ X is effectively open if there exists a computably enumerable set
V ⊆ ω such that O =

⋃

n∈V α(n).
2. A sequence {On}n∈ω of effectively open sets is called computable if there

exists a computable sequence {Vn}n∈ω of computably enumerable sets such
that On =

⋃

k∈Vn
α(k).

Definition 5 [10]. Let X = (X,α) be an effectively enumerable topological space
and Y = (Y, β) be an effectively enumerable T0–space. A function f : X → Y

is called partial computable (pcf) if the following properties hold. There exist a

Computable Topology for Reliable Computations 189

computable sequence of effectively open sets {On}n∈ω and a computable function
H : ω2 → ω such that

dom(f) =
⋂

n∈ω

On and

f−1(β(m)) =
⋃

i∈ω

α(H(m, i)) ∩ dom(f).

In the following if a partial computable function f is everywhere defined we
say f is a computable function. It is easy to see that computable functions are
effectively continuous and map a computable element to a computable element
(c.g. [21]).

Remark 1. It is worth noting that the weakly effective ω–continuous domains
and computable Polish spaces with induced topologies are proper subclasses of
effectively enumerable T0–spaces [12]. Therefore for uniformity we consider all
those spaces in the settings of the effectively enumerable T0–spaces.

3 Main Results

In this section we first computably embed a computable Polish space P into
a lifted domain D

P that is a weakly effective ω–continuous domain such that
the Scott topology on D

P agrees with the standard topology on P and the pro-
posed embedding is a homeomorphism between the set of maximal elements and
the original space. We prove that lifted domain presentations are computably
and topologically minimal. Then we show that while all topologically minimal
presentations of computable Polish spaces are not stable there exist principal
translators in the case of the lifted domain presentation of the reals.

3.1 Effective Domain Presentations for CPS

Definition 6. Let P be a computable Polish space. A triple (P,D, ϕ) is called
an effective domain presentation if

1. D = (D;B, β,≤,⊥) is a weakly effective consistently complete ω–continuous
domain;

2. The function ϕ : P → D is a computable homeomorphic embedding such
that im(ϕ) =

⋂

n∈ω On for some computable sequence of effectively open sets
{On}n∈ω;

The definition has been motivated by observations and examples in [1,13,23].
Thus in [13] we proposed a computable homeomorphic embedding ϕ : C[0, 1] →
D, where D is a weakly effective consistently complete ω–continuous domain
consisting of all continuous functions from the compact [0, 1] to IR. Remarkably
it turns out that (C[0, 1],D, ϕ) is an effective domain presentation.

We recall from [9] the construction and properties of lifted domains for com-
putable Polish spaces. Let P = (P, d,B) ∈ CPS. Then the lifted domain (DP, ψ)
for P ∈ CPS is defined as follows:

190 M. Korovina and O. Kudinov

1. DP � P × R
+ = {(a, r) | a ∈ P and r ∈ R

+};
2. (b, q) ≤ (a, r) � d(a, b) + r ≤ q;
3. B � {(a, q) | a ∈ B and q ∈ Q

>0};
4. The numbering β : ω → B is induced by α : ω → B and the standard

numbering of Q>0.

It is easy to see that the way-below relation � has the property (b, q) � (a, r) ↔
d(a, b)+ r < q and the sub-basis of the Scott topology τDP is the set of open sets
Un,q = {(b, r) | (b, r) � (α(n), q), where α(n) ∈ B and q ∈ Q

>0}. The function
ψ is defined as follows ψ(a) = (a, 0).

Proposition 2. The lifted domain (DP, ψ) for P ∈ CPS has the following prop-
erties:

1. D
P = (DP;B, β,≤,⊥) is a weakly effective ω–continuous domain;

2. ψ : P → D
P is a computable canonical homeomorphic embedding;

3. im(ψ) is dense in DP and coincides with the set of maximal elements;
4. im(ψ) is an effective intersection of effectively open sets;
5. B ∩ im(ψ) = ∅.
Proof. The claims follow from [9,10].

Corollary 1. Let (DP, ψ) be the lifted domain for P ∈ CPS. If (P,DP, ψ) is
a weakly effective consistently complete ω–continuous domain then it is an effec-
tive domain presentation.

Further on we call such lifted domains (P,DP, ψ) as lifted domain presentations.

Proposition 3. The interval domain IR with the standard embedding is com-
putationally isomorphic to the lifted domain presentation (R,DR, ψ).

3.2 Computable and Topological Minimality

In this section we assume that P = (P, d,B) ∈ CPS, (P,DP, ψ) is the corre-
sponding lifted domain presentation for P. For the basic elements of a weakly
effective ω–continuous domain D = (D;B, β,≤,⊥) we use the following notation
B = {β1, . . . , βn, . . . } and β0 = ⊥.

Definition 7. Let (P,D1, ϕ1) and (P,D2, ϕ2) be effective domain presentations.
A function F : D1 → D2 is called a computable (continuous) translator if the
following diagram is commutative:

P D1

D2

ϕ1

ϕ2

F

Computable Topology for Reliable Computations 191

Definition 8. An effective domain presentation (P,D, ψ) is called computably
(topologically) minimal if for any effective domain presentation (P, ˜D, ˜ψ) there
exists a computable (continuous) translator G : D → ˜D.

Theorem 1. For any computable Polish space P the lifted domain presentation
(P,DP, ψ) is computably minimal.

The proof is based on the following propositions.

Lemma 1. Let D = (D;B, β,≤,⊥) be a weakly effective ω–continuous domain
and X be an effectively enumerable topological space. If a function f : X → D is
computable then the following accessions hold.

1. Let Aβ = f−1(Uβ), where Uβ = {d ∈ D | d � β}. Then {Aβ}β∈B is a
computable sequence of effectively open subsets of X such that, for all β, γ ∈
B, Aβ =

⋃

β′�β Aβ′ , Aβ ∩ Aγ =
⋃

β′�β∧β′�γ Aβ′ and if β ≤ γ then Aβ ⊇ Aγ .
2. f(x) =

⊔{β ∈ B | x ∈ Aβ}.
Proof. Let us show the first accession. Computability of the sequence {Aβ}β∈B

follows from computability of f . The relation Aβ ⊇ ⋃

β′�β Aβ′ is straightfor-
ward. Assume now that x ∈ Aβ . By definition, f(x) ∈ Uβ , i.e., f(x) � β. By the
interpolation property there exists β′ ∈ B such that f(x) � β′ � β. So x ∈ Aβ′ ,
x ∈ ⋃

β′�β Aβ′ . The relation Aβ ∩ Aγ ⊇ ⋃

β′�β∧β′�γ Aβ′ is straightforward. In
order to show Aβ ∩ Aγ ⊆ ⋃

β′�β∧β′�γ Aβ′ we assume x ∈ Aβ ∩ Aγ . By defini-
tion, f(x) � β and f(x) � γ. By the interpolation property and computability
of f there exists β′ ∈ B such that f(x) � β′ and β′ � β ∧ β′ � γ. So x ∈ Aβ′ .

The second assertion follows from the following observation. On the one hand,
if x ∈ Aβ then f(x) � β, so f(x) ≥ ⊔{β ∈ B | x ∈ Aβ}. On the other hand, if
f(x) � β′ then x ∈ Aβ′ , so β′ ≤ ⊔{β ∈ B | x ∈ Aβ}. Since f(x) =

⊔{β′ | β′ �
f(x)} we have f(x) ≤ ⊔{β ∈ B | x ∈ Aβ}.

Lemma 2. Let D = (D;B, β,≤,⊥) be a weakly effective ω–continuous domain,
X be an effectively enumerable topological space and {Aβ}β∈B be a computable
sequence of effectively open sets of X such that

1. If β1 ≤ β2 then Aβ1 ⊇ Aβ2 .
2. For all β, γ ∈ B, Aβ =

⋃

β′�β Aβ′ and Aβ ∩ Aγ =
⋃

β′�β∧β′�γ Aβ′ . Then
the function F : X → D defined as follows F (x) =

⊔{β ∈ B | x ∈ Aβ} is
computable. Moreover, Aβ = F−1(Uβ).

Proof. It is sufficient to show that x ∈ F−1(Uβ) ↔ F (x) � β. If x ∈ Aβ then
there exists β′ � β such that x ∈ Aβ′ and F (x) � β′ � β, i.e., F (x) � β. If
F (x) � β then there exists β′ � β such that x ∈ Aβ′ and β′ ≥ β, so x ∈ Aβ .

Lemma 3. Let D1 = (D1;B1, β
1,≤,⊥1) and D2 = (D2;B2, β

2,≤,⊥2) be weakly
effective ω–continuous domains and a function F ∗ : D1 → D2 be pcf such that
dom(F ∗) is effectively open in D1. Then one can effectively construct a total
computable extension F : D1 → D2.

192 M. Korovina and O. Kudinov

Proof. Put

F (a) =
{

F ∗(a) if a ∈ dom(F ∗)
⊥2 otherwise.

Monotonicity of F is straightforward. To show limit preservation we assume that
{ai | i ∈ I} is directed and

⊔

i∈I ai = a. If a ∈ dom(F ∗) then, by the definition
of Scott topology, there exists j ∈ I such that aj ∈ dom(F ∗) and

⊔

i≥j ai = a.
So F (a) = F ∗(a) =

⊔

i≥j F ∗(ai) =
⊔

i≥j F (ai) =
⊔

i∈I F (ai) If a �∈ dom(F ∗)
then, for all i ∈ I, ai �∈ dom(F ∗). So F (ai) = ⊥2 and F (a) =

⊔

i∈I F (ai). Hence
F is continuous. For computability let us show that F (β1

n) � β2
k is computably

enumerable. Indeed, F (β1
n) � β2

k ↔ (

β1
n ∈ dom(F ∗) ∧ F ∗(β1

n) � β2
m

) ∨ β2
m �

⊥2. Hence F is computable.

Theorem 2. Let D = (D;B, β,≤,⊥) be a weakly effective consistently complete
ω–continuous domain, P be a computable Polish space and (P,DP, ψ) be its lifted
domain presentation. Then for any computable function f : P → D one can
effectively construct a computable extension F : DP → D such that F

(

ψ(x)
)

=
f(x), i.e., the following diagram is commutative:

P D
P

D

f

ψ

F

Proof. Let us fix the numbering βP of the basic elements of DP such that βP

0 =
βP(0) = ⊥. This induces the numbering of basic open balls in P such that if
βP

k = (ai, ri) then Bk � B(ai, ri) for the corresponding ball.
By definition, f−1(Uβi

) =
⋃

k∈Wν(i)
Bk for a computable function ν : ω → ω,

where Uβi
= {d ∈ D | d � βi}. Then for any x = (a, r) ∈ D

P such that x �= ⊥
we define

Cx = {βk | (∃ l ∈ Wν(k))βP

l � x}.

It is worth noting that any finite nonempty A = {βk1 , . . . , βks
} ⊆ Cx is consistent

in D. Indeed, we could take any y ∈ B(a, r). Then, by the definition of ν,
y ∈ f−1(Uβki

) for i = 1, . . . , s. So, f(y) � βki
for i = 1, . . . , s and hence A is

consistent. Therefore, the set ˜Cx = {⋃

A | A ⊆ Cx is finite and consistent} is
directed and we put

F (x) =
{

⊔

˜Cx if Cx �= ∅
⊥ otherwise.

In terms of the corresponding sets Aβ � {x ∈ DP | F (x) � β}, where β ∈ BD,
this means that Aβ = {x ∈ DP | (∃a ∈ DP) a � β}. By Lemmas 1–3 the function
F is continuous.

Computable Topology for Reliable Computations 193

For k, l ∈ ω, βl � F (βP

k) if and only if there exists a finite consistent set
A ⊆ Cx such that βl � ⋃

A. This relation is computably enumerable since one
can compute the index of the basic element

⋃

A. So, F is computable. Let us
show that F (ψ(x)) = f(x). From the one hand, by construction, for x ∈ P , from
βk ∈ Cψ(x) it follows that f(x) ∈ Uβk

. So F (ψ(x)) ≤ f(x). From the other hand,
if βk � f(x) then f(x) ∈ Uβk

so βk ∈ Cψ(x) and F (ψ(x)) ≥ βk. As corollary,
F (ψ(x)) = f(x).

Remark 2. It is worth noting that the statement of the previous theorem holds
not only for any lifted domain presentation but also for any effective domain
presentation ϕ : P → D0 with the following conditions: the function ϕ−1 is pcf
and for all d ∈ D0 there exists x ∈ P such that ϕ(x) ≥ d.

Corollary 2. For any computable Polish space P the lifted domain presentation
(P,DP, ψ) is topologically minimal.

Proof. The claim follows from the relativization of Theorem 1 to an oracle mak-
ing a lifted domain presentation computably minimal.

Our considerations above revel the following properties of the interval domain
for real numbers that widely used in domain theory and interval computations.

Theorem 3. Let (P1,D
P1 , ψ1) be a lifted domain presentation and (R, IR, ψ2) be

the standard interval domain presentation for the reals. For any pcf f : P1 → R

one can effectively construct a total computable function F : DP1 → IR such that

1. f(x) = y ↔ F (ψ1(x)) = ψ2(y) ∧ (x ∈ dom(f));
2. if x �∈ dom(f) then F (ψ1(x)) �∈ max(IR).

Proof. Let f : P1 → R be pcf. In [8] we have shown that for the class of real-
valued functions from computable metric spaces the notion of pcf coincides with
majorant-computability. That means that we can effectively construct effectively
open sets U(x, y) and V (x, y) such that V (x, ·) < U(x, ·) and

f(x) = y ↔ ∀z1∀z2 (V (x, z1) < y < U(x, z2)) ∧
{z | V (a, z)} ∪ {z | U(a, z)} = R \ {y}.

Now we define H : P1 → IR as follows: Put

H(x) =
{

[sup{y | V (x, y), inf{z | U(x, z)}] if V (x, ·), U(x, ·) �= ∅
⊥ otherwise.

It is easy to see that H is a computable function and, for all x ∈ P, H([x]) =
f(x). Then the existence of F follows from Theorem 2.

194 M. Korovina and O. Kudinov

3.3 Principal Translators

In this section we introduce the notion of a principal computable (continuous)
translator and prove that in the case of the real numbers we can effectively
construct a principal computable translator from the lifted domain presentation
to any other domain presentation.

Definition 9. For a computable Polish space P, let (P,D1, ϕ1) and (P,D2, ϕ2) be
its effective domain presentations. We call a computable (continuous) translator
G : D1 → D2 principal if F ≤ G for any computable (continuous) translator
F : D1 → D2.

Definition 10. An effective domain presentation (P,D, ϕ) is called (com-
putably) stable if for any effective domain presentation (P, ˜D, ˜ψ) there exists a
unique continuous (computable) translator G : D → ˜D.

Proposition 4. For any computable Polish space the lifted domain presentation
is neither computably stable nor stable.

Proof. It is sufficient to show that there are infinitely many continuous even
computable translators for ˜D ≡ D

P. Put

G ≡ id and ϕq

(

(a, r)
)

= (a, q ∗ r), where q ∈ Q
+ and q > 1.

We have:

P D
P

D
P

ψ

ψ

id

ϕq

All of these translators are computable and different from each other.

Proposition 5. If an effective domain presentation (P,D, θ) is topologically
(computably) minimal then it is not (computably) stable.

Proof. Let D = (D;B, β,≤,⊥). It is enough to observe topological part, the rest
is just an analog. Assume F : D → D

P is a continuous translator. We have the
following commutative diagram:

P D

D
P

D
P

ψ

θ

ψ

ϕq

F

Computable Topology for Reliable Computations 195

Since F (B) �⊆ max(DP), there exists a ∈ B such that F (a) �∈ max(DP). Then
ϕq(F (a)) �= F (a), where ϕ is defined in Proposition 4. We have ϕq ◦F : D → D

P

is a continuous translator and ϕq ◦ F �≡ F .

Theorem 4. Let (P,DP, ψ) be the lifted domain presentation and (P, ˜D, ˜ψ) be an
effective domain presentation. Then there exists a principal continuous translator
G : DP → ˜D.

Proof. Let us define

G
(

(a, r)
)

=
⊔

{g
(

(a, r +
1
n

)
)}n∈ω, where g

(

(a, r)
)

= inf{ ˜ψ(x) | (a, r) ≤ ψ(x)}.

From the definition of ψ it is easy to see that g
(

(a, r)
)

= inf{ ˜ψ(x) | (a, r) ≤
(x, 0)} = inf{ ˜ψ(x) | x ∈ B(a, r)}. In order to show that G is a required we prove
that G is total and monotone, preserves limits and makes the corresponding
diagram commutative.
Totality. It is worth noting that for any Y ⊆ ˜D there exists inf(Y). Indeed,
since ˜D is consistently complete the set {z | z ≤ Y } is directed. Therefore
inf(Y) =

⊔{z | z ≤ Y } for Y �= ∅ and inf(∅) = ⊥ by the definition of dcpo.

Monotonicity. By definition it is clear that g is monotone Assume (b,R) ≤
(a, r), i.e., d(a, b) + r ≤ R. By definition, G

(

(a, r)
)

=
⊔

inf{ ˜ψ(x) | x ∈ B(a, r +
1
n)}n∈ω, G

(

(b,R)
)

=
⊔

inf{ ˜ψ(x) | x ∈ B(b,R + 1
n)}n∈ω and, by assumption,

(b,R + 1
n) ≤ (a, r + 1

n). Therefore G
(

(b,R)
) ≤ G

(

(a, r)
)

.

Limit Preservation. Since ˜D is a weakly effective ω–continuous domain to
prove that G preserves limits it is sufficient to consider countable directed sets.
We show first that for any directed sets A, B ⊆ D, if

⊔ A =
⊔ B = (a, r)

and A � (a, r), B � (a, r) then
⊔{g

(

(a, r)
) | (a, r) ∈ A} =

⊔{g
(

(b,R)
) |

(b,R) ∈ B} that looks as the low semi-continuity condition. Let us pick a basic
elements β ∈ ˜B such that β � ⊔{g

(

(a, r)
) | (a, r) ∈ A}. By the definition of

the way-below relation, there exists (a, r) ∈ A such that β � g
(

(a, r)
)

so for all
x ∈ B(a, r) we have β � ˜ψ(x). Since

⊔ A =
⊔ B there exists (b,R) ≥ (a, r) so for

all x ∈ B(b,R) we have β � ˜ψ(x). This means β � ⊔{g
(

(b,R)
) | (b,R) ∈ B}.

Since β is arbitrary chosen
⊔{g

(

(a, r)
) | (a, r) ∈ A} ≥ ⊔{g

(

(b,R)
) | (b,R) ∈ B}.

By symmetry,
⊔{g

(

(a, r)
) | (a, r) ∈ A} =

⊔{g
(

(b,R)
) | (b,R) ∈ B}.

Now assume that, for a countable directed set A ⊆ D,
⊔ A = (a, r). It is well-

known that we can extract some monotone sequence {(an, rn)}n∈ω of elements
of A such that

⊔{(an, rn)}n∈ω = (a, r). Therefore it is sufficient to prove that
⊔{G

(

(an, rn)
)}n∈ω = G(a, r). By definition G

(

(an, rn)
)

=
⊔{(an, rn+ 1

k}k∈ω. It
is easy to see that

⊔{(an, rn + 1
k)}n,k∈ω = (a, r) and (an, rn + 1

k) � (a, r) for all
n, k ∈ ω. By the property of g which we proved above

⊔{g
(

(an, rn+ 1
k)

)}n,k∈ω =
⊔{g

(

a, r + 1
m

)}m∈ω so
⊔

G
(

(an, rn)
)

= G
(

(a, r)
)

. Therefore G is a continuous
function.

Commutativity of the Diagram. We show that ˜ψ
(

x
)

= G
(

ψ(x)
)

, i.e, ˜ψ
(

x
)

=
G

(

(x, 0)
)

since ψ(x) = (x, 0). By definition, G
(

(x, 0)
)

=
⊔{g

(

(x, 1
n)

)} and, for

196 M. Korovina and O. Kudinov

all n ∈ ω, g(x, 1
n) ≤ ˜ψ(x). Therefore ˜ψ(x) ≥ G

(

(x, 0)
)

. Since ˜ψ is continuous
in x for all ˜β ∈ ˜B such that ˜β � ˜ψ(x) there exist σ > 0 such that for all
y ∈ P if d(y, x) < σ then ˜b � ˜ψ(y). It is worth noting that if 1

n < σ then
g(x, 1

n) ≤ ˜β. So we have G
(

(x, 0)
) ≥ ˜β. By continuity, ˜ψ(x) =

⊔{˜β | ˜β � ˜ψ(x)}
so ˜ψ(x) ≤ G

(

(x, 0)
)

.

Maximality. Let us show that for any continuous translator F : DR → ˜D we
have F ≤ G. First we observe that if x ∈ max(DP) then F (x) = G(x). By
monotonicity of F , F

(

(a, r)
) ≤ inf{ ˜ψ(x) | (a, r) ≤ ψ(x)} = g

(

(a, r)
)

. Simi-
larly, F

(

(a, r + 1
n)

) ≤ g
(

(a, r + 1
n)

)

. Since G
(

(a, r)
)

=
⊔{g

(

(a, r + 1
n)

)}n∈ω and
F

(

(a, r)
)

=
⊔{F

(

(a, r + 1
n)

)}n∈ω we have F
(

(a, r)
) ≤ G

(

(a, r)
)

. As a corollary
G is a required function.

Theorem 5. Let (R,DR, ψ) be the lifted domain presentation and (R, ˜D, ˜ψ) be
an effective domain presentation. Then there exists a principal computable trans-
lator G : DR → ˜D.

Proof. Let us show that in the case of P = R, the continuous function G from
the previous proof is computable under the assumption that ˜ψ is computable.

Computability. In order to show that G is computable it is sufficient to show
that F (βk) � ˜βm is computably enumerable. First we assume that βk = (ak, rk)
and observe that the relation g

(

(ak, rk)
) � ˜βm is computable enumerable. It

follows from the following formula and the uniformity principle [11].

g
(

(ak, rk)
) � ˜βm ↔ (∀x ∈ B(ak, rk)) ˜ψ(x) � ˜βm ↔

(∀x ∈ B(ak, rk))x ∈ ˜ψ−1(U
˜βm

).

Since, by definition, G
(

(ak, rk)
)

=
⊔{g

(

(ak, rk + 1
n)

)}n∈ω we have

G
(

(ak, rk)
) � ˜βm ↔ (∃n ∈ ω) g

(

(ak, rk +
1
n

)
) � ˜βm.

Therefore the required relation is computably enumerable and G is computable.

4 Conclusion and Future Work

In this paper we characterised computably minimal presentations of computable
Polish spaces. We showed that between any computably minimal presentations
one can effectively construct a translator. This gives a technique to convert one
computably minimal presentation to another. Therefore a user can chose any
preferable computably minimal presentation and then if necessary convert to
canonical one. For the lifted domain of the real numbers we provided a prin-
cipal computable translator. This highlighted a direction of how to approach a
formalisation of higher type computations over the reals.

