
Impact-Aware Conformance Checking

Arava Tsoury(&), Pnina Soffer(&), and Iris Reinhartz-Berger(&)

University of Haifa, Mount Carmel, 3498838 Haifa, Israel
{atsoury,spnina,iris}@is.haifa.ac.il

Abstract. Alignment-based conformance checking techniques detect and
quantify deviations of process execution from expected behavior as depicted in
process models. However, often when deviations occur, additional actions are
needed to remedy and restore the process state. These would seem as further
reducing conformance according to existing measures. This paper proposes a
conformance checking approach which considers the response to unexpected
deviations during process execution, by analyzing the data updates involved and
their impact on the expected behavior. We evaluated our approach in an exper-
imental study, whose results show that our approach better captures adapted
behavior in response to deviations, as compared to standard fitness measurement.

Keywords: Conformance checking � Alignment � Data impact analysis �
Business processes

1 Introduction

Business process models depict the expected and normative course by which processes
are expected to be executed. Over the years, process mining techniques [16] were
developed for gaining insights into business process behavior from event logs, which
capture events that typically correspond to activities performed using an information
system. Conformance checking is an area within process mining [6] that analyzes the
relations and differences between the expected behavior, specified in a process model,
and the actual behavior, reflected in an event log. Most conformance checking tech-
niques (e.g., [1, 15]) focus on control flow aspects, addressing the ordering and flow of
activities in the process. Other aspects have been also considered, e.g., [7, 9, 11] and
[12] for checking conformance with respect to resource and data-related rules.

Conformance checking is done by comparison of observed behavior with the
modeled process. Nevertheless, process models rarely capture the full range of possible
behaviors. In particular, exceptions that may occur and possible compensation activi-
ties that may be needed due to errors are typically not described in the process model
[4]. Hence, comparison may yield deviation from the prescribed process model, as well
as involvement of additional data operations that may influence the process state. These
may have further consequences in other parts of the process. In other words, when
analyzing the event logs using existing conformance checking techniques, process
executions can appear to be non-conformant, whereas in fact, they exhibit the expected
behavior given the unexpected situation (e.g., of an error and its correction). In con-
trast, process executions, in which unexpected changes were not fully and appropriately

© Springer Nature Switzerland AG 2019
C. Di Francescomarino et al. (Eds.): BPM 2019 Workshops, LNBIP 362, pp. 147–159, 2019.
https://doi.org/10.1007/978-3-030-37453-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37453-2_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37453-2_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37453-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-37453-2_13

handled, may appear to have better conformance, since the differences between the
process model and the event log may be smaller. We claim that the consequences of
such a change can be identified by analysing the impact of the changed data values on
the process. In this paper, we introduce the concept of impact-aware conformance
checking, which takes into consideration unexpected events and data changes during
process execution for calculating a conformance score. The approach is based on the
existence of two main sources: (1) the event log, which may include only basic process
control-related information or additional data attributes; (2) the database transaction
(redo) log that captures historical data operations performed on the database as a result
of business process activities. We have already proposed combining these two sources
in [13]. The approach suggested here relies on combining information from event and
transaction logs and employing a data-impact analysis technique [14], which propa-
gates an unexpected change in data values along the process model and returns a set of
affected process elements. We further introduce a new measure and a new technique for
impact-aware conformance checking.

The remainder of the paper is organized as follows. Section 2 presents a running
example to illustrate and motivate the need for our approach. Section 3 is devoted to
preliminaries required and premises of our approach. Section 4 presents the approach,
whose evaluation is reported in Sect. 5. Section 6 discusses related work and, finally,
in Sect. 7 we conclude and discuss limitations, raising future research directions.

2 Running Example

To motivate our approach, consider a sales process, in which customers order products
that are shipped after payment. Figure 1 depicts a Petri net model of this process.
Typically, the data used in the process is stored in a relational database, which includes
tables related to customers, orders, shipping companies, employees, and so on.

