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Preface to the Second Edition

Rereading my own text some time after the publication, I felt the need to add
certain supplementary material. Although it was difficult to do it within a few
pages, I introduced a short description of the many-body adiabatic perturbation
theory including Feynman diagrams. This is not intended to teach the respective
techniques largely described in many textbooks, but at least to get a vague idea
about them. It may serve also as a memo refreshing critically the basic ideas
for those who already are acquainted with it. The chapter about transport theory
got more important extensions. The solvable model of an electron in a d.c. field
interacting with both optical and acoustical phonons has now been discussed in more
detail, since it is very important for understanding irreversibility and dissipation. A
subsection about the nonmechanical kinetic coefficients and another one about the
derivation of the Seebeck coefficient in hopping transport typical for amorphous
semiconductors were added. I also felt it necessary in the “Optical Properties”
chapter to give an example about the proper use of the linear response in the
presence of Coulomb interactions, illustrated by the derivation of the Nyquist
theorem. The chapter on phase transitions was largely extended. It includes now
a description of the Bose condensation in real time within the frame of a rate
equation, as well as the excitation spectrum of repulsive bosons within Bogoliubov’s
s.c. model at zero temperature. The extension to its time-dependent version leads
after a next simplifying approximation to the Gross–Pitaevskii equation for the
condensate. The discussion of the microscopic model of superconductivity was
supplemented with that of the Bogoliubov–de Gennes equation. The book ends
now with two new chapters giving a broader view of the electrodynamics of the
particles in the solid state. One of them is an extension of the basic solid-state
Hamiltonian now including current–current interactions of order 1/c2 starting from
the classical electrodynamics of point-like particles. The second one is a field-
theoretical Lagrangian formulation of non-relativistic QED, which is necessary
to understand both classical and quantum mechanical electrodynamics. Its 1/c2

approximation on states without photons justifies the previous approach. Of course,
some improvements in the text have been made, as well as some new figures were
introduced, wherever I felt it necessary.
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vi Preface to the Second Edition

I kept the original idea of this book to restrict the discussion to self-consistent
topics, which may be clearly presented to a graduate student. In this sense, I omitted
several important new developments.

Oberursel, Germany Ladislaus Alexander Bányai
October 2019



Preface to the First Edition

This compendium emerged from my lecture notes at the Physics Department of the
Johann Wolfgang Goethe University in Frankfurt am Main till 2004 and does not
include recent progresses in the field. It is less than a textbook, but rather more
than a German “Skript.” It does not include a bibliography or comparison with
experiments. Mathematical proofs are often only sketched. Nevertheless, it may be
useful to graduate students as a concise presentation of the basics of solid-state
theory.

Oberursel, Germany Ladislaus Alexander Bányai
August 2018
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Chapter 1
Introduction

A short presentation is given about how we conceive theoretically the solid
state of matter, namely about its constituents and their interactions. The
starting point is of course an oversimplified one, which afterwards one tries
to improve and even redefine it. In the opposite sense, one tries later to
simplify it in order to allow for theoretical calculations. In spite of all these
problems, one gets predictions that often may be successfully confronted
with experiments. The different chapters of this compendium are, however,
intended only to introduce the reader into the basic concepts of solid-
state theory, without the usual detours about specific materials and without
comparison with experiments.

Under solid state we understand a stable macroscopic cluster of atoms. The stability
of this system relies on the interaction between its constituents. We know today that
molecules and atoms are built up of protons, neutrons, and electrons. According to
the modern fundamental concepts of matter at their turn these particles are made
up, however, of some other more elementary ones we do not need to list here. The
simplest starting point of solid-state theory and still the only useful one is that we
have a quantum mechanical system of ions and valence electrons with Coulomb
interactions between these particles. This non-relativistic picture of a system of
charged particles, however, is valid only up to effects of order 1/c2 (c-being the
light velocity in vacuum). Actually, the charged particles are themselves sources
of an electromagnetic field, which on its turn is quantized (photons). Fields and
particles have to be treated consequently together as a single system. Nevertheless,
most of the properties of solid state are successfully described by a non-relativistic
quantum mechanical Hamiltonian

© Springer Nature Switzerland AG 2020
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2 1 Introduction

H = He +Hi +Hee +Hii +Hei .

The electron and ion HamiltoniansHe andHi include also the interaction with exter-
nal (given) electromagnetic fields, while the interaction parts (electron–electron
Hee, ion–ion Hii and electron–ion Hei) are understood as pure Coulomb ones.

Of course, one cannot ignore the spin as a supplementary degree of motion.
Sometimes, it is nevertheless compelling to include other effects of higher order
in the inverse light velocity 1/c. Even more, in the treatment of magnetic properties
one has to redefine the model by including also the spin magnetic moment of
localized electrons of atomic cores. Furthermore, it seems plausible that for the
understanding of magnetic phenomena one reaches the limitations of today’s solid-
state theory by ignoring the magnetic field produced by the currents in the solid.

An essential role in the mathematical treatment of this system plays the thermo-
dynamic limit, i.e., letting the number of particles and the volume of the system
tend to infinity, while keeping the density of particles constant. The very existence
of this limit for interacting quantum mechanical particles is not at all obvious, but
necessary for the stability of matter.

To treat such a still extremely complicated system it is necessary to make further
simplifications. Since most solids are crystals, one admits that only the valence
electrons are allowed to move over the whole crystal, while the ions at most oscillate
around their equilibrium positions in the given lattice. In a first step, one starts from
the model of rigid ions (their mass is thousands of times heavier than the electron
mass!) in a given periodical lattice and considers the motion of the electrons in a
periodic field. Actually the characteristics of the lattice should be also determined
by the above Hamiltonian, but one springs over this step. The task is still too
complicated, and one treats not the many electron system, but just one electron in
the field of ions and the self-consistent field of the other electrons. In a first step, one
considers this potential as a given one. This oversimplified picture is already able to
describe qualitatively the fundamental properties of solids. This is the one-electron
theory of solid state, which will be described in Chap. 2 of this compendium. We
make here also a first step toward the many-body treatment by considering many,
but non-interacting electrons within the second quantization scheme in metals and
semiconductors.

In Chap. 3 we consider electron–electron interactions and many-body approx-
imation schemes. Lattice oscillations and their interaction with the electron are
discussed in Chap. 4. An important part of traditional solid-state theory concerns
transport and optical properties. These will be presented, respectively, in Chaps. 5
and 6. We describe there also some new aspects related to the interaction with
strong ultra-short laser pulses. Phase transformations, one of the most fascinating
properties of solids we discuss in some important examples in Chap. 7. As a single
modern subject we discuss in Chap. 8 some exotic properties of two-dimensional
semiconductor structures, without touching the intricate theories of the quantum
Hall effect. My policy was through all this compendium to describe only the most
transparent theories, without claiming completeness.



1 Introduction 3

As a complement to this introduction we round up in Chap. 9 the review of solid-
state theory with a glimpse at a further possible extension including 1/c2 magnetic
current–current interaction terms in the basic Hamiltonian. A deeper understanding
of the many-body theory of solid state, including also its previous extension
requires, however, an insight into the non-relativistic quantum electrodynamics
(QED). This is made accessible within a field theoretical Lagrangian approach in
Chap. 10.

The compendium ends with two appendices. In Chap. 11 we give an overview of
the concepts of theoretical physics we use. It is only a reminder and it is supposed
that the reader is familiar with all of them. Further, in Chap. 12 some homeworks
are proposed for the interested reader.



Chapter 2
Non-Interacting Electrons

Most properties of a crystal may be interpreted as the quantum mechanical
motion of a single electron in a given potential. After the simplest cases of
motion in homogeneous electric and magnetic fields with emphasis on the
thermodynamic limit, an extended treatment of the motion in a periodical
potential is given. The Bloch oscillations observed in periodical semiconduc-
tor layers are also included. The ground state occupation of the one-electron
states leads to the understanding of the different classes of materials, as
metals, insulators, and semiconductors. The properties of the latter are
strongly influenced by the presence of impurities. The controlled presence of
donors and acceptors determines the properties of semiconductor contacts
discussed on the example of a p–n contact.

2.1 Free Electrons

In the frame of quantum mechanics, the stationary state (wave function) of a free
electron in the whole space is described by a plane wave

ψ(x) = eıkx

having a continuous energy spectrum (kinetic energy) depending only on k = |k|

ε(k) = h̄2

2m
k2 (0 < k <∞).

© Springer Nature Switzerland AG 2020
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This state is not normalized
ˆ
dx|ψ(x)|2 = ∞

i.e., it is not a true eigenfunction.
Since we want to deal with true eigenfunctions and to consider systems with a
definite volume (for simplicity a cube of size L3) we may look for eigenfunctions
in the product form ψ(x) = φ1(x1)φ2(x2)φ3(x3) with two possible choices of
boundary conditions in each dimension.
We may impose on the wave function φ(x) either to

(a) vanish at the boundary (Dirichlet): φ(±L
2 ) = 0, then one gets symmetrical

and anti-symmetrical eigenfuntions

φk(x)
s =

√
2

L
cos(kx)

(
k = (2n+ 1)

π

L
; n = 0, 1, 2, · · ·

)

φk(x)
a =

√
2

L
sin(kx)

(
k = n2π

L
; n = 1, 2, 3, · · ·

)

or
(b) to be periodical: φ(x + L) = φ(x), then the eigenfunctions are

φk(x) = 1√
L
eıkx

(
k = n2π

L
; n = ±1,±2, · · ·

)
.

The energy in both cases is given by εk = h̄2

2mk
2, however, with the above

given discrete eigenvalues. The wave functions φk(x) are normalized in the
interval [−L

2 ,
L
2 ].

It is convenient to work with variant (b), since these eigenfunctions are also
eigenfunctions of the momentum operator

−ıh̄ ∂
∂x
φk(x) = h̄kφk(x).

One has orthonormality (with the “bra” and “ket” symbols of Dirac)

< k|k′ > ≡
ˆ L

2

−L
2

dxφk(x)
∗φk′(x)

= 1

L

ˆ L
2

−L
2

dxe(k
′−k)x =

ˆ 1
2

−1
2

dye2π(n′−n)y = δk,k′

as well as the completeness of Fourier series.
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The electrons are fermions with spin 1
2 . The spin projection on the arbitrary

chosen z-axis σ has two eigenstates with eigenvalues ± 1
2 and therefore the electron

states (“kets”) we have to consider are

|k, σ >,

with the quantum numbers k = (k1, k2, k3), σ = ± 1
2 . However, the energy of the

free electron is spin-independent.
If one wants to consider states with many electrons, then according to the Pauli

principle for fermions one must build up anti-symmetrized products of one-electron
wave functions. It is, however, advantageous to use the formalism of occupation
numbers characterizing a many-electron state by the occupation numbers of the
one-electron states k, σ . Due to the same Pauli principle these occupation numbers
nk,σ may take only the values 0, and 1. This follows automatically from the anti-
symmetry of the wave function in the configuration space. The total energy and total
momentum of such a many-electron state are

E =
∑
k,σ

nk,σ εk,σ ; P =
∑
k,σ

nk,σ h̄k

with the occupation numbers and one-electron energies

nk,σ = 0, 1; εk,σ = h̄2

2m
k2,

while the total number of electrons is

N =
∑
k,σ

nk,σ .

If one wants to study bulk properties of macroscopic matter (independent of the
surface!), one has to perform the thermodynamic limit that means in this case

L→ ∞, N → ∞,

while keeping constant the average density of electrons

〈n〉 = 〈N〉
L3 .

By this infinite volume limit procedure, the discrete sums go over into Riemann
integrals. With Δki = 2π

L
one has

∑
k

Δk →
ˆ
dk,
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or otherwise stated

∑
k

→ L3

(2π)3

ˆ
dk.

Since the one-electron energy is monotonously increasing with k ≡ |k|, the ground
state of a many-electron system is obviously the one with the one-electron states
completely occupied up to a certain wave vector kF

nk,σ = θ(kF − |k|).

The energy of an electron with this wave vector εF ≡ h̄2

2mk
2
F is called the Fermi

energy.
In thermodynamic equilibrium at a given temperature and chemical potential,

described by the macro-canonical distribution the probability of a many-electron
state specified by the set of occupation numbers ν ≡ nk1,σ1 , nk2,σ2 , . . . is given by

Pν = e−β(Eν−μNν)∑
ν′ e−β(Eν′−μNν′ )

,

where β = 1
kBT

, kB is the Boltzmann constant, T is the absolute temperature, and
μ is the chemical potential. The average occupation number of an one-electron state
k, σ is then

〈nk,σ 〉 =
∑
ν

Pνnk,σ

=
∑
n=0,1 ne

−β( h̄2
2mk

2−μ)n
∑
n=0,1 e

−β( h̄2
2mk

2−μ)n

= 1

1 + eβ( h̄2
2mk

2−μ)
≡ f ( h̄

2

2m
k2),

where

f (ε) = 1

1 + eβ(ε−μ)

is the Fermi function giving the average number of electrons in a state with energy
ε. The total average number of particles is

∑
σ=± 1

2

∑
k

f (
h̄2

2m
k2) = 〈N〉
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z
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Fig. 2.1 Free one-electron state density z(ε)

and in the thermodynamic limit (after dividing by the volume L3 of the system)

2

(2π)3

ˆ
dkf (

h̄2

2m
k2) = 〈n〉.

This equation determines the chemical potential μ at a given temperature T and
average density 〈n〉. By introducing the one-electron state density

z(ε) ≡ lim
L→∞

1

L3

∑
k,σ

δ(ε− h̄2

2m
k2) = 2

(2π)3

ˆ
dkδ(ε− h̄2

2m
k2) = 1

2π2h̄3 (2m)
3
2 ε

1
2

(shown in Fig. 2.1) it may be rewritten as

ˆ
dεz(ε)f (ε) = 〈n〉.

The average electron energy is

〈ε〉 = 1

〈n〉
ˆ
dεz(ε)f (ε)ε .
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One distinguishes two regimes:

(i) degenerate, with a big positive chemical potential βμ 
 1, which in the
extreme case at T = 0 gives rise to a step-like Fermi function

f (ε)|T=0 = θ(εF − ε),

the Fermi energy εF being defined by μ|T=0K = εF > 0 and the average
one-electron energy is

〈ε〉|T=0 = 3

5
εF .

(ii) non-degenerate, with βμ � 1, which in the extreme case of a negative chemical
potential with βμ� −1 leads to the Boltzmann distribution

f (ε) ≈ e μ−ε
kBT

and the average one-electron energy

〈ε〉 ≈ 3kBT

2
.

An illustration of the shape of degenerate and non-degenerate Fermi functions
is given in Fig. 2.2.

2.2 Electron in Electric and Magnetic Fields

The non-relativistic Hamiltonian of an electron in the presence of given (external)
electromagnetic fields is

H = 1

2m

(
p + e

c
A
)2 − eV .

The scalar and vector potentials V, A are related to the electric and magnetic fields
by

E = −∇V − 1

c
Ȧ; B = ∇ × A.

It is important to remark that the first term in the Hamiltonian is actually the usual
kinetic energy since ṙ = 1

m

(
p + e

c
A
)
.
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Fig. 2.2 Degenerate with βμ = 8 (magenta) and non-degenerate with βμ = 1 (blue) Fermi
functions

2.2.1 Homogeneous, Constant Electric Field

A homogeneous, constant electric field may be described by different choices of the
potentials, for example,

V (r) = −rE and A = 0

or

V (r) = 0 and A = −cEt.

In the second choice one gets a time-dependent Hamiltonian. Due to gauge
invariance, the physical results are independent of the choice, but it is rather
convenient to work in the first gauge with the time-independent Hamiltonian

H = − h̄
2

2m
∇2 + erE.

Then, with E = (E, 0, 0) only the motion along the x-axis is affected by the electric
field while the transverse motion is still described by plane waves. The solutions of
the stationary Schrödinger equation with the energy −∞ < ε <∞
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Fig. 2.3 Airy function

(
− h̄

2

2m

d2

dx2 + eEx − ε
)
φε(x) = 0

are the Airy functions (seen in Fig. 2.3)

φε(x) = 1√
π

ˆ ∞

0
dq cos

(
1

3
q3 + qξ

)
; ξ ≡

(
x − ε

eE

)(2mE

h̄2

) 1
3

.

Although in this gauge we found stationary states, it makes no sense to look for
equilibrium since the energy spectrum is unbounded from below and these states
are not eigenfunctions in the usual sense since they are not normalized

ˆ ∞

−∞
dx|φε(x)|2 = ∞

and the energy spectrum is continuous. This is related to the fact that already a
classical electron is accelerated in a homogeneous, constant electric field. This
aspect we may recover also in the quantum mechanical theory if we write the above
Hamiltonian in the momentum representation:

H(p) = p2

2m
− ıeh̄E

∂

∂p
.



2.2 Electron in Electric and Magnetic Fields 13

Then the Heisenberg equation of motion for the momentum

ṗ = eE
follows.

2.2.2 Homogeneous, Constant Magnetic Field

Let us choose the homogeneous, constant magnetic field along the z-axis

B = (0, 0, B)

and the vector potential in the Landau gauge A = (0, Bx, 0). Then the Hamiltonian
of the electron looks as

H = − h̄
2

2m

∂2

∂x2 + 1

2m

(
−ıh̄ ∂

∂y
− e

c
Bx

)2

− h̄2

2m

∂2

∂z2 .

One looks for the stationary solution of the Schrödinger equation in the form

ψky,kz (r) = Φ(x)e
ı(kzz+kyy)√
LzLy

.

Then Φ(x) has to satisfy the equation

[
− h̄

2

2m

∂2

∂x2
+ 1

2
mω2

c (x −X)2 − ε + h̄2k2
z

2m

]
Φ(x) = 0.

As usual, one chooses periodical boundary conditions along the y- and z-axes.
Therefore, kz = 2πnz

Lz
, ky = 2πny

Ly
with integer nx, ny . Here

ωc = |e|B
mc

is the frequency of the cyclotron oscillation,

X = sign(e)�2
Bky

is the x coordinate of the center of the cyclotron motion, while

�B =
√
h̄c

|e|B
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is the “magnetic length.” As it may be seen, the problem is not completely
separable, in the sense that the motion along the x-axis depends also on the quantum
numbers of the motion along the other axes. The normalized (on the whole x-axis!)
eigenfunctions of this Schrödinger equation are given by

Φn,X(x) = 1√
�B
e−x2/2�2

BHn((x −X)/�B)

where Hn(x) are the Hermite polynomials and the corresponding eigenenergies are
quantized (oscillator values), but degenerate with respect to X

εn,X,kz, = h̄2k2
z

2m
+ h̄ωc(n+ 1

2
) (n = 0, 1, 2, . . .).

The oscillator ground state eigenfunction Φ0,0(x) with �B taken as unit length is
shown in Fig. 2.4. In the x-direction the boundary is not fixed. One might, however,
restrict the coordinate X to a certain domain −Lx/2 ≤ X ≤ Lx/2 in order to
get approximate boundaries in the sense that at distances much bigger than the
magnetic length far away the wave function is very small. Typical for these Landau
functions is that the energy does not depend either on the quantum number X or on
kx . However, if one imposes Dirichlet (vanishing) boundary conditions at ±Lx/2,
the first degeneracy is lifted.

–4 –2 2 4

0.2

0.4

0.6

0.8

1.0

Fig. 2.4 The ground state Landau function Φ0,0(x)
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Another convenient way to impose a “confinement” along the x axis is to
introduce an oscillator potential barrier

V (x) = m

2
ω2

0x
2.

The solution is again the usual Landau function, however, the cyclotron frequency
gets replaced by

ω̃ =
√
ω2
c + ω2

0

and the cyclotron center coordinate X gets replaced by

X̃ = ω2
c

ω̃2X.

In this way, the degeneracy with respect to X is lifted and the eigenenergies are
given by

ε
n,X̃,kz

= h̄2k2
z

2m
+ h̄ω̃(n+ 1

2
)+ mω2

0

2
X̃2 (n = 0, 1, 2, . . .).

Nevertheless, whenever effects at the boundaries do not play an essential role, it is
mostly convenient to work with the Landau functions.

In the presence of the magnetic field it is also very important to take into account
that one has an additional spin-dependent energy −2σμBB, where μB = eh̄

2mc is
the Bohr magneton and the projection of the spin on the z axis may take two values
σ = ± 1

2 .

2.2.2.1 Magnetization

Since in the case of the magnetic field by restricting the cyclotron center as
we mentioned before, we may construct normalized eigenfunctions with discrete
spectrum bounded from below and we may look for equilibrium properties. For
this sake let us consider the one-electron state density, where we took into account
that the spin of the electron along the magnetic field may take two possible values
σ = ± 1

2 :

z(E) = 1

LxLyLz

∑
kz,ky ,n,,σ

δ(E − h̄2k2
z

2m
− h̄ωc(n+ 1

2
)+ sz2μBB).

By performing the thermodynamic limit we have to take into account that by
limiting the range of the center of the cyclotron motion X implicitly |ky | ≤ Lx

2�2
B

.
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Then we get in the thermodynamic limit

z(E) = 1

(2π)2�2
B

√
2m

h̄2

∞∑
n,σ

θ(E − h̄ωc(n+ 1
2 )+ σ2μBB)√

E − h̄ωc(n+ 1
2 )+ σ2μBB

.

Obviously, one has a singular behavior at certain discrete periodical values of the
energy E (see Fig. 2.5, where the unit of energy was taken to be h̄ωc and a red line
shows the state density in the absence of the magnetic field). For sake of simplicity,
the spin is ignored in the figure. Anyway, at very low temperatures all the spins
are oriented along the magnetic field. This gives rise to typical oscillations of the
equilibrium magnetization as function of 1

B
(de Haas van Alfven effect).

Let us consider now a many-electron system in equilibrium. The equilibrium
magnetization is defined as the derivative of the free energy F with respect to the
magnetic field

M = − 1

LxLyLz

∂F

∂B
.

The free energy is related on its turn to the thermodynamic potential F and the
average number of particles 〈N〉 by

F = F + μ〈N〉.

z(E)

E

1 2 3 4 5 6

2

4

6

8

Fig. 2.5 State density z(E) in magnetic field
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In the macro-canonical equilibrium, we have

F = −kBT ln
{
Sp
(
e−β(H−μN))}.

With the short-hand notation i for the one-electron Landau state quantum numbers
and ni = 0, 1 for this occupation number we get

F = −kBT ln

{ ∑
n1,n2,...

e−β
∑
i (εi−μ)ni

}

= −kBT ln
{
Πi

[
1 + e−β(εi−μ)

]}

= −kBT
∑
i

ln
[
1 + e−β(εi−μ)

]

= −kBT LxLyLz
ˆ
dεz(ε) ln

[
1 + e−β(ε−μ)

]
.

The average electron density 〈n〉 on its turn is defined by the one-electron state
density and the average occupation number of the states given by the Fermi function

f (ε) ≡ 1

1 + eβ(ε−μ) ,

〈n〉 =
ˆ
dεz(ε)f (ε)

and

F =
ˆ
dεz(ε)

(
−kBT ln

[
1 + e−β(ε−μ)

]
+ μ 1

1 + eβ(ε−μ)
)
.

Thus, the magnetic field dependence of the one-particle state density (at a fixed
chemical potential μ) determines the magnetization.

2.2.3 Motion in a One-Dimensional Potential Well

Let us consider here a simple one-dimensional problem of quantum mechanical
motion in a static potential well. We have discussed already, how the energy
spectrum of the free propagating particle can be conveniently discretized by
Dirichlet boundary conditions at x = ±L

2 . Actually, this corresponds to the motion
in an infinitely high potential well that does not allow the penetration inside the
potential barrier. The purpose was to recuperate later the thermodynamic limit at
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L→ ∞ while keeping the average particle density constant. Now we shall consider
here a potential well of finite height U0 and in order to avoid confusions with the
previous problem we denote here the finite width of the well with a.

The stationary Schrödinger equation we consider is

{
− h̄

2

2m

d2

dx2
− eV (x)

}
ψ(x) = Eψ(x),

with the potential

−eV (x) =
{

0 f or |x| ≤ a
2

U0 > 0 f or |x| > a
2

shown in Fig. 2.6.
The solutions inside the well are trigonometric functions sin(kx) and cos(kx)

with k2 = 2m
h̄2 E, while outside the well, choosing vanishing conditions at x → ±∞

these are, respectively, ekx for x < 0 and e−kx for x > 0, with k2 = 2m
h̄2 |U0 −

E|. Imposing the continuity of the wave function ψ(x) and its derivative ψ ′(x) at
x = ± a

2 , as well as the normalization condition
´∞
−∞ |ψ(x)|2dx = 1 one gets the

transcendent equations for the eigenvalues of the even and odd solutions

tan(ka) =
√
C2 − (ka)2
ka

,

respectively,

Fig. 2.6 Potential well
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Fig. 2.7 Energy levels in the well for C2 = 38

tan(ka) = − ka√
C2 − (ka)2 ,

where

C2 = 2ma2

h̄2 U0.

The resulting energy spectrum consists of a finite number of discrete energies below
U0. For C2 = 38 they are illustrated in Fig. 2.7. The shown levels correspond
alternately to symmetric and anti-symmetric states. Of course, one has always a
continuum above the barrier.

2.3 Electrons in a Periodical Potential

Periodical potentials in a crystal play a central role. The main properties
of solids may be understood starting from the peculiarities of the quantum
mechanical electron motion in a periodical potential.
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2.3.1 Crystal Lattice

Most of the solid-state devices are made out of crystals and a theoretical treatment
of periodical structures is much easier than that of disordered structures. In what
follows we shall discuss only such solids with a periodical structure.

A crystal is characterized first of all by a translation symmetry of the (average)
positions R of the atoms. Such a symmetry is defined by a 3D Bravais lattice

R = n1a1 + n2a2 + n3a3; (n1, n2, n3 = 0,±1,±2, . . . ) .

The three vectors a1, a2, a3 define the elementary cell, whose repetition covers all
the atoms. Its choice is not unique, but should contain the minimal possible number
of atoms. An illustration of a Bravais lattice with a single atom in the elementary
cell is shown in Fig. 2.8, for the sake of simplicity in 2D. An example of a more
complicated elementary cell with two atoms is given in Fig. 2.9. One illustrates
other possible choices of the elementary cell (see the arrows!). The volume of the
elementary cell is given by

v = a1 · (a2 × a3)

and does not depend on the choice of the elementary cell. The elementary cell may
contain different atoms and there are also crystals with elementary cells containing
hundreds of atoms.

Fig. 2.8 Illustration of a crystal lattice in 2D, with two different choices of the elementary cell
(indicated by the green, respectively, blue arrows)
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Fig. 2.9 Illustration of a Bravais lattice with an elementary cell of two atoms in 2D

The discrete translational symmetry is not the only possible symmetry of a
crystal. It may be symmetric also with respect to certain rotations or mirrorings.
In what follows we shall consider only the periodicity, which determines the basic
properties of any crystal. The unit vectors a1, a2, a3 are not orthogonal to each other
(except in a cubic crystal), therefore it is useful to introduce also a dual basis (called
“reciprocal”) by

b1 = 2π

v
a2 × a3

b2 = 2π

v
a3 × a1

b3 = 2π

v
a1 × a2.

Then we have the orthogonality of the two dual unit vector sets:

bi · aj = 2πδi,j .

One may define also a reciprocal lattice created by the new basis vectors. A vector
K of this reciprocal lattice is defined by

K = m1b1 +m2b2 +m3b3; (m1,m2,m3 = 0,±1,±2, . . . ).

The volume of the elementary cell of this lattice vBZ called Brillouin zone (BZ) is
related to that of the elementary cell of the original lattice v by
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νBZ = b1 · (b2 × b3) = (2π)3

a1 · (a2 × a3)
= (2π)3

v
.

The following relations also hold:

R · K = 2π(n1m1 + n2m2 + n3m3)

eıR·K = 1

1

v

ˆ
v

dreır·K = δK,0.

Any periodical function f on the lattice (f (r) = f (r + R)) may be expanded in
Fourier series

f (r) =
∑

K

f̃Ke
ır·K

with the Fourier coefficients

f̃K = 1

v

ˆ
v

drf (r)e−ır·K.

2.3.2 Bloch Functions

Let us now consider the Hamiltonian of an electron

H = − h̄
2

2m
∇2 + U(r)

in a periodical potential

U(r) = U(r + R).

Here we want to exploit just those general features that emerge from the periodicity.
The stationary states are solutions of the equation

Hψ = Eψ.

Since a perfectly periodical crystal has an infinite extension, the stationary solutions
(like the plane waves in free space) cannot be normalized, and in this sense, they are
not true eigenstates. From the periodicity it follows that the shifted wave function
ψ(r + R) must be a stationary state with the same energy E and (in the absence of
degeneracy) it may differ from the unshifted one only by a phase factor
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ψE(r + R) = eıφRψE(r).

It follows immediately the additivity of the phase

φR1+R2 = φR1 + φR2

and therefore one may write

ψE(r + R) = eıkRψE(r)

with a real vector k. According to the previous definition of the reciprocal lattice, k
and k + K are equivalent, since the scalar product RK is a multiple of 2π . One may
thus write the wave function in the form

ψk(r) = eıkruk(r)

where uk(r) is periodical

uk(r + R) = uk(r)

and the wave vector k belongs to the elementary cell of the reciprocal lattice. We
choose it as the cell at the origin (BZ) defined as the domain

k2 ≤ (k − K)2

of k-vectors closer to the origin as any non-vanishing vector K of the reciprocal
lattice. Even in the case of degeneracy one may choose the wave functions in this
Bloch form. (This stems from the fact that the translations are an abelian group with
one-dimensional irreducible representations.)

Thus, beside the energy we have the wave vector k for the characterization of the
Bloch states. Of course, other quantum numbers must be considered, which we shall
denote by n. These quantum numbers are discrete and are called—band indices.

2.3.3 Periodical Boundary Conditions

Just like in the case of the free electrons it is comfortable to impose some boundary
conditions to get a discrete spectrum. In the case of a crystal lattice one chooses a
periodical boundary condition compatible with the lattice periodicity

ψ(r + Niai ) = ψ(r)
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with some integer Ni (i = 1, 2, 3). The parallelepiped with the edges Niai is
called basic volume Ω . From the definition, it follows that the condition

Niai · k = 2πm; (m = 0,±1,±2, . . .)

has to be satisfied in order to recover the same phase factor of the Bloch function
and therefore the wave vector k may take only discrete values

k = n1

N1
b1 + n2

N2
b2 + n3

N3
b3; (n1, n2, n3 = 0,±1,±2, . . .).

Of course, to obtain physically relevant results for a bulk crystal one has to remove
the dependence on these artificial boundary conditions by taking the infinite volume
limit. One sees that as Ni (i = 1, 2, 3) increases, the elementary step of the wave
vectors k goes to zero, therefore in the limit of infinite basic volume in all directions
one has

1

N1N2N3ν

∑
k∈BZ

−→ 1

(2π)3

ˆ
BZ

d3k.

The introduction of the periodical boundary conditions allows the orthonormaliza-
tion of the Bloch functions

ˆ
Ω

drψk,n(r)∗ψk′,n′(r) = δk,k′δn,n′ .

Now, the integration over the basic volume Ω is equivalent to a summation over all
the elementary cells and the integration over each cell. With

ψk,n(r) = 1√
N
eıkruk,n; N ≡ N1N2N3

the orthonormality may be written also as

1

N

∑
R∈Ω

eı(k−k′)R
ˆ
v

dreı(k−k′)ruk,n(r)∗uk′,n′(r) = δk,k′
ˆ
v

druk,n(r)∗uk′,n′(r),

where we used the periodicity of the Bloch part and the relation

1

N

∑
R∈Ω

eıkR = δk,0

stemming from the identity
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1

M

M−1∑
n=0

xn = 1

M

1 − xM

1 − x =
{

0 if m �= 0
1 if m = 0

,

with x ≡ eı 2πm
M ; (m = 0, . . . ,M − 1). Thus,

ˆ
v

druk,n(r)∗uk,n′(r) = δn,n′

and therefore the Bloch parts uk,n(r) form for each k an orthonormalized set and at
any fixed k one has a discrete spectrum.

2.3.4 The Approximation of Quasi-Free Electrons

Let us write the Schrödinger eigenvalue equation in the periodical potential U(r) in
Fourier components

uk(r) =
∑

K

ũk,Ke
ıK·r

U(r) =
∑

K

ŨKe
ıK·r,

where ŨK = Ũ∗
−K follows from reality of the potential and the wave vector k here

is restricted to the Brillouin zone. After multiplication with e−ıK·r and integration
of r over the elementary cell the equation looks as

[
h̄2

2m
(k + K)2 − EK(k)

]
ũk,K +

∑
K′
ŨK−K′ ũk,K′ = 0.

Let us consider first an empty lattice U(r) = 0. The corresponding states and
eigenenergies are

ψ
(0)
k,K(r) = 1√

N
eıkru

(0)
k,K(r), u

(0)
k,K(r) = 1√

v
eıKr,

respectively,

E
(0)
K (k) = h̄2

2m
(k + K)2; k ∈ BZ.
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The “bands” indicated by the vectors K of the reciprocal lattice are shown in
Fig. 2.10 for K = −2π, 0, 2π, (with lattice constant a = 1) in the case of an
one-dimensional lattice.

It is important to remark again that at fixed k the spectrum is discrete. One
sees the degeneracy of the “bands” at k = ±π and at k = 0. The main role
of the perturbation by a small periodical potential U(r) will be in lifting these
degeneracies. As we shall see on an exactly soluble one-dimensional example, after
the lifting of the degeneracy the top of the lowest band and the bottom of the upper
band get extrema with vanishing derivative.

2.3.5 The Kronig–Penney Model

We consider here explicitly the solvable one-dimensional periodical potential model
(see Fig. 2.11)

V (x) =
{

0 n(a + b) < x < n(a + b)+ a; n = 0,±1,±2, . . .
U0 n(a + b)− b ≤ x ≤ n(a + b).

Actually one has to solve the problem in the elementary cell (0 < x < l,≡ a+b)
and thereafter extend it overall by the Bloch condition. For E < U0 the solution is

–3 –2 –1 1 2 3

20

40

60

80

Fig. 2.10 The first folded free electron bands in 1D
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Fig. 2.11 The Kronig–Penney periodic potential

Ψ (x) = cII1 e
iκ2x + cII2 e

−iκ2x; 0 < x < a

Ψ (x) = cI1e
κ1x + cI2e−κ1x; a < x < l

κ2
1 = 2m

h̄2
E, κ2

2 = 2m

h̄2
|U0 − E|.

At first one must ensure the continuity of the wave function and its derivative at
x = a

Ψ (a − 0) = Ψ (a + 0)

Ψ ′(a − 0) = Ψ ′(a + 0).

Further one has still to fulfill the Bloch condition

Ψ (0)eıkl = Ψ (l)

Ψ ′(0)eıkl = Ψ ′(l) .

These conditions lead to a system of four linear homogeneous equations for the
four coefficients c

I

1, c
II
1 , c

I

2, c
II

2 . The existence of a solution implies a transcendent
equation for the energy as function of the wave vector k (energy bands). ForE < U0
it looks as

cosh κ2b cos κ1a + κ2
2 − κ2

1

2κ1κ2
sinh κ2b sin κ1a = cos k(a + b).
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For E > U0 trigonometric functions are the solution and the above discussed
boundary conditions lead then to the transcendent equation

cos κ1b cos κ2a − κ2
1 + κ2

2

2κ1κ2
sin κ1b sin κ2a = cos k(a + b)

where, however,

κ2
1 = 2m

h̄2
E, κ2

2 = 2m

h̄2
|E − U0|.

These equations may be easily solved numerically. The lowest four bands are shown
in Fig. 2.12 by the choice of the parameters U0 = 38, b = 0.25a.

Fig. 2.12 The lowest four

energy bands (here 2ma2

h̄2 E) of
the Kronig–Penney model
with
b = 0.25a, 2ma2

h̄2 U0 = 38 for

0 < k(a + b) < π
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Fig. 2.13 The lowest four

energy bands (here 2ma2

h̄2 E) of
the Kronig–Penney model

with b = a, 2ma2

h̄2 U0 = 38 for

0 < k(a + b) < π . (Bands
below U0 here in red)

One sees here the scenario described in the previous section. The bands of the empty
lattice are split, and one gets extrema with vanishing derivatives.

It is instructive to remark here that as the distance between the wells b increases
the bands under U0 flatten (in our case the lowest two) and get close to the energy
levels of the isolated well, while the upper bands get closer to those of the empty
lattice. This is illustrated in Fig. 2.13 with the increased distance b = a between the
wells. (The range of the wave vector is limited here for the sake of convenience to
0 < k(a + b) < π .) This result corresponds to the known fact that far away atoms
have the spectrum of the isolated atoms, however, with a degeneracy equaling the
total number of atoms.
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2.3.6 Band Extrema, kp: Perturbation Theory and Effective
Mass

The stationary Schrödinger equation for the Bloch functions describing the energy
bands (indexed by some quantum numbers n)

[
− h̄

2

2m
∇2 + U(r)− En(k)

]
ψn,k(r) = 0

after inserting

ψn,k(r) = eıkrun,k(r);

gives rise to the Bloch equation

[
− h̄

2

2m
∇2 + U(r)− ıh̄2

m
k∇ + h̄2

2m
k2 − En(k)

]
uk,n(r) = 0 .

For any fixed k this is a true eigenvalue equation with discrete eigenvalues. The
eigenfunctions uk,n(r) due to the Bloch property

un,k(r + R) = un,k(r)

may be considered just in the elementary cell with periodical boundary conditions.
Therefore, they may form a complete orthonormalized set in the cell

ˆ
v

drun,k(r)∗un′,k(r) = δn,n′

∑
n

un,k(r)un,k(r′)∗ = δ(r, r′) .

Let us assume that for a given k0 the eigenfunctions un,k0(r) and eigenenergies
En(k0) are known.

For a small deviation |k − k0| → 0, one may consider − ıh̄2

m
(k − k0)∇ as a small

perturbation. In the absence of degeneracy, standard perturbation theory gives

un,k(r) = un,k0(r)+
∑
n′ �=n

< n′,k0| h̄2(k−k0)∇
ım

|n,k0 >

En(k0)− En′(k0)
un′,k0(r)+ · · ·
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and

En(k)− h̄2

2m
k2 = En(k0)− h̄2

2m
k2

0+ < n,k0| h̄(k − k0)

ım
∇|n,k0 >

+
∑
n′ �=n

∣∣∣< n,k0| h̄2(k−k0)∇
ım

|n′,k0 >

∣∣∣2
En(k0)− En′(k0)

+ · · ·

with the “bra-ket” notation

< n,k0|∇|n′,k0 >≡
ˆ
v

drun,k0(r)
∗∇un′,k0(r) .

