
On Mathematical Visualization
in Education

Alexey Karpov1 , Vladimir Klepov2 , and Alexey Nikitin3,4(B)

1 University of Bonn, Bonn, Germany
karpovad@yandex.ru

2 Yandex, Moscow, Russia
V.klepov@gmail.com

3 Lomonosov Moscow State University, Moscow, Russia
nikitin@cs.msu.ru

4 National Research University Higher School of Economics, Moscow, Russia

Abstract. This article treats the use of modern information technolo-
gies in the classroom educational process. It emphasizes the need to
combine symbolic and visual mathematics, describes the problems asso-
ciated with this issue, provides a review of the existing systems and a list
of the requirements a modern mathematical visualization system must
meet. The article is conceived as a manifesto for the use of mathemat-
ical visualization in education. The article then goes on to describe the
developments of the authors’ research group. The functionality of visual-
math.ru website is described. This resource contains an ample collection
of visual and text modules for teachers to create presentations based
largely on visual materials. The most important part of the article is
the description of fast and powerful JavaScript visulatization libraries
developed specifically for the project: Skeleton and Grafar. The former
is designed to display two-dimensional graphs, while the latter visualizes
three-dimensional objects with transparency and illumination effects.
Both libraries are capable of processing large element sets in near-real
time. In conclusion, selected examples of visualizations created using the
libraries use are provided, including the ones used in courses on mathe-
matical analysis and analytical geometry.

Keywords: Information technologies in the education · JavaScript
graphics libraries · Mathematical analysis

1 Motivation

1.1 Images in Mathematics

Images in mathematics bridge the gap between symbolism and imagination.
David Hilbert [3] notes the conflict between the two trends: mathematicians
strive for a logically consistent symbolic abstraction while trying to maintain
intuitive understanding of a problem. In ancient India geometric conjectures
c© Springer Nature Switzerland AG 2020
V. Sukhomlin and E. Zubareva (Eds.): Convergent 2018, CCIS 1140, pp. 11–27, 2020.
https://doi.org/10.1007/978-3-030-37436-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37436-5_2&domain=pdf
http://orcid.org/0000-0002-6812-155X
http://orcid.org/0000-0003-1827-5208
http://orcid.org/0000-0002-1401-6682
https://doi.org/10.1007/978-3-030-37436-5_2

12 A. Karpov et al.

were proven in a very peculiar manner. Having formulated the premise, the
mathematician plotted the shapes necessary for the proof, provided brief com-
ments, and wrote “Watch!” afterwards. It was assumed that the person willing to
understand the problem at hand can do so himself by studying the images pro-
vided, with no further explanation [7]. As an example, we include a plot (Fig. 1)
attributed to Ganesha, 16th century [30].

Fig. 1. An illustrated explanation of the area equality between a circle and a rectangle
with sides equal to the radius and the half-arc length.

1.2 Symbolic Mathematics

However, after that period the dominant method in mathematics began to
change. René Descartes’ works on algebraic geometry have turned mathematics
into a primarily symbolic science. Images were reduced to guesswork and exam-
ple aids, losing the role of the primary means of proof. By the end of the 19th
century the discovery and further studies of the more abstract objects, such as
abstract algebras and higher-dimensional spaces, had made mathematics even
less intuitive. Nowadays the less-formal studies would not be considered real
mathematics.

Symbolic description of mathematical objects is precise but it takes a lot
of training to gain intuition into symbolic manipulations. Scientists can easily
lose track of the real-world problem they are solving and come to an absurd
conclusion. The key skill of an applied mathematician is correlating the abstrac-
tion with the reality. Even in pure mathematics the studies of abstract concepts
begin by studying special cases that are easy to understand [2,5]. A famous Rus-
sian mathematician and educator Vladimir Arnold referred to mathematics as
“experimental science” [11]. Visualization can help resolve these issues. Science
is easier and more humane with images. A layman unfamiliar with the notation
can readily see similarities between real-world objects and charts, which is a key
to introducing younger students to advanced mathematical concepts.

