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Abstract. This paper is devoted to the rotor angular velocity estima-
tion of the permanent-magnet synchronous motor (PMSM). It is an
actual problem, for example, in sensorless control. We consider a classi-
cal, two-phase model in the stator frame of the unsaturated, non-salient
PMSM in the state-space representation. All parameters of the model
except the stator windings resistance and rotor inertia are assumed to
be known. On the first step, we find the relation between measured sig-
nals and angular velocity and excluding the unknown parameters of the
motor. This relation is simplified using properties of the measured signals
and represented as the first-order regression model, where the unknown
parameter is the angular velocity. On the next step, we propose the esti-
mation scheme, which is based on the gradient descent method. The
efficiency is illustrated through a set of numerical simulations.

Keywords: Sensorless control · Permanent magnet synchronous
motor · Parameter identification · Real-time

1 Introduction

The rotor angular velocity estimate can be used in the control loop instead
of the measured value, for sensor fault detection or as a reserve system. It is
actively studied as part of sensorless (self-sensing) algorithms, where mechanical
variables, such position and speed, estimate by currents and voltages measure-
ments [8].

Sensorless control has several benefits. Transducers mounting requires
additional space for sensing element and wiring. High-resolution sensors are
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usually expensive. Estimators and observers can be used to decrease the cost
of the drive system and increase the failure tolerance.

In this paper, the speed estimation for a permanent-magnet synchronous
motor (PMSM) is considered. The overview of the main approaches is presented
in [2]. We mention the following results. The observer-based position estimator is
described in [4,5]. The main problem of such methods is performance degradation
at low- and zero-speed. Methods presented in [9,10] use high-frequency signal
injection, which improves performance for the low speeds. However, it requires
additional hardware effort and cannot be used on the speeds near the maximum.

This work uses the relation between the rotor angular velocity and currents
and voltages, which is described in [1]. In the mentioned paper the third order
regression model was obtained, where parameters depend on the rotor angu-
lar velocity. In this paper, the order is decreased to one. All parameters of the
mathematical model are assumed to be known except the stator windings resis-
tance and rotor inertia. Although resistance can be measured, it depends on the
temperature and changes over operating time.

2 Problem Statement

Consider a classical, two-phase αβ model of the unsaturated, non-salient, PMSM
given by [6] and [8]

λ̇(t) = υ(t) − Ri(t), (1)
jω̇(t) = −fω(t) + τe(t) − τl(t), (2)

θ̇(t) = ω(t), (3)

where λ(t) = [λ1(t)λ2(t)]T ∈ R
2 is the stator flux, i(t) = [i1(t) i2(t)]T ∈ R

2

are the currents, υ(t) = [υ1(t) υ2(t)]T ∈ R
2 are the voltages, R is the stator

winding resistance, j > 0 is the rotor inertia, θ(t) ∈ S = [0, 2π) is the rotor
phase, ω(t) ∈ R is the mechanical angular velocity, f ≥ 0 is the viscous friction
coefficient, τl(t) ∈ R is the load torque, τe(t) ∈ R is the torque of electrical
origin.

The state-space representation of (1)–(3) has the following form [1]

L
di(t)
dt

= −Ri(t) − λmω(t)C ′(θ) + υ(t), (4)

jω̇(t) = −fω(t) + λmiT (t)C ′(θ) − τl(t), (5)

θ̇(t) = ω(t), (6)

where L ∈ R+ is the stator inductance, λm is the constant flux generated by
permanent magnets,

C ′(θ) =
[−np sin(npθ)

np cos(npθ)

]
= npJC(θ) = dC/dθ, (7)
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J ∈ R
2×2 is the rotation matrix

J =
[
0 −1
1 0

]
, C(θ) =

[
cos(npθ)
sin(npθ)

]
, (8)

np ∈ N is the number of pole pairs.
The objective is to find the estimate ω̂(t) of the constant angular velocity ω

that provides exponential convergence of the error ω̃(t) = ω − ω̂(t) to zero, i.e.
there exist positive constants C and a such that

‖ω̃(t)‖ ≤ Ce−at, (9)

‖·‖ is some norm of the vector, under the following assumptions.

Assumption 1. All model (1)–(2) parameters except the stator winding resis-
tance R and the rotor inertia j are known.

Assumption 2. The currents i(t) and voltages υ(t) are measured.

Assumption 3. The rotor angular velocity ω(t) is constant.

The Assumption 2 is satisfied in the usual operation mode. In some cases υ(t)
are not measured directly, but estimated with sufficiently high accuracy.

