
DeepWAF: Detecting Web Attacks Based
on CNN and LSTM Models

Xiaohui Kuang1, Ming Zhang1(&), Hu Li1, Gang Zhao1,
Huayang Cao1, Zhendong Wu1, and Xianmin Wang2

1 National Key Laboratory of Science and Technology on Information System
Security, Beijing, China
zm_stiss@163.com

2 School of Computer Science, Guangzhou University, Guangzhou, China

Abstract. The increasing popularity of web applications makes the web a main
venue for attackers engaging in a myriad of cybercrimes. With large quantities
of information processing and sharing by web applications, the situation for web
attack detection or prevention becomes increasingly severe. We present a pro-
totype implementation called DeepWAF to detect web attacks based on deep
learning techniques. We systematically discuss the approach for effective use of
the currently popular CNN and LSTM models, and their combinational models
CNN-LSTM and LSTM-CNN. The experimental results on the dataset of
HTTP DATASET CSIC 2010 demonstrate that our proposed four types of
detection models all achieve satisfactory results, with the detection rate of
approximately 95% and the false alarm rate of approximately 2%. We also
carried out case studies to analyze the causes of false negatives and false pos-
itives, which can be used for further improvements. Our work further illustrates
that machine learning has a promising application prospect in the field of web
attack detection.

Keywords: Web attacks � CNN � LSTM � Detection models

1 Introduction

The web is the abbreviation for the World Wide Web, which plays a central role in the
development of the Information Age and has become the primary tool for billions of
people to interact on the Internet. Currently, the majority of services on the Internet are
provided by web applications with a myriad of information, entertainment, education,
commercial and governmental utilities. However, the web security situation is not
optimistic. For cyber-criminals, the web has become a main venue for spreading
malware and launching cyber-attacks, thus engaging in a wide range of cybercrimes,
including information theft, fraud, espionage and blackmail. As early as 2008,
Symantec [1] observed that attackers tended to adopt stealthier and more focused
techniques targeting computers through the web instead of trying to penetrate networks
with high-volume broadcast attacks, and the web-based vulnerabilities had outnum-
bered traditional computer security concerns with the majority of effective malicious

© Springer Nature Switzerland AG 2019
J. Vaidya et al. (Eds.): CSS 2019, LNCS 11983, pp. 121–136, 2019.
https://doi.org/10.1007/978-3-030-37352-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37352-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37352-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37352-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-37352-8_11

activities targeting the web. According to Trustwave [2], hackers are increasingly
focusing on and succeeding with application layer attacks.

Among the numerous web security protection solutions, the web application fire-
wall (WAF) is a type of application firewall that applies specifically to web applica-
tions. By inspecting HTTP traffic, it can prevent attacks stemming from web
application security flaws, such as SQL injection [3], cross-site scripting (XSS) [4], and
path traversal [5]. However, the current WAFs typically work in a rule-based mode and
rely highly on signatures to detect and prevent attacks. They must have enough
characterization and generalization ability to cover normal or malicious behaviors,
whereas in practice it is a time-consuming and labor-intensive task to update rules
against new emerging attacks. Notably, the renaissance of machine learning, especially
the rise of deep learning provides us with new ideas for solving problems. We can build
a mathematical model based on sample data to make predictions or decisions without
using explicit instructions. Inspired by this, we explore and study how to use deep
learning techniques to design a novel and effective WAF—DeepWAF. In this paper,
we systematically discuss the approach for using two currently popular deep learning
models, namely, convolutional neural network (CNN) and long short-term memory
(LSTM), to build web attack detection models.

The rest of the paper is organized as follows. The related work is introduced in
Sect. 2. The details of DeepWAF are described in Sect. 3. Experimental results and
discussions are presented in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Work

Considerable web attacks detection or prevention research [6, 7] has been proposed.
Such research ranges from narrow solutions used to prevent only some specific attacks,
to generic methods aiming to provide comprehensive protection for web applications.

SQL injections are one of the most common web attacks; thus, a large number of
protectionmethods are proposed specifically to circumvent SQL injection attacks [8–12].
Kar et al. [13] presented an approach for detecting SQL injection attacks by modeling
SQL queries as a graph of tokens and using the centrality measure of nodes to train a
support vector machine (SVM).