It follows then for the derivative of the energy at k = k0

∂En(k)
∂k

|k=k0 =< n,k0| h̄
2

ım
∇|n,k0 > .

Since k0 for the time being is arbitrary, the relation holds for any k and we get for
the average velocity

〈v〉 ≡
ˆ
v

drψn,k(r)∗
h̄

ım
∇ψn,k(r) = 1

h̄

∂En(k)
∂k

.

Now let us assume that the point k0 is a band extremum. Then the linear terms in
the energy vanish and

En(k) = En(k0)+ h̄2

2

(
1

M

)
μν

(k − k0)μ(k − k0)ν + · · · ,

where
(

1

M

)
μν

= 1

m
δμν + 2

m2

∑
n′ �=n

< n, 0|h̄∇μ|n′, 0 >< n′, 0|h̄∇ν |n, 0 >
En(0)− En′(0)

+ · · ·

is the inverse effective mass tensor. In the case of the cubic symmetry with the
extremum at k0 = 0 this looks as

En(k) = En(0)+ h̄2

2m∗ k
2 + · · ·

and one has an isotropic effective mass m∗. This effective mass may be positive
or negative, depending on the nature of the extremum (maximum or minimum).
Therefore, depending on the sign of the effective mass, the average velocity
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〈v〉 = h̄

m∗ k

may be either in the direction of the wave vector k or opposite to it.
We have seen on the example of the one-dimensional Kronig–Penney model that

band extrema occur at k = 0,±π
a

. Most of the important properties of crystals are
determined by the extrema of some of the energy bands we shall discuss later.

2.3.7 Wannier Functions and Tight-Binding Approximation

A useful concept in the treatment of motion in a periodical potential are the Wannier
functions defined through the Bloch functions of a given band n by

wnR(r) ≡ 1√
N

∑
k∈BZ

ψn,k(r)e−ıkR = 1√
N

∑
k∈BZ

un,k(r)eık(r−R) .

They constitute a complete orthonormalized system of functions

ˆ
Ω

drwnR(r)∗wn′R ′(r) = 1

N

∑
k,k ′∈BZ

eı(kR−k ′R ′)
ˆ
v

drψn,k(r)∗ψn′,k ′(r)

= 1

N

∑
k∈BZ

eık(R−R ′)δn,n′ = δn,n′δR,R ′

and

∑
n,R

wnR(r)∗wnR(r ′) = δ(r, r ′).

The inverse transformation is

un,k(r) = 1√
N

∑
R

eık(r−R)wn,R(r).

The Wannier functions, however, are not eigenfunctions of the Hamiltonian. If
un,k(r) is a smooth function of k, then wnR(r) vanishes rapidly for |r − R| → ∞.
Therefore, while the Bloch eigenfunctions are delocalized, the Wannier functions
are localized on the lattice nodes. Since the Wannier functions are constructed
only from the Bloch functions of a single band and considering also the discrete
translational invariance on the lattice, the matrix elements of the Hamiltonian
between the Wannier functions depend only on the vector R − R ′

< n,R|H |n′,R ′ >= δn,n′ tn(R − R ′) .
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Therefore,

< n,R|H |n,k > = 1√
N

∑
R ′
< n,R|H |n,R ′ > e−ıkR ′

= 1√
N

∑
R ′
tn(R − R ′)eıkR ′

= eıkR 1√
N

∑
R ′
tn(R ′)eıkR ′

.

On the other hand

< n,R|H |n,k > = En(k) < n,R|n,k >
= En(k)

1√
N

∑
R ′
< n,R|n,R ′ > eıkR ′

.

= eıkREn(k)
1√
N

and therefore, inverting the relation we get

En(k) =
∑

R

eıkRtn(R) .

As an illustration, let us assume that in a cubic lattice of lattice constant a the
only non-vanishing tn(R) are those to the nearest neighbors

tn(0) = cn, tn(±ax) = tn(±ay) = tn(±az) = −dn .

Then it follows:

En(k) = cn − 2dn(cos(kxa)+ cos(kya)+ cos(kza))

and in the vicinity of the origin

En(k) = cn − 6dn + dna2k2 + . . .

This defines the effective mass by h̄2

2m∗ = dna2.
One approximates often the Wannier functions by the eigenfunctions of the

isolated atom φn(r) (“tight-binding approximation”)

wnR(r) ≈ φn(r − R) .
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Within this approximation

ψn,k(r) = 1√
N

∑
R

e−ıkRφn(r − R)

or

un,k(r) = 1√
N

∑
R

eık(r−R)φn(r − R) .

It is, however, important to remark that the orthonormalization of these functions
is not fulfilled since

´
Ω
drφn(r)∗φn′(r − R), however, small, it does not vanish for

R �= 0. By this connection to the atomic wave functions one may speak about a
given band as characterized by a given symmetry of the underlying atomic states.
For example, s or p-like states, with their respective degeneracies.

2.3.8 Bloch Electron in a Homogeneous Electric Field

Let us consider a homogeneous electric field superimposed on the periodical
potential. Thus, we have a supplementary term H ′ = −eEr in the Hamiltonian.
The resulting potential looks like in Fig. 2.14. Let us choose the normalization of
the Bloch functions as

Fig. 2.14 A periodic potential and its modification due to a homogeneous electric field
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< k ′, n′|k, n >= v−1
BZδ(k − k ′)δn,n′ .

Since in the infinite volume limit N δk,k ′ → vBZδ(k − k ′), this normalization
corresponds in the discretized version to < k ′, n′|k, n >= Nδk,k ′δn,n′ . Then

´
drψk ′,n′(r)∗rψk,n(r) = ´ dreı(k−k ′)rruk ′,n′(r)∗uk n(r)

= −ı ∂
∂k

´
drψk ′,n′(r)∗ψk,n(r)+ ı

´
dreı(k−k ′)ruk ′,n′(r)∗ ∂

∂kuk,n(r)

= −ıv−1
BZ

∂
∂kδ(k − k ′)δn,n′ + ı∑R e

ı(k−k ′)R ´
v
dreı(k−k ′)ruk ′,n′(r)∗ ∂

∂kuk,n(r)

= −ıv−1
BZ

∂
∂kδ(k − k ′)δn,n′ + ıvBZδ(k − k ′)

´
v
druk,n′(r)∗ ∂

∂kuk,n(r).

If one ignores inter-band matrix elements as well as the intra-band energy correc-
tion, we get the approximate expression for the matrix elements of H ′:

< k ′, n′|H ′|k n >≈ −ıv−1
BZeE

∂

∂k
δ(k − k ′)δn.n′ .

Consequently, we obtain in the k space an effective one-band Hamiltonian (in each
band)

H ′
eff ≡ E(k)− ıeE ∂

∂k

and in the same representation the following Heisenberg equation of motion for the
k-vector

h̄k̇ = eE

results.
Due to the periodicity of the band energy E(k), after a time T = 2πh̄

eaE the
electron crosses the whole Brillouin zone and will be reflected at its boundary.
Therefore, unlike the accelerated motion of a free electron, the electron in a
crystal performs Bloch oscillations with the frequency ω = 2π

T . However, these
oscillations in a real crystal are not observable since due to the smallness of the
lattice constant the Bloch period T is much bigger than the relaxation time due
to the interaction with other perturbations of the lattice (phonons, impurities).
The Bloch period itself cannot be shortened by the increase of the field strength
due to the here neglected inter-band transitions, which may become important in
strong electric fields. Nevertheless, Bloch oscillation may be observed in artificial
periodical semiconductor structures with large lattice constants.

As in the case of the free electrons in a homogeneous field we may reinterpret
these results in terms of stationary states (Wannier–Ladders). The stationary
Schrödinger equation within our approximations looks as
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[
E(k)− ıeE ∂

∂k
− ε

]
ψ̃(k) = 0

or

E
E

∂ ln ψ̃(k)
∂k

= ı

eE
(ε − E(k)).

Choosing the field along the x-axis we get

ψ̃(k) = ψ̃(0,k⊥) exp

{
ı

eE

ˆ kx
0
dqx (ε − E(qx,k⊥))

}
.

We must still implement the periodic boundary condition for the wave function in
the k space. Taking into account the periodicity of the band energy E(k) (implying
the vanishing of its integral over the Brillouin zone). This is achieved by fixing the
eigenenergies

εm(k⊥) = eaEm+ const. (m = 0,±1,±2, . . .).

Then the difference between two successive energy levels is

εm+1(k⊥)− εm(k⊥) = eaE .

It corresponds to the energy associated to the Bloch frequency ω = 2π
T .

As an example, let us consider a simple one-dimensional Bloch spectrumE(k) =
Δ(1 − cos(ka)). Then εm = eaEm + Δ and the wave function in real space
(illustrated in Fig. 2.15 for m = 0) is

ψm(x) = const.
ˆ π

a

− π
a

dk exp

{
−ık(x −ma)− ıΔ

eE
sin(ka)

}
.

2.4 Electronic Occupation of States in a Crystal

The occupation of the one-electron states in the periodical potential by as
many electrons as ions at low temperatures determines the nature of the solid.
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Fig. 2.15 Stationary state of the Wannier ladder

2.4.1 Ground State Occupation of Bands: Conductors and
Insulators

We have discussed until now the nature of states of an electron in a crystal. However,
the properties of the material are essentially determined by the occupation of these
states. According to their electric conductance one classifies the crystals as metals
or insulators. On the basis of the discussed one-electron spectra of crystals one may
already understand the basic difference. The ground state of the electrons (T = 0)
in a crystal results from the successive occupation of the lowest one-electron states
in the bands. In this ground state corresponding to zero temperature, the highest
band may be either partially or completely filled. In the first case, a small external
perturbation can excite the electrons, while in the latter case, due to the forbidden
states above them (band gap), only a strong perturbation may excite them. The
partially filled band is called conduction band, while the last completely filled band
is called valence band. The first case defines a conductor (metal), while the second
defines an insulator (dielectric). The two situations are illustrated in the simple case
of a direct band gap, when both the maximum of the valence band and the minimum
of the conduction band lie at k = 0 on Fig. 2.16. The red color indicates the occupied
states in the bands.

However, there is a very important sort of dielectrics, the semiconductors.
They behave as insulators at very low temperatures, while at higher temperatures,
they behave as conductors. In this case the band gap is so small that at room
temperatures already a lot of electrons are thermally excited into the conduction
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Fig. 2.16 Band filling in metals and insulators

Fig. 2.17 Band filling in a semi-metal

band. In the presence of impurity states in the band gap, we shall discuss later, the
number of excited electrons in the conduction band is even more important, and the
conductivity may be relevant even at low temperatures.

Beside the above discussed cases, by crystals with indirect gaps, where the
maximum of the valence band and the minimum of the conduction band occur at
different values of k, it may happen that the later lies higher than the former. This
band occupation at T = 0 of a semi-metal is schematically shown in Fig. 2.17.

2.4.2 Spin–Orbit Coupling and Valence Band Splitting

The discussion of the band structure of crystals is treated usually within the frame
of the non-relativistic Schrödinger equation. However, there are often important
corrections to be made due to relativistic effects. Most of the so-called direct gap
semiconductors, having the maximum of the valence band and the minimum of the
conduction band at k = 0, within this frame get a non-degenerate conduction band
and a threefold degenerate valence band. In a tight-binding approximation these
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may be considered as made up of s, respectively, p atomic states. Of course, one has
to take into account also the spin degeneracy. However, actually the valence band
states are split due to relativistic effect of the spin–orbit interaction. This interaction
is invariant against simultaneous rotation of the orbital angular momentum l and of
the spin σ . Therefore, one has to classify the valence band states according to the
states of the total angular momentum J ≡ l+σ . From them = 0,±1 orbital angular
momentum states and the σz = ± 1

2 spin states one has to construct the eigenstates
of the total angular momentum J = 3

2 , Jz = ± 1
2 ,± 3

2 and J = 1
2 , Jz = ± 1

2

|3

2
,±3

2
> = ∓ |1,±1 > |1

2
,±1

2
>

|3

2
,±1

2
> = ∓ 1√

3

(
|1,±1 > |1

2
,∓1

2
> ∓√

2|1, 0 > |1

2
,±1

2
>

)

|1

2
,±1

2
> = ∓ 1√

3

(√
2|1,±1 > |1

2
,∓1

2
> ±|1, 0 > |1

2
,±1

2
>

)
.

The phenomenological effective mass Luttinger Hamiltonian for the valence
bands used in applications for crystals having the cubic symmetry

H = − h̄2

2m0

(
p2 +m1(pJ)2 +ΔJ(J + 1)− 5

4

)

describes three double degenerate valence bands around k = 0. In Fig. 2.18 such a
split valence band structure is shown schematically.

so lh

c

hh

Fig. 2.18 Split valence bands
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2.5 Electron States Due to Deviations from Periodicity

2.5.1 Effective Mass Approximation

Let us consider a deviation from the crystalline periodicity due to a non-periodical
potential V (r) that varies slowly on the scale of the lattice constants. It may be due
to a defect in the lattice or a foreign atom. Then we may approximate

< n,R|V |n′,R ′ >=
ˆ
dxwnR(r)∗V (r)wn′R ′(r) ≈ V (R)δn,n′δR,R ′ .

We may look for the eigenstates in the presence of both the periodical potentialU(r)
and this potential V (r) in terms of Wannier functions

1√
N

∑
R

χ(R)wnR(r) .

The eigenvalue equation then looks as

∑
R ′

(
Ẽ(R − R ′)+ (V (R)− ε)δR,R ′

)
χ(R ′) = 0

with

Ẽn(R) ≡ tn(R) = 1

N

∑
k

En(k)eıkR .

On the other hand, if we introduce the interpolating function

χ(r) ≡
∑

k∈BZ
eıkrχ̃ (k)

for all r, then

∑
R ′
Ẽ(R − R ′)χ(R ′) =

∑
k

En(k)χ̃(k)eıkR

=
∑

k

χ̃ (k)En(−ı∇)eıkr|r=R = En(−ı∇)χ(r)|r=R .

Assuming that χ̃(k) vanishes rapidly far away from the band extremum at k0, where
the expansion

En(k) ≈ En(k0)+ h̄2

2m∗ (k − k0)
2 + . . .
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is valid and defining χ(r) = eık0rϕ(r) we get the Schrödinger equation with the
effective mass m∗

{
En(k0)− h̄2

2m∗ ∇2 + V (r)− ε
}
ϕ(r) = 0 .

Under the above assumptions we have also

1√
N

∑
R

χ(R)wnR(r) ≈ ϕ(r) 1√
N

∑
R

eık0RwnR(r) = ϕ(r)un,k0(r) .

2.5.2 Intrinsic Semiconductors at Finite Temperatures

Since the importance of semiconductors in modern technological applications
is overwhelming we devote more space to their discussion. Pure semiconductor
materials, without impurities are called intrinsic. Here the last two relevant bands
(valence and conduction bands) are neither completely filled nor empty at ordinary
temperatures. The electronic occupation of the Bloch states with wave vector k and
spin σ in equilibrium at inverse temperature β is described by the Fermi distribution

fn,k,σ ≡ 〈nn,k,σ 〉 = 1

eβ(εn,k,σ−μ) + 1
.

It is meaningful to define the conduction band electrons as “true” electrons

f ek,σ ≡ fc,k,σ = 1

eβ(εc,k,σ−μ) + 1
,

while in the valence band it is useful to define the population by the holes (absence
of valence band electrons). With these definitions at T = 0 we have no holes and
no electrons, i.e., an electron–hole vacuum. As we shall see later, this terminology
is extremely useful.

At the band edges of a direct gap semiconductor we have in the effective mass
approximation the electron energy (in the conduction band) as

εek = εc,k,σ = 1

2
Eg + h̄2

2m∗
e

k2 (m∗
e > 0),

while we may define the energy of a hole (in the valence band) as

εhk = −εv,−k,−σ = 1

2
Eg + h̄2

2m∗
h

k2 (m∗
h = −m∗

v > 0).
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This last definition corresponds to the fact that removing an electron of charge
e < 0, spin σ , wave vector k, and energy εv,k,σ is equivalent to adding a particle
with charge −e > 0, spin −σ , wave vector −k and energy −εv,−k,−σ . Thus, holes
may be looked at as positively charged particles with positive effective mass. In a
homogeneous electric field, they would be accelerated accordingly.
The average number of conduction electrons and holes is the same, i.e., the system
is electrically neutral

∑
k,σ

f ek,σ =
∑
k,σ

f hk,σ .

If the electron–hole occupation of states far away of the band extrema is negligible,
one may extrapolate the effective mass approximation overall and we have in the
thermodynamic limit

1

(2π)3

ˆ
dk

⎡
⎣ 1

e
β( h̄

2k2
2me

+ 1
2Eg−μ) + 1

− 1

e
β( h̄

2k2
2mh

+ 1
2Eg+μ) + 1

⎤
⎦ = 0.

Since the band gap is still much bigger than the thermal energy (βEg � 1) one may
approximate the Fermi distribution through its non-degenerate limit and therefore

1

(2π)3

ˆ
dk
[
e
−β( h̄2k2

2me
+ 1

2Eg−μ) − e−β( h̄
2k2

2mh
+ 1

2Eg+μ)
]

= 0.

These integrals may be solved exactly and give rise to a chemical potential sitting in

the gap at μ = 3
4kBT ln

(
mh
me

)
and the average number of each of the newly defined

particles (carrier density) is

〈n0〉 = √
2π(memh)

3
4 (βh̄2)−

3
2 e−

1
2βEg .

2.5.3 Ionic Impurities

Let us see now what kind of modifications are introduced in the spectrum by putting
an extra positive or negative ion in the crystal. Obviously, a minor modification of
the continuous bands is not relevant. However, extra discrete states in the forbidden
gap may be very important. Therefore, vicinities of band extrema must be looked up.
Let us consider a positive ion in the origin. The stationary Schrödinger equation for
an electron in the effective mass approximation in the neighborhood of a conduction
band minimum is
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{
Ec − h̄2

2m∗ ∇2 − e2

ε|r| − E
}
ϕ(r) = 0 (m∗ > 0),

where ε is the dielectric constant of the crystal andEc denotes the energetic position
of the band minimum. The ground state energy of this hydrogen-like Coulomb
problem is well known to be given by the Rydberg energy ER , here modified by
the replacement of the electron mass by his effective mass m∗ and the presence
of the dielectric constant ε of the semiconductor. The binding energy here is the
distance of the discrete level from the conduction band

E − Ec = −ER
(
ER = e2

2εaB
; aB = εh̄2

m∗e2

)
.

The energy of this localized state therefore lies below the band minimum, also in
the gap.

In the case of a negative ion placed at the origin we may expect analogously a
new state in the band gap near a band maximum described by the equation

{
EV − h̄2

2m∗ ∇2 + e2

ε|r| − E
}
ϕ(r) = 0 (m∗ < 0)

with a negative effective mass m∗. This may be rewritten as

{
−EV − h̄2

2|m|∗ ∇2 − e2

ε|r| + E
}
ϕ(r) = 0

giving rise to the ground state energy

E − EV = ER
lying in the gap above the band maximum. These states in the forbidden energy
zone as they are illustrated in Fig. 2.19 are extremely important in the case of
semiconductors.

In most of the semi-conducting crystals the dielectric constant is much greater
than unity and the effective mass is much smaller than the true electron mass and,
as a consequence, the Bohr radius aB is much bigger than the lattice constant. Thus,
the assumption about the smoothness of the potential, as well as the use of the
macroscopic dielectric constant ε of the material are justified. On the other hand,
in a semiconductor the Rydberg energy is much smaller than the energy gap and of
course even much smaller than the hydrogenic Rydberg energy.
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Fig. 2.19 Localized states in the energy gap of a semiconductor

2.5.4 Extrinsic Semiconductors at Finite Temperatures:
Acceptors and Donors

As we already discussed, foreign ions in a semiconductor crystal lattice give rise to
localized states in the band gap. On the other hand, one includes not ions, but neutral
atoms. The question is, what happens if the atom gets ionized and losses or gains
an electron in favor of the collectivized band electrons? A foreign atom may create
a localized state just below the conduction band and remain neutral in the ground
state. This would be interpreted as a positive ion state occupied by an electron.
Another possibility is to create a localized state just above the valence band. Then
in the ground state it will lose its electron in favor of the lower lying valence band
continuum. This would be interpreted as a positive unoccupied ion. In the first case
we speak about donors, while in the second about acceptors.

Bloch states with a given wave vector k may be occupied by two electrons of
opposite spin. Double occupation of localized states, however, may be forbidden.
Indeed, the average Coulomb repulsion energy for two electrons on the same site is

U ≡ e2

ε

ˆ
dr
ˆ
dr ′ |ψ↑(r)|2|ψ↓(r ′)|2

|r − r ′| .

In the case of the Coulomb ground state (l = 0, n = 1)

ψ↑(r) = ψ↓(r) = 1√
πa3
B

e
− r
aB
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Fig. 2.20 The electron occupation FD of a donor state

the integral may be solved analytically giving rise to

U = 5

8

e2

εaB
= 5

4
ER.

Therefore, the energy of the double occupied state may differ essentially from twice
the energy of the single occupation. In this case one may write the energy of the
donor state as in terms of its occupation by electrons as

ED(n↑, n↓) = εD(n↑ + n↓)+ Un↑n↓; (n↑, n↓ = 0, 1).

The average occupation at a finite temperature is given by

〈n↑〉 ≡ 〈n↓〉 =
∑
n↑=0,1

∑
n↓=0,1 n↑e−β[ED(n↑,n↓)−μ(n↑+n↓)]

∑
n↑=0,1

∑
n↓=0,1 e

−β[ED(n↑,n↓)−μ(n↑+n↓)]

and

〈n〉 ≡ 〈n↑〉 + 〈n↓〉 = 2
e−β(εD−μ) + e−β[2(εD−μ)+U ]

1 + 2e−β(εD−μ) + e−β[2(εD−μ)+U ] ≡ FD

instead twice of the Fermi function one would have without repulsion. This new
distribution is illustrated in Fig. 2.20.
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In the extreme case of very low temperatures U
kBT

→ ∞ it gives

〈n〉 = 2
e−β(εD−μ)

1 + 2e−β(εD−μ) = 1

eβ(εD−μ−kBT ln 2) + 1
,

which looks like a Fermi function with a shifted chemical potential

μ→ μ+ kBT ln 2.

Analogously we have for the positively charged holes on an acceptor level

EA(m↑,m↓) = εA(m↑ +m↓)+ Um↑m↓; (m↑,m↓ = 0, 1)

with m↑, m↓ being the hole occupations. One has still to take into account that the
chemical potential for the holes is −μ and εA = 1

2Eg − ER .
The equation for the electro-neutrality in an extrinsic semiconductor looks therefore
as

2
∑

k

f ek +
∑
D

FD −ND = 2
∑

k

f hk +
∑
A

FA −NA.

This equation may be solved for the chemical potential only numerically. As
illustration, we show on Fig. 2.21 the one-electron state density and its occupation
in an n-type semiconductor with more donors (D) as acceptors (A) at T = 0. The
green filling shows the (simple or double) occupation of the states. The donor states
lying higher in energy lose some of their electrons in favor of the acceptor sates.

Fig. 2.21 State density in a compensated n-type semiconductor at T = 0
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2.6 Semiconductor Contacts

Until now we discussed only bulk properties of solids; however, phenomena at
the interfaces play an overwhelming role in all solid-state devices. We describe in
the following two such simple cases: the penetration of a static electric field in a
semiconductor and the contact between an n-type extrinsic semiconductor and a p-
type extrinsic semiconductor of the same crystal. In both cases thermal equilibrium
is assumed.

A consequent quantum mechanical discussion of these problems would be
extremely difficult. A finite semiconductor is not a periodical crystal and the
eigenstates and eigenenergies differ from that of the infinite one. A simplified quasi-
classical approach, however, has proved to be very successful. We need to describe
a situation in which the quantum mechanical nature of the crystals, as well as
macroscopic inhomogeneities must be reconciled. The basic object here to consider
is the Wigner function depending on the momentum p and coordinate x. It is defined
as

f (p, x, t) =
ˆ
dye

ıpy
h̄ 〈ψ(x + 1

2
y, t)+ψ(x − 1

2
y, t)〉,

whereψ(x, t) is the second quantized wave function and 〈. . .〉 means averaging over
a given ensemble. This implies the normalization

ˆ
dx
ˆ

dp
(2πh̄)3

f (p, x, t) = 〈N〉,

where N is the operator of the total number of particles. It may be shown that all the
averages of operators which are a sum of two operatorsO(x, h̄

ı
∇) ≡ A(x)+B( h̄

ı
∇)

depending on the coordinate, respectively, on the momentum may be expressed as
the integrals

〈O(x, h̄
ı
∇)〉 =

ˆ
dx
ˆ

dp
(2πh̄)3

f (p, x, t)O(x,p).

However, generally speaking f (p, x) is neither real, nor positive. Nevertheless, in
the quasi-classical limit (h̄ → 0) it may be shown that it will be real and positive.
The Hamiltonian of a particle in the presence of a potential U(x)

H = − h̄
2∇2

2m
+ U(x)

has the above described structure.
One assumes tacitly that the corresponding Wigner function in this quasi-

classical limit, in thermal equilibrium is given again by the Fermi distribution



48 2 Non-Interacting Electrons

f (p, x) = 1

e
β
(
p2
2m+U(x)−μ

)
+ 1

in the phase space (x, p).

2.6.1 Electric Field Penetration into a Semiconductor

In a previous discussion we have admitted implicitly that a homogeneous constant
electric field may be created in an infinite crystal. This is an extreme idealization. It
is well known that metals screen out static electric fields, while in a semiconductor,
it may still penetrate at a finite macroscopic depth. We shall discuss here this last
case within the quasi-classical approach. Let us consider the surface of an intrinsic
semiconductor characterized by a dielectric constant ε and an equal number N of
electrons and holes in the macroscopic volume Ω . Their density in equilibrium n0
is determined by the band gap Eg and the temperature T and for Eg 
 kBT it is

n0 ≡ N/Ω ∼ e−
Eg

2kBT .
Let us consider that the semiconductor occupies the half space x > 0. The static
electric potential V(x) satisfies he Poisson equation outside

∇2V (x) = 0 (x < 0)

respectively, inside the semiconductor

ε∇2V (x) = −4πρ(x) (x > 0),

where ρ(r) is the charge density of carriers (electrons and holes). In the presence of
an external electric field E the potential outside the semiconductor is

V (x) = −E x + const. (x < 0) .

While in the absence of the field the charge density vanishes, in the presence of the
field in equilibrium at a finite temperature it is determined self-consistently by the
potential itself. In a quasi-classical approach (at high temperatures) the Maxwell–
Boltzmann distribution gives the probability density of a state r, v in the phase space

f (v, x) = e−β(mv
2

2 +eV (x))
´
dv′ ´ dx ′e−β(mv

′2
2 +eV (x ′))

.

This defines the equilibrium charge density of electrons and holes as
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ρe,h(x) = ±eN e
∓ eV (x)
kBT

´
dr ′e∓

eV (x ′)
kBT

.

Under the assumption that the potential vanishes deep in the semiconductor, the
integral in the denominator is proportional to the volume Ω and for a macroscopic
volume we get approximately

ρe,h(x) = ±en0e
∓ eV (x)
kBT

and for eV � kBT we have the charge density

ρ(x) = ρe(x)+ ρh(x) = −2en0
eV (x)
kBT

.

Therefore, we get the self-consistent equation

ε∇2V (x) = 8πe2n0

kBT
V (x)

for the determination of the potential inside the semiconductor. By introducing the
Debye length

LD ≡
√
kBT ε

8πe2n0

the equation looks as

∇2V (x)− 1

L2
D

V (x) = 0.

Now we must still consider the electromagnetic boundary condition

∂V (x)

∂x
|x=−0 = ε ∂V (x)

∂x
|x=+0.

to connect the solutions inside and outside. This gives rise to

V (x) = E
LD

ε
e
− x
LD

for x > 0 and it is illustrated in Fig. 2.22.
To conclude: Due to the screening by the carriers, the field penetrates at a

depth LD into the semiconductor. At room temperatures, this Debye length may
be of order of centimeters and therefore our macroscopic treatment, as well as the
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Fig. 2.22 Penetration of the potential into the semiconductor

existence of a more or less homogeneous electric field inside a semiconductor gets
justified.

2.6.2 p–n Contact

Let us now consider the contact of two semiconductors of the same material, but
one of them is p-doped (i.e., with acceptors), while the other one is n-doped (i.e.,
with donors). Again, we consider the contact surface to be a plane transverse to the
x-axis at x = 0. On the left side is the p-type semiconductor, while on the right side
the n-type.

Since we want to discuss here both non-degenerate as well as degenerate cases,
we must use the quasi-classical Fermi distribution for fermions defined above.

So long the two semiconductors are kept apart, we have for the bulk materials a
homogeneous situation with the electro-neutrality condition for the electrons, holes
in the bands and the negative, respectively, positive ionized acceptors and donors.

ˆ
dp

(2πh̄)3
(fe(p)− fh(p))+ nf A− = 0

in the p-material and
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Fig. 2.23 Separated p and n semiconductors at T = 0

ˆ
dp

(2πh̄)3
(fe(p)− fh(p))− nDfD+ = 0

in the n-material. (Here fe, fh and f A− , fD+ are the Fermi distributions of electrons
and holes in the bands, respectively, on the donors and acceptors.) The chemical
potentials in these two equations μp and μn are of course different and μp < μn.

Now let us consider the simplest case of zero temperature (see Fig. 2.23). In the
ground state of the p-type semiconductor the valence band (red) is full occupied,
while the acceptor level (dotted blue line) and the conduction band (edge—blue line)
are empty, the chemical potential (green line) lies somewhere between the valence
band and the acceptor level. In the ground state of the n-type semiconductor the
valence band (edge—red line) and the donor level (dotted red line) are occupied and
the chemical potential (green line) lies between the donor level and the conduction
band.

When the contact between the semiconductors is established in thermal equilib-
rium at T = 0 one has a single system where the chemical potential μ must be the
same overall (green line). This is possible only if at the contact surface a potential
jump occurs as it is shown on Fig. 2.24.
Assuming the contact is defined by a plane transverse to the x-axis at x = 0, at any
finite temperature T one has an in-homogeneous charge density of electrons and
holes:

ρ(x) = e
ˆ

dp
(2πh̄)3

. (fe(p,x)− fh(p,x))− enDθ(x)f D+ (x)+ enAθ(−x)f A− (x)
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Fig. 2.24 p and n semiconductors in contact at T = 0

with

fe(p, x) = 1

e
β
(
p2

2me
+eV (x)+ 1

2Eg−μ
)

+ 1

fh(p, x) = 1

e
β
(
p2

2mh
−eV (x)+ 1

2Eg+μ
)

+ 1

and

f A− (x) = 1

eβ(EA+eV (x)−μ) + 1

fD+ (x) = 1 − 1

eβ(ED+eV (x)−μ) + 1
= 1

eβ(−ED−eV (x)+μ) + 1
.

Here the reference energy choice was the middle of the gap and therefore EA and
ED are the distances to the center of the gap.
The potential V (x) has to be determined self-consistently from the Poisson equation

ε
d2

dx2V (x) = −4πρ(x)

with the condition of continuity of the derivative of the potential at x = ±0:

d

dx
V (x)|x=−0 = d

dx
V (x)|x=+0
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(since the dielectric constants of the two materials were assumed to be the same).
The potential energy has to be assumed also to be continuous and therefore
V (−0) = V (+0). To solve the Poisson equation (a second order differential
equation) one still needs two initial conditions. Usually one gives the initial value of
the function and its derivative in the initial point. Here the peculiarity of the physics
defines two different conditions to impose, namely the values at ±∞, that should
correspond to the situation in the separated semiconductors. These two conditions
define uniquely the solution; however, these equations are not solvable analytically
and the numerical method to solve it must be correspondingly adapted.

We have seen before the solution for T = 0. For higher temperatures (in the
physically relevant situations this is just the room temperature) one may consider
the non-degenerate case that simplifies essentially the equations.

Indeed in the non-degenerate case the charge density is given by

ρ(x) = e

ˆ
dp

(2πh̄)3

⎛
⎝e−β

(
p2

2me
+eV (x)+ 1

2Eg−μ
)

− e−β
(
p2

2mh
−eV (x)+ 1

2Eg+μ
)⎞
⎠

+ θ(x)enDe
β(ED+eV (x)−μ) − θ(−x)enAe−β(EA+eV (x)−μ).

The integrals over the momenta may be performed and we get

ρ(x) = en0ee
−β(eV (x)−μ) − en0he

β(eV (x)−μ)

− θ(x)en0
De
β(eV (x)−μ) + θ(−x)en0

Ae
−β(eV (x)−μ),

where n0e =
(

2πh̄2

kBTme

) 3
2
e−β 1

2Eg , n0h =
(

2πh̄2

kBTme

) 3
2
e−β 1

2Eg , and n0
D = nDeβED ,

n0
A = nAe−βEA . (Actually, only the non-degeneracy of the distribution in the bands

is essential for this step!)
We may require a total charge neutrality on both sides (no macroscopic polariza-
tion!). Taking into account that the potential differs from constants V (±∞) only in
a finite domain in the vicinity of the contact, we may write

e
(
n0ee

−β(eV (−∞)−μ) − en0he
β(eV (−∞)−μ) + n0

Ae
−β(eV (−∞)−μ)) = 0

e
(
n0ee

−β(eV (+∞)−μ) − eneβ(eV (+∞)−μ)
h − n0

De
−β(eV (+∞)−μ)

)
= 0.

So long the semiconductors were separated both equations were satisfied with
V (±∞) = 0 and the chemical potentials μp, respectively, μn of the two materials,
respectively.
After the contact has been established one may still choose V (−∞) = 0 and
therefore, since far away from the contact the position of the chemical potential
relative to the bands has to be the same as before, one must take μ ≡ μn. On the
other hand, the same must be true at x → ∞ for the other semiconductor. It follows
that simultaneously μ ≡ μn + eV (∞). Therefore eV (∞) = μp − μn. Then, not
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Fig. 2.25 βeV (x) in the non-degenerate case (with c = 3)

only the electro-neutrality is overall satisfied, but also the charge density vanishes
at x → ±∞ and all the parameters are well defined.
The non-degenerate solution obtained numerically for the simplified symmetrical
case of nA = nD shows on a convenient length scale a smoothing of the potential
drop at the contact as in Fig. 2.25 with the choice c ≡ 1

2β(μn − μp) = 3.
To conclude, the p–n contact in equilibrium creates a potential barrier for the

carriers. An application of an external electric potential either lowers or increases
this barrier and therefore the current flow depends on the applied polarity. The p–n
contact acts as a rectifier.



Chapter 3
Electron–Electron Interaction

The potential a valence electron feels in a crystal is not a predetermined
one. The electrons interact with each other by Coulomb forces and the one-
electron theory is to be understood at most in the sense of a self-consistent
approximation. Diagrammatic perturbation theory may lead to higher many-
body corrections. In a semiconductor an electron in the conduction band may
move “freely,” while in the valence band the same is true for the holes (absent
electrons). This leads to the picture of an electron–hole plasma. A single
electron–hole pair by Coulomb attraction may be bound to an exciton with
hydrogen-like spectrum.

3.1 The Exciton

3.1.1 Wannier Exciton

Until now we discussed the electron states and their occupation in a periodical lattice
under the assumption of no interaction between the electrons. We nevertheless made
an exception to correct the double occupation of the localized states. In this chapter,
we shall discuss other many-electron aspects. The next simplest problem is the
Coulomb attraction between a conduction band electron and a valence band hole
in a semiconductor. Obviously these two may form a bound state, called exciton. As
in the description of the impurity states we use the effective mass approximation in
the neighborhood of the band extrema. By separating the center of mass motion

Ψ (re, rh) = φ(rCM)χ(rrel)
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rCM ≡ m∗
ere +m∗

hrh
m∗
e +m∗

h

; rrel ≡ re − rh

φ(rCM) = 1√
V
eıkCMrCM ,

the relative motion is described by the Wannier equation

{
− h̄

2

2μ
∇2 − e2

ε|r| + Eg − E
}
χ(r) = 0,

where the reduced mass is given by 1
μ

= 1
m∗
e

+ 1
m∗
h

. As it is well known from the

hydrogen atom problem, the eigenstates are characterized by the quantum numbers
n = 1, 2, . . . , l = 0, 1 . . . , m = 0 ± 1, . . . , while the eigenenergies depend
only on the main quantum number n. The ground state wave function is

ψ1,0 = 1
√
πa

3
2
B

e
− r
aB

with the ground state energy

Exn = Eg − ER ,

where the Bohr radius and the Rydberg energy are

aB = h̄2ε

e2μ
, ER = e2

2εaB
.

However, as we already discussed by the ionic impurity states, the scales of
energy and radius are essentially different from that of the hydrogen atom due to
the difference in the masses and the dielectric constant.

This state may not be represented in the one-particle state density (it does not
belong to the one-electron states), but may be seen in the absorption spectrum. For
higher lying states of the pair the above described approximation is, however, not
appropriate.

3.1.2 Exciton Beyond the Effective Mass Approximation

We shall describe here an alternative way to treat the exciton states without using the
effective mass approximation. The Hamiltonian of the conduction band electrons
and valence band holes of spin σ in the second quantization formalism may be



3.1 The Exciton 57

defined either through the creation/annihilation operators of the Bloch or of the
Wannier states

H0 =
∑
σ=±1

∑
α=e,h

∑
k∈BZ

εα(k)a
+
α,σ,kaα,σ,k

=
∑
σ=±1

∑
α=e,h

∑
R,R′

tα(R − R′)a+
α,σ,Raα,σ,R′ ; (α = e, h) .

Here εα(k) (α = e, h) are the band energies of electrons respectively, holes. The
Hamiltonian of the Coulomb attraction between the electrons and holes, while being
defined through the charge densities, is easily expressed in terms of the second
quantized wave functions

Heh = −
∑
σ,σ ′

ˆ
dx
ˆ
dx′ψe,σ (x)+ψe,σ (x)

e2

|x − x′|ψ
+
h,σ ′(x′)ψh,σ ′(x′) .

The second quantized wave functions of conduction band electrons or valence band
holes of spin σ may be again defined through the annihilation/creation operators
either of Bloch states or Wannier states

ψα,σ (x) =
∑

k

eıkxuαk(x)aα,σ,k =
∑

R

wα(x,R)aα,σ,R ; (α = e, h).

