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Abstract. With the increasing of Low Earth Orbit (LEO) satellites
emission, utilizing existing LEO satellite network systems have lower
CAPEX/OPEX than deploying fixed terrestrial network systems in the
remote area. Due to the high mobility of LEO satellites, mobility man-
agement mechanisms such as handover schemes are the key issue should
be settled on leveraging the merits of LEO satellites telecommunications
(e.g. lower propagation delay than GEO satellites). In traditional han-
dover schemes, choosing which one is the next-hop satellite for one user
is only determined by evaluating some specific criteria in the current
state, not guaranteeing long-term and global optimization. To solve this
problem, we use the cumulative signal quality that involves the remaining
service time and signal quality and propose a Q-Learning based handover
scheme. The simulation results show that the proposed scheme improves
the overall signal quality and reduce the average handover number of
users compared with other handover schemes.

Keywords: LEO satellite network · Handover · Q-Learning · Signal
quality

1 Introduction

A satellite network system is a viable option to cover remote areas where there
are not adequate available terrestrial communication networks [13], an integral
part of the communication system to achieve truly ubiquitous coverage. The LEO
satellite as a typical small satellite is becoming fashionable and changing the
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economics of space [18]. LEO satellites introduce lower end-to-end delay, require
lower power and exert more efficient spectrum allocation than the geostation-
ary orbit satellites, making them suitable for future personal telecommunication
[16]. Even for fixed users, handover in non-geostationary satellite communication
system will be continuous.

To improve the QoS of users, diverse handover schemes have been exten-
sively developed in link-layer and network-layer. Satellite handover occurs in the
link layer when the existing connection of one end user with the satellite trans-
fers to the other satellite [6,19]. Due to the high mobility of the LEO satellite
system, the handover happens frequently in many circumstances, causing call
interruption, thus influencing directly the quality of experience of the users.

For satellite handover schemes, most of the works only considered a specific
handover criterion (e.g. remaining service time [8], number of free channels [7],
elevation angle [10]) or highly relied on geometric information, lacking an overall
solution [20]. It true that there are some schemes combined with two criteria.
For instance, Zhao et al. take the user position and the signal strength into
consideration to reduce the call termination probability [24]. Besides, Wu et al.
firstly presented a graph-based handover framework for LEO satellite network
[20], integrating all kinds of satellite networks into one topology graph, where the
process for the end-user to switch between different serving satellite during its
call period can be considered as to find a way among these consecutive covering
satellites. However, the handover strategy of the proposed scheme is the same as
that of the traditional largest service time scheme. Among these schemes, single
handover criteria leave the user shortsighted and make the network is unable to
meet the complex QoS requirements of users.

Reinforcement Learning (RL) method has been used in many problems of
network communication [22]. All of the problems (e.g. base station on-off switch-
ing strategies [11], routing [1], adaptive tracking control [12] and power alloca-
tion [23]) can be formulated as Markov Decision Processes (MDPs). Specifically,
Wang et al. first formulated the traffic variations as an MDP, then used actor-
critic algorithm (a typical RL algorithm) to improve energy efficiency in radio
access networks [11]. In [1], Al-Rawi et al. introduce that RL can address rout-
ing challenges by gathering information, learning, and making routing decision
efficiently. Besides, Liu et al. propose an online RL method to achieve adaptive
tracking control for nonlinear discrete-time MIMO systems [12], and Zhang et
al. maximize the overall capacity of a multi-cell network by deep RL method
[23].

In horizontal handover, where users switch in the same network layer such
as satellite handover in one LEO satellite network system, the signal quality is
a key criterion. Moreover, the remaining service time of satellites contributes a
lot to satellite handover. The optimal trade-off between the two criteria needs
to be achieved. For example, if a user always chooses the satellite of best signal
quality but he is about to leave the satellite’s coverage area, the user has to
switch to another satellite soon. In this way, the ping pong switch occurs, which
is intolerable in satellite networks due to a long propagation delay. Therefore,
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how to lowest the ping pong switching rate by balance the signal quality and
remaining service time is our most concerned.

To best of our knowledge, the satellite handover problem for optimal cumu-
lative signal quality is untouched. Our contributions are summarized as follows:
(1) we model the signal quality by Ornstein-Uhlenbeck process, then first pro-
pose a criterion that combines signal quality and remaining serving time; (2) we
propose a handover scheme based on reinforcement learning method to maximize
the overall signal quality and minimum the ping pong switching rate in the long
term.

2 System Model

2.1 LEO Satellite Network Model

Consider an LEO satellite constellation with a specific topology structure, which
operated in slotted time t ∈ {0, 1, 2, ..., T}, containing N satellites and M users.
The speed of the mobile terminals, which is much lower than the speed of the
LEO satellite (about 25000 km/h relative to the earth rotation), can be ignored.

