
NewYouthHack: Using Design Thinking
to Reimagine Settlement Services

for New Canadians

Christopher Schankula1 , Emily Ham1, Jessica Schultz1, Yumna Irfan1 ,
Nhan Thai1, Lucas Dutton1, Padma Pasupathi1, Chinmay Sheth1,
Taranum Khan1,2, Salima Tejani2, Dima Amad2, Robert Fleisig1,

and Christopher Kumar Anand1(B)

1 McMaster University, Hamilton, Canada
{schankuc,irfany1,anandc}@mcmaster.ca

2 Brampton Multicultural Centre, Brampton, Canada
Salima.Tejani@bmccentre.org,

http://outreach.mcmaster.ca/

http://bmccentre.org/

Abstract. In 2018–2019 we applied Design Thinking (DT) to reimag-
ining settlement services for refugee and immigrant youth in Canada.
DT continues to gain followers as a practical approach to incorporating
human factors into the design process. One insight motivating DT is that
design is a series of experiments in which we learn about our users. Iter-
ative prototyping and user feedback are paramount. But we also wanted
to expose them to career pathways related to software design and devel-
opment. In this paper we report on (1) the NewYouthHack process, (2)
the resulting app and central role played by social interactions, and (3)
the framework we developed to support this work.

We launched with a two-day designathon with 12 identified problems
and proposed solutions. Social interaction and community supported by
software were threaded through almost all of the solutions. This pre-
sented two new challenges: securing iteratively developed network soft-
ware for vulnerable users, and meaningfully engaging the youth in nec-
essarily complex software. Previously we had developed an outreach cur-
riculum with tool support based on a library in Elm for stand-alone
graphical web apps. We taught interaction using state diagrams. In Petri
App Land (PAL), we generalized this, with tokens representing users vis-
iting places within the app. Transitions now capture user interactions.
To facilitate significant changes from iteration to iteration, much of the
code is (re)generated based on a PAL spec.

Keywords: Design Thinking · Petri net · Collaborative platform ·
Mentorship · Social network · Immigration · Refugees

Supported by Immigration, Refugees and Citizenship Canada.

c© Springer Nature Switzerland AG 2020
S. S. Rautaray et al. (Eds.): I4CS 2020, CCIS 1139, pp. 41–62, 2020.
https://doi.org/10.1007/978-3-030-37484-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37484-6_3&domain=pdf
http://orcid.org/0000-0001-8117-2848
http://orcid.org/0000-0002-1349-130X
http://orcid.org/0000-0002-7863-8595
https://doi.org/10.1007/978-3-030-37484-6_3

42 C. Schankula et al.

1 Introduction

The goal of the paper is twofold: (1) to describe a new model-driven web frame-
work and (2) to describe its use in NewYouthHack, a project to reimagine youth
settlement services in Canada. In Sect. 1 we provide context for this project in a
larger body of similar research. In Sect. 2 we provide essential background infor-
mation on several relevant topics, including Design Thinking, our outreach pro-
gram, our partner in this project, the Elm language, and Petri nets. In Sect. 3,
we describe the design of this project and its progression throughout. In the
Sects. 4 and 5, we introduce our new platform for multi-user interaction, with an
example application in Sect. 6. Finally, we conclude with results in Sect. 7 and
ongoing and future work in Sect. 8.

1.1 Related Work

The advantages of Human-Centred Design and Design Thinking in designing net-
worked services has been established. Natvig et al. used observations, interviews,
innovation games and paper prototyping to develop enhanced support for col-
laboration in the transport sector [11]. Like our case, they needed to understand
the problem from the points of view of multiple stakeholders. Design Thinking
has also been successfully taught to children, including by Stanford researchers
who enabled the children to redesign systems at their school [2].

Tech4SocialChange is a platform to connect universities, and especially
undergraduates, with social problems [16]. The developers identified undergrad-
uates’ need for relevant real-world problems matching numerous unmet needs in
the community. This differentiates their platform from HeroX and OpenIDEO
which also match developers and community needs, but are not specifically
geared to students. SOCRATIC is both an online platform and a step-by-step
process for identifying problems, forming teams to solve them, and iterating pro-
totypes [19]. It includes analytics to measure typical Design Thinking processes,
like number of ideas generated, and it has been designed based on an analy-
sis of several previous initiatives, with the explicit goal to be able to produce
scalable solutions to large scale challenges such as migration [5]. The Experts in
Teamwork project addresses the same problems, but their focus is on equipping
potential social innovators with the skills they need [14]. This Stanford study con-
cluded that Design Thinking “fosters the ability to imagine without boundaries
and constraints”, which is instrumental in developing children’s creative confi-
dence and that “design thinking may help students become empowered agents
in their own learning who possess both the tools and the confidence to change
the world” [2]. Since the youth involved were mostly high school students, we
get this secondary benefit that they can apply DT to their own learning. This
mirrors the emphasis that we placed on Design Thinking training for all of the
participants, not just the McMaster University students involved in the project.

What distinguishes our approach to NewYouthHack, is the attempt to build
a technology platform which supports iterative development and the integration
of novice programmers. It is too early to say that this platform will lead to

NewYouthHack 43

more sustainable solutions, but we are fairly certain that software developers
will remain in high demand in the next decades, so these features are important.