In the Wannier version one may use the fact that the Wannier functions are strongly
localized on the lattice nodes in order to introduce a simplifying approximation.
Namely, to retain in the charge density operator only the terms corresponding to the
local densities on the nodes, i.e.,

Heh ≈−
∑
σ,σ ′

∑
R,R′

ˆ
dx
ˆ
dx′|we(x,R)|2 e2

|x − x′| |wh(x,R
′)|2a+

e,σ,Rae,σ,Ra
+
h,σ,R′ah,σ,R′ .

Furthermore, since the Coulomb potential varies slowly on the scale of the
elementary cell we may even write

Heh ≈ −
∑
σ=±1

∑
σ ′=±1

∑
R�=R′

e2

|R − R′|a
+
e,σ,Rae,σ,R′a+

h,σ ′,R′ah,σ ′,R

−
∑
σ=±1

∑
σ ′=±1

ceh
∑

R

a+
e,σ,Rae,σ,Ra

+
h,σ ′,Rah,σ ′,R .

Here we have separated the on-site terms R = R′ since in that case one has still to
compute the finite integral
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ceh =
ˆ
dx
ˆ
dx′|we(x,R)|2 e2

|x − x′| |wh(x,R)|
2 .

One may encounter two extreme cases:

(i) either the on-site term ceh dominates, and one may ignore the inter-site terms
(Frenkel exciton) with the lattice Hamiltonian

HFrenkel =
∑
σ=±1

∑
α=e,h

∑
R,R′

tα(R − R′)a+
α,σ,Raα,σ,R′

−
∑
σ=±1

∑
σ ′=±1

ceh
∑

R

a+
e,σ,Rae,σ,Ra

+
h,σ ′,Rah,σ ′,R ,

(ii) or the inter-site term dominates and we get the Wannier Hamiltonian

HWannier =
∑
σ=±1

∑
α=e,h

∑
R,R′

tα(R − R′)a+
α,σ,Raα,σ,R′

−
∑
σ=±1

∑
σ ′=±1

∑
R�=R′

e2

|R − R′|a
+
e,σ,Rae,σ,R′a+

h,σ ′,R′ah,σ ′,R.

Accordingly, in the Wannier case we get for the energy of a single electron–hole
pair the Hamiltonian matrix

hR,R′ = te(R − R′)+ th(R − R′)− e2

|R − R′| (1 − δR,R′)

or after a discrete Fourier transformation (implying that the wave vectors belong to
the Brillouin Zone)

hk,k′ = (εe(k)+ εh(k))δk,k′ − V (k − k′)

with

V (q) =
∑
R�=0

e2

|R|e
ıqR .

What we have gained is that now we included all the band states and therefore,
we may compute also, higher lying pair states influenced by the Coulomb attraction.
This is illustrated for the Wannier case in Fig. 3.1 showing the calculated exciton
state density (electron–hole pair states) with and without Coulomb interaction in
a cubic crystal, within the simplified tight-binding model with nearest neighbor
coupling (see Sect. 2.3.7). In the absence of Coulomb forces, one may remark in
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Fig. 3.1 Exciton state density in the whole band calculated within the Wannier model.(black—
without Coulomb interaction, blue—with Coulomb interaction)

the middle of the spectrum the sharp flat top (Van Hove singularity), which is a
consequence of the discontinuous jumps of the Brillouin zone.

3.2 Many-Body Approach to the Solid State

3.2.1 Self-Consistent Approximations

Until now we have tried to describe the properties of crystals only within the frame
of one-particle (or at most two-) particle states in the presence of a periodical
potential. This potential, however, may not be identified with the potential created
by the lattice of the bare ions, since the electrons at their turn screen the ions.
Each electron sees not only the ions, but also the other electrons. To apply the one-
particle treatment we need a way to define the periodical potential to be used for the
calculation of the band structure.
The most important schemes for the treatment of quantum mechanical many-body
systems are the self-consistent approximations we describe here. Within this frame
it is possible also to precise the definition of the periodic potential. (In what follows,
for the simplicity of notations, we include the coordinate r as well as the spin σ =
± 1

2 in the generalized coordinate x, whenever it is meaningful.)
We consider here a system of electrons interacting through repulsive Coulomb

forces in the presence of an external potential U(x). The later one includes the
attractive Coulomb potential of the positive ions, supposed to stay on a periodical
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lattice. The dynamics of the ions will be treated later in the chapter about phonons.
Within the second quantized formalism (see Chap. 11) the Hamilton operator of this
system is

H =
ˆ
dxψ(x)+

[
− h̄

2

2m
∇2 + U(x)

]
ψ(x)

+ 1

2

ˆ
dx

ˆ
dx′ψ(x)+ψ(x′)+ e2

|x − x′|ψ(x
′)ψ(x) .

The purpose is to reduce the problem in a first approximation to an effective one-
particle one (consisting only of products of two creation–annihilation operators) in
order to be tractable and close to the previous discussion of the quantum mechanical
motion one-particle in a periodical potential.
The simplest scheme consists in “developing” the product of two operators A and
B around their averages. Let us consider the identity

AB = A〈B〉 + 〈A〉B − 〈A〉〈B〉 + (A− 〈A〉)(B − 〈B〉) .

Or, ignoring the “fluctuation” around the average values

(A− 〈A〉)(B − 〈B〉)

we have

AB ≈ A〈B〉 + 〈A〉B − 〈A〉〈B〉.

Using this approximation for the choice A ≡ ψ(x)+ψ(x) and B ≡ ψ(x′)+ψ(x′) in
the interaction term we get the one-electron type Hartree Hamiltonian

HH ≡
ˆ
dxψ(x)

{
− h̄

2

2m
∇2 + UHeff (x)

}
ψ(x)+ constH

with the effective Hartree potential

UH
eff (x) ≡ U(x)+

∑
σ ′

ˆ
dx′ e2

|x − x′| 〈ψσ ′(x′)+ψσ ’(x
′)〉

and the Hartree constant

constH = −1

2

ˆ
dx

ˆ
dx′ e2

|x − x′| 〈ψσ (x)
+ψσ (x)〉〈ψσ ′(x′)+ψσ ′(x′)〉 .

This constant ensures that 〈HH 〉 = 〈H 〉.
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Until now we did not specify the meaning of the averages themselves. They may
be defined by their equilibrium values, i.e.,

〈ψ(x)+ψ(x)〉0 ≡ 1

T r
{
e−β(HH −μN)

}T r {e−β(HH −μN)ψ(x)+ψ(x)
}

and computed from this definition self-consistently. The result is a temperature
dependent effective one-particle spectrum with Hartree eigenfunctions and eigen-
values

{
− h̄

2

2m
∇2 + UH

eff (x)

}
φ(x) = εφ(x) .

The resulting effective Bloch spectrum in the presence of only a periodical
potential due to the fixed ions is therefore relevant for a given temperature. The
potential to be used in calculations of the Bloch functions and band spectrum in a
real crystal is this self-consistent one. One uses mostly the zero temperature (ground
state) as reference state.

However, one may tackle also a time-dependent problem within a s.c. approx-
imation, with time-dependent averages 〈ψ(x)+ψ(x)〉t with initial conditions and
additional non-periodical external potentials. In this case the Hartree Hamiltonian
is implicitly time dependent. Nevertheless, if the external potential does not depend
on time, the average energy is conserved (again due to the special role of the time-
dependent Hartree constant!)

∂

∂t
〈HH (t)〉t = 0 .

The choice of the operators A and B in our former reasoning was arbitrary.
The proper argument is, that as it may be shown, the Hartree choice gives the best
one-particle approximation for the grand canonical distribution conserving the total
number of fermions and being diagonal in the coordinates and spin.

An ever better one-particle approximation for the grand canonical distribution is
the Hartree–Fock one, allowing also for terms non-diagonal in the coordinates and
spins. The former simple arguing, however, cannot provide for it, The Hartree–Fock
approximation implies a non-diagonal effective potential

HH F ≡−
ˆ
dxψ(x)

h̄2

2m
∇2ψσ (x)+

ˆ
dx

ˆ
dx′ψ(x)+UH F

eff (x, x′)ψ(x′)+constH F

defined as

UH F
eff (x, x′) ≡ δ(x− x′)

ˆ
dy

(
e2

|x − y| 〈ψ(y)
+ψ(y)〉

)
− e2

|x − x′| 〈ψ(x
′)+ψ(x)〉



62 3 Electron–Electron Interaction

with the Hartree Fock constant

constH F ≡ 1

2

ˆ
dx

ˆ
dx′ e2

|x − x′| ×
[〈ψ(x)+ψ(x)〉〈ψ(x′)+ψ(x′)〉 − 〈ψ(x)+ψ(x′)〉〈ψ(x′)+ψ(x)〉] .

Again, it may be shown that 〈HH F 〉 = 〈H 〉 and its time-dependent variant
conserves the average energy in the absence of time-dependent external potential.
The new Coulomb term containing the non-local average 〈ψ(x′)+ψ(x)〉 is called
Coulomb exchange energy.

In both schemes, one has reduced the many-body problem to a self-consistent
one-particle problem. However, for the treatment of some phase transitions with
spontaneous symmetry breaking of the particle number conservation (like in the
case of Bose condensation or superconductivity we shall discuss in Chap. 7) one
needs generalizations of the Hartree–Fock scheme in keeping also particle number
non-conserving averages as 〈ψ(x′)ψ(x)〉.

3.2.2 Electron Gas with Coulomb Interactions

As a simple illustration of the Hartree–Fock approximation we consider here a gas
of electrons that interact through Coulomb forces, without any periodical potential at
zero temperature (ground state). To stabilize the system without losing translational
invariance one needs, however, to consider a uniform positive background to replace
the positive ions. In the absence of a magnetic field we have spin independence and
therefore,

〈ψσ (r)+ψσ ′(r ′)〉 = δσ,σ ′η(r r ′)

while from the homogeneity it follows:

η(r, r ′) ≡ η(|r − r ′|).

Then the Hartree–Fock Hamiltonian is

HH F =
∑
σ,σ ′

ˆ
dr
ˆ
dr ′ψσ (r)hH F

σσ ′ (r, r ′)ψσ ′(r ′)

hH F
σσ ′ (r, r ′) = δσσ ′

{
h0(r, r ′)+ δ(r − r ′)

ˆ
dr ′′ 〈n〉e2

|r − r ′′| − e2

|r − r ′|η(r − r ′)
}

with
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h0(r, r ′) ≡ δ(r − r ′)
(

− h̄
2

2m
∇2 + V+

)
.

The term

V+ = −〈n〉e2
ˆ
dr ′ 1

|r ′|
represents the Coulomb potential energy due to the uniform positive background
charge and 〈n〉 is the average density of electrons (〈n〉 = 2η(0)).

Of course, all the homogeneity assumptions are true only in an infinite system
and this constant potential energy V+ is divergent. However, we keep for a while
the volume finite and as we shall see, this diverging entity will compensate other
inherently diverging entities. Without the positive background contribution, the
positive energy of the Coulomb repulsion between the electrons would push them
far away, without reaching a stable state.

Due to the homogeneity, the Hartree–Fock eigenfunctions have to be plane waves

φk(r) = 1√
Ω
e−ıkr

and therefore with the step-like Fermi function θ(kF − |k|) at T = 0 the average
density is

〈ψσ (r)+ψσ ′(r ′)〉 ≡ δσ,σ ′
1

Ω

∑
|k|<kF

eık(r−r ′) .

Then the Hartree–Fock eigenvalue equation

⎧⎨
⎩− h̄

2

2m
∇2 − V++ 1

Ω

∑
|k ′|<kF

ˆ
dr ′ e2

|r − r ′|
[
2 − eı(k−k ′)(r−r ′)

]⎫⎬
⎭ e−ıkr=Eke−ıkr

just defines the energy eigenvalues Ek as

Ek = h̄2k2

2m
− e2

Ω

∑
|k ′|<kF

ˆ
dr ′eı(k ′−k)(r−r ′) 1

|r − r ′| .

Using the (improper) definition of the Fourier transform of the Coulomb potential
by the limit procedure

lim
κ→0

ˆ
dr

e2e−κr

r
eıqr = 4πe2

q2
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one gets finally

Ek = h̄2k2

2m
− e2kF

4π

(
2 + k2

F − k2

kkF
ln

∣∣∣∣k + kF
k − kF

∣∣∣∣
)
.

The total average energy of an electron of the Coulomb electron gas (per spin)
differs from that of the free electron gas in the ground state 3

5EF

〈E〉 ≡
∑

|k|<kF Ek∑
|k|<kF 1

= 3

5
EF − 3e2kF

8π

by the “exchange energy” − 3e2kF
8π .

The “exchange correlation function” given by

1

n
η(r)=1

n

∑
σ

<ψσ (0)
+ψσ ′(r)>= 1

Ω

∑
|k|<kF

e−ıkr=− 3

2(kF r)3
(kF r cos kF r− sin kF r)

defines the probability amplitude to find an electron at the distance r ≡ |r| as
function of the variable kF r and it looks as in Fig. 3.2.
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Fig. 3.2 Exchange correlation function
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3.2.3 The Electron–Hole Plasma

While the previously described model is used with reference to metals, the model
of a Coulomb interacting electron–hole plasma we describe here tries to catch the
main many-body aspects in a semiconductor. We have seen that unoccupied electron
states in a valence band with negative effective mass act as positively charged
particles (holes) with positive effective mass. The negatively charged electrons in
the conduction band (from now on just called—electrons, if not otherwise specified)
and the positively charged holes interact by Coulomb forces. The Hamiltonian of
such a plasma in terms of the second quantized wave functions of electrons and
holes

ψe,σ (r) =
∑

k

1√
Ω
eıkraekσ ; ψh,σ (r) =

∑
k

1√
Ω
eıkrahkσ

is given by

H =
∑
k,σ

(
h̄2

2me
k2 + 1

2
Eg)a

+
e,k,σ ae,k,σ +

∑
k,σ

(
h̄2

2mh
k2 + 1

2
Eg)a

+
h,k,σ ah,k,σ + E0

+ 1

2

∑
σ,σ ′

ˆ
dr
ˆ
dr ′ e2

|r − r ′|
{
ψe,σ (r)+ψe,σ ′(r ′)+ψe,σ ′(r ′)ψe,σ (r)

+ ψh,σ (r)+ψh,σ ′(r ′)+ψh,σ ′(r ′)ψh,σ (r)

− 2ψe,σ (r)+ψe,σ (r)ψ+
h,σ ′(r ′)ψh,σ ′(r ′)

}
.

Here one ignores the Bloch character of the wave functions. The electrons and holes
are considered just as free propagating particles. This Hamiltonian conserves the
number of electrons Ne as well as of the holes Nh, while the original Coulomb
interaction of the conduction and valence band electrons

1

2

ˆ
dx
ˆ
dx′ψ(r)+ψ(r ′)+ e2

|r − r ′|ψ(r
′)ψ(r)

conserves the total number of electrons in both bands, or otherwise stated it only
conserves the difference between the number of electrons and holesNe−Nh. Indeed,
the second quantized wave function of conduction and valence band electrons is by
definition ψσ (x) = ψe,σ (x) + ψh,−σ (x)+ and therefore, the Coulomb interaction
term contains not only conduction band electron and valence band hole charge
densities, but also mixed (“exchange”) terms.

However, since the Coulomb potential varies slowly within the elementary cell,
these terms are small. The matrix element of a function F(r) between Bloch states
may be written as a sum of integrals over the elementary cell v
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ˆ
druαk(r)

∗uβk ′(r)F (r) =
∑

R

ˆ
v

druαk(r)
∗uβk ′(r)F (r).

If the function F(r) varies slowly within the elementary cell, then we may replace
it by its value in the cell (v), i.e., we get

≈
∑

R

F(R)
ˆ
v

druαk(r)
∗uβk ′(r)

and further at small wave vectors

≈
∑

R

F(R)
ˆ
v

druα0 (r)
∗uβ0 (r) = δα,β

∑
R

F(R) .

In the electron–hole plasma model ignored “exchange” terms contain such integrals
with α �= β and therefore may be neglected.

Nevertheless, as we shall see later, the interaction with electromagnetic fields
(photons) may create or annihilate electron–hole pairs and this is the basic process
in the optics of semiconductors.

3.2.4 Many-Body Perturbation Theory of Solid State

Beyond the Hartree–Fock approximation one has at disposal just the diagrammatic
perturbation theory to improve it. Of course, within this frame one has developed
sophisticated methods, but the first question is how to start. In solid state theory,
it seems not too clever to consider the motion of the electrons in the field of the
rigid ions as the unperturbed problem and to treat the Coulomb interaction as a
perturbation. A better way is to start from the Hartree–Fock approximation and treat
the difference to the true Hamiltonian as perturbation. According Sect. 3.2.1

H ′ = H −HH F = 1

2

ˆ
dx

ˆ
dx′ e2

|x − x′|
{
ψ(x)+ψ(x′)+ψ(x′)ψ(x)

− 2〈ψ+(x′)ψ(x′)〉ψ+(x)ψ(x)+ 2〈ψ+(x′)ψ(x)〉ψ+(x)ψ(x′)

+ 〈ψ+(x)ψ(x)〉〈ψ+(x′)ψ(x′)〉 − 〈ψ+(x′)ψ(x)〉〈ψ+(x)ψ(x′)〉} .
In terms of the Hartree–Fock one-electron eigenstates φν(x) the second quantized
wave function of the electron in the crystal is

ψ(x) =
∑
ν

Aνφν(x)
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with Aν being the annihilation operator of the electron state with quantum number
ν. This quantum number may be the band index and wave vector of a Bloch state,
but we do not need to specify it here. In terms of these operators the Hartree–Fock
Hamiltonian is

HH F =
∑
σ

∑
ν

ενA
+
ν,σAν,σ + const.H F

We choose the Hartree–Fock ground state (T = 0) for the averages. Also all the
states with energy below the Fermi energy εν < εF being occupied, while above it
are all empty. The averages themselves are then

〈ψ+(x)ψ(x′)〉 =
∑
ν

φ∗
ν (x)φν(x

′)θ(εF − εν).

Now it is useful to introduce new electron–hole annihilation (and creation) operators
ae,ν (for εν > εF ) and ah,ν (for εν < εF ) by

Aν =
{
ae,ν (εν > εF )

a+
h,ν̃
(εν < εF ).

For the Bloch indices, if ν = n,k, σ the conjugate quantum number is ν̃ =
n,−k,−σ . Within the new description the many-body ground state |0 > is the
electron–hole vacuum

ae,ν |0 >= 0; ah,ν |0 >= 0 .

If one expresses the perturbation H ′ in terms of the electron–hole creation–
annihilation operators and performs all the necessary commutations such that all
the electron–hole annihilation operators aν are on the right side, while the creation
operators a+

ν are on the left side, then one may see that all the supplementary terms
disappear. In other words, the Coulomb terms are equivalent to the “normal ordered”
Coulomb interaction

H ′ = 1

2

ˆ
dx

ˆ
dx′ e2

|x − x′|N
[
ψ(x)+ψ(x′)+ψ(x′)ψ(x)

]
. (3.1)

Besides the simplicity of the formulation, the normal ordering helps within
the many-body adiabatic perturbation theory to simplify the Feynman diagram
technique borrowed from the relativistic quantum field theory.
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3.2.5 Adiabatic Perturbation Theory

To go beyond the Hartree–Fock self-consistent approximation for a many-body
system one has developed perturbation methods borrowed from the relativistic quan-
tum field theory. Without going into all the technical details of these sophisticated
techniques we want to describe here their main ideas. One of the reasons for this
lies in their importance in solid state calculations, but also in their demystification.

Let us consider, for example, the interaction Hamiltonian 3.1 as a small
perturbation. A convenient method to develop a successive expansion in powers
of this perturbation is to introduce it slowly adiabatic at an infinite negative time
and eliminate it again adiabatic slowly at an infinite positive time, i.e., we replace
H ′ by

H ′(t) ≡ H ′e−0|t |,

where the notation −0 indicates an infinitesimal parameter that shall be eliminated
only after performing all the time integrals. This is necessary, since otherwise the
integrals over an infinite time interval are mathematically not well defined.

It is useful then to consider the unitary evolution operator U(t, t0) in the
interaction picture, defined by the Schrödinger equation

ıh̄
∂

∂t
U(t, t0) = H ′(t)IU(t, t0),

where the perturbation in the interaction picture H ′(t)I is defined as

H ′(t)I ≡ e ıh̄H0tH ′(t)e−
ı
h̄
H0t

and of course U(t0, t0) = 1.
It can be shown that the formal solution of the above equation may be written as

a chronological product

U(t, t0) = T
{
e

− ı
h̄

´ t
t0
H ′(t ′)I dt ′

}
.

The chronological product is understood as an ordering of all the involved terms in
the expansion of the exponential according to their increasing time succession.

The central object of the theory is then the S-matrix

S ≡ U(∞,−∞) .

In the case of a time independent perturbation H ′ one assumes that the ground
state of the system evolves by the adiabatic introduction of the perturbation till any
finite time to the ground state of the interacting system, apart from a possible phase
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factor. (This remains a plausible assumption, however, without any proof!) Then
the average of any operator 〈A(t)〉 (at any finite time t) on the ground state of the
interacting system is given by

〈A(t)〉 = 1

〈S〉0
〈U(∞, t)A(t)IU(t,−∞)〉0 = 〈T {A(t)I S}〉0

〈S〉0
,

where A(t)I is the operator A in the interaction picture and the average 〈. . . 〉0 is
taken over the unperturbed ground state. The factor 1

〈S〉0
just takes care of the above

mentioned phase factor. In a similar way one may calculate averages of products of
two or more time ordered operators on the ground state of the interacting system as

〈T {A(t1)B(t2)}〉 = 〈T {A(t1)IB(t2)I S}〉0

〈S〉0
.

The first important step that enables the calculation of the S-matrix are Wick’s
theorems that express the terms of any arbitrary order in its expansion in powers
of the interaction Hamiltonian as a sum of products of normal ordered creation
and annihilation operators with c-number coefficients constructed from products
of pairwise contractions (propagators) of the remaining operators. In our case of
electrons the propagators are the averages over the unperturbed ground state of the
chronological products of the second quantized electron wave functions

ψ(x, t)ψ(x ′, t ′)+ = −ı〈{T {ψ(x, t)ψ(x ′, t ′)+}〉0 . (3.2)

In the simplest case of a Hamiltonian H0 describing a homogeneous system this
propagator depends actually only on the difference x − x ′ and t − t ′.

The next step essentially simplifying the calculations are the Feynman diagrams
and rules that allow a simple graphical representation of the c-number coefficients
and constitute a sort of modular system to assemble complicated structures. These
were borrowed from the relativistic quantum field theory. The basic elements are
the vertexes corresponding to the interaction Hamiltonian and the lines connecting
them that correspond to the particle propagators. With the help of these rules one
may perform advanced calculations including summation of certain classes of terms.

The knowledge of the S-matrix allows not only the calculations of different
averages of observables, but also more complicated characteristic entities, as the
Green functions. These are ground state averages of chronological products of
several second quantized wave functions ψ(x, t) and their conjugates that contain
important information about the excitation spectrum above the ground state.

For the sake of illustration let us consider some Feynman diagrams in the theory
of Coulomb interacting electrons gas (for simplicity ignoring spin). The Coulomb
interaction Hamiltonian in the space of plane waves with cyclic boundary conditions
looks in this case as
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H ′ =
∑

p,p′,q

2πe2

q2
a+

p a
+
p ′ap ′−qap+q . (3.3)

However, if one starts from the Hartree–Fock approximation (see Sect. 3.2.3)
including also the compensating uniform positive background charge

HH F =
∑

p

EpA
+
p Ap ,

then the second quantized electron wave functions are defined in terms of the HF
creation–annihilation operators as the second quantized wave function is

ψ(x) =
∑

p

1√
Ω
eıpxAp

and the perturbation is the normal ordered Hamiltonian

H ′ =
∑

p,p′,q

2πe2

q2 N{A+
p A

+
p ′Ap ′−qAp+q} (3.4)

with respect to the new creation and annihilation operators of “electrons above” and
“holes below” the ground state:

Ap =
{
αe,p (Ep > EF )

α+
h,−p (Ep < EF ).

The unperturbed ground state is correspondingly the “electron”–“hole” vacuum |0〉

αe,p|0〉 = 0 αh,p|0〉 = 0 .

The unperturbed propagator in the 4-dimensional Fourier space is given by the
simple expression (HF Green function)

GHF (p, ω) = 1

h̄ω − Ep + ı0sign(E(p)− EF ) (3.5)

and will be represented in the Feynman diagrams with a solid line. In the case of
the crystal with Bloch bands the expression of the propagator of course is more
complicated.

Equation 3.4 defines the vertex in the language of Feynman diagrams shown
in Fig. 3.3 with two in-going electron lines and two out-going ones, exchanging
a Coulomb dashed line carrying the momentum q according to the interaction
Hamiltonian Eq. 3.4.
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Fig. 3.3 The Coulomb
vertex
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Fig. 3.4 Zeroth and second order Σ2(p, ω) “self-energy” terms for the Green function starting
from HF

An important aspect of Wick’s theorems is that no contractions should be
taken inside normal ordered interaction Hamiltonians, like that of Eqs. 3.1 and 3.4.
Therefore the perturbation expansion in our case starts already with the second order
terms shown in Fig. 3.4.

The funny thing about the Feynman diagrams is that any connected part, once
calculated may be inserted anywhere as many times as one desires leading to a
correction of respective order. This is the modular principle we hinted before. For
example, if one considers all corrections with multiple insertions of the second order
“self-energy” diagram Σ2(p), they sum up to the geometrical series and give rise to
the approximate Green function

G(p, ω) = 1

h̄ω − E(p)−Σ2(p, ω)+ ı0sign(E(p)− EF ) .

If, however, one starts from the free Hamiltonian (not from the HF-one), then the
unperturbed propagator is

G0(p, ω) = 1

h̄ω − h̄2k2

2m + ı0sign( h̄2k2

2m − EF )
(3.6)

and also first order diagrams contribute to the “self-energy.” These are shown in
Fig. 3.5. The first correction is divergent, but actually may be omitted, since it is
compensated by the Coulomb interaction with the homogeneous positive charge.
The remaining one is automatically included in the HF-approximation.
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Fig. 3.5 First order “self-energy” terms of the Green function starting from free electrons

Besides the above described diagram technique for averages over the ground
state, there are extensions of this formalism for averages over the grand canon-
ical distribution (Matsubara diagrams) or for averages on non-equilibrium states
(Keldysh diagrams) we do not touch here at all.

Now, a few words about the connection of the many-body S-matrix theory to
that of the relativistic quantum field theory. The primary interest in the later is the
computation of the transition probability amplitudes given by the matrix elements of
the S matrix between states having a finite number of free particles and the ground
state is the true vacuum.

One has to stress that the similarity of the two theories is rather limited and
from the strict mathematical point of view both stay on a shaky ground. Besides
the open questions about convergence of the series, both are plagued by diverging
integrals at high momenta (“ultraviolet divergences”). The ultraviolet problems are
tackled, however, in quite a different way. In the non-relativistic many-body theories
one restricts the integration domains by physically relevant momenta appropriate
for the system one is modeling. In the case of the electrons in a crystal this is the
Brillouin zone. Such kind of theories are called “cut-off” theories. Here the “bare”
(unrenormalized, i.e., in the absence of the interaction) electron and hole masses
me, mh, as well as the electron charge e are the experimental ones. On the contrary,
in the quantum field theories the divergences are eliminated by the so-called
renormalization procedure admitting that actually the “bare” (input) parameters are
infinite and the renormalized ones are fixed to give the finite experimental ones.



Chapter 4
Phonons

The ions forming the attractively acting lattice are not rigid. At least
their oscillations around the rigid lattice positions have to be taken into
account. These oscillations may be quantized and interpreted as bosonic
particles called acoustical or optical phonons with typical spectra. Even
a classical description of the phonons gives rise to important predictions
as the Lyddane–Sachs–Teller formula. In a quantum mechanical approach
to optical transitions assisted by phonons one may understand the Franck–
Condon effect.

4.1 Lattice Oscillations

Until now we considered the ions as fixed positive point-like charges, positioned
at the sites R + ξ s (s = 1 . . . S), where R is a vector of the Bravais lattice, while
ξ s shows the position of a given ion within the elementary cell containing S ions.
Actually, the ions are free to move away from their equilibrium positions with
deviations u(R, s) (here still classical!). For small deviations one may develop the
potential energy U of the lattice in a power series of these deviations. Up to a
constant defining the ground state energy, the lowest term in this series must be
quadratic, since the equilibrium corresponds to a stable minimum. Thus

U = 1

2

∑
R,s

∑
R ′,s′

Φ
μν

ss′ (R − R ′)uμ(R, s)uν(R ′ s′)+ . . . ,

where Φμν
ss′ (R − R ′) is a real symmetric

Φ
μν

ss′ (R) = Φνμ
s′s (−R)
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positive defined matrix (Φ ≥ 0 means non-negative eigenvalues).
Since a constant shift does not change the energy

∑
R,s

Φ
μν

ss′ (R) =
∑
R,s

Φ
μν

s′s (R) = 0.

One gets the classical Lagrange function L = T − U of the lattice by considering
also the kinetic energy of the lattice

T = 1

2

∑
R,s

ms u̇(R, s)2,

where ms is the mass of the ion designed with the index s.
In terms of discrete Fourier transforms

u(R, s) = v

(2π)3

ˆ
BZ

dqeıqRũs(q); Φ̃
μν

ss′ (q) = v

(2π)3

ˆ
BZ

dqeıqRΦ
μν

ss′ (R)

retaining only the quadratic terms of the potential energy we have

L = v

2(2π)3

ˆ
BZ

dq

⎧⎨
⎩

S∑
s=1

∑
μ

ms ˙̃uμs (q)∗ ˙̃uμs (q)−
S∑

s,s′=1

∑
μ,ν

ũμs (q)
∗Φ̃(q)μν

ss′ ũ
ν
s′(q)

⎫⎬
⎭

with

Φ̃(q)μν∗
ss′ = Φ̃(q)νμ

s′s ; Φ̃(q)μν∗
ss′ = Φ̃(−q)μν

ss′ ; Φ̃(q) ≥ 0.

Absorbing the mass factor by

η̃μs (q) ≡ √
msũ

μ
s (q); M̃(q)μν

ss′ ≡ 1√
msms′

Φ̃(q)μν
ss′

we get

L = v

2(2π)3

ˆ
BZ

dq

⎧⎨
⎩

S∑
s=1

∑
μ

˙̃ημs (q)∗ ˙̃ημs (q)−
S∑

s,s′=1

∑
μ,ν

η̃μs (q)
∗M̃(q)μν

ss′ η̃
ν
s′(q)

⎫⎬
⎭ ,

where the new matrix M̃ has the same properties of symmetry, realness, and
positiveness as Φ̃.
This whole quadratic form may be brought to a diagonal one with the transformation
that diagonalizes the potential energy, with positive eigenvalues ωλ(q)2 and one
may see that the Lagrangian describes a sum of oscillators of unit mass with
eigenfrequencies ωλ(q) = ωλ(−q).
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The quantization of the lattice corresponds therefore to the quantization of these
oscillators. As it is well known, this leads to a quantum mechanical Hamiltonian
that may be formulated in terms of the creation and annihilation operators b†

λq, bλq
and the respective oscillator frequencies ωλ (q). It is convenient to impose cyclical
boundary conditions in order to deal with a discrete spectrum having the proper
number of degrees of freedom. Then the quantized lattice Hamiltonian is

H =
∑

q∈BZ

∑
λ

h̄ωλqb
†
λqbλq

with the bosonic commutation relations

[
bλq, bλ′q′

] = 0[
bλq, b

†
λ′q′
]

= δλ,λ′δq,q′ .

The quantized deviations from the equilibrium positions at their turn are

u(R, s) =
∑

q

∑
λ

eıqR

√
h̄

2msωλ,q
χ (λ)s (q)

(
bλ,q + b†

λ,−q

)
,

where χ
(λ)
s (q) are the orthonormalized eigenfunctions of the Matrix M̃

∑
ν,s′
M̃(q)s,s′χ

ν(λ)

s′ (q) = ω2
λ,qχ

μ(λ)
s (q); (λ = 1, . . . 3S).

Due to the invariance against a common translation discussed before it follows that

S∑
s′=1

M̃(0)μν
s,s′

√
ms′ = 0

and

S∑
s=1

√
msM̃(0)

μν

ss′ = 0.

While the first equation shows that there are at least 3 eigenfrequencies that vanish
at q = 0, called acoustical modes, the second equation shows that if an eigenvalue
does not vanish in the origin, then the eigenstate must fulfill the relation

S∑
s=1

√
msχ

(λ)
s (0) = 0; (λ = 4, . . . 3S − 3)
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or

S∑
s=1

msu(λ)s (0) = 0; (λ = 4, . . . 3S − 3).

This means that the center of mass by these oscillations, called optical modes,
remains unchanged.

4.2 Classical Continuum Phonon-Model

In applications, it is useful to use a simplified continuum model for phonons with a
simple phonon spectrum. The local deviations u(r) are defined then in every space
point r.
The prototype classical Lagrange function for acoustical phonons is

Lacc = m

2v

ˆ
dr

3∑
μ=1

{
u̇μ(r)2 + c2

3∑
ν=1

(∂νuμ(r))2
}

or in Fourier transforms

Lacc = m

2

ˆ
dq

3∑
μ=1

{ ˙̃uμ(q)∗ ˙̃uμ(q)+ c2q2ũμ(q)∗ũμ(q)
}
.

Obviously, here a linear acoustical phonon spectrum ωac(q) = cq was assumed
(with c being here the sound velocity in the medium).
To model optical phonons, one considers the classical Lagrange function

Lopt = m

2v

ˆ
dr

3∑
μ=1

{ ˙̃uμ(r)2 − ω2
0ũμ(r))

2
}

or in Fourier transforms

Lopt = m

2

ˆ
dq

3∑
μ=1

{ ˙̃uμ(q)∗ ˙̃uμ(q)− ω2
0ũμ(q)

∗ũμ(q)
}
.

Here the optical phonon spectrum was taken just to be constant ωopt (q) = ω0. In
both cases one must take into account that the total number of degrees of freedom
(per volume!) should correspond to that of the crystal and therefore one cuts off the
wave vectors by the Debye wave vector (q < qDebye) defined by
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4π

3
q3
Debye ≡ 1

v

with v being the volume of the elementary cell.

4.2.1 Optical Phonons in Polar Semiconductors

The optical lattice deviations lead to local electric dipoles. This local polarization in
the classical continuum model is given by

P(r) = κe

v
u(r),

where κ is the polarizability of the elementary cell. The corresponding polarization
charge density is

ρpol(r) = −∇ · P(r) = −κe
v

∇ · u(r)

and the Poisson equation in the presence of a stationary external charge density
ρext (r) looks as

ε∞∇2V (r) = −4π
(
ρpol(r)+ ρext (r)

)

with ε∞ being the dielectric constant due to the electronic background.
Alternatively, for low frequencies it will look as

ε0∇2V (r) = −4πρext (r),

where ε0 is the total dielectric constant. The notation stems from the assumption that
at high frequencies only the light electrons contribute to the dielectric properties,
while for low frequencies both the electrons and ions contribute. As we shall see,
relating the polarization charge density to the potential allows for the identification
of the total dielectric constant.

In the inhomogeneous situation due to the presence of an external charge density
the Lagrange function contains supplementary Coulomb terms

L = m

2v

ˆ
dr

3∑
μ=1

{
u̇μ(r)2 − ω2

0u
μ(r))2

}

− 1

ε∞

ˆ
dr
ˆ
dr ′ 1

|r − r ′|
(

1

2
∇P(r)∇′P(r ′)− ∇P(r)ρext (r ′)

)
.

Now let us split the local deviations u(r) into longitudinal and transverse modes
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u(r) = ul (r)+ ut (r)

ul (r) = −∇
ˆ
dr ′ ∇′u(r ′)

4π |r − r ′| ; ∇ut = 0; ∇ul = ∇u.

One gets the equations of motion for these modes through the Euler–Lagrange
equations by using the identity

∇2 1

|r| = −4πδ(r)

and they look as

∂2

∂t2
ut = −ω2

TOut

∂2

∂t2
ul = −ω2

LOul + κe

m
Eext

with

ω2
TO ≡ ω2

0; ω2
LO = ω2

0 + 4πκ2e2

ε∞vm
.

In a stationary regime (thermal equilibrium) in the presence of a stationary external
charge density it follows:

ul = κe

mω2
LO

Eext

and

ρpol = − κ2e2

vmω2
LO

∇Eext = − 4πκ2e2

vmω2
LOε∞

ρext ; (ε∞∇Eext = 4πρext ).

If one inserts this result into the Poisson equation, one may identify

ε∞
ε0

= 1 − 4πκ2e2

vmω2
LOε∞

= 1

ω2
LO

(
ω2
LO − 4πκ2e2

ε∞vm

)

and one gets the Lyddane–Sachs–Teller relationship

ωLO

ωTO
=
√
ε0

ε∞
.
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Now let us introduce an arbitrary external time-dependent electromagnetic field
Eext(t). Then the equation of motion looks as

∂2

∂t2
u(t) = −ω2

0u(t)+ κe

m
E(t) ,

whereby the electric field E(t) includes also the longitudinal field produced by the
dipoles

E(x, t) = Eext (x, t)+ ∇
ˆ
dx′ ∇′P(x′, t)

|x − x′| .

Above we took into account that the interaction energy of our dipoles with the
total electric field may be brought to the form − κe

v

´
dxu(x)E(x, t). After a

Fourier transformation in the time variable t it follows for the frequency dependent
susceptibility for both modes

χT,L(k, ω) = α2e2

vm

1

ω2
0 − ω2

,

or for the frequency dependent dielectric function

ε(ω)L,T = ε∞
(

1 + 4πα2e2

ε∞vm
1

ω2
0 − ω2

)
= ε∞ω

2
LO − ω2

ω2
TO − ω2

.

4.2.2 Optical Eigenmodes

Starting from the above dielectric function we look now for possible electromag-
netic eigenoscillations in such a medium. Since the system is homogeneous and
isotropic, by using Fourier transforms it is useful to split the electromagnetic fields
in their longitudinal, respectively, transverse parts. The Maxwell equations for
the magnetic B, respectively, electric field E and the polarization P look in their
components as

B(k, ω)L = 0

B(k, ω)T = ck

ω
E(k, ω)T

ıkε∞E(k, ω)L = −4πıkP (k, ω)L + 4πρext (k, ω)



80 4 Phonons

(k2 − ε∞ω
2

c2
)E(k, ω)T = 4πω2

c2
P(k, ω)T − ı4πω

c2
jext (k, ω)T .