Let us assume the customer asked to change the quantity of an ordered product
after payment. This would require repeating the activity enter product quantity after
handle payment. Now consider two possible traces (activities are marked by
abbreviations):

(a) <IO, EPQ, AI, EDD, CSF, HP, EPQ, AI, CSF, HP, SCO>
(b) <IO, EPQ, AI, EDD, CSF, HP, EPQ, AI, SCO>

Clearly, both traces exhibit non-conformant behaviors, addressing unexpected
changes after payment. They differ in that trace (a) includes an additional calculation of

Insert
Order

Allocate
Inventory

Request
purchasing

Enter
product
quantity Reserve

inventory

Enter
delivery
details

Calculate
shipping

fee

Handle
payment

Ship &
close
order

Fig. 1. The sales process model

148 A. Tsoury et al.

the shipping fee and additional handling of payment, while trace (b) continues the
process normally after performing the change. These differences imply that existing
conformance checking methods will find that trace (b) is more conformant than trace
(a), since the deviation in (b) is only in the execution of two activities (enter product
quantity and allocate inventory), as opposed to four activities in trace (a) (enter product
quantity, allocate inventory, calculate shipping fee, handle payment). However, after
the unexpected change occurred, trace (a) is more appropriate in business terms than
trace (b), since it handles potential consequences of the change in product quantity.
Such a change may necessitate additional changes in the shipment arrangements, which
may, in turn, lead to changes in the shipping fee. Thus, to properly handle such a
change, calculating the shipping fee should be revisited, and, as a result, an additional
payment may need to be handled before the process can complete.

To tackle the problems illustrated above, we introduce the notion of impact-aware
conformance, for analyzing the differences between the expected behavior and the
actual one, in scenarios where unexpected changes may occur. We first elaborate
preliminaries and premises and then present the approach.

3 Preliminaries and Premises

As noted, event logs, which are commonly produced by process-aware information
systems, are essential for process mining techniques [16]. The content of event logs
varies from “thin” logs, which contain only an event label (representing an activity) and
a case identifier, to “fat” logs, which may contain data items relevant to the events [10].
Below, we provide some definitions of the basic concepts.

Definition 1 - Event (e), trace (r): An event e is a tuple of the form e = (caseID,
activity, timestamp, d1, … dn), where caseID uniquely identifies a single process
execution; activity is the event label; timestamp holds the time in which the event
occurs; d1,…dn are additional (optional) data items. A trace r is a sequence of events
referring to the same process execution, r ¼ \e1; . . .; em [.

Besides event logs, conformance checking requires process models against which
the event logs are checked. A process model describes the sequences of activities to be
performed for reaching a certain business goal [4]. Different representations of process
models have been suggested [3, 12]. In this paper we use a Petri net representation.

Definition 2 - Process model (M): A process model (M) is a triplet M ¼ P;T; Fð Þ,
where P is a set of places; T is a set of transitions; F�ðP� TÞ [ðT� PÞ is the flow
relation connecting places and transitions.

The state-of-the-art conformance checking approaches construct an alignment
between a process model M and a trace r [2]. An alignment is represented as a two-row
matrix, where the first row consists of trace events and the second row includes process
model activities.

Definition 3 - Alignment (c): An alignment c of a process model M ¼ P;T; Fð Þ and a
trace r is a sequence of pairs of the form (ei, ai) where ei 2 fe j e is contained
inrg[f[[g, ai 2 T[f[[g, and if (ei 6¼ [[and ai 6¼ [[) then ei.
activity = ai.

Impact-Aware Conformance Checking 149

Three cases of alignment moves can be defined [6] as follows: (1) Synchronous
move: involving a matching event and model activity ei 6¼ >> and ai 6¼ >>. (2) Model
move: a model activity is not matched by an event ei = >> and ai 6¼ >>, and (3) Log
move: an event is not matched by a model activity ei 6¼ >> and ai = >>. The last two
are generally termed asynchronous moves.

Different alignments may be possible for the same pair of trace and process model.
Alignment-based conformance checking commonly constructs “optimal” alignments,
with respect to a given cost function that assigns costs to asynchronous moves. The
optimal alignment minimizes the total cost of moves. Based on the optimal alignment,
conformance can be quantified using the notion of fitness [15].

Definition 4 - Fitness: Given an optimal alignment c, whose cost is K(c), the fitness is

calculated as: Fitness cð Þ ¼ 1� K cð Þ
K cRð Þ, where K(cR) is the maximal cost of a reference

alignment cR, which is computed by concatenating moves in log for all events of r
with the alignment of the empty trace.