One valuable service which other groups have been able to develop, but
we have not considered in this project are services to support on-line design
communities [1,7].

2 Background

2.1 Design Thinking

Design Thinking (DT) is a human-centred methodology that focuses on the end-
user and iterates rapidly through conceptual prototyping to produce innovative
and creative solutions to complex problems [15]. The DT process is designed
to avoid the creation of technically perfect but unwanted or incomprehensible
products by focusing on the end-user while creating the product, while consid-
ering three dimensions: technical feasibility, economic viability, and desirability
to the user [15]. Many people contributed to the development of DT, starting
with Cross’s study of designers in several fields and identification with Simon’s
Sciences of the Artificial1, and Norman’s definition of human-centred design.

div
erg

e

div
erg

e
converge

converge

develop deliverdiscover

res
ea

rch

ide
ate

validate

Design the Right Thing Design Things Right

empathize

prototype

iterate

inspiration ideation implementation

sh
ar

e

fr
am

e

Fig. 1. This modified Double Diamond shows the key processes in Design Thinking,
blending elements of the British Design Council and Standford’s d.school.

DT assumes that the end-user is complex and that an understanding of their
needs requires experiment and inquiry. Working with end-users is not a validation
process. It is a discovery process. Hypotheses are not formulated as precisely, and
are not about natural phenomena, but about the user’s needs and experience.

There are multiple models and ways of thinking about DT. One of them
includes three phases: inspiration, ideation, and implementation. Inspiration
1 See [6] for a discussion focused on software.

44 C. Schankula et al.

is where the designer empathizes with the end-user, understands their hopes
and desires, and uses this to understand the depth of the challenge. Ideation
involves making sense of the research, generating ideas, identifying opportuni-
ties for design then testing and refining the solutions. Implementation is bringing
the solution to life, as well as figuring out how to market it while maximizing its
impact on the world [8].

Another view into DT is the double diamond process model developed at the
British Design Council in 2005, see Fig. 1. There are divergent thinking stages
followed by convergent stages where ideas are narrowed down towards the best
one [18]. When designing, some people ignore the left side of the diamond, which
leads them to focus on solving the wrong problem. This is why, in DT, discov-
ering the problem through empathizing and research, as well as defining the
right problem, are integral to the process. The develop stage involves developing
prototype, testing, and iterating. Finally, the deliver stage is when the product
is finalized, produced, and launched [18].

2.2 Software: Tool for Change Program

The McMaster University Outreach Program “Software: Tool For Change” has
been operating for the past decade. It consists mainly of volunteer undergraduate
and graduate students who develop lesson plans and deliver free computer science
workshops to schools, public libraries, and community centres in the Hamilton,
Ontario, Canada area [12]. We have taught over 15,000 students.

To support these workshops, we have developed tools, including:

1. An open-source Elm graphics library, GraphicSVG [17].
2. An online mentorship and Elm compilation system incorporating massive

collaborative programming tasks, including the Wordathon2 and comic book
storytelling3.

3. A curriculum for introducing graphics programming designed to prepare chil-
dren for algebra [4].

4. A type- and syntax-error-free projectional iPad Elm editor, ElmJr [13].
5. Educational iPad apps, Image2Bits which supports binary image encoding,

sharing and decoding; TouchMRI which mixes instruction about spin physics
with an interactive k-space game; and MacVenture a tap-and-type editor for
text-and-picture adventure games.

2.3 Brampton Multicultural Community Centre

BMC is a nonprofit organization with a mandate to

1. To enhance the capacity of newcomers to participate more effectively in our
communities.

2 http://outreach.mcmaster.ca/#wordathon2019.
3 http://outreach.mcmaster.ca/#comics2019.

http://outreach.mcmaster.ca/#wordathon2019
http://outreach.mcmaster.ca/#comics2019

NewYouthHack 45

2. To partner with other service providers and organizations to strengthen the
response capacity of the settlement sector.

3. To work collectively with other community actors to facilitate better use of
newcomers’ knowledge and talents in Canadian workplaces.

2.4 Elm Language

We use Elm (https://elm-lang.org/), a language designed for the development
of frontend web applications [3], to teach beginners, so it was natural to use it
for this project. Its syntax, based on the ML family of languages, is intentionally
simple. For example, it has no support for user-defined type classes. In addition
to strictly enforcing types, the Elm compiler also forces programmers to follow
best practices, such as disallowing incomplete case coverage in case expressions.
Elm apps use a model-view-update paradigm that keeps pure code separate
from code with side effects without the need for monads as in Haskell. Elm
code compiles down to JavaScript which provides many practical advantages for
deployment and visualization.

While it may seem like this type of language should be reserved to expert
users, many of these features useful to experts (strict types, pure functions) are
very useful for beginners. In addition to practical implications of compiling to
JavaScript, Elm’s combination of simple syntax, strict typing, and purity which
matches students’ pre-existing intuition about math prove to be an asset to our
Outreach program. These features allow the development of tools and curricula
which would not otherwise be easy or possible in an imperative language with
side effects such as Python.

2.5 Elm Architecture

All Elm programs follow a common architecture, “The Elm Architecture”, with
different variations enabling or restricting certain features as they are needed.
These built-in “app” types interact with Elm’s JavaScript-based runtime system,
enabling pure code to interact with the outside world in a predictable manner,
without runtime errors.

