
Chapter 8
Low Dimensional Semiconductors

Quasi two-dimensional semiconductor layers offer a lot of spectacular prop-
erties of which the most famous is the Quantum Hall effect. We limit ourselves,
however, only to the presentation of the simplest, well understood, but
nevertheless surprising peculiarities of the classical and quantum mechanical
two-dimensional motion of Coulomb interacting electrons in the presence of
a strong transverse magnetic field.

In the last decades progresses in semiconductor technology produced ultra-thin
semiconductor layer systems in which by a suitable choice of the layers, the
electrons and holes are restricted to a two-dimensional motion. An ultra-thin layer
of a semiconductor is inserted between two thick layers of another semiconductor
with a larger band gap and therefore, both the electrons and holes in the ultra-thin
layer are in a quantum well and their lowest states are discrete as it is shown in
Fig. 8.1.

At sufficiently low temperatures the electrons and holes sit on their lowest levels
(shown here in red and green). It means, the transverse motion at low temperatures is
“frozen” in its lowest lying state φ0(z) in the potential well created by the adjoining
layers and the wave function of an electron, in a good approximation is given by

Ψ (x, y, z) = ψ(x, y)φ0(z),

with the coordinates x, y lying in the plane and z being the transverse coordinate.
This is the experimental realization of a two dimensional (2D) electron–hole system,
which has a lot of very interesting properties.
Already the free motion in 2D has a peculiarity, namely the one-electron state
density is constant above ε = 0
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Fig. 8.1 A semiconductor
quantum well
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Such systems show above all spectacular properties in the presence of a strong
magnetic field transverse to the plane. The most famous one is the Quantum Hall
effect. We will not try to describe here the different, sometimes contradicting
theories of this effect. Nevertheless, we want to bring the attention to the kind of
strange physics we encounter in two dimensions (2D).

8.1 Exciton in 2D

Let us consider an electron–hole pair with Coulomb attraction in a 2D semi-
conductor. In the effective mass approximation, the relative motion in cylindrical
coordinates is described by the Hamiltonian

H = − h̄²
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where m is the reduced mass of the pair and ε is the dielectric constant (supposed
here as being the same in the 2D layer as in the surrounding semiconductor). The
eigenstates of this Hamiltonian are characterized by two quantum numbers n =
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0, 1, 2 . . . and μ = ±0,±1,±2, . . .. The lowest eigenstate (n = 0, μ = 0) is

ψ0,0 = 4√
2πa

e
− 2ρ

aB ,

while the ground state energy is

E0,0 = −4ER.

where we used as parameter the Bohr radius aB and the Rydberg energy ER of the
3D exciton. A comparison with the ground state exciton wave function in 3D (see
Sect. 3.1.2) shows that the exciton radius in 2D is twice smaller than in 3D and its
binding energy is four times bigger. Contrary to any expectations, the transversely
compressed exciton shrinks also in the still allowed two dimensions.

8.2 Motion of a 2D Electron in a Strong Magnetic Field

According to the discussed 3D motion of an electron in a homogeneous magnetic
field (see Sect. 2.2.2) the stationary states in the Landau gauge are given by a plane
wave in the field direction (along the z axis) and in the transverse plane by the
Landau states of discrete energies. If one restricts the motion to the plane x,y, then
the energy of such a Landau state is just

εn,X, = h̄ωc(n + 1

2
) (n = 0, 1, 2, . . .).

Since these energies do not depend on the quantum number X (the x-coordinate of
the center of the cyclotron motion), they are (in the absence of boundary conditions!)
infinitely degenerate.
In what follows we consider very strong magnetic fields at very low temperatures
and therefore we may consider that all the spins are aligned along the magnetic
field. We shall consider the motion of such a 2D electron in a strong magnetic field
perpendicular to the plane of motion in the presence of an external potential U(r).

The simplest approach to consider is to ignore the higher lying Landau levels
and, if the potential is weak, to consider its projection on the lowest lying Landau
state (n = 0) within first order perturbation for the energy

E(X) = 1

2
h̄ω0 + 〈0, X|U(x, y)|0, X〉.

Kubo’s more profound approach considers the limit of ultra-strong magnetic
fields for arbitrary potentials and an arbitrary kinetic energy T . The 2D Hamilton
operator is
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H = T (π) + U(r),

where the generalized momenta π in the presence of the vector potential A are

π ≡ p + e

c
A(r)) ; p ≡ ıh̄∇.

Within the set of operators (π , r) the only non-vanishing commutators are

[πx, πy] = h̄e

ıc
B; [πx, x] = [πy, y] = h̄

ı
.

Defining new operators

ξ = c

eB
πy, η = c

eB
πx

and

X = x − ξ, Y = y − η

it results that

[ξ, η] = h̄c

ıeB
≡ l2

B

ı
,

[X, Y ] = − h̄c

ıeB
≡ − l2

B

ı
,

while the other commutators of the new operators vanish. The kinetic energy T

depends only on the new operators ξ and η. Also, in the absence of the potential
U the operators X and Y do not change in time. They are assimilated with the
coordinates of the cyclotron motion, while the operators ξ and η are the relative
coordinates.
In the presence of the external potential, either in the frame of quantum mechanics
or within classical mechanics, the center of the cyclotron motion moves according
to

Ẋ = c

eB

∂U

∂y
, Ẏ = − c

eB

∂U

∂x
.