The basic alignment techniques and fitness measurement relate to a control-flow
perspective, correlating a trace with a process model. Recent approaches suggest a
multi-perspective data-aware alignment, considering also data and resources in the
event log, compared to a model which includes these elements (e.g., [9]). Respective
cost functions penalize deviations in data operations as well as in activity executions.
Accordingly, optimal alignments are obtained and used in a fitness measure. Data-
aware conformance checking is hence more powerful in detecting non-conformant
behavior and explaining it. However, its applicability is restricted by the inclusion of
data items in the log. Typically, when an event log is created, only a subset of data
items used and manipulated by the process is included. In realistic settings, the total
number of data items is too large to be included in an event log that should serve for
mining and analysis. The selection may reflect expectations of relevance for analysis
purposes, but the result is necessarily partial.

To overcome this incompleteness, we suggest using a control-flow perspective as a
baseline for alignment, complemented by a transaction log for additional explanation
and fine-tuning of detected deviations. Transaction logs are typically produced by
database management systems and can be provided in diverse formats, depending on
the platform. Yet, their structure can be generalized as follows.

Definition 5 - Transaction log: A Transaction log is a set of tuples of the form
(transactionID, beginTime, endTime, operation, caseObject, caseID, attribute, new-
Value), where transactionID uniquely identifies the transaction; beginTime and end-
Time are the timestamps of the transaction’s beginning and end, respectively; operation
2 {insert, update, delete} specifies the change type; caseObject and caseID identify the
changed data item; attribute and newValue specify the change essence.

The relation between a transaction log and a corresponding event log can be
established through two common attributes: (1) the case identifier – which explicitly
appears in both event and transaction logs; and (2) the timestamp – the event timestamp
should be within the transaction’s time frame, assuming that writing to the database is
not delayed. Proposals have been made (e.g., [10, 13]) to use a combination of an event
log and a transaction log, based on mapping operations between these two sources.

150 A. Tsoury et al.

In this paper, the use of a transaction log is to retrieve the data items that have been
changed by a specific activity (event). Our study assumes that database operations and
activities execution are both recorded. Also, it assumes that data operations are always
executed in the context of process activities.

A last element needed for our approach is a mechanism for analyzing data impacts
on the process. Data impact analysis addresses dependencies among process elements,
stemming from the required data flow. Considering a data item whose value may be
changed by a deviating activity, the activities included in the partial trace before the
deviation, which were affected by the data item, are its impact in the partial trace. The
approach suggested in [14], for example, analyzes the effects of a single data item (an
attribute or an object) on other process elements, including activities.

Definition 6 - Data Impact (DI): Given a data item1 d and a trace r, the set of
activities represented by events in r and affected (either directly or indirectly) by the
value of d are termed the data impact of d in r, and marked DI(d, r).

Returning to our running example, consider the ordered quantity, which is deter-
mined in the activity enter product quantity, and assume its value has been updated
unexpectedly after a partial trace r = <IO, EPQ, AI, EDD>. Changing the quantity at
this phase may require changes in the inventory allocation and possibly also in the
delivery details (a different truck may be needed). Accordingly:

DI(Ordered quantity, r) = {AI, EDD}.

4 The Approach

The main idea of our suggested approach is that once an unexpected change occurs,
manifested as a log move, the expected behavior may no longer be the behavior
prescribed by the process model. Rather, additional actions may be required as com-
pensation, and these should be augmented as part of the expected behavior, forming a
new basis for conformance checking. We now discuss how the expected behavior is
recalculated following a deviation from the prescribed behavior.

4.1 Expected Behavior After Initial Deviation

Recall that a log move represents an activity that was executed but could not be aligned
with the process model, namely, a deviation from the expected behavior. This deviation
might occur for many reasons, such as non-compliance of the user, or due to excep-
tional and unexpected situations that necessitate an ad-hoc change. To understand the
essence of the activity classified as a log move, we seek the data operations involved.
For an in-depth analysis of the impact of deviating activities, we turn to the full set of
data operations (e.g., insert, update, delete) that took place, and are typically available
in the transaction log. Consider that a deviating activity a updated the values of a set of
data items, denoted by Aff(a). This means that each data item in Aff(a) was updated by
the event representing a (in the same period of time and by the same case identifier).