XSS attacks are a type of injection attack in which malicious scripts are injected
into the targeted website. Gupta et al. discussed a detailed comprehensive analysis of
the exploitation, detection and prevention mechanisms of XSS attacks in [14]. XSS
attacks are generally categorized into two categories: stored and reflected. The stored
attacks usually rely on client protections to monitor the outgoing HTTP responses [15].
The reflected attacks are generally circumvented by user input sanitizing [16, 17].

HTTP parameter pollution is a special type of attack that supplies multiple HTTP
parameters with the same name and may cause a web application to interpret values in
unanticipated ways, thus allowing it to be exploited to bypass input validation, trigger
application errors or modify internal variable values. Balduzzi et al. [18] presented an
automated approach for the discovery of HTTP parameter pollution vulnerabilities in
web applications to prevent attackers from compromising application logic to perform
attacks.

122 X. Kuang et al.

Protection techniques against other types of web attacks have also been explored.
For example, Su and Wassermann [19] proposed a method for preventing command
injection based on context-free grammar and compiler parsing techniques. Tajbakhsh
and Bagherzadeh [20] presented a framework for preventing local file inclusion attacks.
Han [21] introduced a system to detect directory traversal attacks by analyzing web
server logs. Saxe and Berlin [22] used a character-level CNN to detect malicious URLs,
file paths and registry keys.

Unlike the above work, some research has concentrated on uniform solutions to
detect or prevent many types of attacks. Kruegel et al. [23, 24] presented a multi-model
approach to detect web-based attacks. They built many statistical detection models on
different features, including attribute length, attribute character distribution, attribute
order, and access frequency. Corona et al. proposed a formulation of query analysis
through hidden Markov models (HMM) to detect attacks on web applications in [25],
and presented SuStorID in [26, 27], which is a multiple classifier system that can model
legitimate inputs towards web services. Zolotukhin et al. [28] considered analyzing
HTTP logs to detect web attacks and employed support vector data description
(SVDD), K-means and density-based spatial clustering of Applications with Noise
(DBSCAN) to model normal user behaviors.

Choras and Kozik [29] proposed a model consisting of patterns obtained using
graph-based segmentation techniques and dynamic programming based on information
from HTTP requests to detect cyberattacks on web applications. Bronte et al. [30]
proposed an anomaly detection approach that utilizes three measures: cross-entropy for
parameters, value and data type, which are intended to compare the deviation between
learned request profiles and a new web request. Zhang et al. [31] designed a CNN
model to detect web attacks, and the experimental results showed that the model
achieves satisfactory results with a high detection rate and a low false alarm rate.

The above work has made great achievements, but only a few have tried to develop
protection solutions by using machine learning techniques. Defending web applications
is very difficult because there are so many and different attacks. It is necessary to use
machine learning, especially deep learning techniques to develop effective protection
solutions that are easily implementable and capable of learning. In this paper, we
systematically present how to apply two currently popular deep learning models, i.e.,
CNN and LSTM, and their combinational models to the detection of web attacks.

3 DeepWAF

In this section, we describe the details of DeepWAF. First, the architecture of Deep-
WAF is introduced. Second, the HTTP request preprocessing algorithm is described.
Finally, the four types of detection models, i.e., CNN, LSTM, CNN-LSTM and LSTM-
CNN, are presented.

3.1 Architecture of DeepWAF

Figure 1 shows the architecture of DeepWAF with the main focus on the detection
phase. Because DeepWAF is a machine learning-based detection system, it must be

DeepWAF: Detecting Web Attacks Based on CNN and LSTM Models 123

trained with real web requests before deployment in a real environment to provide
protection for web applications. In practical use, DeepWAF can be deployed inline as a
reverse proxy.

DeepWAF is composed of four modules: parser, preprocessor, detector and
responder. The typical process for DeepWAF to detect a malicious web request is as
follows. First, the request to the web server is parsed and analyzed by the parser into
HTTP headers and body. Next, the preprocessor preprocesses the HTTP request and
generates a URL sequence that can be fed to the detector. Then the detector detects
whether the request is normal or malicious based on the built-in deep learning models.
Finally, the responder performs suitable actions according to the detection results. For
example, it can forward the request to the web server if the detection result is normal
but may drop it if malicious. Since the parser and the responder are similar to those in
ordinary WAFs, the following will focus on the implementation of the preprocessor
and the detector.