According to the above canonical commutation rules one has the uncertainty
relations

�X�Y = 2πl2
B
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and since ultra-strong magnetic fields imply lB → 0, a classical description with
classical coordinates X, Y is appropriate. On the other hand, if the potential is slowly
varying on the scale of the magnetic length, one may ignore the relative motion and
to a very good approximation one could use the classical equations of motion

Ẋ = c

eB

∂U(X, Y )

∂Y
, Ẏ = − c

eB

∂U(X, Y )

∂X
.

It follows that

∂Y
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= Ẏ

Ẋ
= −
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∂X

∂U(X,Y )
∂Y

.

However, this corresponds to the motion on a curve defined by U(x, y) = U0.
Indeed, by using the definition of the implicit derivative one gets

∂y

∂x
= −

∂U(x,y)
∂x

∂U(x,y)
∂y

.

To conclude, in the limit of ultra-strong magnetic fields the motion of the
cyclotron center of electrons in 2D with arbitrary kinetic energy in the presence
of an external potential is just a classical one along the equipotential curves of the
potential.

8.3 Coulomb Interaction in 2D in a Strong Magnetic Field

8.3.1 Classical Motion

A stranger aspect of the 2D motion in a strong magnetic field is how Coulomb
forces act. Let us consider first the classical problem of the motion of two particles
of opposite charges (electron and hole). We are interested only in the relative motion,
therefore one of the particles we may keep fixed in the origin. A numerical solution
of the corresponding Newton equations shows the trajectory in Fig. 8.2. This is a
somewhat complicated picture, but the particles, as expected seem to attract each
other and stick together.
To our surprise, even two identically charged particles in 2D, having repulsive
Coulomb forces, stick together, showing an effective attraction, as it is illustrated
in Fig. 8.3. Of course, the Coulomb force tries to accelerate the electrons in the
repulsive manner, but the accelerated electron is returned by the bending in the
magnetic field. The only escape would have been in the now forbidden transverse
direction.
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Fig. 8.2 Classical relative motion of opposite charged particles in 2D in the presence of a
transverse magnetic field

If one considers a whole cluster of electrons these are sticking together in a cluster,
as it is shown in Fig. 8.4.

8.3.2 Quantum Mechanical States

The quantum mechanical analysis of the motion of two Coulomb repulsive particles
confirms also the existence of bound electron–electron states in 2D.
The quantum mechanical Hamiltonian for the 3D relative motion of two electrons
in the presence of a magnetic field B is

H 3D = − h̄2

2m
∇2 − eh̄

mc
ı

(
A(r) � ∇ + 1

2
∇A(r)

)
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2mc2
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r
.
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Fig. 8.3 Classical relative motion of identically charged particles in 2D electron in the presence
of a transverse magnetic field

If one chooses the divergenceless vector potential (with the magnetic field in the
z-direction)

A(r) ≡
(

−1

2
By,

1

2
Bx, 0

)
,

one may write the 2D Hamiltonian describing the in-plane motion in cylinder
coordinates ρ, φ as

H 2D = − h̄²
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One looks, as usual, for the eigenfunctions as

ψ(ρ, φ) = u(ρ)eıμφ (μ = 0, 1, 2, . . .).

Then the eigenvalue problem for the radial part is
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Fig. 8.4 Classical motion of 4 electrons (one is kept fixed in the origin) in 2D in the presence of
the magnetic field
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This Schrödinger equation differs (up to a shift in the energy with eh̄B
2mc

μ) from

that of a radial 2D oscillator just due to the Coulomb term e2

ρ
. Since in a very strong

magnetic field the spins are supposed to be aligned along the magnetic field and the
wave functions must be anti-symmetrical for fermions; only odd angular momenta
μ are of interest. In terms of the dimensionless parameter

ξ = eB

2ch̄

(
h̄2

2me2

)2

an ultra-strong magnetic field corresponds to ξ 	 1. The radial wave function of
the lowest μ = 1 state of the 2D oscillator is
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Fig. 8.5 The lowest μ = 1 eigenfunction with and without Coulomb repulsion

R1,0(ρ) = ξ√
π

ρe− 1
2 ξρ2; 2π

ˆ ∞

0
ρ|R(ρ)|2dρ = 1,

where for convenience the radius ρ is measured in units of the length λ = h̄2

2me2 .
A numerical solution of the lowest eigenfunction including Coulomb repulsion

for μ = 1 and ξ = 10 is shown red in Fig. 8.5, while the corresponding oscillator
function is shown in blue.

The two wave functions are surprisingly close to each other. The contribution of
the Coulomb potential to the energy may be approximated by first order perturbation
theory as its average over the oscillator function. The result again lies surprisingly
close to the exact value (in our example, up to four digits).

On the other hand, without the Coulomb potential the wave function would have
been centered at any arbitrary position in the plane. The existence of the repulsive
center, however, fixes its position! This suggested the construction of the so-called
Laughlin-wave functions for many electrons out of oscillator wave functions.

It is worth to remark also that the lowest s-wave (μ = 0) state shows in
concordance with the formerly discussed theory of Kubo a motion concentrated
on a circle (equipotential line for the Coulomb potential).
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