In Sect. 2.1 we highlight the importance of computer technologies in educa-
tion. In Sects. 2.2, 2.3 and 3.1 we describe the current state of interactive images

On Mathematical Visualization in Education 13

in classical mathematical education. At the same time, we introduce technical
constraints on an interactive system suitable for educational use. A list of pop-
ular educational tools that could fit these requirements is provided in Sect. 3.2.
After that, we describe our own technical developments in Sects. 3.3 and 3.5.
Finally, we show some examples created with these libraries.

2 Visualization in Education

2.1 Computer Technologies in Pedagogy

Computers are responsible for several effects that would transform education in
the years to come. Computer Algebra Systems (CAS) and Automated Theorem
Proving (APT) software are already capable of solving well formalized problems
intractable to humans in an efficient and correct manner. Solutions to numerous
problems not solvable symbolically (most prominently, differential equations,
including scientific and engineering applications) can be approximated using
numerical computing. Future mathematicians need not be trained to carry out
computations according to a predefined algorithm with no errors — computers
are better suited for such tasks. The key skill of a mathematician working in
the industry is to formalize applied problems and to validate the sanity of the
computer-produced solution. Mathematical education can no longer ignore these
trends, and therefore it needs visualization.

On the other hand, computers can tackle the task of visualizing complex
objects with ease. Contemporary scientists process and analyze billions of obser-
vations and publish their findings in a comprehensible format. A study scale
this wide was unimaginable even a couple of decades ago. No more are math-
ematicians bound by the rough, static two-dimensional blackboard. In [10] the
new wave of interest to mathematical imaging is referred to as the “visualization
renaissance”. Another advantage of computer graphics is its inherent interac-
tivity. The users can better understand the model at hand while altering the
parameters and watching the change induced on the image.

Mathematical visualization still has a lot of ideas to borrow from several
connected fields of study. Information graphics is a well-developed and popu-
lar topic of study with a high volume of literature summarizing and describ-
ing best practices (e.g. the works of Edward Tufte, [6]). Theory of automated
visualization is largely confined to proprietary technologies but some academic
works are available and we can expect to acquire further material as the patents
expire. Finally, software developers and psychologists have advanced the the-
ory of human-computer interaction [1,4] and there is no shortage of the most
experimental concepts, such as the use of augmented/virtual reality.

2.2 Problem Statement

In this section we approach to the realm of school and university education.
Currently, students and children are dominantly visual learners. However, visual

14 A. Karpov et al.

materials are scarce in classrooms, mostly due to technical and methodologi-
cal difficulties. In the best case, blackboard sketches or presentations are used.
Movement is usually displayed schematically. We believe that using computer
technologies can greatly boost the students’ understanding of the material and
must therefore be pursued by all means.

Several libraries of visual materials exist worldwide such as MIT Open
Course Ware , [12], The d’Arbeloff Interactive Mathematics Project ,
[13] etc. Powerful information systems such as Wolfram Mathematica , [14]
allow their users to create new materials themselves. However, the primary focus
of our work is lecture use, and the described solutions are require adaptation for
such cases. Mathematics has a wide array of remarkable pedagogical findings,
scattered throughout the diverse courses, with powerful geometrical ideas beside
them. Unfortunately, the vast majority of these has not been illustrated, while
the rest can be improvement hugely by uncapping the potential of computed-
driven interactive visualization.

2.3 An Interactive System Concept

Our task is to create a framework that allows students understand the educa-
tional material deeper. The following diagram shows the current state of the
education process:

listen / read −→ learn the theorem and its proof −→
−→ memorize or remember.

After the listening/read step, we suggest that the students should look at
visual explanation of theorems and statements or even to interact with these
images. It helps a person understand the subject better and positively impacts
the effectiveness and the duration of remembering the educational material.

The importance and the quality of illustrations are also emphasized in mod-
ern mathematical textbooks distributed by OpenStax, [17].

A large library of so-called visual modules shall be developed soon, covering
at least classical mathematical courses. Each module must include well-arranged
and relevant text.

In addition, there must be a convenient and easy-to-use web platform storing
the visual modules library. The platform is supposed to be used by both students
and lecturers. The lecturers should have access to the library that can be used
to construct a presentation for coming lectures. Later the presentation is to be
demonstrated during a class using the lecturer’s computer or mobile device.