3.2 Preprocessing the HTTP Request

Web attacks exclusively leverage the HTTP protocol to perform malicious activities. If
a web server is attacked, that means it receives one or more malicious HTTP requests.
Based on this, DeepWAF is designed by inspecting HTTP requests to detect the server-
side web attacks. Like other WAFs, DeepWAF can also support the HTTPS protocol
by copying the private key used by the server.

Fig. 1. Architecture of DeepWAF.

124 X. Kuang et al.

The following snippet shows a GET HTTP request from the dataset
HTTP DATASET CSIC 2010 [32]. An HTTP request consists of a request line, several
request headers and an optional message body (for the POST request). The request line is
composed of three components: the HTTP-method, the HTTP-URL and the HTTP-
version. Because the vast majority of web attacks are implemented by manipulating the
HTTP-URL, and the dataset used in our experiments only contain attacks in HTTP-URL,
we focus the detection object on the HTTP-URL. However, without loss of generality,
our detection method can be applied to other fields of the HTTP request. A special case is
that the POST request contains a message body that can be exploited by injection attacks.
So for the POST request, the detection object is defined as the combination of the HTTP-
URL and the HTTP-body. For convenience, the detection object is simply called URL in
later sections.

1: GET http://localhost:8080/tienda1/publico/vaciar.jsp?B2=Vaciar
 +carrito%27%3B+DROP+TABLE+usuarios%3B+SELECT+*+FROM+datos HTTP/1.1
2: User-Agent: Mozilla/5.0
3: Pragma: no-cache
4: Cache-control: no-cache
5: Accept: text/xml,application/xml;q=0.9,text/plain
6: Accept-Encoding: x-gzip, x-deflate, gzip, deflate
7: Accept-Charset: utf-8, utf-8;q=0.5, *;q=0.5
8: Accept-Language: en
9: Host: localhost:8080
10:Cookie: JSESSIONID=11F98280E08EE19274786F4EDDDC821F
11:Connection: close

Algorithm 1 Preprocess the HTTP request
Input: HTTP request Request
Output: URL sequence url_seq

1: function PREPROCESSREQUEST(Request)
2: if Request.method == POST then
3: url ← Request.url + Request.body
4: else
5: url ← Requst.url
6: end if
7: url ← DECODE(url)
8: url ← LOWERCASE(url)
9: url_seq ← SPLIT(url, /, ?, &, =, +)
10: return url_seq
11: end function

The procedure of the HTTP request preprocessing, which is used to process the
HTTP request into a URL sequence that can be fed to the detector, is shown in
Algorithm 1. The main steps are Decode, Lowercase and Split. Since the HTTP URL
allows users to encode special characters, attackers often leverage the encodings to hide
attack payloads. To effectively detect web attacks, the URL should be decoded first.
Because the URL is not case-insensitive, we lowercase all the characters in URL,

DeepWAF: Detecting Web Attacks Based on CNN and LSTM Models 125

which can reduce the size of the training vocabulary. The URL is finally split into a
sequence by special characters “/”, “?”, “&”, “=”, “+”, etc. In practice, the prepro-
cessing may be continuously optimized according to the detection results.

For the above HTTP request, one result of the preprocessing is as follows.

http, localhost, 8080, tienda1, publico, vaciar.jsp, b2, vaciar, carrito,
drop, table, usuarios, select, *, from, datos

3.3 CNN- and LSTM-Based Detection Models

CNN Model. CNN was initially designed for image recognition but has become a
versatile model used for a wide array of tasks. CNN can recognize local or high-order
structural features of the input. For example, in our detection model, CNN might be
able to distinguish that a request containing the words “table”, “select”, “from”, etc. is
malicious. The architecture of the CNN-based detection model is shown in Fig. 2. The
one-hot encodings X of the URL sequence are input to the embedding layer. The
embedding vectors E are convolved on the Convolutional layer with different types of
filters, i.e., if the size of E is l � k, the filter sizes are set to s � k (s = 3, 4, 5…), with
k equaling the embedding dimension and s taking different values. The max-pooling
(over time) takes the largest element from each feature map output by the convolutional
layer, and then concatenates them to pass to the Softmax layer. The Softmax layer
outputs a label “0” or “1”, which indicates whether the request is normal (by label “0”)
or malicious (by label “1”).