Computable Topology for Reliable Computations 197

References

1. Edalat, A., Heckmann, R.: A computational model for metric spaces. Theoret.
Comput. Sci. 193(1–2), 53–73 (1998)

2. Edalat, A.: Domains for computation in mathematics, physics and exact real arith-
metic. Bull. Symb. Log. 3(4), 401–452 (1997)

3. Ershov, Yu.L.: Computable functionals of finite types. Algebra Log. 11(4), 367–437
(1996)

4. Blanck, J.: Interval domains and computable sequences: a case study of domain
reductions. Comput. J. 56(1), 45–52 (2013)

5. Blanck, J.: Domain representability of metric spaces. Ann. Pure Appl. Log. 83(3),
225–247 (1997)

6. Gierz, G., Heinrich Hofmann, K., Keime, lK., Lawson, J.D., Mislove, M.W.: Con-
tinuous Lattices and Domain. Encyclopedia of Mathematics and its Applications
93. Cambridge University Press, Cambridge (2003)

7. Grubba, T., Weihrauch, K.: Elementary computable topology. J. UCS. 15(6),
1381–1422 (2009)

8. Korovina, M., Kudinov, O.: Weak reduction principle and computable metric
spaces. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol.
10936, pp. 234–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94418-0 24

9. Korovina, M., Kudinov, O.: Highlights of the Rice-Shapiro theorem in computable
topology. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp.
241–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 18

10. Korovina, M., Kudinov, O.: Outline of partial computability in computable topol-
ogy. In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 64–76.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7 7

11. Korovina, M., Kudinov, O.: The uniformity principle for Σ-definability. J. Log.
Comput. 19(1), 159–174 (2009)

12. Korovina, M., Kudinov, O.: Towards computability over effectively enumerable
topological spaces. Electron. Notes Theoret. Comput. Sci. 221, 115–125 (2008)

13. Korovina, M.V., Kudinov, O.V.: Formalisation of computability of operators and
real-valued functionals via domain theory. In: Blanck, J., Brattka, V., Hertling,
P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 146–168. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45335-0 10

14. Mal’Cev, A.: Constructive algebras. Uspehi Math Nauk 16(3), 3–60 (1961)
15. Moschovakis, Y.N.: Recursive metric spaces. Fund. Math. 55, 215–238 (1964)
16. Rabin, M.: Computable algebra, general theory and theory of computable fields.

Trans. Am. Math. Soc. 95, 341–360 (1960)
17. Scott, D.: Lectures on a mathematical theory of computation. In: Broy, M.,

Schmidt, G. (eds.) Theoretical Foundations of Programming Methodology. NATO
Advanced Study Institutes Series (Series C – Mathematical and Physical Sciences),
vol. 91, pp. 145–292. Springer, Dordrecht (1982). https://doi.org/10.1007/978-94-
009-7893-5 9

18. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable
Functions and Computably Generated Sets. Springer, Heidelberg (1987)

19. Spreen, D.: On some decision problems in programming. Inf. Comput. 122(1),
120–139 (1995)

20. Spreen, D.: On effective topological spaces. J. Symb. Log. 63(1), 185–221 (1998)

https://doi.org/10.1007/978-3-319-94418-0_24
https://doi.org/10.1007/978-3-319-94418-0_24
https://doi.org/10.1007/978-3-319-74313-4_18
https://doi.org/10.1007/978-3-319-58741-7_7
https://doi.org/10.1007/3-540-45335-0_10
https://doi.org/10.1007/978-94-009-7893-5_9
https://doi.org/10.1007/978-94-009-7893-5_9

198 M. Korovina and O. Kudinov

21. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000). https://doi.
org/10.1007/978-3-642-56999-9

22. Weihrauch, K.: Computability on computable metric spaces. Theoret. Comput.
Sci. 113(1), 191–210 (1993)

23. Weihrauch, K., Schreiber, U.: Embedding metric spaces into CPO’s. Theoret. Com-
put. Sci. 16, 5–24 (1981)

https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

About Leaks of Confidential Data
in the Process of Indexing Sites

by Search Crawlers

Sergey Kratov(&)

Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia
kratov@sscc.ru

Abstract. The large number of sites for very different purposes (online stores,
ticketing systems, hotel reservations, etc.) collect and store personal information
of their users, as well as other confidential data, such as history and results of
user interaction with these sites. Some of such data, not intended for open
access, nevertheless falls into the search output and may be available to unau-
thorized persons when specific requests are made. This article describes the
reasons for such incidents occurrence and the basic recommendations for
technical specialists (developers and administrators) that will help prevent leaks.

Keywords: Data leaks � Site indexing � Search crawlers � Robots.txt �
Noindex � X-Robots-Tag � Htaccess

1 The Possible Sources of Data Leaks

One of the factors determining the effectiveness of the search is the completeness of the
index. So the search engines try to index as many pages as possible to select those that
most closely match the users’ requests. Therefore, in addition to going through the
links on the pages, the search engines also resort to other methods that allow it to
discover the appearance of new pages on the Internet. Very often sites generate indi-
vidualized pages for each user. So that search engines cannot get to seemingly public
pages from links on the main page of the site. Accordingly, it is logical for search
engines to obtain page addresses for indexing from as many sources as possible. In
particular, for example, users agree by default with possible analysis and collection of
browsers anonymous data on page visits and other actions, when installing browsers,
often developed by search engines (Yandex, Google). This is the legal way for search
engines to collect most of the pages ever viewed by users. For example, Yandex.
Browser collects anonymized statistical information, which includes, in addition, the
addresses of the pages visited. This happens in all cases when the user clearly did not
forbid doing this in the browser settings (the option “Send usage statistics to Yandex”).
At the same time, thematic forums for developers described situations when, due to a

The research has been supported by the ICMMG SB RAS budget project N 0315-2016-0006.

© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 199–204, 2019.
https://doi.org/10.1007/978-3-030-37487-7_16

http://orcid.org/0000-0001-9068-9267
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_16

technical error of Yandex employees, information about individual pages viewed in the
browser came to the list of indexing for Yandex crawlers [1].

Another source of data for the search engines index replenishment can be the
counters of analytical systems (the most common ones in Russia are Yandex.Metrica
and Google Analytics) placed in the page source code. For example, as specified in the
Yandex.Metrica user agreement [2] if site administrators do not forbid sending site
pages to indexing, the addresses of the pages on which the counter is installed are
passed to Yandex indexing (and it is possible subsequently to the search output). By
default, such option is enabled. That is how a few years ago SMS from the mobile
operator Megafon’s site fells in the search output [3]. There was the possibility of
anonymous sending SMS on the operator’s site to its clients. This did not require
registration on the site. At the same time, the site developers, for the convenience of
users, generated for each sending a page with a random address, which displayed the
SMS text and the status of its delivery. These pages got into Yandex’s search output
and became available to any user of the search engine.

Only the couple of data leakage cases were listed above on the example of the one
of the search engines services. Nevertheless, there is no reason to suppose that the rest
of the search engines are fundamentally different. The issues of search engines legality
and their crawlers «ethical» nature in the data collection process have already been
repeatedly discussed in the other researchers’ works [4–6].

2 The Informing Developers and Users About the Possibility
of Leaks

Search crawlers cannot access and indexing information from pages that require
authorization. At the same time, modern sites often require complex passwords, which
are not always convenient for users to remember. For the convenience of users,
developers often generate and send to users in emails (in plain text) links to pages with
unique long addresses from a random character set that cannot be guessed or enu-
merated. So users can grant direct access to sites without entering a username and
password. Users navigate through such link, their browser or analytics counter tells the
search engine that an unknown page has appeared, the search crawler indexes it. In this
case, the crawler has no information about whether the personal data is placed on the
page, whether confidential information is contained in tables (for example, financial
indicators) or the content of the page is publicly available. Useful recommendations for
developers who are forced to generate and send pages with automatic login are
available in the corresponding W3C manual [7].

Confidential data periodically fell into search indexes during the entire existence of
search engines. The number of such leaks, increased in recent years, is associated with
the growing popularity of the Internet and, accordingly, the number of users of the
network. More and more people are entering the network, now they are not only IT
specialists, but also users far from information technologies. Most users believe that a
document accessible via a unique link is securely protected and will never get into the
index. The main changes to minimize the number of similar incidents in the future
should be done by site developers to ensure their quality work. Search engines, in turn,

200 S. Kratov

should also fully cover their indexing mechanisms for both developers and site users. In
particular, to inform developers that any page that is available to users without
authorization can sooner or later get into the index and search output. The last such
large-scale data leak in the Russian-speaking Internet segment occurred in early July
2018. The search engine Yandex indexed and included in its search output a large array
of documents from the Google Docs service [8]. The documents were publicly
available and, accordingly, were available for indexing, but at the same time, many of
them contained confidential information not intended for unauthorized persons.
Moreover, some of the documents were not only available for viewing, but also for
editing to any user who passed them by link from the index. Formally, both Yandex
and Google in this situation acted within the law. The documents were excluded from
the search output in identifying the problem. The problem arose primarily because of
the lack of users’ awareness about the specifics of the access differentiation to their
documents in the service. But this fact does not cancel the presence of the problem
itself.

3 The Prohibition of Confidential Data Indexing. Directives
for Search Crawlers

The most effective way to deny access to confidential information is to use autho-
rization to access it. However, in those cases when it is impossible or impractical for
not to complicate the work of users with the site, developers can use other methods that
will prevent search crawlers from indexing the contents of the pages and in many ways
will reduce the probability of their getting into the search output. For example, it is
possible to use the robots.txt file [9–11] or corresponding tags in the HTML markup
and page headers.

The de-facto standard of exclusions for crawlers Robots.txt has been open for
discussion on the Technical World Wide Web mailing list. It represents a consensus on
30 June 1994 between the majority of robot authors and has since been supported by
most search engines. Robots.txt is the text file describing the limitations of the search
crawlers’ access to the web server’s content. This file should be uploaded to the site’s
root directory. The file consists of separate records, the Disallow field is used to prevent
indexing. With this field, developers can deny access to individual directories/ pages
for all or individual search crawlers. The example of the appropriate entry completely
closing access to the site for search crawlers is shown in (1).

User-agent: *
Disallow: / ð1Þ

In the User-agent field, individual search crawlers can be enumerated, for example,
Yandex or Googlebot. In the Disallow field, you can specify both the name of the
individual file and the directory as a whole. More details about the syntax of robots.txt
and practical recommendations for its use can be read in the original description [12]
and earlier studies on this topic [13, 14]. It is also recommended after creating or

About Leaks of Confidential Data in the Process of Indexing Sites 201

editing the file to check its syntax correctness by using search engines special services
[15, 16].

In cases where site administrators do not have access to the site root directory to
host the robots.txt file, or site administrators do not want to advertise the individual
directories/files addresses, the noindex tag can be used anywhere in the HTML code of
the page, as shown in (2).

<noindex> the text that does not
need to be indexed </ noindex> ð2Þ

The noindex tag is only valid for the search engine Yandex and it is not included in
the official HTML specification so, if it is used in the code of the pages, they may fail to
validate the html code correctness. In such cases the noindex tag can be used in the
format shown in (3).

<! - noindex -> the text that does not
need to be indexed <! - / noindex -> ð3Þ

The noindex tag can also be used as the metatag, in which case its action will
extend to the entire text of the page as a whole, as shown in (4).

<meta name = "robots" content = "noindex" /> ð4Þ

In addition, although Google does not index the contents of pages blocked in the
robots.txt file, such pages URLs found on other pages on the Internet can still be
indexed [17]. In this case, the use of noindex in the metatag form in the page header
will further prohibit its indexing when a search crawler hits it.

The separate metatag can be requested to delete the previously indexed page copy
from the search engine cache, as shown in (5).

<meta name = "robots" content = "noarchive" /> ð5Þ

The noindex metatag can be used only in the code of html-pages. If developers
want to deny access to other types of documents, they can use the X-Robots-Tag
metatag contained in the HTTP header. An example of the HTTP header that prohibits
crawlers from indexing the page is shown in (6).

HTTP / 1.1 200 OK
...
X-Robots-Tag: noindex
...

ð6Þ

202 S. Kratov

If site works on the Apache web server, its administrators can insert the appropriate
headers using directives in the .htaccess file. For example, the directives prohibit search
crawlers from indexing all pdf-files of the site are shown in (7).

<Files ~ "\.pdf$">
Header set X-Robots-Tag "noindex, nofollow"
</ Files>

ð7Þ

For more details about syntax and usage examples, see the appropriate Google
manual [18].

4 Conclusion

Unfortunately, using the above methods does not guarantee that the site pages and
individual files will not be indexed. These methods are recommendatory for search
crawlers and the implementation or non-implementation of recommendations depends
only on the particular crawler. The problem is that different search engines differently
interpret the web servers’ directives, their recommendations for improving the sites’
indexing also often contradict each other. That is, the developers, having done
everything according to the Google’s instructions, can create a situation in which the
Yandex will index a lot of documents that should not have been indexed, and vice
versa. For example, Google does not handle noindex tags in the text of the pages, and
Yandex - X-Robots-Tag in HTTP headers.

Therefore, administrators of already working sites need to conduct their basic audit
for the leaking confidential data possibility to search engines:

• Carry out the entire tree of the site’s links analysis - scan search output and other
sources (Yandex.Metrics, Google Analytics, Yandex.Webmaster and Google
Search Console). Identify the site’s pages containing confidential data. Finding the
reasons and determining how to hide these pages from indexing and from the
publicly available part of the site.

• Analyze files, links to which are not present on the site pages - identify confidential
files accessible via direct links, including those that are not yet in the search output.
Search for the reasons for such files availability and determine how to hide them
from public access.

In addition to the above actions to prohibit the confidential data’s indexing,
developers can also strongly encourage to take the following actions when creating
new sites:

• Exclude any of the confidential data from sharing with authorization using.
• Identify search crawlers and block them from accessing any private information.

And developers should not only use one of the methods recommended by any
search engine, but duplicate, using all protection methods. Verify that the protection
methods used are universal and workable for all search engines.

• Maximally inform users about all available privacy settings within each site.

About Leaks of Confidential Data in the Process of Indexing Sites 203

References

1. YandexBot crawls the links that the user views (in Russian). https://habr.com/en/post/
262695/. Accessed 27 Apr 2019

2. Terms of Use of Yandex.Metrica service. https://yandex.ru/legal/metrica_termsofuse/.
Accessed 29 Aug 2018

3. FAQ on the SMS texts leakage from Megafon site (in Russian). https://habr.com/en/post/
124387/. Accessed 27 Apr 2019

4. Schellekens, M.H.M.: Are internet robots adequately regulated? Comput. Law Secur. Rev.
29(6), 666–675 (2013). https://doi.org/10.1016/j.clsr.2013.09.003

5. Sun, Y., Councill, I.G., Giles, C.L.: The ethicality of web crawlers. In: Proceedings of 2010
IEEE/WIC/ACM International Conference on Web Intelligence, WI 2010, pp. 668–675
(2010). https://doi.org/10.1109/wi-iat.2010.316

6. Giles, C.L., Sun, Y., Councill, I.G.: Measuring the web crawler ethics. In: Proceedings of the
19th International Conference on World Wide Web, WWW 2010, pp. 1101–1102 (2010).
https://doi.org/10.1145/1772690.1772824

7. Good Practices for Capability URLs. https://www.w3.org/TR/capability-urls/. Accessed 29
Aug 2018

8. Yandex began to index Google Docs with passwords (in Russian). https://habr.com/en/post/
416219/. Accessed 27 Apr 2019

9. Martin-Galan, B., Hernandez-Perez, T., Rodriguez-Mateos, D., et al.: The use of robots.txt
and sitemaps in the Spanish public administration. PROFESIONAL DE LA INFORMA-
CION 18(6), 625–630 (2009). https://doi.org/10.3145/epi.2009.nov.05

10. Kolay, S., D’Alberto, P., Dasdan, A., Bhattacharjee, A.: A larger scale study of robots.txt. In:
Proceeding of the 17th International Conference on World Wide Web 2008, WWW 2008,
pp. 1171–1172 (2008). https://doi.org/10.1145/1367497.1367711

11. Sun, Y., Zhuang, Z., Councill, I.G., Giles, C.L.: Determining bias to search engines from
robots.txt. In: Proceedings of the IEEE/WIC/ACM International Conference on Web
Intelligence, WI 2007, pp. 149–155 (2007). https://doi.org/10.1109/wi.2007.98

12. A Standard for Robot Exclusion. http://www.robotstxt.org/orig.html. Accessed 29 Aug 2018
13. Tong, W., Xie, X.: A research on a defending policy against the Webcrawler’s attack. In:

2009 3rd International Conference on Anti-counterfeiting, Security, and Identification in
Communication, ASID 2009 (2009). https://doi.org/10.1109/icasid.2009.5276948

14. Bates, M.E.: What makes information “public”? Online (Wilton, Connecticut) 28(6), 64
(2004)

15. Robots.txt analysis. https://webmaster.yandex.ru/tools/robotstxt/. Accessed 29 Aug 2018
16. robots.txt Tester. https://www.google.com/webmasters/tools/robots-testing-tool. Accessed

29 Aug 2018
17. Blocking URLs with a robots.txt file. https://support.google.com/webmasters/answer/

6062608. Accessed 29 Aug 2018
18. Robots meta tag and X-Robots-Tag HTTP header specifications. https://developers.google.

com/search/reference/robots_meta_tag. Accessed 29 Aug 2018

204 S. Kratov

https://habr.com/en/post/262695/
https://habr.com/en/post/262695/
https://yandex.ru/legal/metrica_termsofuse/
https://habr.com/en/post/124387/
https://habr.com/en/post/124387/
http://dx.doi.org/10.1016/j.clsr.2013.09.003
http://dx.doi.org/10.1109/wi-iat.2010.316
http://dx.doi.org/10.1145/1772690.1772824
https://www.w3.org/TR/capability-urls/
https://habr.com/en/post/416219/
https://habr.com/en/post/416219/
http://dx.doi.org/10.3145/epi.2009.nov.05
http://dx.doi.org/10.1145/1367497.1367711
http://dx.doi.org/10.1109/wi.2007.98
http://www.robotstxt.org/orig.html
http://dx.doi.org/10.1109/icasid.2009.5276948
https://webmaster.yandex.ru/tools/robotstxt/
https://www.google.com/webmasters/tools/robots-testing-tool
https://support.google.com/webmasters/answer/6062608
https://support.google.com/webmasters/answer/6062608
https://developers.google.com/search/reference/robots_meta_tag
https://developers.google.com/search/reference/robots_meta_tag

An Ontology-Based Approach to the Agile
Requirements Engineering

Marina Murtazina(&) and Tatiana Avdeenko

Novosibirsk State Technical University, 630073 Novosibirsk, Russia
murtazina@corp.nstu.ru

Abstract. The paper presents an approach to the agile requirements engi-
neering based on the OWL ontologies. A brief overview of the benefits of an
ontology-based approach to requirements engineering is given. Attention is
focused on agile engineering requirements process. The proposed approach uses
three ontologies. The first ontology is used to represent knowledge about the
agile requirements engineering process. The second ontology is designed to
match natural language sentences with the requirements in order to identify
conflicts. The third ontology is used to accumulate the knowledge about the
domain of the software product. The first ontology is core. This ontology
consists of classes corresponding to events, roles and artefacts of agile devel-
opment. Object properties established between the individuals of class can be
used to identify directly or indirectly linked requirements and requirements
artefacts. This enables maintaining requirements traceability. Also the ontology
takes into account particular qualities of working with the requirements in agile
development processes including knowledge about the criteria for assessing the
quality of user stories that is the most common form to record the requirements
in agile methods. The ontologies are implemented in the Protégé environment.

Keywords: Requirements engineering � Ontology � Agile environment

1 Introduction

The success of software products depends on the extent to which they, as tools, can be
effectively used in the implementation of the end user tasks. That is why requirements
engineering plays a key role in the software development. The requirements engi-
neering as a field of knowledge includes elicitation, analysis, specification and vali-
dation of the requirements [1]. By their nature, the software requirements represent
complex knowledge that is extracted in the process of requirements engineering from
various sources, including many stakeholders, whose views on the developed product
can be diametrically opposed. In this regard, the requirements can be considered as a
result of alternative solutions in the field of determining functional and qualitative
characteristics of the software.

The decision making process in requirements engineering depends greatly on the
experience and intuition of the development team. In particular, the team members use
their experience in analyzing feasibility and determining complexity of the require-
ments, identifying inconsistencies and incompleteness in the requirements sets,

© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 205–213, 2019.
https://doi.org/10.1007/978-3-030-37487-7_17

http://orcid.org/0000-0001-6243-9308
http://orcid.org/0000-0002-8614-5934
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_17

forecasting implementation deadlines, assessing implementation risks, etc. Frequent
modifications of the requirements inherent to the agile development methodologies as a
reaction to changes in the business environment, requires permanent monitoring on the
consistency of the requirements specification and the actual priority of the software
product functions. Therefore, the ability to quickly identify and resolve conflicting
requirements, and also revise priorities to meet new requirements, is critical to the
development of the software development project.

The scientific discourse of recent years is characterized by a focus on the appli-
cation of ontological models to the software development process. Ontologies provide
a formal representation of knowledge and relationships between the concepts used in
the software development. Ontologies can be used for requirements analysis and
specification phases [2]. Ontologies allow to expand the possibilities of model-driven
requirements engineering (MDRE) through the use of machine reasoning. Over the past
few years ontology-driven requirements engineering (ODRE) has become a leading
trend [3].

The success of the ontological approach in the requirements engineering is deter-
mined by its capabilities, such as availability of the domain vocabulary, formulating
knowledge about the application area and its reuse, understanding the problem area,
improving communication between specialists from different fields [4]. Ontologies in
the requirements engineering are used to formalize the structure of documents for
working with the requirements, to represent the types of the requirements and
knowledge about the domain of the software product [5]. Ontologies also allow for-
mulating the rules (axioms) for reasoning about traceability, consistency and com-
pleteness of the requirements [6]. The ontological approach is useful for comparing
stakeholders’ points of view on different subsystems of a single information system [7].

Ontologies can be used to improve the requirements development [8] and require-
ments management [9] in agile software development process. Ontological approach to
the requirements engineering allows to improve the process of user story formulation
[10], to facilitate verification of compliance with the quality characteristics of individual
user stories and sets of user stories [11], as well as to obtain more accurate assessments
of the efforts required to implement user stories [12]. Summarizing the above, it should
be noted that most studies of the possibilities of using ontologies in requirements
engineering do not take into account the specifics of the project management life cycle
or the software development life cycle. To the best of our knowledge, very few papers
apply ontology-based approach to the agile project development. However, it seems that
the application of the ontology-base approach can be especially valuable for agile
development. It is precisely under conditions of permanent changes in the requirements
and their priorities inherent to the agile development that knowledge engineering
methods prove to be especially useful. Representation of knowledge about the project
requirements in the form of ontologies allows the use of machine reasoning methods that
can be used for discovering logical inconsistencies.

In the present paper we propose an ontology-based approach to the agile require-
ments engineering using a system of three ontologies. The first ontology is needed to
represent knowledge about the agile requirements engineering process, the second one
is designed to match natural language sentences with the requirements in order to
identify conflicts, the third ontology is used to accumulate the knowledge about the

206 M. Murtazina and T. Avdeenko

domain of the software product. The paper is organized as follows. In Sect. 2 we
provide a review of the research topic and the terminology used. In Sect. 3 we define
the ontology for agile requirements engineering process. In Sect. 4, we give conclu-
sions about the prospects of using this approach in agile software development.

2 Theoretical Background

2.1 Requirements Engineering in Agile Software Development

In agile development, the software requirements specification (SRS) is an integrated
requirements package which is maintained up to date. This package is not a single
physical document, but a logical structure filled with requirements for a software
product.

To date, the Scrum framework is the most popular among the agile project man-
agement framework. The basis of Scrum is the theory of empirical control. According
to this theory, the source of knowledge is experience, and the source of solutions is real
data. The basic scheme of the Scrum framework works is presented in Fig. 1.