At the same time all students with student accounts log in to the platform
using their mobile devices, find the lecturer in the list, and connect to the current
lecture broadcast. The state of the web page on a student’s device is synchronized
with the lecturer’s page. The lecturer comments the slides content and proves
the theorems/statements, while also showing the visual modules integrated into
the lecture.

On Mathematical Visualization in Education 15

The lecturer is able to ask questions or conduct tests during the lecture via
the platform. In a short time, they can see the statistics of answers including the
number of participants and the number of people who picked a specific option.
These interactive tests help lecturers get an instant feedback and thus adjust
the course effectively.

3 The Design Requirements and an Overview of the
Existing Solutions

3.1 What Should a Visualization System Be Like

A good mathematical visualiazation system bridges the gap between the logic
and the intuition. Developing such a system is an inherently interdisciplinary
endeavor, taking cues from formal systems, numerical methods, programming,
and visual design. It is very rare for a single person to be acquainted with all of
these areas, let alone be proficient in these. This calls for a higher-dimensional
programming interface that is easily usable by people trained in mathematics
with sensible visual defaults, and encouraging simple programming.

The system should make use of its underlying media, the computer. To help
the users explore complex mathematical objects, the system should not only
be interactive but also function in real time. Another use case computers excel
at is creating three-dimensional graphics. As such, computer adds two usable
dimensions to a printed graphic: one spatial and one temporal. It will take us, the
scientific community, a lot of time to unleash the full potential of this freedom.

The use of the system in education adds further design constraints. As the
education should be free and generally available, the system should be cross-
platform and accessible, with no major functional deficiencies, on low-end and
mobile devices.

To sum up, here is a brief list of design constraints along with the relevant
solutions:

• ease of use: high-level interface with sensible defaults;
• availability: a JavaScript program works across all major devices, aided by

the browser runtime;
• fast 2D graphics: rely on Scalable Vector Graphics (SVG) [35] for interop-

erability with standard web technologies and ease of distribution;
• 3D graphics: WebGL technology. Compatibility with legacy browsers should

be provided via canvas or SVG fallbacks [36,37];
• interactivity: efficient computational models.

3.2 Overview of the Existing Systems

Major computer mathematical systems support plotting out of the box. Maple
[15], MatLab [16], Mathematica [14] are powerful, widely adopted packages. How-
ever, their use in educational visualization is limited: even the special educational
licenses are expensive, mobile device support is lacking, and the users need to

16 A. Karpov et al.

learn a special programing language. Open-source alternatives, such as R [18],
Octave [19], Julia [20], only solve the license cost issue.

Mathematical libraries for general-purpose programming languages offer a
more pragmatic alternative. SciPy [21] and matplotlib [22] have emerged as
the go-to data analysis tools following the increased popularity of python as a
scientific computing language. While this is great step forward, python programs
are still not easily distributed, especially for mobile devices. Lately there has
been a lot of enthusiasm around combining a python back-end with the browser
interface using Jupyter and JavaScript extensions such as Bokeh but this solution
still offers only limited interactivity.

Distributing visualizations as images and videos is adequate for some cases
but offers little to no interactivity to the end user. Computers are capable of
much more. Finally, these visualizations still need to be generated somehow —
presumably using one of the aforementioned mathematical packages.

The golden standard of web-based visualization is set by d3.js [23], the eighth
most starred library on GitHub as of September 2018. The library is built
using JavaScript programming language and conventional web technologies. This
enables the end users to freely interact with the data looking for interesting pat-
ters. While d3 could be our library of choice, it still lacks in certain aspects.
The system is built on vector graphics, and displaying three-dimensional objects
is not possible without serious rework. Approximating algebraic objects with
datasets is a separate complex task not handled by d3.

There are several online systems for mathematical visualization. Desmos
offers no 3D capabilites. GraphyCalc [24] only supports explicit functions of
two variables. Wolfram Alpha [25] delegates computations and rendering to a
server back-end, limiting real-time client interactivity. MathBox is, as of 2018,
still an early prototype with unclear development status. Finally, GeoGebra is
the system most suitable for our use case but the 3D support appears to be an
afterthought.