1 A data item is an attribute or an object, whose impact is of interest.

Impact-Aware Conformance Checking 151

Now assume that at least some of these data items have been used earlier in the trace,
making impacts on activities and on path selection decisions. This may require revisiting
and correcting parts of the process activities. The activities that may potentially be
revisited as a response to the deviation are identified by analyzing the data impact of the
data items in Aff(a), considering the trace preceding the deviation in a.

Definition 7 - Response set (RS): Given a trace r, followed by an activity a classified
as a log move in an alignment c, the response set to the log move a is
RSða; rÞ ¼ S

d 2Aff að Þ DI d; rð Þ.
Turning to the expected behavior of the process following a deviation (log move), it

should include activities from the response set in addition to the ones that correspond to
the process model. We cannot, however, anticipate the order in which responses will be
attended to. Rather, if the remaining trace includes activities which are not aligned with
the process model (additional log moves) but are in the response set, we interpret them
as responses and consider them as part of the expected behavior of the process. In other
words, assume a baseline expected behavior as all compliant process traces that include
the partial trace r. The expected behavior following an initial deviation a will extend
the baseline and also include the set of response activities RS(a, r). Listing 1 provides
the algorithm for retrieving the response set, correlating the event log with a transaction
log which holds all the data operations performed.

Listing 1. Algorithm for retrieving response activities for a specific log move

4.2 Impact-Aware Alignment and Fitness

With the extension of the expected behavior, we now turn to adapt the alignment and
the fitness measure. Note that calculating a new optimal alignment is not possible since
the expected behavior is now extended by an unordered set of response activities. We
hence modify the initial given alignment to cater for the extended expected behavior.
For this task, the result set and the given alignment are compared. Log moves in the

152 A. Tsoury et al.

alignment, whose activities are included in the response set, are marked as response
moves (denoted by q). These marks allow for extending the definition of alignment to
be impact-aware.

Definition 8 - Impact-Aware Alignment: An impact-aware alignment of a process
model M = (P, T, F) and a trace r is an alignment, i.e., a sequence of pairs of the form
(ei, ai), where ai can be a response move (i.e., ai 2 (T [{>>, q})), and if (ai = q) then
there is a preceding log move aj =>> (j < i) such that ei.activity 2 RS(aj, <e1…ej−1>).

While transforming the given alignment to an impact-aware one, we keep track of
the activities in RS, but also remove them from RS when encountered along the
alignment. Note that this removal takes place whether the activity is part of the original
process model (namely, corresponds to a synchronous move in the alignment) or not.
The rationale is that an activity is included in RS if its data operations may be required
as a response to some deviation. When that activity is performed afterward, addi-
tionally to or in-line with the process model, the response is considered done, and the
activity can be removed from RS. Having gone through the entire alignment, the
activities remaining in RS are missed response activities.

To illustrate, consider the following alignment c of trace (a) in the running example.

IO EPQ AL EDD CSF HP EPQ AL CSF HP SCO
IO EPQ AL EDD CSF HP >> >> >> >> SCO

For the first log move, which corresponds to EPQ, the calculated response set is
RS = {AL, CSF, HP}. Hence, the impact-aware alignment corresponding to c is:

IO EPQ AL EDD CSF HP EPQ AL CSF HP SCO
IO EPQ AL EDD CSF HP >> q q q SCO

In this case the RS remains empty after creating the impact-aware alignment. This
means that all expected corrective activities have been performed. This would not be
the case with trace (b) in our running example.

As a last note, deviations and unexpected situations may occur more than once
when a process is executed. We repeat the analysis for every log move which is not
interpreted as a response to a previous one in a trace, recalculating the expected
behavior of the process iteratively. Listing 2 provides the algorithm which analyzes an
alignment and transforms it to an impact-aware alignment. Note, Algorithm 2 uses
Algorithm 1 (Retrieve Response Set – see Listing 1).