According to Agile Manifesto [13], agile development encourages the creation of
the minimum amount of documentation necessary to manage and coordinate the project
participants work in developing a software product. When a software project is laun-
ched, it is not necessary to create a comprehensive requirements document. First, the
document “Vision and Scope” is developed. This document determines the stake-
holders vision on the software being developed in terms of the key needs and con-
straints under which the project will be implemented.

Next, work begins on filling the Product Backlog, which is a prioritized list of
currently existing product requirements, which is never complete. Product backlog
items can be divided into product features, defect, technical work, knowledge acqui-
sition by type of work [14]. Product feature is a unit of functionality of a software
product that satisfies a requirement. The remaining three types of product backlog items

Fig. 1. The basic scheme of the Scrum framework works

An Ontology-Based Approach to the Agile Requirements Engineering 207

are needed to plan work on eliminating defects, refactoring, database migration,
research necessary to implement the requirements of any type, etc.

Before a feature is scheduled for a sprint, it is necessary to decompose it into small
user stories, develop basic behavior scenarios, evaluate implementation efforts, identify
dependences on other user stories, and determine the priority. It is also necessary to
analyze low priority user stories. Perhaps these product backlog items became
important, or, on the contrary, so unimportant that they should be removed. This work
is done by the Product Owner together with the development team as part of the
Backlog grooming.

Backlog grooming (Product backlog refinement or grooming) is an activity
throughout the sprint aimed at revising the backlog of the product to prepare its product
for the next sprint planning. Backlog grooming helps ensure that the requirements will
be clarified, and user stories will be prepared for work in advance of planning for the
sprint. As a result of Backlog grooming, the top of the Product Backlog should include
user stories prepared for sprint. In this case, such user stories should be enough for 2–3
sprints. User stories should be clear to all team members, evaluated by the team, and
acceptance criteria should be indicated for the stories. The acceptance criteria can be
written in the form of simple sentences or behavior scenarios, in particular, in the form
of Gherkin scenarios.

2.2 User Stories

Initially, user stories were recorded on cards of small sizes. The card is not intended to
collect all information about the requirement. The card must contain several sentences
that reflect the essence of the requirement. The card usually indicates the identifier,
name, text, acceptance criteria and its assessment (priority, risk, evaluation of the
efforts, etc.). The user story should follow the following pattern:

As a <type of user X>, I want <some goal Y>, So that <some reason Z>
Nevertheless, it is easy to make a lot of mistakes when writing a user story. In this

connection, writing the user story text is one of the cornerstones of agile engineering
requirements. Suppose it is necessary to describe the functionality that will allow the
social network users to sell stickers sets that they can add to messages. In this case, the
user has a standard free stickers set. Suppose the story was formulated as follows: “As a
user, I want to add sticker sets from the paid collection, So that I can see new stickers in
my sticker sets”. In this user story, the type of user is not specified, there is no
understanding of what problem the user solves, what is his motive. If the system users
are divided into logged users and visitors, then it is probably a logged in user. And,
most likely, the developer will immediately understand this and without losing time on
figuring out the type of user will be able to implement the feature correctly. But if
logged-in users are in turn subdivided (for example, there are users with a premium
account that this service should already be included in the payment), the feature may be
implemented incorrectly, or the developer will spend time clarifying out who the user
is. In order to avoid mistakes in the first part of the user story, it is necessary to build a
user roles model and accept an agreement that if this is not about any user, but about a
certain group of users, this should be reflected in the user story. Further, the user story
inaccurately defined user action and absolutely not indicated his motivation. This user

208 M. Murtazina and T. Avdeenko

story is better stated in the following wording: “As a logged-in user, I want to buy new
stickers sets, So that I can decorate my messages with non-standard stickers”. Another
important point when writing stories is the use of possessive pronouns, the omission of
which can drastically change the meaning of the requirement.

Despite the huge popularity, the number of ways to assess the quality of user stories
is small. Many existing approaches use the INVEST model proposed in 2003 by Bill
Wake. According to this model, user history should be: Independent, Negotiable,
Valuable, Estimable, Small, Testable [15].

The aim of using the Independent criterion is to keep the number of dependencies
on other user stories to a minimum. The presence of dependencies makes it difficult to
prioritize and, accordingly, planning a sprint. The details of user stories should also be
negotiable. According to the Negotiable criterion, the user story text should contain
information only about what it needs to be implemented for. A typical example of a
breach of Negotiable criterion is when a Product Owner tells a team how to implement
a user story. According to the Valuable criterion, user stories should be valuable to the
customer or end user, or both. According to the Estimable criterion, the user story must
be clear to the development team so that the team can determine the necessary effort. If
a team cannot estimate user story, then the user story is either too large, or ambiguously
formulated, or the team does not have enough knowledge, for example, about some
technology. In the first case, it is necessary to decompose the user story, in the second -
to eliminate the ambiguity of the wording, in the third - to conduct research in order to
obtain the necessary knowledge. When sprint planning, it is necessary that the user
stories that are considered to be candidates for implementation have a small size so that
several user stories can be planned for the sprint. Testable criterion means that each
acceptance criteria must have a clear pass or fail result.

The development of a user stories list for the project can be preceded by the
construction of the Feature tree [16]. Function trees are a good way to organize project
information. The Product Owner begins building the Feature tree in Sprint 0. The start
of the Feature tree can be generated based on information from the document “Vision
and Scope”. Since all product features are usually undefined during sprint 0, the
Feature tree is constantly evolving. Further, the items of the Feature tree are added to
the Product backlog, where they are supplemented with user stories.

3 OWL Ontology for Agile Requirements Engineering

In this paper, it is proposed to use the OWL ontology system to support the require-
ments engineering. The first ontology contains knowledge of requirements engineering
within the framework of an agile approach including knowledge about types of
requirements. The second ontology is a model for identifying conflicting requirements.
The third is a model that includes a software product feature tree, a user roles model
and the connections between them.

In Fig. 2 shows the taxonomy of the upper level classes for ontology “Guide”, and
also object properties reflecting the relations between ontology classes.

An Ontology-Based Approach to the Agile Requirements Engineering 209

The ontology “Guide” consists of classes corresponding to events, roles and arte-
facts of agile development. The instances (individuals) of the ontology classes are the
software requirements and their artefacts, as well as information about the development
team and stakeholders. Object properties reflect relations that can be established
between individuals. For example, to specify the relationship “the requirement refines
another requirement” the object properties “refines” are used. This object property, in
turn, includes as subproperties that can be established between different classes (or
individuals) of requirements artefacts which are also requirements by their nature (for
example, the behavior scenario refines user story). Object property “traceFrom” is
intended to define of bottom-up tracing links. For the object property “traceFrom” and
its subproperties, inverse properties are given through the “Inverse Of” relation-
ship. This allows the top-down tracing of the “traceTo” relationship. Object property
“conflicts” enables specifying that the requirements conflict with each other. This can
be done directly in this ontology or transferred from the additional ontology “Detection
of conflicts in the requirements”. In Fig. 3 lists the objects properties for this ontology
and their domains and ranges.

Individuals of the ontology “Detection of conflicts in the requirements” are elements
extracted from the requirements text. The sentence that expresses a requirement,
regardless of the technique used for recording requirements, can be divided into main
parts: the subject, the action, and the object to which the action of the subject is directed.
To identify conflicts between user stories need to extract from user story text the func-
tional user role, the action and the object onwhich the action is directed. Object properties
“sameAsActor”, “sameAsAction” and “sameAsObject” are set between instances of the
corresponding classes if same name is used for the elements of two requirements or the
full name in one and an abbreviation in the second. Object properties “isaActor” and
“isaObject” are used to establish hierarchical relations. For example, a seniormanager is a
manager. Object properties “antonymsAction” and “antonymsObject” are set between
instances of the corresponding classes if they have the opposite value (for example, “my
comment about the product” and “someone else’s comment about the product”). Object
properties “partOfAction” and “partOfObject” are set between instances of the respective
classes if one is part of the other. Object properties “synonymsActor”, “synonymsAction”
and “synonymsObject” are set if the values of the corresponding requirements elements

Fig. 2. The taxonomy of the upper level classes for ontology “Guide” and object properties

210 M. Murtazina and T. Avdeenko

have a synonymous value. In all other cases it is considered that the corresponding
elements of the requirements are bound by object property “no-relationActor”, “no-
relationAction” or “no-relationObject”.

The following production rules are used to determine the type of relations between
the two requirements:

If ObjectProperty_between_class_instances (Actor1, Actor2)
AND ObjectProperty_between_class_instances (Action1, Action2)
AND ObjectProperty_between_class_instances (Object1, Object2)
Then Object properties_between_class_instances (Requirement1, Requirement2).

Relations between actors, actions and objects can be established on the basis of
information from the domain ontology as well as using linguistic ontologies, such as
WordNet.

To illustrate the idea of the proposed approach to the formation of a software
product domain model in the form of an OWL ontology consider a fragment of
ontology for an online store (cм. Fig. 4).

When building the software product domain ontology it is necessary to analyze the
user roles (class “User”) and also which software product sections users can work with
(class “Office”) and build a Feature tree (class “Features”). Further, it should be
determined which sections can be used by certain users, and also indicate which
features are associated with these sections. Instances of the class “Object” are objects
that the user works with (for example, a sales report or a search string). Instances of the
class “Action” are verbs that are used to describe user actions. Actions, respectively,
can be divided into four operations: reading, adding, editing, deleting. In this example,
users are divided into groups depending on the two properties “isLogin” and
“isRegistered”. The knowledge of which user office is owned is also used to assign a
user to a class.

Fig. 3. Classes and object properties for ontology «Detection of conflicts in the requirements»

An Ontology-Based Approach to the Agile Requirements Engineering 211

A list of the features available in office is indicated for each class of the corre-
sponding office. Subclasses of personal offices automatically inherit features set for the
classes in which they belong.

4 Conclusion and Future Work

The OWL ontology system containing three ontologies was developed based on the
analysis of the results of ontology application in requirements engineering. The first
ontology accumulates knowledge about the development of software products in a
agile environment. The second one contains knowledge about the relations between the
elements of sentence with a requirement (role, action, object). This allows analyzing
pairs of requirements in order to identify conflicts. The third one contains knowledge of
the software product domain.

We have developed a model through which enables solving typical problems for
requirements engineering in agile software development. These include the formation
and refinement of the Product backlog, requirements tracing and the conflicting
requirements identification. The next stage of our research will include the develop-
ment of the algorithm for prioritizing and re-prioritizing requirements based on the
business value of the product backlog item, assessment of the efforts to requirements
implement and risks, as well as the dependencies between product backlog items that
are recorded in the ontology.

Acknowledgments. The reported study was funded by Russian Ministry of Education and
Science, according to the research project No. 2.2327.2017/4.6.

Fig. 4. Ontology «OnlineStore»

212 M. Murtazina and T. Avdeenko

References

1. ISO/IEC. Software Engineering - Guide to the software engineering body of knowledge
(SWEBOK). 2nd edn. ISO/IEC TR 19759 (2015)

2. Bhatia, M.P.S., Kumar, A., Beniwal R.: Ontologies for software engineering: past, present
and future. Ind. J. Sci. Technol. 9(9). http://www.indjst.org/index.php/indjst/article/view/
71384/67982. Accessed 02 Feb 2019

3. Siegemund, K.: Contributions to ontology-driven requirements engineering: dissertation to
obtain the academic degree doctoral engineer (Dr.-Ing.). Technischen Universität Dresden,
Dresden (2014)

4. Valaski, J., Reinehr, S., Malucelli A.: Which roles ontologies play on software requirements
engineering. In: International Conference on Software Engineering Research and Practice,
pp. 24–30. CSREA Press (2016)

5. Castañeda, V., Ballejos, L., Caliusco, M.L., Galli, M.R.: The use of ontologies in
requirements engineering. Glob. J. Res. Eng. 10(6), 2–8 (2010)

6. Goknil, A., Kurtev, I., van den Berg, K.: A metamodeling approach for reasoning about
requirements. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol.
5095, pp. 310–325. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69100-
6_21

7. Assawamekin, N., Sunetnanta, T., Pluempitiwiriyawej, C.: Ontology-based multi perspec-
tive requirements traceability framework. Knowl. Inf. Syst. 25(3), 493–522 (2010)

8. Sitthithanasakul, S., Choosri, N.: Using ontology to enhance requirement engineering in
agile software process. In: 2016 10th International Conference on Software, Knowledge,
Information Management and Applications, pp. 181–186. IEEE (2017)

9. Avdeenko, T., Murtazina, M.: Intelligent support of requirements management in agile
environment. In: Borangiu, T., Trentesaux, D., Thomas, A., Cavalieri, S. (eds.) SOHOMA
2018. SCI, vol. 803, pp. 97–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
03003-2_7

10. Thamrongchote, C., Vatanawood, W.: Business process ontology for defining user story. In:
15th International Conference on Computer and Information Science. IEEE, Okayama
(2016)

11. Murtazina, M.S., Avdeenko, T.V.: Ontology-based approach to the requirements engineer-
ing in agile environment. In: 2018 XIV International Scientific-Technical Conference on
Actual Problems of Electronics Instrument Engineering (APEIE), pp. 496–501. IEEE,
Novosibirsk (2018)

12. Adnan, M., Afzal, M.: Ontology based multiagent effort estimation system for scrum agile
method. IEEE Access 5, 25993–26005 (2017)

13. Agile Manifesto. https://agilemanifesto.org/. Accessed 02 Feb 2019
14. Rubin, K.S.: Essential Scrum: A Practical Guide to the Most Popular Agile Process.

Addison-Wesley, Boston (2013)
15. Wake, B.: INVEST in Good Stories, and SMART Tasks. https://xp123.com/articles/invest-

in-good-stories-and-smart-tasks/. Accessed 02 Feb 2019
16. Babar, M.A., Brown, A.W., Mistrik, I.: Agile Software Architecture: Aligning Agile

Processes and Software Architectures, 1st edn. Elsevier, Waltham (2013)

An Ontology-Based Approach to the Agile Requirements Engineering 213

http://www.indjst.org/index.php/indjst/article/view/71384/67982
http://www.indjst.org/index.php/indjst/article/view/71384/67982
http://dx.doi.org/10.1007/978-3-540-69100-6_21
http://dx.doi.org/10.1007/978-3-540-69100-6_21
http://dx.doi.org/10.1007/978-3-030-03003-2_7
http://dx.doi.org/10.1007/978-3-030-03003-2_7
https://agilemanifesto.org/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Effective Scheduling of Strict Periodic
Task Sets with Given Permissible Periods

in RTOS

Sophia A. Zelenova1 and Sergey V. Zelenov1,2(B)

1 Ivannikov Institute for System Programming of the Russian Academy of Sciences
(ISP RAS), 25, Alexander Solzhenitsyn st., Moscow 109004, Russia

{sophia,zelenov}@ispras.ru
2 National Research University Higher School of Economics (HSE),

20, Myasnitskaya Ulitsa, Moscow 101000, Russia
szelenov@hse.ru

http://www.ispras.ru/, https://www.hse.ru/

Abstract. In the paper, we suggest new approach to schedulability
problem for strict periodic tasks (a periodic task is strict if it must
be started in equal intervals of time – task’s period). Given permissi-
ble tasks’ periods, our approach allows to obtain quickly all schedulable
sets of tasks with such periods and to build immediately a conflict-free
schedule for each obtained set. The approach is based on mathematical
methods of graph theory and number theory. We illustrate the approach
by a number of examples and present current practical results.

Keywords: Scheduling · Real-time system · Strict periodic task

1 Introduction

Real-time systems are complex and promissing area of research. The such kind
of system requires distributed computing for real relation representation. Thus
it becomes necessary to have different kind of scheduling of task processing.

Now we recall some terms.
Suppose processor time is divided into minimal parts (scheduler quantums)

that are numerated. We refer to such a part as a point.
A point number t is called starting for a task if the task processing starts

at this point. The processing points different from the starting point are called
additional. A task duration is the number of all processing points for the task.

A task is called periodic, if its processing is repeated at equal time intervals.
Length of time of one such interval is called a period p of the task. A periodic task
is called strict periodic, if its adjacent starting points are at a distance exactly
equal to the task period. Besides, additional points related to the same processing
must be processed during the period following the corresponding starting point.

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 214–222, 2019.
https://doi.org/10.1007/978-3-030-37487-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_18&domain=pdf
http://orcid.org/0000-0003-0446-0541
https://doi.org/10.1007/978-3-030-37487-7_18

Effective Scheduling of Strict Periodic Task Sets 215

In this paper, we discuss static1 scheduling of strictly periodic preemptive2

tasks.
There are two simple considerations used to find conflict-free schedules.
The first is CPU usage. Let p1, ..., pk be periods of periodic tasks executed

on a processor. Let li be the worst case execution time for one instance of the
task with period pi. Then CPU usage should not be more than 100% [1]:

l1
p1

+ ... +
lk
pk

≤ 1. (1)

The second is the necessary condition for conflict-free scheduling. Let p1 and
p2 be periods of two tasks. And let t1 and t2 be starting points of the tasks. If
t1 − t2 is divisible by the greatest common divisor (GCD) of p1 and p2 without
remainder, then the schedule has conflict [2].

The standard way to find a schedule for a task system consists of two steps.
the first step is to place the starting points. The second step is to place the
additional points. These two actions have to be considered separately, because
it is not clear how to distribute the starting and additional points at the same
time, and whether it is possible in principle.

In the existing works, scheduling algorithms are based on the exhaustive
search of suitable points [3–5]. But exhaustive search evokes the problem of
combinatorial explosion. The available methods of limiting the search are unsat-
isfactory, therefore, it is not uncommon when a scheduling algorithm fails to find
a solution even though it exists.

We propose a different approach to the problem described above. This app-
roach is based on our study of numerical properties of period systems [6].

Our research concerns only the first step of scheduling, namely, the distribu-
tion of starting points. Therefore, in the rest of the paper, the term “schedule”
means only the location of starting points (thus, we mean all durations li = 1 for
all tasks). In the paper, we propose an effective algorithm that enumerates all
schedulable task sets and builds starting points for them in an acceptable time.
We describe an outline of this algorithm and present some experimental results.

2 Preliminaries

Recall that G[S] denotes the induced subgraph of a graph G for vertex subset S.
Let D be a set of GCD of task period pairs. And let H be a closure of D

with respect to the operation of taking the greatest common divisor. Denote by
GH a directed graph constructed as follows. Vertices of GH are elements of H
and there is an edge from a vertice d1 to a vertice d2 if d2 is divisible by d1 and
there is no any d3 such, that d3 is divisible by d1 and d2 is divisible by d3. The
vertice d1 is called a parent and d2 is called a child.

1 Scheduling is called static, if the schedule is built before running the system.
2 Task is called preemptive, if it may be interrupted by another task.

216 S. A. Zelenova and S. V. Zelenov

Now, for all d ∈ H, denote by Gd an undirected graph constructed as follows.
Vertices of Gd are all task periods and there is an edge between two vertices if
the periods have GCD equal to d.

In [6] we prove the following criterion for the existence of a conflict-free
schedule:

Theorem 1. The system of tasks with periods p1, p2, . . . , pk has a conflict-free
schedule if and only if

1. For all d ∈ GH , graph Gd have the proper coloring involving at most of d
colors.

2. Colors in different Gd graphs are “inherited” with respect to GH . This means
that two vertices having different colors in Gparent for a parent node from GH

cannot have the same color in Gchild for a child node from GH .
3. For any d ∈ GH with parents di ∈ GH , any period subset, which is colored by

the same color in each Gdi
, is colored by at most m(d) = d

LCM(di)
colors in

Gd. The number m(d) is called multiplier for a divider d.

If graph GH is a tree, then the condition 3 of Theorem 1 is much simpler,
and all conditions of Theorem 1 may be presented briefly—see the Table 1.

Table 1. Conditions of Theorem 1 when graph GH is a tree

Gparent Gchild

1. Properly colored with � parent
colors

Properly colored with � child
colors

2. Some vertices u and v are assigned
to different colors

⇒ u and v are assigned to different
colors

3. A subset S of vertices is assigned
to the same color

⇒ S is colored with
� m(child) = child

parent
colors

Consider two examples of application of Theorem 1.

Example 1. This example (Fig. 1) shows the case when the construction of a
conflict-free schedule is impossible due to a violation of the third condition of
Theorem 1.

Let 6, 12, 14, 18, and 30 be periods of tasks.
Graph GH consists of two vertices: 2 and 6 (Fig. 1a).
In order to properly color G2, the set S = {6, 12, 18, 30} must be assigned to

the same color in G2 (Fig. 1b). Since G6[S] is complete subgraph, then in order
to properly color G6, all vertices of the set S must be assigned to different colors
in G6 (Fig. 1c). But m(6) = 6

2 = 3, thus, by the condition 3 of Theorem 1, there
are only three colors for coloring four elements of S.

Effective Scheduling of Strict Periodic Task Sets 217

Fig. 1. A violation of the third condition of Theorem 1.

Fig. 2. Conflict-free scheduling using Theorem 1.

Example 2. This example (Fig. 2) shows a “positive” application of Theorem 1.
Let 12, 15, 18, and 24 be periods of tasks.
Graph GH consists of three vertices: 3, 6, and 12 (Fig. 2.a).
Graph G3 may be properly colored as follows: we assign vertex 15 a color c3,1,

and we assign vertices 12, 18, and 24 a color c3,2 (Fig. 2b). Thus, start point for
15 has some reminder (for example, 1) modulo 3, while start points for 12, 18,
and 24 have some another reminder (for example, 0) modulo 3 (Table 2, second
column).

Table 2. Reminders and start points

Period Reminder modulo ... Start point

3 6 12

12 0 0 0 0

15 1 1 1 1

18 0 3 3 3

24 0 0 6 6

Consider graph G6. Since m(6) = 6
3 = 2, then there are two colors for coloring

12, 18, and 24 in graph G6. Thus, we assign vertex 18 a color c6,1, and we assign
vertices 12 and 24 a color c6,2 (Fig. 2c). Corresponding reminders modulo 6 are
shown in Table 2, third column. Note that each chosen reminder modulo 6 has
the reminder modulo 3 previously chosen during analysis of graph G3.

218 S. A. Zelenova and S. V. Zelenov

Consider graph G12. Since m(12) = 12
6 = 2, then there are two colors for

coloring two vertices 12 and 24 in graph G12 (Fig. 2d). Corresponding reminders
modulo 12 are shown in Table 2, fourth column. Again, note that each chosen
reminder modulo 12 has the reminder modulo 6 previously chosen during analysis
of graph G6.

As a result, for all chosen reminders, one can find corresponding start points
for all tasks (Table 2, last column).

Other examples of application of Theorem 1 may be found in [7].

3 Motivation and Problem Statement

In real conditions, the task period depends on technical characteristics of devices
used. For example, it may correspond to the frequency of signals that are sent
or received by the task. And these characteristics are not diverse. Table 3 shows
examples of widely used task periods in industrial RTOS.

So, if the number of different permissible periods is not so large, is it possible
to generate all good task period sets? (“Good” means that there is a conflict-free
location of the starting points.)

Table 3. Frequencies and periods. One second contains 2000 points.

Hz Period Hz Period Hz Period

400 5 60 32–35 30 60–65

200 10 50 40 20 100

100 20 40 50 10 200

Let p1 < p2 < ... < pk be all permissible periods. Suppose there are n1 tasks
with period p1, n2 tasks with period p2, ..., nk tasks with period pk. The tuple
(n1, n2, ..., nk) is called correct if it satisfies the condition (1) of the CPU usage.
We say that the correct tuple (n1, n2, ..., nk) is a solution if there is a conflict-
free location of starting points for tasks with such periods. The solutions can
be partially ordered as follows. We say that (n(1)

1 , ..., n
(1)
k) ≤ (n(1)

1 , ..., n
(1)
k) if

n
(1)
i ≤ n

(2)
i for all i = 1, ..., k.