As shown in this section, the solutions available do not meet our design
constraints. In the following sections we go on to describe our own solutions to
the problem — JavaScript libraries Skeleton and Grafar Sect. 3.5, suitable for
2D and 3D mathematical visualization, respectively.

3.3 VisualMath.ru Web Application

A discussion of mathematical visualization is inseparable from the educational
use cases. As stated in Sect. 2.3, we keep in mind the typical scenario we have all
participated in. The students attend the lecture where the lecturer walks them
through the necessary theory, supporting his arguments with illustrations.

Our team has already developed a functional prototype of the system
described in [46]. It is a conventional client-server application consisting of a
REST API and a single page application (SPA). We have chosen the SPA app-
roach because it is well suited for the massively interactive concepts described
in Sect. 2.3.

On Mathematical Visualization in Education 17

Apart from our custom-made solutions, the application relies heavily on
KaTeX for client-side TeX rendering [27]. While omitting some of the more
advanced TeX features, it offers an improved performance over MathJax, [28,29].
This library also powers the popular online learning platform, Khan Academy.

Developing a content management interface for lecturers is another high-
priority goal of our project. Mathematics professors are often conservative when
it comes to technology. Few of us can be truly called open minded. To capture
the attention of this audience, we need to put a lot of effort into the ease-of-
use. The concept is fairly simple: a lecture is a board, onto which a lecturer
places colored cubes, each representing some content module. The content types
supported include but are not limited to, illustrations, theoretical blocks, tests.
Having assembled the lecture, the content editor proceeds to edit the modules.
Importing educational content from the editor’s computer is also supported.

The web application prototype implements many of the ideas described. The
users can create and edit lectures, show the visual modules to the audience, and
run tests to evaluate the students’ understanding of the topic (see Fig. 2).

Fig. 2. Creating a lecture on visualmath.ru

For even further immersion of the students, our team has developed an
Android application that can be used to view the lectures [38]. The iOS appli-
cation is currently under development.

3.4 Grafar, a Library for Three-Dimensional Interactive
Visualization

Grafar is a JavaScript library for creating interactive three-dimensional visual-
ization developed specifically for VisualMath.ru project. As opposed to Wolfram,

18 A. Karpov et al.

the library works in a browser with no proprietary plug-ins. Grafar is also among
the fastest visualization libraries: the tests with computing explicitly defined
surfaces over 1000 × 1000 grid have shown usable performance of 30 frames per
second.

Grafar is designed from the ground up for mathematical visualization, fea-
turing a high-level interface for working with analytical objects. Instead of gen-
erating the dataset to be displayed ad-hoc, the developers define the values of
free variables along with their mappings. This model encourages very concise
and readable code:

const x = grafar.range(−1, 1, 100).select(); const y = grafar.range(−1, 1,
100).select(); const z = grafar.map([x, y], (x, y) => Math.cos(x) * Math.sin(y));
grafar.pin([x, y, z], surfContainer);

The system relies on a three-step conceptual model of visualization:

• Find an algorithmic form of the objects, compile functions for efficient use on
numeric arrays;

• Sample the free variables and find a finite set of points that reasonably approx-
imate the object;

• Render the dataset, respecting inter-point topology.

Theoretically, any visualization library (d3, highcharts, echarts) can be used
for the rendering step through custom bindings. However, the problem with
plugging generic statistical visualization systems is their focus on aggregated
representations over performance. While such preprocessing makes sense when
helping users make sens of massive statistical datasets, it is useless for algebraic
objects. The primary mathematical use-case is displaying thousands of points
moving unpredictably every frame. The existing SVG-based libraries are simply
inadequate for this scenario.

