
Chapter 4
Phonons

The ions forming the attractively acting lattice are not rigid. At least
their oscillations around the rigid lattice positions have to be taken into
account. These oscillations may be quantized and interpreted as bosonic
particles called acoustical or optical phonons with typical spectra. Even
a classical description of the phonons gives rise to important predictions
as the Lyddane–Sachs–Teller formula. In a quantum mechanical approach
to optical transitions assisted by phonons one may understand the Franck–
Condon effect.

4.1 Lattice Oscillations

Until now we considered the ions as fixed positive point-like charges, positioned
at the sites R + ξ s (s = 1 . . . S), where R is a vector of the Bravais lattice, while
ξ s shows the position of a given ion within the elementary cell containing S ions.
Actually, the ions are free to move away from their equilibrium positions with
deviations u(R, s) (here still classical!). For small deviations one may develop the
potential energy U of the lattice in a power series of these deviations. Up to a
constant defining the ground state energy, the lowest term in this series must be
quadratic, since the equilibrium corresponds to a stable minimum. Thus

U = 1

2

∑

R,s

∑

R ′,s′
Φ

μν

ss′ (R − R ′)uμ(R, s)uν(R ′ s′) + . . . ,

where Φ
μν

ss′ (R − R ′) is a real symmetric

Φ
μν

ss′ (R) = Φ
νμ

s′s (−R)
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positive defined matrix (Φ ≥ 0 means non-negative eigenvalues).
Since a constant shift does not change the energy

∑

R,s

Φ
μν

ss′ (R) =
∑

R,s

Φ
μν

s′s (R) = 0.

One gets the classical Lagrange function L = T − U of the lattice by considering
also the kinetic energy of the lattice

T = 1

2

∑

R,s

ms u̇(R, s)2,

where ms is the mass of the ion designed with the index s.
In terms of discrete Fourier transforms

u(R, s) = v

(2π)3

ˆ
BZ

dqeıqRũs(q); Φ̃
μν

ss′ (q) = v

(2π)3

ˆ
BZ

dqeıqRΦ
μν

ss′ (R)

retaining only the quadratic terms of the potential energy we have

L = v

2(2π)3

ˆ
BZ

dq

⎧
⎨

⎩

S∑

s=1

∑

μ

ms
˙̃uμ
s (q)∗ ˙̃uμ

s (q) −
S∑

s,s′=1

∑

μ,ν

ũμ
s (q)∗Φ̃(q)

μν

ss′ ũν
s′(q)

⎫
⎬

⎭

with

Φ̃(q)
μν∗
ss′ = Φ̃(q)

νμ

s′s ; Φ̃(q)
μν∗
ss′ = Φ̃(−q)

μν

ss′ ; Φ̃(q) ≥ 0.

Absorbing the mass factor by

η̃μ
s (q) ≡ √

msũ
μ
s (q); M̃(q)

μν

ss′ ≡ 1√
msms′

Φ̃(q)
μν

ss′

we get

L = v

2(2π)3

ˆ
BZ

dq

⎧
⎨

⎩

S∑

s=1

∑

μ

˙̃ημ
s (q)∗ ˙̃ημ

s (q) −
S∑

s,s′=1

∑

μ,ν

η̃μ
s (q)∗M̃(q)

μν

ss′ η̃ν
s′(q)

⎫
⎬

⎭ ,

where the new matrix M̃ has the same properties of symmetry, realness, and
positiveness as Φ̃.