It turns out that Theorem 1 provides means to construct an algorithm for
generating all maximal solutions. (“Maximal” means maximal with respect to
the introduced order.) Obviously, for any solution τ , there exists a maximal
solution τ̃ , such that τ ≤ τ̃ . So, if we have all maximal solutions, then we can
construct all solutions.

4 Algorithm Sketch

In the most general form, the generation algorithm is as follows.

Effective Scheduling of Strict Periodic Task Sets 219

Loop: divider d in GH

If d is root Then
Loop: iterate valid assignments of colors to periods pi

Color set contains d elements, which should be assigned to the periods
(i.e. vertices of the graph Gd) taking into account the conditions of
Theorem 1. Important: several periods can be assigned to the same
color if such assignment does not violate the proper coloring condition.

End of loop: iterate valid assignments of colors to periods pi
Else

Loop: iterate valid assignments of colors to periods pi
In this case, it is necessary to take into account the assignment of col-
ors constructed for all parents of the divider d. Colors must be inher-
itors (w.r.t condition 2 of Theorem 1) of the parent colors. If there
are several parents, the inheritance must be agreed with all parents.
Other conditions of Theorem 1 must be satisfied as well.

End of loop: iterate valid assignments of colors to periods pi
End of loop: divider d in GH

Note that the generator assignes all colors, so we do get the maximal solu-
tions. In addition, the information obtained during the construction of the max-
imal tuple makes it possible to build immediately a conflict-free schedule for this
tuple.

Illustrate presented algorithm by the following example.

Example 3. Let 8 and 12 be all permissible periods of tasks.
Given a period p, denote by S(p) a set of all vertices for p in Gd.
Graph GH consists of three vertices: 4, 8, and 12 (Fig. 3a).

Fig. 3. Graphs GH and Gd for generation algorithm when periods are 8 and 12

Graph G4 is complete bipartite with two disjoint sets of vertices S(8) and
S(12) (Fig. 3b). By condition 1 of Theorem 1, graph G4 must be properly colored
with at most 4 colors. Suppose that S(8) is colored using k colors. Then S(12) is
colored using other 4 − k colors.

Consider graph G8. Subgraph G8[S(8)] is complete, and all vertices of S(12)

are isolated (Fig. 3c). Thus, all vertices of S(8) must be assigned to different col-
ors, and all vertices of S(12) may be assigned to 4−k colors used during coloring

220 S. A. Zelenova and S. V. Zelenov

of G4 (we can not assign all vertices of S(12) to the same color, since condition
2 of Theorem 1). Since m(8) = 8

4 = 2, then, by condition 3 of Theorem 1, there
are at most 2k colors for coloring S(8). So, we have max |S(8)| = 2k.

Consider graph G12. Subgraph G12[S(12)] is complete, and all vertices of
S(8) are isolated (Fig. 3d). Similarly, since m(12) = 12

4 = 3, then we have
max |S(12)| = 3(4 − k).

In this simple example, loops “iterate valid assignments of colors to periods
pi” work as follows. For d = 4 (root), our algorithm iterates valid values of k.
For d = 8 and d = 12, we have trivial iteration of the only assignment.

On the basis of the presented algorithm scheme, we have developed a genera-
tor of the solution set. Our implementation generates the desired set of maximal
solutions in an acceptable time. The results of the experiments are given below
in Sect. 6.

5 Application of the Generator

Now let’s discuss how to use such a generator in practice.
A generated set of solutions gives an answer to the first question of scheduling:

is it possible to build a conflict-free starting points for a given set of tasks. In
addition, we can get a schedule for starting points.

Complete information about available solutions allows, for example, to auto-
matically assign some given tasks to several processors without any risk of choos-
ing a non-schedulable combination of periods for each processor.

Fig. 4. A possible architecture of the automatic scheduler.

An automatic scheduler may include the following components (see Fig. 4):

– Database which includes all generated solutions for the given period set and
the schedules for these solutions.

– A query processor for standard database queries.
– Analyzer that builds a task processing schedule, in accordance with the user-

specified parameters.

Effective Scheduling of Strict Periodic Task Sets 221

Table 4. The number of maximal solutions for experimental period sets

Period set GH Time The number of
maximal solutions

The number of
maximal correct
tuples

10, 20, 35, 40, 80 5a 0,5 s 656 7 456

10, 20, 40, 50, 100, 200 5b 32min 17 s 176 604 188 844

10, 64, 20, 32, 40, 50,
100, 200

5c 42min 34 s 552 610 6 108 197

10, 65, 20, 35, 40, 100,
200, 400, 1000

5d 16min 5 s 702 264 1 263 391 852

6 Experimental Results

We conducted several experiments to generate sets of solutions for different
period sets taken from realistic scenarios. Corresponding graphs GH have dif-
ferent structural complexity (see Fig. 5): Fig. 5a and b shows graphs GH with
simple structure, while Fig. 5c and d shows graphs GH with more complicated
structure. For all produced solutions, schedules were generated and tested for
compliance with the necessary condition for conflict-free schedules (see Sect. 1).

Fig. 5. Graphs GH for experimental period sets.

Table 4 shows the number of maximal solutions for experimental period sets.
The last column contains the number of maximal correct tuples for each period
set. This characteristic shows that the structure of the graph GH is more impor-
tant for the number of solutions, then quantitative indicators of period set is.
For example, consider two last period sets. One can see that two large periods
(400 and 1000) dramatically increase the number of maximal correct tuples, but
have little effect on the number of solutions.

Table 4 shows also that the presence of additional cross-links in GH increases
the generation time, apparently complicating generation process, while the tree
structure of the graph GH simplifies and speeds up the generation.

222 S. A. Zelenova and S. V. Zelenov

7 Conclusion

In this paper, we studied the problem of effective finding the starting execution
points for scheduling strictly periodic tasks with given permissible periods. The
main innovation is: instead of solving partial schedulability problem for each
set of tasks, we suggest to enumerate all schedulable sets of tasks with given
permissible periods. Based on previously obtained theoretical results, we propose
a corresponding algorithm. Our implementation of the algorithm completes in
an acceptable time. The algorithm allows to build a database of schedulable sets
of tasks with all data necessary for schedule construction. Then one can use this
database to check any set of tasks against schedulability condition and to obtain
schedule immediately.

References

1. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20, 46–61 (1973)

2. Yomsi, P.M., Sorel, Y.: Non-schedulability conditions for off-line scheduling of real-
time systems subject to precedence and strict periodicity constraints. In: Proceed-
ings of the 11th IEEE International Conference on Emerging Technologies and Fac-
tory Automation, ETFA 2006, Prague (2006)

3. Yomsi, P.M., Sorel, Y.: Schedulability analysis for non necessarily harmonic real-
time systems with precedence and strict periodicity constraints using the exact
number of preemptions and no idle time. In: Proceedings of the 4th Multidisciplinary
International Scheduling Conference, MISTA 2009, Dublin, Ireland (2009)

4. Zelenov, S.V.: Scheduling of strictly periodic tasks in real-time systems. Trudy ISP
RAN. Proc. ISP RAS 20, 113–122 (2011). (in Russian)

5. Tretyakov, A.V.: Automation of scheduling for periodic real-time systems. Trudy
ISP RAN. Proc. ISP RAS 22, 375–400 (2012). (in Russian)

6. Zelenova, S.A., Zelenov, S.V.: Non-conflict scheduling criterion for strict periodic
tasks. Trudy ISP RAN. Proc. ISP RAS 29(6), 183–202 (2017). https://doi.org/10.
15514/ISPRAS-2017-29(6)-10. (in Russian)

7. Zelenova, S.A., Zelenov, S.V.: Schedulability analysis for strictly periodic tasks in
RTOS. Program. Comput. Softw. 44(3), 159–169 (2018). https://doi.org/10.1134/
S0361768818030076

https://doi.org/10.15514/ISPRAS-2017-29(6)-10
https://doi.org/10.15514/ISPRAS-2017-29(6)-10
https://doi.org/10.1134/S0361768818030076
https://doi.org/10.1134/S0361768818030076

Verification and Validation of Semantic
Annotations

Oleksandra Panasiuk(B), Omar Holzknecht(B), Umutcan Şimşek(B),
Elias Kärle, and Dieter Fensel

University of Innsbruck, Technikerstrasse 21a, 6020 Innsbruck, Austria
{oleksandra.panasiuk,omar.holzknecht,umutcan.simsek,elias.karle,

dieter.fensel}@sti2.at

Abstract. In this paper, we propose a framework to perform verifica-
tion and validation of semantically annotated data. The annotations,
extracted from websites, are verified against the schema.org vocabu-
lary and Domain Specifications to ensure the syntactic correctness and
completeness of the annotations. The Domain Specifications allow for
checking of the compliance of annotations against corresponding domain-
specific constraints. The validation mechanism will detect errors and
inconsistencies between the content of the analyzed schema.org anno-
tations and the content of the web pages where the annotations were
found.

Keywords: Verification · Validation · Semantic annotation ·
Schema.org

1 Introduction

The introduction of the Semantic Web [3] changed the way content, data and
services are published and consumed online fundamentally. For the first time,
data in websites becomes not only machine-readable, but also machine under-
standable and interpretable. The semantic description of resources is driving
the development of a new generation of applications, like intelligent personal
assistants and chatbots, and the development of knowledge graphs and artifi-
cial intelligence applications. The use of semantic annotations was accelerated
by the introduction of schema.org [8]. Schema.org was launched by the search
engines Bing, Google, Yahoo! and Yandex in 2011. It has since become a de-facto
standard for annotating data on the web [15]. The schema.org vocabulary, seri-
alized with Microdata, RDFa, or JSON-LD, is used to mark up website content.
Schema.org is the most widespread vocabulary on the web, and is used on more
than a quarter of web pages [9,14].

Even though studies have shown that the amount of semantically annotated
websites are growing rapidly, there are still shortcomings when it comes to the
quality of annotations [12,17]. Also the analyses in [1,10] underline the inconsis-
tencies and syntactic and semantic errors in semantic annotations. The lack
c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 223–231, 2019.
https://doi.org/10.1007/978-3-030-37487-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_19

224 O. Panasiuk et al.

of completeness and correctness of the semantic annotations makes content
unreachable for automated agents, causes incorrect appearances in knowledge
graphs and search results, or makes crawling and reasoning less effective for
building applications on top of semantic annotations. These errors may be caused
by missing guidelines, insufficient expertise and technical or human errors. Data
quality is a critical aspect for efficient knowledge representation and processing.
Therefore, it is important to define methods and techniques for semantic data
verification and validation, and to develop tools which will make this process
efficient, tangible and understandable, also for non-technical users.

In this paper, we extend our previous work [21], where we introduced a
Domain Specification, and present an approach for verification and validation
of semantic annotations. A Domain Specification (DS) is a design pattern for
semantic annotations; an extended subset of types, properties, and ranges from
schema.org. The semantify.it Evaluator1 is a developed tool that allows the ver-
ification and validation of schema.org annotations which are collected from web
pages. Those annotations can be verified against the schema.org vocabulary and
Domain Specifications. The verification against Domain Specifications allows
for the checking of the compliance of annotations against corresponding domain-
specific constraints. The validation approach extends the functionality of the tool
by detecting the consistency errors between semantic annotations and annotated
content.

The remainder of this paper is structured as follows: Sect. 2 describes the
verification approach of semantic annotations. Section 3 describes the validation
approach. Section 4 concludes our work and describes future work.

2 Verification

In this section we discuss the verification process of semantic annotations accord-
ing to schema.org and Domain Specifications. The section is structured as
follows: Sect. 2.1 gives the definition of the semantic annotation verification,
Sect. 2.2 describes related work, Sect. 2.3 discusses our approach, and Sect. 2.4
describes the evaluation method.

2.1 Definition

The verification process of semantic annotations consists of two parts, namely,
(I) checking the conformance with the schema.org vocabulary, and (II) checking
the compliance with an appropriate Domain Specification. While the first verifi-
cation step ensures that the annotation uses proper vocabulary terms defined in
schema.org and its extensions, the second step ensures that the annotation is in
compliance with the domain-specific constraints defined in a corresponding DS.

1 https://semantify.it/evaluator.

https://semantify.it/evaluator

Verification and Validation of Semantic Annotations 225

2.2 Related Work

In this section, we refer to the existing approaches and tools to verify structured
data. There are tools for verifying schema.org annotations, such as the Google
Structured Data Testing tool2, the Google Email Markup Tester3, the Yandex
Structured Data Validator4, and the Bing Markup Validator5. They verify anno-
tations of web pages that use Microdata, Microformats, RDFa, or JSON-LD as
markup formats against schema.org. But these tools do not provide the check of
completeness and correctness. For example, they can allow one to have empty
range values, redundancy of information, or semantic consistency issues (e.g. the
end day of the event is earlier than the start day). In [7] SPARQL and SPIN
are used for constraint formulation and data quality check. The use of SPARQL
and SPIN query template sets allows the identification of syntax errors, missing
values, unique value violations, out of range values, and functional dependency
violations. The Shape Expression (ShEx) definition language [20] allows RDF
verification6 through the declaration of constraints. In [4] the authors define a
schema formalism for describing the topology of an RDF graph that uses reg-
ular bag expressions (RBEs) to define constraints. In [5] the authors described
the semantics of Shapes Schemas for RDF, and presented two algorithms for
the verification of an RDF graph against a Shapes Schema. The Shapes Con-
straint Language7 (SHACL) is a language for formulating structural constraints
on RDF graphs. SHACL allows us to define constraints targeting specific nodes
in a data graph based on their type, identifier, or a SPARQL query. The existing
approaches can be adapted for our needs but not fully, as they are developed for
RDF graph verification and not for schema.org annotations in particular.

2.3 Our Approach

To enable the verification of semantic annotations according to the schema.org
vocabulary and to Domain Specifications, we developed a tool that executes a
corresponding verification algorithm. This tool takes as inputs the schema.org
annotation to verify and a DS that corresponds to the domain of the annotation.
The outcome of this verification process is provided in a formalized, structured
format, to enable the further machine processing of the verification result.

The verification algorithm consists of two parts, the first checks the general
compliance of the input annotation with the schema.org vocabulary, while the
latter checks the domain-specific compliance of the input annotation with the
given Domain Specification. The following objectives are given for the conformity
verification of the input annotation according to the schema.org vocabulary:

2 https://search.google.com/structured-data/testing-tool/.
3 https://www.google.com/webmasters/markup-tester/.
4 https://webmaster.yandex.com/tools/microtest/.
5 https://www.bing.com/toolbox/markup-validator.
6 Authors use term “validation” in their paper due to content definition.
7 https://www.w3.org/TR/shacl-ucr/.

https://search.google.com/structured-data/testing-tool/
https://www.google.com/webmasters/markup-tester/
https://webmaster.yandex.com/tools/microtest/
https://www.bing.com/toolbox/markup-validator
https://www.w3.org/TR/shacl-ucr/

226 O. Panasiuk et al.

1. The correct usage of serialization formats allowed by schema.org, hence RDFa,
Microdata, or JSON-LD.

2. The correct usage of vocabulary terms from schema.org in the annotations,
including types, properties, enumerations, and literals (data types).

3. The correct usage of vocabulary relationships from schema.org in the annota-
tions, hence, the compliance with domain and range definitions for properties.

The domain-specific verification of the input annotation is enabled through
the use of Domain Specifications8, e.g. DSs for annotation of tourism domain and
GeoData [18,19]. DSs have a standardized data model. This data model consists
of the possible specification nodes with corresponding attributes that can be used
to create a DS document (e.g. specification nodes for types, properties, ranges,
etc.). A DS document is constructed by the recursive selection of these gram-
mar nodes, which, as a result, form a specific syntax (structure) that has to be
satisfied by the verified annotations [11]. Keywords in these specification nodes
allow the definition of additional constraints (e.g. “multipleValuesAllowed” or
“isOptional” for property nodes). In our approach, the verification algorithm has
to ensure that the input annotation is in compliance with the domain-specific
constraints defined by the input DS. In order to achieve this, the verification
tool has to be able to understand the DS data model, the possible constraint
definitions, and to check if verified annotations are in compliance with them.

2.4 Evaluation

We implement our approach in the semantify.it Evaluator9. The tool provides a
verification report with detailed information about detected errors according to
the schema.org vocabulary (see Fig. 1) and Domain Specifications (see Fig. 2).

Fig. 1. Schema.org verification

Besides the verification result itself, the report includes details about the
detected errors, e.g. error codes (ID of the error type), error titles, error severity

8 List of available Domain Specifications: https://semantify.it/domainSpecifications/
public.

9 https://semantify.it/evaluator.

https://semantify.it/domainSpecifications/public
https://semantify.it/domainSpecifications/public
https://semantify.it/evaluator

Verification and Validation of Semantic Annotations 227

Fig. 2. Domain specification verification. Verification report

levels, error paths (where within the annotation the error occurred), and textual
descriptions of the errors. The implementation itself can be evaluated through
unit tests in terms of a correct functionality (correctness) and the implementa-
tion of all possible constraint possibilities of the Domain Specification vocabulary
(completeness). This can be achieved by comparing the structured representa-
tion of the result, namely the JSON file produced by the verification algorithm,
which is used to generate a human-readable verification report for the user (see
Fig. 3), with the expected verification report outcome specified in the test cases
for predefined annotation-Domain Specification pairs.

Fig. 3. semantify.it Evaluator. Verification and validation report

A formal proof of the correctness and completeness of our implemented algo-
rithm is rather straightforward given the simplicity of our current knowledge

228 O. Panasiuk et al.

representation formalism. In our ongoing work10, we develop a richer constraint
language which will require more detailed analysis of these issues.

3 Validation

Search engines may penalize the publisher of structured data if their annotations
include content that is invisible to users, and/or markup irrelevant or misleading
content. These penalties may have negative effects on a website (e.g. bad position
of the website in search results) or even lead to non-integration of the structured
data (e.g. no generation of rich snippets). For example, annotations of the Desti-
nation Management Organizations (DMOs) usually include a list of offers. These
offers must comply with offers which are described on the website, and all URLs
contained in the annotations must match with the URLs in the content. Such
issues can be detected through the validation of semantic annotations.

In this section, we discuss the validation process of semantic annotations and
the proposed approach. The section is structured as follows: Sect. 3.1 gives the
definition of the semantic annotation validation, Sect. 3.2 describes some related
work, Sect. 3.3 discusses our approach, and Sect. 3.4 describes the evaluation
method.

3.1 Definition

The validation of semantic annotations is the process of checking whether the
content of a semantic annotation corresponds to the content of the web page
that it represents, and if it is consistent with it. Semantic annotations should
include the actual information of the web page, correct links, images and literal
values without overlapping or redundancy.

3.2 Related Work

The incorrect representation of the structured data can make data unreachable
for automated engines, cause an incorrect appearance in the search results, or
make crawling and reasoning less effective for building applications on top of
semantic data. The errors may be caused by not following recommended guide-
lines, e.g. structured data guidelines11, insufficient expertise, technical or human
errors (some of the issues can be detected by Google search console12), and/or
annotations not being in accordance with the content of web pages, so-called
“spammy structured markup”13. There is no direct literature related to the
methods of detecting inconsistency between semantic annotations and content
of web pages, but the problem of the content conformity restriction is also men-
tioned in [13].
10 The paper is under double blind review and can’t be revealed.
11 https://developers.google.com/search/docs/guides/sd-policies.
12 https://search.google.com/search-console/about.
13 https://support.google.com/webmasters/answer/9044175?hl=en&visit id=6368625

21420978682-2839371720&rd=1#spammy-structured-markup.

https://developers.google.com/search/docs/guides/sd-policies
https://search.google.com/search-console/about
https://support.google.com/webmasters/answer/9044175?hl=en&visit_id=636862521420978682-2839371720&rd=1#spammy-structured-markup
https://support.google.com/webmasters/answer/9044175?hl=en&visit_id=636862521420978682-2839371720&rd=1#spammy-structured-markup

Verification and Validation of Semantic Annotations 229

3.3 Our Approach

Since semantic annotations are created and published by different data providers
or agencies in varying quantity and quality and using different assumptions, the
validity of data should be prioritized to increase the quality of structured data. To
solve the problem of detecting errors caused by inconsistencies between analyzed
schema.org annotations and the content of the web pages where the annotations
were found, we propose a validation framework. The framework consists of the
following objectives:

1. Detect the main inconsistencies between the content of schema.org annota-
tions and the content of their corresponding web pages.

2. Develop an algorithm for the consistency check between a web page and
corresponding semantic annotations. The information from web pages can be
extracted from the source of a web page by tracking the appropriate HTML
tags, keywords, lists, images, URLs, paragraph tags and the associated full
text. Some natural language processing and machine learning techniques can
be applied to extract important information from the textual description,
e.g price, email, telephone number and so on. There exist some approaches
to extract information from a text, such as named entity recognition [16]
to locate and categorize important nouns and proper nouns in a text, web
information extraction systems [6], and text mining techniques [2].

3. Define metrics to evaluate the consistencies of the semantic annotations
according to the annotated content. In this step, we analyze existing data
quality metrics that can be applied on the structured data and define metrics
that can be useful to evaluate the consistency between a web page content
and semantic annotation. We measure the consistency for different types of
values, such as URL, string, boolean, enumeration, rating value, date and
time formats.

4. Provide a validation tool to present the overall score for a web page and
detailed insights about the evaluated consistency scores on a per value level.

3.4 Evaluation

To ensure the validity of the report results, we will organize a user study of
semantic annotations and annotated web pages to prove the performance of our
framework. The questionnaire will be structured in a way to get quantitative
and qualitative feedback about the consistencies between a web page and anno-
tation content (see Fig. 4) according to the results provided by the framework
(see Fig. 3). As our use case, we will use annotated data and websites of Destina-
tion Management Organizations, such as Best of Zillertal Fügen14, Mayrhofen15,
Seefeld16, and Zillertal Arena17.

14 https://www.best-of-zillertal.at.
15 https://www.mayrhofen.at.
16 https://www.seefeld.com/.
17 https://www.zillertalarena.com.

https://www.best-of-zillertal.at
https://www.mayrhofen.at
https://www.seefeld.com/
https://www.zillertalarena.com

230 O. Panasiuk et al.

Fig. 4. Web page content and annotation content

4 Conclusion and Future Work

Semantic annotations will be used for improved search results by search engines
or as building blocks of knowledge graphs. Therefore, the quality issues in terms
of structure and consistency can have an impact on where the annotations are
utilized and lead, for instance, to false representation in the search results or
to low-quality knowledge graphs. In this paper, we described our ongoing work
for an approach to verify and validate semantic annotations and the tool that is
evolving as the implementation of this approach.

For the future work, we will define Domain Specifications with SHACL in
order to comply with the recent W3C Recommendation for RDF validation. We
will develop an abstract syntax and formal semantics for Domain Specifications
and map it to SHACL notions, for instance by aligning the concept of Domain
Specifications with SHACL node shapes.