Numerical computing, even in the simplest form of applying a complex func-
tion over a set of points is not a classical web-development problem either. Gra-
far uses a concept called Reactive Programming (RP) to efficient implement
real-time updates. This paradigm has made its way into mainstream front-end
programming lately: the massively popular Vue.js framework [31] uses pull-based
RP (the submodel Grafar also uses), while the more experimental cycle.js [33]
pushes further the original electrical engineering metaphor. RxJS [32] is the go-
to library for state management in Angular applications, with versions for all the
major languages developed by Microsoft. While handling complex systems with
interconnected dependencies, reactive programming still manages to be easy for
the less-technical users: this is the model used by Microsoft Excel to recompute
the formulas on source cell updates. Architects employ a visual programming
software, Grasshopper, for designing procedural buildings.

Reactive Programming is an umbrella term for programming techniques using
explicit Data Flow Graph (DFG). The nodes of such a graph replace the con-
ventional variables, with the edges connecting the variables that depend on one
another. This allows for reliable and efficient updates of all the dependent vari-
ables when a free variable changes — we locate the node’s children and recom-
pute their values, repeating recursively. Not only does this avoid unnecessary

On Mathematical Visualization in Education 19

recomputation of those variables that do not depend on the changed one but
it also allows dead code elimination and automatic parallelization. Finally, as
a declarative technique, reactive programming is easy to understand for those
already familiar with mathematical notation.

Unfortunately, the existing JavaScript libraries for reactive computations
can not be readily used for data volumes of the magnitude encountered rou-
tinely in mathematical visualization and numerical computing. Connecting the
SciJS ecosystem developed for numerical computing with reactive programming
presents an exciting challenge for the open source community, if only too spe-
cialized for mainstream adoption.

Finally, Grafar uses WebGL for fast rendering. This technology allows the
browser to access the GPU, unleashing the power of massively parallel compu-
tations to update the image in real time. Vector graphics used by d3 can not be
used to display a large number of objects, while with the native canvas API we
are still stuck in the single browser thread for projecting the multidimensional
data onto the viewport. There is a multitude of specialized WebGL libraries,
most prominent in cartography — MapboxGL.JS and deck.gl are two popular
examples.

While the mathematical and scientific imaging possesses a distinctive visual
style setting it apart from the commercial information graphics, this more often
than not arises unintentionally from the lack of care. Scientists do not assign sig-
nificant weight to matters of “aesthetics”, often falling back to the default values
of their chosen plotting library and validating this behavior by their fellow aca-
demics. However, the right choices of representations and color maps can make
all the difference. Grafar can be used to display higher-dimensional objects in
various ways: through small multiples, parallel coordinates or coloring. Optimal
color maps can be generated by standalone packages, yielding more attractive
and comprehensible results.

Thanks to its massive performance and layered architecture, Grafar can also
be used for generic data visualization tasks. Discrete mathematical objects, such
as digital signal processing or graph theory, are not out of reach either. Datasets
with hundreds of thousands observations can be displayed with a usable frame
rate even on lower-end mobile devices.

A stable version of Grafar is distributed through npm, the de-facto pack-
age manager of JavaScrtipt development. Source code, written in TypeScript, is
available on github, [34].

3.5 Skeleton

Another part of our work is the library for two dimensional visualization called
Skeleton. It is a foundation for many of our 2D programs. The library implements
our other idea — state synchronization between the lecturer’s computer and the
student’s one. If a lecturer changes coordinates of a graph, moves some elements
or interacts with buttons and sliders then exactly the same changes happen
on computers (or smartphones) of students simultaneously. The core concept of
Skeleton library is being an easy-to-use tool to build mathematical visualizations

20 A. Karpov et al.

Fig. 3. An example of Skeleton-based program drawing sin(1/x) function.

(e.g. Fig. 3). Later we realized that the library shows itself best when we create
visualization of calculus objects and theorems. Each graph object has its own
API making it simple to change the state. As a result, it allows to create animated
graphs easily [41]. The synchronization is done by WebSocket browser API [43].
This requires the state of each object, including the graph itself, to be serializable
to string. However, the library is not tied to any transport and WebSocket can
be replaced with similar tools, both browser-native and libraries, transferring
data from server to client in real time. For example, it can be WebRTC which
transfers data peer-to-peer [44,45].

4 Results and Conclusion

At the end of the article we provide some example visualizations from the Visual-
Math.ru project. Most of them are from the calculus course. Because of our
teaching background, this area is better represented in our project than the
other university and school courses.