2.2 Satellite Handover Process

A satellite handover is divided into three steps: handover information collection,
handover decision-making, and handover execution.

Handover Information Collection. Assume the user connected with LEO
satellite can easily obtain its exact position by using the existing Global Posi-
tion System (GPS) infrastructure (or using the other ways), and also the cov-
ering satellites in the future period by predicting the motion of them. The pre-
diction can be made by the predicting method [2,3], or by a centralized con-
troller in Software-Defined Network (SDN) and Network Function Visualization
(NFV) architecture. Under such conditions, users can obtain the Received Sig-
nal Strength (RSS), remaining service time and user elevation of the connected
satellites.

When the RSS of a user’s connection with a satellite that may be switched is
less than a certain hysteresis threshold RSSmin for a period of time, the satellite
is placed into the user’s candidate satellite sequence and the switching decision
is triggered. This threshold needs to be set properly: if the hysteresis threshold
is too large, it will lead to frequent switching, causing large switching delay; if
it is too small, the satellite will be blocked due to stranded users’ service.

Handover Decision-Making. In view of uneven user distribution restricted by
the imbalance of regional development and the vast ocean area, certain restric-
tions should be made on the fairness of handover, i.e. the channel usage q(t) at
any time should be less than a threshold:

qn(t) ≤ ξqmax (1)
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qmax is the channel number of the satellite, and ξ is the maximum satellite
channel utilization rate.

The satellite for next hop from the candidate satellite sequence should be
determined by the collected network information. Due to the limited satellite
coverage area, the remaining service time directly affects the number of users’
handover during a service period. For example, if the satellite time remaining
for each hop is very short during a service period, users may be in the process of
continuous handover and ping-pong handover is more likely to occur. Therefore,
we should consider the compromise between channel quality and remaining time.

In the actual scenario, channel changes are more dynamically. We consider a
mean-reverting Ornstein-Uhlenbeck process [4] as the instantaneous dynamics of
non-stationary channel model, where a time-varying additive Gaussian channel
model is given by |hi,t|2. Thus, the dynamics of the channel are given by:

d|hi,t| = θ(μh − hi,t)dt + σhdBi,t (2)

where μh > 0, σh > 0, and Bi,t is a standard Brownian motion. μh refers to the
geocentric angle α between users and satellites, which related to the elevation
angle of users. Since the larger the elevation angle is, the smaller the geocentric
angle is, μh can be defined as:

μh = h0 cos α − cos α0 (3)

where h0 represents the channel gain, α0 is the maximum geocentric angle in the
coverage area of one satellite. Equation 3 means that the smaller the geocentric
angle is, the better the channel quality is.

Handover Execution. Once the next satellite to be handed over is determined,
the user will start the soft handover process, and many signaling exchanges
will take place during the handover process. Each signaling exchange may fail.
The handover failure rate of each user should be less than a threshold to avoid
frequent handover:

1 − (1 − p)nm ≤ μ (4)

where p is the failure probability of one handover, and nm is the total number
of user m’s switches in his communication period.

This possibility of failure is also related to the channel quality, which can be
defined by SNR as shown in Eq. 5.

γi,t =
p0|hi,t|2

n0
(5)

Then, integrating SIR representing cumulative signal quality can be obtained:
∫

γi,tdt =
p0
n0

∫
|hi,t|2dt (6)

Therefore, the utility function of one handover (from satellite i to satellite j)
can be defined as follows:
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um(t) =
∫ tj

t

γj,tdt (7)

where tj are the last coverage times of satellites j.

2.3 Problem Formulation

To sum up, considering the whole process of handover, the overall goal is deter-
mined as follows:

min
Ω

lim infT→∞ 1
T E[

M∑
m=1

um(t)]

s.t. qn(t) ≤ ξqmax,∀n, n = 1, ..., N
1 − (1 − p)nm ≤ μ,∀m,m = 1, ...,M

(8)

This problem is a stochastic programming problem that is control depen-
dent state evolution where the control action (handover) will influence the state
process. Also, in the dynamic scenario of LEO satellite handover, the transition
probability is unknown and the state space is infinite. In this way, the problem
is NP-Hard, difficult to find the best solution, but we can try to make a policy
to minimize the effective transmission rate of all users. Also, the handovers of
users are independent as a Markov decision process. Thus, a model-free learning
technique such as QL is needed to find a policy Ω to better adapt to the dynamic
scenario and gain long-term control.