Max-pooling

h1

Conv3

Concat

0/1

*

ht
tp

lo
ca
lh
os
t

80
80

se
lec

t
fro

m
da
to
s

tie
nd
a1

X

···

EE EE

H1 H2 H3 H4

h2 h3
h4

H

Conv1 Conv2 Conv4

Embedding

Max-poolingMax-poolingMax-pooling

Softmax

Fig. 2. CNN-based detection model.

126 X. Kuang et al.

LSTM Model. LSTM is a variant of the recurrent neural network (RNN), which has
been proven to perform extremely well on sequential data. In our detection model,
LSTM might be able to remember that the word “from” appearing in a malicious URL
sequence usually follows the word “select”. The architecture of the LSTM-based
detection model is shown in Fig. 3. The length of the time steps is the same as the
length of the URL sequence. The embedding vectors of the one-hot encodings are
sequentially distributed to different LSTM units. Then, the outputs of all the LSTM
units are gathered together to be input to the Softmax layer.

CNN-LSTM Model. The CNN-LSTM model is a combination of CNN and LSTM.
As Fig. 4 shows, the convolutional layer receives the embedding vectors as input. Its
output is pooled and then fed to the LSTM layer. The output of the LSTM layer is input
to the Softmax layer. The intuition behind the CNN-LSTM model is that the CNN will
extract structure features, from which the LSTM will learn the sequential features to
classify the input.

LSTM-CNN Model. The LSTM-CNN model is a combination of LSTM and CNN.
As Fig. 5 shows, the LSTM layer receives the embedding vectors as input. Its output is
directly input to the convolutional layer. The output of the convolutional layer is pooled
and then input to the Softmax layer. The intuition behind the LSTM-CNN model is that
the LSTM generates new sequential encodings of the input, from which the CNN
extracts structural features to classify the input.

Fig. 3. LSTM-based detection model.

DeepWAF: Detecting Web Attacks Based on CNN and LSTM Models 127

4 Experiments

To evaluate the performance of models on detecting web attacks, we experimented on
the dataset of HTTP DATASET CSIC [32].

4.1 Data Preparation

The HTTP DATASET CSIC 2010 dataset contains thousands of web requests auto-
matically generated by the Information Security Institute of CSIC (Spanish Research
National Council), and has been widely used for testing web attack detection systems.
The dataset contains 36,000 normal requests and 24,668 malicious requests. The
malicious requests include web attacks such as SQL injection, XSS, buffer overflow,
information gathering, and file disclosure.

As shown in Table 1, we randomly select approximately 70% of the dataset as
training data, approximately 5% as the validation data, and the remaining approxi-
mately 25% as the testing data. We train the detection models using the “training data”,
tune the parameters using the “validation data” and then test the performance of the
detection models on the unseen “testing data”.

Em
bedding

M
ax Pooling

Softm
ax

0/1

LSTM

LSTM

LSTM

LSTM

http
localhost

8080

select
*

from
datos

tienda1

C
onvolution

Fig. 4. CNN-LSTM-based detection model.

C
onvolution

LSTM

LSTM

LSTM

LSTM

M
ax Pooling

Softm
ax

0/1
Em

bedding

http
localhost

8080

select
*

from
datos

tienda1

Fig. 5. LSTM-CNN-based detection model.

128 X. Kuang et al.

4.2 Parameter Settings and Evaluating Criteria

Based on empirical experiences, we set the necessary hyperparameters as Table 2
shows. The embedding dimension is set to 128. The CNN utilizes 4 types of filters with
sizes of 3 � 128, 4 � 128, 5 � 128 and 6 � 128. The number of each type of filter is
128. For the LSTM model, the dimensionality of the output space, i.e., the number of
hidden units, is set to 64. We train the models by the batch training approach. The
learning rate is set to1e-3, and the batch size is 128.

