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Abstract. This paper proposes a novel method to prevent an attack
mounted by an adversary on an IoT device by executing suspicious sys-
tem calls. An adversary in such cases would want to modify the behavior
of an IoT device for hijacking the control by mounting malicious code.
This paper uses system call traces to find out illegal accesses made on an
IoT node. We develop a kernel-level processor tracing method for jeopar-
dizing adversary’s activities. The method is rigorously tested on various
IoT nodes like Raspberry Pi 3, Intel Galileo Gen 2, Arduino Uno etc.
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1 Introduction

Internet of Things (IoT) is an emerging domain used widely in deploying embed-
ded systems in the real world. This deployment provides fascinating opportu-
nities for future applications. IoT devices include home alarm systems, medical
devices, cameras, cell phones, vehicles, smart cities, buildings, running shoes,
refrigerators and ovens etc. Such deployments also have their own short comings
[19]. IoT nodes capture valuable data and provide smart services that may be
of value to adversaries. Adversaries may tamper with the device, insert mali-
cious payload or intervene overall operation of the IoT device. Unfortunately,
embedded system vendors are careless about the software security because of
which adversaries often cause damage to the IoT device. The common vulnera-
bilities present inside a code sample of an IoT device are buffer overflow, array
out of bound, illegal pointer access etc. These vulnerabilities allow an adver-
sary to execute code reuse attack and tamper with the devices, intervene their
communication channels, or clone the devices, to instrument the data gathering
and overall operation for their own interest [4]. Estimation of secure state in a
device is the dynamic problem of estimating the state of a system and detect an
adversary’s attack. Secure state estimation problem is basically focused on brute
force attack, but this type of algorithm can terminate in polynomial time. In this
paper, we proposed a novel algorithm that uses an attack detection module based
approach to identify these attacks while a program is executing continuously.
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Existing works [1,9,14] on securing embedded devices are focused on sys-
tem settings and injecting run-time checks into the binary. In their work, they
assumed that, an adversary can tamper the control flow [14], hijack the control
from vulnerable function [1] and perform code reuse attack [17], DoS attack [2],
memory corruption attack [8], etc. These settings and assumptions primarily
focus on the following points:

– How to verify control flow with low overhead in presence of control flow hijack
attack [14,17]?

– Mount perfect buffer overflow attack, identify their conditions of existence,
analyse the effect of code reuse attack and there mitigation policies [3,10].

Present solutions prevent control flow integrity and apply these attack-
defense matrices in a special type architecture i.e. x86, but most of the IoT
devices use a heterogeneous architecture like ARM and Intel. In this paper, we
present an architecture independent solution, which is suitable for all the avail-
able architectures of IoT nodes.

ppo l l ( [ { fd=3, events=POLLIN} ] , 1 , NULL, [ ] , 8) = 1
( [ { fd=3, r event s=POLLIN} ] )
recvmsg (3 , {msg name(0)=NULL, msg iov (1)=[{ ”L\2\0\0
\0\0\0\0\10\0\0\0 rendere r \ r \0\0\0\16\0\0\0/ pro” . . . ,
8192} ] , msg cont ro l l en =40, [{ cmsg len =40, cmsg l eve l=
SOL SOCKET, cmsg type=SCM RIGHTS, [ 1 7 , 18 , 19 , 20 , 21 ,
2 2 ] } ] , msg f l ag s =0} , 0) = 592
pipe ( [ 2 3 , 2 4 ] ) = 0
c lone ( c h i l d s t a c k=0x7ffd0405ebb0 , f l a g s=CLONE NEWPID|
SIGCHLD) = 2484
c l o s e (23) = 0
c l o s e (17) = 0
recvmsg (3 , {msg name(0)=NULL, msg iov (1)=[{ ”\10\0\0\0\4\0
\3426\0\0” , 8192} ] , msg cont ro l l en =0, msg f l ag s =0} , 0)=12
wr i t e (24 , ”\3426\0\0” , 4) = 4
c l o s e (24) = 0

The above listing, shows system call traces of an IoT device showing a series
of system calls executed on the IoT device. We evaluated the implications of
intermittent attacks on IoT devices similar to Fig. 1 and estimated the system
call execution probability. With the help of quantitative knowledge about the
system call tracing and detection of an attack from kernel level, we propose a non-
intrusive tracking of an attack in IoT environment such that resultant IoT devices
are robust against such kind of attacks. The proposed method tracks all illegal
executions and ensures the stability of the IoT device with minimal overhead,
based on the software deployment irrespective of extra hardware support.