References

1. Akbar, Z., Kärle, E., Panasiuk, O., Şimşek, U., Toma, I., Fensel, D.: Complete
semantics to empower touristic service providers. In: Panetto, H., et al. (eds.)
OTM 2017 Conferences. LNCS, vol. 10574, pp. 353–370. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69459-7 24

2. Allahyari, M., et al.: A brief survey of text mining: classification, clustering and
extraction techniques. arXiv preprint arXiv:1707.02919 (2017)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

4. Boneva, I., Gayo, J.E.L., Hym, S., Prud’hommeau, E.G., Solbrig, H.R., Staworko,
S.: Validating RDF with shape expressions. CoRR, abs/1404.1270 (2014)

5. Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.G.: Semantics and validation of
shapes schemas for RDF. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol.
10587, pp. 104–120. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4 7

https://doi.org/10.1007/978-3-319-69459-7_24
http://arxiv.org/abs/1707.02919
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.1007/978-3-319-68288-4_7

Verification and Validation of Semantic Annotations 231

6. Chang, C.H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. IEEE Trans. Knowl. Data Eng. 18(10), 1411–1428 (2006)

7. Fürber, C., Hepp, M.: Using SPARQL and SPIN for data quality management
on the semantic web. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP,
vol. 47, pp. 35–46. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12814-1 4

8. Guha, R.: Introducing schema.org: search engines come together for a richer web.
Google Official Blog (2011)

9. Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data
on the web. Commun. ACM 59(2), 44–51 (2016)

10. Hollenstein, N., Schneider, N., Webber, B.L.: Inconsistency detection in semantic
annotation. In: LREC (2016)

11. Holzknecht, O.: Enabling domain-specific validation of schema.org annotations.
Master’s thesis, Innsbruck University, Innrain 52, 6020 Innsbruck, Austria, Novem-
ber 2018

12. Kärle, E., Fensel, A., Toma, I., Fensel, D.: Why are there more hotels in tyrol than
in Austria? Analyzing schema.org usage in the hotel domain. In: Inversini, A.,
Schegg, R. (eds.) Information and Communication Technologies in Tourism 2016,
pp. 99–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28231-2 8

13. Kärle, E., Fensel, D.: Heuristics for publishing dynamic content as structured data
with schema.org. arXiv preprint arXiv:1808.06012 (2018)

14. Meusel, R., Petrovski, P., Bizer, C.: The WebDataCommons Microdata, RDFa
and microformat dataset series. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 277–292. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11964-9 18

15. Mika, P.: On schema.org and why it matters for the web. IEEE Internet Comput.
19(4), 52–55 (2015)

16. Mohit, B.: Named entity recognition. In: Zitouni, I. (ed.) Natural Language Pro-
cessing of Semitic Languages. TANLP, pp. 221–245. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-45358-8 7

17. Mühleisen, H., Bizer, C.: Web data commons-extracting structured data from two
large web corpora. LDOW 937, 133–145 (2012)

18. Panasiuk, O., Kärle, E., Şimşek, U., Fensel, D.: Defining tourism domains for
semantic annotation of web content. e-Rev. Tour. Res. 9 (2018). Research notes
from the ENTER 2018 Conference on ICT in Tourism

19. Panasiuk, O., Akbar, Z., Gerrier, T., Fensel, D.: Representing geodata for tourism
with schema.org. In: Proceedings of the 4th International Conference on Geograph-
ical Information Systems Theory, Applications and Management - Volume 1: GIS-
TAM, pp. 239–246. INSTICC, SciTePress (2018)

20. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems, pp. 32–40. ACM (2014)

21. Şimşek, U., Kärle, E., Holzknecht, O., Fensel, D.: Domain specific semantic valida-
tion of schema.org annotations. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017.
LNCS, vol. 10742, pp. 417–429. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74313-4 31

https://doi.org/10.1007/978-3-642-12814-1_4
https://doi.org/10.1007/978-3-642-12814-1_4
https://doi.org/10.1007/978-3-319-28231-2_8
http://arxiv.org/abs/1808.06012
https://doi.org/10.1007/978-3-319-11964-9_18
https://doi.org/10.1007/978-3-319-11964-9_18
https://doi.org/10.1007/978-3-642-45358-8_7
https://doi.org/10.1007/978-3-319-74313-4_31
https://doi.org/10.1007/978-3-319-74313-4_31

Towards Automatic Deductive
Verification of C Programs

over Linear Arrays

Dmitry Kondratyev(B) , Ilya Maryasov , and Valery Nepomniaschy

A. P. Ershov Institute of Informatics Systems,
Siberian Branch of the Russian Academy of Sciences,
6, Acad. Lavrentjev pr., Novosibirsk 630090, Russia

apple-66@mail.ru, {ivm,vnep}@iis.nsk.su
http://www.iis.nsk.su

Abstract. The generation and proving of verification conditions, which
correspond to loops, may cause difficulties during deductive verification
because the construction of required invariants is a challenge, especially
for nested loops. The methods of invariant synthesis are often heuristic
ones. Another way is the symbolic method of loop invariant elimination.
Its idea is to represent a loop body in a form of special replacement
operation under certain constraints. This operation expresses loop effect
with possible break statement in a symbolic form and allows introducing
an inference rule, which uses no invariants in axiomatic semantics. This
work represents the further development of this method. The inner loops
are interesting because of the higher nesting level, the more complicated
loop invariant. A good example for this case to verify is a class of linear
array sorting programs, which iteratively increase the sorted part. In this
paper, we consider the insertion sort program. A special algorithm was
developed and implemented to prove verification conditions automati-
cally in ACL2. It generates automatically auxiliary lemmas, which allow
to prove obtained verification conditions in ACL2 in automatic mode.

Keywords: C-light · Loop invariant elimination · Mixed axiomatic
semantics · Definite iteration · C-lightVer · Array sorting program ·
ACL2 prover · Deductive verification · Lemma discovery · Proof
strategy

1 Introduction

C program verification is an urgent problem today. Some projects (e.g. [2,4]) sug-
gests different solutions. But none of them contains any methods for automatic
verification of loop-containing programs without invariants. As it is known, in

This research is partially supported by RFBR grant 17-01-00789.

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 232–242, 2019.
https://doi.org/10.1007/978-3-030-37487-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_20&domain=pdf
http://orcid.org/0000-0002-9387-6735
http://orcid.org/0000-0002-2497-6484
http://orcid.org/0000-0003-1364-5281
https://doi.org/10.1007/978-3-030-37487-7_20

Towards Automatic Deductive Verification of C Prog. over Linear Arrays 233

order to verify loops we need invariants whose construction is a challenge. There-
fore, the user has to provide these invariants. For many cases, it is a difficult
task.

Tuerk [19] suggested to use pre- and post-conditions for while-loops, but
the user still has to construct them himself. Li et al. [11] developed a learning
algorithm of loop invariants generation, but their method does not support array
operations and the break statement in the loop body. Galeotti et al. [5] improved
a well-known method of post-condition mutation by a combination of test case
generation and dynamic invariant detection. However, this approach failed to
infer full invariant for sorting programs. Srivastava et al. [17] proposed a method,
which is based on user-provided invariant templates. This method also is not able
to perform a full verification of sorting programs. Kovács [10] developed the
method of the automatic invariant generation for the P-solvable loops, where
right operands of assignment statements in the loop body must have a form of
polynomial expression and the break statement is not considered.

We consider loops with certain restrictions [16]. We extend our mixed axi-
omatic semantics of the C-light language [1] with a new rule for verification of
such loops, based on the replacement operation [16]. The verification conditions
are generated by C-lightVer system [9] using this rule.

In our previous paper [8], we considered the strategy of automatic proving of
verification conditions. It can be applied, if a program loop includes the break
statement. This strategy belongs to the class based on auxiliary lemma discov-
ering [6].

The new goal is the verification of the insertion sort program, which has
different specification. Sorting programs are programs over changeable arrays
with loop exit. Suzuki et al. [18] described decidability of verification conditions
with the permutation predicates, if such conditions are representable in the Pres-
burger arithmetic. But verification conditions are not representable in presburger
arithmetic in our case due to replacement operation. Sorting programs can con-
tain downward loops and can use the value of loop counter after iterations are
finished. Thus, we had to change our algorithm of replacement operation gen-
eration. Also, we overcame the difficulties in proving verification conditions by
developing new strategies of proof. This paper describes the solution of these
problems.

2 Preliminary Concepts

We develop a two-level system of deductive verification of the C-light programs
[14]. The C-light language is a powerful subset of C language. To prove obtained
in our system verification conditions, we use the theorem prover ACL2 [15]. The
input language of ACL2 is an applicative dialect of Common Lisp language,
which supports only functional paradigm and does not support imperative one.

Since Common Lisp language focuses on list processing, arrays of the C-light
language we simulate by lists. Consider list operations in ACL2. If expr is an
expression of ACL2 language, then (update-nth i expr l) is a new list, which

234 D. Kondratyev et al.

coincides with a list l except for i-th element, whose value is expr. The function
len returns the length of a list.

To verify programs without invariants, we implemented the method of loop
invariants elimination for definite iteration [16] in our system. Our previous
works [12,13] dealt with definite iteration over unchangeable data structures
with/without loop exit. In this paper, we moved to changeable data structures
with possible break statement in the loop body.

Consider the statement for x in S do v := body(v, x) end, where S is
a structure, x is the variable of the type “an element S”, v is a vector of loop
variables, which does not contain x and body represents the loop body com-
putation, which does not modify x and which terminates for each x ∈ S. The
structure S can be modified as described below. The loop body can contain only
the assignment statements, the if statements, possibly nested, and the break
statements. Such for statement is named a definite iteration. Let v0 be the
vector of values of variables from v just before the loop. To express the effect
of the iteration let us define a replacement operation rep(v, S, body, n), where
rep(v, S, body, 0) = v0, rep(v, S, body, i) = body(rep(v, S, body, i − 1), si) for all
i = 1, 2, . . . , n. A number of theorems, which express important properties of the
replacement operation, were proved in [16].

The inference rule for definite iterations has the form:

{P} A; {Q(v ← rep(v, S, body, n))}
{P} A; for x in S do v := body(v, x) end {Q}

Here A are program statements before the loop. We find the weakest pre-
condition applying the mixed axiomatic semantics [1] of the C-light language.

3 Generation of Replacement Operation

In this paper, we extend the class of definite iterations by downward iteration

for (i = n - 1; i >= 0; i--) v := body(v, i) end,

where n is the number of elements of array. The definition of rep is generated
by a special translator [8]. The statements of the loop body are translated to
the constructions of the ACL2 language. The fields of the structure of the type
frame correspond to the variables of v and the function frame-init creates the
object of the type frame with given field values.

For downward iteration, the generator of rep was modified. Firstly, it has
to generate not only the structure frame but the structure envir. It stores
the values of variables, which are used but are not modified inside the loop.
Moreover, the generator makes a definition of the function envir-init, which
creates an object of the type envir with given field values. The structure envir
has also a dedicated field upper-bound, whose value is an inaccessible upper
bound of the loop counter, which is equal to (n − 1) + 1.

Secondly, in the case of downward iteration, the value of loop counter is not
equal to the number of iteration. In order to distinguish from loop counter i, the

Towards Automatic Deductive Verification of C Prog. over Linear Arrays 235

first argument of rep is called iteration. Therefore, the generator has to include
not only the elements of the vector v, but also the loop counter to the fields of
the structure frame. This allows using the value of the loop counter after loop
execution.

One of the restrictions of the symbolic method [16] is that the loop counter is
not modified by the loop body. So the third change of the generator is the usage
of the difference between the upper bound and iteration number as the value of
loop counter in the body of rep. In the case of iteration continuation, the loop
counter is initialized by the difference between the same value and 1. In the case
of the loop exit, the loop counter is not modified. Note that such approach can
simplify the proof because it expresses the value of the loop counter explicitly.

4 Verification of Insertion Sort Program

Let us demonstrate the motivating example. Consider the following insertion
sort program, which orders a given linear array a of the length n:

/* P */ void insertion_sort(int a[], int n) {int k, i, j;
/* INV */ for (i = 1; i < n; i++) {

k = a[i];
for (j = i - 1; j >= 0; j--) {

if (a[j] <= k) break;
a[j + 1] = a[j];}

a[j + 1] = k;}}/* Q */

The program pre-condition, post-condition, and invariant have the form:

P ≡ 0 < n ∧ a = a0 ∧ n ≤ len(a0), Q ≡ perm(0, n − 1, a0, a) ∧ ord(0, n − 1, a),
INV ≡ i ≤ n ∧ n ≤ len(a) ∧ len(a0) = len(a)∧

a0[i : n − 1] = a[i : n − 1] ∧ perm(0, i − 1, a0, a) ∧ ord(0, i − 1, a),

where perm(i, j, a0, a) means that array a is the permutation of array a0 from
i-th to j-th element, ord(i, j, a) denotes that array a is ordered from i-th to
j-th element. Note that Galeotti et al. [5] did not prove the permutation, and
Srivastava et al. [17] used more weaker property ∀i∃j (0 ≤ i < n) ⇒ (0 ≤ j <
n ∧ a0[i] = a[j]) then permutation.

Applying rules of the mixed axiomatic semantics [1] we obtain three verifi-
cation conditions: the condition of loop entry, the condition of loop exit and the
condition of iteration continuation.

The first and the second verification conditions were proved in ACL2 auto-
matically. Consider the third verification condition, which is the most difficult.

i < n ∧ INV ⇒ ((((INV (i ← i + 1))(a ← update-nth(j + 1, k, a)))
(j ← rep(i, envir-init(i, k), frame-init(i − 1, a)).j,

a ← rep(i, envir-init(i, k), frame-init(i − 1, a)).a))(k ← a[i]))

236 D. Kondratyev et al.

Due to the symbolic method of definite iteration verification, we do not need
to provide an invariant for inner loop. This verification condition can be found
in [20] (in the syntax of ACL2). It was automatically generated and named vc-3
in the file vc-3.lisp. To prove this verification condition the strategies from
Sect. 5 were applied.

5 Method of Automation of Verification Conditions
Proving

During this research, four strategies of verification conditions proving were devel-
oped. They are based on the automatic generation of lemmas. Their proof can
help to prove a verification condition. Automatically generated formulas can be
not theorems, therefore only successful proving of them in ACL2 allows adding
them into the underlying theory. In ACL2, such formulas can be given to the
user for proving them in interactive mode or can be proved automatically. We
will give here key lemmas, which were added to the underlying theory in our
example. These lemmas allowed ACL2 to prove the verification condition.

Let us introduce common notions for all strategies. Each of them gets a finite
downward iteration over array a. We will define strategies using notions from
Sect. 3.

Let us consider the verification condition of a form (X1 ∧ X2 ∧ . . . ∧ Xw) ⇒
(C1 ∧C2 ∧ . . .∧Cm), where X1, X2, . . ., Xw are hypotheses and C1, C2, . . ., Cm

are goals. If the verification is not of that form, let us bring it to such form. We
will consider each goal separately: (X1 ∧X2 ∧ . . .∧Xw) ⇒ Ci, where 1 ≤ i ≤ m.
Let Y = {C1, C2, . . ., Cm}.

Let us make a correspondence between parameters of strategies and our finite
iteration with its continuation condition from our example. In our case, the
parameter a stands for array a, parameter n stands for variable i, parameter i
stands for variable j. Parameter T ≡ INV ∧ (i < n). Let a[i : j] be a subarray
of array a from i-th to j-th element inclusively.

5.1 The Strategy of Premises Choice

The condition of the applicability of this strategy is the form of considered finite
iteration (with possible loop exit). This strategy is applied, if during verification
condition proving, we try to prove a statement about the property of rep. Let
R be such a statement. Thereby, the first argument of our strategy is the finite
iteration, the second one is the definition of rep, the third argument is R.

The strategy is oriented to solving a problem of transformation of R to
lemma, which has the form of implication. R becomes the conclusion of such
implication. Therefore, the problem is reduced to a generation of the premise,
which should allow to prove the lemma and the verification condition.

To overcome this difficulty we use more generalized statements as premises
than T . For example, the statement L1 ≡ (iteration ∈ N) ∧ (iteration ≤

Towards Automatic Deductive Verification of C Prog. over Linear Arrays 237

env.upper-bound) ∧ (env.upper-bound < (len(fr.a))) ∧ (fr.j = (env.upper-
bound −1)) or the statement L2 ≡ (env.upper-bound ∈ N) ∧ (env.upper-
bound < (len(fr.a))) ∧ (fr.j = (env.upper-bound − 1)) ∧ ¬fr.loop-break.

We plan to extend the set of premises. The choice is determined by one, which
helps ACL2 to prove the lemma. For each L ∈ {L1, L2}, we try to prove formula
lm ≡ L ⇒ P in ACL2. All such lemmas start with the prefix rep-lemma- in
[20].

Let us generate auxiliary formula lm′ in a form of implication. Its premise
is T and its conclusion is constructed from R by replacing n, env, and fr by
iteration parameters. Let us substitute the iteration parameters into lm to prove
lm′. Because of the same premises, it is more convenient to use lm′ for verifi-
cation condition proving. In [20] the names of all such lemmas start with prefix
vc-3-lemma-.

For example, consider the statement about equality of two subarrays as R ≡
a[0 : rep(iteration, env, fr).j] = (rep(iteration, env, fr).a)[0 : rep(iteration,
env, fr).j]. Applying our strategy to R, we add a lemma L1 ⇒ P to the under-
lying theory, which can be found in [20] under the name rep-lemma-76.

5.2 The Strategy for Finite Iteration over Changeable Array

The condition of the applicability of this strategy is the form of considered
finite iteration and the presence of assignment statement a[expr-index] =
expr-value; in a loop body. Let an iteration consists of w assignment state-
ments. With the help of the function c kernel translator, we will translate each
expression expr-indexi to the expression expr-indi of ACL2 language for each
i: 1 ≤ i ≤ w.

Let us generate and try to prove by the strategy from Sect. 5.1 the following
statement: (index
= expr-ind1) ∧ . . . ∧ (index
= expr-indw) ⇒ rep(iteration −
1, env, fr).a[index] = rep(iteration, env, fr).a[index]. In case of a successful
proof of such formula, the corresponding lemma is added to the underlying the-
ory. It states, that an array element, whose index is not in the set of indices of
left operands of assignment statements, is not changed at the next iteration.

Consider the application of this strategy to our example. Note that the loop
contains the assignment statement a[j + 1] = a[j];. Since the value of loop
counter is env.upper-bound − iteration, the generated lemma rep-lemma-22
[20] has the following form: L1 ∧ (index
= (env.upper-bound− iteration)+1) ⇒
rep(iteration − 1, env, fr).a[index] = rep(iteration, env, fr). a[index].

5.3 The Strategy for Finite Iteration with break Statement

The condition of the applicability of this strategy is the form of considered
finite iteration and the presence of break statement. Let break-condition be
a conjunction of controlling expressions of the if statements on the path to
break statement (we make all necessary substitutions in case of assignment
statements). In fact, break-condition is a function br-cond(iteration, env, fr).

238 D. Kondratyev et al.

The value of the field loop-break of the structure frame is the detec-
tor for certain iteration, whether break statement occurred earlier. Note that
the number of iteration, which led to loop exit, is br-iter = env.upper-
bound − rep(env.upper-bound, env, fr).i. This strategy attempts to prove the
set of auxiliary lemmas obtained from the following statements about break:

1. If rep(iteration, env, fr).loop-break then rep(iteration, env, fr).i =
rep(iteration − 1, env, fr).i.

2. If ¬rep(iteration, env, fr).loop-break then rep(iteration, env, fr).i = env.
upper-bound − iteration − 1.

3. If rep(iter, env, fr).loop-break and iter ≤ iteration then rep(iteration,
env, fr).loop-break.

4. If rep(iter, env, fr).loop-break and iter ≤ iteration then rep(iter, env, fr)
= rep(iteration, env, fr).

5. If ¬rep(iteration, env, fr).loop-break and iter ≤ iteration then ¬rep(iter,
env, fr).loop-break.

6. ¬(br-iter − 1, fr, env).loop-break and rep(br-iter − 1, fr, env).loop-break.
7. If iter ∈ [br-iter : env.upper-bound] then rep(env, iter, fr).loop-break.
8. If iteration ∈ [0 : br-iter − 1] then ¬rep(iteration, env, fr).loop-break.
9. If iteration ∈ [0 : br-iter − 1] then ¬br-cond(iteration, env, fr).

10. iteration ∈ [br-iter : env.upper-bound] ⇒ br-cond(iteration, env, fr).
11. ¬br-cond(br-iter − 1, env, fr) and br-cond(br-iter, env, fr).

These statements are based on the fact, that the property “whether a loop
exit occurred” is monotonic relative to the number of iteration. The strategy
from Sect. 5.1 is applied to these statements.

Consider the application of this strategy to our example. As the loop contains
break statement the break-condition is (a[rep(iteration−1, env, fr).j]) ≤ env.k.
In our case the statement 11 has the form: a[rep(br-iter − 1, env, fr).j] > env.k
and a[rep(br-iter, env, fr).j, env, fr)] ≤ env.k. Using obtained by the strategy
statements 1 and 2 we have the equivalent break-condition: a[rep(env.upper-
bound, env, fr).j + 2] > env.k and a[rep(env.upper-bound, env, fr).j] ≤ env.k.
By the strategy from Sect. 5.1 these statements are transformed to lemmas
[20] rep-lemma-83: L2 ⇒ env.k < a[rep(env.upper-bound, env, fr).j + 2] and
rep-lemma- 108: L2 ⇒ a[rep(env.upper-bound, env, fr).j] ≤ env.k.

5.4 The Strategy for Functions with Concatenation Property

The strategy for functions with concatenation property generates statements of
equality between subarrays of array a and subarrays of array rep(n, env, fr).a.
These subarrays are chosen using analysis of loop body. These statements are
converted to lemmas using the strategy from Sect. 5.1. These lemmas are proved
using the strategy from Sect. 5.3 and the strategy from Sect. 5.2. The set D of
pairs of equivalent subarrays is obtained as the result. The first item of each
pair from D is a subarray of array a and a second item is a subarray of array
rep(n, env, fr).a.

Towards Automatic Deductive Verification of C Prog. over Linear Arrays 239

The predicate V has the concatenation property if (V (i, k, u1, . . . , ur) ∧
V (k, j, u1, . . . , ur) ∧ (i ≤ k) ∧ (k < j)) ⇒ V (i, j, u1, . . . , ur). The predicate
V has the concatenation with the splice at bounds property by condition f if
(V (i, k, u1, . . . , ur) ∧ V (k, j, u1, . . . , ur) ∧ (i ≤ k) ∧ (k < j) ∧ f(u1[k], u1[k +
1]) . . . ∧ f(ur[k], ur[k + 1])) ⇒ V (i, j, u1, . . . , ur).

These patterns of the properties are used in check whether this strategy
is applicable. To do this, loop and post-condition analysis are performed. For
all predicates in post-condition, we search theorems satisfying given property
patterns in all used theories. Analysis of loop allows ascertaining whether the
loop corresponds to the form of considering definite iteration.

The strategy starts at an analysis of the elements of the set Y . Let Z be a
set of goals from Y , which are the applications of a predicate satisfying concate-
nation property or concatenation with a splice at bounds property.

For each goal U(. . .) ∈ Z the following steps are performed:

1. The iteration does not cover items from the segment [0 : rep(n, env,
fr).i]. Therefore, we can suppose that the segment is not modified by
rep. If we succeeded in proving the statement about equality a[0 :
rep(n, env, fr).i] and (rep(n, env, fr).a)[0 : rep(n, env, fr).i] then the pair
([0 : rep(n, env, fr).i], [0 : rep(n, env, fr).i]) is added to set D.

2. In case of presence of statements a[i + expr] = a[i];, where expr is a
C-light expression, the hypothesis about array shift arises. With the help
of c kernel translator from [8] we obtain expression, which is expr in
ACL2 language. If we succeeded in proving the statement about equality
a[(rep(n, env, fr).i + 1) : (n − expression)] and (rep(n, env, fr).a)[(rep(n,
env, fr).i + 1 + expression) : n] then the pair ([(rep(n, env, fr).i + 1) : (n −
expression)], [(rep(n, env, fr).i + 1 + expression) : n]) is added to set D.