To evaluate the detection models, we adopted criteria usually used in intrusion
detection systems, i.e., detection rate and false alarm rate, as well as criteria used in
machine learning, i.e., precision, recall, F1-measure and accuracy. We use TP (true
positive) to represent the number of malicious requests that are correctly detected as
malicious. FP (false positive) represents the number of normal requests that are incor-
rectly detected as malicious. TN (true negative) represents the number of normal
requests that are correctly detected as normal. FN (false negative) represents the number
of malicious requests that are incorrectly detected as normal. The evaluation criteria are
defined as follows. Note that the recall has the same definition as the detection rate.

Detection rate=Recall ¼ TP
TPþFN

ð1Þ

False alarm rate ¼ FP
FPþ TN

ð2Þ

Precision ¼ TP
TPþFP

ð3Þ

Table 1. Experimental data distribution.

Training Validation Testing

Normal 25,200 1,800 9,000
Malicious 17,268 1,233 6,167
Total 42,468 3,033 15,167

Table 2. Hyperparameter settings.

Hyperparameter Value

Embedding Dimension 128
CNN Filter sizes 3 � 128, 4 � 128

5 � 128, 6 � 128
of filters 128

LSTM # of hidden units 64
Training Learning rate 1e−3

Batch size 128

DeepWAF: Detecting Web Attacks Based on CNN and LSTM Models 129

F1 - measure ¼ 2 � Precision � Recall
PrecisionþRecall

ð4Þ

Accuracy ¼ TPþ TN
TPþFPþ TN þFN

ð5Þ

4.3 Experimental Results

The detection model must first be adequately trained on the training data to perform
well on the testing data, i.e., effectively detect web attacks. In practice, the testing data
(i.e., the requests to be detected) are unknown to us, so we can only improve the
performance of the detection models with training and validation data.

In the experiment, we first observe the model performance on training and vali-
dation data, and then adjust the training strategies based on validation accuracy.
Finally, we evaluate the detection models on the testing data.

Training Results
There are two commonly used methods to enhance the generalization of the detection
model during the training phase, i.e., selecting adequate training epochs and applying
dropout. We first simply trained each model for 10 epochs and added dropout after the
max-pooling layer with the keeping probability being 0.5, and then performed
adjustment depending on the results. The training accuracy and loss were recorded
every one step and the validation accuracy and loss were recorded every 100 steps. The
results are shown in Fig. 6, where blue curves denote the training metrics and orange
curves denote the validation metrics. The CNN, LSTM and LSTM-CNN models
exhibit good performance, with accuracy rapidly achieving above 95% and loss
decreasing towards 0 on both the training and validation data. The CNN-LSTM model
may not seem ideal. It fits the training data well but has a large generation error on the
validation data. It also demonstrates that 10 epochs of training are sufficient for these
models to achieve stable performance.

(a) CNN (b) LSTM

(c) CNN-LSTM (d) LSTM-CNN

accuracy loss accuracy loss

accuracy loss accuracy loss

Fig. 6. Training results of the four types of detection models.

130 X. Kuang et al.

Effects of Dropout
In this part, we test the effects of dropout. Dropout has a tunable hyperparameter p (the
probability of retaining a neuron in the network, or called the keeping probability).
A small p indicates that very few neurons work during training, and “p = 1” means no
adoption of dropout. We added dropout after the max-pooling layers and trained the
models with different keeping probabilities. The results are shown in Table 3. Since the
LSTM model does not contain a max-pooling layer and no dropout is applied, its
validation accuracy is always 96.11%. For the CNN and LSTM-CNN models, the
dropout provides a very limited contribution to improving the model performance. The
validation accuracy varies little with p. However, for the CNN-LSTM model, the
dropout has a significant negative impact on the validation accuracy. It increases the
generalization error. As long as the dropout exists, whatever value the keeping prob-
ability takes (i.e., p = 0.2, 0.5 or 0.8), the validation accuracy is significantly smaller
than that without dropout (i.e., p = 1), Which also explains why the CNN-LSTM
model does not behave as expected as other models in Fig. 6, where all the models
were trained with dropout of the keeping probability being 0.5.

