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Abstract. In social-based delay tolerant network (DTN) applications,
hand-held mobile devices exchange information. The inherent social
property of DTN has encouraged contemporary researchers in exploiting
social metrics to devise forwarding techniques for efficient routing. This
work observes evidence of seasonal behavior in contacts between node-
pairs in real mobility traces, and exploits it to devise a novel season-
ality aware similarity measure. We incorporate seasonality information
into tie-strength, and then use it as link weight in a weighted similarity
measure which we extend from Katz similarity index. We propose a Sea-
sonality Aware Social-based (SAS) DTN forwarding technique based on
the proposed similarity measure and ego-betweenness centrality. Finally
we perform real trace driven simulations to show that SAS outperforms
baseline social-based DTN forwarding methods significantly.

Keywords: Delay Tolerant Network · Social metrics ·
Ego-betweenness · Centrality · Social-based forwarding · Mobile Social
Networks · Tie-strength

1 Introduction

Intermittently connected Mobile Ad hoc Networks (MANETs) lack contem-
poraneous end-to-end routes from source to destination. Message delivery in
these networks must be delay tolerant, and so these networks are often called
as Delay Tolerant Networks (DTNs). DTN was originally developed for Inter
Planetary Networks (IPNs), but later its applications have been realized in ter-
restrial mobile networks such as Mobile Social Networks (MSNs) [1], Pocket
Switched Networks (PSNs) [2], Vehicular Ad hoc Networks (VANETs) [3], which
are characterized by sporadic connectivity, frequent link disturbance, existence of
non-contemporaneous end-to-end route, long and unpredictable communication
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latency, etc. To deal with sporadic connectivity pattern, DTNs follow a message
propagation scheme referred as store-carry-and-forward [4], where intermediate
nodes (known as carriers) store and physically carry buffered messages until they
get in contact with the destination or a suitable next-hop carrier. In this scheme,
each node independently makes forwarding decisions for opportunistic message
exchange between them when they are in communication range of each other. In
most of the terrestrial DTN applications, the mobile nodes/devices are carried
and used by people and thereby making forwarding decision based on peoples’
social behavioral perspectives. So, a class of DTN forwarding, namely social-
based DTN forwarding algorithms [5] have emerged, which exploit social network
properties in DTN forwarding. Our work in this paper proposes a Seasonality
Aware Social-based (SAS) DTN forwarding mechanism, which capitalizes on
seasonal behavior in human contacts.

Popular social-based DTN forwarding techniques [5] usually exploit three
social network metrics: similarity between node-pairs [6], centrality of a node [7],
and community of nodes [8]. Intuition behind use of these three metrics are: (i)
similar nodes meet each other frequently, so a node similar to the destination
node has better delivery probability of the message; (ii) central nodes act as
hub, and are reachable to other nodes; and (iii) nodes inside a community meet
frequently, so forwarding the message to a node that resides within the desti-
nation’s community increases the chances of message delivery. SimBet [9] is a
social-based DTN forwarding technique which has utilized similarity and cen-
trality metric, whereas BubbleRap [10] has exploited centrality metric and com-
munity structure. Lack of infrastructure in DTN forces individual nodes to take
forwarding decisions independently through message exchange. Unavailability of
a centralized view of the network limits the social-based DTN forwarding tech-
niques to use only locally calculable social network metrics. However, advanced
social network metrics, such as random walk similarity measure [6], betweenness
centrality measure [7], community detection algorithms [8] are global in nature,
and can not be directly applied to DTN forwarding. So, approximated versions
of the global metrics have been devised for forwarding in DTNs. The authors in
SimBet [9] have used an approximated version of betweenness centrality called
ego-betweenness centrality [11], that calculates the betweenness centrality of
each node in their respective ego networks. BubbleRap [10]’s approximation
of betweenness centrality has been a modified version of degree centrality and
has used a distributed community detection algorithm for DTNs [12]. Further, it
has been observed that, SimBet and BubbleRap dynamically calculate the social
relationship between the nodes to choose the best relay node. SimBet models
the relationship between the nodes as binary and does not consider the relative
strength of its neighbors. To justify the reason, the authors of SimBet argue that
ego betweenness has high correlation with sociocentric betweenness. However,
by analyzing the different mobility traces [13,14] we found that the correlation
of ego betweenness and social betweenness is not that high but correlation of ego
betweenness and sociocentric betweenness of a node inside a community has very
high correlation as shown in Table 1. Moreover, in their work, the small world
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created by the network of mobility traces also have very less diameter (<2)).
Again, BubbleRap uses the concept of sociocentric betweenness centrality which
requires the knowledge of the whole network, which in reality is not possible in
DTN. Therefore, these issues of the existing state-of-the-art routing protocols
of social-based DTNs motivate us to observe evidences of seasonal behavior in
node contacts in real mobility traces and exploit it to devise a novel seasonality
aware similarity measure.