Rest of the paper is organized as follows: Sect. 2 shows the threat model used
for this research. Section 3 contains the problem statement that is solved in this
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Fig. 1. Attack detection model

research. Section 4 focuses on our proposed model. This section also discusses
our mathematical model to identify an attack in IoT environments. Section 5
gives detailed information of the test-bed setup and functionality of each module
deployed in this proposed approach. Section 6 discusses, how proposed model is
suitable to detect an attack from the kernel level traces and also presents the
result analysis. Section 7 discusses the related research and the contribution of
other researchers to securing embedded devices. Section 8 concludes the work
and provides direction for the future aspects of this work.

2 Threat Model

We used a hostile host threat model [5,13] to evaluate the proposed work. In
this model, attacker can execute any program and control memory and execution
environments. An attacker can also modify existing binary by using debugging
tools.

Additionally, as part of the threat, an attacker is assumed to be capable of
the following actions:

1. Collecting information about the system through some reverse engineering
techniques.

2. Identifying the presence of already available system level defences such as
ASLR, DEP, etc.
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3. Injecting faulty data and mounting an attack from remote location to hijack
an IoT node.

The primary objective of an adversary is to perform code tampering with the
executable code and modify the functionality of the software. A hostile host
model allows an user to perform reverse engineering methods to alter the existing
code or add new functionalities into the code. The objective of our code tamper-
proofing method is to protect the code tampering by non-intrusive monitoring.
It traces attempts made by the adversary to tamper the protected binary.

The threat model assumes that the running program must have memory cor-
ruption vulnerabilities that allows an attacker to write random values to random
memory locations including stack and heap and also leaks some information by
arbitrary read primitive.

3 Problem Formulation

The objective of this paper is to build a kernel-based monitoring solution that
supports a non-intrusive monitoring of running processes and threads at the
operating system level. This monitoring method must trace all the activities
carried out in an IoT device without affecting the running program. It would
use a method that allows the kernel to register all events related to processes
and threads. For example, Process creation, Process termination, Execution of
a system call, etc. The most important thing that we consider, is that, the
deployment exhibits high performance with low overhead.

We formulate our objective as a linear time invariant system problem. A
time-invariant system does not directly relate to time, but the state of a system
varies between two different time intervals on the basis of input and output of a
function. In this work, we consider a system which has an output function y(t),
and an input function x(t). Both functions are dependant on time and hold a
relation like y(t) = x(t + δ), where δ is the difference between start and end
time. Then, we can detect any illegal activity or an attack performed on an IoT
device by analysing the input and the output functions.

4 Proposed Model

The objective of this paper is to detect adversary’s activities by tracking the
kernel activities in real time. We consider a discrete linear time-invariant model
[2,9] to demonstrate our proposed problem. Let us assume,

x[t + 1] = αx[t] + u[t] (1)

and the output is presented by,

y[t] = βx[t] (2)

where, x[t] is the matrix which contains system calls executed by each process
in a given time t. y[t] is the expected output or state of all the processes with
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respect to system calls within a given time t. α and β are constant values set by
the administrator to calculate the next state. The u[t] is the estimated update of
individual process state. u[t] = γ x̂[t], where γ is the estimated count of a system
call at time t in a specific process. The x̂[t] is the expected process state generated
by the estimator using kernel output y[t]. The estimator function has a predefined
threshold value θ. If the value of u[t] is higher than θ, then, estimator function
transfers u[t] matrix to attack detector module which analyzes y′[t] (received
output instead of y[t]). If the attack detector module detects malicious activity
in the kernel, then, it initiates a signal to the controller and the controller can kill
the malicious process. Figure 1 shows the proposed approach. This model uses the
hostile host attack model. This model assumes that an adversary has control over
execution environments and he/she can execute malicious program to eavesdrop
on the kernel activity and system calls, which are responsible to produce y[t].
The adversary can inject an impurity Δy into any running process by identifying
vulnerability [9]. Due to this malicious attack, the estimated output value x̂[t]′

is different from the predicted value x̂[t]. z[t] = (x̂[t]′ − x̂[t])> θ, is a sufficient
condition to raise an alarm. The controller function determines the process id,
which is malicious, and sends a kill signal to the kernel to terminate the process.

5 Experimental Set-Up

Figure 2 shows the test-bed setup. Raspberry Pi 3, and Intel Galileo Gen 2,
devices have been used in this experiment. The “strace -p” command is used
to collect real time logs of process executions. All the logs are transferred to
server by using socket programming. A daemon process running in the back-end
continuously collects logs and transfers them to the server. A centralized server
is maintained for collecting all the logs and processing the data for extracting
useful information. The experiment can be classified into the following phases.