Elm’s overall architecture consists of three main components: the model, the
view, and the update.

Model. The model of the program is a type that encodes all the possible states
the program can be in. In this way, it models the problem domain of the appli-
cation. The type can be as simple as an alias for a basic type, such as String
or Int, or as complex as needed. Since Elm is used to create web apps, it is
recommended that the program be subdivided into top-level states or “Pages”
using a union type.

For example, one could encode a very simple program having three states:
MainMenu, About and Contact, using an algebraic data type. Additionally, we
show the addition of a string to the MainMenu screen to display the user’s name
on screen, for example:

https://elm-lang.org/

46 C. Schankula et al.

type Model = MainMenu String
| About
| Contact

The view portion of the Elm Architecture is a pure function which renders the
current state of the program in the browser by returning a representation of html
capable of sending messages of type Msg (see the following Update subsection for
a discussion on messages): view : Model -> Html Msg Elm’s runtime then uses
a virtual DOM diffing strategy to efficiently display the elements described by
the view function in the browser window.

The update function transforms the model state according to the message
received: update : Msg -> Model -> Model

In this example, the Msg type is a “message” type that describes possible
actions or events in this app. In our example from above we could have the
following Msg type:

type Msg = GoToMainMenu
| GoToAbout
| GoToContact
| ChangeName String

Together, the Model and Msg types can be visualized as a state diagram, encoding
the states as circles and the transitions as arcs from one state to another state.
Figure 2 shows how one might encode this example visually. Note that the type
system does not enforce that the user adheres to their design. For example, the
user’s update code must account for the case where the ChangeName message
is received when the user is in the About state, even though that case may be
impossible based on the view function.

Commands and Subscriptions. In more advanced versions of Elm apps, the
update function returns a tuple (Model, Cmd Msg). Commands (represented
as the Cmd type in Elm) are a description of an asynchronous action for the
Elm runtime to evaluate, passing the result back as a message to the user’s
update function if the command succeeds. This allows the app to perform impure
actions, such as sending a message over the Internet or generating a random
number.

Additionally, a subscription is a passive listener which waits for events and
sends a message when the event occurs. For example, an Elm app may subscribe
to a timer to receive a message at a set interval, receive a message when the user
enters the app from another tab, or when the size of the app’s window changes.

2.6 Petri Nets

A Petri net is a particular kind of directed bi-partite graph. There are two
kinds of nodes: transitions and places. Places are marked by tokens which are
consumed from input places and generated into output places upon the firing
of a transition (which may occur non-deterministically upon fulfilling certain
conditions).

NewYouthHack 47

Fig. 2. An Elm app can be encoded as a state diagram, with circles being the top-
level states in the app and the transitions being the arcs between them, named by
the message sent to initiate the transition. When describing an Elm app this way, the
programmer has to take care to follow the state diagram in the logic of the program
as it is not enforceable at the type level.

Formal Definition. A Petri net is a 5-tuple,

PN = (P, T, F,W,M0)

where [10]

P = {p0, p1, ..., pm} is a finite set of places
T = {t0, t1, ..., tn} is a finite set of transitions
F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation)
W : F → {1, 2, 3, ...} is a weight function
M0 : P → {0, 1, 2, 3, ...} is the initial marking

P ∩ T = ∅ and
P ∪ T �= ∅.

Petri nets are conventionally represented as graphs with circles for places,
rectangles for transitions and dots for tokens. Figure 3 shows a small Petri net
example.

The behaviour of a Petri net is determined by the firing of transitions accord-
ing to the following rules

1. A transition t is enabled if each of its input places p is marked with at least
W (p, t) tokens (where W is the weighting function of the arc)

2. An enabled transition may or may not fire (nondeterminism)
3. If an enabled transition does fire, W (p, t) tokens are removed from input place

p and W (t, q) tokens are added to each output place q.

48 C. Schankula et al.

3
2

Fig. 3. A Petri net, showing a single transition, represented by the rectangle, two input
places, and one output place. The arcs are weighted, meaning the transition requires
as one or more tokens as input and produces one or more tokens as output. Tokens are
shown as dots within places.

High Level Petri Nets. In order to describe more complex systems in a man-
ageable way, extensions to classical Petri nets such as Predicate Transition Nets
that utilize predicates in weighting functions and token-colourizing have been
developed [9]. “Colouring” of tokens allows the model to distinguish amongst dif-
ferent tokens and the use of predicate expressions in weighting functions allows
transitions to fire in several ways based on those colours.

3 Methods

BMC advertised the hackathon through their contacts and nine supporting
community organizations, and held interviews and focus groups with inter-
ested youth and their parents. Thirty new youth, including new immigrants
and refugees, aged 15 to 20 and speaking 10 languages, were selected. Gradu-
ate students or graduates in design were tasked with preparing and helping to
deliver design-thinking training and the hackathon. Twelve undergraduate men-
tors were recruited and underwent a one-day Design Thinking together with staff
from BMC and community partners.

Through multiple coding sessions, students were introduced to coding and
learned to write code in Elm. To further develop their coding and collaboration
skills, students worked in groups to code an animated comic book depicting
their journeys to Canada. At one of these events, the Peel Regional Diversity
Roundtable provided diversity and inclusivity training, for mentors and new
youth alike.