We now turn to the calculation of a fitness measure based on the impact-aware
alignment. We term this measure Impact-aware fitness. For this, the following generic
cost function can be used for calculating the cost of an alignment:

K cð Þ ¼ CM � RSj j þ P
CostOfMove, Where:

CostOfMove ¼
0 Synchronousmove
1 Logmove or Model move
Cq Responsemove

8<
:

Impact-Aware Conformance Checking 153

Cq 2 0; 1½ � and CM 2 0; 1½ � are factors indicating the cost associated with a
response move and with a “missed” response that remains in RS, respectively; |RS| is
the number of elements that remain in the response set after making the alignment
impact-aware. With this cost function, the Impact-aware fitness of c is calculated using
the standard fitness definition (see Definition 4). In our running example, if we consider
the cost of a response move Cq as 0 and the cost of a missed response CM as 1, the
impact-aware fitness of trace (a), where response to a deviation was handled, is 0.94
while its standard fitness is 0.76. The impact-aware fitness of trace (b) (response to
deviation not handled) is 0.8 while its standard fitness is 0.87.

Listing 2. An algorithm for transforming an alignment to an impact-aware alignment

5 Evaluation

For feasibility evaluation, we conducted an experimental study using simulated data2.
We compared our results to those of a standard conformance checking technique [2].
Below, we elaborate on the evaluation design & execution, as well as on the results.

5.1 Evaluation Design

We used the relatively simple sales business process, depicted in Fig. 1. We further
defined several scenarios, some conformant and some engaging deviations. When
deviations were engaged, we controlled for required compensations (with/without), and
for the extent to which these compensations were handled. Last, we generated scenarios
where random noise was added. The numbers of simulated cases for these types are

2 The simulated data is available at https://drive.google.com/drive/folders/1RnPxzjO1chO8NEtA3t
CCcnKdOuH6_Uhf?usp=sharing

154 A. Tsoury et al.

https://drive.google.com/drive/folders/1RnPxzjO1chO8NEtA3tCCcnKdOuH6_Uhf%3fusp%3dsharing
https://drive.google.com/drive/folders/1RnPxzjO1chO8NEtA3tCCcnKdOuH6_Uhf%3fusp%3dsharing

listed in Table 1. For each scenario type, we analyzed the expected differences between
standard and impact-aware fitness (column 5 in the table, where standard fitness is
marked as F, and impact-aware fitness – as IaF). Particularly, we expect that the
impact-aware fitness in fully handled scenarios to be higher than the standard fitness,
since more compensation activities may imply a greater discrepancy between the model
and the event log, thus a lower (standard) fitness. Impact-aware fitness, on the other
hand, will count those activities as response moves, whose cost is lower than that of log
moves. Following a similar line of thinking, the impact-aware fitness in not handled
scenarios will be lower than the standard fitness due to missing response activities. For
partially handled scenarios, the impact-aware fitness depends on the number of
compensation activities that have been performed vs. the number of missing responses.
For no required handling scenarios, we expect both types of fitness to be equal,
whereas for conformant scenarios, we expect them to be equal to 1. Finally, for random
noise scenarios, in which activities are performed in a non-conformant manner and
without reason, we cannot predict the differences between fitness values.

Following these types of scenarios, we simulated an event log of 70,805 events and
a related transaction log3 with 121,139 records. Overall, we simulated more than 7700
cases, whose distribution among the scenario types is also presented in Table 1.

5.2 Results

For simplicity we considered the cost of a response move in the impact-aware fitness as
0 and the cost of a missed response as 1.

Figure 2 presents a comparison of the standard and impact-aware fitness values for
the different scenario types (shown as different series). Points on the diagonal line are

Table 1. The simulated scenario types

Required
compensation

Scenario
type

Example in the sales
process

Expected fitness
differences

#
cases

With Fully
handled

• Increase ordered quantity
after payment

• Decrease ordered quantity
after payment

• Change shipping type
after payment

F < IaF 1141

Partially
handled

Unpredictable 826

Not handled F > IaF 903

Without No required
handling

• Update shipping address
after payment

• Update payment type
after payment

F = IaF 627

Conformant F = IaF 4173
Random
noise

• Activities are
added/skipped randomly

Unpredictable 40

3 The transaction log was simulated as an audit table, tracking all changes done to the database.

Impact-Aware Conformance Checking 155

cases where the two types of fitness are equal, points above are where impact-aware
fitness is higher than the standard fitness, and points below are where the opposite
holds. As can be seen, impact-aware fitness is higher than standard fitness in situations
where the deviations were fully or partially handled. In situations where the deviations
were not handled at all, the standard fitness is higher than the impact-aware fitness.