3. In case of presence of break statement, we apply the strategy from Sect. 5.3
if predicate U satisfies the property of concatenation with a splice at bounds
by condition f . Note that break-condition can contain f and depends on
br-iter defined in Sect. 5.3. If we proved the formula obtained from the state-
ment 11 from the Sect. 5.3, then such lemma can help to prove the range
splice. If we succeeded in proving T ∧ ¬br-cond(br-iter − 1, env, fr) ∧ br-
cond(br-iter, env, fr) ⇒ f((rep(n, env, fr).a)[rep(n, env, fr).i], (rep(n, env,
fr).a)[rep(n, env, fr).i + 1]) then this lemma is added to underlying theory.
This lemma states about the range splice between rep(n, env, fr).i and rep(n,
env, fr).i + 1, i. e. in the point of loop exit. In case of successful proof, we
add this lemma to the underlying theory.
For statements of the form a[i + expr] = a[i]; we generate and check the
formula about range splice of rep(n, env, fr).i + expression and rep(n, env,
fr).i + expression + 1.

4. The strategy generates lemmas about truth of U for second items of pairs from
D starting from truth of U for first items of pairs from D. These lemmas allow
ACL2 to prove truth of U for subarrays obtained by concatenation of second
items of pairs from D. Let ACL2 prove T ⇒ U(. . .) using these lemmas.

240 D. Kondratyev et al.

Let us apply this strategy to our example. All lemmas mentioned above can
be found in [20]. After post-condition analysis, the theorems permutation-7
and ordered-3 were detected in the underlying theory. Since permutation-7
satisfies the pattern, the predicate perm satisfies concatenation property. The
theorem ordered-3 satisfies the pattern with a splice at bounds, where ≤ is used
as a relation f . Therefore, the predicate ord satisfies the concatenation property
with a splice at bounds with respect to ≤.

Consider lemmas appeared at proving two goals. Let A be the goal con-
taining predicate perm. Let B be the goal containing predicate ord. Thus,
A,B ∈ Z. Then, let G ≡ T ⇒ A and let H ≡ T ⇒ B. Let e = update-
nth(rep(i, env, fr).j + 1, k, rep(i, env, fr).a).

Consider first the application of strategy steps to formula A. The application
of strategy to a[0 : rep(n, env, fr).j] = (rep(i, env, fr).a)[0 : rep(i, env, fr).j]
is described in Sect. 5.1. After that, the permutation of a and e in the range
[0 : rep(i, env, fr).j] was proved.

During analysis, the statement a[j + 1] = a[j]; was detected, which is
a potential array shift. Thus, the constant 1 corresponds to expression. With
the help of rep-lemma-22 and the strategy from Sect. 5.1, rep-lemma-55 was
obtained from a[rep(i, env, fr).j+1 : i−1] = (rep(i, env, fr).a[rep(i, env, fr).j+
2 : i]. It allowed to prove permutation of a[rep(i, env, fr).j + 1 : i − 1] and
e[rep(i, env, fr).j + 2 : i].

The statement e[rep(i, env, fr).j + 1 : rep(i, env, fr).j + 1] = a[i : i] was
proved automatically. It allowed to prove the permutation of a[i : i] and e[rep(i,
env, fr).j + 1 : rep(i, env, fr).j + 1]. As permutation satisfies concatenation
property, the permutation of a and e in the range [rep(i, env, fr).j + 1 : i] was
proved. Finally, using concatenation property we get permutation of a and e in
the range [0 : i].

Consider the application of strategy steps to formula B. The predicate ord
satisfies the property of concatenation with a splice at bounds, so it is necessary
to check that the relation ≤ holds at bounds. This property was successfully
checked in Sect. 5.3.

The full proof can be found in [20].

6 Conclusion

This paper represents the method for the automation of the C-light program
verification. In case of definite iteration over changeable arrays with loop exit,
this method allows generating verification conditions without loop invariants.

This generation is based on the new inference rule for the C-light for state-
ment which uses the replacement operation. This operation is generated auto-
matically by the special algorithm [8], which translates loop body statements to
ACL2 constructs. In this paper, we described changes to this algorithm, which
extends the application of our method to downward iterations.

To prove obtained verification conditions, we apply special strategies based
on lemma discovering. The successful proving of such lemmas allows us to prove

Towards Automatic Deductive Verification of C Prog. over Linear Arrays 241

the verification conditions. We developed four strategies. Their application was
illustrated by the verification of insertion sort program. They supplement the
symbolic method of definite iterations and allow automatizing the process of
deductive verification.

Also, the verification of the functions implementing BLAS interface [3] is
an actual problem. Earlier we performed such experiments successfully [7]. Our
methods allowed us to verify the function asum, which implements the corre-
sponding function from BLAS interface: it calculates the sum of absolute values
of a vector.

References

1. Anureev, I.S., Maryasov, I.V., Nepomniaschy, V.A.: C-programs verification based
on mixed axiomatic semantics. Autom. Control Comput. Sci. 45(7), 485–500 (2011)

2. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

3. Dongarra, J.J., van der Steen, A.J.: High-performance computing systems: status
and outlook. Acta Numerica 21, 379–474 (2012)

4. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30482-1 10

5. Galeotti, J.P., Furia, C.A., May, E., Fraser, G., Zeller, A.: Inferring loop invari-
ants by mutation, dynamic analysis, and static checking. IEEE Trans. Softw. Eng.
41(10), 1019–1037 (2015)

6. Johansson, M.: Lemma discovery for induction. In: Kaliszyk, C., Brady, E.,
Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp.
125–139. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4 9

7. Kondratyev, D.: Implementing the symbolic method of verification in the C-light
project. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp.
227–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 17

8. Kondratyev, D.A., Maryasov, I.V., Nepomniaschy, V.A.: The automation of C
program verification by symbolic method of loop invariants elimination. Autom.
Control Comput. Sci. 53(7) (2019, to appear)

9. Kondratyev, D.A., Promsky, A.V.: Towards automated error localization in C pro-
grams with loops. Syst. Inform. 14, 31–44 (2019)

10. Kovács, L.: Symbolic computation and automated reasoning for program analysis.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 20–27.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 2

11. Li, J., Sun, J., Li, L., Le, Q. L., Lin, S.-W.: Automatic loop invariant generation and
refinement through selective sampling. In: Proceedings on ASE 2017, pp. 782–792.
Conference Publishing Consulting, Passau (2017)

12. Maryasov, I.V., Nepomniaschy, V.A.: Loop invariants elimination for definite itera-
tions over unchangeable data structures in C programs. Model. Anal. Inform. Syst.
22(6), 773–782 (2015)

13. Maryasov, I.V., Nepomniaschy, V.A., Kondratyev, D.A.: Invariant elimination of
definite iterations over arrays in C programs verification. Model. Anal. Inf. Syst.
24(6), 743–754 (2017)

https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-540-30482-1_10
https://doi.org/10.1007/978-3-030-23250-4_9
https://doi.org/10.1007/978-3-319-74313-4_17
https://doi.org/10.1007/978-3-319-33693-0_2

242 D. Kondratyev et al.

14. Maryasov, I.V., Nepomniaschy, V.A., Promsky, A.V., Kondratyev, D.A.: Auto-
matic C program verification based on mixed axiomatic semantics. Autom. Control
Comput. Sci. 48(7), 407–414 (2014)

15. Moore, J.S.: Milestones from the Pure Lisp theorem prover to ACL2. Formal
Aspects of Computing, pp. 1–34 (2019)

16. Nepomniaschy, V.A.: Symbolic method of verification of definite iterations over
altered data structures. Program. Comput. Softw. 31(1), 1–9 (2005)

17. Srivastava, S., Gulwani, S., Foster, J.S.: Template-based program verification and
program synthesis. Int. J. Softw. Tools Technol. Transf. 15(5–6), 497–518 (2012)

18. Suzuki, N., Jefferson, D.: Verification decidability of Presburger array programs.
J. ACM 27(1), 191–205 (1980)

19. Tuerk, T.: Local reasoning about while-loops. In: Theory Workshop Proceedings
on VSTTE 2010, pp. 29–39. Heriot-Watt University, Edinburgh (2010)

20. Verification of Insertion Sorting Program. https://bitbucket.org/Kondratyev/
sorting. Accessed 26 Apr 2019

https://bitbucket.org/Kondratyev/sorting
https://bitbucket.org/Kondratyev/sorting

Hermes: A Reversible Language
for Writing Encryption Algorithms

(Work in Progress)

Torben Ægidius Mogensen(B)

DIKU, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen, Denmark

torbenm@di.ku.dk

Abstract. We describe the programming language Hermes, which is
designed for writing private-key encryption algorithms. Specifically, every
program written in Hermes is reversible: It can run equally well forwards
and backwards. This means that you only write the encryption algo-
rithm and get the decryption algorithm for free. Hermes also ensures
that all variables are cleared after use, so the memory will not contain
data that can be used for side-channel attacks. Additionally, to prevent
side-channel attacks that extract information from running times, control
structures that may give data-dependent execution times are avoided.

1 Introduction

Recent work [7] have investigated using the reversible language Janus [3,14] for
writing encryption algorithms. Janus is a structured imperative language where
all statements are reversible. A requirement for reversibility is that no informa-
tion is ever discarded: No variable is destructively overwritten in such a way
that the original value is lost. Instead, it must be updated in a reversible man-
ner or swapped with another variable. Since encryption is by nature reversible,
it seems natural to write these in a reversible programming language. Addi-
tionally, reversible languages requires that all intermediate variables are cleared
to 0 before they are discarded, which ensures that no information that could
potentially be used for side-channel attacks is left in memory. But non-cleared
variables is not the only side-channel attack used against encryption: If the time
used to encrypt data can depend on the values of the data and the encryption
key, attackers can gain (some) information about the data or the key simply by
measuring the time used for encryption. Janus has control structures the tim-
ing of which depend on the values of variables, so it does not protect against
timing-based attacks.

So we propose a language, Hermes, specifically designed for encryption. What
Hermes has in common with Janus is reversible update statements, swap state-
ments, and procedures that can be called both forwards and backwards. The
main differences to Janus are that Hermes operates on integers of specified sizes,

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 243–251, 2019.
https://doi.org/10.1007/978-3-030-37487-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_21

244 T. Æ. Mogensen

specifically 32 and 64-bit signed and unsigned integers, and there are no time-
sensitive control structures. The syntax of Hermes resembles C, so programs will
be readily readable by C programmers.

Figure 1 shows a Hermes implementation of TEA, a Tiny Encryption Algo-
rithm [9] corresponding to the C code in Fig. 2, which is taken from the Wikipedia
page for TEA [13]. While the Hermes code resembles the C code, this does not
mean that we can automatically convert C programs to Hermes: In general, C
statements are not reversible, and their timing may depend on data. But if an
encryption algorithm is designed to be reversible and immune to timing attacks,
it will usually be simple to (manually) port to Hermes. But the purpose is not
to port existing C implementations of cyphers to Hermes, but to allow cypher
designers to develop their cyphers in a language that ensures both reversibility
and immunity to timing attacks.

encrypt (u32 v [2] , u32 k [4])
{

u32 v0 , v1 , sum, k0 , k1 , k2 , k3 ;
const u32 delta = 0x9E3779B9 ; /∗ key schedule constant ∗/
v0 <−> v [0] ; v1 <−> v [1] ; /∗ se t up ∗/
k0 += k [0] ; k1 += k [1] ; k2 += k [2] ; k3 += k [3] ; /∗ cache key ∗/
for (i=0; 32) { /∗ basic cyc le s ta r t ∗/

sum += delta ;
v0 += ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1) ;
v1 += ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3) ;
i++;

} /∗ end cyc le ∗/
k0 −= k [0] ; k1 −= k [1] ; k2 −= k [2] ; k3 −= k [3] ; /∗ c lear l o ca l s ∗/
sum −= delta << 5; /∗ a l t e rna t i ve l y , sum −= 0xC6EF3720 ∗/
v [0] <−> v0 ; v [1] <−> v1 ; /∗ return coded values ∗/

}

Fig. 1. TEA in Hermes

Note that while the C version needs a separate decryption procedure, this
is not required in Hermes, as decryption is achieved by running the encryption
procedure backwards. Apart from often using the swap operator <->, the Hermes
code is very similar to the encryption part of the C code, except that the local
variables are explicitly cleared. If they were not, an error would be reported
when running the program. Note that constants do not need to be cleared.

2 Hermes

The Syntax of Hermes is shown in Fig. 3. A program consists of one or more
procedures, where the procedure called main is the entry point of the program.
Unlike in C, the main procedure has no arguments. Arguments to procedures
are passed by reference and to avoid aliasing, no variable or array may be passed
several times in the same call.

Hermes: A Reversible Language for Writing Encryption Algorithms 245

void encrypt (uint32 t v [2] , uint32 t k [4]) {
uint32 t v0=v [0] , v1=v [1] , sum=0, i ; /∗ se t up ∗/
uint32 t delta=0x9E3779B9 ; /∗ key schedule constant ∗/
uint32 t k0=k [0] , k1=k [1] , k2=k [2] , k3=k [3] ; /∗ cache key ∗/
for (i=0; i<32; i++) { /∗ basic cyc le s ta r t ∗/

sum += delta ;
v0 += ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1) ;
v1 += ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3) ;

} /∗ end cyc le ∗/
v[0]=v0 ; v[1]=v1 ;

}
void decrypt (uint32 t v [2] , uint32 t k [4]) {

uint32 t v0=v [0] , v1=v [1] , sum=0xC6EF3720, i ; /∗ sum=32∗de l ta ∗/
uint32 t delta=0x9E3779B9 ; /∗ key schedule constant ∗/
uint32 t k0=k [0] , k1=k [1] , k2=k [2] , k3=k [3] ; /∗ cache key ∗/
for (i=0; i<32; i++) { /∗ basic cyc le s ta r t ∗/

v1 −= ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3) ;
v0 −= ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1) ;
sum −= delta ;

} /∗ end cyc le ∗/
v[0]=v0 ; v[1]=v1 ;

}

Fig. 2. TEA in C

The values used in Hermes are variables or one-dimensional arrays the ele-
ments of which are of the types u8, u16, u32, or u64, representing unsigned
two’s complement numbers corresponding to the C types uint8_t, uint16_t,
uint32_t, and uint64_t. Sizes of arrays must be specified when they are
declared. All variables are local to procedures, and must be cleared to zero
before the end of the procedure. If not, a run-time error is reported.

Constants are initialised with a value and can not be modified. Constants do
not need to be zeroed before procedure exit.

The body of a procedure is a statement. This can be

– The empty statement (;),
– An update using one of the update operators +=, -=, ^=, <<=, or >>=, where

the last two operators are rotate-left and rotate-right. The root variable on
the left-hand side is not allowed to occur elsewhere on the update statement
(neither left-hand side nor right-hand side). For example, the statements i +=
a[i]; and a[a[i]] += 1; are not allowed, but a[i] += i; is allowed, as i is
not the root variable on the left-hand side. Additionally, if the variable on the
left-hand side is a loop variable (see later), the right-hand side expression must
be a constant expression. Rotates are done on the word size of the variable
on the left-hand side. For example, if x is an 8-bit number, x <<= 11 will
rotate the 8-bit number 3 positions left. Rotates are not found as operators
in C, but they are commonly used in cryptology, and they are reversible, so
it is natural to include them in Hermes.

246 T. Æ. Mogensen

– Increment or decrement of a variable or array element. These are special cases
of updates.

– A conditional update. In addition to the restrictions for unconditional
updates, the root variable on the left-hand side may not occur in the con-
dition, nor may it be a loop variable. To avoid value-dependent timing, the
right-hand side is always evaluated and afterwards logically ANDed with the
condition before using the result in an update. As such, the conditional update
does not any power to the language, it just aids readability of otherwise some-
what cryptic code.

– A swap of two variables or array elements, using the swap operator <->.
The root variables on either side may not occur in any index expression, nor
may they be loop variables. For example, the statements i <-> a[i]; and
a[a[i]] <-> j; are not allowed, but a[i] <-> a[j]; is allowed. A swap is
implemented as three updates (using ^=) to avoid introducing a temporary
variable that might leak information.

– A conditional swap. In addition to the restrictions of the normal swap, neither
root variable may occur in the condition. Conditional swap is commonly used
in elliptic-curve cryptography to avoid time-variant conditionals.

– A block in curly braces, consisting of a number of declarations and a number
of statements. Variables and array elements are initialised to 0 and they must
be returned to 0 at the end of the block (otherwise a run-time error is issued).

– A for loop. This specifies the initial and final values for a counter variable
and a body that will be executed until the counter variable reaches its final
value. Updating the counter variable is, unlike in C, done in the body of the
loop. The final value must be reached exactly, otherwise the loop continues.
The counter variable is local to the for loop and need not be declared (it is
always of type u32). The expressions for initial and final values for the loop
counter must be constant expressions. Also, the loop counter may only be
unconditionally updated with constant expressions, but it may be updated
multiple times and with any update operator (+=, -=, ^=, <<=, and >>=).

– An assertion. If the condition evaluates to false, a run-time error is issued.
This is included for testing purposes.

– A procedure call. Arguments are passed by reference. No variable may be
repeated in the argument list, so the statements call f(i, i);, call f(i,
a[i]);, and call f(a, a[i]); are illegal. To avoid potential modification,
loop variables can not be passed as arguments to procedures.

– An inverse procedure call. This executes the procedure in backwards order,
so the sequence call f(x); uncall f(x); has no net effect.

– Print and scan statements. These use format strings like in C, except that the
formats are %u8, %u16, etc. Before reading a variable or array element, this
must have the value 0, otherwise, a run-time error is issued. After printing a
variable or array element, this is set to 0. Loop variables and constants can
not be printed or scanned.

Expressions are variables, array elements, constants, operators applied to expres-
sions, or conditions. Constants are numbers in decimal or hexadecimal form,

Hermes: A Reversible Language for Writing Encryption Algorithms 247

Program → Procedure+

Procedure → id (Decls2?) Stat

Stat → ;
| Lval update Exp ;
| Lval ++;
| Lval --;
| if (Exp) Lval update Exp ;
| Lval <->Lval
| if (Exp) Lval <->Lval
| for (id =Exp ; Exp) Stat
| assert (Exp);
| call id (Lvals)
| uncall id (Lvals)
| printf (stringConst , Lvals);
| scanf (stringConst , Lvals);

| { Decls1 Stat∗}
Exp → Lval

| numConst
| Exp binOp Exp
| unOp Exp
| (Exp)

Lval → id
| id [Exp]

Lvals → Lval
| Lval , Lvals

V arSpec → id
| id [numConst]

V arSpecs → V arSpec
| V arSpec , V arSpecs

Decls1 →
| type V arSpecs ; Decls1
| const type id = numConst ; Decls1

Decls2 → type V arSpec
| type V arSpec , Decls2

Fig. 3. Syntax of Hermes

using C notation. Binary operators are +, -, *, /, %, &, |, ==, !=, <, >,
<=, >=, <<, and >>. Unary operators are - and ~. All operators have the same
meaning as in C, and like in C, there is no separate Boolean type – 0 is treated
as logical falsehood and all non-zero values as falsehood. Note that we do not
include sequential logical operators &&, ||, and !, as their timing may depend on
the values of their arguments. Bitwise logical operators should be used instead.

248 T. Æ. Mogensen

3 More Examples

An implementation of the speck128 cipher [1,12] in C and Hermes is shown in
Fig. 4. Hermes has rotation built-in, so it does not need the ROR and ROL macros.
But since Hermes does not support macros, R must be defined as a procedure.
Since loop variables can not be modified, it is not allowed to pass them as
parameters to procedures, so we use a variable ii to hold a copy of the loop
variable i. The Hermes version does not use separate parameters for the original
and encrypted text, since we want to use the encryption function in reverse for
decryption. A complication compared to a normal C implementation is that the
round keys a and b must be restored (in the second for-loop) so they can be
reset to 0 before the procedure exits. Note the use of uncall to do R in reverse.
While the Hermes version is slightly larger than the C version, a C program
would have to define separate functions for encryption and decryption.

To illustrate the use of conditional updates, Fig. 5 shows a simple shift-
register-based cipher. Note that, since the condition in a conditional update
may not involve the updated variable, the value of the condition is computed
in a variable c before the update. To ensure reversibility of the procedure, c is
returned (uncomputed) to 0 afterwards. We restrict K[0] to be even to make
this uncomputation possible.

Figure 6 includes C and Hermes versions of the central part of the RC5
cipher [4,10], i.e., not including the key expansion part. Again, Hermes doesn’t
need the ROL macro, and we use a single parameter for the original and encrypted
values (pt, ct), but we must pass the expanded keys (S[]) as a parameter since
we don’t have global variables. As usual, Hermes doesn’t need a separate decryp-
tion function. The updates to A and B must in Hermes be done as sequences of
reversible updates, which is slightly more verbose, but also makes it clearer that
the transformations are, in fact, reversible. The C version has two nearly iden-
tical lines for even and odd array entries. By swapping A and B, we avoid this in
the Hermes version at the cost of going through the loop twice as many times.

We have implemented also Red Pike [11] and Blowfish [5] in Hermes.

4 Compiling Hermes to C

We have implemented a prototype of Hermes by writing a compiler from Hermes
to C. Each Hermes procedure is compiled to two C functions: One for running
forwards and one for running backwards. The backwards version of a procedure
is compiled by first doing a source-level inversion of the Hermes procedure and
then compiling the inverted procedure to C. A command-line option allows the
whole program to be executed backwards. Since Hermes (like Janus) is designed
to be locally reversible, inversion of procedures is simple.

Individual Hermes statements are fairly straightforward to compile to C.
The compiler inserts the checks and forced zeroing required for reversibility and
compiles statements to time-invariant C. An issue with using C as the target lan-
guage is that the C compiler may optimise away the statements that clear local

Hermes: A Reversible Language for Writing Encryption Algorithms 249

#include <stdint .h>

#define ROR(x , r) ((x >> r) | (x << (64 − r)))
#define ROL(x , r) ((x << r) | (x >> (64 − r)))
#define R(x , y , k) (x = ROR(x ,8) , x += y , x ˆ= k , y = ROL(y ,3) , y ˆ= x)
#define ROUNDS 32

void encrypt (uint64 t ct [2] ,
uint64 t const pt [2] ,
uint64 t const K[2])

{
uint64 t y = pt [0] , x = pt [1] , b = K[0] , a = K[1] ;

R(x , y , b) ;
for (int i = 0; i < ROUNDS − 1; i++) {

R(a , b , i) ;
R(x , y , b) ;

}
ct [0] = y ;
ct [1] = x ;

}

R(u64 x , u64 y , u64 k)
{ x >>= 8; x += y ; x ˆ= k ; y <<= 3; y ˆ= x ; }
speck128 (u64 ct [2] , u64 K[2])
{

u64 y , x , b , a , i i ;
y <−> ct [0] ; x <−> ct [1] ; b += K[0] ; a += K[1] ;

c a l l R(x , y , b) ;
for (i=0; 32) {

ca l l R(a , b , i i) ;
c a l l R(x , y , b) ;
i i++; i++;

}
for (i=32; 0) { /∗ restore a and b ∗/

i−−; i i −−;
uncall R(a , b , i i) ;

}
y <−> ct [0] ; x <−> ct [1] ; b −= K[0] ; a −= K[1] ;

}

Fig. 4. Spec128 in C (top) and Hermes (bottom)

variables, hence allowing information to leak. Other optimisations may make
timing depend on the actual data, leading to another form of information leak.
As an option, you can use the Zerostack modification of the Clang/LLVM [6]
compiler, which aims to avoid such compiler-introduced leaks.