Table 1. Characteristics of the mobility traces

Trace Reality Sassy Cambridge

#Nodes 96 25 36

#Edges 3085 155 541

Average degree 64 12 30

Average clustering co-efficient .816 .712 .892

Average shortest path length 1.324 1.503 1.141

Co-relation of sociocentric
betweenness and ego betweenness

Whole network .75 .88 .608

Within community .984 .987 .990

In our work, we model the contact history between node-pairs to formu-
late tie-strength which preserves seasonality of human contacts. Traditional
approaches to model tie-strength [15–18] use variants of average separation dura-
tion between node-pairs. We observe strong seasonality, i.e., repetitive contact
pattern in real mobility traces and exploit it to formulate tie-strength. Our
model measures the tie-strength as weighted average of separation duration and
a seasonality aware contact strength. Based on Katz [19] similarity index we
define a weighted similarity index between two nodes. Our motivation of using
Katz similarity metric has been its inherent property of giving more impor-
tance to the direct contacts over the indirect ones. By analyzing real mobility
traces, we find that although ego-betweenness centrality is not a good substitute
for sociocentric/global betweenness, but it can accurately approximate global
betweenness within communities. Our proposed DTN forwarding technique SAS
exploits the proposed weighted Katz based seasonality aware similarity measure
and ego-betweenness centrality, where the similarity value effectively deals with
intra-cluster forwarding and ego-betweenness drives the inter-cluster forwarding.
We adapt the utility proposed in SimBet, which exploits similarity and central-
ity, and propose the Seasonality aware DTN forwarding algorithm SAS. Finally,
we simulate our work on real mobility traces to demonstrate the effectiveness of
SAS over state-of-the-art social-based DTN forwarding algorithms: SimBet and
BubbleRap.

The rest of the paper has been structured as follows. Section 2 discusses
related works on social-based forwarding in DTNs. The drawbacks associated
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with these works are listed out, which provide the motivation for the work car-
ried out in this paper. Our proposed seasonality aware social-based forwarding
in DTNs has been presented in Sect. 3. Section 4 presents the performance eval-
uation and analysis of the proposed social-based forwarding scheme with the
benchmark SimBet [9] and BubbleRap [10] to validate its effectiveness in attain-
ing routing objectives. Finally, in Sect. 5 we conclude our work.

2 Background and Literature Review

This section introduces the different approaches of routing techniques available
in the literature of DTNs with a special focus on the social-based forwarding
techniques.

The routing protocols in DTNs can be broadly classified into two categories:
flooding and forwarding [20]. The protocols in the flooding family induce multiple
“replicas” of each message in the network without considering the potentiality
of the candidate node for being selected as a next-hop carrier [21–24]. In this
routing approach, a source node tries to send all its’ messages to its’ neighbors
if they do not have the copy of the messages. This approach does not require
to store any past information about the routing or mobility of the nodes. So,
flooding is the obvious choice when no information is known in advance about
the movement of the nodes or about the topology of the network.

In [21], the authors have proposed “Epidemic routing” as one of the basic
flooding based routing protocol in DTNs. In Epidemic, a node floods the mes-
sages to it’s neighbor nodes who does not have a copy of the message. In this
protocol, whenever two nodes have an encounter, they exchange their summary
vector which contains the IDs of the messages they are carrying. After comparing
the summary vector, each node determines the messages they are not carrying
which the other nodes have and requests for those messages. Depending on this
request message transfer is done between the nodes. Random pairwise exchange
of messages are used to ensure eventual message delivery. This process of con-
tinuous replication flood the network with same copy of messages to guarantee
maximum delivery ratio in presence of infinite storage availability for all the
nodes in the network. However in reality, nodes have limited storage capacity,
and a limited number of messages can be stored. Flooding the network with
messages causes high overhead in term of storage and power spent on transmis-
sion and reception. This causes the degradation of network performances. In an
another approach called “Two-Hop Forwarding” [25], each node is assumed to
encounter every other node for some short duration of time. Within this dura-
tion, the source node replicates each message to the first encountered node and
the messages are stored until they come in contact with the destination. In this
protocol, routing overhead is reduced at the cost of increased message delivery
latency. In addition, “Spray and Wait” [24] is a controlled flooding based routing
protocol that requires no knowledge about the network. Unlike epidemic it lim-
its the number of message copies to be forwarded in the network. The protocol
works in two phases (i) spray and (ii) wait. In spray phase the source spreads M
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copies of the messages in the network. If the destination is not found in spray
phase, then the relay nodes having message copies will enter into a wait phase
in which they wait until the messages are delivered to the destinations directly.
Relay nodes do not make any additional copies of the message, in turn reducing
the resource usage.