3 Reinforcement Learning Handover Scheme

3.1 Decision-Making Process in Q-Learning

QL is a technique of reinforcement learning where the agent learns to take actions
to maximum the cumulative reward (Eq. 9) by trial-and-error interactions with
its environment:

Rt =
∞∑

k=0

γkrt+k+1 (9)

where 0 ≤ γ ≤ 1 indicates the weight of the experience value and r is the
numerical reward obtained at each optimization epoch which comprised by one
iteration. Basically, QL has two steps: policy evaluation and policy improvement.
It evaluates the policy by calculating value function (the expected value of the
return at state S accumulated by action S in a limited period of time):

Qπ = Eπ [Rt|st = s, st = a] , (10)

it then improve the policy by updating the value in the action’s correspond-
ing index in the Q matrix. In this model-free approach, the premise of fully
evaluating the policy value function is that each state can be accessed, so an
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exploration strategy called ε − greedy is adopted to update Q value in step of
policy improvement. For an iteration for the user m, we have:

Qt+1(s, a) = (1 − α)Qt(s, a) + αQt(s, a′) (11)

where the higher the learning rate α(0 ≤ α ≤ 1) is, the less the previous training
results will be retained.

3.2 Maximum Cumulative Signal Quality Handover Scheme
(MCSQ)

Using the QL framework discussed above, the agent, state S, action A(s) and
reward r : S × A(s) × S → R can be designed as follows:

– Agent: the handover controller.
– States: s = (s(1), s(2), ..., s(4)) ∈ S := Û×I×J ×H. Û denotes the discretized

space of the user position in slot t, also following the initial consideration of
QL, where the space of states is a set of discretized value. Û is defined as the
area discretized by a grid g1, g2 on longitude and latitude correspondingly,
which is represented by

Û := {(�u1/g1�, �u2/g2�)|(u1, u2) ∈ U} (12)

where �·� : R → N is the floor function. I = {i0, ..., im} represents the con-
necting satellites set, where im represents the number of user m’s connecting
satellite. J = {J0, ..., Jm} indicates the set of adjacent satellites that can
exert handover in next hop, where Jm represents the set of user m’s adjacent
satellites. H := {0, 1} indicates whether in each decision epoch the handover
is being processed or not.

– Actions: a ∈ A(s) is the number of satellite selected in state S. The set of
actions is defined as

A(s) =

{
I, if H = 0
J ′,Otherwise

(13)

which means that the user only can connect with one of the satellites when
the handover is not processed, and otherwise the user can choose an adjacent
satellite from the set {s(3)} in the time slot of handover. J ′ represents the
selected satellites.

– Reward: r(s′, a, s) is defined as the cumulative signal quality of one link
defined before, which is influenced by the RSS, the remaining service time:

r(s′, a, s) =

{
um(t), if H = 1
0,Otherwise

(14)

where r : R → R is for controller to choose the optimal handover satellites of
maximum cumulative quality of users received signal.

After many iterations, the Q matrix tends to converge and be stable, since
almost every state is accessed at least once.
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4 Simulation Results

4.1 Simulation Setup

The simulation referring to the Globalstar system runs using python to conduct
the comparison. Satellites and users are randomly sprinkled in the Region U by
a Poisson Point Process (PPP). The maximum geocentric degree α0 of satel-
lite coverage is determined by the height of satellite orbit and the user-visible
elevation angle αe:

α0 = sin(arccos(
Re

Re + h
)) cos αe − αe (15)

Consider users moving following a straight certain route, and assume the
relative velocity between users and satellites is 60 km/s for better simulation
effect (about 6 km/s in reality).

Table 1 summarizes the simulation parameters of the network model.

Table 1. Simulation parameters.

Parameter Value

Height of the satellite orbit (h) 1414 km

User visible elevation angle (αe) 10◦

Radius of satellite coverage (R0) 2670 km

Radius of the Earth (Re) 6378 km

Relative velocity 60 km/s

Duration of user service period 120 s

Region U 6000 km×6000 km

Number of satellites 25

Satellite load threshold (ξpmax) 5

Failure probability of one handover (p) 99%

RSS threshold (RSSmin) 0.5 × 10−8 w

Hysteresis threshold 3 s

Transmit power of satellite (p0) 50 w

Channel gain (h0) −1.85 dB

θ in the dynamics of channel 1

σh in the dynamics of channel 2.5 × 10−5

Learning rate (α) 0.4

Greedy policy (ε) 0.6

Experience rate (γ) 0.9

Granularity of the location (λ) 15

Number of iterations 120
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(a) Different learning rates. (b) Different exploration rates.

(c) Different discount rate. (d) Different granularity.

Fig. 1. Performance comparison of parameters in the MCSQ scheme.