In summary, the obtained results confirm our expectations of how the different
scenario types would be assessed in terms of impact-aware fitness. They indicate that
impact-aware fitness better captures the extent to which consequences of deviations are
handled, as compared to standard fitness.

6 Related Work

Many conformance checking techniques have been proposed over the years, and they
mostly focused on control flow aspects. More recently, additional perspectives have
been addressed, including data, resources, and time (e.g., [7, 9, 11, 12]). In particular,
optimal alignments of a log and a model have been computed using cost functions that
consider deviations on these perspectives as well as the control-flow ones. For per-
forming analyses of this kind, an event log with the relevant data attributes is required
(i.e., the role of the activity executer or specific values of data attributes).

Our main interest is on studies which take a step toward an explanation of non-
conformance. In [8] the authors propose a conformance checking approach which uses
declarative models as a basis. Such models specify constraints over process execution
and allow flexibility in the expected behavior. Note that the constraints relate to the
control flow of the process. They may possibly reflect data-related dependencies among
activities, but this is not apparent and thus not considered explicitly. Attempting to
provide explanations of non-conformance, the work in [3] focuses on an automated
inference of a cost function from an event log as a basis for obtaining an optimal
alignment. The data perspective is captured as a process state. Compared to our
approach, the main limitation is in the need to rely on the data available in the event
log. This limitation does not exist in [4], where data logs (a version of transaction log)

Scenario Avg
F

Avg
IaF

0.77 0.84

0.8 0.83

0.85 0.81

0.87 0.87

1 1

0.9 0.9

Fig. 2. A comparison of the standard and impact aware fitness for the different scenarios

156 A. Tsoury et al.

and event logs connect the data and process perspectives. The authors propose an
algorithm to construct inter-level alignment by linking the data operations recorded in
the database log with activities in the control flow alignment. Furthermore, they use a
CRUD (create, read, update, delete) matrix, depicting the data operations that can be
performed by each activity in the process. As opposed to our approach, they do not
consider the impact of deviations on the expected behavior and thus responses to
deviations are not addressed. Another recent study which concerns explainability is [5].
In contrast to the common focus of conformance checking approaches (including ours),
the focus of that work is on the explainability of conformant traces. The authors suggest
metrics that can distinguish between conformant traces and indicate their differences.

To sum up, the literature in the field of conformance checking is rich and diverse.
However, the impact of deviations and their data operations on the expected behavior
has not been explicitly addressed so far, as is done in this paper. Such an analysis is
important when unexpected deviations during process execution occur.

7 Conclusion

This paper has presented a conformance checking approach which considers possible
changes in the expected behavior in response to unexpected changes and deviations
during process execution. Besides the technical solution we propose, the paper makes
two main contributions. First, it highlights the response and compensations that may
need to follow unexpected situations, which are manifested as a deviation or a log
move. Existing conformance checking techniques do not recognize this need and thus
compensation actions, which are normative in business terms, are considered as non-
conformant and result in poor conformance assessments (e.g., fitness values).

Second, it proposes a novel use of a combination of an event log and a transaction
log. Rather than relying on availability of data in the event log, our approach takes a
control flow-based alignment as a baseline, and only upon detection of a deviation, it
seeks its data reflection in the full transaction log. By this, two main advantages are
achieved: (1) overcoming the need to rely on a partial set of preselected data items that
may be available in the event log; (2) avoiding the complexity of dealing with the full
set of data throughout the alignment.

The suggested approach uses an impact analysis mechanism. Currently, such
mechanisms exist as a stand-alone system, whose availability may form a limitation for
the approach. Nevertheless, this can be further integrated into process mining envi-
ronments and serve for additional analyses. Another limitation is that the approach is
based on a given alignment; different alignment algorithms and cost functions may
yield different alignments, which may also affect our results. This limitation, however,
is inherent in the nature of alignments, which can be optimized but are not considered
absolute.

We note that the evaluation reported here used synthetic data, where both the event
log and the transaction log were simulated. Additional and extended evaluation of our
approach is still needed, using real-life event and transaction logs. In future work, we
seek to extend the approach to consider the data-flow along the activities, using a
transaction log that stores data values and their changes.