With

P(k, ω) = 1

4π
(ε(k, ω)− ε∞)E(k, ω)

and the previously deduced dielectric function it follows that in the absence of
external sources the homogeneous Maxwell equations still have non-vanishing
solutions. For ω = ωLO there is a non-trivial longitudinal solution for any k = |k|,
while non-trivial transverse solutions exist only for ω, k pairs that are solutions of
the equation

k2 − ε∞ω
2

c2

ω2
LO − ω2

ω2
TO − ω2

= 0

shown in Fig. 4.1. Such transverse fields are propagating mixed photon and LO-
phonon modes.

1 2
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4
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8

3 4

Fig. 4.1 Optical eigenmodes
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4.2.3 The Electron–Phonon Interaction

4.2.3.1 The Franck–Condon Effect

Let us suppose that one has two localized electronic states of energies ε1 and ε2 on
the same site and one of them is electrically neutral while the other one is electrically
charged. In a polar semiconductor, this local charge density is coupled to the optical
phonons. The energy of the system of electron and phonons (seen as a classical
oscillator with coordinate Q) may be characterized schematically by the potential
energies of the two states

E1(Q) = ε1 + 1

2
m(Q̇2 + ω2

LOQ
2)

E2(Q) = ε2 + 1

2
m(Q̇2 + ω2

LOQ
2)− gQ.

The energy of the second state may be rewritten as

E2(Q) = ε2 + 1

2
m
(
Q̇2 + ω2

LO(Q−Q0)
2 + ω2

LOQ
2
0

)
,

where mω2
LOQ0 = g. This means that the potential energy of the phonons gets

shifted.
Now by photon absorption the system may undergo a transition from the

minimum of the lower lying state on the higher branch outside the minimum of
that branch. (The photon momentum may be neglected by these optical transitions!)
Thereafter, follows a thermal relaxation (by emission of acoustical phonons) into the
minimum of the upper branch and only later may follow a slower photon emission
onto the lower branch again outside the minimum. This is the essence of the Franck–
Condon effect showing a difference between the absorption and emission spectra
(Stokes shift). It is illustrated in Fig. 4.2.

4.2.3.2 The Quantized Interaction of Electrons with Phonons

The interaction Hamiltonian of the electrons with the phonons is considered to be
linear in the quantized lattice deviations, conserving the number of electrons and in
the continuum model conserving also the momenta

Hint = 1√
Ω

∑
q

gqa
+
k ak−q(bq + b+−q).

Here Ω is the volume and the discretized wave vector q is assumed to be smaller
than the Debye wave vector q < qD .
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Fig. 4.2 Stokes shift

In the case of the optical phonons, analogously to the discussion in the frame of
the classical continuum model one starts from the Coulomb interaction between the
electron (or hole) charge density

ρ(x) ≡ ±eψ+(x)ψ(x)

and the polarization charge density due to the optical deformation

−1

ε∞

ˆ
dx
ˆ
dx′ ∇P(x)ρ(x′)

|x − x′| .

Inserting the expression of the polarization in terms of the quantized lattice
deviations one gets

g2
q = α 4πh̄ (h̄ω0)

3/2

(2me)1/2 q2
,

where instead of the coefficient 4πe2κ2

vmω2
LOε∞

one has introduced the dimensionless

constant

α = e2

h̄

(
me

2h̄ω0

)1/2 ( 1

ε∞
− 1

ε0

)
.

The presence of the electron mass here is spurious. The coupling constant gq itself
does not depend on the electron mass.
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In the case of the acoustic phonons one considers mostly the deformation
potential model. This starts from the assumption that a slowly varying deformation
in an isotropic medium causes a local variation of the band gap

δEg(x) ∼ ∇u(x).

This leads to

gq = G√h̄ωq,

where ωq = c|q| and G is a constant specific for the considered crystal. Of course,
both models are highly idealized, but nevertheless, quite successful in predicting
experimental phenomena.



Chapter 5
Transport Theory

The understanding of transport phenomena transcends the quantum mechan-
ical treatment of isolated systems. Irreversibility and dissipation due to the
interaction with another macroscopic system (bath) play here a central role.
For their understanding a simple classical, but exactly solvable model of
an electron in the presence of a d.c. electric field interacting with classical
phonons is helpful. On the other hand, for all practical purposes an intu-
itive, however, mathematically less sound treatment serves by introducing
irreversibility “by hand” in the Boltzmann, Master or rate equations. In this
frame the conductivity of electrons scattered on a thermal bath is discussed.
Two basic kinds of conduction are considered. That of scattering of freely
moving band electrons, typical for metals and semiconductors, as well as that
of localized electrons hopping from site to site, typical for disordered systems,
like impurity states or amorphous semiconductors. The transverse magneto-
resistance in ultra-high magnetic fields also may be understood within this
last model. We discuss shortly also the general theory of kinetic coefficients.

5.1 Non-Equilibrium Phenomena

Most experiments on solid materials concern their electrical, optical, thermal,
and mechanical properties. Under such an external influence the solid system is
brought into a non-equilibrium state. This may be a stationary state or a transitory
time-dependent evolution towards equilibrium. Classical or quantum mechanics of
finite closed systems being time reversal invariant cannot properly describe such
irreversible processes. The origin of the irreversibility of real physical systems lies
in the fact that they are actually open systems connected with some thermostat to
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which they transfer (dissipate) energy. In other words, they are the parts of a bigger
system. The reversibility even of isolated systems may be, however, pushed far away
in time due to the macroscopic size of the system. Therefore, the thermodynamic
limit plays an essential role in the treatment of non-equilibrium phenomena.

The traditional theoretical treatment of non-equilibrium phenomena starts, how-
ever, directly by assuming some simple, intuitive assumptions leaving their proof
apart. In the classical non-quantum mechanical treatment such a useful tool is the
Boltzmann equation for the statistical evolution of classical particles having a given
velocity and position. We have already discussed that electrons in a periodical lattice
may be also assimilated with free electrons having an effective mass. In this sense,
one may use this model. On the other hand, one may encounter situations, where the
quantum mechanical properties are essential. In that case Master and rate equations
are used to describe the evolution due to transitions between quantum mechanical
states.

5.2 Classical Solvable Model of an Electron in a d.c. Electric
Field Interacting with Phonons

For a better understanding of the origin of irreversibility we describe here a classical
solvable model of an electron interacting with classical continuum LO/LA phonons
in the presence of a d.c. electric field.

The phenomenological Drude model with a damping term in the electron
equation

ẍ = E − ẋ/τ

violates obviously time reversal invariance, but describes both stationary motion of
the electron in the presence of the field as well as its damping in its absence.

The question is whether the interaction of the electron with a phonon reservoir
could lead also to such a behavior? The possibility exists, since although the whole
system (electron plus phonons) is time reversal invariant, this is not valid for the
electron alone. The electron may lose energy to the phonons and it may happen that
this energy does not return in any finite time from the infinite number of phonon
degrees of freedom.

The quantum mechanical description of such a complicated system cannot be
solved exactly; however, the classical version is exactly solvable and this may well
illustrate the origin of the dissipation and irreversibility of this open system (here
one electron interacting with the continuum degrees of freedom of phonons).

The Lagrange function of the two kinds of phonon displacements fields u(x)
defined on the continuum were already described in Chap. 4. The Lagrange function
of the electron of mass m and charge e in a dc electric field E is
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Lel = mṙ2

2
+ eEr.

According to Sect. 4.2.3.2 both phonons couple to the electron by their longitu-
dinal part d(x) = ∇u(x) in the interaction Lagrange function

Lint =
ˆ
dxV (x − r)d((x).

The potential V (x) we define by its Fourier Transform,

V (x) =
ˆ
dqeıqxṼ (q).

From the total Lagrangian

L = Lel + Lphon + Lint
one gets according to Euler–Lagrange the equations of motion for the electron:

mr̈(t) = eE + ∂

∂r(t)

ˆ
dxV (x − r(t))d(x, t)

and

d̈(x, t)+ ω2
0d(x, t) = −∇2V (x − r(t))

for the LO phonons, respectively,

d̈(x, t)− c2∇2d(x, t) = −∇2V (x − r(t)),

for the LA phonons.
In what follows it is convenient to write the phonon equations in Fourier

transforms with the common notation

ω(q) =
{
ω0 (LO)

cq (LA)
(5.1)

for the phonon frequencies. We have then

¨̃
d(q, t)+ ω(q)2d̃(q, t) = q2Ṽ (q)e−ıqr(t).

This equation is easy to solve in favor of the electron coordinate r(t) with the
help of the retarded Green function
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Gr(t) = sin(ω(q)t)

ω(q)
θ(t).

Indeed, if we choose the initial conditions for the phonons as

d̃(q, 0) = 0, ˙̃
d(q,0) = 0

(i.e., at t = 0 the phonons are just in rest) we get

d̃(q, t) = q2
ˆ t

0
dt ′

sin
(
ω(q)(t − t ′))
ω(q)

Ṽ (q)e−ıqr(t ′).

Introducing this into the electron equation of motion we get a closed equation for
the electron coordinate

mr̈(t) = eE + 1

(2π)3

ˆ t
0
dt ′ ∂

∂r(t)

ˆ
dq

sin
[
ω(q)(t − t ′)]
ω(q)

eıq(r(t)−r(t ′))q2|Ṽ (q)|2.

This is a non-local, non-linear, but causal integro-differential equation one never
met in the usual frame of mechanics. So, due to the memory effect you cannot restart
the calculation after a while with the new initial data to get the correct result. This
group property is valid only for the whole electron-phonon system. However, it is
to be expected that after a certain lapse of time the memory will be lost.

Now we have to make a definite choice of the potential Ṽ (q):

Ṽ (q) =
⎧⎨
⎩

1
q2(q2+q2

D)
(LO)

q
1
2 e−q/qD (LA)

(5.2)

for the two cases. Actually we know from Chap. 4 only the behavior of the potential
only for q → 0 and our choice satisfies those requirements. In what concerns the
behavior at q → ∞ we preferred here to use a smooth Debye cutoff.

It is now meaningful to introduce dimensionless coordinate and time variables
by qDx → x and ω(qD)t → t . Then we remain actually with only two free
dimensionless parameters: a dimensionless “field” E and a dimensionless positive
“coupling constant” C.

The electron equation for coaxial motions (along the electric field) looks as

ẍ(t) = E + C
ˆ t

0
dt ′K

(
t − t ′, x(t)− x(t ′)) (5.3)

with a kernel K(t, x) that by our choice of the potential may be expressed through
elementary functions. This simplifies essentially as well the discussion of the
solutions as the numerical calculations.
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It is important to emphasize that no approximations or limits were used in
the derivation of this equation. The only important ingredient is the classical
description.

An analysis of this equation shows that asymptotic motion with constant velocity
occurs indeed, but only in a domain limited by a critical field-coupling ratio for an
electron in rest at t = 0 and for any field below a certain initial velocity ẋ(0) of
the electron. Otherwise, a breakthrough occurs and after a certain time it is just the
accelerated motion of the electron, as it would occur in the absence of interaction
with the phonons.

We illustrate here some typical numerical solutions of this equation.
In the LO case with the choice of the parameters E = 0.05 and C = 1.0, having

a ratio below the critical one, the function v(t) is shown in Fig. 5.1. After an initial
acceleration from the state of rest follow some attenuating oscillations and later the
velocity tends indeed to the constant velocity predicted by the analysis of possible
asymptotic solutions.

However, with the choice of the parameters E = 0.3 and the same C = 1.0
(above the corresponding critical field Ec = 1.47057) one gets an asymptotic
accelerated motion as it is shown in Fig. 5.2. But not only a strong field can destroy
dissipative behavior, but also a high initial velocity of the electron.

Similar behaviors follow also for the case of LA phonons. However, in the LO
case it may happen that an oscillatory behavior around the asymptotic velocity
persists!

In the absence of the electrical field the motion of the electron started with the
initial velocity v(0) = 10 will be damped, as it is illustrated in Fig. 5.3.
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Fig. 5.1 The velocity as function of time for an electric field below the critical one (here E /C =
0.05) by interaction with LO phonons. The horizontal line corresponds to the predicted asymptotic
velocity v(∞) = 0.392884
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Fig. 5.2 The velocity as function of time for an electric field above the critical one (here E /C =
0.3) by interaction with LO phonons
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Fig. 5.3 The velocity of the electron starting with v(0) = 10 as function of time in the absence of
electric field at C = 100 by interaction with LA phonons

It is important to remark that also the damping effect occurs only below a critical
initial velocity.

Another interesting feature of this model is that the asymptotic stationary velocity
in the LA case is proportional to the electric field (ohmic behavior), while by LO it
is a non-linear function of the field.

To conclude, the above described solvable model shows that irreversible, dissi-
pative behavior for an open system interacting with a reservoir having a continuous
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number of degrees of freedom may occur at least in a certain domain of parameters.
It is very important to stress this limitation!

Unfortunately, the quantum mechanical description of the same electron-phonon
system is not solvable. Therefore, one uses instead certain assumptions about
irreversible terms in the equations describing the evolution. While no consistent
mathematical proof of those assumptions is available, they proved themselves by
very good qualitative and quantitative predictions. In what follows we shall describe
these approaches.

5.3 The Boltzmann Equation

In the frame of the classical statistical mechanics a system of point-like particles
(inside a Volume Ω) is characterized by the probability density p(v, x,t) to find at
time instant t a particle with velocity v at the space-point x, normalized as

ˆ
dv
ˆ
Ω

dxp(v, x, t) = 1.

The classical Liouville equation for the motion in the presence of electric E(x, t)
and magnetic fields B(x, t) is

(
∂

∂t
+ v

∂

∂x
+ 1

m
F(x, t)

∂

∂v

)
p(k, x, t) = 0,

where F = e(E + 1
c
v × B) is the Lorenz force. The meaning of this equation is that

along the trajectory the probability density is conserved. Since the charged particles
themselves are sources of fields, one must include their contribution. If the velocity
of the particles is very low, one may ignore their contribution to the magnetic field,
and for the sake of simplicity we ignore for instance any magnetic field. For the
electric field, in a self-consistent manner, one considers the Poisson equation

ε0∇E(x, t) = 4π (ρ(x, t)+ ρext (x, t)) ,

where the particle charge density is

ρ(x, t) ≡ eN
(ˆ

dvp(v, x, t)− 1

Ω

)

and ρext is the external charge density. Here we have included also the contribution
of a compensating uniform positive charge in the volume Ω that keeps the system
stable.

Up to this point we are still in the frame of a reversible mechanical description,
however, we may introduce a term describing collisions either on some disordered
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potential, on phonons in equilibrium, or between the particles themselves, which
gives rise to irreversibility.

(
∂

∂t
+ v

∂

∂x
+ 1

m
F(x, t)

∂

∂v

)
p(v, x, t) = ∂p(v, x, t)

∂t
|coll .

In solids, at relatively low particle densities (semiconductors) one considers mostly
the scattering on external disturbances (disorder, phonons) and the collision term is
obtained from statistical loss-gain considerations

∂p(v, x, t)
∂t

|coll = −
ˆ
dv′ [w(v, v′)p(v, x, t)− w(v′, v)p(v′, x, t)

]

with transition rates w(v, v′) characterizing the abrupt velocity changes due to
collisions. In solid-state theory, these transition rates are borrowed from the “golden
rule” of quantum-mechanics and therefore, we can speak about it as a quasi-classical
description. The transition rates are supposed to satisfy the detailed balance relation
(its justification will be discussed later)

w(v, v′) = eβ(e(v)−e(v′))w(v′, v)

implying the kinetic energy e(v) = mv2

2 before and after the collision. In the peculiar
case of elastic scattering, of course, the energy is conserved, while by scattering on
phonons it changes due to phonon absorption or emission.

The phonon system at the inverse temperature β acts as a thermal reservoir
and (if the external sources are not time dependent and with vanishing boundary
conditions!) obviously the stable stationary solution is the Maxwell equilibrium
distribution

p0(v, x, t) = 1

ΩZ
e−β(

mv2
2 +U(x)),

with U(x) being the s.c. equilibrium potential.
These equations conserve the total number of particles, i.e., the normalization

∂

∂t

ˆ
dv
ˆ
Ω

dxdxp(v, x, t) = 0.

In the elastic case, also the total average energy is conserved.

∂

∂t

[
N

ˆ
dvdxp(v, x, t) (e(v)+ Uext (x))+ 1

2

ˆ
dx
ˆ
dx′ ρ(x, t)ρ(x′, t)

ε0|x − x′|
]

= 0.

However, one may conceive also flow situations by considering appropriate
boundary conditions.
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5.3.1 Classical Conductivity

Let us now consider a simple choice of the transition rates (“instant relaxation”) by

w(v′, v) = 1

τ
f0(e(v)),

where τ is a constant “relaxation time” and

f0(e(v)) ≡ 1

Z
e−βe(v); e(v) = mv2

2
; Z ≡

ˆ
dve−β

mv2
2 ,

which obviously satisfies the balance relation. We shall look now for a spacial
homogeneous flow situation in an infinite medium with a constant, homogeneous
magnetic field B and an alternating homogeneous electric field Eeıωt . (Since
the uniform charge density of the particles is supposed to be compensated by a
background positive charge, in this configuration the external field coincides with
the real field in the system!)

In this case for the velocity distribution

f (v, t) =
ˆ
dxp(v, x, t)

the Boltzmann equation takes a simplified form

(
∂

∂t
+ e

m

(
Eeıωt + 1

c
v × B

)
∂

∂v

)
f (v, t) = −f (v, t)− f0(e(v))

τ
.

The right-hand side is just an ideal relaxation term with the relaxation time τ . In the
stationary flow state, the deviation of the solution from the equilibrium one

f (v,t) = f0(e(v))+ g1(v)eıωt + . . .

should be at least of first order in the electric field. Retaining only terms of first
order in the field we get

(
ıω + 1

τ
+ e

mc
(v × B)

∂

∂v

)
g1(v) = −eEv

∂f0(e(v))

∂e(v)
.

To solve this equation, we have to inverse the operator

Â ≡ ıω + 1

τ
+ e

mc
(v × B)

∂

∂v
.

This may be easily done by knowing its eigenfunctions and eigenvalues. Let us
choose the magnetic field along the z axis B = (0, 0, B). Then we have the
following eigenstates:
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(exv) with eigenvalue ıω + 1
τ

+ ωcvy
(eyv) with eigenvalue ıω + 1

τ
− ωcvx

(ezv) with eigenvalue ıω + 1
τ
,

where ωc = eB
mc

is the cyclotron frequency. Now one may compute the average
electric current density

〈j〉 ≡ e〈n〉
ˆ
dvvf (v)

(here 〈n〉 = 〈N〉
Ω

is the average particle density) to get the conductivity tensor σμν(ω)
(defined by 〈jμ〉 = σμνEν) :

σzz(ω, ωc) = 〈n〉e2

m

1

ıω + 1
τ

σxx(ω, ωc) = σxx(ω, ωc) = 〈n〉e2

2m

(
1

ı(ω − ωc)+ 1
τ

+ 1

ı(ω + ωc)+ 1
τ

)

σxy(ω, ωc) = −σyx(ω, ωc) = 〈n〉e2

2m

(
1

ı(ω − ωc)+ 1
τ

− 1

ı(ω + ωc)+ 1
τ

)

σxz(ω, ωc) = σzx(ω, ωc) = σyz(ω, ωc) = σzy(ω, ωc) = 0.

Of course, this is an oversimplified model, but nevertheless it shows the role of the
relaxation time τ , the phenomenon of cyclotron resonance at ω ⇒ ωc, as well as
the vanishing of some components of the conductivity tensor.

5.4 Kinetic Coefficients

Besides the electrical conductivity there are other kinetic stationary coefficients
relating the electrical, as well energy currents to gradients of density or temperature.
These non-mechanical coefficients play an important role in semiconductors;
however, their derivation is not so simple. The non-mechanical forces cannot be
introduced in a microscopical Hamiltonian. We illustrate here the derivation of the
Einstein relation between the conductivity and the diffusion coefficient as well as its
generalization to obtain other non-mechanical kinetic coefficients.

We define the (stationary) kinetic coefficients L(1)μν and L(3)μν as the pure mechan-

ical coefficients, while L̃(i)μν, (i = 1, . . . 4) are the non-mechanical ones. Then the
phenomenological relationships for the average electric and energy currents are
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〈jμ〉 = L(1)μν∂νφ − L̃(1)μνT ∂ν(
μ

T
)− L̃(2)μνT ∂ν(

1

T
)

〈jEμ 〉 = L(3)μν∂νφ − L̃(3)μνT ∂ν(
μ

T
)− L̃(4)μνT ∂ν(

1

T
),

where φ is the electric potential energy. We have chosen as independent macroscopic
variables the inverse temperature 1

T
and the ratio μ

T
of the chemical potential to the

temperature.
The coefficients L(1)μν and L(3)μν may be calculated either by the classical Boltz-

mann equation or by Kubo’s quantum mechanical theory. Their derivation by linear
response theory (in the absence of Coulomb interactions, i.e., within a mean-field
approach!) is left for the reader in Chap. 12.

As it is known one might have an equilibrium situation (no currents!), where the
gradients of the temperature and chemical potential compensate the current created
by the electric potential. Let us assume such a situation occurs and calculate the
gradients ∂μ(

μ
T
), ∂μ(

1
T
) produced in order to compensate the gradients of the

electric potential.
Let us consider equilibrium described by the macro-canonical density matrix

e−β(H+F−μN−Ω)

in the presence of the electric potential energy φ(x) with the term

F =
ˆ
dx {n(x)φ(x)} ,

in the Hamiltonian.
The equilibrium particle density is given by

〈n(r)〉 = T r{e−β(H+F−μN−Ω)n(r)} .

Using the expansion

e−β(H+F−μN) = e−β(H−μN)
{

1 −
ˆ β

0
dλF(−ıh̄λ)+ . . .

}
,

we get

〈n(r)〉 = 〈n(r)〉0

−
ˆ β

0
dλ

ˆ
dr′ (〈n(r′,−ıh̄λ)n(r)〉0 − 〈n(r′,−ıh̄λ)〉0〈n(r)〉0

)
φ(r′) ,

where the symbol 〈. . .〉 means T r{e
−β(H−μN)...}

T r{e−β(H−μN)} .



96 5 Transport Theory

Taking into account the macroscopic homogeneity in the absence of the field, by
a partial integration we get

∂ν〈n(r)〉 =

−
ˆ β

0
dλ

ˆ
dr′∂ν

(〈n(r′,−ıh̄λ)n(r)〉0−〈n(r′,−ıh̄λ)〉0〈n(r)〉0
)
φ(r′)

=−
ˆ β

0
dλ

ˆ
dr′(〈n(r′,−ıh̄λ)n(r)〉0−〈n(0,−ıh̄λ)〉0〈n(0)〉0

)
∂νφ(r′).

(Here in neglecting the surface integral terms, the vanishing of long range corre-
lations was admitted.) If the field does not vary too rapidly with the coordinate,
taking into account that the operator of the total particle number commutes with the
Hamiltonian, we have further

∂ν〈n(r〉 = − 1

V kT

(
〈N2〉0 − 〈N〉2

0

)
∂νφ(r).

In the same way one may get also

∂ν〈h(r)〉 = − 1

V kT
(〈HN〉0 − 〈H〉0〈N〉0) ∂νφ(r).

However, as it may be seen easily that

(
〈N2〉0 − 〈N〉2

0

)
= ∂〈N〉0

∂βμ
= V ∂〈n(r)〉0

∂βμ

and

(〈NH〉0 − 〈N〉0〈H〉0) = ∂〈H〉0

∂βμ
= V ∂〈h(r)〉0

∂βμ
.

Therefore, from the above equations it follows:

∂ν

(μ
T

)
= −

[
∂
(
μ
T

)
∂〈n〉

∂〈n〉
∂
(
μ
T

) + ∂
(
μ
T

)
∂〈h〉

∂〈h〉
∂
(
μ
T

)
]

1

T
∂νφ

= −d
(
μ
T

)
d
(
μ
T

) e
T
∂νφ = − 1

T
∂νφ,

while
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∂ν

(
1

T

)
= −

⎡
⎣∂

(
1
T

)
∂〈n〉

∂〈n〉
∂
(
μ
T

) +
∂
(

1
T

)
∂〈h〉

∂〈h〉
∂
(

1
T

)
⎤
⎦ e
T
∂νφ = −

d
(

1
T

)
d
(
μ
T

) 1

T
∂νφ = 0.

From the conditions 〈jμ〉 = 〈jEμ 〉 = 0, together with the above relations we get
immediately

L̃(1)μν = L(1)μν , L̃(3)μν = L(3)μν .

The first of these relations is just the well-known Einstein relation between the
electrical conductivity and the diffusion coefficient.

Now we may rewrite the general expressions of the average currents as

〈jμ〉 = L(1)μν [(∂νφ − T ∂ν(μ
T
)] − L̃(2)μνT ∂ν(

1

T
)

〈jEμ 〉 = L(3)μν [∂νφ − T ∂ν(μ
T
)] − L̃(4)μνT ∂ν(

1

T
).

To derive the expressions of the remaining coefficients L̃(2)μν and L̃(4)μν one has
to develop a little bit of fantasy. The Luttinger approach follows the idea of the
Einstein relation, by introducing the interaction with a fictitious gravitational field
ψ(x) interacting with the Hamiltonian density ρE(x) as

F ′ =
ˆ
dxρE(x)ψ(x)

and again requiring a compensation of all currents in equilibrium.
The final table of the quantum mechanical kinetic coefficients looks then as

L(1)μν = lim
s→+0

lim
Ω→∞Ω

ˆ ∞

0
dte−st

ˆ β
0
dλ〈jν(t − ıh̄λ)jμ(0)〉0, (5.4)

L̃(2)μν = lim
s→+0

lim
Ω→∞Ω

ˆ ∞

0
dte−st

ˆ β
0
dλ〈jEν (t − ıh̄λ)jμ(0)〉0,

L(3)μν = lim
s→+0

lim
Ω→∞Ω

ˆ ∞

0
dte−st

ˆ β
0
dλ〈jν(t − ıh̄λ)jEμ(0)〉0,

L̃(4)μν = lim
s→+0

lim
Ω→∞Ω

ˆ ∞

0
dte−st

ˆ β
0
dλ〈jEν (t − ıh̄λ)jEμ(0)〉0.

We have to stress that neither of these relationships is valid in the presence
of the Coulomb interactions. Also they may be used only within the mean-field
approximation. Another difficulty lies in the problematic definition of the energy
current density operators in the presence of interaction with phonons.
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5.5 Master and Rate Equations

5.5.1 Master Equations

Obviously, a quasi-classical description as in the previous subsection is of very
limited validity. From a quantum mechanical point of view, simultaneous coordinate
and momentum are not the proper characterization of a particle. Actually, some
quantum numbers characterize the state. Therefore within the same statistical gain-
loss philosophy one uses the so-called Master and rate equations.
The statistical state (“mixed state”) of a quantum mechanical system may be defined
by the probability Pn(t) to find the system at instant t in the eigenstate |n〉 of an
“unperturbed” Hamilton operator H0. The time-evolution of this statistical system
is due to some interaction H ′ causing transitions between the unperturbed states
|n〉 and one assumes that the transition rates Wnn′ are given by the “golden rule” of
adiabatic perturbation theory:

Wnn′ ≡ lim
Δt→∞

1

Δt

∣∣〈n′|U(Δt)|n〉∣∣2

with U(Δt) being the unitary evolution operator during the time interval Δt .
The Master equation looks then as

∂

∂t
Pn(t) = −

∑
n′
(Pn(t)Wnn′ − Pn′(t)Wn′n) ≡ −

∑
n′
Ann′Pn′(t).

The general properties of the transitions rates emerge from the “golden rule” def-
inition. The transition rates are obviously non-negative and satisfy the generalized
balance property emerging from the unitarity of U :

Wnn′ ≥ 0;
∑
n′
(Wnn′ −Wn′n) = 0.

In virtue of these properties for the solution of the Master equation it follows that:

(i) normalization is conserved ∂
∂t

∑
n′ Pn′(t) = 0,

(ii) positivity is conserved, i.e., Pn(t) ≥ 0 for any t > 0 if it Pn(0) ≥ 0. (it emerges
from the fact that Pn(t) = 0 implies ∂

∂t
Pn(t) ≥ 0 ).

(iii) the energy is conserved due to the admitted adiabatic coupling–decoupling of
the interaction,

(iv) the evolution leads to a stable equilibrium state (irreversibility).

The formal solution is

P(t) = e−AtP (0)

and the operator A has non-negative eigenvalues.
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Indeed, if ξn = xn + ıyn is a complex number, then in thermal equilibrium.

�
⎧⎨
⎩
∑
n,n′
ξ∗
nAnn′ξn′

⎫⎬
⎭ = �

⎧⎨
⎩
∑
n,n′
Wnn′ξ∗

n (ξn − ξn′)

⎫⎬
⎭

= 1

2

∑
n,n′
Wn′n

[
(xn − xn′)2 + (yn − yn′)2

]
≥ 0,

where we used also the balance property. If a general connectivity occurs, i.e., any
state may be achieved from any state through successive transitions, then there is a
single eigenstate with eigenvalue 0 and its components are all equal (ξ0

n = const.).
It follows therefore

lim
t→∞P(t) = P 0,

where P 0
n = const. and

P(t) = e−At (P (0)− P 0)+ P 0.

Such an evolution is called a Markowian process.
Let us now assume that we have a system in contact with a macroscopic ther-

mostat, whose state may be admitted remaining unchanged in thermal equilibrium
Then the probability of the total state (system plus thermostat) may be admitted to
be

Pnα(t) = Pn(t)P
0
α; P0

α = e−βEα∑
α′ e−βEα′

,

where the quantum numbers α characterize the states of the thermostat.
From the Master equation for Pnα(t) it follows:

∂

∂t
P(t) = −A P(t); Ann′ = δnn′

∑
n′′

Wnn′ − Wn′n.

From the energy conservation (En + Eα = En′ + Eα′ ) and the balance property of
the total system follows the balance property of the averaged transition rates Wnn′

Wnn′ ≡
∑
αα′

P0
αWnα,n′α′

∑
n′

(
Wnn′ − eβ(En−En′ )Wn′n

)
= 0.
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The operator A again has (under a similar connectivity condition) only eigenvalues
with non-negative real part, whereas the only eigenstate corresponding to the zero
eigenvalue is

P 0
n = e−βEn∑

n′ e−βEn′
.

5.5.2 Rate Equations

Let us consider the case, where the index n ≡ {n1, n2, . . .) corresponds to the set
of occupation numbers of some one-electron states |i >, (i = 1, 2, . . .). The energy
(without any interaction between the electrons!) is

En =
∑
i

eini

and let us consider that through interaction with some thermal bath (for example,
phonons) transitions occur. In the lowest order of adiabatic perturbation theory the
transition rate Wnn′ is the sum of one-electron transition rates

Wnn′ =
∑
i,j

wijni(1 − n′
j )Πl �=i,j δnl ,n′

l
.

Within this lowest order perturbation approximation even a “detailed balance
relation”

wij = wjieβ(ei−ej )

occurs. Then the evolution of the average occupation number 〈ni(t)〉 of a state i

〈ni(t)〉 ≡
∑
n

niPn(t)

looks as

∂

∂t
〈ni(t)〉=−

∑
n,n′
Wnn′(ni −n′

i )Pn(t)=−
∑
i,j

[
wij 〈ni(1 − nj )〉 − wji〈nj (1−ni〉)

]
.

As we see the equation is not closed, it includes the next average 〈ninj 〉. However,
if one admits the approximation

〈ninj 〉 ≈ 〈ni〉〈nj 〉
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one gets a closed non-linear rate equation for the fermions

∂

∂t
〈ni(t)〉 = −

∑
i,j

[
wij 〈ni(t)〉

(
1 − 〈nj (t)〉

)− wji〈nj (t)〉 (1 − 〈ni(t)〉)
]
.

Here obviously the Pauli principle is respected only on average. The average
occupation numbers remain in the interval [0, 1] if they were in this interval and
under the previously discussed connectivity condition the stable asymptotic solution
is the Fermi function

f (εi) = 1

eβ(εi−μ) + 1
.

The new constant μ here is the chemical potential fixed by the average total number
of the fermions, which is conserved by the transitions.

5.6 Hopping Transport

A peculiar transport mechanism may occur in solids, when conduction occurs
through jumping between localized states. This is a typical situation in disordered
semiconductors or, as we shall see later, even in crystalline semiconductors under
ultra-strong magnetic fields.

Let us consider here a system of neutral fermions on localized states on an
arbitrary disordered or ordered lattice points ri . The state of the fermion system
is therefore described by the set of occupation numbers ni = 0, 1 of the localized
states having the one-particle energies εi . The total energy is

En =
∑
i

εini .

We shall describe the time-evolution of this system again by a rate equation.
The transition rates wij are assumed to obey the balance property of the

preceding subsection. The only global observable we may consider beside the total
energy is the average particle density

〈n(x, t)〉 =
∑
i

〈ni(t)〉δ(x − xi ).

In the case of charged particles (electrons) the particle density would define also the
electric potential created by them.

Let us assume that we want to describe the evolution of a state which is not far
away from equilibrium described by the Fermi function fi ≡ f (εi), i.e.,

〈ni(t)〉 = fi + δ〈ni(t)〉
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with δ〈ni(t)〉 very small. Then we may linearize the rate equation as

∂

∂t
δ〈n(t)〉 = −Γ δ〈n(t)〉

with

Γij ≡
(
δij
∑
l

Wil − Wij

)
1

fi(1 − fi)

and

Wij = fi(1 − fj )wij = Wj i .

The real matrix Γ is Hermitian in the scalar product

(ψ, φ) ≡
∑
i

ψ∗
i φi

1

fi(1 − fi)

and non-negative since

(ψ, Γ ψ) = 1

2

∑
i,j

∣∣∣∣ ψi

fi(1 − fi) − ψj

fj (1 − fj )
∣∣∣∣
2

Wij ≥ 0.

Assuming connectivity of the lattice, there is just one null-eigenvector

ξi = fi(1 − fi)∑
j

√
fj (1 − fj )

.

Therefore, the deviation from the equilibrium solution

δ〈n(t)〉 = e−Γ t δ〈n(0)〉

always vanishes asymptotically, δ〈n(t)〉 → 0 as t → ∞. The null-eigenvector plays
no role here, since the total particle number conservation implies

∑
i

δ〈n(t)〉 = 0

i.e., δ〈n(t)〉 has no components in the direction of ξ

(ξ, δ〈n(t)〉) = 0.
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5.6.1 Hopping Diffusion on a Periodic Cubic Lattice

One can find a simple explicit solution for the hopping on a periodical cubic
Bravais lattice of states of equal energies with translation invariant transition rates
w(R,R′) ≡ w(R − R′) > 0 of finite range. The detailed balance here looks as

w(R − R′) = w(R′ − R).

The discrete Fourier transformation δñ(k) ≡ ∑
R δ〈nR〉eıkR is helpful here and we

get the simple scalar equation

∂

∂t
δñ(k, t) = −Γ̃ (k)δñ(k, t)

with

Γ̃ (k) = w̃(0)− w̃(k).

From the reality of Γ it follows Γ̃ (k) = Γ̃ (−k)∗,while from the detailed balance
follows that Γ̃ (k) is real. On the other hand, the inequality

∑
R

w(R)eıkR ≤
∑

R

|w(R)eıkR|

implies Γ̃ (k) > 0 for k �= 0. The total particle number conservation in Fourier
transforms looks as δñ(0) = 0. The assumed finite range of the transition rates
implies that one may develop Γ̃ (k) around k = 0 and the lowest term is a quadratic
one Γ̃ (k) ≈ Dk2, with

D = 1

6

∑
R

w(R)R2 > 0.

Asymptotically for t → ∞ the behavior of the particle density is dominated by the
small k values of the Fourier transform for which

δñ(k, t) ≈ e−Dk2t δñ(k, 0)

and this corresponds exactly to the behavior predicted by the diffusion equation

∂

∂t
n(x, t) = −D∇2n(x,t).

Therefore, we may identify the constant D with the diffusion constant of this
hopping model.
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5.6.2 Transverse Magneto-Resistance in Ultra-Strong
Magnetic Field

As we have earlier discussed in Sect. 2.2.2, the Landau states of an electron in a
constant magnetic field are characterized by a discrete quantum number n, a wave
vector kz in the field direction, and the coordinate X of the center of cyclotron
motion in the plane perpendicular to the magnetic field. The extension of the wave-

function in the x direction is determined by the magnetic length �B =
√

h̄c
|e|B ,

therefore in a very strong magnetic field B one might expect that at least along
the x axis the state is strongly localized, and the rapidly, with the frequency
ωc = |e|B

mc
, oscillating relative coordinate is irrelevant for transport phenomena. In

this sense, one might conceive the transport in the x direction as a hopping problem
in continuum from one X to another one X′ due to the interaction with phonons or
lattice defects.

In the presence of an electric field E = (E, 0, 0) in the x direction the
degeneracy of the Landau state is lifted. Intuitively one may expect a potential
energy contribution

εn,X,kz, = h̄2k2
z

2m
+ h̄ωc(n+ 1

2
)+ eEX (n = 0, 1, 2, . . .).

(More precisely, one may show that there is also a constant non-relevant energy shift

− e2E2

mωc
, that we may ignore.)

However, if hopping between the states of different coordinates X is allowed,
the contribution of the field produced by the non-homogeneous distribution of
the electron charge modifies in time the effective on-site field, and finally, a self-
consistent in-homogeneous equilibrium distribution arises which screens the electric
field inside far away from the surface. We shall not discuss here this kind of
evolution, but consider another situation in which we admit that a steady flow state
with constant electric field is achieved by attaching some external electron sources
at the ends of the system along the x axis.

The average X coordinate is

〈X〉 ≡
∑
ν

X〈nν〉

with the simplifying notation ν ≡ n, kz,X.
The average velocity by hopping (omitting the contribution of the contacts on the
boundaries!) is

〈Ẋ〉 =
∑
ν

X
d

dt
〈nν〉 = −

∑
ν,ν′
X {Wνν′ 〈nν〉(1 − 〈nν′ 〉)−Wν′ν〈nν′ 〉(1 − 〈nν〉)} ,
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where the transition rates due to phonons or random potentials (impurities) satisfy
the detailed balance

Wνν′ = Wν′νe
β(εν−εν′ ).

