
Chapter 10
Field-Theoretical Approach to the
Non-Relativistic Quantum
Electrodynamics

We give here the field-theoretical derivation of the Hamiltonian of the
non-relativistic quantum electrodynamics in the Coulomb gauge using the
Lagrange formalism. It leads to the same result as the usual derivation, where
one just replaces the classical vector potential in the minimal coupling of
the second quantized electron Hamiltonian by the quantized one and adds
the photon energy. This derivation however illustrates the proper use of the
Euler–Lagrange equations and the canonical formalism that fails if one tries
to quantize the classical theory of point-like particles interacting with the
electromagnetic fields. In the same time it confirms the 1/c2 result of the
preceding chapter on states without photons.

As one could see, building the quantum mechanics of charged particles starting from
the classical model of point-like charges in the configuration space leads after a few
steps into a dead end. More than the 1/c2 approximation cannot be achieved. The
correct approach should follow a reverse order, starting from the formulation of the
non-relativistic quantum electrodynamics, followed by simplifying approximations
(expansion in powers of 1/c).

In order to construct the non-relativistic quantum mechanical Hamiltonian
describing the interaction between electrons and photons, we use here a way
borrowed from the relativistic quantum field theory. We proceed by three steps.
The first is to build up a classical Lagrangian density out of classical fields. These
include besides the electric and magnetic fields also an one-electron wave function
that leads to the coupled Maxwell and Schrödinger equations with the charge and
current densities defined by the Schrödinger equation The second step is to choose
the Coulomb gauge in order to eliminate the spurious degrees of freedom that allows
one to build a classical Hamiltonian. The last step is to quantize all the physical
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fields (wave function and transverse e.m. vector potential) in the Hamiltonian. This
way avoids the ill-defined theory of point-like charged particles. Of course, for the
sake of stability the many-body system should contain also particles of opposite
charge, but the extension of the formalism to include these is trivial.

10.1 Field Theory

In the classical field theory one defines the action A

A =
ˆ

dx
ˆ

dtL (x, t)

by a Lagrange density L (x, t) depending on some fields φi(x, t) and their first time
and space derivatives. The variational principle δA = 0 gives rise to the generalized
Euler–Lagrange equations

∂

∂t

δL

δφ̇i(x, t)
+ ∂

∂xμ

δL

δ
∂φi(x,t)

∂xμ

− δL

δφi(x, t)
= 0.

Here the symbol ∂ means ordinary derivative, while the symbol δ means functional
derivative. Two Lagrangian densities that differ by the time derivative or by the
divergence of a function give rise to the same action and therefore are considered to
be equivalent, taking into account the vanishing of the fields at infinity.

Actually, we have already used this formalism in Sect. 4.2 in the treatment of the
classical phonon fields on the continuum.

The generalized canonical conjugate momenta for the fields φi(x, t) are defined
by

Πφi
= δL

δφ̇i

and the Hamiltonian density is

H (φ,Πφ) = −L + Πφi
φ̇i ,

provided no relations (constraints) appear between the canonical conjugate
momenta. Lagrangians with constraints however have to be handled with Dirac’s
canonical formalism that implies also a redefinition of the Poisson bracket.
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10.2 Classical Maxwell Equations Coupled to a Quantum
Mechanical Electron

The classical Maxwell equations are two with sources

∇ × B = 4π

c
j + 1

c

∂

∂t
E (10.1)

∇E = 4πρ (10.2)

and two without sources

∇B = 0 (10.3)

∇ × E = −1

c

∂

∂t
B. (10.4)

The equations without sources are automatically satisfied by the introduction of the
electromagnetic potentials

B = ∇ × A (10.5)

E = −∇V − 1

c

∂

∂t
A. (10.6)

Let us suppose, that the sources

ρ(x, t) = eψ(x, t)∗ψ(x, t) (10.7)

j(x, t) = e

2m
ψ(x, t)∗

(
−ıh̄∇ + e

c
A(x, t)

)
ψ(x, t) + c.c (10.8)

are given by a single electron (for simplicity without spin), described by the quantum
mechanical Schrödinger equation for the wave function ψ(x, t)