Impact-Aware Conformance Checking 157

Acknowledgment. This research is supported by the Israel Science Foundation under grant
agreements 856/13 and 669/17.

References

1. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.: Conformance checking using cost-
based fitness analysis. In: 2011 IEEE 15th International Enterprise Distributed Object
Computing Conference, pp. 55–64. IEEE (2011)

2. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.: Memory-efficient alignment of
observed and modeled behavior. BPM Center Report, 03-03 (2013)

3. Alizadeh, M., De Leoni, M., Zannone, N.: Constructing probable explanations of
nonconformity: a data-aware and history-based approach. In: 2015 IEEE Symposium Series
on Computational Intelligence, pp. 1358–1365. IEEE (2015)

4. Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.: Linking data and process
perspectives for conformance analysis. Comput. Secur. 73, 172–193 (2018)

5. Burattin, A., Guizzardi, G., Maggi, F.M., Montali, M.: Fifty shades of green: how
informative is a compliant process trace? In: Proceedings of CAiSE (2019)

6. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking: Relating
Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7

7. de Leoni, M., Van Der Aalst, W.M.: Aligning event logs and process models for multi-
perspective conformance checking: an approach based on integer linear programming. In:
Daniel, F., Wang, J., Weber, B. (eds.) Business Process Management, vol. 8094, pp. 113–
129. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_10

8. de Leoni, M., Maggi, F.M., van der Aalst, W.M.: An alignment-based framework to check
the conformance of declarative process models and to preprocess event-log data. Inf. Syst.
47, 258–277 (2015)

9. de Leoni, M., Van Der Aalst, W.M., Van Dongen, B.F.: Data-and resource-aware
conformance checking of business processes. In: Abramowicz, W., Kriksciuniene, D.,
Sakalauskas, V. (eds.) Business Information Systems. LNBIP, vol. 117, pp. 48–59. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30359-3_5

10. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.: Connecting databases with process
mining: a meta model and toolset. Softw. Syst. Model. 18, 1–39 (2018)

11. Ramezani Taghiabadi, E., Fahland, D., van Dongen, B.F., van der Aalst, W.M.P.: Diagnostic
information for compliance checking of temporal compliance requirements. In: Salinesi, C.,
Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 304–320. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_20

12. Taghiabadi, E.R., Gromov, V., Fahland, D., van der Aalst, W.M.P.: Compliance checking of
data-aware and resource-aware compliance requirements. In: Meersman, R., et al. (eds.)
OTM 2014. LNCS, vol. 8841, pp. 237–257. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45563-0_14

13. Tsoury, A., Soffer, P., Reinhartz-Berger, I.: A conceptual framework for supporting deep
exploration of business process behavior. In: Trujillo, J., et al. (eds.) Conceptual Modeling.
ER 2018. LNCS, vol. 11157, pp. 58–71. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00847-5_6

14. Tsoury, A., Soffer, P., Reinhartz-Berger, I.: Towards impact analysis of data in business
processes. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.) BPMDS 2016.
LNBIP, vol. 248, pp. 125–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39429-9_9

158 A. Tsoury et al.

http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-642-40176-3_10
http://dx.doi.org/10.1007/978-3-642-30359-3_5
http://dx.doi.org/10.1007/978-3-642-38709-8_20
http://dx.doi.org/10.1007/978-3-662-45563-0_14
http://dx.doi.org/10.1007/978-3-662-45563-0_14
http://dx.doi.org/10.1007/978-3-030-00847-5_6
http://dx.doi.org/10.1007/978-3-030-00847-5_6
http://dx.doi.org/10.1007/978-3-319-39429-9_9
http://dx.doi.org/10.1007/978-3-319-39429-9_9

15. Van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models
for conformance checking and performance analysis. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 2(2), 182–192 (2012)

16. Van Der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes, vol. 2. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

Impact-Aware Conformance Checking 159

http://dx.doi.org/10.1007/978-3-642-19345-3

	Impact-Aware Conformance Checking
	Abstract
	1 Introduction
	2 Running Example
	3 Preliminaries and Premises
	4 The Approach
	4.1 Expected Behavior After Initial Deviation
	4.2 Impact-Aware Alignment and Fitness

	5 Evaluation
	5.1 Evaluation Design
	5.2 Results

	6 Related Work
	7 Conclusion
	Acknowledgment
	References