We assume now that a steady flow state occurs in which the charge density is
unchanged, i.e., the average occupation numbers are the same as in equilibrium in
the absence of the electric field

〈nn,kz,X〉 = f (ε0
n,kz
); ε0

n,kz
= h̄2k2

z

2m
+ h̄ωc(n+ 1

2
)

with f (ε) being the Fermi function. (Later we shall check the consistency of this
assumption.)
Introducing a symmetrical matrix W̃νν′ by

Wνν′ = W̃νν′e
β
2 (Eν−Eν′ ); W̃νν′ = W̃ν′ν

we may then write

〈Ẋ〉 = −
∑
ν,ν′
XW̃νν′

{
e
β
2 (Eν−Eν′ )f (ε0

n,kz
)
(

1 − f (ε0
n′,k′z )

)

−e− β
2 (Eν−Eν′ )f (ε0

n′,kz′ )
(

1 − f (ε0
n,kz
)
)}
.

Now, if one is interested only in the electric conductivity one may retain only the first
order terms in the electric field. Since the terms inside the big bracket are vanishing
in the absence of the field we may replace W̃νν′ by its equilibrium value wα,X;α′,X′
in the absence of the electric field (here we introduced the notation α for the subset
of quantum numbers n, kz) and retain only the term of first order in the field from
the exponentials in the big bracket

〈Ẋ〉 ≈ −eβE∑α,X

∑
α′,X′ X(X −X′)wα,X;α′,X′f (ε0

n,kz
)
(

1 − f (ε0
n′,k′z

)
)

= − 1
2eβE

∑
α,X

∑
α′,X′(X −X′)2wα,X;α′,X′f (ε0

α)
(
1 − f (ε0

α′)
)
.

Then we get the current density along the x axis as

jx ≡ e

Ω
〈Ẋ〉 = − 1

2Ω
e2βE

∑
α,X

∑
α′,X′

(X −X′)2wα,X;α′,X′f (ε0
α)
(

1 − f (ε0
α′)
)

and we may identify the transverse conductivity (Titeica formula)
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σxx = 1

2Ω
e2βE

∑
α,X

∑
α′,X′

(X −X′)2wα,X;α′,X′f (ε0
α)
(

1 − f (ε0
α′)
)
,

where Ω is the volume of the system. Of course, as usual the thermodynamic limit
has still to be performed.

Let us now check the validity of our assumption about the stationary flow
solution. That means f (ε0

α) should be a stationary solution of the rate equation,
at least to first order in the electric field. Under the same kind of expansion, we get
the requirement

∑
α′,X′

(X −X′)wα,X;α′,X′f (ε0
α)
(

1 − f (ε0
α′)
)

= 0.

If the transition rates depend only on the distance |X − X′| and fall rapidly with
it, then far away from the boundaries this condition is obviously satisfied. At the
boundaries one might suppose the presence of some external sources to feed the
current flow.

5.6.3 Seebeck Coefficient for Hopping Conduction on Random
Localized States

We want to derive now the Seebeck coefficient for hopping conduction on randomly
distributed localized states i of coordinate xi and energy εi . We have in mind
mainly amorphous semiconductors, where (in the average) a continuous energy
spectrum of localized states in the so-called mobility gap replaces the forbidden
gap of the crystal. We shall not use the Luttinger formulas of Sect. 5.4 for the
kinetic coefficients, but the assumption of particle and energy flow in a stationary
local equilibrium distribution state with coordinate dependent temperature T (x)
and chemical potential μ(x) in the x-direction. We suppose that on the average
the system is homogeneous and isotropic. The average electron occupation of the
localized state is then

〈ni〉 = 1

(eεi − μi)/kBTi + 1
,

where

1

Ti
= 1

T
+ (xi − x̄)∇x

(
1

T

)

and
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μi

Ti
= μ

T
+ (xi − x̄)∇x

(μ
T

)
.

Then for small gradients we get

〈ni〉 ≈ fi − 1

kB
fi(1 − fi)(x − x̄)

[
∇x
(μ
T

)
− εi∇x

(
1

T

)]
.

On the other hand the average charge flow per unit surface across a plane surface S
perpendicular to the x axis at x = xs is given by

J Sx (xs)=
e

S

∑
i,j

θ(xi−xs)θ(xs−xj )
[〈ni〉(1−〈nj 〉)Wij (xi − xj )−〈nj 〉(1−〈ni〉)Wji

]
,

or taking its average over the position xs of the plane

J̄x = 1

L

ˆ L
0
dxsJ

S
x = e

Ω

∑
i,j

〈ni〉(1 − 〈nj 〉)Wij (xi − xj ).

Inserting the above expression for the average occupation number 〈ni〉 and taking
into account that fi(1 −fj )Wij (xi − xj ) either for tunneling or for phonon-assisted
hopping is anti-symmetric due to the detailed balance, we get

J̄x = e

Ω

∑
i,j

Wij (xi − xj )δ〈ni〉

= e

kBΩ

∑
i,j

fi(1 − fj )Wij (xi − xj )(xi − x̄)
[
∇x
(μ
T

)
− εi∇x

(
1

T

)]
.

Then, choosing the arbitrary coordinate x̄ conveniently as

x̄ =
∑
i,j Wij (xi − xj )(εi − εj )(xi + xj )/2∑

i,j Wij (xi − xj )(εi − εj )
we get

J̄x = σT

e
∇x
(μ
T

)
+ χT∇x

(
1

T

)

with

χ = − e

2ΩKBT

∑
i,j

fi(1 − fj )Wij (xi − xj )2(εi + εj )/2,
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while the conductivity

σ = e2

2ΩkBT

∑
i,j

fi(1 − fj )Wij (xi − xj )2

follows from the Einstein relation.

〈jx〉 = −σ
e

[
∇xφ − T∇x

(μ
T

)]
+ χT∇x

(
1

T

)
(5.5)

we already discussed in Sect. 5.4. For identification of notations with the previous
ones: L(1)11 = −σ/e.

The thermoelectric force is defined as the ratio of the created electric potential to
the imposed temperature gradient in the equilibrium state

α = ∇(φ − μ)
e∇T ; (〈jx〉 = 0). (5.6)

Using the above definitions of the kinetic coefficients α given by

α = 1

eT
(
eχ

σ
− μ) = kB

e
S

with the dimensionless Seebeck coefficient

S = 1

kBT
(
eχ

σ
− μ). (5.7)

Let us define

Pij = fi(1 − fj )Wij (xi − xj )2. (5.8)

Then with the coefficients we found for hopping we have

Sμ = 1

kBT

∑
i,j Pij (εi + εj − 2μ)/2∑

i,j Pij

.

For very low temperatures Pij vanishes very rapidly outside the domain

|ei − μ|/kBT � 1; |ej − μ|/kB � 1.

In the case of tunneling the initial and final energies are just the same, but even
by phonon assisted tunneling at low temperatures these two energies must be very
close to each other. Therefore one may expect that the Seebeck coefficient Sμ at low
temperature goes to zero.
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However, the picture changes essentially if one takes into account that there is a
repulsion U in the double occupation states. The equilibrium distribution, as it was
shown in Sect. 2.5.4 in this case is not the Fermi function. For a very large repulsion
U/kBT and motion of electrons on simple occupied states one may approximate the
new equilibrium distribution function by a Fermi function with a shifted chemical
potential μ → μ + kBT ln 2. On the other hand, the relation between the kinetic
coefficients remains the same, i.e., Eqs. 5.5–5.7 remain unchanged, but the energies
in Pij now are around μ∗ = μ+kBT ln 2. The Seebeck coefficient is thus modified
by a shift

Sμ → Sμ∗ − ln 2, (μ∗ = μ+ kBT ). (5.9)

Another extreme situation may occur in the hole transport, i.e., transitions
between simple and double occupied states, in the extreme fall of large repulsion
the situation is described with a Fermi function with a shifted chemical potential
μ→ μ− kBT ln 2. Therefore the Seebeck coefficient is modified by a shift

Sμ → Sμ∗ + ln 2, (μ∗ = μ− kBT ). (5.10)

Since, as we mentioned, Sμ or Sμ∗ is generally speaking very small at low
temperatures, taking into account also other situations as the two discussed extreme
cases, generally speaking one would expect a low temperature plateau of the
Seebeck coefficient in amorphous semiconductors

S → ξ ln 2; (|ξ | ≤ 1).

It is important to remark that the energy transport in our treatment, as well as in
other approaches, like that in the frame of the Boltzmann equation, is reduced to the
energy transport by the electrons.



Chapter 6
Optical Properties

The linear response to a time-dependent adiabatic external perturbation as
well as the equilibrium linear response are presented. The specific relation-
ships of the longitudinal dielectric response of an electron–hole plasma to
the density-density correlation function depending on the explicit inclusion
of the Coulomb interaction between the charged particles are explained. The
dielectric function is explicitly calculated within the Hartree approximation.
The response to a transverse (propagating) electric field within a simple
model of a semiconductor with s-type conduction and p-type valence bands
including the Coulomb attraction between the created electron–hole pair
leads to the Elliot-formula containing the exciton peak, as well as the
Coulomb-enhancement. Some discussion is devoted also to a modern branch
of optical experiments with ultra-short and intense laser beams. The so-called
semiconductor Bloch equations are derived and a third order non-linear
approach to differential transmission (DTS) and four wave mixing (FWM)
is developed.

6.1 Linear Response to a Time-Dependent External
Perturbation

In this chapter we shall discuss the interaction of quantum mechanical charged
particle systems with external electromagnetic fields in the optical range (light).
The treatment first will be restricted to phenomena in the linear domain and we
shall develop the conventional formalism for this purpose. Later we shall treat also
some topics of non-linear optics related to the interaction of matter with intense
laser pulses.
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Let us consider a quantum mechanical system defined by the Hamilton operator H .
We want to look for the response of this system to a weak time-dependent external
perturbation H ′(t). The total Hamiltonian we consider is

Htot (t) = H +H ′(t).

The state of a quantum mechanical statistical ensemble is described by the density
operator R(t) and the average 〈A〉 of an observable A is given by T r {R(t)A}. The
density operator is Hermitian, positive definite R(t) ≥ 0 (its eigenvalues are non-
negative) and is normalized T r {R(t)} = 1. The time evolution is governed by the
Liouville equation

ıh̄
∂R(t)

∂t
= [Htot (t), R(t)] .

In the interaction picture defined by the transformation

R̄(t) = e ıH(t−t0)h̄ R(t)e
− ıH(t−t0)

h̄

the Liouville equation looks as

ıh̄
∂R̄

∂t
= [
H̄ ′(t), R̄

] ; H̄ ′(t) = e ıH(t−t0)h̄ H ′(t)e−
ıH(t−t0)

h̄ .

Let us consider that at some time t0 before the introduction of the perturbation the
system was in thermal equilibrium

R(t0) = R0 ≡ e−β(H−μN)

T r
{
e−β(H−μN)} .

Then for the deviation from the equilibrium

R̄ = R0 + δR̄

we have

ıh̄
∂δR̄(t)

∂t
= [
H̄ ′(t), R0

]+ . . . .

where the unspecified terms must be of higher order in the perturbation. The formal
solution with the initial condition

δR̄(t0) = 0

is
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δρ̄(t) = 1

ıh̄

ˆ t
t0

dt ′
[
H̄ ′(t ′), ρ0

]+ . . .

or

R(t) = R0 + 1

ıh̄

ˆ t
t0

dt ′e
ıH(t ′−t)

h̄
[
H ′(t ′), R0

]
e

−ıH(t ′−t)
h̄ + . . .

We are interested here only in terms linear in the perturbation and consequently,
omit all higher order terms. Then the average of an observable A is given by

〈A(t)〉 − 〈A〉0 = 1

ıh̄

ˆ t
t0

dt ′T r
{
e
ıH(t ′−t)

h̄
[
H ′(t ′), R0

]
e

−ıH(t ′−t)
h̄ A

}

= 1

ıh̄

ˆ t
t0

dt ′〈[AH(t − t ′),H ′(t ′)
]〉0,

where we used cyclical permutability under the trace and 〈. . .〉0 denotes the
equilibrium average. This defines the linear response of the system to a time-
dependent perturbation.

6.2 Equilibrium Linear Response

There is another kind of linear response problem that we describe now. Let us
suppose that the system is in equilibrium in the presence of a time-independent
external perturbation. An example of such a situation we considered earlier was
the penetration of a static electric field into a semiconductor. Here we treat the
general case in order to underline the difference to the previous time-dependent
non-equilibrium problem.
Thus, we consider a system described by a time-independent Hamiltonian, contain-
ing a small perturbation H ′

Htot = H +H ′

in a state described by the macro-canonical equilibrium density operator

R = e−β(Htot−μN)

T r
{
e−β(Htot−μN)

} .

We want to find out the deviation of the equilibrium average of a certain
observable A in the presence of the perturbation from its equilibrium average in
the absence of the perturbation
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δ〈A〉 = 〈A〉 − 〈A〉0 = T r {RA} − T r {R0A} ,

where

R = e−β(Htot−μN)

T r
{
e−β(Htot−μN)

} ; R0 = e−β(H−μN)

T r
{
e−β(H−μN)} .

We develop the exponential operator in powers of the perturbation H ′ using

e−β(H+H ′−μN) = e−β(H−μN)
{

1 −
ˆ β

0
dλeλ(H−μN)H ′e−λ(H−μN) + . . .

}

to get the equilibrium linear response

δ〈A〉 =
ˆ β

0
dλ〈[H ′(−ıh̄λ)− 〈H ′〉0

]
(A− 〈A〉0)〉0. (6.1)

There are two important remarks to be made here:

(i) We admitted implicitly that the chemical potential μ and the inverse temper-
ature β remain unchanged by the introduction of the perturbation; however,
this implies that the average energy and the average number of particles is not
the same. Alternatively, we could have fixed the average particle and energy
densities and include the corresponding variation of the chemical potential and
temperature.

(ii) It is not at all obvious that the zero-frequency limit of the adiabatic time-
dependent linear response coincides with the equilibrium linear response result.

The origin of this discrepancy lies in the delicate problem of irreversibility. Only
irreversible processes can bring a system to equilibrium and these are not included
in the quantum mechanical evolution. See the previous discussion of irreversibility
in Chap. 5.

6.3 Dielectric Response of a Coulomb Interacting Electron
System

Let us now consider the perturbation of a Coulomb interacting electron system (with
a uniform compensating positive background) by an external longitudinal electric
field defined by an external potential V ext (x, t) . Interactions with phonons may
be included. In equilibrium the average charge density 〈ρ(x)〉0 is supposed to be
vanishing everywhere, while due to the perturbation

H ′(t) =
ˆ
dxρ(x)V ext (x, t)
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it will be different from zero. By pushing t0 → −∞, the linear response to this
perturbation is

〈ρ(x, t)〉 =
ˆ ∞

−∞
dt ′
ˆ
dx ′κ(x, x ′; t − t ′)V ext (x ′, t ′)

with the kernel being the charge density correlation function

κ(x, x ′; t) ≡ θ(t)

ıh̄
〈[ρ(x, t)H , ρ(x ′, 0)H

]〉0.

In our homogeneous system, this function may depend only on the difference of the
coordinates κ(x, x ′; t) ≡ κ(x − x ′; t). While extending the integration in time to
−∞, one has to consider the introduction of the perturbation in an adiabatic manner

V ext (x, t) = eı(ω+ı0)tV ext (x) ,

in order to have well defined Fourier transforms. The symbol +ı0 here means
that one considers a small positive adiabatic parameter that after the performed
integration goes to zero.
After a Fourier transformation in the time and space variables we get

〈ρ̃(k, ω)〉 = κ̃(k, ω)Ṽ ext (k, ω)

with

κ̃(k, ω) =
ˆ ∞

0
dt

ˆ
dxe−ıkxeı(ω+ı0)t κ(x, t).

Now, it is very important to realize that in a Coulomb system the local charge
density at its turn is the source of an internal potential. We are interested in the
relation between the internal charge density and the total potential V = V ext +V int
that is defined by the Poisson equation (here in Fourier transforms)

k2Ṽ (k, ω) = 4π〈ρ̃(k, ω)〉 + 4πρext (k, ω)

while

k2Ṽ ext (k, ω) = 4πρext (k, ω).

From these equations and the linear response of the charge density to the external
potential we get

ε(k, ω)k2Ṽ (k, ω) = 4πρext (k, ω)
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with the dielectric function

ε(k, ω) ≡ 1

1 + 4π
k2 κ̃(k, ω)

. (6.2)

Obviously due to the relationship between the conductivity and the dielectric
function

σ(k, ω) = −ıωε(k, ω) (6.3)

to get a finite d.c. conductivity σdc ≡ σ(0, 0) one needs a diverging imaginary
part of the dielectric function by ω → 0. The situation is quite different if one treats
the Coulomb interacting electron plasma in the s.c. Hartree approximation. Then the
perturbation is the self-consistent potential itself and not the external one. Therefore,
from the Poisson equation one gets

ε(k, ω)sc ≡ 1 − 4π

k2 κ̃
sc(k, ω). (6.4)

However, the two density correlation functions would be quite different!

6.4 The Full Nyquist Theorem

To stress the importance of the conclusions of the previous Sect. 6.3 concerning
the interpretation of the linear dielectric response in the presence of Coulomb
interactions we describe here the derivation of the Nyquist theorem. This theorem
was deduced within the classical thermodynamics of electric circuitry. It is a
statement relating the thermal fluctuation (noise) of the potential drop U in a
conductor to its resistance R and temperature T :

〈δU2〉0 = RkBT .

Since the potential drop along the conductor is given by the field strength E along
the wire multiplied by the length L of the wire U = EL and the resistance is
related to the d.c. conductance σdc, the length L and cross section S of the wire by
R = L

σdcS
, one gets

〈δE2〉0 = kBT

Ωσdc
, (6.5)

where Ω = LS is the volume of the macroscopic wire. This later form is suitable
for a microscopical treatment.
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The spectral density of the equilibrium quantum mechanical noise of the
(Hermitian) observable A (whose equilibrium average is vanishing) is defined as:

δA2
ω ≡ 1

2

ˆ ∞

0
dt cos(ωt)〈{AA(t)+ A(t)A}〉0, (6.6)

with the notations

A(t) = e ıh̄H tAe− ı
h̄
H t ; 〈. . .〉0 ≡ T r

(
1

Z
e−β(H−μN) . . .

)
.

Here we have assumed that the correlations vanish as t → ∞ that implies the
inclusion of the interaction with some thermal bath (for example phonons).

After some transformations Eq. 6.6 may be brought to the form

δA2
ω = 1

2
coth

(
βh̄ω

2

)
�
{ˆ ∞

0
dte−ıωt 〈[A,A(t)]〉0

}
. (6.7)

Now, the microscopical field (operator) is

E(x, t) = −∇V (x, t),

with

V (x, t) = Vext (x, t)+
ˆ
dx′ ρ(x′, t)

|x − x′| ,

expressed through the operator of the particle density ρ(x, t). Since the external
potential Vext is a c-number, the fluctuation of the field is completely determined by
the fluctuation of the internal field

Eint (x, t) = −∇
ˆ
dx′ ρ(x′, t)

|x − x′| .

After a Fourier transform in space

Ṽ (k, t) ≡
ˆ
dxe−ıkxV (x, t),

one has

Ẽint (k, t) = ıkV (k, t) = ık4π

k2
ρ(k, t).

Let us now define
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〈〈Ẽint (k)Ẽint (−k)〉〉ω ≡ 1

2
coth

(
βh̄ω

2

)
�
{ˆ ∞

0
dte−ıωt〈

[
Ẽint (k), Ẽint (−k, t)

]
〉0

}
,

(scalar product of vectors is understood), or

〈〈Eint (k)Eint (−k)〉〉ω=1

2
coth

(
βh̄ω

2

)
(4π)2

k2 �
{ˆ ∞

0
dte−ıωt〈[ρ̃(k), ρ̃(−k, t)

]〉0

}
.

On the other hand due to translational invariance

〈[ρ̃(k), ρ̃(−k, t)
]〉0 = Ω

ˆ
dxe−ıkx〈[ρ(x), δρ(0, t)]〉0

holds. Therefore,

〈〈Eint (k)Eint (−k)〉〉ω = coth

(
βh̄ω

2

)
(4π)2

2k2 Ω

× �
{ˆ ∞

0
dte−ıωt

ˆ
dxe−ıkx〈[ρ(x), δρ(0, t)]〉0

}
,

or

〈〈Eint (k)Eint (−k)〉〉ω = coth

(
βh̄ω

2

)
(4π)2

2k2
Ω� {ıh̄κ̃(k, ω)} ,

results.
Using the relationship Eq. 6.2

4π

k2
κ̃(k, ω) = 1

ε(k, ω)
− 1,

valid in the presence of Coulomb interactions in the Hamiltonian, we get

〈〈Eint (k)Eint (−k)〉〉ω = −1

2
coth

(
βh̄ω

2

)
4πh̄Ω�

{
1

ε(k, ω)
− 1

}
.

Since Ẽint (0) = Ẽint (0)+, it follows that for k → 0 we have

〈〈Eint (0)2〉〉ω = −1

2
coth

(
βh̄ω

2

)
4πh̄Ω�

{
1

ε(0, ω)

}
. (6.8)

On the other hand,

�
{

1

ε(0, ω)

}
= −�ε(0, ω)

�ε(0, ω)2 + �ε(0, ω)2 ,
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and since (see Eq. 6.3) at ω → 0 only the imaginary part of the dielectric function
diverges as 4π

ω
σdc, we get

lim
ω→0

〈〈Eint (0)2〉〉ω = kBTΩ

σdc
. (6.9)

If one interprets the classical analog of this quantum mechanical fluctuation in the
previous equation as Ω2〈δE2〉0, then we get the Nyquist theorem Eq. 6.5.

Actually from Eq. 6.8 emerges the full, frequency-dependent Nyquist theorem
for the equilibrium field fluctuation

〈δE2
ω〉0 = ω

2Ω
coth

(
βh̄ω

2

)
4πh̄�

{
1

σ(0, ω)

}
. (6.10)

As we have seen, the essential point in the derivation of the Nyquist theorem was
the correct treatment of the electromagnetic potential, taking into account that it is
a dynamical variable determined by the internal charge and the use of the correct
definition of the dielectric function Eq. 6.2 in the presence of Coulomb interactions.

6.5 Dielectric Function of an Electron Plasma in the Hartree
Approximation

As we have seen before, in the self-consistent Hartree approximation one has free
electrons with modified s.c. one-particle energies. In what follows we ignore this
modification and therefore our electrons in the absence of the electric field are
treated just to be free. The charge density operator in terms of the second quantized
wave functions is

ρ(x) = eψ(x)+ψ(x).

Here we ignored the positive uniform compensating charge that plays no role in
the following discussion. In terms of the creation–annihilation operators of the one-
particle states of wave vector k, in the Heisenberg picture

ρ(r, t)H = e

Ω

∑
k

∑
k ′
c+k ck ′eı(k

′−k)re
ı
h̄
(ek−ek ′ )t

with the kinetic energies ek = h̄2k2

2m . The density correlation function is

κsc(r, t) = e2

ıh̄Ω2

∑
k

∑
k ′

∑
p

∑
p ′
e
ı
h̄
(ek−ek ′ )t eı(k

′−k)r〈
[
c+k ck ′ , c+p cp ′

]
〉0.
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The average 〈
[
c+k ck ′ , c+p cp ′

]
〉0 may be easily performed by knowing the commu-

tator
[
c+k ck ′ , c+p cp ′

]
= δk ′ p c

+
k cp ′ − δp ′ k c

+
p ck ′

and retaining the only surviving average

〈c+k cp ′ 〉0 = δk p ′fk ,

with fk ≡ 〈
c+k ck

〉
0 being the Fermi function. One gets finally

εL(q, ω) = 1 − 4πe2

Ωq2

∑
k

fk+q − fk

ek+q − ek − h̄ω − ı0 .

In the evaluation of this formula one has to take into account the identity

1

x − ı0 = P
(

1

x

)
+ ıπδ(x)

with the first term being the principal value, while the second one contains Dirac’s
delta function. Then

�εL(q, ω) = 1 − 4πe2

Ωq2

∑
k

2fk(ek − ek+q)

(ek − ek+q)2 + (h̄ω)2

and

�εL(q, ω) = 4π2e2

Ωq2

∑
k

(
fk − fk+q

)
δ(h̄ω + ek − ek+q)

= 4π2e2

Ωq2

∑
k

(f (ek)− f (ek + h̄ω)) δ(h̄ω + ek − ek+q)

= e2m2

h̄4q3

ˆ ∞

0
de (f (e)− f (e + h̄ω)) θ

⎛
⎝1 −

∣∣∣h̄ω − h̄2q2

2m

∣∣∣
2
√
e
h̄2q2

2m

⎞
⎠ .

At T = 00K we get

�εL(q, ω) = e2m2

h̄4q3

ˆ EF
EF−h̄ω

deθ

⎛
⎝1 −

∣∣∣h̄ω − h̄2q2

2m

∣∣∣
2
√
e
h̄2q2

2m

⎞
⎠
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and the imaginary part of the dielectric function vanishes for

(
h̄ω − h̄2q2

2m

)2

>
2h̄2q2

m
EF .

At any temperature asymptotically for ω → ∞

�εL(q, ω) ≈ 0

and

�εL(q, ω) ≈ 1 − 4πe2〈n〉
mω2

= 1 −
(ωpl
ω

)2

and

ωpl =
√

4πe2〈n〉
m

is the plasma frequency. Since the dielectric constant vanishes for big ω = ωpl
(provided ωpl is also big!), eigenoscillations of the plasma may occur in the absence
of an external field at this frequency.
Peculiar properties has also the static longitudinal dielectric function

εL(q, 0) = 1 − 4πe2

Ωq2

∑
k

P

(
fk+q − fk

ek+q − ek

)
.

For q → 0

εL(q, 0) ≈ 1 − 4πe2

Ωq2

∑
k

∂f (ek)

∂ek
= 1 − 4πe2

q2

ˆ
dez(e)

∂f (e)

∂e
= 1 + κ2

q2

with

κ2 ≡ 4πe2
ˆ
dez(e)

∂f (e)

∂e
≈
{

4π
kBT

〈n〉 (T → ∞)
6πe2

EF
〈n〉 (T → 0)

This last result shows that if one puts an external point-like charge q inside the
plasma (V ext (r) = q

r
i.e. Ṽ ext (q) = 4π

q2 ) , then the resulting potential Ṽ (q) for
small q looks as

Ṽ (q) = Ṽ ext (q)
εL(q, 0)

≈ 4πe2

q2 + κ2
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and at big distances in the real space it will look as a Yukawa potential

V (r) ≈ e2

|r|e
−κr .

It is important to remark that in the whole discussion here no interaction with
any thermal bath was considered and therefore there were no irreversible effects
incorporated.

6.6 The Transverse, Inter-Band Dielectric Response of an
Electron–Hole Plasma

A transverse propagating electric field E(x, t) (photon) may be defined by the choice
of a vanishing scalar potential (V (x, t) = 0) and a transverse vector potential
(∇A(x, t) = 0). The interaction of charged particles with this electromagnetic field
(ignoring the A2 term) is given by

−
ˆ
dxj(x)A(x, t).

In a direct gap semiconductor, due to its vector character, this interaction may couple
mainly s-like states of the conduction band with p-like states of the degenerate
valence band.

In an electron–hole plasma model, therefore, one describes such an electromag-
netic interaction with a dipole Hamiltonian

Hem(t) = d
3∑
μ=1

∑
σ=± 1

2

ˆ
dxψe,−σ (x)+ψh,μ,σ (x)+Eμ(x, t)+ h.c..

The second quantized wave functions of the holes ψh,μ,σ (x) correspond to the three
p-type valence bands of spin σ . Here d is a phenomenological dipole constant
and the spin is σ = ± 1

2 . The above Hamiltonian containing pairs of creation and
annihilation operators indicates that a photon having an energy h̄ω above the band
gap may create an electron–hole pair.

We want to take into account here that the newly created electron and hole inter-
act through Coulomb forces. As we shall see, this fact has important consequences
for the absorption spectrum. The Coulomb interaction we shall treat within the intra-
band s.c. Fock approximation by retaining the non-local average (at instant t)

〈ψe,σ (x)ψh,μ,−σ (x ′)〉t .
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Such an average vanishes in the absence of the electric field, but appears after the
introduction of the field.
Within this approximation one has an s.c. Coulomb energy

3∑
μ=1

∑
σ=± 1

2

ˆ
dx
ˆ
dx ′ e2

|x − x ′|
(
ψe,σ (x)ψh,μ,−σ (x ′)〈ψe,σ (x)ψh,μ,−σ (x ′)〉∗t + h.c.) .

Obviously, this term has the same operator structure asHem(t) and is at least of first
order in the field. Therefore, the effective perturbation consists of Hem(t) plus an
induced perturbation of the same structure

H ′(t) = d

3∑
μ=1

ˆ
dxPμ(x, x)Eμ(x, t)

+
3∑
μ=1

ˆ
dx
ˆ
dx ′ e2

|x − x ′|Pμ(x, x ′)〈Pμ(x, x ′)〉∗t + h.c.,

where the notation

Pμ(x, x ′) ≡
∑
σ=± 1

2

ψe,σ (x)ψh,μ,−σ (x ′)

was introduced.
Let us consider now the Heisenberg equations of motion for the operator Pμ(x, x ′).
Using the commutation relation

[
ψe,σ (x)ψhμ,−σ (x ′), ψhν,−σ (y′)+ψe,σ (y)+

] = δμνδ(x − y)δ(x ′ − y′)

−δ(x − y)ψh,−σ (y′)+ψh,−σ (x ′)− δ(x ′ − y′)δμνψe,σ (y)+ψe,σ (x)

we get

{
ıh̄
∂

∂t
+ h̄2

2me
∇2
e + h̄2

2mh
∇2
h + e2

|xe − xh|

}
Pμ(xe, xh) =

d

3∑
ν=1

∑
σ

ˆ
dyEν(y, t)

(
δμνδ(xe − y)δ(xh − y)

−δμνδ(xh − y)ψe,σ (xh)+ψe,σ (xe)− δ(xe − y)ψhμ,−σ (xe)+ψhν,−σ (xh)
)

−
3∑
ν=1

∑
σ

ˆ
dx
ˆ
dx ′ e2

|x − x ′| 〈Pν(x, x ′)〉t
(
δμνδ(x − xe)δ(x ′ − xh)=
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−δμνδ(xh − x ′)ψe,σ (x)+ψe,σ (xe)− δ(xe − x)ψhμ,−σ (x ′)+ψhν,−σ (xh)
)
.

Now, we perform the average 〈. . .〉t by taking into account that in the absence of
the field there were no electrons and holes. The initial state is the electron–hole
vacuum and even thereafter the population appears only in second order in the field.
Therefore we may consider

〈ψα,σ (x)+ψα,σ (x ′)〉t ≈ 0; (α = e, h).

In the linear approximation in the external field we get therefore the equation of
motion
{
ıh̄
∂

∂t
+ h̄2

2me
∇2
e+

h̄2

2mh
∇2
h+

e2

|xe − xh|+Eg
}
〈Pμ(xe, xh)〉t =dEμ(xe, t)δ(xe − xh),

where Eg is the band gap energy.
The solution of this non-homogeneous equation one gets by using the Green

function

G(xe, xh; x ′
e, x

′
h; t)

of the electron–hole Schrödinger equation

{
ıh̄
∂

∂t
+ h̄2

2me
∇2
e + h̄2

2mh
∇2
h+

e2

|xe − xh|

}
G(xe, xh; x ′

e, x
′
h; t)=

δ(xe − x ′
e)δ(xh − x ′

h)δ(t).

On its turn the Green function may be built up from the eigenfunctions
Φα(xe, xh) of the Coulomb interacting electron–hole Schrödinger equation

{
− h̄2

2me
∇2
e − h̄2

2mh
∇2
h − e2

|xe − xh|

}
Φα(xe, xh) = εαΦα(xe, xh)

as

Gr(xe, xh; x ′
e, x

′
h; t) = 1

ıh̄
θ(t)

∑
α

Φα(xe, xh)αΦα(x ′
e, x

′
h)

∗eı
εα
h̄
t
.

Here we considered the retarded Green function relevant for our physical problem.
One may separate the center of mass motion

X ≡ mexe +mhxh
me +m
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from the relative motion and

Φq,l,m,ε(xe, xh) = 1√
Ω
e−ıqXφl,m,ε(x) ,

where φl,m,ε(x) are the well-known Coulomb wave functions characterized by their
angular momentum l, m and energy ε while Ω is the volume of the system. These
states may belong to the discrete spectrum or to the continuum.
Using the Green function G(xe, xh; x ′

e, x
′
h; t) one finds

〈Pμ(xe,xh)〉t=
ˆ t

−∞
dt ′̂ dx ′

e

ˆ
dx ′

he
ı
h̄
Eg(t−t ′)G(xe, xh; x ′

e,x
′
h;t−t ′)dEμ(x ′

e, t
′)δ(x ′

e−x ′
h)

or

〈Pμ(x,X)〉t = d

ıh̄Ω

∑
q,l,m,ε

ˆ t
−∞
dt ′e

ı
h̄
(ε+Eg+ h̄2q2

2(me+mh) )(t−t
′)

×
ˆ
dX′e−ıq(X−X′)φl,m,ε(x)φl,m,ε(0)∗Eμ(X′, t ′).

The transverse, inter-band dielectric function is defined by the relation of the
inter-band polarization P(x, t) = d〈P(0, x)〉t to the electric field

P(q, ω) = 1

4π
(εT (q, ω)− 1)Et (q, ω)

and we get

εT (q, ω) = 1 − 4πd2
∑
ε

|φ0,0,ε(0)|2

×
⎛
⎝ 1

h̄ω − Eg − ε − h̄2q2

2(me+mh) + ı0
− 1

h̄ω + Eg + ε + h̄2q2

2(me+mh) + ı0

⎞
⎠ .

Here we took into account that in x = 0 only the s-wave functions contribute.
The imaginary part that describes the absorption spectrum is given then explicitly

by the Elliott formula

�εT (q, ω) = 4d2

a3
BER

[ ∞∑
n=1

1

n3
δ(Δ+ 1

n2
)+ 1

2
θ(Δ)

1

1 − e− 2π√
Δ

]

with
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Δ ≡ h̄ω − Eg − h̄2q2

2(me+mh)
ER

,

where ER is the excitonic Rydberg energy.
In the absence of the Coulomb interaction (e = 0) we have had the simple inter-

band absorption spectrum

�εT (q, ω)0 = d2

πa3
BER

θ(Δ)
√
Δ.

In order to represent graphically in Fig. 6.1 the expected absorption spectrum we
had to introduce by hand an element of irreversibility through an arbitrary line-width
for the discrete exciton lines of which we retained only the two lowest states, but
only the ground state may be actually seen. The Coulomb interaction between the
electron and the hole created by photon absorption introduces the exciton resonance
as well as a Coulomb-enhancement of the continuum at the threshold as to be
compared with the red line of absorption without Coulomb effects. See also the
comparison with the exciton state density Fig. 3.1 calculated within the tight binding
Wannier scheme.

0.5

–4 –2 42

1.0

1.5

2.0

2.5
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3.5

Fig. 6.1 Absorption spectra as function of the detuningΔ at the band edge (Δ = 0) with Coulomb
(blue) and without Coulomb effects (red)
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6.7 Ultra-Short-Time Spectroscopy of Semiconductors

In the last decades interesting experiments were performed with very intense and
ultra-short (on femtosecond scale!), laser beams on semiconductors. Their purpose
is to obtain information about ultra-short time processes. These experiments are
theoretically treated by the extension of the linear response including higher order
terms in the development. However, drastic simplifications are needed. First of all,
we shall ignore the coordinate dependence of the electric field E (negligible photon
momentum!) and consider

E(t) = E(t) cos(ω0t) ,

where ω0 is the carrier frequency in the optical domain and E(t) is the pulse enve-
lope. This may be justified by the fact that for photon energy in the neighborhood
of the energy gap the photon wave length λ in the most interesting semiconductors
is much bigger than the exciton radius aB .

The system we consider is again an electron–hole plasma as in Sect. 6.6 with an s-
like conduction band and a p-like valence band. The phenomenological coupling to
the transverse electromagnetic field one uses is that of an electric dipole in analogy
to the similar atomic coupling. We chose the quantization direction of the valence
band states so that only one of the p bands couples to the field and, therefore, we
may ignore the vector notation.

Hem(t) = h̄ωR(t) cos(ω0t)
∑
σ

ˆ
dx
(
ψe,σ (x)+ψh,−σ (x)+ + h.c.)

= h̄ωR(t) cos(ω0t)
∑
σ,k

(
ae,σ,kah,−σ,−k + h.c.) ,

where ωR(t) = 1
h̄
dE (t) is the so-called (here, time dependent!) Rabi frequency.

Obviously, higher order terms in the development of the system response would
produce also oscillations with multiples of the frequency ω0. Such terms may be
less important if already 2h̄ω0 is far away from the band gap, and we are eager
to discard them. An elegant way to do this is to ignore some of the terms in the
perturbation and consider the “rotating wave” Hamiltonian

H(rw)em = 1

2
h̄ωR(t)e

ıω0t
∑
k,σ

ae,σ,kah,−σ,−k + h.c.�

The total Hamiltonian we start with will be

H(t) = HHFeh (t)+H(rw)em ,

where the electron–hole part is taken in the Hartree–Fock approximation
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HHFeh (t) = ∑
σ

∑
k

(
(
h̄2k2

2me
+ 1

2
Eg)a

+
e,σ,kae,σ,k + ( h̄

2k2

2mh
+ 1

2
Eg)a

+
h,σ,kah,σ,k

)

+
∑
σ,σ ′

∑
k,k′,q

4πe2

q2V

[
a+
e,σ,k+qae,σ,k〈a+

e,σ ′,k ′−qae,σ ′,k ′ 〉t

− a+
e,σ,k+qae,σ ′k ′ 〈a+

e,σ ′,k ′−qae,σ,k〉t
+ a+

h,σ,k+qah,σk〈a+
h,σ ′,k ′−qah,σ ′,k ′ 〉t

− a+
h,σ,k+qah,σ ′k ′ 〈a+

h,σ ′,k ′−qah,σ,k〉t
− a+

e,σ,k+qae,σk〈a+
h,σ ′,k ′−qah,σ ′,k ′ 〉t

− a+
h,σ,k+qah,σk〈a+

e,σ ′,k ′−qae,σ ′,k ′ 〉
− a+

e,σ,k+qa
+
h,σ ′,k ′−q〈ah,σ ′,k ′ae,σ,k〉t

− ah,σ,k ′ae,σ ′,k〈a+
e,σ ′,k+qa

+
h,σ,k ′−q〉t

]
.