ıh̄
∂

∂t
ψ =

(
1

2m

(
−ıh̄∇ + e

c
A(x, t)

)2 + eV (x, t)

)
ψ. (10.9)

Using only the Schrödinger equation the sources satisfy the continuity equation
(required also by consistency)

∇j + ∂

∂t
ρ = 0. (10.10)

The electromagnetic potentials and the wave function are not uniquely defined, they
allow a simultaneous gauge transformation
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V (x, t) → V (x, t) + 1

c
χ̇(x, t) (10.11)

A(x, t) → A(x, t) − ∇χ(x, t)

ψ(x, t) → ψ(x, t)e
− ıe

h̄c
χ(x,t)

that do not change neither the Maxwell fields B, E, the sources ρ, j nor the whole
system of equations Eqs. 10.1 to 10.10.

The source-less Maxwell equations 10.3 and 10.4 are satisfied automatically in
terms of the electromagnetic potentials through Eqs. 10.5 and 10.6. Therefore, one
should concentrate only on Eqs. 10.1, 10.2, and 10.9. Then the first problem is to find
a Lagrangian giving rise to these equations in terms of the fields V (x, t), A(x, t),
and ψ(x, t) as dynamical variables (generalized coordinates). Thereafter, one has
to find the classical Hamiltonian (in the Coulomb gauge) and at the end quantize
simultaneously the electron wave function ψ(x) and the transverse vector potential
A⊥(x).

10.3 Classical Lagrange Density for the Maxwell Equations
Coupled to a Quantum Mechanical Electron

In our case, the fields are V (x, t), A(x, t), and ψ(x, t). It is easy to see that the
“photon” Lagrange density

Lph(x, t) = 1

8π

(
∇V (x, t) + 1

c
Ȧ(x, t)

)2

− 1

8π
(∇ × A(x, t))2 (10.12)

through the generalized Euler–Lagrange equations for the fields A(x, t) and V (x, t)

gives rise to the Maxwell equations 10.1, respectively, Eq. 10.2, however, without
sources.

On its turn, the Lagrangian density of the “electron”

Le(x, t) = − h̄2

2m
∇ψ∗(x, t)∇ψ(x, t) − ıh̄

2

(
ψ̇(x, t)∗ψ(x, t) − ψ(x, t)∗ψ̇(x, t)

)

(10.13)
for the field ψ(x, t)∗ gives rise to the free Schrödinger equation (uncoupled to the
e.m. fields)

ıh̄
∂

∂t
ψ(x, t) = − h̄2

2m
∇2ψ(x, t). (10.14)

In these derivations one had to use partial integration allowed by the mentioned
equivalence of Lagrangian densities.
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We shall introduce the e.m. interaction between the electron and the electromag-
netic field by the so-called minimal way, ensuring gauge invariance. It requires the
replacements

h̄

ı
∇ψ →

(
h̄

ı
∇ + e

c
A

)
ψ (10.15)

h̄

ı

∂

∂t
ψ →

(
h̄

ı

∂

∂t
+ eV

)
)ψ (10.16)

in the electron Lagrangian.
Thus, the total Lagrangian is

L = 1

8π

(
∇V + 1

c

∂

∂t
A

)2

− 1

8π
(∇ × A)2 (10.17)

− 1

2m

(
− h̄

ı
∇ + e

c
A

)
ψ∗

(
h̄

ı
∇ + e

c
A

)
ψ

− 1

2
ψ∗

(
h̄

ı

∂

∂t
+ eV

)
ψ − 1

2
ψ

(
− h̄

ı

∂

∂t
+ eV

)
ψ∗.

This is obviously gauge invariant and gives rise to the correct coupled equations.

10.4 The Classical Hamiltonian in the Coulomb Gauge

Unfortunately, the above introduced Lagrangian density Eq. 10.17 is a so-called
singular one. The time derivative of the variable V is not present in it and therefore
the corresponding canonical momentum is vanishing, i.e., we have a constraint in the
canonical formalism. Lagrangians with constraints, as we already mentioned, have
to be handled with Dirac’s canonical formalism that implies also a redefinition of
the Poisson bracket. The simplest way out is however to use the choice of the gauge
in such a way as to eliminate the spurious degrees of freedom from the Lagrangian
before we could construct a Hamiltonian.