NewYouthHack, a two-day “hackathon” was held at McMaster, over a week-
end, including an overnight stay. Participants were challenged to use DT to
improve the experience of settling into Canada. Twelve teams consisting of two
to three youth, one BMC mentor, and one undergraduate mentor were guided
through an abbreviated DT training and then asked to consider four themes:
access to higher education, access to the labour market, access to information
and services, and community connections. They were not directed to look for
software solutions to the identified problems, but all of the undergraduates had
post-secondary programming experience. A panel of judges was assembled in

NewYouthHack 49

order to evaluate the effectiveness, business value, and technical feasibility of
the designs that each team would develop.

The hackathon activities were modelled after the steps in the DT process.
The 12 teams, in an effort to understand the problem from a users point of
view, conducted user research by interviewing other participants, with coaching
on interviewing provided by mentors. The teams then engaged in the ideation
process, by defining their problem space, how might we? questions, user persona,
and user pain points. At this point, the teams were encouraged to iterate on
their ideas, by conducting more user interviews which either corroborated their
ideation process results, or informed them that they had to pivot towards a
better solution for the user. A practice presentation ended the first day, and a
pitch competition the second.

At coding workshops subsequent to the hackathon, the new youth used their
coding skills to code illustrations and animations that were incorporated into
the app. For instance, students developed new features for an avatar creator,
such as glasses and jewelry, and helped prototype the resume format, see Fig. 4.
These coding sessions gave the students a means to directly apply their feedback
on the app by coding their own contributions.

Fig. 4. Avatar showing a customization developed with the new youth (left) and the
on-line programming interface, showing the resume template used in teaching, and
later included in the app (right).

Focus groups were a way to reach out to newcomer youth and gain their feed-
back on the current status of the app. Including focus groups in the development
process allowed us to take their input into consideration during the development
process and adapt the app accordingly. By watching students use the app and
holding discussions, we were able to gather information on the usability of fea-
tures and the user experience. The first focus group consisted of newcomer youth
in high school, some of whom had attended NewYouthHack. Students brought
up the app on their cellular devices and we displayed the app on a projector.
We received feedback on the appearance and usability of the app, and discussed
which features they found most helpful. Focus groups afterwards were conducted
in a similar manner, with students occasionally using laptops rather than cellular

50 C. Schankula et al.

devices. Focus groups were a great way to involve students in the development
of the app and ensure the app met their needs and requirements.

4 Platform for User-Driven Innovation

4.1 Introducing Interaction with State Diagrams

In Software: Tool For Change, we have found teaching interaction using state
diagrams to be an effective way for students to understand and design their
programs. The simple graphical representation of the state diagram affords much
understanding about the overall design of the application at a glance (see Fig. 2).
We first teach them about states and transitions and then how to map both
states and transitions to algebraic data types. This recipe produces a one-to-one
mapping of states and transitions to constructors, which we have found is easy
for students to understand once they have seen an example. One downside to
this approach is that all possible transitions have to be handled in all states;
“impossible” cases (according to the diagram) must be handled by making no
change to the current model.

4.2 Petri App Land

It was our hope to involve the youth in as many phases of product development as
possible. Initially, we were hoping that one or more stand-alone web applications
would emerge from the Design Thinking phase, because we had a recipe for
teaching children how to build such apps in Elm. But the problems surfaced
by NewYouthHack clearly called for mentorship, sharing and commenting on
resumes, etc., definitely requiring significant client-server interaction. Thus, we
expanded upon our state diagrams to create Petri App Land (PAL), a client-
server framework. While students did not contribute to the server-side code, we
held workshops for students to contribute to the client frontend.

5 Petri App Land Runtime System

PAL contains code on both the client and the server acting as the “runtime
system” for all PAL apps. The framework is available as open-source4.

Client-Side. On the client side, the PAL framework generates code which han-
dles connecting to the server, encoding outgoing messages and decoding incoming
messages. It calls the user’s init, view, and update functions from generated
case expressions, handling the impossible default cases so they do not complicate
the user’s code. A WebSocket library is used to create a two-way communication
channel with the server. Messages in a WebSocket connection always arrive in
order, or else the connection is closed and must be restarted.
4 http://github.com/cschank/petri-app-land.

http://github.com/cschank/petri-app-land

NewYouthHack 51

Server-Side. On the server-side, PAL uses a Software Transactional Memory
FIFO queue which is read in a state loop, processing messages and updating state
atomically, similar to the Elm Architecture. Haskell threads are used to offload
the tasks of encoding and decoding values and handling WebSocket connections
with clients. In the future, different places on the server could be split into
multiple threads to scale to much bigger services. In addition, we support an
asynchronous command architecture accessed in a very similar way to Elm’s,
whose events run in different threads, so complicated calculations can be off-
loaded in this way, if necessary.

6 Example Application

Figure 5 shows an example PAL. For NewYouthHack, the PAL network was
encoded using Haskell data structures, which also specified the associated mes-
sage types, and type definitions. Subsequently, we created a graphical specifica-
tion tool, PALDraw. This example was made using that tool, but PALDraw and
data modelling in PAL is beyond the scope of this paper.

6.1 Client-Side Modules

Users must fill in three types of modules on the client side after generating code
from their specification, in order to complete their app. These consist of the Init
module, the View modules and the Update module.