Here we took into account all the anomalous averages that will be induced only by
the electromagnetic field.
We may take into account also momentum conservation, spin independence as well
as the charge neutrality of the total system. Then

〈a+
e,σ ′,k ′ae,σ,k〉t = δk,k ′δσ,σ ′fe,k(t)

〈a+
h,σ ′,k ′ah,σ,k〉t = δk,k ′δσ,σ ′fh,k(t)

〈ae,σ ′,k ′ah,σ,k〉t = δk,−k ′δσ,−σ ′pk(t)∑
k

fe,k(t) =
∑

k

fh.k(t)

and the Hartree terms disappear. Then the following equations of motion emerge for
the electron–hole populations fe,k(t), fh,k(t) and the “inter-band polarization” pk

∂

∂t
fe,k(t) = � {Ω∗

k(t) pk(t)e
ıω0t
}

∂

∂t
fh,k(t) = � {Ω∗

k(t) pk(t)e
ıω0t
}

∂

∂t
pk(t)+ ı

h̄

(
εe,k(t)+ εh,k(t)

)
pk(t) = ı

2
Ωk(t)e

−ıω0t
(
1 − fe,k(t)− fh,k(t)

)
.

Here εe,k(t) and εh,k(t) are the “renormalized” electron and hole energies
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εe,k(t) ≡ h̄2k2

2me
+ 1

2
Eg + 1

V

∑
k′ �=k

V|k−k′| fe,k′(t)

εh,k(t) ≡ h̄2k2

2mh
+ 1

2
Eg + 1

V

∑
k′ �=k

V|k−k′| fh,k′(t)

while Ωk(t) is the generalized Rabi frequency

Ωk(t) ≡ ωR(t)+ 2

h̄

1

V

∑
k′ �=k

V|k−k′|pk′(t)eıω0t ; Vq ≡ 4πe2

q2
.

The rapidly oscillating factor e−ıω0t may be eliminated from the equation by a
redefinition of the inter-band polarization

pk(t) ≡ p̄k(t)e
−ıω0t

and we obtain the “semiconductor Bloch equations” for the slowly varying entities
fe,k, fh,k, p̄k

∂

∂t
fe,k = � {Ω∗

k p̄k
}

∂

∂t
fh,k = −� {Ω∗

k p̄k
}

(
∂

∂t
+ ı

h̄
Δk

)
p̄k = ı

2
Ωk
(
1 − fe,k − fh,k

)− p̄k

T2

with the detuning

Δk ≡ εe,k + εh,k − h̄ω0.

We have introduced here by hand also a phenomenological term with a “relaxation
time” T2 in order to take into account symbolically other interactions. This is a
standard approach in the treatment of the non-linear optics of two level atoms in the
frame of the Bloch equations on a quite different time scale. In semiconductors, the
chosen time scale is such that the here ignored processes are still coherent and only
on a longer time scale they destroy the coherence. The ultra-short-time experiments
are performed precisely to study the kinetics of the electron–hole plasma on this
time scale, where coherent quantum mechanical features play still an essential role.
The many-body treatment, of these rapid processes, taking into account Coulomb
interactions as well as the interaction with LO-phonons is called “quantum kinetics.”
This theory is rather complicated and we do not touch it.
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Since the populations of electrons and holes are equal fe = fh ≡ f , one of these
equations is superfluous. The above equations may be solved either numerically or
by a systematic development of the solution in powers of the field, i.e., of ωR(t).

6.8 Third Order Non-Linear Response

We outline here the scheme of the third order non-linear response. Since different
k values in the semiconductor Bloch equations are not coupled we may omit the
k index. Further, we simplify the discussion by omitting here the Hartree–Fock
terms. The solution we look for is a systematic development in the powers of the
electromagnetic perturbation

f (t) = f (1)(t)+ f (2)(t)+ f (3)(t) . . .
p̄(t) = p̄(1)(t)+ p̄(2)(t)+ p̄(3)(t)+ . . . .

To first order we have

f (1)(t) = 0

p̄(1)(t) = ı

2

ˆ t
−∞
dt ′ e−(

ı
h̄
Δ+ 1

T2
)(t−t ′)

ωR(t
′),

while to third order

f (3)(t) = 0

p̄(3)(t) = −ı
ˆ t

−∞
dt ′ e−(

ı
h̄
Δ+ 1

T2
)(t−t ′)

ωR(t
′)f (2)(t ′).

Inserting in the last step the result of the previous approximation we get the only
non-vanishing terms

f (2)(t) = 1

2

ˆ t
−∞
dt ′̂

t ′

−∞
dt ′′ �

(
ω∗
R(t

′) ωR(t ′′) e
−( ı

h̄
Δ+ 1

T2
)(t ′−t ′′)

)

and

p̄(3)(t) = − ı
2

ˆ t
−∞
dt ′̂

t ′

−∞
dt ′′̂

t ′′

−∞
dt ′′′e−(

ı
h̄
Δ+ 1

T2
)(t−t ′)

ωR(t
′)

× �
(
ω∗
R(t

′′) ωR(t ′′′) e
−( ı

h̄
Δ+ 1

T2
)(t ′′−t ′′′)

)
.
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In what follows we shall consider that the optical field (laser) consists of a stronger
pump pulse and a weaker, much shorter test pulse, both having the same carrier
frequency ω0, and also

ωR(t) = ωPR(t)+ ωTR(t).

Since the test pulse is assumed to be very weak, we will retain only terms of first
order in ωTR(t). (This restriction is, however, not compulsory in the analysis of the
four wave mixing.) Then

p̄(3)(t) ≈ − ı
2

ˆ t
−∞
dt ′̂

t ′

−∞
dt ′′̂

t ′′

−∞
dt ′′′ e−(

ı
h̄
Δ+ 1

T2
)(t−t ′)

ωTR(t
′)

× �
(
ωP∗
R (t

′′) ωPR(t ′′′) e
−( ı

h̄
Δ+ 1

T2
)(t ′′−t ′′′)

)

− ı

2

ˆ t
−∞
dt ′̂

t ′

−∞
dt ′′̂

t ′′

−∞
dt ′′′ e−(

ı
h̄
Δ+ 1

T2
)(t−t ′)

ωPR(t
′)

× �
[(
ωP∗
R (t

′′) ωTR(t ′′′) + ωT ∗
R (t

′′) ωPR(t ′′′)
)
e
−( ı

h̄
Δ+ 1

T2
)(t ′′−t ′′′)

]
.

As one may see, there are two different structures, either

p̄ ∝ ωTR · |ωPR |2

or

p̄ ∝ ωT ∗
R · (ωPR)2.

To interpret the significance of these structures we must return to the ignored prop-
agation properties of the laser beams given by the phase factors eıkT r, respectively,
eıkP r. While by the interaction within the semiconductor, these may be neglected;
now their importance is very important in analyzing non-linear experiments. Since
the excited inter-band polarization is itself a source of emerging electromagnetic
waves, we expect that the first structure will cause an emerging beam in the kT
-direction, while the second in the (2kP − kT )-direction. The first is responsible
for the differential transmission (DTS), while the second for the four wave mixing
(FWM). The configuration of a DTS experiment is shown in Fig. 6.2, while that
of an FWM experiment in Fig. 6.3. Here the pink arrows show the test and pump
propagation. The pulses themselves are shown in violet, while the new signal in the
(2kP − kT ) direction is shown with a red arrow.
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τ
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Fig. 6.2 Differential transmission experiment
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Fig. 6.3 Four wave mixing experiment

6.9 Differential Transmission

In this experiment, one uses two laser pulses of different widths with a retardation
time τ between them. By the stronger pump pulse electron–hole pairs are excited,
and the test pulse sees a prepared state, different from that in the absence of the
pump. To identify the transmitted test pulse from the pump pulse one chooses a
small angle between the pulses. By varying the retardation time τ one may obtain
information about the evolution of the interacting electron–hole pairs created by the
pump pulse.
Within the χ3 theory outlined before we have

p̄
(3)DT S
k (t) = − ı

4

ˆ t
−∞
dt ′̂

t ′

−∞
dt ′′̂

t ′′

−∞
dt ′′′ e−(

ı
h̄
Δk+ 1

T2
)(t−t ′)

ωTR(t
′)
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×
(
ωP∗
R (t

′′) ωPR(t ′′′) e
(− ı

h̄
Δk− 1

T2
)(t ′′−t ′′′)

+ ωPR(t
′′) ωP∗

R (t
′′′) e(

ı
h̄
Δk− 1

T2
)(t ′′−t ′′′)

)

− ı

4

ˆ t
−∞
dt ′̂

t ′

−∞
dt ′′̂

t ′′

−∞
dt ′′′ e−(

ı
h̄
Δk+ 1

T2
)(t−t ′)

ωP (t
′)

×
[
ωP∗
R (t

′′) ωTR(t ′′′) e
−( ı

h̄
Δk+ 1

T2
)(t ′′−t ′′′)

]
.

If the pulses do not overlap one may retain only the term

p̄(3)DT S(t) ≈ − ı
8

ˆ t
−∞
dt ′ e−(

ı
h̄
Δ+ 1

T2
)(t−t ′)

ωTR(t
′)
∣∣∣∣∣
ˆ t ′

−∞
dt ′′ωPR(t ′′)e

ı
h̄
Δt ′′
∣∣∣∣∣
2

.

If the test pulse is very short, one gets further

p̄(3)DT S(t) ≈ − ı
8
e
−( ı

h̄
Δk+ 1

T2
)(t−τ)

θ(t−τ)
ˆ ∞

−∞
dt ′ωTR(t ′)

∣∣∣∣
ˆ τ

−∞
dt ′′ωPR(t ′′)e

ı
h̄
Δkt

′′
∣∣∣∣
2

or

p̄(3)DT S(t) ≈ − ı
8
θ(t − τ)e−( ıh̄Δ+ 1

T2
)(t−τ)

ω̃TR(0)|ω̃PR (Δ)|2,

where ω̃PR (Δ) and ω̃TR(0) are the Fourier transformed pulse and test Rabi frequencies
at the detuning Δ, respectively, at t = 0.

The total DTS polarization P (3)DT S(t) results after summation over all the wave
vectors and re-multiplication with e−ıω0t . The Fourier analysis of the resulting
time-dependent signal shows the modification of the test pulse absorption due to
the presence of the pump pulse. This DTS signal (differential transmission) is
defined as the difference between the absorption of the test pulse in the presence
of the pump pulse and that in the absence of the pump. Now, it may be shown
further that this difference reaches its maximal negative value again at the carrier
frequency ω0, if the test pump retardation time τ is much bigger than the width
of the pulses. The meaning of this result is that one cannot excite electron–hole
pairs in a domain that already was emptied by the pump. This phenomenon is called
“hole burning.” However, during the time τ the electron–hole system, due to the
Coulomb interaction as well as the interaction with phonons, changes its state.
By measuring the DTS signal at different retardations τ one may get information
about this evolution and compare it with theoretical predictions. Since in this simple
description we did not include such an evolution, we do not follow further the
explicit calculus.
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6.10 Four Wave Mixing

The FWM signal within the χ3 theory is contained in the terms proportional to
ωT ∗
R (ω

P
R)

2

p̄(3)VWM(t) = − ı
4

ˆ t
−∞
dt ′̂

t ′

−∞
dt ′′̂

t ′′

−∞
dt ′′′ e−(

ı
h̄
Δ+ 1

T2
)(t−t ′)

ωPR(t
′)

×
(
ωT ∗
R (t

′′) ωPR(t ′′′) e
−( ı

h̄
Δ+ 1

T2
)(t ′′−t ′′′)

+ ωPR(t
′′) ωT ∗

R (t
′′′) e(

ı
h̄
Δ− 1

T2
)(t ′′−t ′′′)

)
.

Unlike in the case of the DTS experiment, one chooses here two pulses with a
large retardation time τ . Under this condition only the second term of the previous
equation contributes

p̄(3)VWM(t) = − ı
4

ˆ t
−∞
dt ′̂

t ′

−∞
dt ′′̂

t ′′

−∞
dt ′′′

× e
ı
h̄
Δ(t ′−t+t ′′−t ′′′)

e
− (t−t ′+t ′′−t ′′′)

T2 ωPR(t
′)ωPR(t ′′)ωTR(t ′′′).

If one considers that the two pulses do not overlap at all, one gets

P (3)VWM(t) = − ı
8
e
− t
T2 ω̃PR (0)

2ω̃TR(0)
ˆ
dke

ı
h̄
Δk(t−2τ)

.

The integral over k diverges and one must restrict it to the Brillouin zone. Due to
the oscillating factor, the integral reaches its maximum at t = 2τ and therefore one
may observe a “photon echo” in the 2kP − kT -direction after a delay time 2τ , its

height decreasing as e
− 2τ
T2 .

The outlined theory of these experiments is oversimplified, illustrating only the
essential idea. The deviations from the simple one-particle treatment due to the
Coulomb interaction and phonon emission/absorption are the main information
one follows, and the height of the photon echo is not given by the above simple
exponential decay. Actually, this kind of optical experiments (due to the retardation
time parameter) delivers a sort of motion picture of the evolution of the electron–
hole plasma.



Chapter 7
Phase Transitions

A few examples of phase transitions allow an insight into the fine aspects
of the thermodynamic limit. Spontaneous symmetry breaking at critical
temperatures or densities leads to unexpected stable states characterized by
order parameters. We describe at the beginning the ferromagnetic transition
within the frame of the Heisenberg model of localized spins. The mathematical
subtlety of the Bose–Einstein condensation is discussed in some more detail,
including its description in real time. The excitation spectrum of the s.c.
Bogoliubov model of repulsive massive bosons at T = 0 is discussed. Its
time-dependent extension and the Gross–Pitaevskii equation with a simple
illustration are also included. We devote more place to superconductivity
by describing first the phenomenological theory of London, followed by a
quantum mechanical treatment in real space, within the frame of a simple
model of an effective interaction between the electrons suggested by the BCS
theory.

An important aspect of the physics of condensed matter is the possibility of phase
transitions. Their theoretical treatment is essentially based on the thermodynamic
limit. We do not intend to describe the multitude of the phase transitions, but just
want to take a glimpse at the basic ideas within some specific models. Some of the
most spectacular new phenomena although subject of abundant literature are still
not ripe for a simple presentation.
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7.1 The Heisenberg Model of Ferro-Magnetism

Ferro-magnetism is thought to originate from the spin-dependent exchange interac-
tion of the core electrons of neighboring ions. A simple model is due to Heisenberg
that considers N interacting spins S on a periodic lattice R. The Hamiltonian in the
presence of a magnetic field B = (0, 0, B) oriented along the z axis is

H = −1

2

∑
R R ′

J (R − R ′)SRSR ′ − 2μ0B
∑

R

SzR,

where μ0 is the magneton and the spin-operators S obey the commutation rules

[
S+

R , S
−
R

] = 2SzR[
SzR, S

±
R

] = ±SzR
with S±

R = SxR ± SyR. The commutators of spin-operators on different sites vanish.
The coupling J (R) ≥ 0 is supposed to vanish rapidly with the distance R. One may
write the Hamiltonian also in the form

H = −1

2

∑
R,R ′

J (R − R ′)
(
SzRS

z
R ′ + S+

RS
−
R ′ + S−

RS
+
R ′

2

)
− 2μ0B

∑
R

SzR

to realize that the total spin Stot in the z-direction

Sztot ≡
∑

R

SzR

is conserved

[
Sztot , H

] = 0.

Therefore, the energy eigenstates are also eigenstates of Sztot , as well as of Stot
2

due to rotation invariance. A simple basis in the spin space may be built up from
products of eigenstates of each spin |S,m〉with m being its projection on the z axis.
The state with the maximum of total spin is the one with all the spins aligned in the
z-direction

|Φ0〉 = |S, S〉R1 |S, S〉R2 . . . |S, S〉RN .

This state is an eigenstate of H
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H |Φ0 >=
⎛
⎝−1

2
S2
∑

R,R ′
J (R − R ′)− 2μ0BNS

⎞
⎠ |Φ >

since

S+
R |S, S〉R = 0.

Consider now the average of the Hamiltonian over an arbitrary state |Φ〉 of our basis

|Φ〉 = |S,m1〉1|S,m2〉2 . . . |S,mN 〉N.

Since the terms non-commuting with SzRvanish in the average, one gets

〈Φ|H |Φ〉 = −1

2

∑
R,R ′

J (R − R ′)mRmR ′ − 2μ0B
∑

R

mR

and this is obviously greater than the eigenenergy of the state |Φ0〉. Therefore, |Φ0〉
is the ground state of the system with the ground state energy

E0 = −1

2
S2
∑

R,R ′
J (R − R ′)− 2μ0BNS.

In this state the total spin in the z direction isNS and the per node magnetic moment
(magnetization) is

M = 2μ0S.

In the absence of the magnetic field B the choice of the quantization axis is arbitrary,
and this state would have had a 2NS+1 fold degeneracy. The average over all these
states of the same energy would give rise to no magnetization. Thus, with a finite
number of spins the Heisenberg model would not lead to a stable ferromagnetic
state in the absence of an external magnetic field. However, the situation changes
drastically if one considers the thermodynamic limit. Indeed, one sees that by
N,Ω → ∞ by N

Ω
= n (constant spin density) even an infinitesimal magnetic

field may determine the direction of the magnetization, while its magnitude is the
sameM = 2μ0S. This is the spontaneous symmetry breaking.
Let us treat the thermodynamics of this model in the absence of a magnetic field B
in the mean-field (self-consistent) approximation in which one of the spin-operators
we replace by its average

Hmf = −
∑

R

2μ0〈B〉SR
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with the effective (s.c.) magnetic field being

〈B〉 = 1

2μ0

∑
R

J (R)〈SR〉

and we look for a solution with the average on site spin 〈SR〉 as being site
independent and oriented along the z direction. Then

Hmf = −
∑

R

2μ0BS
z
R; B = 1

2μ0
〈Sz〉

∑
R

J (R).

The statistical sum is

Z = Spe−βHmf =
(∑
Sz

e−2βμ0BS
z

)N
,

while the free energy and the equilibrium magnetization are given by

F ≡ 1

N
ln

(∑
Sz

e−2βμ0BS
z

)

and

M ≡ − ∂F
∂B

= 2βμ0〈Sz〉.

For spin S = 1
2 one gets

M = βμ0 tanh(βμ0B)

that has to be considered together with the self-consistency equation

B = 1

4μ0
tanh(βμ0B)

∑
R�=0

J (R).

Since tanh(x)
x

< 1, over the critical temperature

Tc = 1

4kB

∑
R �=0

J (R)

one has only a vanishing solution for the effective magnetic field B.
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However for T < Tc there is a non-vanishing solution and consequently, a
finite magnetization in the absence of any external magnetic field. At T = Tc a
ferromagnetic phase transition occurs.

7.2 Bose Condensation

Another good example of a phase transition is the Bose condensation. This is the
only phase transition that occurs without any interaction. In condensed matter, such
a transition may occur for the excitons as massive bosons. Let us consider a system
of free massive bosons in a finite volume (with periodical boundary conditions)
described by the second quantized Hamiltonian

H =
∑

k

eka
+
k ak

having the one-particle energies

ek = h̄2k2

2m
.

The macro-canonical statistical distribution gives the average number of bosons in
the state of wave vector k to be the Bose distribution

N (ek) ≡ 1

eβ(ek−μ) − 1
. (7.1)

Obviously, the chemical potential must be negative μ < 0, otherwise the expression
is negative below k = 0. The average total number of bosons fixes μ

〈n〉 = 〈N〉
Ω

= 1

Ω

∑
k

1

eβ(ek−μ) − 1
,

with Ω = L3 and k = ( 2πnx
L
,

2πny
L
,

2πnz
L
), or in the thermodynamic limit

〈n〉 =
ˆ

d3k

(2π)3
1

eβ(ek+μ) − 1
.

This 3D integral, however, reaches its possible maximum value at a critical density
nc for μ = 0

nc =
ˆ

d3k

(2π)3
1

eβek − 1
= 1

8π3/2 ζ(
3

2
)

1

�3 = 0.0586436
1

�3 .
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Fig. 7.1 The dependence of βμ on the volume v = Ω
�3 for n = 1.5nc

Here we have introduced the natural length � =
√
βh̄2

2m we shall use further in order

to define also a dimensionless volume v = Ω/�3. The analogous integrals in 1D or
2D have no upper limits! Therefore it is a pure 3D feature. Seemingly the system
cannot accommodate any higher average density! As one may see, the key of the
paradox lies in the contribution of the lowest, k = 0 state in the discrete sum

1

Ω

1

eβμ − 1
.

So far the chemical potential is negative and finite; its contribution is infinitesimal
asΩ → ∞ and it is a piece of the Riemann sum. However, as the chemical potential
goes to 0, the value of the above ratio is determined by the way μ goes to 0 as
function of the volume Ω .

As it is illustrated in Fig. 7.1, above the critical density nc, as the volume Ω
increases βμ goes to zero from negative values as

− 1

ncondΩ

and therefore, the contribution of the k = 0 state to the sum remains finite and equal
to ncond . This contribution has to be added thus independently.



7.2 Bose Condensation 141

Therefore, the correct equation for n ≥ nc is

ncond +
ˆ

d3k

(2π)3
1

eβek − 1
= n.

Above the critical density the chemical potential remains zero but the condensate
density ncond increases.
The critical situation may be achieved either by increasing the density at a fixed
temperature (n → nc, at fixed β), or by lowering the temperature at a fixed density
(β → βc at fixed density n).

Like the ferromagnetic phase transition, the Bose condensation shows a spon-
taneous symmetry breaking. This may be seen within the Bogoliubov approach.
In this approach, one introduces an infinitesimal symmetry breaking term in the
Hamiltonian before the thermodynamic limit and let it vanish after the limit is
already performed.
Bogoliubov introduces terms that break invariance against a multiplication of
the creation/annihilation operators by a phase factor, therefore particle number
conservation is violated. In the macro-canonical statistical sum

Z = T r{e−β(H−μN)}

one considers

H − μN =
∑

k

(ek − μ)a+
k ak + λ∗√Ωa0 + λ√Ωa+

0

with a small parameter λ. A simple c-number shift

A0 = a0 − λ
√
Ω

μ

defines the new bosonic annihilation operators for the state k = 0 and helps to bring
the expression again to a quadratic form

H − μN =
∑
k �=0

(ek − μ)a+
k ak − μA+

0 A0 + |λ|2Ω
μ

.

The free energy is then

F = 1

βΩ

∑
k

ln {1 − e−β(ek−μ)} + |λ|2
μ

leading to the average boson density
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〈n〉 = 〈N〉
Ω

= 1

Ω

∑
k

1

eβ(ek−μ) − 1
+ |λ|2
μ2
.

Now we may apply without hesitating the limit rule for getting integrals out of sums,
since the chemical potential remains always negative and get

〈n〉 = |λ|2
μ2

+
ˆ

d3k

(2π)3
1

eβ(ek−μ) − 1
.

At the critical density nc the chemical potential vanishes in the |λ| → 0 limit as

μ→ |λ|√
ncond

and we get the former result.
A new aspect of this approach is that here we explicitly recognize an order parameter
λ that is the analog of the magnetization with the surviving phase of the symmetry
breaking parameter (λ = |λ|eıφ ) and the average value 〈a0〉 of the original
annihilation operator of the k = 0 state becomes macroscopic (proportional to the
square root of the total number of condensate bosons Ncond = ncondΩ)

〈a0〉 = eıφ√Ncond .
A characteristic property of the condensed state is the existence of long range space
correlations. The Riemann sum in the correlation function

〈ψ(x)ψ+(y)〉 ≡ 1

Ω

∑
k

eık(x−y)〈a+
k ak〉 = 1

Ω

∑
k

eık(x−y) 1

eβ(ek−μ) − 1

above the critical temperature Tc goes over into the integral

ˆ
d3k

(2π)3
eık(x−y)

eβek − 1

that vanishes as a power law for |x − y| → ∞, while below the critical temperature
one gets

〈ψ(x)ψ+(y)〉 = ncond +
ˆ

d3k

(2π)3
eık(x−y)

eβek − 1

and there is a term surviving over infinite distances.
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7.2.1 Bose Condensation in Real Time

It is instructive to understand the real time description of a phase transition. We
illustrate it here on the example of the Bose condensation within the frame of a rate
equation description. The rate equation for massive bosons of wave vector k and

energy ε(k) = h̄2k2

2m interacting with a thermostat looks as

∂

∂t
〈nk(t)〉 = −

∑
k ′

[wkk ′ 〈nk(t)〉 (1 + 〈nk ′(t)〉)− wk ′k〈nk ′(t)〉 (1 + 〈nk(t)〉)] .
(7.2)

The transition rates wkk ′ are assumed to obey the detailed balance relation

wkk ′ = eβ(ε(k)−ε(k ′))wk ′k.

Its derivation was left as a good exercise for the reader (see Sect. 12.3).
Obviously the stable equilibrium solution of this equation is the Bose distribution

Eq. 7.1 for any μ < 0. This equation conserves the total number of bosons.
However, as we have shown before, as μ → −0 the density of bosons described
by the Bose distribution with μ = 0 cannot exceed a certain critical value nc.

We have to modify the rate equation, in the spirit of the previous discussions,
in order to take here also into account the accumulation of a macroscopic density
of bosons in the state k = 0. Therefore, we get a system of coupled rate equations
for the average particle number in the “normal” states f (k, t) = 〈nk(t)〉 and for
n0(t) ≡ 1

Ω
〈n0(t)〉 with the volume of a cube Ω ≡ L3 and with cyclic boundary

conditionsΔk = 2π
L

, while taking into account that the transition rates are inversely
proportional to the volume, i.e., wk,k ′ = (Δk)3W(k,k ′). In the infinite volume
limit (L→ ∞) one gets

∂

∂t
f (k, t) =

ˆ
dk
{
W(k,k′)f (k, t)(1 + f (k′, t))− (k � k′)

}

− [W(k, 0)f (k, t)−W(0,k)(1 + f (k, t))] n0(t) , (7.3)

∂

∂t
n0(t) =

ˆ
dk [W(k, 0)f (k, t)−W(0,k)(1 + f (k, t))] n0(t) .

With any small, but finite n0(0) this system of equations has a solution even above
the critical density with increasing n0(t) to a finite value, while the normal density
decreases correspondingly as to keep a constant total average density

〈n〉 = n0(t)+
ˆ
dkf (k, t) .

The non-linear equations 7.3 have two attractive fixed points for t → ∞:
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1. a “normal” one f (k) = 1
eβ(e(k)−μ)−1

(with μ < 0 and n0 = 0), whose basin
of attraction contains all the initial conditions with the total density below the
critical one nc and

2. a “condensed” one f (k) = 1
eβe(k)−1

with n0 �= 0 whose basin of attraction
contains all the initial conditions with the total density above the critical one
nc and simultaneously having any non-vanishing initial macroscopic condensate
n0(0).

In order to produce BEC we need only an infinitesimal condensate “seed.” This
is a typical aspect of any phase transition in real time and represents the analog of
Bogoliubov’s approach to BEC.

In Figs. 7.2 and 7.3 we illustrate the evolution in time of the normal and
condensate densities in time as described by Eq. 7.3 in two extreme cases. In
the first figure one is below the critical total density, but starts with a strong
condensate density and a very small non-condensate, while in the second figure
the one starts with total density above the critical one starting with a strong non-
condensate density and a very small condensate “seed.” One may see that below
critical density an initial condensate disappears, while above the total critical density
it increases from a small “seed” to a finite value, while the normal density decreases
correspondingly.

condensate

non−condensate

n

t
0

1

2

3

4

0 1 2 3

Fig. 7.2 Evolution of the non-condensate and condensate densities below the critical total density
nc = 5.65 starting with a strong condensate density and a very small non-condensate density
(arbitrary units!)
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Fig. 7.3 Evolution of the non-condensate and condensate densities above the total critical
density nc = 5.65 starting with a very small condensate density and a finite non-condensate
density.(Arbitrary units!)

7.3 Bogoliubov’s Self-Consistent Model of Repulsive Bosons
at T = 0

We shall discuss here the condensation of interacting bosons. The simplest version
is a repulsive contact interaction described by the Hamiltonian

H =
ˆ
dx

{
ψ(x)+

(
− h̄

2

2m
∇2 + U(x)

)
ψ(x)+ w

2
ψ(x)+ψ(x)+ψ(x)ψ(x)

}
.

Of course one has to still resort to approximations in order to tackle this many-body
problem.

Bogoliubov’s approach to this problem is a self-consistent Hamiltonian with the
self-consistent Hartree term 〈ψ(x)+ψ(x)〉 and a symmetry breaking one 〈ψ(x)〉.
The self-consistency is imposed on the ground state of the system (T = 0). Higher
order symmetry breaking averages are considered implicitly as reducible to the
lower order one, i.e., 〈ψ(x)ψ(x)〉 = 〈ψ(x)〉2. In this frame one cannot discuss the
phase transition, but just the self-consistency conditions for the assumed symmetry
breaking phase. The Bogoliubov Hamiltonian is
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HB =
ˆ
dx

{
ψ(x)+

(
− h̄

2

2m
∇2+

)
ψ(x)

+ w

2

[
4ψ(x)+ψ(x)〈ψ(x)+ψ(x)〉

+
(
ψ+(x)ψ+(x)〈ψ(x)〉2 + h.c.

)

−
(

4ψ(x)〈ψ(x)+〉|〈ψ(x)〉|2 + h.c.
)]}

+ CHF . (7.4)

The HF constant CHF may be chosen as to satisfy the requirement

〈H 〉 = 〈HB〉

within the same sort of s.c. approximations. In the following discussion it plays no
role and we omit it.

Rewriting the Hamiltonian in the k-space by

ψ(x) = 1√
V

∑
k

bke
ıkx

we get

HB =
∑
k

{ekb+
k bk + 1

2
(c∗bkb−k + cb+

−kb
+
k )} − 2

w

V
|〈b0〉|2(〈b0〉∗b0 + 〈b0〉b+

0 ),

(7.5)
where we omitted the vector notation and used the notations

ek ≡ h̄2k2

2m
+ 2

w

V
〈N〉 = h̄2k2

2m
+ 2wn; c = w 1

V
〈bo〉2 = wn0.

Taking into account the arbitrary phase in the definition of the creation–annihilation
operators we have chosen here 〈b0〉 to be real and implicitly c > 0. In the case of a
symmetry breaking phase transition it should survive in the thermodynamic limit.

For the case of particle non-conserving symmetry breaking, in the discussion
of the equilibrium properties one should use not the Hamiltonian itself, but HB ≡
HB−μN . One may diagonalize the k �= 0 part of HB by a canonical transformation
to the new boson fields αk and α−k

bk = ukαk + vkα+
−k (7.6)

with

uk = u−k, vk = v−k and |uk|2 − |vk|2 = 1 .
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One gets

uk = cosh(χk)e
ıφk ; vk = − sinh(χk)e

−ıφk (7.7)

with

tanh(2χk) = c

ek − μ . (7.8)

One has of course

c

|ek − μ| = wn0

h̄2k2

2m + 2wn
< 1.

The phase φk remains arbitrary and the energies are given by

εk = sign(ek − μ)
√
(ek − μ)2 − c2 .

For reasons of stability one should have ek − μ > 0 (for any k) and therefore
μ < 2wn. Thus

εk =
√
(ek − μ)2 − c2 =

√
(
h̄2k2

2m
+ 2wn− μ)2 − (wn0)2.

Now we must proceed to discuss the self-consistency requirements stemming
from the fact that the system is in its ground state. Then for k �= 0

〈α+
k αk〉 = 0 and 〈αk〉 = 0

implying also

〈bk〉 = 0

and according to the already mentioned assumption 〈αkα−k〉 = 〈αk〉〈α−k〉 it follows
that

〈b+
k bk〉 = 0,

i.e., what one could already expect in the ground state,

n = n0, (7.9)

i.e., the condensation is complete.
We have to discuss also the part of HB containing only the operators of the

condensate b0:
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(e0 − μ)b+
0 b0 + 1

2
c(b+

0 b
+
0 + b0b0)− 2w

√
V n

1
3
0 (b0 + b+

0 ).

Before its diagonalization we must perform an allowed shift of the operators b0 with
a real constant const

b0 → b0 + const

in order to obtain a pure quadratic form

(e0 − μ)b+
0 b0 + 1

2
c(b+

0 b
+
0 + b0b0).

The vanishing of the linear term imposes the constraint

e0 − μ− w√
V n

1
3
0 = 0. (7.10)

The diagonalization of the bi-linear terms is achieved again by a canonical
transformation and the excitation energy of the newly defined boson of k = 0 is
vanishing due to the new s.c. constraint 7.10

ε0 =
√
(e0 − μ)2 − |c|2 = 0

Therefore finally we get the ground state excitation spectrum for any k as

εk =
√
(
h̄2k2

2m
+ wn0)2 − (wn0)2. (7.11)

This spectrum behaves linearly for k → 0 as εk ≈ h̄

√
wn0
m
k and behaves

quadratic like the free bosons for k → ∞.
The phonon-like behavior as k → 0 is in agreement with the Goldstone theorem

stating that in the case of symmetry breaking of the ground state (here the simple
phase transformation implying particle number conservation) the bosonic excitation
spectrum must vanish at k = 0. One must stress, however, that the generalization of
this theorem by Hugenholtz and Pines for finite temperatures cannot be fulfilled by
the corresponding generalization of the Bogoliubov model.

7.4 Time-Dependent Bogoliubov and Gross–Pitaevskii
Equations

The self-consistent Bogoliubov model may be extended also to a time-dependent
version. One keeps the Hamiltonian equation 7.4, but the self-consistent averages
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are considered time-dependent according to the Hartree–Fock Schrödinger equation
with some initial condition. Therefore, due to the self-consistency requirement, the
Hamiltonian itself is time dependent.

HB(t) =
ˆ
dx

{
ψ(x)+

(
− h̄

2

2m
∇2+

)
ψ(x) (7.12)

+ w

2

[
4ψ(x)+ψ(x)〈ψ(x)+ψ(x)〉t

+
(
ψ+(x)ψ+(x)〈ψ(x)〉2

t + h.c.
)

−
(

4ψ(x)〈ψ(x)+〉t |〈ψ(x)〉t |2 + h.c.
)]}

+ CB(t).

The Schrödinger equation for the second quantized wave function ψ(x, t) is

ı h̄
∂

∂t
ψ(x, t)=− h̄

2

2m
∇2ψ(x, t) (7.13)

+ w

2

[
4〈ψ(x, t)+ψ(x, t)〉ψ(x, t)+ 2〈ψ(x, t)〉2ψ+(x, t)− 4〈ψ(x, t)〉|〈ψ(x, t)〉|2

]
.

If we admit that 〈ψψ〉 = 〈ψ〉2 as it was admitted in the derivation of the Bogoliubov
model, then the average particle number 〈N〉 is conserved. The energy conservation
may be always fitted with CB(t) under the same assumption.

The equation for the condensate wave function 〈ψ(x, t)〉

ıh̄
∂

∂t
〈ψ(x, t)〉= − h̄

2

2m
∇2〈ψ(x, t)〉 (7.14)

+ w
[
2〈ψ(x, t)+ψ(x, t)〉〈ψ(x, t)〉 − 〈ψ(x, t)〉|〈ψ(x, t)〉|2

]

follows. It is coupled to the average density 〈ψ(x, t)+ψ(x, t)〉 and leads to a
strange mathematical problem. The equation for this average by the continuity
equation needs also the knowledge of the average 〈ψ(x, t)+ψ(x′, t)〉, also of a
two-point function with a singular initial condition 〈ψ(x, 0)+ψ(x′, 0)〉 = δ(x −
x′)〈ψ(x, 0)+ψ(x, 0)〉.

However, if one makes one more approximation, namely

〈ψ(x, t)+ψ(x, t)〉 ≈ |〈ψ(x)〉|2,

i.e., that the whole density consist only of condensate (as we considered also in
the previous Subsection), then one gets the closed Gross–Pitaevskii equation for the
condensate
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Fig. 7.4 The solution |〈ψ(x, t)〉| of the time-dependent 1D Gross–Pitaevskii equation with an
initial Gaussian peak

ıh̄
∂

∂t
〈ψ(x, t)〉= − h̄

2

2m
∇2〈ψ(x, t)〉 + w|〈ψ(x)〉|2〈ψ(x, t)〉. (7.15)

This non-linear Schrödinger equation conserves the total number of condensate
particles

´
dx|〈ψ(x)〉|2. Due to its non-linearity it gives rise to structure building

typical for non-linear phenomena.
We illustrate this feature on the example of the solution of the Gross–Pitaevskii

equation in 1D with a Gaussian initial condition for |〈ψ(x, t)〉| as it develops a
soliton-like behavior in time. One sees in Fig. 7.4 the decrease of the original peak
and the rise of satellite peaks in the time evolution.

7.5 Superconductivity

A phase transition of special kind is superconductivity of some materials below
a certain critical temperature. Its peculiarity is that it reveals not only spectacular
equilibrium properties like the Meissner effect (ideal diamagnetism expelling
magnetic fields), but also non-usual non-equilibrium properties as the flow of
electric current without resistance. Besides, connectivity properties of the material
by allowing circulating permanent currents also play a decisive role. We shall
describe in what follows the phenomenological theory of London which succeeds
in a simple mathematical formulation to reflect the essentials of the phenomena.
Thereafter we discuss a quantum mechanical model in real space, suggested by
the BCS (Bardeen, Cooper, Schrieffer) theory of an effective electron–electron
attraction mediated by phonons.
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7.5.1 The Phenomenological Theory of London

The macroscopic Maxwell equations for the electric and magnetic fields and their
sources (charge and current densities) are

∇B = 0

∇ × E = −1

c

∂

∂t
B

∇ × B = 4π

c
j + 1

c

∂

∂t
E

∇E = 4πρ.

The charges and currents obviously have to satisfy the conservation rule

∇j + ∂

∂t
ρ = 0.

These equations alone do not determine the macroscopic electromagnetic fields.
They have to be supplemented by “matter relations” for the current- and charge-
densities characteristic for the given material, which relates these entities again to
the fields.
The simplest examples are:

– normal conductors (metals), with no charge density inside and Ohms law for the
current density

jOhm = σE, ρ = 0.

– insulators (dielectrics), with polarization charges and polarization currents char-
acterized by a dielectric constant

jpol = 1

4π
(ε − 1)

∂

∂t
E , ρ = − 1

4π
(ε − 1)∇E.

– semiconductors, which beside the ohmic and polarization currents also have a
diffusion current induced by the “free” charge density ρf ree

jdiff = −D∇ρf ree.