This whole quadratic form may be brought to a diagonal one with the transformation
that diagonalizes the potential energy, with positive eigenvalues ωλ(q)2 and one
may see that the Lagrangian describes a sum of oscillators of unit mass with
eigenfrequencies ωλ(q) = ωλ(−q).
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The quantization of the lattice corresponds therefore to the quantization of these
oscillators. As it is well known, this leads to a quantum mechanical Hamiltonian
that may be formulated in terms of the creation and annihilation operators b

†
λq, bλq

and the respective oscillator frequencies ωλ (q). It is convenient to impose cyclical
boundary conditions in order to deal with a discrete spectrum having the proper
number of degrees of freedom. Then the quantized lattice Hamiltonian is

H =
∑

q∈BZ

∑

λ

h̄ωλqb
†
λqbλq

with the bosonic commutation relations

[
bλq, bλ′q′

] = 0
[
bλq, b

†
λ′q′

]
= δλ,λ′δq,q′ .

The quantized deviations from the equilibrium positions at their turn are

u(R, s) =
∑

q

∑

λ

eıqR

√
h̄

2msωλ,q
χ (λ)

s (q)
(
bλ,q + b

†
λ,−q

)
,

where χ
(λ)
s (q) are the orthonormalized eigenfunctions of the Matrix M̃

∑

ν,s′
M̃(q)s,s′χν(λ)

s′ (q) = ω2
λ,qχμ(λ)

s (q); (λ = 1, . . . 3S).

Due to the invariance against a common translation discussed before it follows that

S∑

s′=1

M̃(0)
μν

s,s′
√

ms′ = 0

and

S∑

s=1

√
msM̃(0)

μν

ss′ = 0.

While the first equation shows that there are at least 3 eigenfrequencies that vanish
at q = 0, called acoustical modes, the second equation shows that if an eigenvalue
does not vanish in the origin, then the eigenstate must fulfill the relation

S∑

s=1

√
msχ

(λ)
s (0) = 0; (λ = 4, . . . 3S − 3)
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or

S∑

s=1

msu(λ)
s (0) = 0; (λ = 4, . . . 3S − 3).

This means that the center of mass by these oscillations, called optical modes,
remains unchanged.

4.2 Classical Continuum Phonon-Model

In applications, it is useful to use a simplified continuum model for phonons with a
simple phonon spectrum. The local deviations u(r) are defined then in every space
point r.
The prototype classical Lagrange function for acoustical phonons is

Lacc = m

2v

ˆ
dr

3∑

μ=1

{
u̇μ(r)2 + c2

3∑

ν=1

(∂νuμ(r))2

}

or in Fourier transforms

Lacc = m

2

ˆ
dq

3∑

μ=1

{ ˙̃uμ(q)∗ ˙̃uμ(q) + c2q2ũμ(q)∗ũμ(q)
}

.

Obviously, here a linear acoustical phonon spectrum ωac(q) = cq was assumed
(with c being here the sound velocity in the medium).
To model optical phonons, one considers the classical Lagrange function

Lopt = m

2v

ˆ
dr

3∑

μ=1

{ ˙̃uμ(r)2 − ω2
0ũμ(r))2

}

or in Fourier transforms

Lopt = m

2

ˆ
dq

3∑

μ=1

{ ˙̃uμ(q)∗ ˙̃uμ(q) − ω2
0ũμ(q)∗ũμ(q)

}
.

Here the optical phonon spectrum was taken just to be constant ωopt (q) = ω0. In
both cases one must take into account that the total number of degrees of freedom
(per volume!) should correspond to that of the crystal and therefore one cuts off the
wave vectors by the Debye wave vector (q < qDebye) defined by
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4π

3
q3
Debye ≡ 1

v

with v being the volume of the elementary cell.

4.2.1 Optical Phonons in Polar Semiconductors

The optical lattice deviations lead to local electric dipoles. This local polarization in
the classical continuum model is given by

P(r) = κe

v
u(r),

where κ is the polarizability of the elementary cell. The corresponding polarization
charge density is

ρpol(r) = −∇ · P(r) = −κe

v
∇ · u(r)

and the Poisson equation in the presence of a stationary external charge density
ρext (r) looks as

ε∞∇2V (r) = −4π
(
ρpol(r) + ρext (r)

)

with ε∞ being the dielectric constant due to the electronic background.
Alternatively, for low frequencies it will look as

ε0∇2V (r) = −4πρext (r),

where ε0 is the total dielectric constant. The notation stems from the assumption that
at high frequencies only the light electrons contribute to the dielectric properties,
while for low frequencies both the electrons and ions contribute. As we shall see,
relating the polarization charge density to the potential allows for the identification
of the total dielectric constant.