Though, these protocols in the flooding family achieve good delivery ratio
and less delivery latency, but flooding the network with duplicate messages cause
high network overhead in term of storage and power spent on transmission and
reception. These cause congestion leading to network performance degradation.
So, another class of routing approaches called “forwarding-based” have been
explored to restrict the generation of bundle replicas in the network.

The protocols in the forwarding family calculate an utility metric based on
“knowledge” to qualify the candidate node as the next hop carrier on the rout-
ing path. A single copy of each message is forwarded to the qualified node. Most
of these knowledge-based protocols select a suitable next-hop carrier based on
contact history of potential carriers [26,27], knowledge about traffic patterns in
the network [28] or on probability of encountering the destination node [29]. Fur-
thermore, some of them have used multi-copy spraying mechanisms to improve
reliability amidst intermittent connectivity [30,31].

In the basic forwarding based protocol called “First Contact” (FC) [23],
the source node tries to forward the message to one of the randomly selected
link among all the current contacts. The authors have tried to improve the
performance of the protocol by forwarding the message in a direction closer to
the intended destination node. To avoid the routing loop, a path vector has
been proposed. In this scheme a single copy of each message is maintained in
the network.

In an another approach, the Probabilistic Routing Protocol using History
of Encounters and Transitivity (PRoPHET) [22] uses utility based replication
for delivery of messages. PRoPHET uses history of encounter information to
calculate the utility metric of a node. In this protocol, each source node calculates
its delivery probability to every other node in the network. These probability
values are updated on every contact for each known destination. The delivery
probability is aged by a factor over time. It also uses, transitive relation to update
the delivery predictability of a node, with whom it is not directly connected. In
Rapid [32], a node calculates the utility value of each message that is present
in its buffer and this utility value decides in which order it should be relayed
to the next node. RAPID derives a per-packet utility function from the routing
metric. At a transfer opportunity, it replicates a packet that locally results in
the highest increase in utility. To calculate this utility value, it first estimates
the delivery delay of the message. This estimation is based on the two or three
hop’s information. This limits the estimation because the destination may be
present beyond two or three hops.

Recently, social-based routing is relatively a new approach and has become
popular for addressing the routing problem in DTNs. It is based on the obser-
vation that in most of the terrestrial DTN applications people are carrying
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mobile devices (like Pocket Switched Networks, Mobile Social Networks etc.)
and thereby making forwarding decision based on peoples’ social behavioral per-
spectives. In social-based DTN applications, hand-held mobile devices exchange
information. The inherent social property of DTN has encouraged contempo-
rary researchers in exploiting social metrics to devise forwarding techniques for
efficient routing. So, a class of DTN forwarding, namely social-based DTN for-
warding algorithms [5] have emerged, which exploits social network properties in
DTN forwarding. Social-based DTN forwarding has been popular in DTN spe-
cific applications like vehicular networks, mobile social networks, pocket switched
networks etc. In such application domains, people carry mobile devices, whose
behaviors are unpredictable from social aspects as well as from ad hoc net-
working aspects. Zhu et al. [5] and Wei et al. [33] have provided two recent
surveys on social-based DTN forwarding techniques. “Centrality”, “Similarity”
and “Community” have been the most effective social network metrics used for
DTN forwarding.

Authors in [34–36] explored the usefulness of community detection algorithms
in DTN forwarding. The motivation of using communities has been: if the carrier
encounters a node which belongs to the destination’s community, the message
will be delivered with high probability. The authors in [34–36] explored the pos-
sibility of community detection and interest profile based forwarding algorithms
in DTNs. In these approaches, messages are forwarded to the encountered node
if it belongs to the same community as the destination node or if it’s interest
profile matches with the destination node’s interest profile. The shortcoming of
these approaches is that they do not capture the dynamics of social relations
among the nodes.