The Init module provides the initial state of the starting place on the client.
This is where the user defines the initial data that is associated with the place.
Below is an example ForestPath place from the example app in Fig. 5 (with
imports removed for brevity):

init : ForestPath -- the initial state of the starting place
init = ForestPath 0 -- player’s water amount

(Backpack [] 0) -- player’s backpack
0 -- player’s health

Each place on the app has an associated view module, with functions cor-
responding to the Elm Architecture’s (see above) view function. Note that we
provide separate functions for each place, each with a unique model parameter
type. This input type is a generated single-constructor version of the construc-
tor describing the client-side state. This enforces at the type level that the user
receives the data corresponding to the place in their view. A specialized Msg type
is generated, limiting (again at the type level) which messages can be sent from
which view functions. The programmer can also make use of Elm’s subscriptions
and change the title bar of the browser inside this module, by modifying the
default implementations generated for the functions:

subs : ForestPath -> Sub Msg
view : ForestPath -> Html Msg
title : ForestPath -> String

52 C. Schankula et al.

Fig. 5. A small PAL app consisting of three places: ForestPath, EmeraldLake and
Volcano, and two transitions: LeaveForest and CollectWater. ForestPath’s green
outline indicates that it is the place clients are placed in upon connecting to the
server. The LeaveForest transition has one incoming place, ForestPath (labeled as
a)), and two outgoing places, EmeraldLake and Volcano. Clients in the ForestPath

place can trigger the LeaveForest transition, causing the server to respond with
either LeaveForest4EmeraldLake or LeaveForest4Volcano (labeled as b and c, respec-
tively), according to rules related to the amount of water a player is carrying. The
CollectWater transition keeps the user in the ForestPath and can be used to modify
the user’s current amount of carried water. (Color figure online)

Update Module. The Update module contains functions for each of the pos-
sible transitions the client can make when receiving a message from the server.
For example, in our Fig. 5 example, the labels b and c represent the messages
LeaveForest4EmeraldLake and LeaveForest4Volcano, respectively. As such,
the following function stubs are generated:

updateForestPathLeaveForest4EmeraldLakeEmeraldLake : Environment ->

LeaveForest4EmeraldLake -> ForestPath ->

(EmeraldLake, Cmd EmeraldLakeT.Msg)

updateForestPathLeaveForest4VolcanoVolcano : Environment ->

LeaveForest4Volcano -> ForestPath -> (Volcano, Cmd VolcanoT.Msg)

Note that, like in the view function, single-constructor types are used to once
again enforce adherence to the app’s model and to eliminate the need for (visible)
case expressions with default cases for impossible cases.

6.2 Server-Side Modules

The Haskell server is structured similarly to the Elm side, but without view
modules.

The Init module on the server initializes the place state for each place, as
all places must be stored on the server at once. In our simple example, the
ForestPath has a certain amount of water, but the other places, which are not
shown, have no associated data:

NewYouthHack 53

initForestPath :: ForestPath
initForestPath = ForestPath 1000 {-initial water in forest-}

The Update module on the server contains a function for each transition
in the PAL diagram. The function is called when a client initiates a transition
by sending a message of the same name. The function is similar to the client
update functions, but must consider multiple clients and states for all connected
places. For example, the LeaveForest transition has an associated function on
the server whose type signature is:

updateLeaveForest :: Environment -> ClientID ->
LeaveForest -> ForestPath -> EmeraldLake -> Volcano ->
[ForestPathPlayer] ->
(ForestPath, EmeraldLake, Volcano
, (ClientID, ForestPathPlayer) -> LeaveForestfromForestPath
)

The programmer must return a new state for all involved places, as well as a
function that is mapped over all of the players (users) in the ForestPath place.
This function returns a specialized type (LeaveForestfromForestPath in this
case — see below) which determines which place to send the user to (or whether
to keep them in the same place). In this way, users cannot be placed in multiple
places at once or be forgotten.

The LeaveForestfromForestPath union type encodes only the possible tran-
sitions that are specified in the user’s PAL model:

data LeaveForestfromForestPath =
LeaveForest_ForestPathtoVolcano

-- state of player when they go to volcano
VolcanoPlayer
-- message sent back to client
LeaveForest4Volcano

| LeaveForest4EmeraldLake
... two more cases ...

In the updateLeaveForest example, the user who issued the message to initiate
the transition (determined by their unique ClientID) can go to the Volcano
place if they have enough water in their player state. Otherwise, they stay inside
the ForestPath place.

6.3 Helper Functions

Places and transitions are generated as constructors with fields for data, with
simple data acting as the fields of a record-like structure. Algebraic data types
were chosen to have consistency of the data across Elm and Haskell, which
share the same basic syntax and semantics. For convenience, we produce get*,
update*, and alter* functions for place states and one-constructor data types.

54 C. Schankula et al.

These helper functions are kept up to date as the specification of the app
evolves, which replaces the need to pattern-match to extract information inside
of the app’s view and update functions. As such, using these helper functions
greatly improves the maintainability of the app as new pieces of data are added.
Furthermore, if data is removed or renamed, the helper function will also be
removed from, or renamed in, the generated helpers module. The resulting def-
inition error signals to the programmer that changes are required in the app’s
code in order to meet the new design of the app. Helper functions work the same
way on both the client and server, leading to consistent code.