In the first part, there are images of 2D library Skeleton. For some of the
images we also comment on rendering time if there is a large number of elements.
We used a laptop with Intel Core i5 2.3GHz, 8Gb RAM. This setup is typically
cost less then 1000$ and usually available for many laptop owners.

In the second part we provide examples of Grafar visualizations. One of the
examples contains a comparison with a similar image created in MathWorks’
MATLAB.

On Mathematical Visualization in Education 21

Fig. 4. The sequence xn = sinn in logarithmic scale.

4.1 Examples of Skeleton Programs

The first program shows the sequence xn = sin(n) in logarithmic scale. The
image shows the first 50000 elements of the sequence. The rendering time was
1232ms.

The image (see Fig. 4) is an example of a sequence having the closed interval
[−1, 1] as a set of subsequential limits. In our opinion, the image can help to see
this fact clearly.

The next object is a slightly modified Thomae’s function in the open interval
(0, 1) also known as Riemann function or popcorn function (see Fig. 5).

R(x) =

{
(−1)n

n , x = m
n ∈ Q,

0, x ∈ R \ Q.
(1)

Fig. 5. Thomae’s function in the open interval (0, 1).

The Fig. 5 shows that the function is continuous in every irrational point and
discontinuous in every rational point. Also it has a supremum and infimum for
every interval of the real axis.

22 A. Karpov et al.

A modified Tomae’s function is:

R̃(x) =

{
n, x = m

n ∈ Q,

0, x ∈ R \ Q.
(2)

The new function (see Fig. 6) is notable because it is finite but not bounded on
any numeric interval. Even a geometrically intuitive person can hardly imagine
the appearance of the function. The figure shows all the points in the interval
(0, 1) with the denominator not exceeding 1000. The rendering time was 5005ms.

Fig. 6. The modified Tomae’s function in (0, 1).

The last figure (see Fig. 7) was captured in the program demonstrating a
property of differentiable functions to be linear close to differentiable points.
The figure also shows the control elements (dropdowns and buttons) that a
lecturer or a student can use to see the property in an animation.

Unfortunately, the animations cannot be shown in this article. You can find
some of the animations on a web site «A Programmer Library». For example,
our work «9 GIFs on numerical sequences» [40,41].

On Mathematical Visualization in Education 23

Fig. 7. The function y = x · sin 1
x

is not differentiable at x = 0.

4.2 Grafar Examples

The figure below shows a volume bounded by the following surfaces:

V = {(x, y, z) | x ≥| z |

x = z2 + x2,

2x = z2 + x2,

0 ≤ y ≤ 3 − z2 − x2}
The left picture of the Fig. 8 shows the domain and the bounding surfaces.

The right picture is a projection of the cut orthogonal to the axis Oy to the xOz
plane. The program allows to move the cut, the projection. The bounding lines
change in real rime.

The next example visualizes the method of Lagrange multipliers. The prob-
lem is to find a local maximum of a function f(x, y) = 2x + 3y subject to a
condition x2 + y2 = 1. The function describes a plane and the condition is a
cylinder.

The Lagrange functions for this problem are paraboloids of revolution
(depending on the multiplier’s sign upward- or downward-facing). They have
unconditional minimum and maximum at the points of the conditional extremum
of the given problem (Fig. 9).

24 A. Karpov et al.

Fig. 8. An illustration on triple integrals

Fig. 9. An illustration on Lagrange multiplier method

The next image illustrates a topic from analytic geometry.
The Fig. 10 shows a one-sheet hyperboloid

x2

a2
+

y2

b2
− z2

c2
= 1.

The program allows to change all the three parameters of the surface in a
real time – a, b, c. Students can see how these variables affect the surface.

The last figure compares how the surface looks in

x2 + y2 + z2 = a2, x2 + y2 + z2 = b2, x2 + y2 = z2,

x ≥ 0, 0 < a < b,
(3)

On Mathematical Visualization in Education 25

Fig. 10. A one-sheet hyperboloid

Fig. 11. Scope (3), depicted in the Grafar library.