In an another approach, SimBet [9] has exploited ego-betweenness centrality
and similarity to forward messages in DTN. Central nodes work as hubs and
are reachable to all other nodes in the network, and nodes similar to the desti-
nation contacts with it frequently. However, the shortcoming of SimBet is that,
the authors model the relationship between the nodes as binary and does not
consider the relative strength of its neighbors.

Again, BubbleRap [10]’s approximation of betweenness centrality has been
a modified version of degree centrality and it has used a distributed commu-
nity detection algorithm for DTNs [12]. The proposed betweenness centrality of
BubbleRap requires the knowledge of the whole network, which in reality is not
possible in DTN.

Another set of social-based forwarding techniques have exploited the concept
of tie-strength [37]. Few of these can be found in [15–18]. These techniques have
modeled the change in contact patterns during time, and predicted strength of
social relationships between node-pairs. The authors in [15–18] have failed to
model the dynamic changes in contacts from human behavioral perspectives.

Therefore, these issues of the existing state-of-the-art routing protocols of
social-based DTNs motivate us to observe evidences of seasonal behavior in node
contacts in real mobility traces and exploit them to devise a novel seasonality
aware similarity measure. Our work has incorporated seasonality behavior of
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human contacts into tie-strength towards DTN forwarding. To the best of our
knowledge, our work is the first one to exploit seasonality behavior of human
contacts in DTN forwarding.

3 Proposed Seasonality-Aware Forwarding Scheme

Here we present our Seasonality Aware Social Based DTN Forwarding (SAS),
a DTN forwarding algorithm which exploits seasonal behavior of human con-
tacts. Our proposed measures of seasonality aware “tie-strength” is detailed in
Sect. 3.1. The modified version of “similarity”, and “centrality” measure with
incorporation of seasonal behavior of node contacts are detailed in Sects. 3.2 and
3.3, respectively. The newly formed “utility” function to determine the node’s
potentiality as a next-hop forwarder in DTN routing is presented in Sects. 3.4.
Finally Sect. 3.5 represents the proposed seasonality aware forwarding algorithm
in social-based DTNs.

We consider a category of DTN like Pocket Switched Networks [2] or Mobile
Social Networks [1], which consists of cellular devices carried by human beings.
They use Bluetooth interface to exchange data among themselves. Each device
can act as a source, destination, or forwarder of a message. Due to mobility
of these devices, a continuous source-to-destination path may not exist. These
devices communicate in opportunistic manner during contacts, when a sender
and a receiver comes into contact at a time which is unknown beforehand. During
this contact, these devices make the forwarding decision of data. In DTN the
network topology changes rapidly and the nodes do not have any knowledge
of future connections. The inter-node contact duration is often limited. During
this duration only a limited number of messages can be transferred. Also, DTN
uses multihop forwarding for messages. A large number of hops increases the
probability of delivery of message, but also increases the delivery cost. So it is
needed to have an efficient strategy to select the best relay nodes.

Use of social network metrics have been prominent [5] in DTNs where the
network is formed with hand held mobile devices carried by humans. The rea-
son for this is that mobility in such networks is driven by the social network
properties, which are less volatile than the traditional metrics. In this work, we
exploit the seasonality/repetitive pattern in human contacts and have incorpo-
rated it with the other state-of-the-art social network metrics towards proposing
a Seasonality Aware Social-based forwarding called SAS. Similar to SimBet [9],
we select the best relay node based on a utility metric which exploits two social
network metrics: centrality and similarity. We model the seasonality in human
contact to propose a novel formulation for calculating tie-strength, and incor-
porate it as link weight into the proposed weighted similarity metric based on
Katz similarity index [19]. By analyzing real mobility traces, we find that ego-
betweenness [11] can be a good approximation for sociocentric betweenness [7]
inside communities. We combine the proposed seasonality aware similarity and
ego-betweenness in a utility function and propose the forwarding mechanism
SAS.
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3.1 Strength of Tie

Strength of tie [37] measures the strength of social relationship between two
individuals. A simple way to measure the tie-strength may be the total number
of contact or the total duration of contact. Motivation of using tie-strength in
DTN forwarding has been: if a node carrying the message gets into contact with
a node which is strongly connected to the destination (i.e., has met with the
destination many times or for long time in the past), they may meet again and
may deliver the message with high probability. Tie-strength can be regarded as
a similarity measure for directly connected node-pairs. However, the destination
may not be directly connected to every node the carrier meet, so multi-hop
similarity measure is required. We discuss the multi-hop similarity in the next
subsection.