4.2 Simulation Results

Figure 1 illustrates the convergence property and the parameter evaluation of the
MCSQ algorithm. According to the impact of the learning rate can be shown
in Fig. 1(a), we choose α = 0.4 as our learning rate of all QL methods because
the average reward performs more stable. Similarly, we choose ε = 0.6 as the
exploration rate because of the performance comparison in Fig. 1(b) and γ = 0.9
as the discount rate according to Fig. 1(c). The granularity of the location λ
in the sate U is determined by grid g1, g2. Suppose g1 = g2 = 2000/λ, so the
impact of λ is shown in Fig. 1(d). It can be seen that when λ = 5, average reward
remains at a higher level because of more user in one grid region and cumulated
Q in the same position of Q table. In consideration of the area of the grid region,
we choose λ = 15 as the granularity of location.

It is worth noting that, in all simulations, the signal quality will be gener-
ated randomly according to Eq. 2 in every iteration, and the initial location of
satellites and users and relative movement relationship will remain the same in
one epoch.

Although the Q table will be stable after about over thousands of iterations,
the complexity of the proposed algorithm is low because this paper is dedicated
to giving an optimal handover strategy for an initial status of satellites and users.
Once we obtain the optimal policy Ω, it acts as a look-up table. Besides, the
dynamic of Earth orbit is periodic, several time periods of satellite running can
construct a cycle, wherein the location of satellites will be the same as that in
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the same slot of the previous cycle. Therefore, the table can be reused and be
calculated very few times.

Here, cumulative signal quality in the service time period of all users is rep-
resented by the average cumulative RSS. It only computes the RSS from the
serving satellites, which means that if a user m has switched from satellite i
to satellite j, his total cumulative RSS is cumulative RSS in a serving period
of satellite i plus that in the serving period of satellite j. Therefore, the total
cumulative of all users is as follows.

c = EM

[
M∑

m=0

N∑
n=0

∫ tnme

tnms

γn,tdt

]
(16)

where the tnms is the start time of a serving time period of satellite n for user
m, and tnme is the end time respectively.

(a) Signal quality comparison. (b) Average handover number
comparison.

Fig. 2. Performance comparison of handover schemes.

Figure 2 shows the performance comparison of the proposed algorithm and
all baseline algorithms. In this comparison, 100 independent tests are conducted,
where the topology of satellites and users is renewed in every test. The baseline
algorithms are several traditional schemes:

– Maximum number of free channels scheme (MFC) [8]: In this scheme,
users will choose the satellite that reserves most free channels. In this way, it
tends to achieve the highest fairness index between satellites and uniform dis-
tribution of the telecommunication traffic in the LEO network [14]. Therefore,
it will avoid overload satellites, but for users, they should find the satellite
with more free channels regardless of location or signal quality, leading to
more number of handovers.

– Maximum service time scheme (MST) [7]: According to this criterion,
the user will be served by the satellite that offers the maximum remaining
service time [14]. It will get the lowest number of handovers and ping-pong
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switching rate, but the user will reluctant to change serving satellite even
know other satellite may offer more free channels. In an LEO satellite network
with a certain constellation, the long coverage time means that in this serving
period, the user will get bigger maximum communication elevation angle [17],
so the overall signal quality will be higher than other baseline algorithms.

– Maximum instantaneous signal strength scheme (MIS) [10]: This cri-
terion is almost equivalent to the maximum elevation angle, because, for satel-
lite communication, small elevation angle between the mobile terminal and
the satellite leads to frequent shadowing and blockage events for the signal
due to trees, buildings, hills, etc. [5]. Thus, it will avoid link failures and
get relative high signal quality, but due to the dynamic characteristics of the
channel, it is only able to guarantee the instantaneous signal quality. Once
the channel changes rapidly, the handover decision will be unstable.

– Random handover scheme (RH): According to this criterion, the user
will randomly choose an available satellite in the slot of handover decision-
making.

It can be seen that MCSQ, after iterations, gets the greatest signal quality
and obtains almost the same low average handover number as MST. Since the
cumulative signal quality combines the effect of elevation angle and remaining
serving time, according to the criterion, the MCSQ combines the advantages of
MIS scheme and MST scheme in data representation. Besides, the reinforcement
learning framework makes the proposed scheme more telescopic in handover
decision, so the MCSQ achieves the overall stable improvement in the whole
satellite cycle.

5 Conclusion

In this paper, we have investigated a handover problem for LEO satellite net-
works, and we further formulated it as a stochastic optimization problem to get
optimal signal quality of users. To solve this problem, we model the channel
by the O-U process and introduce a criterion that combines signal quality and
remaining serving time. Then, we propose a reinforcement learning handover
strategy, which has shown that it has a good effect on improving the overall
signal quality between satellites and users in a period, also greatly reduces the
average handover number of users. In reality, the distribution of signal received
cannot be predicted by a simple model, but the Q table after training could be
a good reference when users are choosing the next hop satellites. Therefore, it
can be generalized into a different network model easily, ensuring the flexibility
of the algorithm. In further work, some novel reinforcement learning methods
can be applied in this network model and handover procedure to improve the
efficiency of this scheme.
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