Fig. 2. Test-bed
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5.1 Kernel Trace

This phase captures process events like process creation (PROC EV ENT
FORK), execution of system call (PROC EV ENT EXEC), change in user

id (PROC EV ENT UID), process termination (PROC EV ENT EXIT ),
thread creation and thread exit. The kernel level traces allow event registra-
tion related to processes and threads. It also generates the log of each process
id (pid). In this module, the kernel traces each newly created process. Once the
kernel tracer receives pid, it collects system calls executed by pid and sends to
the server. The server has multiple monitoring processes to monitor each syscall
trace generated by the process.

5.2 Estimator

The IoT device can execute predefined tasks like read, pre-process and write
sensor values. This phase processes prior knowledge about system calls executed
by specific process in a given time interval, i.e., x[t + 1] = α x[t] + u[t] and
expected output y[t]. The threshold value θ is used to differentiate between
attacks and system noise. Now we define, τ , such that, θ = {x[t] + τ}, i.e., in a
given time t, if count(x), i.e., total number of system call count in a given time
interval, crosses θ, then this can be labelled as an attack. If x[t+1] − x′[t+1] > 0,
where x[t + 1] is expected value and [x + 1]′ is real value provided by kernel,
then there is a chance of an attack. Then the value of x′[t + 1] is sent to attack
detector module to verifying the attack.

5.3 Attack Detector

Once the quantifier threshold θ is decided, the attack detector revisits log file of
suspicious pid and evaluates all system calls executed by the process within the
given time. Attack detection can be computed as follows:

x1 = s[t + 1] − s[t];
x2 = s[t + 2] − s[t + 1];
...
xn = s[t + n] − s[t + n − 1];
i.e.,∀xi − (xi − 1) ≈ θ+τ

If there is any sudden increase in the existing system call count or any suspicious
system call, such as, memcpy, syscall handler, ptrace, etc. getting detected
by the attack detector, then ∀a ε xi andxi ∩ a �= xi−1, “a” can be labelled as
unregistered. An alert is raised in accordance to the list given below:

s i s i g n o=SIGCHLD, s i c o d e=CLD TRAPPED,
s i p i d =1709 , s i u i d =1000 , s i s t im e=1
s i s t a t u s=SIGTRAP, s i u t ime=4

In the above listing, “pid 1709” tries to debug ptrace signal of another process.
The controller module issues a kill signal to the processor for the suspicious pid.
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6 Result Analysis

Figure 3 shows an analysis of system call traces for a process. It indicates run
time execution and call counts, which are monitored by the proposed model.

Fig. 3. Syscall traces of a process

6.1 Attack Matrix

– ROP (Return Oriented Programming) Attack: The binary running
on an IoT device may contain a vulnerable function that can be attacked
by an adversary. We exploit this binary using buffer overflow by uploading
malicious payload. This malicious payload is stored in the stack. It tries to
execute another program with the help of “exec” system call. This attack
also uses system() function to invoke another program. The common system
calls used by this attack are system(), execve() etc. The return address of a
function subvert the control flow and launch a new shell to replace the current
running program.

– JOP (Jump Oriented Programming) Attack: This attack uses func-
tions which are vulnerable to buffer overflow such as memcpy(), strcpy(),
sprintf(), strcat(), sscanf() and fscanf() etc. The JOP attack uses setjmp()
and longjmp() functions to mount the attack. In JOP, the adversary used
“jmp buf” structure available in “setjmp.h” and calls setjmp(), which keep
the current IP value and longjmp() returns control flow back to setjmp(). Our
adversarial program overwrites this “jmp buf” buffer and then calls longjmp()
to transfer the control flow to another location. This attack executes new sys-
tem call into the kernel and bypasses some existing system calls.

– Process Tracing: Reverse engineering tools like “ptrace” is used to trace
the running processes. Adversary can control or analyse and manipulate the
internal state of user program.
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Our attack module attaches malicious binary to the running process. The
attack module performs manipulation of file descriptors, memory, and register
values. This module observes and intercepts system calls and their results. It can
also manipulate the signal handlers and can also receive and send signals.

Fig. 4. Attack Evaluation

Figure 4 depicted the attack detection by our proposed approach, we execute
attacks in following two different approaches:

– Consistent attack [15]: Consistent attack is a type of bias attack, it continu-
ously attacks the target program and tries to modify binary. We ran a program
which continuously execute “ptrace” and collect debugging information. This
type of attack is identified by the work done in this paper with 100% success
rate.

– Random attack [15]: In this attack, attacker randomly tries to modify or
mount an attack. We applied the same program for executing attack, but the
program repeat itself in random time interval. This attack is detected only
when an attacker’s program crosses the binary count threshold value. Our
work, in this detects random attacks with 80% success rate.