Traditional approaches to model node-pair’s tie-strength use variants of aver-
age separation duration [15–18]. In general, the average separation duration
between two nodes x and y during the time interval [0, T ] is given as:

S[0,T ]
avg (x, y) =

∫ T

t=0
f(t)dt

T
(1)

where f(t) represents the estimated time remaining for the next encounter
between the nodes x and y at time t. Strength of tie is usually formulated as a
function which is inversely proportional to the average separation duration. This
approach assumes that the node-pairs which have come into contact for longer
duration in past are tied with stronger relationship, and are likely to come into
contact in future.

Fig. 1. Seasonality pattern in Reality trace

Our proposed measure of tie-strength has been encouraged by observed sea-
sonality pattern in node-pairs’ contact history. Figure 1 shows the contact pat-
tern of two nodes in the Reality trace during 10 days. Each rectangle in the
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vertical dimension represents a day, and each day is divided into 24 parts which
represent hours. The duration of a day filled with red is the contact duration
between the two nodes. The figure shows that the six days which have some
contacts, follow similar contact pattern. The bursts of contacts happen during
the same 9 h period of these days. It might be explained as, the two persons
workplace may be same and this nine hour duration might be their working
hours. The days which observe no contact may be holidays, which repeat in
every seven days. It is also observable that the contact pattern of the day at
the top of the figure is very similar to the eighth day from top. It indicates that
the contact pattern repeats every week. We exploit this seasonality pattern of
human contact to measure of link strength, which is a weighted average of the
traditional average separation duration and seasonality aware tie-strength. We
describe below how each node calculates their tie-strength with its’ neighbors.
For simplicity and as per the requirement for the mobility traces in hand, we
explain this method with two granularities of seasonality, daily and weekly. How-
ever, this method is trivially extendable for more levels of seasonality, such as
monthly, quarterly, yearly, etc.

We divide the duration of a day into equal size time-window Δ0, say an hour.
Δ1 = a×Δ0 = duration of a day, Δ2 = b×Δ1 = a×b×Δ0 = duration of a week.
Note that, in our case a = 24 and b = 7, but for maintaining generality we use
the variables a and b. f(t) represents the time remaining to the next encounter
between two nodes (x, y) at time t. Each node x maintains a seasonality matrix
m(x,y) for each of its contacts y, m(x,y)[i, j] be the elements of the seasonality
matrix m(x,y). The dimension of m(x,y) is b × a. When two nodes x and y come
to contact for the first time, both of the nodes initialize m(x,y), and all of its
elements are initialized as 0. The nodes keep a variable p which stores the total
number of time-windows elapsed, and is initialized as 0. They also keep the vari-
ables q and s, initialized as 0, which keep track of the offset of the current time
window in the seasonality matrix for row and column, respectively. The variable
T representing non-seasonal strength of the link (x, y) is initialized as 0. After
each Δ0 amount of time, both of the nodes trigger the following steps, which
update an matrix element, the variables, and calculate the tie-strength of (x, y)
for the next time window.

m(x,y)[q, s] =
m(x,y)[q, s] + Δ0/

∫ p×Δ0+Δ0

t=p×Δ0
f(t)dt

p × Δ0 + Δ0
(2)

T =
p × Δ0 + Δ0

T +
∫ p×Δ0+Δ0

t=p×Δ0
f(t)dt

(3)

where p is incremented as p = p+1 and the offsets of the next time window in the
seasonality matrix for row and column are updated as q = (p − p mod (a × b))
mod b and s = p mod b, respectively.

Finally, the seasonality aware tie-strength of the link (x, y) for the next time-
window is calculated as the weighted average of average separation duration and
seasonality components:
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wp(x, y) = α × m(x,y)[q, s] + (1 − α) × 1
T

(4)

where the parameter 0 ≤ α ≤ 1 regulates the weight of the seasonality aware
component in the tie-strength formulation.