Below, we show the types from the generated templates for selected helper
functions to access and update the backpack data type contained in the
ForestPath state (from Fig. 5) generated for use in the client.

getBackpack : ForestPath -> Backpack

updateBackpack :
Backpack -> ForestPath -> ForestPath

The argument order makes it easy to compose functions using (|>) : a -> (a
-> b) -> b, Elm’s left-to-right pipe, as in this fragment:

forestPath -- current client state
|> updateBackpack newBackpack {- new backpack -}
|> alterHealth (\h -> h - 1) -- reduce health

This produces readable code that self-documents the changes made to models
or pieces of data. In particular, the alter* functions provide the user with
flexibility to compose other semantically-relevant, high-level functions, e.g. one
could imagine creating some helper functions for backpacks:

addSandwich : Sandwich -> Backpack -> Backpack
eatNSandwiches : Int -> Sandwich -> Backpack -> Backpack

which could then be used in conjunction with the alterBackpack function, by
partially evaluating all but the final Backpack argument.

7 Results

7.1 The Hackathon

The 12 teams each settled on a problem, and made an initial presentation at the
end of the first day. Omitting their well-thought-out detail, the ideas were:

1. Technology Learning for Academic Success
2. Information on courses - career pathways
3. Connections, mentorship at institutions
4. An app to make and submit resumes
5. Employer interaction, interviews, networking and hiring

NewYouthHack 55

6. Social interaction, services and events
7. Information on transit, maps and attractions
8. Vlog to help with school system and settlement
9. Multi-lingual resource to find friends and resources

10. Find volunteer opportunities activities and interests
11. Community specific multi-lingual interaction
12. Build connections and get information on services

Although NewYouthHack was more of a designathon than a hackathon, we
wanted to capture the spirit of a hackathon by producing some prototypes during
the weekend. The way we did this was to listen for self-contained app ideas within
the presentations of the twelve ideas made at the end of the day on Saturday. A
team of three developers then picked what they judged the greatest value/effort
ideas, and implemented two of them: a simple chat client, to capture the idea
of on-line mentoring, and an interactive high-school math pathway explorer, see
Fig. 6.

Of the 12, the top 3 selected by the judges were, the video log, employer
interaction app, and post-secondary education navigation.

After the hackathon, a steering group evaluated the twelve ideas with respect
to implementation effort, barriers to adoption, privacy and safety issues, and the
existence of competing solutions. It was decided that the video log posed safety
issues which could be mitigated by restricting access to individual schools, and
this idea was communicated to the Peel School Board. Information on courses is
already available from myBlueprint.ca, but a focus group determined that new
youth knew this, so a presentation to myBlueprint.ca was made, including the
MathPathways prototype. Resume builders exist, but new youth needed trusted
feedback, so it made sense to duplicate such functionality within a mentoring
framework.

7.2 Independent Evaluation

The NewYouthHack project was evaluated using a developmental evaluation
approach. It provided timely feedback and data to inform decisions on an ongo-
ing basis, focusing on meeting stated goals, innovating effective solutions and
identifying best practices. The newcomer youth and the participating stakehold-
ers were engaged by the independent evaluator through in-person surveys, focus
group meetings, key informant interviews, direct observation and informal con-
versations, to evaluate interaction with stakeholders through the entire process.

We quote the independent evaluator’s findings that the NewYouthHack
Project achieved its objectives in both developing ideas and empowering youth:

1. Successfully developed an app that aims to assist newcomer youth in multiple
areas such as careers, education pathways, volunteer engagement and access
to programs and services.

2. The successful launching and implementing of the app now depends on: (1)
securing additional funding to further engage in consultation with relevant
stakeholders, (2) piloting the app to fine tune, (3) implementing locally in
Peel and (4) scale it up by implementing the app in Ontario and Canada.

https://myblueprint.ca
https://myblueprint.ca

56 C. Schankula et al.

3. Collaboration and partnership with multiple stakeholders in the community
contributed to the successful implementation of the NewYouthHack project
that brought sponsorships, stakeholder participation and feedback.

4. The initiative helped engage newcomer youth from diverse background that
spoke 10 different languages and included disabled and LGBTQ persons.

5. An environment of trust and safety was created by BMC to address the
concerns of parents of the newcomer youth ensuring their full participation.

6. The project provided a platform for newcomer youth to (1) develop a sense of
belonging to their new home in Canada, (2) know that they are not alone; (3)
open up to share their opinion freely on issues facing newcomer youth at and
subsequent to the hackathon; (4) learn, identify, analyse and find solutions to
the problems in their day to day life; and (5) expand their social networks.

Fig. 6. Interactive Math Pathways explorer. New Youth, who were not used to having
as much flexibility as allowed in the Ontario school system, found it difficult to make
course selections and understand the implications in terms of post-secondary education.
In this prototype tool, we allowed them to pick courses in the math stream one at a
time, with new courses opening up once they have taken the prerequisites. At each
stage, the selected courses are highlighted in blue, and the courses available to them are
highlighted in green. As new courses are chosen, any entrance conditions (i.e. attaining
a specific grade in a previous course) are listed, and undergraduate programs whose
entrance requirements are met are also shown. This is one pathway for meeting the
math requirements for Computer Science at McMaster University. (Color figure online)

NewYouthHack 57

Fig. 7. Visualization of the landing page as it evolved based on focus group feedback.
The initial landing page (top) was quite simple, and in response to feedback, we added
a map (bottom). Note that Square One is a shopping area and central landmark in
Mississauga, the largest municipality from which participants were drawn. Continued
in Fig. 8.