Grafar (Fig. 11) and in The MathWorks Matlab, [16], (Fig. 12).
As the image beauty is a rather subjective concept, we note that in our

project we could not use Matlab system for the reasons described in the part
Sect. 3.2. First of all, because Matlab does not work in the browser.

26 A. Karpov et al.

Fig. 12. Scope (3), depicted in the MathWorks Matlab.

Acknowledgements. Authors should note that a very large number of people worked
on the project described in this article. Basically these were A. Nikitin’s students, who
wrote their course works and theses on this topic. We express our deep gratitude to
all of them. We would like to single out among them people who participated in the
creation of the illustrations involved in this article: N. Kondrashov, A. Korytova, A.
Anokhin, M. Gritsaev, I. Kushnir, A. Shemendyuk and M. Lukashova.

References

1. Eick, S.G., Wills, G.J.: High interaction graphics. Eur. J. Oper. Res. 81(3), 445–459
(1995)

2. de Guzman, M.: The role of visualization in the teaching and learning of mathe-
matical analysis (2002)

3. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination, vol. 87. American
Mathematical Society (1999)

4. Karadag, Z.: Improving online mathematical thinking. In: 11th International
Congress on Mathematical Thinking in Elementary and Advanced Mathematics.
Educational Studies in Mathematics, vol. 38, pp. 111–113 (2011)

5. Polya, G.: How to Solve It: A New Aspect of Mathematical Method. Princeton
University Press, Princeton (2014)

6. Tufte, E.R., Graves-Morris, P.R.: The Visual Display of Quantitative Information,
vol. 2. Graphics Press, Cheshire (1983)

7. Uspenskiy, V.A.: Appologiya matematiki (sbornik statej). ANF, Moscow (2017).
(in Russian)

8. Vickers, P., Faith, J., Rossiter, N.: Understanding visualization: a formal approach
using category theory and semiotics. IEEE Trans. Vis. Comput. Graph. 19(6),
1048–1061 (2013)

9. Ziemkiewicz, C., Kosara, R.: Understanding information visualization in the con-
text of visual communication. Technical report, Technical Report CVCUNCC-07-
08 (2007)

10. Zimmermann, W., Cunningham, S.: Editors’ introduction: what is mathematical
visualization. In: Visualization Teaching Learning Mathematics, pp. 1–7 (1991)

11. Arnold, V.I.: Experimentalnaya matematika. FAZIS, Moscow (2005). (in Russian)

On Mathematical Visualization in Education 27

12. MIT Open Course Ware. https://ocw.mit.edu/
13. The d’Arbeloff Interactive Mathematics Project. http://web.mit.edu/edtechfair/

projects/interactive-math.html
14. Wolfram Mathematica: Modern Technical Computing. https://www.wolfram.com/

mathematica/
15. Maple for STEM Education & Research - Maplesoft. https://www.maplesoft.com/

MapleEducation/
16. MathWorks - MATLAB & Simulink. https://www.mathworks.com/products/

matlab.html
17. OpenStax Access. The future of education. 1999–2018, Rice University. https://

openstax.org/subjects/math/
18. R: The R Project for Statistical Computing. https://www.r-project.org/
19. GNU Octave. https://www.gnu.org/software/octave/
20. The Julia Language. https://julialang.org/
21. SciPy.org. https://www.scipy.org/
22. Matplotlib: Python plotting. https://matplotlib.org/index.html
23. D3.js - Data-Driven Documents. https://d3js.org/
24. GraphyCalc - 3D Graphing Calculator. http://www.graphycalc.com/
25. Wolfram|Alpha: Computational Intelligence. http://www.wolframalpha.com/
26. Michael Mikowski, Josh Powell - Single Page Web Applications: JavaScript end-

to-end (2013)
27. Khan/KaTeX: Fast math typesetting for the web. https://github.com/Khan/

KaTeX
28. KaTeX and MathJax Comparison Demo. https://www.intmath.com/cg5/katex-

mathjax-comparison.php
29. KaTeX - a new way to display math on the Web. https://www.intmath.com/blog/

mathematics/katex-a-new-way-to-display-math-on-the-web-9445
30. Yushkevich, A.P.: The History of Mathematics in the Middle Ages. Fizmatlit,