3.2 Similarity

The motivation of using similarity measure in DTN forwarding is that similar
nodes meet frequently, and a node similar to the destination node is highly likely
to deliver the message to the destination node. In SimBet, similarity between
two nodes is calculated as the number of common neighbors between them. It
treats direct and indirect contacts in a similar manner. We argue that the nodes
which have met the destination at past, are more similar to the destination than
those which are two hop away. We adopt Katz index [19] to define the similarity
metric. Katz similarity index between the nodes x and y is given as:

Katz(x, y) :=
∞∑

l=1

βl × |paths<l>
x,y |, (5)

where paths<l>
x,y represents the set of all paths of length l between nodes x and

y. β > 0 is a constant that regulates the amount of importance given to higher
length paths. As β → 0, Katz index starts behaving like common neighbor.

We modify Katz index to accommodate tie-strength. We consider upto 2
length paths to make it locally calculable. The Similarity measure between nodes
x and y is given as:

Sim(x, y) = β × w(x, y) + β2 ×
∑

k∈N(x)∩N(y)

w(x, k) + w(k, y), (6)

where N(x) is the set of neighbors of a node x, and w(x, y) is the weight of a
link (x, y) for the current time window, given by Eq. (4).

3.3 Centrality

Centrality measures the importance/accessibility of a node in the network. Cen-
tral nodes are considered as highly reachable to the other nodes in the network.
Betweenness [7] is one of the widely used centrality measure used in social-based
DTN forwarding techniques [5]. Nodes with high betweenness centrality fall into
large number of shortest paths linking to other node-pairs in the network. Thus,
these nodes act as bridges to reach to all other nodes in the networks. Between-
ness Centrality is calculated as:

BetC(x) =
∑

y �=z �=x,(y,z)∈Nodes

gy,z(x)
gy,z

(7)
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where BetC(x) is the global/socio centric betweenness centrality of node x, gy,z

is the total number of geodesics (shortest paths) between nodes y and z, and
gy,z(x) is the number of shortest paths between node y and z passing through
x.

Socio centric betweenness is a global measure, and is difficult to measure in
DTN forwarding because the nodes in DTN have access to the local information
only. Flooding may be one solution, but it will increase the message cost exponen-
tially. Moreover, due to sparse and dynamic nature of DTN, message may take
long to reach the destination. Consequently, in DTN it is impossible to achieve
consistent values of the global measures like socio centric betweenness through-
out the network. SimBet [9] has capitalized the concept of Ego networks [11] in
DTN forwarding, which approximates socio centric betweenness by calculating
betweenness centrality locally, within the node’s ego network. Ego network of a
node is defined as a network which consists of the node, its neighbors, the links
of the node with its neighbor, and the connections among its neighbors. The
ego-betweenness of a node x is calculated as:

BetE(x) =
∑

y �=z �=x,(y,z)∈N(x)

gy,z(x)
gy,z

(8)

where BetE(x) is the ego-betweenness centrality of x, gy,z is the total number
of geodesics (shortest paths) between nodes y and z, and gy,z(x) is the number
of shortest paths between node y and z passing through x. N(x) is the set of
neighbors of x.

Marsden [38] has observed that ego-betweenness and socio centric between-
ness are highly correlated in social networks. We investigate the relationship
between socio centric and ego-betweenness in the real mobility traces discussed in
Sect. 1. Table 1 shows that correlation between ego-betweenness and socio centric
betweenness in the whole network is insignificant. However, when the network
is partitioned into communities, ego-betweenness and socio centric betweenness
correlate highly. So, we argue that a node with high ego-betweenness acts as
a good hub inside its community, and can be useful in forwarding the message
when the destination is inside its community.

3.4 Utility

A carrier having a message must choose another node to forward it, so that the
message reaches the destination with high probability. When a carrier comes into
contact with a node, it calculates an utility function of the node with respect
to the destination. The carrier forwards the message to the node based on this
utility function. Like SimBet [9], we define the utility as a combination of two
utilities: similarity and centrality.

Utility of a node y (which comes into contact with the carrier x) for delivering
a message to node d is calculated as:

Utility(y, d) = γ × SimUtility(y, d) + (1 − γ) × BCUtility(y) (9)
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where,

– SimUtility(y, d) = Sim(y,d)
Sim(x,d)+Sim(y,d) is the similarity utility of the node y

with the destination d with respect to the career x,
– BCUtility(y) = BetE(y)

BetE(x)+BetE(y) is the betweenness utility of the node y with
the destination d with respect to the career x,

– γ ∈ [0, 1] is a balancing parameter, which allows for setting the relative impor-
tance of Betweenness utility and Similarity utility,

– Sim(−,−) and BetE(−) are calculated using Eqs. (6) and (8) respectively.