58 C. Schankula et al.

Fig. 8. Continued from Fig. 7. The map that was seen as confusing, so we tried to make
it look like city blocks. Continued in Fig. 9.

We also quote from the evaluator’s surveys of the youth:

◦ 100% of youth said they have improved their communication skills
◦ 96% of youth said they have learned work in group settings
◦ 96% of youth said they have learned to design thinking to develop solutions
◦ 95% of youth said they have learned about design thinking and its benefits

“Thanks to this experience I have noticed how important my role is in
Canada. I have the power to drive change and make a positive impact and
other youth can do so wherever they are. Using technology as a tool means
that we all can change things and make them better for newcomers across
Canada, overseas and for the next generations of people coming into our
county.”

◦ 96% of youth said they have increased their self-confidence and self-esteem
◦ 96% of youth said they have expanded their social network with new friends
◦ 96% of youth said they have learned to work collaboratively with others

“It means a lot that this time I had the opportunity to design and have a
say in creating a solution for barriers I faced as a newcomer youth.”

◦ 96% of youth said youth and adults have learned from one another
◦ 92% said they were able to express their opinion on newcomer youth issues
◦ 92% of youth said their opinions were listened and valued by others
◦ 88% of youth said the youth and adults worked collaboratively

“STEM has been an interest of mine from an early age but attending
Design Thinking, Coding Sessions, and Hackathon made me realize that I
might actually look into computer engineering as a career choice.”

NewYouthHack 59

Fig. 9. Continued from Fig. 8. The street map introduced a different type of confusion,
causing us to add signposts (top), which elicited more concrete feedback and led us to
go back to a button interface (bottom), but now with colourful icons.

60 C. Schankula et al.

In one of the final focus groups, 75% reported they would recommend the
app to other newcomer youth.

7.3 The App

The final application contained over 55,000 lines of code across the client and
server, over half of which was code generated by the PAL framework. Much of
the hand-written code was on the client side, defining the user interface which
consists of bandwidth-sparing programmatically-created graphics, as follows:

Spec Client Server Total

(Haskell) (Elm) (Haskell)

Written 3621 15498 7418 26537

Generated N/A 14224 14556 28780

Total 3621 29722 21974 55317

Code generation was critical to development due to the rapid evolution of
the design required to respond to user feedback. The changes are most visible
through the evolution of the landing page, as shown starting in Fig. 7.

The final app consisted of the main menu shown in Fig. 9 (bottom), leading
to each of the features of the application. The icons are roughly ordered to
represent the order in which users are likely to use the app. The Personal Profile
allows the student or mentor to create an avatar and write about their goals or
career. The Education, Careers and Volunteering sections provide mentorship
and information about those respective topics, as well as resume creation and
sharing, job posting, on-line interviewing, etc. Activities describes some common
Canadian activities and foods, such as hockey or poutine. Communities provides
language-based forums for youth to meet others who speak the same language.
Canada 101 is a moderated FAQ page for youth to ask questions about their
new country and community. New Youth Bank provides a virtual currency that
can be earned by completing tasks in the app, and then customizations can be
purchased (many gamification ideas from focus groups await implementation).

8 Conclusion and Future Work

When we started this project, we applied for one year of funding because it was a
new three-way collaboration and introduced new ideas to all of the participants.
At the end of the year, all of our expectations were exceeded, especially in terms
of the impact on the participating new youth and the robustness of an app built
without requirements. We are seeking funding to continue work on this project.

Building on this experience, we have collectively undertaken follow-on
projects: the #BTCHACK - Re-Imagining Youth Civic Engagement hackathon,

NewYouthHack 61

focusing on Reimagining Youth Civic Engagement, was hosted by BMC in part-
nership with McMaster’s Faculty of Engineering and Big Brothers Big Sisters of
Peel, funded by the Ontario Trillium Foundation (OTF); and Software: Tool For
Change hosted an Internship-Style Summer Camp over four weeks with 10–12
children ranging from ages 9–14, in which the children were given crash courses
in Design Thinking and Cognitive Science and asked to imagine and develop
a multi-player math game, with the resulting app5 exceeding our expectations.
In preparation for this camp, we created a prototype visual design tool called
PALDraw for modelling the PAL, associated algebraic data types and their doc-
umentation, and including embedded state diagrams in each place. PALDraw
generates the PAL spec as well as Elm modules which also work stand-alone. As
a next step, we will extend PALDraw into an Integrated Development Environ-
ment (IDE), merging it with our web-based editor [4].