Moscow (1961). (in Russian)
31. Reactivity in Depth — Vue.js. https://vuejs.org/v2/guide/reactivity.html
32. Angular - The RxJS library. https://angular.io/guide/rx-library
33. Cycle.js. https://cycle.js.org/#-functional-and-reactive
34. Grafar 4 GitHub. https://github.com/thoughtspile/Grafar/
35. Scalable Vector Graphics (SVG) Full 1.2 Specification. https://www.w3.org/TR/

SVG12/
36. HTML Canvas 2D Context. https://www.w3.org/TR/2dcontext/
37. WebGL 2.0 Specification. https://www.khronos.org/registry/webgl/specs/latest/

2.0/
38. MaximPestryakov/visualmath-android. https://github.com/MaximPestryakov/

visualmath-android
39. cherurg/skeleton: The drawing mathematical 2D visualizations. https://github.

com/cherurg/skeleton
40. Programmer’s library. https://proglib.io/
41. 9 gifs, which illustrate numerical sequences | Programmer’s library (in Russian).

https://proglib.io/p/sequences/
42. 9 gifs, clearly illustrating the notion of differentiability | Programmer’s library (in

Russian). https://proglib.io/p/diff/
43. RFC 6455 - The WebSocket Protocol. https://tools.ietf.org/html/rfc6455
44. WebRTC 1.0: Real-time Communication Between Browsers. https://www.w3.org/

TR/webrtc/
45. Can I use... WebRTC. https://caniuse.com/#search=webrtc
46. VisualMath.ru: Platform for the blended learning. http://www.visualmath.ru/

https://ocw.mit.edu/
http://web.mit.edu/edtechfair/projects/interactive-math.html
http://web.mit.edu/edtechfair/projects/interactive-math.html
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.maplesoft.com/MapleEducation/
https://www.maplesoft.com/MapleEducation/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://openstax.org/subjects/math/
https://openstax.org/subjects/math/
https://www.r-project.org/
https://www.gnu.org/software/octave/
https://julialang.org/
https://www.scipy.org/
https://matplotlib.org/index.html
https://d3js.org/
http://www.graphycalc.com/
http://www.wolframalpha.com/
https://github.com/Khan/KaTeX
https://github.com/Khan/KaTeX
https://www.intmath.com/cg5/katex-mathjax-comparison.php
https://www.intmath.com/cg5/katex-mathjax-comparison.php
https://www.intmath.com/blog/mathematics/katex-a-new-way-to-display-math-on-the-web-9445
https://www.intmath.com/blog/mathematics/katex-a-new-way-to-display-math-on-the-web-9445
https://vuejs.org/v2/guide/reactivity.html
https://angular.io/guide/rx-library
https://cycle.js.org/#-functional-and-reactive
https://github.com/thoughtspile/Grafar/
https://www.w3.org/TR/SVG12/
https://www.w3.org/TR/SVG12/
https://www.w3.org/TR/2dcontext/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://github.com/MaximPestryakov/visualmath-android
https://github.com/MaximPestryakov/visualmath-android
https://github.com/cherurg/skeleton
https://github.com/cherurg/skeleton
https://proglib.io/
https://proglib.io/p/sequences/
https://proglib.io/p/diff/
https://tools.ietf.org/html/rfc6455
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://caniuse.com/#search=webrtc
http://www.visualmath.ru/

	On Mathematical Visualization in Education
	1 Motivation
	1.1 Images in Mathematics
	1.2 Symbolic Mathematics

	2 Visualization in Education
	2.1 Computer Technologies in Pedagogy
	2.2 Problem Statement
	2.3 An Interactive System Concept

	3 The Design Requirements and an Overview of the Existing Solutions
	3.1 What Should a Visualization System Be Like
	3.2 Overview of the Existing Systems
	3.3 VisualMath.ru Web Application
	3.4 Grafar, a Library for Three-Dimensional Interactive Visualization
	3.5 Skeleton

	4 Results and Conclusion
	4.1 Examples of Skeleton Programs
	4.2 Grafar Examples

	References