The Coulomb gauge defined by

∇A(x, t) = 0 (10.18)

leaves only the physical transverse degrees of freedom of the photons and simulta-
neously eliminates the scalar potential in favor of the charge density

V (x, t) =
ˆ

dx ′ ρ(x ′, t)
|x − x ′| . (10.19)
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We shall construct the Hamiltonian the usual way, however, taking into account of
the above constraint and define the canonical conjugate momenta as

Πψ ≡ δL

δψ̇
= ıh̄

2
ψ∗ (10.20)

Πψ∗ ≡ δL

δψ̇∗ = − ıh̄

2
ψ (10.21)

Π
μ
A ≡ L

δȦμ
= 1

4πc

(
∂

xμ

V + 1

c
Ȧμ

)
, (μ = 1,2, 3) (10.22)

ΠV ≡ 0 (10.23)

and the Hamiltonian density is

H = −L + ΠAμȦμ + Πψψ̇ + Πψ∗ψ̇∗ (10.24)

= − 1

8π

(
∇V + 1

c
Ȧ

)2

+ 1

8π
(∇ × A)2 + 1

4πc
Ȧ

(
∇V + 1

c
Ȧ

)

+ 1

2m

(
− h̄

ı
∇ψ∗ + e

c
Aψ∗

) (
h̄

ı
∇ψ + e

c
Aψ

)
+ eV ψ∗ψ,

or (underlining also by the notation A⊥ the transverse character of the vector
potential)

H = 1

8π

(
∇V + 1

c
Ȧ⊥

)2

+ 1

8π
(∇ × A⊥)2 − 1

4π
∇V

(
∇V + 1

c
Ȧ⊥

)

+ 1

2m

(
− h̄

ı
∇ψ∗ + e

c
A⊥ψ∗

) (
h̄

ı
∇ψ + e

c
A⊥ψ

)
+ eV ψ∗ψ.

In the Hamiltonian

H =
ˆ

dxH (x)

one may use a partial integration in order to obtain

H =
ˆ

dx

[
1

8π

(
∇V + 1

c
Ȧ⊥

)2

+ 1

8π
(∇ × A⊥)2 + 1

4π
V ∇

(
∇V + 1

c
Ȧ⊥

)

+ 1

2m

(
− h̄

ı
∇ψ∗ + e

c
A⊥ψ∗

) (
h̄

ı
∇ψ + e

c
A⊥ψ

)
+ eV ψ∗ψ

]
.

Due to the transversality of the vector potential and expressing the scalar
potential through the charge density Eq. 10.19, one gets
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H =
ˆ

dx

[
1

8π

(
∇V + 1

c
Ȧ⊥

)2

+ 1

8π
(∇ × A⊥)2

+ 1

2m

(
− h̄

ı
∇ψ∗ + e

c
A⊥ψ∗

)(
h̄

ı
∇ψ + e

c
A⊥ψ

)]
,

or

H =
ˆ

dx
[

1

8π

(
E2 + B2

)
+ 1

2m

(
− h̄

ı
∇ψ∗ + e

c
A⊥ψ∗

) (
h̄

ı
∇ψ + e

c
A⊥ψ

)]
.

Apparently the Coulomb interaction disappeared, but actually it is contained in
the energy of the longitudinal electric field. Since under the integral

E2 = (∇V )2 + (
1

c
Ȧ⊥)2

and after a partial integration

(∇V )2 → −V ∇2V

we get

H =
ˆ

dx
[

1

8π

(
E2⊥ + B2

)
+ 1

2
eψ∗ψV (10.25)

+ 1

2m

(
− h̄

ı
∇ψ∗ + e

c
A⊥)ψ∗

) (
h̄

ı
∇ψ + e

c
A⊥ψ

)]
.

The first term represents the energy of the transverse “photon” field.