The diffusion constant D is related to the conductivity by the Einstein relation
defined by the carrier density n and the temperature

σ = ne2kBTD.
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– magnetic materials with the specific magnetization current density

jmagn = c∇ × M,

where the relationship M(B) may be non-linear (ferromagnets).

To describe the basic aspects of a superconductor, London proposed two simple
phenomenological “matter relations” that indeed successfully describe the main
properties of these materials.

The stipulated equations that relate the current density to the electromagnetic
field are characterized by a phenomenological constant Λ

E = Λ
∂

∂t
j (7.16)

Λ∇ × j = −1

c
B. (7.17)

The first London equation was suggested by the behavior of free electrons that are
accelerated by an electric field. If one takes the curl of this equation and uses the
Maxwell equations, one gets

∂

∂t

(
Λ∇ × j + 1

c
B
)

= 0.

Therefore, the second London equation states only that not just the time derivative
of the expression under the bracket is vanishing, but the expression itself.
Now, taking the curl of the third Maxwell equation

∇ × ∇ × B = 4π

c
∇ × j + 1

c

∂

∂t
∇ × E

and using this second London equation, as well as the identity

∇ × ∇ × B = ∇(∇B)− ∇2B

one gets

∇2B − 4π

c2Λ
B − 1

c2

∂2

∂t2
B = 0.

In a stationary regime with constant fields it looks as

∇2B − 4π

c2Λ
B = 0. (7.18)
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The length � = c

√
Λ
4π obviously defines the penetration depth of a magnetic

field inside a superconductor in equilibrium (Meissner effect). (Compared with the
penetration of a static electric field into a semiconductor.)

After integrating the second London equation on a surface S

ˆ
S

ds∇ × j = − 1

Λc

ˆ
S

dsB

and using (Stokes theorem) we get

˛
dl j = − 1

Λc
Φ (7.19)

also, a circulation of the current around a loop may be sustained by a magnetic
flux inside the loop. Since in equilibrium there is no magnetic field inside the
superconductor only the multiple-connectivity of the sample allows for permanent
circular currents.

These two main properties characterize the equilibrium properties of a supercon-
ductor. The first London equation describes non-equilibrium phenomena. These are
much difficult to treat. The microscopical theories of superconductivity concentrate
mostly on the equilibrium properties: the existence of a phase transition and the
Meissner effect.

7.6 Superconducting Phase Transition in a Simple Model of
Electron–Electron Interaction

The fundamental idea for a microscopical explanation of superconductivity stems
from Bardeen–Cooper–Schrieffer ( BCS) about the effective interaction between
the electrons of opposite spins that might become attractive, at least in a limited
range of momenta (in the neighborhood of the Fermi energy), due to exchange of
optical phonons. This attraction produces no bound states, but just a correlation
between electrons of opposite spins and momenta, with anomalous electron number
non-conserving averages analogously to the former description of the Bose con-
densation. This BCS theory offers a correct interpretation of the properties of the
superconducting phase transition.

On the other hand, the theory of the electromagnetic properties must be
formulated in the real space. Here we want to explore the implementation of the
BCS idea in the Rickayzen model based on an electron–electron interaction by a
fictitious potential without any claim for a realistic theory of superconductivity. We
shall treat within this approach also the Meissner effect.

We consider instead of the Hamilton operator H , the operator H ≡ H − μN
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H ≡ H − μN

=
∑
σ=± 1

2

ˆ
dxψ+

σ (x)
{

1

2m

(
−ıh̄∇ − e

c
A(x)

)2 − μ
}
ψσ (x)

+ 1

2

ˆ
dx
ˆ
dx′V (x − x′){ψ+

1
2
(x)ψ+

− 1
2
(x′)ψ 1

2
(x′)ψ− 1

2
(x)+ h.c.}

with some “attractive” potential V (x) in the presence of a constant magnetic field
described by the vector potential A(x) in the Coulomb gauge ∇A(x) = 0 . The
chosen interaction does not lead to bound states, like an attractive Coulomb potential
would do, but, as we shall see, it gives rise to BCS-type correlations.

We approximate the problem within the Hartree–Fock–Bogoliubov scheme by
retaining only the anomalous (electron number non-conserving) averages with
opposite spins

HHFB =
∑
σ

ˆ
dxψ+

σ (x)
{

1

2m

(
−ıh̄∇ − e

c
A(x)

)2 − μ
}
ψσ (x)

+ 1

2

ˆ
dx
ˆ
dx′V (x − x′)

{
〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉ψ− 1

2
(x′)ψ 1

2
(x)

+ 〈ψ− 1
2
(x′)ψ 1

2
(x)〉ψ+

1
2
(x)ψ+

− 1
2
(x′)− 〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉〈ψ− 1

2
(x′)ψ 1

2
(x)〉

}
.

Here the average is defined over the macro-canonical distribution

〈. . .〉 ≡ T r
{
e−βHHFB . . .

}
T r
{
e−βHHFB

} .

In the absence of the magnetic field (A = 0), in a finite volume Ω with discrete
wave vectors we get the unperturbed “Hamiltonian” in terms of the creation and
annihilation operators of the k, σ states

H 0
HFB =

∑
k

{
εk

(
a+

k, 1
2
ak, 1

2
+ a+

−k,− 1
2
a−k,− 1

2

)

+Δka−k,− 1
2
ak, 1

2
+Δ∗

ka
+
k, 1

2
a+
−k,− 1

2
+ C (k)

}

with

ε(k) = h̄2k2

2m
− μ,
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Δk ≡ 1

Ω

∑
k′
V (k − k′)〈a+

k′, 1
2
a+
−k′,− 1

2
〉

and

Ṽ (k) =
ˆ
Ω

dxeıkxV (x).

This “Hamiltonian” may be diagonalized with the Bogoliubov–Valatin canonical
transformation

(
ak, 1

2

a+
−k,− 1

2

)
=
(
uk vk

−v∗
k u

∗
k

)(
ck, 1

2

c+−k,− 1
2

)
,

where the coefficients must satisfy the relation

|uk|2 + |vk|2 = 1.

In terms of the new creation–annihilation operators, we get

H
0

HFB =
∑

k

{
Ek

(
c+

k, 1
2
ck, 1

2
+ c+

k,− 1
2
ck,− 1

2

)
+ C (k)

}
,

where

E(k) =
√
ε(k)2 + |Δ(k)|2,

and (in the infinite volume limit)

Δ(k) = − 1

(2π)3

ˆ
dk′Ṽ (k − k′) Δ(k

′)
2E(k′)

[
1 − 2f

(
E(k′)

)]

with the Fermi function

f (E) = 1

eβE + 1
.

The HFB constant is

C (k) = εk − Ek + |Δk|
2Ek

2

[1 − 2f (E(k))] .

The chemical potential μ has to be determined from the equation for the average
density of electrons that in the new variables looks as
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1

(2π)3

ˆ
dk
[

1 − ε(k)
E(k)

[1 − 2f (E(k))]
]

= 〈n〉.

The grand-canonical potential is

F = − 1

Ωβ
ln

{
T r

[
e−βH

0
HFB

]}
= 1

(2π)3

ˆ
dk
{

2

β
ln [1 − f (E(k)] + C (k)

}

and the solution of the gap equation ensures also the extremum condition

δF

δΔ(k)
= 0,

while the stability of the phase transition depends on the sign of its second
derivative.

The gap equation obviously has a vanishing solution Δ(k) = 0 and possibly
another one with Δ(k) �= 0. If the solution with Δ(k) �= 0 gives rise to a smaller
grand-canonical potential, the anomalous solution is preferred, and we have a phase
transition. In this case the new ground state is the new vacuum, with energy C (k),
while the next excited state with a quasi-particle of wave vector k has the energy
C (k) + E(k). The minimal distance between the two states may be finite and we
have an energy gap for excitations. (Due to the rotational invariance of the potential
V , not only the unperturbed energies ε but also the new ones E as well as Δ are
functions only of k ≡ |k| and we may omit the vector notation.)

We have avoided to define the potential V (x) itself and it is not at all clear if the
BCS theory may be formulated explicitly as an attraction through a local potential
in real space. Therefore, the above discussion serves only as a sketch of a possible
scenario for a phase transition with a BCS-type electron correlation. For any given
potential one may check (numerically) the expected properties.

Whether the above described theory or any similar one describes indeed a super-
conductor may be checked only by understanding its electromagnetic properties. A
theory of the resistanceless flow of currents is beyond any hope. Indeed, today’s
transport theory introduces elements of irreversibility by hand in order to get a finite
conductivity. If one omits this step, then any model allows free flow of electric
current. Remains the question, what would impede dissipation? One may hope
that the gap above the Fermi energy offers stability against weak perturbations.
(However, we have seen on the example of a solvable model in Sect. 5.2 that indeed
even in an open system dissipation may be absent in a certain parameter range.)
The only well defined possibility remains to look at least at magnetic properties in
equilibrium.
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7.6.1 Meissner Effect Within Equilibrium Linear Response

The simplest test of superconducting features in the above described model is to
see whether it gives rise to the Meissner effect, i.e., to expulsion of magnetic fields
from the bulk? Since the Meissner effect occurs in equilibrium, one may use the
equilibrium linear response theory.

The basic Hamiltonian used in solid state theory omits terms of order 1
c2 and this

means not only omitting relativistic corrections, but also ignoring velocity–velocity
couplings between the electrons dictated by electrodynamics. Thus, the magnetic
field produced by the electrons is completely absent. Therefore, we are compelled
to interpret here the magnetic field as an s.c. (mean-field) one, in analogy to the
treatment of longitudinal electric fields in a system of electrons without explicit
Coulomb interaction.

Let us consider a weak magnetic field that may be considered as a small
perturbation. The peculiarity of the self-consistent approach here is that the vector
potential A(x) contained explicitly in the kinetic energy is not the only perturbation
due to the magnetic field. The anomalous averages in the s.c. “Hamiltonian” HHFB

are also modified by the magnetic field. Therefore, the perturbation to consider for
the linear response is

H ′ = −1

c

ˆ
dxj(x)A(x)+

ˆ
dx
ˆ
dx′V (x−x′)

[
η(x, x′)ψ− 1

2
(x′)ψ 1

2
(x)+ h.c.

]
,

where

η(x, x′) ≡ 〈ψ+
1
2
(x)ψ+

− 1
2
(x′)〉 − 〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉0

is (the first order in the magnetic field) deviation of the averages from their
unperturbed values. These must be simultaneously calculated self-consistently. In
the presence of a magnetic field the current density contains also a diamagnetic
term

j(x) ≡ e

2m
ψ+(x)

(
−ıh̄∇ + e

c
A(x)

)
ψ(x)+ h.c.,

(however, see Chap. 9 for the proper formulation, taking into account the difference
between the s.c. mean and the external fields).

One may use the equilibrium linear response formula Eq. 6.1 with the previous
results for the chosen model of attracting electrons to get the linear relationship
between the average current and the vector potential.

From the current conservation it follows that

〈j̃μ(k)〉 =
(
δμν − kμkν

k

)
κ(k)Ãν(k).
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Due to the transversality of the vector potential in the Coulomb gauge this is
equivalent to

〈j̃μ(k)〉 = κ(k)Ãμ(k).

The coefficient κ(k) given by the equilibrium linear response theory has a rather
complicated expression in terms of the previously defined parameters and we omit
it. Actually, we are interested in this relationship only for small wave vectors (slowly
varying behavior in the coordinate space!). In the anomalous superconducting phase
having a non-vanishing gap Δ(k) at k = 0 one gets

κ(0) = − 1

cΛ
.

It may be shown that under the condition of the stability of the superconducting
phase Λ is indeed positive and the contribution produced by consideration of
η(x, x′) to this result vanishes. Therefore, the above described model seems to
produce a Meissner effect, since in the Coulomb gauge the second London equation
reads as

j = − 1

cΛ
A.

An obvious weakness of the above discussion is that in the bulk the London
equation is meaningless, since if a Meissner effect occurs, the magnetic field as well
as the current density should vanish in the bulk.

However, another word of caution is compulsory. The Meissner effect obviously
is due to the compensation of the external magnetic field by the internal one.
However, in this mean-field interpretation of the magnetic field in bulk one cannot
differentiate these two. Here we are confronted with the limits of today’s solid
state theory based on a pure Coulomb interacting model of electrons and ions. See,
however, the discussion in Chap. 9 for a correct formulation of the Meissner effect
in the bulk. The best way, however, is still to formulate the problem at the surface.

7.6.2 The Case of a Contact Potential: The Bogoliubov–de
Gennes Equation

A simplest case to discuss in more detail is the choice of a contact potential

V (x) = −gδ(x). (7.20)

This implies a k-independent gap satisfying the equation
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Δ = g

(2π)3

ˆ
dk

Δ

2E(k)
[1 − 2f (E(k))]

which besides Δ=0 has no other solution, except if one cuts off the integral at
some kM . This cutoff has then to be taken into account in the definitions of all the
summations over the k-space and the choice Ṽ (k) = −gθ(kM − k) implies

V (x) = 1

(2π)3

ˆ
dkθ(kM − k)eıkx = sin(kMr)− kMr cos(kMr)

2π2r3 (7.21)

which is an approximant of the δ(x) function and not a true contact potential as it
was assumed in Eq. 7.20.

Another approach, due to de Gennes is to remain in the case of the contact
potential within the coordinate space formulation. The Hartree–Fock–Bogoliubov–
de Gennes Hamiltonian with the anomalous averages in the coordinate space in the
presence of a vector potential A(x) and a scalar potential U(x) looks as

HGenn=
∑
σ

ˆ
dxψ+

σ (x)
{

1

2m

(
−ıh̄∇ − e

c
A(x)

)2 + U(x)− μ
}
ψσ (x)

−g
2

ˆ
dx
{
〈ψ+

1
2
(x)ψ+

− 1
2
(x)〉ψ− 1

2
(x)ψ 1

2
(x)+ 〈ψ− 1

2
(x)ψ 1

2
(x)〉ψ+

1
2
(x)ψ+

− 1
2
(x)

− 〈ψ+
1
2
(x)ψ+

− 1
2
(x)〉〈ψ− 1

2
(x)ψ 1

2
(x)〉

}
(7.22)

or with the notation

D(x) = 〈ψ− 1
2
(x)ψ 1

2
(x)〉, (7.23)

HGenn=
∑
σ

ˆ
dxψ+

σ (x)
{

1

2m

(
−ıh̄∇ − e

c
A(x)

)2 + U(x)− μ
}
ψσ (x)

−g
2

ˆ
dx
{
D(x)∗ψ− 1

2
(x)ψ 1

2
(x)+ D(x)ψ+

1
2
(x)ψ+

− 1
2
(x)+ |D(x)|2

}
. (7.24)

It may be diagonalized by a Bogoliubov transformation to new fermion operators

[αnσ , α+
n′,σ ′ ] = δnn′δσ,σ ′

by writing

ψ 1
2
(x) =

∑
n

{
un(x)αn, 1

2
+ vn(x)∗α+

n,− 1
2

}
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ψ− 1
2
(x) =

∑
n

{
un(x)αn,− 1

2
− vn(x)∗α+

n, 1
2

}
.

Thus

HGenn = E0 +
∑
n,σ

Enα
+
n,σ αn,σ

while the eigenenergies En satisfy the coupled eigenvalue equations

Eun(x) =
[
h̄2

2m

(
−ıh̄∇ − e

c
A(x)

)2 + U(x)− μ
]
un(x)+ gD(x)vn(x) (7.25)

Evn(x) = −
[
h̄2

2m

(
−ıh̄∇ − e

c
A(x)

)2 + U(x)− μ
]
vn(x)+ gD(x)∗un(x) (7.26)

and the self-consistency condition

D(x) = g
∑
n

vn(x)∗un(x) tanh(βEn/2), (7.27)

which for T = 0 looks simpler

D(x) = g
∑
n

vn(x)∗un(x)θ(En).

Again it is necessary to limit the energy spectrum from above (E < EM ), but
one got a description in real space that allows formulation of boundary conditions!
If one admits that the system is a half space bounded by a plane at z = 0, i.e.,
U(x, y, 0) = ∞ and vanishing otherwise, then due to the vanishing boundary
conditions D(0, y, z) = 0.

Obviously the de Genes theory including boundary conditions differs from the
bulk theory with the pseudo-contact potential Eq. 7.21.

On the other hand, the vector potential considered by de Gennes should be
considered again as the self-consistent one inside the superconductor. This is the
sole one modified within the material, not the applied one. (As we shall later
discuss it in Chap. 9 only the linear version in the s.c. field of the de Gennes
Hamiltonian is correct from the point of view of quantum electrodynamics.) A proof
of the Meissner effect within the s.c. frame has to consider the electromagnetic
boundary problem with an external (applied) magnetic field having its sources far
away from the system. The formulation of de Gennes offers this possibility. The
required ingredient has to be a quasi-local relation between the average current
density and the s.c. vector potential in the material. Such a relation has to be valid
already at distances smaller than the resulting penetration depth. Unfortunately such
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a relationship is hard to proof and may raise questions about possible long range
correlations oft associated with phase transitions. Inclusion of other ingredients in
the theory might, however, endanger the phase transition itself. The situation was
quite different in the case of the Debye penetration of a static electric field into a
semiconductor described in Sect. 2.6.1.



Chapter 8
Low Dimensional Semiconductors

Quasi two-dimensional semiconductor layers offer a lot of spectacular prop-
erties of which the most famous is the Quantum Hall effect. We limit ourselves,
however, only to the presentation of the simplest, well understood, but
nevertheless surprising peculiarities of the classical and quantum mechanical
two-dimensional motion of Coulomb interacting electrons in the presence of
a strong transverse magnetic field.

In the last decades progresses in semiconductor technology produced ultra-thin
semiconductor layer systems in which by a suitable choice of the layers, the
electrons and holes are restricted to a two-dimensional motion. An ultra-thin layer
of a semiconductor is inserted between two thick layers of another semiconductor
with a larger band gap and therefore, both the electrons and holes in the ultra-thin
layer are in a quantum well and their lowest states are discrete as it is shown in
Fig. 8.1.

At sufficiently low temperatures the electrons and holes sit on their lowest levels
(shown here in red and green). It means, the transverse motion at low temperatures is
“frozen” in its lowest lying state φ0(z) in the potential well created by the adjoining
layers and the wave function of an electron, in a good approximation is given by

Ψ (x, y, z) = ψ(x, y)φ0(z),

with the coordinates x, y lying in the plane and z being the transverse coordinate.
This is the experimental realization of a two dimensional (2D) electron–hole system,
which has a lot of very interesting properties.
Already the free motion in 2D has a peculiarity, namely the one-electron state
density is constant above ε = 0

© Springer Nature Switzerland AG 2020
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Fig. 8.1 A semiconductor
quantum well

z(ε) = 1

(2π)2

ˆ
dkδ(ε − h̄2k2

2m
) = m

2πh̄2 θ(ε).

Such systems show above all spectacular properties in the presence of a strong
magnetic field transverse to the plane. The most famous one is the Quantum Hall
effect. We will not try to describe here the different, sometimes contradicting
theories of this effect. Nevertheless, we want to bring the attention to the kind of
strange physics we encounter in two dimensions (2D).

8.1 Exciton in 2D

Let us consider an electron–hole pair with Coulomb attraction in a 2D semi-
conductor. In the effective mass approximation, the relative motion in cylindrical
coordinates is described by the Hamiltonian

H = − h̄²

2m

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
− 1

ρ2

∂2

∂φ2 + e²

ερ
,

where m is the reduced mass of the pair and ε is the dielectric constant (supposed
here as being the same in the 2D layer as in the surrounding semiconductor). The
eigenstates of this Hamiltonian are characterized by two quantum numbers n =
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0, 1, 2 . . . and μ = ±0,±1,±2, . . .. The lowest eigenstate (n = 0, μ = 0) is

ψ0,0 = 4√
2πa

e
− 2ρ
aB ,

while the ground state energy is

E0,0 = −4ER.

where we used as parameter the Bohr radius aB and the Rydberg energy ER of the
3D exciton. A comparison with the ground state exciton wave function in 3D (see
Sect. 3.1.2) shows that the exciton radius in 2D is twice smaller than in 3D and its
binding energy is four times bigger. Contrary to any expectations, the transversely
compressed exciton shrinks also in the still allowed two dimensions.

8.2 Motion of a 2D Electron in a Strong Magnetic Field

According to the discussed 3D motion of an electron in a homogeneous magnetic
field (see Sect. 2.2.2) the stationary states in the Landau gauge are given by a plane
wave in the field direction (along the z axis) and in the transverse plane by the
Landau states of discrete energies. If one restricts the motion to the plane x,y, then
the energy of such a Landau state is just

εn,X, = h̄ωc(n+ 1

2
) (n = 0, 1, 2, . . .).

Since these energies do not depend on the quantum number X (the x-coordinate of
the center of the cyclotron motion), they are (in the absence of boundary conditions!)
infinitely degenerate.
In what follows we consider very strong magnetic fields at very low temperatures
and therefore we may consider that all the spins are aligned along the magnetic
field. We shall consider the motion of such a 2D electron in a strong magnetic field
perpendicular to the plane of motion in the presence of an external potential U(r).

The simplest approach to consider is to ignore the higher lying Landau levels
and, if the potential is weak, to consider its projection on the lowest lying Landau
state (n = 0) within first order perturbation for the energy

E(X) = 1

2
h̄ω0 + 〈0, X|U(x, y)|0, X〉.

Kubo’s more profound approach considers the limit of ultra-strong magnetic
fields for arbitrary potentials and an arbitrary kinetic energy T . The 2D Hamilton
operator is
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H = T (π)+ U(r),

where the generalized momenta π in the presence of the vector potential A are

π ≡ p + e

c
A(r)) ; p ≡ ıh̄∇.

Within the set of operators (π , r) the only non-vanishing commutators are

[πx, πy] = h̄e

ıc
B; [πx, x] = [πy, y] = h̄

ı
.

Defining new operators

ξ = c

eB
πy, η = c

eB
πx

and

X = x − ξ, Y = y − η

it results that

[ξ, η] = h̄c

ıeB
≡ l2B

ı
,

[X, Y ] = − h̄c

ıeB
≡ − l

2
B

ı
,

while the other commutators of the new operators vanish. The kinetic energy T
depends only on the new operators ξ and η. Also, in the absence of the potential
U the operators X and Y do not change in time. They are assimilated with the
coordinates of the cyclotron motion, while the operators ξ and η are the relative
coordinates.
In the presence of the external potential, either in the frame of quantum mechanics
or within classical mechanics, the center of the cyclotron motion moves according
to

Ẋ = c

eB

∂U

∂y
, Ẏ = − c

eB

∂U

∂x
.

According to the above canonical commutation rules one has the uncertainty
relations

�X�Y = 2πl2B
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and since ultra-strong magnetic fields imply lB → 0, a classical description with
classical coordinatesX, Y is appropriate. On the other hand, if the potential is slowly
varying on the scale of the magnetic length, one may ignore the relative motion and
to a very good approximation one could use the classical equations of motion

Ẋ = c

eB

∂U(X, Y )

∂Y
, Ẏ = − c

eB

∂U(X, Y )

∂X
.

It follows that

∂Y

∂X
= Ẏ

Ẋ
= −

∂U(X,Y )
∂X

∂U(X,Y )
∂Y

.

However, this corresponds to the motion on a curve defined by U(x, y) = U0.
Indeed, by using the definition of the implicit derivative one gets

∂y

∂x
= −

∂U(x,y)
∂x

∂U(x,y)
∂y

.

To conclude, in the limit of ultra-strong magnetic fields the motion of the
cyclotron center of electrons in 2D with arbitrary kinetic energy in the presence
of an external potential is just a classical one along the equipotential curves of the
potential.

8.3 Coulomb Interaction in 2D in a Strong Magnetic Field

8.3.1 Classical Motion

A stranger aspect of the 2D motion in a strong magnetic field is how Coulomb
forces act. Let us consider first the classical problem of the motion of two particles
of opposite charges (electron and hole). We are interested only in the relative motion,
therefore one of the particles we may keep fixed in the origin. A numerical solution
of the corresponding Newton equations shows the trajectory in Fig. 8.2. This is a
somewhat complicated picture, but the particles, as expected seem to attract each
other and stick together.
To our surprise, even two identically charged particles in 2D, having repulsive
Coulomb forces, stick together, showing an effective attraction, as it is illustrated
in Fig. 8.3. Of course, the Coulomb force tries to accelerate the electrons in the
repulsive manner, but the accelerated electron is returned by the bending in the
magnetic field. The only escape would have been in the now forbidden transverse
direction.
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Fig. 8.2 Classical relative motion of opposite charged particles in 2D in the presence of a
transverse magnetic field

If one considers a whole cluster of electrons these are sticking together in a cluster,
as it is shown in Fig. 8.4.

8.3.2 Quantum Mechanical States

The quantum mechanical analysis of the motion of two Coulomb repulsive particles
confirms also the existence of bound electron–electron states in 2D.
The quantum mechanical Hamiltonian for the 3D relative motion of two electrons
in the presence of a magnetic field B is

H 3D = − h̄
2

2m
∇2 − eh̄

mc
ı

(
A(r) � ∇ + 1

2
∇A(r)

)
+ e2

2mc2
A(r)2 + e2

r
.
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Fig. 8.3 Classical relative motion of identically charged particles in 2D electron in the presence
of a transverse magnetic field

If one chooses the divergenceless vector potential (with the magnetic field in the
z-direction)

A(r) ≡
(

−1

2
By,

1

2
Bx, 0

)
,

one may write the 2D Hamiltonian describing the in-plane motion in cylinder
coordinates ρ, φ as

H 2D = − h̄²

2m

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
− 1

ρ2

∂2

∂φ2 − ı eh̄B
2mc

∂

∂φ
+ e2B2

8mc2 ρ
2 + e²

ρ
.

One looks, as usual, for the eigenfunctions as

ψ(ρ, φ) = u(ρ)eıμφ (μ = 0, 1, 2, . . .).

Then the eigenvalue problem for the radial part is
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Fig. 8.4 Classical motion of 4 electrons (one is kept fixed in the origin) in 2D in the presence of
the magnetic field

− h̄²

2m

1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+
(
h̄²

2m

μ2

ρ2 + eh̄B

2mc
μ+ e2B2

8mc2 ρ
2 + e²

ρ

)
u = Eμu.

This Schrödinger equation differs (up to a shift in the energy with eh̄B
2mcμ) from

that of a radial 2D oscillator just due to the Coulomb term e2

ρ
. Since in a very strong

magnetic field the spins are supposed to be aligned along the magnetic field and the
wave functions must be anti-symmetrical for fermions; only odd angular momenta
μ are of interest. In terms of the dimensionless parameter

ξ = eB

2ch̄

(
h̄2

2me2

)2

an ultra-strong magnetic field corresponds to ξ 
 1. The radial wave function of
the lowest μ = 1 state of the 2D oscillator is
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Fig. 8.5 The lowest μ = 1 eigenfunction with and without Coulomb repulsion

R1,0(ρ) = ξ√
π
ρe−

1
2 ξρ

2; 2π
ˆ ∞

0
ρ|R(ρ)|2dρ = 1,

where for convenience the radius ρ is measured in units of the length λ = h̄2

2me2 .
A numerical solution of the lowest eigenfunction including Coulomb repulsion

for μ = 1 and ξ = 10 is shown red in Fig. 8.5, while the corresponding oscillator
function is shown in blue.

The two wave functions are surprisingly close to each other. The contribution of
the Coulomb potential to the energy may be approximated by first order perturbation
theory as its average over the oscillator function. The result again lies surprisingly
close to the exact value (in our example, up to four digits).

On the other hand, without the Coulomb potential the wave function would have
been centered at any arbitrary position in the plane. The existence of the repulsive
center, however, fixes its position! This suggested the construction of the so-called
Laughlin-wave functions for many electrons out of oscillator wave functions.

It is worth to remark also that the lowest s-wave (μ = 0) state shows in
concordance with the formerly discussed theory of Kubo a motion concentrated
on a circle (equipotential line for the Coulomb potential).



Chapter 9
Extension of the Solid-State Hamiltonian:
Current–Current Interaction Terms of
Order 1/c2

We describe here an extension of the solid-state Hamiltonian to include
1/c2 terms, which are responsible for current–current interactions, absent
in the basic Hamiltonian of Chap. 1. We construct first a Hamiltonian for
classical charged point-like particles including non-relativistic terms of order
1/c2 using the scheme of Landau–Lifschitz in order to avoid the diverging
self-interactions in the Coulomb gauge. The second quantization of this
Hamiltonian contains besides the usual “charge ↔ charge” interaction a
similar “transverse current ↔ transverse current” interaction. This Hamilto-
nian might serve for further developments of solid-state theory.

9.1 Classical Approach

We began this compendium with the definition of the solid state as being described
by a quantum mechanical Hamiltonian of electrons and ions interacting through
Coulomb forces. This traditional textbook Hamiltonian is not at all self-evident.
It stems not from a classical Hamiltonian obtained from a given Lagrangian and
a quantization according to the “Poisson brackets to commutators” recipe, as it
was the case for a single particle in the presence of a potential. A consistent
Lagrangian formalism for classical charged point-like particles interacting with
the electromagnetic field, whose sources are these themselves is actually missing.
One has to exclude by hand the self-interaction from the Lorentz force in order
to obtain some meaningful equations (see Sect. 11.6). Nevertheless, it was a useful
construction, which in its second quantized version may be justified as neglecting
any 1/c correction in the non-relativistic quantum electrodynamics (QED) restricted
to states without photons.
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Actually, one may go also a step further by including also the terms of order
1/c2 we want to describe here, although it was not yet used in solid-state theory.
One must stress, however, that what we do in this chapter is just a construction and
not a proof. It will be checked in the following chapter as a proper approximation
of the non-relativistic QED.

One starts the construction with the classical Lagrangian of a single electron in
an external field produced by some external sources ρext and iext

L(r,ṙ) = mṙ2

2
− eφext (r, t)+ e

c
Aext (r, t)ṙ.

In the Coulomb gauge

∇Aext (r, t) = 0

the potentials are

φ(r, t)ext =
ˆ
dx
ρext (x, t)
|r − x| ; Aext (r, t) =

ˆ
dx

iext⊥ (x, t − |r − x|/c)
c|r − x| ,

where ρext (x, t) is the external charge density, while iext⊥ (x, t) is the external
transverse (∇iext⊥ = 0) current density

iext⊥ (x, t) ≡ iext (x, t)+ 1

4π
∇
ˆ
dx′ ∇′iext (x′, t)

|x − x′| .

Next, we retain the lowest approximation in 1/c of the retarded current density

Aext (r, t) ≈
ˆ
dx

iext⊥ (x, t)

c|r − x| ,

which gives rise to an 1/c2 term in the Lagrangian.
If the source of the fields is a single point particle of charge e′ at x(t) having the

velocity ẋ(t), then

ρext (x,t) = e′δ(x − x(t)), iext (x, t) = e′ẋ(t)δ(x − x(t)),

with

φext (r, t) = e′

|r − x(t)|
and
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Aext (r, t) = e′

c

[
ẋ(t)

|r − x(t)| − 1

4π

ˆ
dx

1

|r − x|∇
(

ẋ(t)∇ 1

|x − x(t)|
)]

.

Therefore the Lagrangian of the electron in the field of the another electron, in this
approximation, is

L (r,ṙ;x,ẋ) = mi ṙ2

2
− ee′

|r − x(t)|

+ee
′ṙ
c2

[
ẋ(t)

|r − x(t)| − 1

4π

ˆ
dx

1

|r − x|∇
(

ẋ(t)∇ 1

|x − x(t)|
)]
.

By generalization one obtains for a system of N charged particles the total
Lagrange function

L=
∑
i

mi

2
vi

2 −
∑
i>j

eiej

|ri − rj |

+
∑
i>j

eiej

c2 vi

[
vj

|ri − rj | + 1

4π

ˆ
dx

1

|ri − x|∇
(

vj∇ 1

|x − rj |
)]
.

Since this Lagrangian contains velocity dependent terms besides the kinetic energy,
the standard canonical formalism strictly speaking cannot be applied, because it
will produce relations between the canonical momenta. Nevertheless, sticking to
the lowest order in 1/c we have

pi = δL

δṙi
≈ mṙi

and therefore we may still remain in the frame of the standard canonical formalism.
The resulting classical Hamiltonian is

H =
∑
i

pi
2

2mi
+
∑
i>j

eiej

|ri − rj | (9.1)

−
∑
i>j

eiej

c2mimj
pi

[
pj

|ri − rj | − 1

4π

ˆ
dx

1

|ri − x|∇
(

pj∇ 1

|x − rj |
)]

including 1/c2 terms.
The next step is to quantize this Hamiltonian. For the sake of simplicity we

consider from here on a single sort of particles (electrons) of mass m and charge e.
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9.2 The Second Quantized Version

By introducing the charge and current densities:

ρ(x) =
∑
i

eδ(x − ri ); i(x) =
∑
i

e

m
piδ(x − ri )

one would be tempted to rewrite the classical Hamiltonian Eq. 9.1 as

∑
i

1

2m
pi

2 + 1

2

ˆ
dx
ˆ
dx′ ρ(x)ρ(x′)

|x − x′)| − 1

2

ˆ
dx
ˆ
dx′ i⊥(x)i⊥(x′)

c2|x − x′| , (9.2)

where i⊥(x) is the transverse part of the current density

i⊥(r, t) ≡ i(r, t)+ 1

4π
∇
ˆ
dr′ ∇′i(r′, t)

|r − r′| .

However, due to the divergent self-interaction of point-like classical particles this
expression is not meaningful, even without the 1/c2 terms.

The quantum mechanical version of this Hamiltonian for a system of identical
particles (here fermions) the problem is, however, milder. One cannot identify
individual particles and therefore the self-interaction is at least not obvious and one
may eliminate it partially in the second quantization formalism by considering a
“normal ordering” of the operators in the Hamiltonian, as it was done also in the
case of the Coulomb interaction. This ordering of the creation operators to the left
side and annihilation operators to the right side eliminates the interaction in states
that contain less than two particles. Therefore we may proceed with the second
quantization formulation of the theory directly form the last symbolic expression
Eq. 9.2. One has to introduce the second quantized charge and the transverse part of
the current density operators expressed in terms of second quantized wave functions
ψ(x) for fermions with spin 1/2, but for simplicity of the notations we omit the spin
index

ρ(x) = eψ+(x)ψ(x)

i(x) = e

2m
ψ+(x) h̄

ı
∇ψ(x)+ h.c.

and “normal order” the second quantized electron wave functions in the interaction
part of the Hamiltonian. The resulting quantum mechanical Hamiltonian H in the
second quantized formalism looks then as
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H = −
ˆ
dxψ+(x) h̄

2

2m
∇2ψ(x) (9.3)

+ 1

2

ˆ
dx
ˆ
dx′N

[
ρ(x)ρ(x′)

]
|x − x′| − 1

2

ˆ
dx
ˆ
dx′N

[
i⊥(x)i⊥(x′)

]
c2|x − x′|

where the symbol N [..] means the normal ordering of the operators. Explicitly, the
Coulomb term looks, as usual

1

2

ˆ
dx
ˆ
dx′ψ+(x)ψ+(x′) e2

|x − x′|ψ(x
′)ψ(x) , (9.4)

while, due to the additional integrals in the definition of the transverse part, the
current–current term has a simple expression only in the discrete k-space basis
(plane waves with periodical boundary conditions in a cube of volume Ω). It looks
explicitly as

− e2h̄2

m2c2Ω

∑
σ,σ ′=±1

∑
k,p,q

2π

q2

(
kp − qk

1

q2
qp
)
a+

k,σ a
+
p,σ ′ap+q,σ ′ak−q,σ . (9.5)

Equation 9.3 defines the second quantized Hamiltonian of electromagnetic interact-
ing electrons of order 1/c2. It includes a (transverse) current–current interaction.

We still have to add the interaction with classical external fields. These fields,
sometimes called as the applied ones, have their sources far away from the system
in consideration and are the basic ingredients of any electromagnetic experiment.
One may add an external potential Vext (x) to the potential energy of each charged
particle, whereas a classical external vector potential Aext (x, t), according to the
minimal rule implies the replacement of −ıh̄∇ by −ıh̄∇ − e

c
Aext . Its motivation

lies in the fact that in the presence of an external magnetic field the velocity of
a classical charged particle is related to the canonical momentum by mẋ = p +
e
c
Aext (x, t). This implies not only the modification of the kinetic energy term, but

also the modification of the current density i⊥(x) in the current–current term of the
Hamiltonian.

Therefore, in the presence of external fields our Hamiltonian looks as

H = −
ˆ
dxψ+(x)

[(
h̄

ı
∇ − e

c
Aext (x, t)

)2

+ Vext (x, t)
]
ψ(x) (9.6)

+ 1

2

ˆ
dx
ˆ
dx′N

[
ρ(x)ρ(x′)

]
|x − x′)| − 1

2

ˆ
dx
ˆ
dx′N

[
j⊥(x)j⊥(x′)

]
c2|x − x′| .

The current density operator j(x, t), whose average is of interest, is modified
accordingly
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j(x, t) = e

2m

(
ψ+(x)

(
h̄

ı
∇ − e

c
Aext (x, t)

)
ψ(x, t)+ h.c.

)
. (9.7)

In the Hartree approximation, taking into account also the presence of external
potentials the above Hamiltonian looks as

HHartree =
ˆ
dxψ+(x))

[(
h̄

ı
∇ − e

c
Aext (x, t)

)2

+ eV ext (x, t)+ eV int (x, t)
]
ψ(x)

− 1

c

ˆ
dxi⊥(x, t)Aint (x, t) (9.8)

with

Vint (x, t) =
ˆ
dx ′ 〈ρ(x ′, t)〉

|x − x ′| ; Aint (x, t) =
ˆ
dx ′ 〈i⊥(x ′, t)〉

|x − x ′| . (9.9)

The linear terms of this Hamiltonian with respect to the external vector potential
coincide with those of the Hamiltonian used in the superconductivity models of
Chap. 7. Therefore the s.c. Hamiltonian Eq. 9.8 suffers of the same weaknesses.

It is important to stress that the gauge invariance is reduced in both Hamiltonians
Eqs. 9.6 and 9.8 to the choice of the external fields, since the internal fields V int

and Aint were deduced in a given gauge—the Coulomb one. This was the situation
also without the current–current term. (Think about the hydrogen atom! One
cannot change the Coulomb potential acting between the electron and the proton.)
Unfortunately, this circumstance is often forgotten and one does not discern between
the external, internal, or the total s.c. vector potentials. As we shall see in the next
chapter, gauge invariance in the classical electromagnetic theory is restricted to the
equations and to the Lagrangian, but in order to construct a Hamiltonian one has
to choose a definite gauge. In the operator formulation of the (relativistic or non-
relativistic) QED one may even not define (operatorial!) gauge transformations at
all. It was made possible only after the functional (path integral) formulation of the
quantum mechanical electromagnetic theory.