3.5 Forwarding Algorithm

Here we present our proposed forwarding algorithm based on ego-betweenness
centrality and seasonality aware similarity index, which extends the forwarding
algorithm of SimBet [9]. It evaluates a nodes’ utility for being chosen as a poten-
tial forwarder. This algorithm makes no pre-assumption of global knowledge of
the network, and makes the forwarding decisions on the fly based on locally
exchanged information. For this to happen, on encountering a node y, node x
verifies whether it is carrying any messages destined to y. If this is found to be
true, then all messages destined for y are delivered. Subsequently, the encounter
vectors are received from node y. The encounter vector contains information (list
of contacts and tie-strength of the links with their contacts) about the nodes
that each of them have encountered. This encounter information is then used to
update the ego-betweenness value on node x and similarity value as described
in Eqs. (8) and (6) respectively. Further, the two nodes x and y exchange a
summery vector that contains a list of destination nodes for whom they are car-
rying messages, and their betweenness and similarity values. Thereafter, node x
calculates the Utility value of its own and of node y for each destination in the
received summery vector following Eq. (9). If the node y’s utility is higher than
x’s, x forwards the message to y in greedy fashion. We summarize the algorithm
as follows.

1. On encountering y, if node x has messages destined for y, it delivers them to
y.

2. x receives the encounter vector of node y, which contains y’s contacts and
wp(y, k)’s where k ∈ N(y).

3. Node x and y exchange the summery vector information containing list of
messages carried by them for each destination node.

4. For each message in the Message list calculate Utility(x, d) and Utility(y, d)
for each destination d.

5. If Utility(y, d) > Utility(x, d), node y becomes the forwarder and receives
messages from x.

4 Performance Evaluation of SAS

This section detail the performance evaluation and analysis of the proposed
social-based forwarding scheme (SAS) with the benchmark SimBet [9] and
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BubbleRap [10] to validate its’ effectiveness in attaining routing objectives.
The different evaluation metrics under consideration are described in Sect. 4.1.
Section 4.2 provides a brief description of the data traces used in the experiments
and summarizes characteristics of the social network induced by the contacts in
the mobility traces. The experimental setup used for generation of mobility traces
through trace-driven test with dataset from the Reality [39] and Cambridge [40]
datasets are represented in Sect. 4.3. Finally, the experimental results and their
analysis are summarized in Sect. 4.4.

4.1 Routing Objective and Evaluation Metrics

Routing Objective of DTN routing protocol depends on application. Generally
the objective is to increase the delivery ratio while not increasing the cost of
delivery much. Generally, DTN routing protocols are evaluated based on the
following metrics, which we follow in this work:

– Delivery Ratio: It is the ratio between the number of messages delivered
and the total number of messages generated.

– Delivery Cost: It is the ratio between the number of message transmission
required for delivery to the total number of messages delivered.

– Average Latency: It is the time duration between the message generation
and its delivery, averaged over all messages.

4.2 Data Sets

We perform our experiments on three real mobility traces, namely Cambridge,
Reality and Sassy. A brief description of the three traces are given next. The
characteristics of the social network induced by the contacts in the mobility
traces are already summarized and discussed in Table 1 of Sect. 1.

– Cambridge: This dataset [13] includes the traces of Bluetooth sightings by
groups of users carrying iMotes for 11 number of days. The iMotes devices
were distributed among the doctoral students and faculty comprising a
research group at the University of Cambridge Computer Laboratory.

– Reality: The MIT’s Reality Mining experiment [14] conducted in 2004 was
aimed at studying community dynamics. The study consist of one hundred
Nokia 6600 smart phones having Bluetooth network connectivity and were
distributed among the students and staff at MIT. The study generated data,
collected by these 100 human carried devices over the course of nine months,
include call logs, Bluetooth devices in proximity (i.e. contact logs), cell tower
IDs, application usage, and phone status. The study resulted in the first
mobile data set with rich personal behavior and interpersonal interactions.

– Sassy: This dataset [41] is an outcome of the experiments carried out by a
group of participants (22 undergraduate students, 3 postgraduate students,
and 2 members of staff) forming a mobile sensor network at University of
St Andrews. The experimental set up was made of 27 T-mote invent devices
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(mobile IEEE 802.15.4 sensors) carried by human users and Linux-based base
stations for bridging the 802.15.4 sensors to the wired network. The partici-
pants were asked to carry the devices whenever possible over a period of 79
days. The data set contains information about the participants’ encounter
records as well as their social network data generated from Facebook data.