250 T. Æ. Mogensen

sh i f t (u64 v , u64 K[2])
{

u64 a , b , c ;
a += K[0] ; b += K[1] ; /∗ K[0] must be even ∗/
for (i=0; 13) {

c ˆ= v & 1; i f (c) v += a ; c ˆ= v & 1;
v ˆ= b ; v <<= 5; i++;

}
a −= K[0] ; b −= K[1] ;

}

Fig. 5. Simple shift-register block cipher

void RC5ENCRYPT(WORD ∗pt , WORD ∗ct)
{

WORD i , A = pt [0] + S [0] , B = pt [1] + S [1] ;

for (i = 1; i <= 12; i++)
{

A = ROL(A ˆ B, B) + S[2∗ i] ;
B = ROL(B ˆ A, A) + S[2∗ i + 1] ;

}
ct [0] = A; ct [1] = B;

}

rc5 (u32 ct [2] , u32 S [25])
{

u32 A, B;
A <−> ct [0] ; B <−> ct [1] ;
A += S [0] ; B += S [1] ;

for (i=2; 25) {
A ˆ= B; A<<= B; A += S[i] ;
B <−> A;
i++;

}
ct [0] <−> A; ct [1] <−> B;

}

Fig. 6. RC5 in C (top) and Hermes (bottom)

5 Future Work

To ensure reversibility and avoid information leaks, a number of conditions are
tested at run-time: That variables and arrays are zeroed before returning from
a procedure, that variables are zero before a scan statement, as well as explicit
assertions. We will investigate whether some of these conditions can be verified
at compile time, both to reduce the size of the target code, to reduce the running
time, and, if all conditions can be verified at compile time, to guarantee that
programs will never fail these conditions at run-time.

Hermes: A Reversible Language for Writing Encryption Algorithms 251

Some of the restrictions for timing-sensitive control can be relaxed if we add
variables that are declared to be non-secret. These can, for example, be used
for the size of the key or data. Statements that are conditional only on non-
secret variables need not be time invariant, as no secret is leaked by this variable
timing. This will allow recursion based on, say, the size of data. Loop bound
expressions and loop indices can use non-secret variables, and loop counter vari-
ables themselves can be categorised as non-secret. We plan to add public/secret
types in future versions of Hermes.

Because if the issues with using C as a target language, we plan to make
a compiler to CT-Wasm [8], which is a variant of WebAssembly [2] that has a
public/secret type system as proposed above and which ensures that timing is
invariant over secret values.

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). https://eprint.iacr.org/2013/404

2. Haas, A., et al.: Bringing the web up to speed with webAssembly. SIGPLAN Not.
52(6), 185–200 (2017)

3. Lutz, C.: Janus: a time-reversible language. A letter to Landauer. http://www.
tetsuo.jp/ref/janus.pdf (1986)

4. Rivest, R.L.: The RC5 encryption algorithm. Dr. Dobb’s J. 20(1), 146–148 (1995)
5. Schneier, B.: Description of a new variable-length key, 64-bit block cipher (Blow-

fish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 191–204. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-58108-1 24

6. Simon, L., Chisnall, D., Anderson, R.: What you get is what you C: controlling
side effects in mainstream C compilers. In: 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 1–15, April 2018

7. Táborský, D., Larsen, K.F., Thomsen, M.K.: Encryption and reversible computa-
tions - work-in-progress paper. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS,
vol. 11106, pp. 331–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99498-7 23

8. Watt, C., Renner, J., Popescu, N., Cauligi, S., Stefan, D.: CT-Wasm: type-driven
secure cryptography for the web ecosystem. CoRR, abs/1808.01348 (2018)

9. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60590-8 29

10. Wikipedia. Rc5. https://en.wikipedia.org/wiki/RC5. Accessed Feb 2019
11. Wikipedia. Red pike (cipher). https://en.wikipedia.org/wiki/Red Pike (cipher).

Accessed Feb 2019
12. Wikipedia. Speck (cipher). https://en.wikipedia.org/wiki/Speck (cipher). Acces-

sed Feb 2019
13. Wikipedia. Tiny encryption algorithm. https://en.wikipedia.org/wiki/Tiny Encry

ption Algorithm. Accessed Jan 2019
14. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming

language. In: Proceedings of the 5th Conference on Computing Frontiers, CF 2008,
pp. 43–54. ACM, New York (2008)

https://eprint.iacr.org/2013/404
http://www.tetsuo.jp/ref/janus.pdf
http://www.tetsuo.jp/ref/janus.pdf
https://doi.org/10.1007/3-540-58108-1_24
https://doi.org/10.1007/978-3-319-99498-7_23
https://doi.org/10.1007/978-3-319-99498-7_23
https://doi.org/10.1007/3-540-60590-8_29
https://en.wikipedia.org/wiki/RC5
https://en.wikipedia.org/wiki/Red_Pike_(cipher)
https://en.wikipedia.org/wiki/Speck_(cipher)
https://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
https://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm

Causality-Based Testing in Time Petri
Nets

Elena Bozhenkova1(B), Irina Virbitskaite1,2, and Louchka Popova-Zeugmann3

1 A.P. Ershov Institute of Informatics Systems, SB RAS, 6, Acad. Lavrentiev avenue,
Novosibirsk 630090, Russia

bozhenko@iis.nsk.su
2 Novosibirsk State University, 2, Pirogova st., Novosibirsk 630090, Russia

3 Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany

Abstract. The intention of the paper is towards a causality-based
framework for developing, studying, and comparing testing equivalences
with causal net and causal tree semantics in the setting of time Petri nets
(elementary net systems whose transitions are labeled with time firing
intervals, can fire only if their lower time bounds are attained, and are
forced to fire when their upper time bounds are reached). We establish
the relationships between the equivalences showing the similarity of the
semantics under consideration. This allows studying in detail the timing
behaviour in addition to the degrees of relative concurrency of processes
generated during the functioning of time Petri nets.

1 Introduction

The concept of testing equivalence was put forward by Hennessy and de Nicola
in [12]. Two processes are considered testing equivalent if there is no test that
can distinguish them. A test is usually itself a process applied to a process
by computing both together in parallel. A particular computation is consid-
ered to be successful if the test reaches a designated successful state, and the
process guarantees the test if every computation is successful. This notion is
intuitively appealing and has led to a well-developed mathematical theory of
processes that ties together the equivalences and preorders. Testing equivalences
were thoroughly investigated and well-understood in the setting of transition
systems (see [7,11] among others) which are a representative of the interleaving
approach where concurrency relation is reduced to nondeterminism by treating
concurrent execution of actions as the choice between sequentializations of their
atomic actions. To overcome the limits of interleaving semantics, concurrency is
often modeled by absence of causal dependencies, represented by partial orders,
between systems’ events. Several well-known variants of partial order testing
[2,14] appeared in the literature. Furthermore, testing equivalences based on
causal tree semantics are actively treated as well. Here, the behaviour of a sys-
tem is represented in the form of a tree with edges labeled by actions and their

This work is supported in part by DFG (project CAVER, grant BE 1267/14-1).

c© Springer Nature Switzerland AG 2019
N. Bjørner et al. (Eds.): PSI 2019, LNCS 11964, pp. 252–261, 2019.
https://doi.org/10.1007/978-3-030-37487-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37487-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-37487-7_22

Causality-Based Testing in Time Petri Nets 253

predecessors. So, information about causality relation between actions is kept
precisely. The relationships between causal tree and partial order semantics have
been thoroughly studied in [1,10,14].

As safety-critical applications often require verification of real time charac-
teristics, in addition to functional or qualitative temporal properties, testing
equivalences are expanded in concurrent models with time. The papers [8] and
[16] provided an alternative characterization of timed testing for discrete-time
transition models, on the base of a notion similar to that of an acceptance set
in the testing theory. In [18], decidability questions of interleaving time-sensitive
testing are investigated. Semantic theories based on testing were developed for
process algebras with timing constraints in the papers [15] and [9]. Both the
papers provide alternative characterizations of testing preorders in terms of
refusal traces. Also, the authors of [9] proved the possibility of discretization
in the context of their algebra and, as a consequence, reduction of dense-timed
testing to discrete-timed one. In [6], the testing relations and the results on their
alternative characterizations and the possibility of discretization were extended
to Petri nets with associating time intervals to arcs from places to transitions.
At the same time, to the best of our knowledge, there are only few mentions of a
fusion of timing and causality-based semantics, in testing scenario. In this regard,
the work [17] is a welcome exception, where time-sensitive testing were treated
in the setting of event structures with time characteristics. Also, our origin is the
papers [4,5] which contribute to the classification of the wealth of observational
equivalences of linear time – branching time spectrum, based on interleaving,
causal tree and partial order semantics of dense-time event structures with and
without internal actions.

The intention of the paper is towards a causality-based framework for devel-
oping, studying, and comparing testing equivalences with causal net and causal
tree semantics in the setting of time Petri nets (elementary net systems whose
transitions are labeled with time firing intervals, can fire only if their lower time
bounds are attained, and are forced to fire when their upper time bounds are
reached). We establish the relationships between the equivalences showing the
similarity of the semantics under consideration. To do this, we heavily rely on
the concept of causal net processes of a time Petri net, which were put forward
in the paper [3]. The proofs of the results obtained can be found at www.iis.nsk.
su/virb/proofsketches-PSI-2019.

2 Time Petri Nets: Syntax and Interleaving Semantics

In this section, some terminology concerning the model of Petri nets with tim-
ing constraints (time intervals on the firings of transitions) and its interleaving
semantics in terms of firing sequences are defined.

We start with recalling the definitions of the structure and behavior of Petri
nets (elementary net systems) [13]. We use Act to denote an alphabet of actions.

Definition 1. – A (labeled over Act) Petri net is a tuple N = (P , T , F , M0,
L), where P is a finite set of places and T is a finite set of transitions such

www.iis.nsk.su/virb/proofsketches-PSI-2019
www.iis.nsk.su/virb/proofsketches-PSI-2019

254 E. Bozhenkova et al.

that P ∩ T = ∅ and P ∪ T �= ∅, F ⊆ (P × T) ∪ (T × P) is a flow relation,
∅ �= M0 ⊆ P is an initial marking, L : T → Act is a labeling function. For
x ∈ P ∪ T , let •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} be the preset
and postset of x, respectively. For X ⊆ P ∪ T , define •X =

⋃
x∈X

•x and
X• =

⋃
x∈X x•.

– A marking M of a Petri net N is any subset of P . A transition t ∈ T is
enabled at a marking M if •t ⊆ M1. Let En(M) be the set of transitions
enabled at M .
The firing of a transition t enabled at a marking M leads to the new marking
M ′ (denoted M

t−→ M ′) iff M ′ = (M \ •t) ∪ t•. We write M
ϑ−→ M ′ iff

ϑ = t1 . . . tk and M = M0 t1−→ M1 . . . Mk−1 tk−→ Mk = M ′ (k ≥ 0). In this
case, ϑ is a firing sequence of N from M (to M ′), and M ′ is a reachable
marking of N from M . Let RM(N) be the set of all reachable markings of
N from M0.
We call N T -restricted iff •t �= ∅ �= t•, for all transitions t ∈ T ; contact-free
iff whenever t is a transition enabled at a marking M , then M ∩ t• = ∅, for
all M ∈ RM(N).

Following the approach of [3], we extend the above model to time Petri nets.
Let the domain T of time values be the set of rational numbers. We denote by
[τ1, τ2] the closed interval between two time values τ1, τ2 ∈ T. Infinity is allowed
at the upper bounds of intervals. Let Interv be the set of all such intervals.

Definition 2. – A (labeled over Act) time Petri net is a pair T N = (N ,D),
where N is the underlying (labeled over Act) Petri net and D : T → Interv is
a static timing function associating with each transition a time interval. For
a transition t ∈ T , the boundaries of the interval D(t) ∈ Interv are called the
earliest firing time Eft and latest firing time Lft of t.

– A state of T N is a pair (M, I), where M is a marking and I : En(M) −→ T

is a dynamic timing function. The initial state of T N is a pair S0 = (M0, I0),
where M0 is the initial marking and I0(t) = 0, for all t ∈ En(M0).
A transition t enabled at a marking M is fireable from a state S = (M, I)
after a delay time θ ∈ T if (Eft(t) ≤ I(t) + θ) and (I(t′) + θ ≤ Lft(t′), for
all t′ ∈ En(M))).
The firing of a transition t fireable from a state S = (M, I) after a delay time

θ leads to the new state S′ = (M ′, I ′) (denoted S
(t,θ)−→ S′) given as follows:

(a) M
t−→ M ′,

(b) ∀t′ ∈ T � I ′(t′) =

⎧
⎨

⎩

I(t′) + θ, if t′ ∈ En(M \ •t),
0, if t′ ∈ En(M ′) \ En(M \ •t),
undefined, otherwise.

Then, we write S
(a,θ)−→ S′, if a = L(t). We use the notation S

σ−→ S′ iff

σ = (t1, θ1) . . . (tk, θk) and S = S0 (t1,θ1)−→ S1 . . . Sk−1 (tk,θk)−→ Sk = S′ (k ≥ 0).
1 For technical convenience, we do not use the classical definition: a transition t ∈ T

is enabled at a marking M if •t ⊆ M and M ∩ t• = ∅. We will require the second
part in the definition of the contact-free property.

Causality-Based Testing in Time Petri Nets 255

In this case, σ is a firing sequence of T N from S (to S′), and S′ is a reachable
state of T N from S. Let FS(T N) be the set of all firing sequences of T N
from S0, and RS(T N) be the set of all reachable states of T N from S0.
We call T N T -restricted iff the underlying Petri net is T -restricted; contact-
free iff whenever t is a transition fireable from the state S = (M, I) after some
delay time θ, then (M \ •t) ∩ t• = ∅, for all S ∈ RS(T N)2; time-progressive
iff for all sets {t1, t2, . . . , tn} ⊆ T such that t•i ∩• ti+1 �= ∅ (1 ≤ i < n) and
t•n ∩• t1 �= ∅, it holds that

∑
1≤i≤n Eft(ti) > 03. In what follows, we will

consider only T -restricted, contact-free and time-progressive time Petri nets
and denote their class as TN.

Example 1. A (labeled over Act = {a, b, c}) time Petri net T N is shown in Fig. 1.
Here, the names are depicted near the elements, the flow relation is drawn by
the arcs, the initial marking is represented as the set of the places with tokens,
and the values of the labeling and timing functions are printed next to the
transitions. It is not difficult to check that t1 and t3 are transitions enabled
at the initial marking M0 and, moreover, transitions fireable from the initial
state S0 = (M0, I0) after a time delay θ ∈ [2, 3], where M0 = {p1, p2}, I0(t) ={

0, if t ∈ {t1, t3},
undefined, otherwise. The sequence σ = (t1, 3) (t3, 0) (t2, 2) (t3, 2) (t1, 0)

(t5, 2) (t4, 0) is a firing sequences of T N from S0. Furthermore, it is easy to see
that T N is really T -restricted, contact-free and time-progressive.

T N :

p1 p2

t1, b [2, 3]
t2, a

[2, 4]
t3, b [2, 4]

p3 p4

t4, c [1, 2] t5, d [2, 2]

p5 p6

Fig. 1. An example of time Petri net.

3 Causality-Based Semantics of Time Petri Nets

3.1 Preliminaries

We start with considering definitions related to time causal nets.
2 Clearly, if the underlying Petri net of T N is contact-free, then T N must be contact-

free as well, but not vice versa.
3 The time-progressive property shall guarantee the correctness of the modified defi-

nition of the contact-free property, for our purposes.

256 E. Bozhenkova et al.

Definition 3. A (labeled over Act) time net is a finite, acyclic net TN =
(B,E,G, l, τ) with a set B of conditions, a set E of events, a flow relation
G ⊆ (B × E) ∪ (E × B) such that {e | (e, b) ∈ G} = {e | (b, e) ∈ G} = E,
a labeling function l : E → Act, and a time function τ : E → T such that
e G+ e′ ⇒ τ(e) ≤ τ(e′).

Introduce additional notions and notations for a time net TN =
(B,E,G, l, τ). Let ≺= G+, �= G∗, and τ(TN) = max{τ(e) | e ∈ E}. Spec-
ify •x = {y | (y, x) ∈ G} and x• = {y | (x, y) ∈ G}, for x ∈ B ∪ E, and,
moreover, •X =

⋃
x∈X

•x and X• =
⋃

x∈X x•, for X ⊆ B ∪ E. Furthermore,
define the sets •TN = {b ∈ B | •b = ∅} and TN• = {b ∈ B | b• = ∅}. TN
is called a time causal net, if |•b| ≤ 1 and |b•| ≤ 1, for all b ∈ B. Notice that
η(TN) = (ETN ,�TN ∩(ETN × ETN), lTN , τTN) is a time poset4. Given a time
causal net over Act, TN = (B, E, G, l, τ), e, e′ ∈ E, x, x′ ∈ (B ∪ E), and
E′ ⊆ E,

– ↓ e = {x | x � e} (predecessors), Earlier(e) = {e′ ∈ E | τ(e′) < τ(e)} (time
predecessors), x � x′ ⇐⇒ ¬((x ≺ x′) ∨ (x′ ≺ x)) (concurrency);

– E′ is a downward-closed subset of E if ↓ e′ ∩ E ⊆ E′, for all e′ ∈ E′. In this
case, Cut(E′) = (E′• ∪ •TN) \ •E′. Also, E′ is called timely sound subset
of E if τ(e′) ≤ τ(e), for all e′ ∈ E′ and e ∈ E \ E′;

– a sequence ρ = e1 . . . ek (k ≥ 0) of events of TN is a linearization of TN if
every event of TN appears in the sequence exactly once, and the following
holds: (ei � ej ∨τ(ei) ≤ τ(ej)) ⇒ i < j, for all 1 ≤ i, j ≤ k. For a linearization
ρ = e1 . . . ek of TN , define El

ρ =
⋃

1≤i≤l ei (0 ≤ l ≤ k). Clearly, El
ρ is

a downward-closed and timely sound subset of E, and, moreover, τ(ek) =
τ(TN).

Lemma 1. Every time causal net TN has a linearization ρ = e1 . . . ek. More-
over, Cut(El

ρ) =
(
Cut(El−1

ρ) \ •el

)
∪ e•

l, and
(
Cut(El−1

ρ) \ •el

)
∩ e•

l = ∅
(1 ≤ l ≤ k).

Time causal nets, TN = (B, E, G, l, τ) and TN ′ = (B′, E′, G′, l′, τ ′), are
isomorphic (denoted TN � TN ′) iff there exists a bijective mapping β : B∪E →
B′ ∪ E′ such that (i) β(B) = B′ and β(E) = E′; (ii) x G y ⇐⇒ β(x) G′ β(y),
for all x, y ∈ B ∪ E; (iii) l(e) = l′(β(e)) and τ(e) = τ ′(β(e)), for all e ∈ E. We
say that TN is a direct prefix of TN ′ (denoted TN −→ TN ′) if B ⊆ B′, E is
a downward-closed and timely sound subset of E′, E′ \ E = {e}, ↓ e ∩ E′ ⊆ E,
G = G′ ∩ (B × E ∪ E × B), l = l′ |E , and τ = τ ′ |E .

3.2 Time Causal Net Semantics

In this subsection, the concept of causality-based net processes of time Petri nets
proposed in [3] is considered and studied.
4 A (labeled over Act) time poset (partially ordered set) is a tuple η = (X, �, λ, τ)

consisting of a finite set X of elements; a reflexive, antisymmetric and transitive
relation �; a labeling function λ : X → Act; and a timing function τ : X → T such
that e � e′ ⇒ τ(e) ≤ τ(e′). Let τ(η) = max{τ(x) | x ∈ X}.

Causality-Based Testing in Time Petri Nets 257

Definition 4. Given a time Petri net T N = ((P , T , F , M0, L), D) and a time
causal net TN = (B,E,G, l, τ),

– a mapping ϕ : B ∪ E → P ∪ T is a homomorphism from TN to T N iff the
following conditions hold:

• ϕ(B) ⊆ P , ϕ(E) ⊆ T ;
• the restriction of ϕ to •e is a bijection between •e and •ϕ(e) and the

restriction of ϕ to e• is a bijection between e• and ϕ(e)•, for all e ∈ E;
• the restriction of ϕ to •TN is a bijection between •TN and M0;
• l(e) = L(ϕ(e)), for all e ∈ E.

– a pair π = (TN,ϕ) is a time process of a time Petri net T N iff TN is a time
causal net and ϕ is a homomorphism from TN to T N .

Given a time process π = (TN,ϕ) of T N , a subset B′ ⊆ BTN , and a tran-
sition t ∈ En(ϕ(B′)), the time of enabling (TOE) of t, i.e. the latest global
time moment when tokens appear in all input places of t, is defined in [3]
as follows: TOEπ(B′, t) = max

(
{τTN (•b) | b ∈ B′

[t] \ •TN} ∪ {0}
)
, where

B′
[t] = {b ∈ B′ | ϕTN (b) ∈ •t}.

Next, define the notion of a correct time process of T N .

Definition 5. A time process π = (TN,ϕ) of T N is correct iff for all e ∈ E it
holds:

(a) τ(e) ≥ TOEπ(•e, ϕ(e)) + Eft(ϕ(e)),
(b) ∀t ∈ En(ϕ(Ce)) � τ(e) ≤ TOEπ(Ce, t) + Lft(t), where Ce =

Cut(Earlier(e)).

Let CP(T N) denote the set of correct time processes of T N .

Time processes π = (TN,ϕ), π′ = (TN ′, ϕ′) ∈ CP(T N) are isomorphic
(denoted π � π′) iff there is an isomorphism f : TN � TN ′ such that ϕ(x) =
ϕ′(f(x)), for all x ∈ B ∪ E. From now on, for π = (TN,ϕ), π′ = (TN ′, ϕ′) ∈
CP(T N), we write π −→ π′ in T N iff TN −→ TN ′ and ϕ = ϕ′|B∪E .

We now intend to realize for a time Petri net the relationships between its
firing sequences and its correct time processes. For π = (TN,ϕ) ∈ CP(T N),
define the function FSπ that maps any linearization ρ = e1 . . . ek of TN to the
sequence of the form: FSπ(ρ) = (ϕ(e1), τ(e1) − 0) . . . (ϕ(ek), τ(ek) − τ(ek−1)).
The following is a slight modification of Theorems 19, 21 and 22 from [3].

Proposition 1. (i) Given π = (TN,ϕ) ∈ CP(T N) and a linearization ρ of TN ,
there is a unique firing sequence FSπ(ρ) ∈ FS(T N).

(ii) Given σ ∈ FS(T N) of T N , there is a unique (up to an isomorphism) time
process πσ = (TN,ϕ) ∈ CP(T N) with a unique linearization ρσ of TN such
that FSπσ

(ρσ) = σ.

Lemma 2. Given σ ∈ FS(T N) and π ∈ CP(T N) such that σ = FSπ(ρ), where
ρ is a linearization of TNπ,

(i) if σ(t, θ) ∈ FS(T N), there is π̃ ∈ CP(T N) such that π → π̃ in T N and
σ(t, θ) = FSπ̃(ρ e), where ρ e is a linearization of TNπ̃;

(ii) if π → π̃ in T N , then there is σ(t, θ) ∈ FS(T N) such that σ(t, θ) =
FSπ̃(ρ e), where ρ e is a linearization of TNπ̃.