It is easy to generalize the above Hamiltonian for a system consisting of electrons
and ions and therefore get the quantum mechanical Hamiltonian of the solid state
including terms of order 1/c2 including the transverse current–current interaction.

As we mentioned in the introductory Chap. 1, the justification of ignoring the
velocity dependent terms in the basic solid-state Hamiltonian was the very small
velocity of the electrons in comparison to the light velocity. At a first glance the
current–current interaction term seems to be of the order v2/c2. However, generally
speaking this argumentation is false. It is an everyday’s experience that a very
slow flow of a macroscopic number of electrons may create enormous magnetic
fields. The current–current terms in the Hamiltonian are actually responsible for
the diamagnetic properties of materials and are essential for the ideal diamagnetism
manifested by the Meissner effect.
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The Hamiltonian Eq. 9.6 allows also the formal introduction of the source of
the external fields in the bulk (including the magnetic one!), as it was done in the
treatment of the linear response in the presence of Coulomb interactions in the solid-
state Hamiltonian. Therefore it enables also a bulk approach to the Meissner effect.
(Of course, after including terms representing the BCS interaction and taking into
account the spontaneous symmetry breaking.)

The classical version of the 1/c2 Hamiltonian Eq. 9.1 on its turn might play an
important role in the classical plasma theory, where again strong but slow currents
generate strong magnetic fields.



Chapter 10
Field-Theoretical Approach to the
Non-Relativistic Quantum
Electrodynamics

We give here the field-theoretical derivation of the Hamiltonian of the
non-relativistic quantum electrodynamics in the Coulomb gauge using the
Lagrange formalism. It leads to the same result as the usual derivation, where
one just replaces the classical vector potential in the minimal coupling of
the second quantized electron Hamiltonian by the quantized one and adds
the photon energy. This derivation however illustrates the proper use of the
Euler–Lagrange equations and the canonical formalism that fails if one tries
to quantize the classical theory of point-like particles interacting with the
electromagnetic fields. In the same time it confirms the 1/c2 result of the
preceding chapter on states without photons.

As one could see, building the quantum mechanics of charged particles starting from
the classical model of point-like charges in the configuration space leads after a few
steps into a dead end. More than the 1/c2 approximation cannot be achieved. The
correct approach should follow a reverse order, starting from the formulation of the
non-relativistic quantum electrodynamics, followed by simplifying approximations
(expansion in powers of 1/c).

In order to construct the non-relativistic quantum mechanical Hamiltonian
describing the interaction between electrons and photons, we use here a way
borrowed from the relativistic quantum field theory. We proceed by three steps.
The first is to build up a classical Lagrangian density out of classical fields. These
include besides the electric and magnetic fields also an one-electron wave function
that leads to the coupled Maxwell and Schrödinger equations with the charge and
current densities defined by the Schrödinger equation The second step is to choose
the Coulomb gauge in order to eliminate the spurious degrees of freedom that allows
one to build a classical Hamiltonian. The last step is to quantize all the physical
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fields (wave function and transverse e.m. vector potential) in the Hamiltonian. This
way avoids the ill-defined theory of point-like charged particles. Of course, for the
sake of stability the many-body system should contain also particles of opposite
charge, but the extension of the formalism to include these is trivial.

10.1 Field Theory

In the classical field theory one defines the action A

A =
ˆ
dx
ˆ
dtL (x, t)

by a Lagrange density L (x, t) depending on some fields φi(x, t) and their first time
and space derivatives. The variational principle δA = 0 gives rise to the generalized
Euler–Lagrange equations

∂

∂t

δL

δφ̇i(x, t)
+ ∂

∂xμ

δL

δ
∂φi(x,t)
∂xμ

− δL

δφi(x, t)
= 0.

Here the symbol ∂ means ordinary derivative, while the symbol δ means functional
derivative. Two Lagrangian densities that differ by the time derivative or by the
divergence of a function give rise to the same action and therefore are considered to
be equivalent, taking into account the vanishing of the fields at infinity.

Actually, we have already used this formalism in Sect. 4.2 in the treatment of the
classical phonon fields on the continuum.

The generalized canonical conjugate momenta for the fields φi(x, t) are defined
by

Πφi = δL

δφ̇i

and the Hamiltonian density is

H (φ,Πφ) = −L +Πφi φ̇i ,

provided no relations (constraints) appear between the canonical conjugate
momenta. Lagrangians with constraints however have to be handled with Dirac’s
canonical formalism that implies also a redefinition of the Poisson bracket.
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10.2 Classical Maxwell Equations Coupled to a Quantum
Mechanical Electron

The classical Maxwell equations are two with sources

∇ × B = 4π

c
j + 1

c

∂

∂t
E (10.1)

∇E = 4πρ (10.2)

and two without sources

∇B = 0 (10.3)

∇ × E = −1

c

∂

∂t
B. (10.4)

The equations without sources are automatically satisfied by the introduction of the
electromagnetic potentials

B = ∇ × A (10.5)

E = −∇V − 1

c

∂

∂t
A. (10.6)

Let us suppose, that the sources

ρ(x, t) = eψ(x, t)∗ψ(x, t) (10.7)

j(x, t) = e

2m
ψ(x, t)∗

(
−ıh̄∇ + e

c
A(x, t)

)
ψ(x, t)+ c.c (10.8)

are given by a single electron (for simplicity without spin), described by the quantum
mechanical Schrödinger equation for the wave function ψ(x, t)

ıh̄
∂

∂t
ψ =

(
1

2m

(
−ıh̄∇ + e

c
A(x, t)

)2 + eV (x, t)
)
ψ. (10.9)

Using only the Schrödinger equation the sources satisfy the continuity equation
(required also by consistency)

∇j + ∂

∂t
ρ = 0. (10.10)

The electromagnetic potentials and the wave function are not uniquely defined, they
allow a simultaneous gauge transformation
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V (x, t) → V (x, t)+ 1

c
χ̇(x, t) (10.11)

A(x, t) → A(x, t)− ∇χ(x, t)
ψ(x, t) → ψ(x, t)e−

ıe
h̄c
χ(x,t)

that do not change neither the Maxwell fields B, E, the sources ρ, j nor the whole
system of equations Eqs. 10.1 to 10.10.

The source-less Maxwell equations 10.3 and 10.4 are satisfied automatically in
terms of the electromagnetic potentials through Eqs. 10.5 and 10.6. Therefore, one
should concentrate only on Eqs. 10.1, 10.2, and 10.9. Then the first problem is to find
a Lagrangian giving rise to these equations in terms of the fields V (x, t), A(x, t),
and ψ(x, t) as dynamical variables (generalized coordinates). Thereafter, one has
to find the classical Hamiltonian (in the Coulomb gauge) and at the end quantize
simultaneously the electron wave function ψ(x) and the transverse vector potential
A⊥(x).

10.3 Classical Lagrange Density for the Maxwell Equations
Coupled to a Quantum Mechanical Electron

In our case, the fields are V (x, t), A(x, t), and ψ(x, t). It is easy to see that the
“photon” Lagrange density

Lph(x, t) = 1

8π

(
∇V (x, t)+ 1

c
Ȧ(x, t)

)2

− 1

8π
(∇ × A(x, t))2 (10.12)

through the generalized Euler–Lagrange equations for the fields A(x, t) and V (x, t)
gives rise to the Maxwell equations 10.1, respectively, Eq. 10.2, however, without
sources.

On its turn, the Lagrangian density of the “electron”

Le(x, t) = − h̄
2

2m
∇ψ∗(x, t)∇ψ(x, t)− ıh̄

2

(
ψ̇(x, t)∗ψ(x, t)− ψ(x, t)∗ψ̇(x, t))

(10.13)
for the field ψ(x, t)∗ gives rise to the free Schrödinger equation (uncoupled to the
e.m. fields)

ıh̄
∂

∂t
ψ(x, t) = − h̄

2

2m
∇2ψ(x, t). (10.14)

In these derivations one had to use partial integration allowed by the mentioned
equivalence of Lagrangian densities.
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We shall introduce the e.m. interaction between the electron and the electromag-
netic field by the so-called minimal way, ensuring gauge invariance. It requires the
replacements

h̄

ı
∇ψ →

(
h̄

ı
∇ + e

c
A
)
ψ (10.15)

h̄

ı

∂

∂t
ψ →

(
h̄

ı

∂

∂t
+ eV

)
)ψ (10.16)

in the electron Lagrangian.
Thus, the total Lagrangian is

L = 1

8π

(
∇V + 1

c

∂

∂t
A
)2

− 1

8π
(∇ × A)2 (10.17)

− 1

2m

(
− h̄
ı
∇ + e

c
A
)
ψ∗
(
h̄

ı
∇ + e

c
A
)
ψ

− 1

2
ψ∗
(
h̄

ı

∂

∂t
+ eV

)
ψ − 1

2
ψ

(
− h̄
ı

∂

∂t
+ eV

)
ψ∗.

This is obviously gauge invariant and gives rise to the correct coupled equations.

10.4 The Classical Hamiltonian in the Coulomb Gauge

Unfortunately, the above introduced Lagrangian density Eq. 10.17 is a so-called
singular one. The time derivative of the variable V is not present in it and therefore
the corresponding canonical momentum is vanishing, i.e., we have a constraint in the
canonical formalism. Lagrangians with constraints, as we already mentioned, have
to be handled with Dirac’s canonical formalism that implies also a redefinition of
the Poisson bracket. The simplest way out is however to use the choice of the gauge
in such a way as to eliminate the spurious degrees of freedom from the Lagrangian
before we could construct a Hamiltonian.

The Coulomb gauge defined by

∇A(x, t) = 0 (10.18)

leaves only the physical transverse degrees of freedom of the photons and simulta-
neously eliminates the scalar potential in favor of the charge density

V (x, t) =
ˆ
dx ′ ρ(x ′, t)

|x − x ′| . (10.19)
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We shall construct the Hamiltonian the usual way, however, taking into account of
the above constraint and define the canonical conjugate momenta as

Πψ ≡ δL

δψ̇
= ıh̄

2
ψ∗ (10.20)

Πψ∗ ≡ δL

δψ̇∗ = − ıh̄
2
ψ (10.21)

Π
μ
A ≡ L

δȦμ
= 1

4πc

(
∂

xμ
V + 1

c
Ȧμ

)
, (μ = 1,2, 3) (10.22)

ΠV ≡ 0 (10.23)

and the Hamiltonian density is

H = −L +ΠAμȦμ +Πψψ̇ +Πψ∗ψ̇∗ (10.24)

= − 1

8π

(
∇V + 1

c
Ȧ
)2

+ 1

8π
(∇ × A)2 + 1

4πc
Ȧ
(

∇V + 1

c
Ȧ
)

+ 1

2m

(
− h̄
ı
∇ψ∗ + e

c
Aψ∗

)(
h̄

ı
∇ψ + e

c
Aψ

)
+ eVψ∗ψ,

or (underlining also by the notation A⊥ the transverse character of the vector
potential)

H = 1

8π

(
∇V + 1

c
Ȧ⊥
)2

+ 1

8π
(∇ × A⊥)2 − 1

4π
∇V

(
∇V + 1

c
Ȧ⊥
)

+ 1

2m

(
− h̄
ı
∇ψ∗ + e

c
A⊥ψ∗

)(
h̄

ı
∇ψ + e

c
A⊥ψ

)
+ eVψ∗ψ.

In the Hamiltonian

H =
ˆ
dxH (x)

one may use a partial integration in order to obtain

H =
ˆ
dx

[
1

8π

(
∇V + 1

c
Ȧ⊥
)2

+ 1

8π
(∇ × A⊥)2 + 1

4π
V∇

(
∇V + 1

c
Ȧ⊥
)

+ 1

2m

(
− h̄
ı
∇ψ∗ + e

c
A⊥ψ∗

)(
h̄

ı
∇ψ + e

c
A⊥ψ

)
+ eVψ∗ψ

]
.

Due to the transversality of the vector potential and expressing the scalar
potential through the charge density Eq. 10.19, one gets
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H =
ˆ
dx

[
1

8π

(
∇V + 1

c
Ȧ⊥
)2

+ 1

8π
(∇ × A⊥)2

+ 1

2m

(
− h̄
ı
∇ψ∗ + e

c
A⊥ψ∗

)(
h̄

ı
∇ψ + e

c
A⊥ψ

)]
,

or

H =
ˆ
dx
[

1

8π

(
E2 + B2

)
+ 1

2m

(
− h̄
ı
∇ψ∗ + e

c
A⊥ψ∗

)(
h̄

ı
∇ψ + e

c
A⊥ψ

)]
.

Apparently the Coulomb interaction disappeared, but actually it is contained in
the energy of the longitudinal electric field. Since under the integral

E2 = (∇V )2 + (1
c

Ȧ⊥)2

and after a partial integration

(∇V )2 → −V∇2V

we get

H =
ˆ
dx
[

1

8π

(
E2⊥ + B2

)
+ 1

2
eψ∗ψV (10.25)

+ 1

2m

(
− h̄
ı
∇ψ∗ + e

c
A⊥)ψ∗

)(
h̄

ı
∇ψ + e

c
A⊥ψ

)]
.

The first term represents the energy of the transverse “photon” field.

10.5 Quantization of the Hamiltonian

Starting from our classical Hamiltonian in Coulomb gauge Eq. 10.26, after the usual
equal-time quantization of the anti-commuting electron wave functions

[ψ(x, t), ψ+(x ′, t)]+ = δ(x − x ′)

and the introduction of the creation and annihilation operators b+
q,λ and bq,λ of

photons of polarization λ and momentum q, one defines the quantized transverse
e.m. vector potential
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A⊥(x) =
∑
λ=1,2

√
h̄c

Ω

∑
q

1√|q|e(λ)q e
−ıqx

(
bq,λ + b+

−q,λ

)
(10.26)

taken with periodical boundary conditions. This definition brings the photon part of
the Hamiltonian to a diagonal form. Here the bosonic commutators are

[
bq,λ, b

+
q′,λ′

]
= δ′q,qδλλ′

and the unit vectors e(λ)q are orthogonal to the wave vector q and to each other

qe(λ)q = 0; e(λ)q e(λ
′)

q = δλλ′ ; e(λ)q = e(λ)−q; (λ, λ′ = 1, 2).

With these ingredients and the normal ordering of the operators, one gets the non-
relativistic QED Hamiltonian

HQED =
∑
q,λ

h̄ωqb
+
q,λbq,λ (10.27)

+
ˆ
dxN

[
1

2m

(
− h̄
ı
∇ψ+(x)+ e

c
A⊥(x)ψ+(x)

)(
h̄

ı
∇ψ(x, t)+ e

c
A⊥(x)ψ(x)

)]

+ 1

2

ˆ
dx
ˆ
dx′ψ+(x)ψ+(x′) e2

|x − x′|ψ(x
′)ψ(x),

where according to the general recipe of second quantization a normal ordering
N(. . .) had to be introduced also with respect to the photon creation and annihilation
operators b+

q,λ, bq in the Hamiltonian, and the photon frequency is ωq = c|q|.
This non-relativistic QED Hamiltonian coincides with the standard one obtained

directly from the second quantized Hamilton operator of electrons interacting with
a classical electromagnetic field in the Coulomb gauge, after the quantization of the
transverse vector potential and adding the energy of the photons.

Our derivation has shown, how a field-theoretical treatment allows the use of the
Lagrange formalism in deriving a non-relativistic quantum mechanical many-body
theory of charged particles interacting with photons avoiding the problems linked to
point-like classical charges.

10.6 Derivation of the 1/c2 Hamiltonian

In this framework one can show that the tedious construction of Chap. 9 is indeed
equivalent to the 1/c2 approximation of the non-relativistic QED on states without
photons. Then, if we want to retain only contributions up to order 1/c2, we may omit

from the beginning the “seagull” term e2

c2

´
ψ+ψAA. Being itself of order 1/c2, it
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k p
q

p+qk−q

Fig. 10.1 The basic current–current (transverse photon exchange) graph in QED

may have only even higher order non-vanishing matrix elements in this subspace
and besides the standard Coulomb term one is left only with the photon-current
interaction − 1

c

´
i⊥A.

In the S-matrix theory of adiabatic perturbations within this subspace, any
Feynman diagram may be constructed using only the Coulomb vertex Fig. 3.3 and
the basic graph having four electron legs and two current-photon vertices connected
by a photon propagator as shown in Fig. 10.1. This graph differs from that of Fig. 3.3
by two features: the wavy line corresponds to the transverse photon propagator in
the 4-dimensional Fourier space ω,q

1

q2 − ω2/c2 − ı0 (δμ,ν − qμqν

q2
); (μ, ν = 1, 2, 3)

and the vertices contain momentum factors −ı eh̄
m
pμ, −ı eh̄

m
pν due to the replace-

ment of the charge densities by the currents. After neglecting the term −ω2/c2 in
the denominator of the photon propagator (i.e., ignoring retardation and implicitly
eliminating corrections of higher order as 1/c2 already contained in the vertex
parts), the photon propagator looks as

1

q2 (δμ,ν − qμqν

q2 ); (μ, ν = 1, 2, 3).

Since no pole survived, the −ı0 term could have been also ignored. Then one may
convince oneself that this graph coincides with the basic vertex of the S-matrix of
the 1/c2 theory including the transverse current–current interaction of the previous
section.

Strange enough, although the non-relativistic QED and its correct 1/c2 approx-
imation were well-known already in the sixties of the last century, they were used
only in the treatment of the optical phenomena and completely ignored in the
treatment of magnetism.



Chapter 11
Shortcut of Theoretical Physics

Here we offer a list of definitions and formulas that may help the reader to
refresh his knowledge of theoretical physics.

11.1 Classical Mechanics

Lagrange function of a point-like particle in the presence of a potential U(x, t):

L(x, ẋ) = m

2
ẋ2 − U(x, t).

Euler equations:

∂

∂t

∂L

∂ ẋ
− ∂L

∂x
= 0.

Hamilton function:

q = x; p = ∂L

∂ ẋ

H(p,q) = −L+ pq̇.

Poisson brackets:

{f, g} = ∂f

∂q
∂g

∂p
− ∂g

∂q
∂f

∂p
.
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Equations of motion:

q̇ = {H, q}; ṗ = {H,p}.

The Hamiltonian formulation may be extended to include the interaction with
a magnetic field, leading to the velocity dependent Lorentz force! In this case the
velocity is related to the canonical momentum by

mẋ = p + e

c
A(x, t).

11.2 One-Particle Quantum Mechanics

The state of a particle is defined by a wave function ψ(x, t) and its time evolution
is given by the Schrödinger equation

ıh̄
∂

∂t
ψ = H(t)ψ,

driven by a Hamilton operator (Hamiltonian) H(t). The formal solution is given by
an unitary operator U(t, 0)

U(t, 0)+U(t, 0) = 1,

as

ψ(t) = U(t, 0)ψ(0)

ıh̄
∂

∂t
U(t, 0) = H(t)U(t, 0)

U(t, 0) = T
{
e
− ı
h̄

´ t
0 dt

′H(t ′)
}
.

The symbolic notation T {. . .} means a chronological ordering of the operators in
the expansion of the exponential.

If the Hamiltonian is time independent, then

U(t, 0) = e− ı
h̄
H t
.

Scalar product:

(ψ1, ψ2) ≡
ˆ
dxψ1(x)∗ψ2(x).
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Matrix elements of an operator A

(ψ1,A ψ2) ≡
ˆ
dxψ1(x)

∗A ψ2(x) =
ˆ
dx(A +ψ1(x))

∗ψ2(x),

where A + is the adjoint of A .
Average of an observable (self-adjoint operator A = A +):

〈A (t)〉 ≡
ˆ
dxψ(x, t)∗A ψ(x, t).

The Heisenberg picture:

A (t) ≡ U(t, 0)+A U(t, 0)

and the wave function remains time independent

〈A (t)〉 =
ˆ
dxψ(x, 0)∗A (t)ψ(x, 0)

or

ıh̄
∂

∂t
A (t) = [A (t),H(t)].

The Hamilton operator of a particle of mass m and charge e in an external
classical electromagnetic field described by external (given, classical) scalar and
vector potentials V (x, t), A(x, t)

H(t) = 1

2m

(
−ıh̄∇ + e

c
A(x, t)

)2 + eV (x, t).

Stationary problem in the presence of a time-independent potential:

H = − h̄
2

2m
∇2 + eV (x).

Eigenvalue problem: finding the eigenfunctions φi and energy eigenvalues Ei

Hφi = Eiφi.

The system of eigenfunctions is complete and may be eigenfunction orthonormal-
ized:

(φi, φj ) = δij∑
i

φi(x)φi(x
′)∗ = δ(x, x′).



194 11 Shortcut of Theoretical Physics

11.2.1 Dirac’s “bra/ket” Formalism

States are represented symbolically as “bra” ’s 〈Ψ | and “ket” ’s |Ψ 〉.

Scalar product (bracket):

〈ψ1|ψ2〉.

Eigenstates and eigenvalues:

H |i〉 = Ei |i〉.

Projectors on an eigenstate:

|i〉〈i|
∑
i

|i〉〈i| = 1

H =
∑
i

Ei |i〉〈i|.

11.3 Perturbation Theory

11.3.1 Stationary Perturbation

Time-independent perturbation proportional to a small λ:

H = H0 + λH ′.

Expansion in λ :

H0φ
(0)
n = E(0)n φ(0)n ; Hφn = Enφn

φn = φ(0)n + λφ(1)n + λ2φ(2)n . . .

En = E(0)n + λE(1)n + λ2E(2)n + . . .

H ′
mn ≡ (φ(0)m ,H ′φ(0)n ).
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Without degeneracy:

φ(1)n =
∑
m( �=n)

H ′
mn

E
(0)
n − E(0)m

E(1)n = H ′
nn

E(2)n =
∑
m( �=n)

|H ′
mn|2

E
(0)
n − E(0)m

.

With degeneracy:

E(0)n,s = E(0)n ; (s = 1, . . . S)

to zeroth order for the eigenstate and first order in the eigenenergy

S∑
s′=1

H ′
ns,ns′φ

(0)
n,s′ = E(1)φ(0)n,s .

11.3.2 Time-Dependent Adiabatic Perturbation

Time-dependent perturbation proportional to a small λ:

H(t) = H0 + λH ′(t).

The interaction picture is defined by

|ψ(t)〉I ≡ e ıh̄H0t |ψ(t)〉

and the Schrödinger equation in the interaction picture looks as

ıh̄
∂

∂t
|ψ(t)〉I = λe ıh̄H0tH ′(t)e−

ı
h̄
H0t |ψ(t)〉I = λH ′(t)I |ψ(t)〉I .

The unitary evolution in the interaction picture

UI (t, t0) = T
{
e

− ı
h̄
λ
´ t
t0
H ′(t ′)I dt ′

}
.

The S-Matrix
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S = lim
t→∞ lim

t0→−∞U(t, t0)

may be defined in the adiabatic perturbation theory, if one replaces H ′(t) by
H ′(t)e−0|t |.

The asymptotic transition rate between the unperturbed eigenstates |n〉and |m〉 of
H0 is then given by

Wnm ≡ lim
t→∞ lim

t0→−∞
d

dt
|〈n|U(t, t0)|m〉|2.

The “golden rule” to second order in λ, with an adiabatic, but oscillating in time
perturbation (light absorption or induced emission)

H ′(t) = (H ′eıωt + h.c.)e−0|t |

Wnm = 2π

h̄
λ2|H ′

nm|2δ(E(0)n − E(0)m ± h̄ω).

11.4 Many-Body Quantum Mechanics

11.4.1 Configuration Space

Hamilton operator and wave function of N Coulomb interacting identical particles
in configuration space:

H(N) =
N∑
i=1

(
− h̄

2

2m
∇2
i + U(xi )

)
+ 1

2

N∑
i �=i′

e2

|xi − xi′ |

H(N)Φ(x1, · · · xN) = ENΦ(x1, · · · xN).

The wave function Φ(x1, · · · xN) must be anti-symmetrical for fermions and
symmetrical for bosons.

11.4.2 Fock Space (Second Quantization)

11.4.2.1 Fermions

Using Dirac’s notations one constructs simple occupied states from the vacuum
state:

|0〉
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using the creation and annihilation operators c+, c:

c+|0〉 = |1〉 c+|1〉 = 0

c|1〉 = |0〉 c|0〉 = 0.

The occupation number operator n ≡ c+c

c+c|0〉 = 0; c+c|1〉 = |1〉.

To every one-particle state |k〉 corresponds a creation operator c+k . For fermions
they are anti-commuting:

[
ck′ , c

+
k

]
+ = δk,k′ ; [ck′ , ck]+ = 0.

Many fermion state:

|Φ〉 = c+1 c+2 · · · c+N |0〉

c+k | · · · nk · · · 〉 = (−1)νk
√

1 − nk | · · · nk + 1 · · · 〉,
ck| · · · nk · · · 〉 = (−1)νk

√
nk | · · · nk − 1 · · · 〉

νk =
∑
i<k

ni .

Second quantized wave function is constructed with the help of a complete
orthonormalized system of eigenfunctions φk

ψ(x) =
∑
k

φk(x)ck

[
ψ(x), ψ(x′)+

]
+ = δ(x − x′)[

ψ(x), ψ(x′)
]
+ = 0.

Out of ground state (vacuum) |0〉 one may build a many-body basis

|xN, · · · , x1〉 ≡ ψ(x1)
+ · · ·ψ(xN)+|0〉

〈x1, · · · , xN |x′
1, · · · , x′

N 〉 = det
∣∣∣δ(xi − x′

j )

∣∣∣ .
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The Hamilton operator and the eigenstate of Coulomb interacting fermions in Fock
space:

H =
ˆ
dxψ(x)+

[
− h̄

2

2m
∇2+U(x)

]
ψ(x)+1

2

ˆ
dx

ˆ
dx′ψ(x)+ψ(x′)+ e2

|x−x′|ψ(x
′)ψ(x).

The relationship to the configuration space description:

H |ΦN 〉 = EN |ΦN 〉

|ΦN 〉 ≡
ˆ
dx1 · · ·

ˆ
dxN

1√
N !Φ(x1, · · · xN)|x1, · · · , xN 〉.

Particle density:

n(x) = ψ(x)+ψ(x).

Current density:

j(x) = − ıh̄
2m
ψ(x)+∇ψ(x)+ h.c.

Continuity equation.

∂n(x)
∂t

+ ∇j(x) = 0.

11.4.2.2 Bosons

Creation and annihilation operators are defined by

a|0〉 = 0

a+|n〉 = √
n+ 1|n+ 1〉

a|n〉 = √
n|n− 1〉

and the occupation number operator is

n ≡ a+a|n〉 = n|n〉.

The creation and annihilation operators obey the commutation rules

[
ak′ , a

+
k

] = δk,k′ ; [ak′ , ak] = 0.
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Many boson states:

Φ = 1√
n1! . . . nN ! (a

+
1 )
n1 . . . (a+

N)
nN |0〉

∑
i

ni = N.

Second quantized wave function:

ψ(x) =
∑
k

φk(x)ak

[
ψ(x), ψ(x′)+

] = δ(x − x′)[
ψ(x), ψ(x′)

] = 0

|xN, · · · , x1〉 ≡ ψ(x1)
+ · · ·ψ(xN)+|0〉

〈x1, . . . , xN |x′
1, . . . , x

′
N 〉 =

∑
P

δ(x1 − x′
j1
) . . . δ(xN − x′

jN
).

11.5 Density Matrix (Statistical Operator)

Pure quantum mechanical ensemble defined by the state Φ.

〈A 〉 = 〈Φ|A |Φ〉.

Mixed ensemble (many possible states with associated probabilities)

|Φα〉 with probability pα (0 ≤ pα ≤ 1;
∑
α

pα = 1)

〈A 〉 =
∑
α

pα〈Φα|A |Φα〉.

Density matrix (Statistical operator):

R ≡
∑
α

pα|Φα〉〈Φα|

T r {R} = 1 ; R > 0

ıh̄
∂R

∂t
= [H,R]

〈A 〉 = T r {A R} .
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Micro-canonical equilibrium:

R0 = δ(H(N) − EN).

Grand-canonical equilibrium.

R0 = e−β(H−μN)

T r
(
e−β(H−μN)) .

Grand-canonical potential:

F (V , T , μ) ≡= −kBT lnZ ; Z ≡ T r
{
e−β(H−μN)}

free fermions:

〈a+
k ak〉 = 1

eβ(ek−μ) + 1

free bosons:

〈a+
k ak〉 = 1

eβ(ek−μ) − 1
.

11.6 Classical Point-Like Charged Particles and
Electromagnetic Fields

Classical Maxwell–Lorenz equations

∇ × b = 4π

c
j + 1

c

∂

∂t
e

∇ × e = −1

c

∂

∂t
b

∇b = 0

∇e = 4πρ.

Continuity equation:

∇j + ∂

∂t
ρ = 0.

Sources (including external ones without dynamics):
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ρ(r, t) =
∑
i

eiδ(r − ri (t))+ ρext (r, t)

j(r, t) =
∑
i

eivi (t)δ(r − ri (t))+ jext (r, t)

∇jext + ∂ρext

∂t
= 0.

Electromagnetic potentials:

b = ∇ × a

e = −∇v − 1

c

∂

∂t
a.

Gauge invariance:

v → v + 1

c

∂

∂t
Λ

a → a − ∇Λ.

Equations of the potentials:

−∇2a + ∇(∇a)+ 1

c2

∂2

∂t2
a = 4π

c
j − 1

c
∇ ∂
∂t
v

−∇2v − 1

c2
∇ ∂
∂t

a = 4πρ.

Coulomb gauge:

∇a = 0

−∇2v = 4πρ

−∇2a + 1

c2

∂2

∂t2
a = 4π

c
j − 1

c
∇ ∂
∂t
v ≡ 4π

c
j⊥.

Transverse current:

∇j⊥ = 0

j⊥(r, t) ≡ j(r, t)+ 1

4π
∇
ˆ
dr′ ∇′j(r′, t)

|r − r′| .
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Solution (with ∇aext = 0):

v(r, t) =
ˆ
dr′ ρint (r′, t)

|r − r′| + V ext (r, t)

a(r, t) =
ˆ
dr′ j

int⊥ (r′, t − 1
c
|r − r′|)

c|r − r′| + aext (r, t).

Newton’s equation of motion with Lorentz forces:

mi
d

dt
vi = ei

(
e′(ri , t)+ 1

c
vi × b′(ri , t)

)
.

Here e′ and b′ have to be considered as the fields without self-action! This implies
that neither Lagrangian nor canonical formalism is available for point-like charges.

For v
c

→ 0, one ignores the magnetic field created by the particles themselves
aint and the particle motion may be separated:

H =
∑
i

(
1

2mi
(pi + ei

c
aext (ri , t))2 + eiV ext (ri , t)

)
+ 1

2

∑
i �=j

eiej

|ri − rj | .

In this standard approximation used in solid-state theory, the magnetic field created
by the charged particles is ignored!
Macroscopic fields as averages:

E = 〈e〉; B = 〈b〉.

Macroscopic Maxwell equations.

∇ × B = 4π

c
(〈j〉 + jext )+ 1

c

∂

∂t
E

∇ × E = −1

c

∂

∂t
B

∇B = 0

∇E = 4π(〈ρ〉 + ρext ).

The classical macroscopic theory of electromagnetism relates the average
sources (〈ρ〉, 〈j〉) to the fields (E ,B) by certain phenomenological relationships
and leaves the foundation of these relationships to the microscopical theories.

The non-relativistic quantum electrodynamics (QED) was described in Chap. 10;
however, in many applications elements of the relativistic QED have to be imple-
mented like the spin and its interaction with the magnetic field (including also that
created by the spins themselves).



Chapter 12
Homework

For all readers it is a useful exercise to perform the omitted details of the
proofs. I recommend also some lengthy but useful homeworks an ambitious
graduate student should be able to perform successfully. I would like to
encourage the reader also to write his own programs and play through
different funny scenarios around the examples given in the Sects. 2.6.2, 5.2
and 8.3.1.

12.1 The Kubo Formula

Start from the linear response formula of Sect. 6.1 with the perturbation caused by
coupling to (time-dependent) electromagnetic potentials in the Sects. 2.6.2, 5.2, and
8.3.1

H ′(t) =
ˆ
dx {ρ(x)V (x, t)− j(x)A(x, t)} ,

where the A2 term of the non-relativistic theory was ignored, since it is of second
order in the field. Prove the Kubo formula for the induced average current density

〈jμ(x, t)〉 =
3∑
ν=1

ˆ t
−∞
dt ′
ˆ β

0
dλ

ˆ
dx′〈jν(x′,−ıh̄λ)jμ(x, t − t ′)〉0Eν(x′, t ′)

using the Kubo identity

[
A, e−βH

]
= e−βH

ˆ β
0
dλeλH [H,A] e−λH .
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(Check it by taking its matrix element between eigenstates of the Hamiltonian H .)
Consider the case of a homogeneous field in a homogeneous system introduced
adiabatically at t = −∞ as est with s → +0 to get the conductivity tensor

σμν(ω) = lim
s→+0

lim
Ω→∞Ω

ˆ 0

−∞
dteıωt est

ˆ β
0
dλ〈jν(t − ıh̄λ)jμ(0)〉0, (12.1)

where jμ ≡ 1
Ω

´
dxjμ(x) and the infinite volume limit is to be understood in

the thermodynamic sense, i.e., at a fixed average carrier density. (It is understood
that the Kubo formula is valid only for Coulomb non-interacting electrons, i.e., the
electric field is the total one.)

In the same way one may derive also the linear relation of the energy current
density jE to the applied electric field, under the assumption of the existence of
local energy density and energy density operators ρE(x), satisfying the continuity
equation with the energy current density jE(x)

∇jE(x)+ ∂

∂t
ρE(x) = 0.

This assumption is not at all trivial and excludes again long range Coulomb
interactions.

In Coulomb interacting systems, as it was shown in Chap. 5, there is a modi-
fication of the linear response for the conductivity to take into account Coulomb
interactions beyond the mean-field approach. For the last discussed case there is no
such possibility.

12.2 Ideal Relaxation

Remake the above derivation by adding an ideal relaxation term

−ıh̄R − R0

τ

to the Liouville equation. However, now starting in equilibrium at time t = 0 and
measuring at t = ∞ without any adiabaticity. You will see that you get the same
formula, with the adiabatic parameter s replaced by 1

τ
.

Now, consider that the unperturbed Hamiltonian H is just the one describing the
motion in a constant magnetic field in the Landau gauge, i.e., compute the matrix
elements with the Landau states and perform all the integrals. Do not forget that the
velocity in the presence of the magnetic field is ẋ ≡ 1

m
(p − e

c
A(x))!
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You shall obtain the same expression for the conductivity tensor as we derived
in Sect. 5.3 from the Boltzmann equation under an analogous ideal relaxation
assumption.

12.3 Rate Equation for Bosons

Derive the transition rates for massive bosons interacting with acoustic phonons
using the many-body “golden rule.” Show the detailed balance relation. Within the
approximation

〈ninj 〉 ≈ 〈ni〉〈nj 〉

formulate the corresponding rate equation with discrete wave vectors k. Analyze
its properties. Perform the thermodynamic limit and remark the problem with the
particle conservation if the concentration of bosons exceeds the critical one.

12.4 Bose Condensation in a Finite Potential Well

The standard theory of Bose condensation implies the thermodynamic limit and
describes an infinite homogeneous system. On the other hand, experimental evi-
dence occurs in finite (confined) systems. One may try a quasi-classical approach to
bosons in a finite (but not quantizing!) potential well to understand this aspect.

Consider the motion in the presence of a finite in depth and width, spherically
symmetric, attractive (v > 0) potential well

U0(r) = −v
(

1 −
( r
R

)2
)
θ(R − r)

(r ≡ |x|) embedded in an infinite volume.
The corresponding equilibrium distribution is

f (p, x) = 1

eβ(
p2
2m+U(x)−μ) − 1

with the chemical potential determined by the total number of bosons

ˆ
dx
ˆ

dp
(2πh̄)3

f (p, x) = 〈N〉.

However, since one expects that at low temperatures many bosons drop in the
well, one has to take into consideration that being close to each other they will
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interact. Usually this interaction is repulsive. Consider just a contact interaction
potential v(x) = wδ(x) (w > 0) that one may treat in a self-consistent manner by
the effective potential

U(x) = U0(x)+
ˆ
dx′v(x − x′)

ˆ
dp

(2πh̄)3
f (p, x′).

This potential is just a constant outside the well

U(x) = w〈n〉 (f or r > R),

where 〈n〉 is the average density of bosons

〈n〉 =
ˆ

dp
(2πh̄)3

1

eβ(
p2
2m+wn̄−μ) − 1

.

(A finite number of bosons in the well do not contribute to this equation.) A solution
exists only for μ < wnc , where nc is the critical density

nc =
ˆ

dp
(2πh̄)3

1

eβ
p2
2m − 1

.

Above this density an overall condensate should appear.
Now, it is most interesting to follow the scenario before this overall condensation

occurs. For r < R one gets a radius dependent density and the self-consistency
equation

U(r) = U0(r)+ w
ˆ

dp
(2πh̄)3

1

eβ(
p2
2m+U(r)−μ) − 1

; (r < R).

So long U(r) − μ > 0, this equation has a solution, but afterwards, obviously not.
Therefore, it is reasonable to correct this equation by admitting the possibility of a
local condensate density n0(r) not included in the Bose distribution

U(r) = U0(r)+ w
(
n0(r)+

ˆ
dp

(2πh̄)3
1

eβ(
p2
2m+U(r)−μ) − 1

)
(f or r < R).

The potential U(r) varies monotonously and coming down from the top of the
potential one might reach a radius r0 < R, by which indeed

U(r0) = μ

and the integral over the Bose function reaches its maximal value. Due to the
condition U(r)− μ ≥ 0 also for the points r < r0, it must belong to the minimum
of U(r) and a condensate n0(r) must emerge
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n0(r) = 1

w
(U(r0)− U0(r)) (f or 0 < r < r0).

Solve numerically the self-consistency equation for r0 < r < R (before the
apparition of the condensate) to confirm this scenario. Since the transcendental self-
consistency equation is local, for a numerical solution it is convenient to solve it in
favor of U0 at a given U, thus performing a simple integration over the momenta p.
The association to a certain radius r is given then by the explicit definition of U0(r).
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