In the inhomogeneous situation due to the presence of an external charge density
the Lagrange function contains supplementary Coulomb terms

L = m

2v

ˆ
dr

3∑

μ=1

{
u̇μ(r)2 − ω2

0u
μ(r))2

}

− 1

ε ∞

ˆ
dr

ˆ
dr ′ 1

|r − r ′|
(

1

2
∇P(r)∇′P(r ′) − ∇P(r)ρext (r ′)

)
.

Now let us split the local deviations u(r) into longitudinal and transverse modes
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u(r) = ul (r) + ut (r)

ul (r) = −∇
ˆ

dr ′ ∇′u(r ′)
4π |r − r ′| ; ∇ut = 0; ∇ul = ∇u.

One gets the equations of motion for these modes through the Euler–Lagrange
equations by using the identity

∇2 1

|r| = −4πδ(r)

and they look as

∂2

∂t2 ut = −ω2
T Out

∂2

∂t2
ul = −ω2

LOul + κe

m
Eext

with

ω2
T O ≡ ω2

0; ω2
LO = ω2

0 + 4πκ2e2

ε∞vm
.

In a stationary regime (thermal equilibrium) in the presence of a stationary external
charge density it follows:

ul = κe

mω2
LO

Eext

and

ρpol = − κ2e2

vmω2
LO

∇Eext = − 4πκ2e2

vmω2
LOε∞

ρext ; (ε∞∇Eext = 4πρext ).

If one inserts this result into the Poisson equation, one may identify

ε∞
ε0

= 1 − 4πκ2e2

vmω2
LOε∞

= 1

ω2
LO

(
ω2

LO − 4πκ2e2

ε∞vm

)

and one gets the Lyddane–Sachs–Teller relationship

ωLO

ωT O

=
√

ε0

ε∞
.
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Now let us introduce an arbitrary external time-dependent electromagnetic field
Eext(t). Then the equation of motion looks as

∂2

∂t2 u(t) = −ω2
0u(t) + κe

m
E(t) ,

whereby the electric field E(t) includes also the longitudinal field produced by the
dipoles

E(x, t) = Eext (x, t) + ∇
ˆ

dx′ ∇′P(x′, t)
|x − x′| .

Above we took into account that the interaction energy of our dipoles with the
total electric field may be brought to the form − κe

v

´
dxu(x)E(x, t). After a

Fourier transformation in the time variable t it follows for the frequency dependent
susceptibility for both modes

χT,L(k, ω) = α2e2

vm

1

ω2
0 − ω2

,

or for the frequency dependent dielectric function

ε(ω)L,T = ε∞

(
1 + 4πα2e2

ε∞vm

1

ω2
0 − ω2

)
= ε∞

ω2
LO − ω2

ω2
T O − ω2

.

4.2.2 Optical Eigenmodes

Starting from the above dielectric function we look now for possible electromag-
netic eigenoscillations in such a medium. Since the system is homogeneous and
isotropic, by using Fourier transforms it is useful to split the electromagnetic fields
in their longitudinal, respectively, transverse parts. The Maxwell equations for
the magnetic B, respectively, electric field E and the polarization P look in their
components as

B(k, ω)L = 0

B(k, ω)T = ck

ω
E(k, ω)T

ıkε∞E(k, ω)L = −4πıkP (k, ω)L + 4πρext (k, ω)
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(k2 − ε∞
ω2

c2
)E(k, ω)T = 4πω2

c2
P(k, ω)T − ı4πω

c2
jext (k, ω)T .