3 Main Result

Following [1] consider the equation based on (4)

Ri(t) + L
di(t)
dt

− υ(t) = −λmωC ′(θ). (10)

Applying the filter as proposed in [7]

(·)f =
1

Tp + 1
(·), (11)

where p = d/dt and T ∈ R+ is a design parameter, to (10) gives

R
1

Tp + 1
i(t) + L

p

Tp + 1
i(t) − 1

Tp + 1
υ(t) = −λmω

1
Tp + 1

C ′(θ). (12)

Substituting vectors components yields

Rζ1(t) + ξ1(t) = μ sin(npωt + α) + ε1(t), (13)
Rζ2(t) + ξ2(t) = −μ cos(npωt + α) + ε2(t), (14)
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where ε1(t) and ε2(t) are exponentially decaying terms, because filter (11) is
stable,

ζ1(t) =
1

Tp + 1
i1(t), (15)

ξ1(t) = L
p

Tp + 1
i1(t) − 1

Tp + 1
υ1(t), (16)

ζ2(t) =
1

Tp + 1
i2(t), (17)

ξ2(t) = L
p

Tp + 1
i2(t) − 1

Tp + 1
υ2(t), (18)

μ = λmnpω/
√

1 + n2
pω

2T 2, (19)

α = θ(0) − arctan(npωT ), (20)

where μ ∈ R, α ∈ R are transfer coefficient and phase shift respectively for (11)
and sinusoidal signal with frequency npω.

Let us rewrite ζ1(t), ζ2(t) ξ1(t), ξ2(t) explicitly

ζ1(t) =
ai√

T 2ω2n2
p + 1

cos (npωt + ϕi − α̃)

=
ai√

T 2ω2n2
p + 1

(
cos (npωt + ϕi)b̃ + sin (npωt + ϕi)ã

)

=
1√

T 2ω2n2
p + 1

(
i1(t)b̃ + i2(t)ã

)
, (21)

ζ2(t) =
1√

T 2ω2n2
p + 1

(
i2(t)b̃ − i1(t)ã

)
, (22)

ξ1(t) =
Laiωnp√

T 2ω2n2
p + 1

cos
(
npωt + ϕi +

π

2
− α̃

)

− av√
T 2ω2n2

p + 1
cos (npωt − α̃)

=
Lωnp√

T 2ω2n2
p + 1

(
i1ã − i2b̃

)
− 1√

T 2ω2n2
p + 1

(
υ1b̃ + υ2ã

)
, (23)

ξ2(t) =
Lωnp√

T 2ω2n2
p + 1

(
i2ã + i1b̃

)
− 1√

T 2ω2n2
p + 1

(
υ2b̃ − υ1ã

)
, (24)

where ã = sin (arctan(npωT )), b̃ = cos (arctan(npωT )), α̃ = arctan(npωT ).
Excluding R from (13)–(14) and neglecting the exponentially decaying terms

we obtain

ξ1(t)ζ2(t) − ξ2(t)ζ1(t) = μζ2(t) sin(npωt + α) + μζ1(t) cos(npωt + α), (25)
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where ξ1(t)ζ2(t) − ξ2(t)ζ1(t), ζ1(t), and ζ2(t) are measured signals, μ and npω
are unknown parameters.

Remark 1. The stator windings inductance can be excluded form (13)–(14)
instead of R.

3.1 Angular Velocity Estimation

This section aims to find a linear regression model with constant parameters
depending on the unknown angular velocity ω.

Substituting (21)–(24) into the left part of (25) yields

ξ1(t)ζ2(t) − ξ2(t)ζ1(t) =
Lωnp

T 2ω2n2
p + 1

(−i21 − i22
)

+
1

T 2ω2n2
p + 1

(υ2i1 − υ1i2)

= −
(

a2
i Lωnp + aiaυ sin φi

n2
pω

2T 2 + 1

)
, (26)

where φi is the phase current shift, ai and aυ are currents and voltages ampli-
tudes respectively

ai =
√

i21 + i22, (27)

aυ =
√

υ2
1 + υ2

2 , (28)

sin φi =
i2υ1 − i1υ2

aiaυ
. (29)

Substituting (21)–(24) into the right part of (25) gives

μζ2(t) sin(npωt + α) + μζ1(t) cos(npωt + α)

=
μ√

T 2ω2n2
p + 1

[(
i2b̃ − i1ã

)
sin (npωt − α̃)

+
(
i1b̃ + i2ã

)
cos (npωt − α̃)

]

=
μ√

T 2ω2n2
p + 1

[i1 cos (npωt) + i2 sin (npωt)]

= − λmnpωai

T 2ω2n2
p + 1

sin φi. (30)

Combining (26) and (30) we obtain

−a2
i Lωnp + aiaυ sin φi

n2
pω

2T 2 + 1
= − λmnpωai

T 2ω2n2
p + 1

sin φi, (31)

av sin φi = ωnp (λm sin φi − aiL) . (32)



256 A. O. Vediakova and A. A. Vedyakov

The Eq. (31) can be represented in the linear regression form

ψ(t) = θϕ(t), (33)

where ψ(t) = av sin φi is the regressand, θ = ω is the unknown parameter,
ϕ(t) = np (λm sin φi − aiL) is the regressor.