258 E. Bozhenkova et al.

3.3 Time Causal Tree Semantics

Causal trees [10] are synchronisation trees which carry in their labels addi-
tional information about causes of actions thus providing us with an interleaving
description of concurrent processes which faithfully expresses causality. Time
causal trees are an extension of causal trees by adding timing. In the time causal
tree of T N , the nodes are simply the firing sequences from FS(T N), and an
arc exists between the two nodes if the second one is an extension of the first
one. The causes in the labels of the arc have to be computed from the causality
relation of the corresponding time processes of T N .

Definition 6. The time causal tree of T N , TCT (T N), is a tree (FS(T N),
A, φ), where FS(T N) is the set of nodes with the root ε; A = {(σ, σ(t, θ)) |
σ, σ(t, θ) ∈ FS(T N)} is the set of arcs; φ is the labeling function such that
φ(ε) = ε and φ(σ, σ(t, θ)) = (lT N (t), θ, K), where K = {n − l + 1 | σ(t, θ) =
FSπσ(t,θ)(e1 . . . en e), for the linearization e1 . . . en e of TNπσ(t,θ) , and
el ≺TNπσ(t,θ)

e}. Let path(σ) be the path starting from the root and finishing
in the node σ of TCT (T N)5.

Example 2. Consider the time Petri net T N (see Fig. 1) and its firing sequence
σ = (t1, 3) (t3, 0) (t2, 2) (t3, 2) (t1, 0) (t5, 2) (t4, 0) ∈ FS(T N). It is easy to
get that φ(path(σ)) = (a, 3, ∅) (b, 0, ∅) (a, 2, {1, 2}) (b, 2, {1, 2, 3}) (a, 0, {2, 3, 4})
(d, 2, {2, 3, 4, 5}) (c, 0, {2, 4, 5, 6}).

We finally establish some relationships between correct time processes and
labeled paths in the time causal trees of two time Petri nets.

Proposition 2. (i) Given π ∈ CP(T N) and π′ ∈ CP(T N ′) with an isomor-
phism f : η(TNπ) → η(TNπ′), φ(path(FSπ(ρ))) = φ′(path(FSπ′(f(ρ)))),
for any linearization ρ of TNπ.

(ii) Given σ∈FS(T N) and σ′ ∈FS(T N ′) such that φ(path(σ)) = φ′(path(σ′)),
there is an isomorphism f : η(TNπσ

) → η(TNπσ′) such that f(ρσ) = ρσ′ .

4 Testing Equivalences in Causality-Based Semantics

A kind of causal testing on event structure models has already been defined by
Aceto, De Nicola and Fantechi in [2]. Their idea is that the experiments on event
structures are pomsets instead of words and the behaviour which is tested for
after the experiment consists of a set of actions. Instead of sets of actions, the
authors of [14] have used sets of direct extensions of the executed pomsets, as
tests. Also, in [14] a stronger version of causal testing has been put forward,
based on posets rather than pomsets. Following this approach, we define poset
testing equivalence on time Petri nets, relying on their correct time processes.

Definition 7. Given time Petri nets T N and T N ′,
5 We assume path(ε) = ε. Notice that in TCT (T N), for any node σ ∈ FS(T N), there

is a path starting from the root and finishing in σ.

Causality-Based Testing in Time Petri Nets 259

– for a time poset TP and a set TP of time posets, such that TP≺· TP ′6 for all
TP ′ ∈ TP, T N after TP MUSTpos TP iff for all π = (TN,ϕ) ∈ CP(T N)
and for all isomorphisms f : η(TN) −→ TP 7, there exists TP ′ ∈ TP, π′ =
(TN ′, ϕ′) ∈ CP(T N), and an isomorphism f ′ : η(TN ′) −→ TP ′ such that
π → π′ and f ⊆ f ′;

– T N and T N ′ are poset testing equivalent (denoted T N ∼pos TN ′) iff for
all time posets TP and for all sets TP of time posets, such that TP≺· TP ′

for all TP ′ ∈ TP, it holds: T N after TP MUSTpos TP′ ⇐⇒ T N ′ after
TP MUSTpos TP′.

Example 3. Consider the time Petri nets T N 1, T N 2, and T N 3 depicted in
Fig. 2. It is easy to see that T N 1 and T N 2 are ∼pos–equivalent whereas T N 2

and T N 3 are not. Let’s make sure the latter. Define posets TP = ({x1, x2}, �, λ,
τ) and TP ′ = ({x1, x2, x3}, �′, λ′, τ ′), where �= {(xi, xi) | 1 ≤ i ≤ 2}, λ(x1) =

T N 1 :

b [0, 0] b [0, 0]

a
[0, 4] a [0, 4]

T N 2 : T N 3 :

b [0, 0] b [0, 0]

a [0, 4] a [0, 4] a [4, 4]

b [0, 0] b [0, 0]

a [0, 4] a [4, 4] a [0, 4]

Fig. 2. ∼pos– and �pos–equivalent time Petri nets.

λ(x2) = b, τ(x1) = τ(x2) = 0; �′= {(xi, xi) | 1 ≤ i ≤ 3} ∪ {(x2, x3)}, λ′(x1) =
λ′(x2) = b, λ′(x3) = a, τ ′(x1) = τ ′(x2) = 0, and τ ′(x3) = 3.9. For any time
process π2 = (TN2, ϕ2) ∈ CP(T N 2) with ETN2 consisting of two concurrent
events with labels b and time values 0, and any isomorphism f2 : η(TN2) −→ TP ,
we can find π′

2 = (TN ′
2, ϕ

′
2) ∈ CP(T N 2) with ETN ′

2
consisting of two concurrent

events with labels b and time values 0 and some third event with label a and
time value 3.9, which is causally preceded by one of the b’s, and an isomorphism
f ′
2 : η(TN ′

2) −→ TP ′ such that π2 → π′
2 and f2 ⊂ f ′

2. But this is not the case in
T N 3.
6 A time poset η is a direct prefix of a time poset η′ (denoted η≺· η′) iff X ⊆ X ′,

X ′ \ X = {x}, �=�′ ∩(X × X), λ = λ′ |X , τ = τ ′ |X , and x is a maximal w.r.t. �′

element of X ′.
7 Time posets, η = (X, �, λ, τ) and η′ = (X ′, �′, λ′, τ ′), are isomorphic (denoted

η � η′) iff there is a bijective mapping β : X → X ′ such that (i) x � y ⇐⇒
β(x) �′ β(y), for all x, y ∈ X; (ii) λ(x) = λ′(β(x)) and τ(x) = τ ′(β(x)), for all
x ∈ X.

260 E. Bozhenkova et al.

Second, the definition of testing equivalence on time causal trees is developed.
For this we adapt the concept of causal tree testing on event structures from [14]
to time Petri nets, in so doing the experiments and tests are constructed over
the alphabet Act × T × 2N instead of over Act × 2N.

Definition 8. Given time Petri nets T N and T N ′ with their time causal trees
TCT (T N) and TCT (T N ′), respectively,

– for a sequence w ∈ (Act×T×2N)∗ and a set W ⊆ (Act×T×2N), TCT (T N)
after w MUST W iff for all paths u in TCT (T N) from its root to a node n
such that φ(u) = w, there exists a label (a, d,K) ∈ W and an arc r starting
from n such that φ(r) = (a, d,K);

– T N and T N ′ are causal tree testing equivalent (T N ∼ct T N ′) iff for all
w ∈ (Act × T × 2N)∗ and W ⊆ (Act × T × 2N), TCT (T N) after w MUST
W ⇐⇒ TCT (T N ′) after w MUST W.

We finally establish the coincidence of poset and causal tree testing equiva-
lences, in the setting of time Petri nets.

Theorem 1. Given time Petri nets T N 1 and T N 2,

T N 1 ∼pos T N 2 ⇐⇒ T N 1 ∼ct T N 2.

5 Concluding Remarks

We have shown that some of the causality-based testing equivalences actively
treated in the untimed and timed event structures literature may be lifted to
the realm of time Petri nets. In particular, we have defined testing equivalences
based on time causal trees and time causal nets, in the setting of safe Petri nets
(elementary net systems) with strong timing (transitions are labeled with time
firing intervals, enabled transitions are able to fire only if their lower time bounds
are attained, and are forced to fire when their upper time bounds are reached). In
doing so, we dealt with three behavioral representations of a time Petri net: firing
sequences representing interleaving semantics, time causal net processes, from
causal nets of which partial orders are derived, and the causal tree semantics
constructed from the firing sequences and partial orders. We have realized for
a time Petri net the relationships between its firing sequences and correct time
processes, on the one hand, and the labeled paths in its time causal tree and
correct time processes, on the other hand. As a main result, the coincidence
between the testing equivalences in the semantics of time partial orders and
time causal trees was established. It is worth noticing that the result also works
for the untimed versions of the equivalences in the setting of untimed contact-free
elementary net systems.

As for future work, we plan to see the place of the equivalences and semantics
under consideration in the lattice of those in the linear-time—branching-time
and interleaving—partial order spectra, constructed in the paper [19]. Also, we
intend to extend the results obtained to time Petri nets with invisible actions.

Causality-Based Testing in Time Petri Nets 261

References

1. Aceto, L.: History preserving, causal and mixed-ordering equivalence over stable
event structures. Fundamenta Informaticae 17(4), 319–331 (1992)

2. Aceto, L., De Nicola, R., Fantechi, A.: Testing equivalences for event structures.
Lect. Notes Comput. Sci. 280, 1–20 (1987)

3. Aura, T., Lilius, J.: A causal semantics for time Petri nets. Theor. Comput. Sci.
243, 409–447 (2000)

4. Andreeva, M., Bozhenkova, E., Virbitskaite, I.: Analysis of timed concurrent mod-
els based on testing equivalenc. Fundamenta Informaticae 43, 1–20 (2000)

5. Andreeva, M., Virbitskaite, I.: Observational equivalences for timed stable event
structures. Fundamenta Informaticae 72(1–3), 1–19 (2006)

6. Bihler, E., Vogler, W.: Timed Petri nets: efficiency of asynchronous systems. Lect.
Notes Comput. Sci. 3185, 25–58 (2004)

7. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence.
Lect. Notes Comput. Sci. 407, 11–23 (1989)

8. Cleaveland, R., Zwarico, A.E.: A theory of testing for real-time. In: Proceedings of
6th IEEE Symposium on Logic in Computer Science (LICS 1991), Amsterdam,
The Netherlands, pp. 110–119 (1991)

9. Corradini, F., Vogler, W., Jenner, L.: Comparing the worst-case efficiency of asyn-
chronous systems with PAFAS. Technical report, N 2000–6, Inst. fur Informatik of
Univ. of Augsburg (2000)

10. Darondeau, P., Degano, P.: Refinement of actions in event structures and causal
trees. Theor. Comput. Sci. 118, 21–48 (1993)

11. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica
24, 211–237 (1987)

12. De Nicola, R., Hennessy, M.: Testing equivalence for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

13. Rozenberg, G., Engelfriet, J.: Elementary net systems. Lect. Notes Comput. Sci.
1491, 12–121 (1998)

14. Goltz, U., Wehrheim, H.: Causal testing. Lect. Notes Comput. Sci. 1113, 394–406
(1996)

15. Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117,
221–239 (1995)

16. Llana, L., de Frutos, D.: Denotational semantics for timed testing. Lect. Notes
Comput. Sci. 1233, 368–382 (1997)

17. Murphy, D.: Time and duration in noninterleaving concurrency. Fundamenta Infor-
maticae 19, 403–416 (1993)

18. Steffen, B., Weise, C.: Deciding testing equivalence for real-time processes with
dense time. Lect. Notes Comput. Sci. 711, 703–713 (1993)

19. Virbitskaite, I., Bushin, D., Best, E.: True concurrent equivalences in time Petri
nets. Fundamenta Informaticae 149(4), 401–418 (2016)

Author Index

Alahakoon, Damminda 64
Alexandrov, Ilia 140
Anureev, Igor 50
Avdeenko, Tatiana 205

Baar, Thomas 125
Bakaev, Maxim 10, 167
Borovikova, Olesya 95
Bozhenkova, Elena 252

De Silva, Daswin 64

Emelyanov, Pavel 80

Fensel, Dieter 223
Firsov, Artemiy 26

Garanina, Natalia 50
Goltsova, Ekaterina 167
Gorlatch, Sergei 50

Holzknecht, Omar 223

Kärle, Elias 223
Kasimov, Denis 156
Khvorostov, Vladimir 10, 167
Kleyko, Denis 64
Klimiankou, Yauhen 1
Kobalo, Nikolay 116
Kondratyev, Dmitry 232
Korobko, Anna 106
Korovina, Margarita 185
Kratov, Sergey 199
Krayneva, Irina 41
Krishna, Madhava 80
Kuchuganov, Aleksandr 156
Kuchuganov, Valeriy 156
Kudinov, Oleg 185
Kulikov, Alexander 116
Kulkarni, Vadiraj 80

Liakh, Tatiana 50

Markov, Sergey 140
Maryasov, Ilya 232
Metus, Anna 106
Mogensen, Torben Ægidius 243
Murtazina, Marina 205

Nandy, S. K. 80
Nepomniaschy, Valery 232

Osipov, Evgeny 64

Panasiuk, Oleksandra 223
Pankratenko, Georgiy 140
Ponomaryov, Denis 80
Popova-Zeugmann, Louchka 252

Raha, Soumyendu 80
Razumnikova, Olga 167
Rozov, Andrei 50

Savchenko, Valeriy 140
Şimşek, Umutcan 223
Sorokin, Konstantin 140
Spiridonov, Alexander 140
Sun, Kwangwon 140

Titov, Igor 26, 116
Troshkov, Sergey 41

Virbitskaite, Irina 252
Volkov, Alexander 140
Vyatkin, Valeriy 64

Wiklund, Urban 64

Zagorulko, Yury 95
Zelenov, Sergey V. 214
Zelenova, Sophia A. 214
Zyubin, Vladimir 50

	Preface
	Organization
	Abstracts
	Towards Knowledge Graph Based Representation, Augmentation and Exploration of Scholarly Communication
	On Termination of Probabilistic Programs
	Safety Verification for Deep Neural Networks with Provable Guarantees
	Automated-Reasoning Revolution: From Theory to Practice and Back
	The Power of Symbolic Automata and Transducers
	Contents
	Rapid Instruction Decoding for IA-32
	1 Introduction
	2 IA-32 Instruction Set Architecture
	2.1 Instructions on IA-32
	2.2 Classification of IA-32 Instructions
	2.3 Encoding Trees and Instructions Types

	3 General Architecture of EIDIA Decoder
	4 Output Interface of EIDIA
	5 Evaluation
	6 Conclusion
	References

	Case-Based Genetic Optimization of Web User Interfaces
	Abstract
	1 Introduction
	2 Methods
	2.1 Background and Related Work
	2.2 The Evolutionary Algorithm for WUI Design
	2.3 CBR: The Problem Features and the Solutions’ Chromosome Structure

	3 Implementation
	3.1 The Case-Based Retrieval
	3.2 The Chromosome Structure Specification
	3.3 Repository of Content
	3.4 Example of the EA Data Structures

	4 Conclusion
	Acknowledgement
	References

	Inter-country Competition and Collaboration in the miRNA Science Field
	1 Introduction
	1.1 Author Disambiguation Overview
	1.2 Affiliation Disambiguation Problem

	2 Methods and Materials
	2.1 Prerequisites
	2.2 Dataset
	2.3 Evaluation Metrics
	2.4 Data Preprocessing
	2.5 Clustering and Similarity
	2.6 K-Mer Boolean Vector Sorting
	2.7 Country Identification

	3 Results
	3.1 PubMed Statistics
	3.2 Countries Publication Activity
	3.3 Countries Interaction Graph
	3.4 Joint Publications

	4 Discussion
	5 Conclusion
	References

	Archival Information Systems: New Opportunities for Historians
	1 Introduction
	2 Tools
	3 Analogies and Problems
	4 Technology and Method of Digital Historical Factography
	5 Expansion of Project Activities
	6 ``Migration'' Policy
	7 Conclusion
	References

	Two-Step Deductive Verification of Control Software Using Reflex
	1 Introduction
	2 Specification of Properties of Reflex Programs
	3 Rewriting Annotated Reflex Programs into C-Projections
	4 Generating Verification Conditions for C-Projections of Reflex Programs
	5 Discussion and Conclusion
	References

	Distributed Representation of n-gram Statistics for Boosting Self-organizing Maps with Hyperdimensional Computing
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Self-organizing Maps
	3.2 n-gram Statistics
	3.3 Hyperdimensional Computing
	3.4 Mapping of n-gram Statistics with Hyperdimensional Computing

	4 Experimental Results
	5 Conclusions
	References

	Parallel Factorization of Boolean Polynomials
	1 Introduction
	2 Background
	2.1 Factorization Algorithm
	2.2 IsEqual Procedure
	2.3 Scope for Parallelism

	3 Proposed Approach
	3.1 Parallel Factorization Algorithm
	3.2 Parallel IsEqual Procedure

	4 Experiments and Results
	4.1 Logic Circuit Synthesis Benchmarks
	4.2 Synthetic Polynomials
	4.3 Scaling Results

	5 Implementation on Redefine
	5.1 Decomposition Algorithm Using HyperOps

	6 Conclusions and Future Work
	References

	Providing the Sharing of Heterogeneous Ontology Design Patterns in the Development of the Ontologies of Scientific Subject Domains
	1 Introduction
	2 A Short Review of Ontology Design Patterns
	3 Problems of Using Ontology Design Patterns
	4 Approach to the Development of Ontologies of Scientific Subject Domains
	4.1 An SSD Ontology and Base Ontologies
	4.2 A System of Ontology Design Patterns
	4.3 Methods of Building Ontologies of SSDs

	5 Conclusion and Future Work
	References

	The Analytical Object Model as a Base of Heterogeneous Data Integration
	1 Introduction
	2 The Formal Specification of the Analytical Object Model
	3 An Example of Analytical Object Model Instance Producing
	4 Conclusion
	References

	Prediction of RNA Secondary Structure Based on Optimization in the Space of Its Descriptors by the Simulated Annealing Algorithm
	Abstract
	1 Introduction
	2 Basic Requirements for the Secondary Structure Prediction Method
	3 Review of Existing Software for Predicting the Secondary Structure of RNA
	4 Used Programs and Real Data
	5 Method Description
	5.1 Data Representation
	5.2 Reducing to Discrete Optimization Task

	6 Solution of the Optimization Task
	7 Testing
	7.1 Evaluation of the Accuracy of the Solution
	7.2 Comparison of Programs

	Acknowledgements
	References

	A Metamodel-Based Approach for Adding Modularization to KeYmaera's Input Syntax
	1 Motivation
	2 Background
	2.1 Dynamic Logic (DL)
	2.2 Differential Dynamic Logic (DDL)

	3 Problems in Using KeYmaera's Input Syntax
	4 A Metamodel-Based Approach to Solve Identified Problems
	4.1 Metamodel of Current KeYmaera Syntax
	4.2 Solutions for Identified Problems

	5 Towards the Realization of Solution Proposals
	5.1 Realization by Extending the Prover KeYmaera
	5.2 Realization by Creating a Frontend-DSL

	6 Related Work
	7 Conclusion and Future Work
	References

	Nobrainer: An Example-Driven Framework for C/C++ Code Transformations
	1 Introduction
	2 Related Work
	3 Design
	4 Detailed Description
	4.1 Template Collection
	4.2 Template Validation
	4.3 Rule Generation
	4.4 Rule Processing
	4.5 Rule Application
	4.6 Replacement Generation
	4.7 Type Parameters

	5 Results
	5.1 Testing
	5.2 Examples
	5.3 Performance

	6 Limitations and Future Work
	7 Conclusion
	References

	A Logical Approach to the Analysis of Aerospace Images
	Abstract
	1 Introduction
	2 Formation of a Set of Features
	3 Formation of Decision Rules
	4 Experiment
	5 Conclusion
	Acknowledgment
	References

	Data Compression Algorithms in Analysis of UI Layouts Visual Complexity
	Abstract
	1 Introduction
	1.1 Visual Complexity in Human-Computer Interaction
	1.2 Complexity and Data Compression
	1.3 Related Work and Research Question

	2 Methods
	2.1 Entropy and Human Perception
	2.2 The Compression Algorithms
	2.3 The “Squint” Coarsening Method
	2.4 Hypotheses and the Experimental Material

	3 Experiment 1: Layouts
	3.1 Experiment Description
	3.2 Descriptive Statistics
	3.3 Effects of Independent Variables
	3.4 Regression Analysis

	4 Experiment 2: Websites
	4.1 Experiment Description (Subjective Complexity)
	4.2 Experiment Description (Layout Annotation)
	4.3 Descriptive Statistics
	4.4 Effects of Independent Variables
	4.5 Regression Analysis

	5 Conclusion
	Acknowledgement
	References

	Computable Topology for Reliable Computations
	1 Introduction
	2 Preliminaries
	2.1 Weakly Effective -continuous Domains
	2.2 Perfect Computable Polish Spaces
	2.3 Effectively Enumerable Topological Spaces

	3 Main Results
	3.1 Effective Domain Presentations for CPS
	3.2 Computable and Topological Minimality
	3.3 Principal Translators

	4 Conclusion and Future Work
	References

	About Leaks of Confidential Data in the Process of Indexing Sites by Search Crawlers
	Abstract
	1 The Possible Sources of Data Leaks
	2 The Informing Developers and Users About the Possibility of Leaks
	3 The Prohibition of Confidential Data Indexing. Directives for Search Crawlers
	4 Conclusion
	References

	An Ontology-Based Approach to the Agile Requirements Engineering
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Requirements Engineering in Agile Software Development
	2.2 User Stories

	3 OWL Ontology for Agile Requirements Engineering
	4 Conclusion and Future Work
	Acknowledgments
	References

	Effective Scheduling of Strict Periodic Task Sets with Given Permissible Periods in RTOS
	1 Introduction
	2 Preliminaries
	3 Motivation and Problem Statement
	4 Algorithm Sketch
	5 Application of the Generator
	6 Experimental Results
	7 Conclusion
	References

	Verification and Validation of Semantic Annotations
	1 Introduction
	2 Verification
	2.1 Definition
	2.2 Related Work
	2.3 Our Approach
	2.4 Evaluation

	3 Validation
	3.1 Definition
	3.2 Related Work
	3.3 Our Approach
	3.4 Evaluation

	4 Conclusion and Future Work
	References

	Towards Automatic Deductive Verification of C Programs over Linear Arrays
	1 Introduction
	2 Preliminary Concepts
	3 Generation of Replacement Operation
	4 Verification of Insertion Sort Program
	5 Method of Automation of Verification Conditions Proving
	5.1 The Strategy of Premises Choice
	5.2 The Strategy for Finite Iteration over Changeable Array
	5.3 The Strategy for Finite Iteration with break Statement
	5.4 The Strategy for Functions with Concatenation Property

	6 Conclusion
	References

	Hermes: A Reversible Language for Writing Encryption Algorithms (Work in Progress)
	1 Introduction
	2 Hermes
	3 More Examples
	4 Compiling Hermes to C
	5 Future Work
	References

	Causality-Based Testing in Time Petri Nets
	1 Introduction
	2 Time Petri Nets: Syntax and Interleaving Semantics
	3 Causality-Based Semantics of Time Petri Nets
	3.1 Preliminaries
	3.2 Time Causal Net Semantics
	3.3 Time Causal Tree Semantics

	4 Testing Equivalences in Causality-Based Semantics
	5 Concluding Remarks
	References

	Author Index