With

P(k, ω) = 1

4π
(ε(k, ω) − ε∞) E(k, ω)

and the previously deduced dielectric function it follows that in the absence of
external sources the homogeneous Maxwell equations still have non-vanishing
solutions. For ω = ωLO there is a non-trivial longitudinal solution for any k = |k|,
while non-trivial transverse solutions exist only for ω, k pairs that are solutions of
the equation

k2 − ε∞
ω2

c2

ω2
LO − ω2

ω2
T O − ω2

= 0

shown in Fig. 4.1. Such transverse fields are propagating mixed photon and LO-
phonon modes.
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Fig. 4.1 Optical eigenmodes



4.2 Classical Continuum Phonon-Model 81

4.2.3 The Electron–Phonon Interaction

4.2.3.1 The Franck–Condon Effect

Let us suppose that one has two localized electronic states of energies ε1 and ε2 on
the same site and one of them is electrically neutral while the other one is electrically
charged. In a polar semiconductor, this local charge density is coupled to the optical
phonons. The energy of the system of electron and phonons (seen as a classical
oscillator with coordinate Q) may be characterized schematically by the potential
energies of the two states

E1(Q) = ε1 + 1

2
m(Q̇2 + ω2

LOQ2)

E2(Q) = ε2 + 1

2
m(Q̇2 + ω2

LOQ2) − gQ.

The energy of the second state may be rewritten as

E2(Q) = ε2 + 1

2
m

(
Q̇2 + ω2

LO(Q − Q0)
2 + ω2

LOQ2
0

)
,

where mω2
LOQ0 = g. This means that the potential energy of the phonons gets

shifted.
Now by photon absorption the system may undergo a transition from the

minimum of the lower lying state on the higher branch outside the minimum of
that branch. (The photon momentum may be neglected by these optical transitions!)
Thereafter, follows a thermal relaxation (by emission of acoustical phonons) into the
minimum of the upper branch and only later may follow a slower photon emission
onto the lower branch again outside the minimum. This is the essence of the Franck–
Condon effect showing a difference between the absorption and emission spectra
(Stokes shift). It is illustrated in Fig. 4.2.

4.2.3.2 The Quantized Interaction of Electrons with Phonons

The interaction Hamiltonian of the electrons with the phonons is considered to be
linear in the quantized lattice deviations, conserving the number of electrons and in
the continuum model conserving also the momenta

Hint = 1√
Ω

∑

q

gqa+
k ak−q(bq + b+−q).

Here Ω is the volume and the discretized wave vector q is assumed to be smaller
than the Debye wave vector q < qD .
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Fig. 4.2 Stokes shift

In the case of the optical phonons, analogously to the discussion in the frame of
the classical continuum model one starts from the Coulomb interaction between the
electron (or hole) charge density

ρ(x) ≡ ±eψ+(x)ψ(x)

and the polarization charge density due to the optical deformation

−1

ε ∞

ˆ
dx

ˆ
dx′ ∇P(x)ρ(x′)

|x − x′| .

Inserting the expression of the polarization in terms of the quantized lattice
deviations one gets

g2
q = α

4πh̄ (h̄ω0)
3/2

(2me)
1/2 q2

,

where instead of the coefficient 4πe2κ2

vmω2
LOε∞

one has introduced the dimensionless

constant

α = e2

h̄

(
me

2h̄ω0

)1/2 (
1

ε∞
− 1

ε0

)
.

The presence of the electron mass here is spurious. The coupling constant gq itself
does not depend on the electron mass.
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In the case of the acoustic phonons one considers mostly the deformation
potential model. This starts from the assumption that a slowly varying deformation
in an isotropic medium causes a local variation of the band gap

δEg(x) ∼ ∇u(x).

This leads to

gq = G
√

h̄ωq,

where ωq = c|q| and G is a constant specific for the considered crystal. Of course,
both models are highly idealized, but nevertheless, quite successful in predicting
experimental phenomena.
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