4.3 Experiment Setup

We have used Opportunistic Networking Environment (ONE) simulator [42] for
simulation purpose. It is specifically designed for evaluation of DTN routing and
application protocols. We have evaluated our simulation through trace-driven
test with dataset from the Reality [39] and Cambridge [40] datasets, described
in Sect. 4.2. Reality dataset spans for about six months. During the simulations
for reality datasets 1000 messages were generated during 5–6 month period by
randomly choosing the source and destination nodes. Cambridge dataset spans
for about 11 days. During the simulations with Cambridge dataset, 1000 mes-
sages were generated after 9–11 day period by randomly choosing the source and
destination nodes. Each simulation is repeated 10 times with different random
seeds, and the average evaluation results are reported. The parameters for the
simulations for the datasets are summarized in Table 2.

Table 2. Parameters for simulation setup

Dataset Reality Cambridge

Number nodes 97 36

Transmission range 10 m 10 m

Transmission speed 250 kBps 250 kBps

Message size 10–100 kb 10–100 kb

Time To Live (TTL) 1–12 days 2 min–24 h

4.4 Results and Discussion

We compare the performance of the proposed forwarding algorithm SAS with
the state-of-the-art social-based DTN forwarding algorithms: SimBet [9] and
BubbleRap [10]. We vary the parameter α to tune the effect of seasonality in
SAS. We set β, the parameter of the Katz similarity measure to a typical value
.05 [6].

Figures 2, 3, 4, 5, 6 and 7 summarize the comparative performance of SAS
with BubbleRap and SimBet for the three evaluation metrics viz., “delivery
ratio”, “delivery cost” and “average latency”. Further, to evaluate the effects
of the seasonality component on the performance of SAS, we set three different
values for the parameter α (i.e., α = 0, α = 1, α = 0.3) and have obtained
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Fig. 2. Message delivery ratio Vs TTL in Reality data set

the simulation results for three different performing versions of SAS. Results for
SAS (alpha = 0) measure the performance of SAS when the tie-strength does
not contain the seasonality component, SAS (alpha = 1) represents SAS when
the tie-strength is calculated with a high weighted value set for the seasonality
component, and SAS (alpha = 0.3) represents SAS where the tie-strength is cal-
culated with a low weighted seasonality component. Here we detail the results of
these three performing versions of SAS with varying TTL values (as represented
in Table 2). We also varied the utility parameter γ for SAS and SimBet, but
found that γ = 0.5 gives best performance in general.

Figures 2 and 3 show that all the three different versions of SAS (i.e., SAS
(alpha = 0), SAS (alpha = 1), SAS (alpha = 0.3)) outperform SimBet and
BubbleRap significantly with respect to delivery ratio over the two traces (i.e.,
“reality” and “cambridge”) and the TTL values. SAS(alpha = 0.3) outperforms
SimBet by 6.50% and BubbleRap by 81.10% for TTL=12 Days in Reality trace.
SAS(alpha = 0.3) outperforms SimBet by 5.41% and BubbleRap by 21.70% for
TTL=12 Days in Cambridge trace. SAS (alpha = 1) always outperforms SAS
(alpha = 0), which indicates the usefulness of the seasonality component of tie-
strength. Again, it is also notable from Figs. 4 and 5 that all the performing
versions of SAS (i.e., SAS (alpha = 0), SAS (alpha = 1), SAS (alpha = 0.3))
do not incur much delivery cost as compared to SimBet to achieve the gain
in delivery ratio in Reality, and achieves better delivery cost than SimBet in
Cambridge. From Figs. 6 and 7, it has been observed that for all of the forwarding
techniques under consideration in the simulation study (except BubbleRap),
average latency values are almost same for all the protocols.
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Fig. 7. Message average latency Vs TTL in Cambridge data set

5 Conclusion

This work has proposed SAS, a novel seasonality aware adaptive forwarding
technique in social DTNs. The work is based on the observation of existence
of seasonal behavioral pattern in node contacts in real mobility traces. SAS
invoked a weighted Katz based similarity measure and ego-betweenness central-
ity to evaluate a utility value of an encountered node. Based on this utility, it
decides the competency of a candidate node for being selected as a next hop
message forwarder in DTN routing. The proposed method has been evaluated
against different routing metrics through extensive set of simulation study with
real mobility trace data sets. The performances of SAS has been found to get
enhanced compared to the existing baseline social-based forwarding schemes
available for DTNs.
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