Various approaches can be used to estimate the unknown parameter θ. We
propose the estimation algorithm, which is based on the standard gradient
method [3]:

˙̂
θ(t) = kϕ(t)

(
ψ(t) − θ̂(t)ϕ(t)

)
, (34)

where θ̂(t) is the estimate of the parameter θ, k ∈ R+ is a constant gain.
The estimation converges to zero exponentially fast∥∥∥θ − θ̂(t)

∥∥∥ ≤ C1e
−ρ1t, (35)

where C1 and ρ1 are some positive constants, if the following conditions are
satisfied [3]:

1. The regressor ϕ(t) is bounded.
2. There exist the positive constant D, such that

∫ t

0

ϕ2(τ)dτ ≥ Dt. (36)

The regressor in (33) is constant and bounded. Inequality (36) holds for
ϕ(t) �≡ 0. The objective (9) is achieved.

4 Numerical Examples

In this section, we present simulation results that illustrate the efficiency of the
proposed estimation algorithm. All simulations have been performed in Math-
works MATLAB Simulink.

The model (4)–(6) parameters, which was used in the simulation, are shown
in the Table 1.

Open-loop controller was used in the all experiments

υ1(t) = A(t) cos(ξ(t)t), (37)
υ2(t) = A(t) sin(ξ(t)t), (38)

where

A(t) =
λ1λ2

(p + λ1)(p + λ2)
A0(t), (39)

ξ(t) =
λ1λ2

(p + λ1)(p + λ2)
ξ0(t), (40)
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Table 1. Parameters of the motor FAST1M6030 and external load.

Parameter (units) Value

Inductance L (mH) 3.4

Resistance R (Ω) 0.47

Rotor inertia j (kg m2) 1.6 ∗ 10−3

Pairs of poles np (–) 3

Magnetic flux λm (Wb) 0.4

Viscous friction coefficient f (N·m s/rad) 0.001

External load τl (N·m) 0.01

A(t) = 60, λ1 and λ2 are the tunable parameters; A0(t) and ξ0(t) are the desired
amplitude and frequency of the voltage signals in steady state.

The experimental results for piecewise constant angular velocity (in the
steady state), which have step change at time 200 s, are shown in Fig. 1. The
following form of ξ0(t) was used

ξ0(t) =

{
60, 0 ≤ t < 200s,

66, 200s ≤ t.
(41)

The estimation gain k was equal to 20. In this case, the estimation error ω̃(t)
converges to zero in steady state.

In the second case, estimation of the time-varying rotor speed is investigated.
The control signals were produced using

ξ0(t) = 60 + ζ0(t), (42)

ζ0(t) =

{
0, 0 ≤ t < 50s,

0.06 sin(0.2t), 50s ≤ t.
(43)

To increase performance of the estimator, the value of k was increased up to 50.
The behaviours of the angular velocity signal ω(t), estimate ω̂(t), and estimation
error ω(t) − ω̂(t) are depicted in Fig. 2. There is a small estimation error, which
depends on properties of the rotor speed and the estimator performance.

In Fig. 3 the behaviour of the estimate based on the corrupted by exponen-
tially correlated noise δ(t) current signal i(t) is illustrated. The noise signal δ(t)
was modelled by a shaping filter W (s) = 0.005/(0.00004s2 + 0.0006s + 1) with
frequency-bounded input white noise of power N = 0.1. Simulation parameters
were the following

ξ0(t) = 20, k = 5. (44)
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Fig. 1. The angular velocity, estimation, and estimation error
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Fig. 2. The angular velocity, estimation, and estimation error for the time-varying
rotor speed

In the case of noised measurements, the estimate ω̂(t) does not converge to ω(t)
and is also corrupted by noise. However, it is bounded.
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Fig. 3. The angular velocity, estimation, and estimation error for the case with additive
noise in the measured signal i(t)

5 Conclusion

The simplified estimator for the PMSM rotor angular velocity based on currents
and voltages measurements is described. All parameters of the drive are assumed
to be known except the stator windings resistance and the rotor inertia.

For the rotation with constant angular velocity is proved that the velocity
estimation error converges to zero exponentially fast. The estimator can handle
cases with time-varying rotation frequency and noises in the measured signals.
The estimation error in such cases is bounded, but don’t converge to zero.

For the known stator windings resistance and unknown inductance the esti-
mator can be accordingly modified. From Eqs. (13)–(14) one or another param-
eter can be excluded.

Future investigations will be devoted to the angular velocity estimation for
the case with unknown permanent magnets flux constant λm and the stator
windings inductance L. Also, time-varying rotation frequency will be considered.
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