We retrained the CNN-LSTM model without dropout, and the training results are
shown in Fig. 7. Obviously, the CNN-LSTM model regains its outstanding perfor-
mance on both training and validation data.

We think that the aforementioned dropout is improper for the CNN-LSTM model.
The dropout is added after the max-pooling layer and before the LSTM layer. It
randomly drops some neurons at training time, which is disastrous for the LSTM.
The LSTM is learned by sequential information, some of which is unfortunately
removed by the dropout. We can conclude that if the CNN and LSTM are sequentially
combined to form a CNN-LSTM model, it is not appropriate to apply the dropout
before the LSTM, which will undermine LSTM’s learning process.

Given the above results, the four types of detection models (i.e., CNN, LSTM,
CNN-LSTM and LSTM-CNN) are all trained for 10 epochs without dropout.

Detection Results
After completing the training, we ran the trained models on testing data to evaluate
their performance on detecting web attacks. The detection results are as shown in
Table 4. In terms of intrusion detection evaluation criteria, each detection model
achieves both a high detection rate (average approximately 95%) and a low false alarm

Table 3. Effects of dropout.

Dropout (p) Validation accuracy
CNN LSTM CNN-LSTM LSTM-CNN

0.2 0.9608 0.9611 0.5897 0.9548
0.5 0.9618 0.9611 0.8912 0.9574
0.8 0.9710 0.9611 0.8945 0.9568
1.0 0.9651 0.9611 0.9601 0.9588

DeepWAF: Detecting Web Attacks Based on CNN and LSTM Models 131

rate (average approximately 2%). In terms of machine learning evaluation criteria,
every model achieves satisfactory performance with high precision (average 96.92%),
recall (average 94.27%), F1-measure (average 95.57%) and accuracy (average
96.44%). Because the numerical difference in each criterion is very small (approxi-
mately 1–2%), it is hard to determine which model is the best.

All the models achieved satisfactory detection results, which were obtained just by
using the basic CNN and LSTM models with little hyperparameter tuning. Theoreti-
cally, the detection results will be better if we adopt more optimal hyperparameter
values. Obviously, the results demonstrate that machine learning has great potential to
be applied in the field of web attack detection.

Discussions and Case Studies
In this subsection, we provide an intuitive grasp of the number of false negatives (FN)
and the number of false positives (FP), and carry out case studies to explain why some
requests are incorrectly detected.

As stated above, the testing dataset contains 9,000 normal requests and 6,167
malicious requests. The FN and FP of different detection models are shown in Table 5,
where “COM” represents the number of requests that are incorrectly detected by all
four types of models. Specifically, the same 233 malicious requests are incorrectly
reported as normal, and 21 normal requests are incorrectly reported as malicious, which
demonstrates that these detection models are more likely to produce the same false
negatives but different false positives. Theoretically, if we construct an ensemble model
with these four types of models, the detection rate can be increased to 96.22% (i.e.,

(a) accuracy (b) loss

Fig. 7. Training results of CNN-LSTM without dropout.

Table 4. Detection results.

CNN LSTM CNN-LSTM LSTM-CNN Average

Detection rate (recall) 0.9549 0.9372 0.9428 0.9359 0.9427
False alarm rate 0.0153 0.0077 0.0367 0.0231 0.0207
Precision 0.9771 0.9882 0.9463 0.9652 0.9692
F1-measure 0.9659 0.9621 0.9445 0.9504 0.9557
Accuracy 0.9726 0.9699 0.9550 0.9602 0.9644

132 X. Kuang et al.

233/6,167), and the false alarm rate can be decreased to 0.23% (i.e., 21/9,000), but that
will be time consuming.

We choose a false negative and a false positive for case studies. The following
snippets show two requests. The upper is a malicious testing request that is incorrectly
detected as normal and the below is a normal request in the training data. We can see
that the following two requests are very similar except that the upper request contains a
“%2F”, which is the encoding of “/”. In our preprocessing algorithm, “/” is regarded as
a special character used to split the URL and will not appear in the URL sequence. In
other words, the following two requests have the same type of URL sequence after the
preprocessing, which explains the reason why the upper request is incorrectly detected
as normal.