References

1. Ahmed, F., Fuge, M.: Capturing winning ideas in online design communities. In:
Proceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing, CSCW 2017, pp. 1675–1687. ACM, New York (2017).
https://doi.org/10.1145/2998181.2998249

2. Carroll, M., Goldman, S., Britos, L., Koh, J., Royalty, A., Hornstein, M.: Destina-
tion, imagination and the fires within: design thinking in a middle school classroom.
Int. J. Art Des. Educ. 29(1), 37–53 (2010)

3. Czaplicki, E.: Elm: Concurrent FRP for functional GUIs. Senior thesis, Harvard
University (2012)

4. d’Alves, C., et al.: Using elm to introduce algebraic thinking to K-8 students. In:
Thompson, S. (ed.) Proceedings Sixth Workshop on Trends in Functional Program-
ming in Education, Canterbury, Kent, UK, 22 June 2017. Electronic Proceedings
in Theoretical Computer Science, vol. 270, pp. 18–36. Open Publishing Association
(2018). https://doi.org/10.4204/EPTCS.270.2

5. Dinant, I., Floch, J., Vilarinho, T., Oliveira, M.: Designing a digital social inno-
vation platform: from case studies to concepts. In: Kompatsiaris, I., et al. (eds.)
INSCI 2017. LNCS, vol. 10673, pp. 101–118. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70284-1 9

6. Gregor, S.: Building theory in the sciences of the artificial. In: Proceedings of the
4th International Conference on Design Science Research in Information Systems
and Technology, DESRIST 2009, pp. 4:1–4:10. ACM, New York (2009). https://
doi.org/10.1145/1555619.1555625

7. Hajiamiri, M., Korkut, F.: Perceived values of web-based collective design plat-
forms from the perspective of industrial designers in reference to Quirky and
openiDEO. ITU AZ 12(1), 147–159 (2015)

8. IDEO: The field guide to human-centered design (2015). http://www.designkit.
org/resources/1

9. Jensen, K.: High-level Petri nets. In: Pagnoni, A., Rozenberg, G. (eds.) Applica-
tions and Theory of Petri Nets. INFORMATIK, vol. 66, pp. 166–180. Springer,
Heidelberg (1983). https://doi.org/10.1007/978-3-642-69028-0 12

5 Escape From Math Island https://macoutreach.rocks/escapemathisland/.

https://doi.org/10.1145/2998181.2998249
https://doi.org/10.4204/EPTCS.270.2
https://doi.org/10.1007/978-3-319-70284-1_9
https://doi.org/10.1007/978-3-319-70284-1_9
https://doi.org/10.1145/1555619.1555625
https://doi.org/10.1145/1555619.1555625
http://www.designkit.org/resources/1
http://www.designkit.org/resources/1
https://doi.org/10.1007/978-3-642-69028-0_12
https://macoutreach.rocks/escapemathisland/

62 C. Schankula et al.

10. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

11. Natvig, M.K., Wienhofen, L.W.M.: Collaboration support for transport in the
retail supply chain. In: Fahrnberger, G., Eichler, G., Erfurth, C. (eds.) I4CS 2016.
CCIS, vol. 648, pp. 192–208. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-49466-1 13

12. O’Farrell, B., Anand, C.: Code the future!: teach kids to program in elm. In:
Proceedings of the 27th Annual International Conference on Computer Science
and Software Engineering, pp. 357–357. IBM Corp. (2017)

13. Optimal Computational Algorithms Inc.: ElmJr (1.0). iOS App Stores (2018).
https://apps.apple.com/ca/app/elmjr/id1335011478

14. Pappas, I.O., Mora, S., Jaccheri, L., Mikalef, P.: Empowering social innovators
through collaborative and experiential learning. In: 2018 IEEE Global Engineering
Education Conference (EDUCON), pp. 1080–1088. IEEE (2018)

15. Plattner, H., Meinel, C., Leifer, L.: Design Thinking: Understand-Improve-Apply.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13757-0

16. Reis, A., et al.: Tech4SocialChange: technology for all. In: Fahrnberger, G., Eichler,
G., Erfurth, C. (eds.) I4CS 2016. CCIS, vol. 648, pp. 153–169. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49466-1 11

17. Schankula, C.W., Anand, C.K.: GraphicSVG [elm package] (2016–2019). http://
package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest

18. Tschimmel, K.: Design thinking as an effective toolkit for innovation. In: ISPIM
Conference Proceedings, p. 1. The International Society for Professional Innovation
Management (ISPIM) (2012)

19. Vilarinho, T., et al.: Experimenting a digital collaborative platform for supporting
social innovation in multiple settings. In: Hodoň, M., Eichler, G., Erfurth, C.,
Fahrnberger, G. (eds.) I4CS 2018. CCIS, vol. 863, pp. 142–157. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93408-2 11

https://doi.org/10.1007/978-3-319-49466-1_13
https://doi.org/10.1007/978-3-319-49466-1_13
https://apps.apple.com/ca/app/elmjr/id1335011478
https://doi.org/10.1007/978-3-642-13757-0
https://doi.org/10.1007/978-3-319-49466-1_11
http://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest
http://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest
https://doi.org/10.1007/978-3-319-93408-2_11

	NewYouthHack: Using Design Thinking to Reimagine Settlement Services for New Canadians
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Design Thinking
	2.2 Software: Tool for Change Program
	2.3 Brampton Multicultural Community Centre
	2.4 Elm Language
	2.5 Elm Architecture
	2.6 Petri Nets

	3 Methods
	4 Platform for User-Driven Innovation
	4.1 Introducing Interaction with State Diagrams
	4.2 Petri App Land

	5 Petri App Land Runtime System
	6 Example Application
	6.1 Client-Side Modules
	6.2 Server-Side Modules
	6.3 Helper Functions

	7 Results
	7.1 The Hackathon
	7.2 Independent Evaluation
	7.3 The App

	8 Conclusion and Future Work
	References