10.5 Quantization of the Hamiltonian

Starting from our classical Hamiltonian in Coulomb gauge Eq. 10.26, after the usual
equal-time quantization of the anti-commuting electron wave functions

[ψ(x, t), ψ+(x ′, t)]+ = δ(x − x ′)

and the introduction of the creation and annihilation operators b+
q,λ and bq,λ of

photons of polarization λ and momentum q, one defines the quantized transverse
e.m. vector potential
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A⊥(x) =
∑

λ=1,2

√
h̄c

Ω

∑
q

1√|q|e(λ)
q e−ıqx

(
bq,λ + b+

−q,λ

)
(10.26)

taken with periodical boundary conditions. This definition brings the photon part of
the Hamiltonian to a diagonal form. Here the bosonic commutators are

[
bq,λ, b

+
q′,λ′

]
= δ′

q,qδλλ′

and the unit vectors e(λ)
q are orthogonal to the wave vector q and to each other

qe(λ)
q = 0; e(λ)

q e(λ′)
q = δλλ′ ; e(λ)

q = e(λ)
−q; (λ, λ′ = 1, 2).

With these ingredients and the normal ordering of the operators, one gets the non-
relativistic QED Hamiltonian

HQED =
∑
q,λ

h̄ωqb+
q,λbq,λ (10.27)

+
ˆ

dxN

[
1

2m

(
− h̄

ı
∇ψ+(x) + e

c
A⊥(x)ψ+(x)

) (
h̄

ı
∇ψ(x, t) + e

c
A⊥(x)ψ(x)

)]

+ 1

2

ˆ
dx

ˆ
dx′ψ+(x)ψ+(x′) e2

|x − x′|ψ(x′)ψ(x),

where according to the general recipe of second quantization a normal ordering
N(. . .) had to be introduced also with respect to the photon creation and annihilation
operators b+

q,λ, bq in the Hamiltonian, and the photon frequency is ωq = c|q|.
This non-relativistic QED Hamiltonian coincides with the standard one obtained

directly from the second quantized Hamilton operator of electrons interacting with
a classical electromagnetic field in the Coulomb gauge, after the quantization of the
transverse vector potential and adding the energy of the photons.

Our derivation has shown, how a field-theoretical treatment allows the use of the
Lagrange formalism in deriving a non-relativistic quantum mechanical many-body
theory of charged particles interacting with photons avoiding the problems linked to
point-like classical charges.

10.6 Derivation of the 1/c2 Hamiltonian

In this framework one can show that the tedious construction of Chap. 9 is indeed
equivalent to the 1/c2 approximation of the non-relativistic QED on states without
photons. Then, if we want to retain only contributions up to order 1/c2, we may omit

from the beginning the “seagull” term e2

c2

´
ψ+ψAA. Being itself of order 1/c2, it
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k p
q

p+qk−q

Fig. 10.1 The basic current–current (transverse photon exchange) graph in QED

may have only even higher order non-vanishing matrix elements in this subspace
and besides the standard Coulomb term one is left only with the photon-current
interaction − 1

c

´
i⊥A.

In the S-matrix theory of adiabatic perturbations within this subspace, any
Feynman diagram may be constructed using only the Coulomb vertex Fig. 3.3 and
the basic graph having four electron legs and two current-photon vertices connected
by a photon propagator as shown in Fig. 10.1. This graph differs from that of Fig. 3.3
by two features: the wavy line corresponds to the transverse photon propagator in
the 4-dimensional Fourier space ω, q

1

q2 − ω2/c2 − ı0
(δμ,ν − qμqν

q2
); (μ, ν = 1, 2, 3)

and the vertices contain momentum factors −ı eh̄
m

pμ, −ı eh̄
m

pν due to the replace-
ment of the charge densities by the currents. After neglecting the term −ω2/c2 in
the denominator of the photon propagator (i.e., ignoring retardation and implicitly
eliminating corrections of higher order as 1/c2 already contained in the vertex
parts), the photon propagator looks as

1

q2 (δμ,ν − qμqν

q2 ); (μ, ν = 1, 2, 3).

Since no pole survived, the −ı0 term could have been also ignored. Then one may
convince oneself that this graph coincides with the basic vertex of the S-matrix of
the 1/c2 theory including the transverse current–current interaction of the previous
section.

Strange enough, although the non-relativistic QED and its correct 1/c2 approx-
imation were well-known already in the sixties of the last century, they were used
only in the treatment of the optical phenomena and completely ignored in the
treatment of magnetism.
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