6.2 Attack Countermeasures

The experiment environment executes only one user program “P” in the kernel
for monitoring, which reads sensor value and after pre-processing sends it to
the server. With the kernel output for a sampling period “T”, such that the
kernel state x[t+1] during the (t+1)th sampling period as given in Eq. 1. Let us
assume S = {y=x}, i.e., initial state as shown in Eq. 2 and there is no attack on
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Fig. 5. Attack detection using proposed method

the kernel. In this case, we can easily estimate the updated value u[t]. Updated
value of a single program is represented as {x[t+1] = Ax + u; P} such that { [x
= Ax + u; P]n} represents nth state of user program P and “A” is an execution
count of “x”.

Figure 5 shows a scenario of an attack detection using system call count
within the time interval. Let the signal (system call count) for a given time
interval is r, so x[t] = r is the acceptable threshold. But in some cases we have
x[t] = r + τ for some τ ε θ, and x[t] ε S, where S is kernel space with variation
τ having expected value r. Hence, an adversary is allowed to inject maximum τ
values in each time interval. But there exists no mathematical model to estimate
τ for an adversary to inject malicious payload.

Table 1. Process id and system call count

Process Id System call Count

1898 recvmsg 33980

2220 gettid 32546

13275 ptrace 2386

13296 ptrace 34862

13317 rt sigprocmask 360

Table 1 shows the system call count made by an individual process. When an
adversary executes malicious code, the kernel tracer identifies new “pid” which
uses “exec()” or “system()” calls. This unregistered “pid” and system calls alert
the attack detector module and controller module and sends a kill signal to the
kernel.
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Fig. 6. Top 5 system call trace

Figure 6 exhibits traces of top 5 system calls, here system calls “recvmsg”,
“gettid”, “rt sigprocmask”, “ptrace” are used by kernel trace program. But there
is one more “ptrace” command executed by unregistered pid. This system call
increases the count of expected “ptrace” system call count and attack-detector
module raises an alarm for the controller.

6.3 Performance Overhead

Figure 7 shows the memory graph of the proposed method. All experiments were
performed on Raspberry Pi 3 and Intel Galileo Gen2 IoT boards. Here the target
program executes constantly and is not interrupted by the kernel trace program.
The kernel monitor program collects information of each process and transfers
it to the server. This kernel program runs like a daemon process and does not
generate overhead for a running process.

7 Related Work

Nagarkatte et al. [12] proposed a hardware-based solution. They generated a
meta-data of each pointer used in the program binary. This meta-data con-
tained the base addresses for a pointer. At the time of execution the pointer
memory range was verified by base address and the maximum allowable bound.
The pointer based method had some loopholes, such as, more than one pointer
variable reference a single memory location. Each pointer had its own memory
location and meta-data which increase performance overheads and make pro-
gramming more complex. Tsoutsos et al. [18] discussed various memory safety
issues with respect to embedded devices, and described different attacks espe-
cially ROP that can hijack the control flow. They also suggested some attack
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Fig. 7. Performance overhead

avoidance method like buffer bounds checking, instruction set randomization,
and inline reference monitors etc. Krishnakumar et al. [8] developed a tool “Gan-
dalf” which is the software based hardware extension to prevent memory cor-
ruption attack for the openRISC processor. Their solution depends on system’s
hardware and attacks are determined by the hardware at runtime. Bresch et al.
[1] presented a hardware based solution to prevent ROP attacks. The author
has focused on micro-controller based devices to prevent code reuse attacks by
modifying return addresses. Isenberg et al. [6] proposed a method for software
verification against AC hardware. They performed array bound checking within
the loop to avoid buffer overflow attacks. Shoukry et al. [16] proposed a solution
for secure state estimation problem. In that solution they developed a simula-
tion based attack on sensors in a linear dynamical systems with the presence of
noise. Mo et al. [11] proposed a method to analyzed the effect of replay attacks
on a tiny systems. They executed replay attacks to hijack the control flow of
an embedded device. In that work, they injected an external input to hijack
the sensors and record their readings. After a certain interval the attacks are
repeated. They discovered that, for some systems, the classical estimation, con-
trol, failure detection strategies are not resilient to prevent replay attacks. They
proposed a discrete time invariant model to discover the replay attacks. Jovanov
et al. [7] used secure state estimator to prevent network-based attacks. They
also proposed a sporadic data integrity enforcement method to prevent message
authentication from stealthy attacks.
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Most of the related work, focused on detecting the malicious attacks instead
of taking action against these attacks. We proposes the complete solution, i.e
attack detection and kill the malicious process. Our solution is independent
from hardware and the architecture of IoT board.

8 Conclusion

The experiments carried out in this paper are mainly used for diagnostic and
debugging kernel space utilities for IoT nodes. The proposed solution monitors
any adversarial attack by monitoring the kernel’s traces, which include system
calls, signal deliveries, and change of process states. In future, we intend to
improve kernel tracing for multi-process non-linear systems.
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