A malicious testing request incorrectly detected as normal :
1: GET http://localhost:8080/tienda1/publico/anadir.jsp?id=3&nombre=Vino
 +Rioja&precio=100%2F&cantidad=55&B1=A%F1adir+al+carrito HTTP/1.1
2: User-Agent: Mozilla/5.0
3: Pragma: no-cache

A normal training request:
1: GET http://localhost:8080/tienda1/publico/anadir.jsp?id=3&nombre=Vino
 +Rioja&precio=100&cantidad=55&B1=A%F1adir+al+carrito HTTP/1.1
2: User-Agent: Mozilla/5.0
3: Pragma: no-cache

The following snippet shows a normal testing request that is detected as malicious.
Through analysis, we find that the following request contains some strings such as
“pasar”, “por” and “caja”, which never appear in the training vocabulary. Such types of
requests are very likely to be detected as malicious by the detection models.

A “normal” testing request incorrectly detected as :
1: GET http://localhost:8080/tienda1/publico/pagar.jsp?modo=insertar
 &Precio=6505&B1=Pasar+por+caja HTTP/1.1
2: User-Agent: Mozilla/5.0
3: Pragma: no-cache

The above case studies can be used for further improvements, which we leave as
future work.

Table 5. FN and FP of different models.

CNN LSTM CNN-LSTM LSTM-CNN COM

FN 278 387 353 395 233
FP 138 69 330 208 21

DeepWAF: Detecting Web Attacks Based on CNN and LSTM Models 133

5 Conclusion

We present a novel web application firewall called DeepWAF by using deep learning
techniques to detect web attacks. We first described the architecture of DeepWAF.
Then we provided detailed explanations of the HTTP request preprocessing and the
principles of the proposed four types of detection models based on CNN, LSTM, CNN-
LSTM and LSTM-CNN. Finally, we evaluated the detection models on the dataset of
HTTP DATASET CSIC 2010 and verified their good performance in detecting web
attacks.

We simply tried the basic CNN and LSTM models with little hyperparameter
tuning. Future work can be concentrated on adopting more sophisticated deep learning
models, tuning model hyperparameters and inspecting all the fields of the HTTP
request, thus resulting in much more powerful web attack detection models.

References

1. Symantec Corporation: Symantec internet security threat report, Trends for July–December
07 (2008)

2. Trustwave: Cenzic application vulnerability trends 2014 (2014)
3. Halfond, W.G.J., Viegas, J., Orso, A.: A classification of SQL injection attacks and

countermeasures. In: Proceedings of the IEEE International Symposium on Secure Software
Engineering, pp. 13–15. IEEE (2006)

4. Kieyzun, A., Guo, P.J., Jayaraman, K., Ernst, M.D.: Automatic creation of SQL injection
and cross-site scripting attacks. In: Proceedings of the 31st International Conference on
Software Engineering, pp. 199–209. IEEE Computer Society (2009)

5. Li, H.-F., Lee, S.-Y., Shan, M.-K.: DSM-PLW: single-pass mining of path traversal patterns
over streaming Web click-sequences. Comput. Netw. 50, 1474–1487 (2006)

6. Jensen, M., Gruschka, N., Herkenhoner, R.: A survey of attacks on web services. Comput.
Sci. Res. Dev. 24, 185 (2009)

7. Prokhorenko, V., Choo, K.-K.R., Ashman, H.: Web application protection techniques: a
taxonomy. J. Netw. Comput. Appl. 60, 95–112 (2016)

8. Valeur, F., Mutz, D., Vigna, G.: A learning-based approach to the detection of SQL attacks.
In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 123–140. Springer,
Heidelberg (2005). https://doi.org/10.1007/11506881_8

9. Halfond, W.G.J., Orso, A.: Preventing SQL injection attacks using AMNESIA. In:
Proceedings of the 28th International Conference on Software Engineering, pp. 795–798.
ACM (2006)

10. Kemalis, K., Tzouramanis, T.: SQL-IDS: a specification-based approach for SQL-injection
detection. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 2153–
2158. ACM (2008)

11. Liu, A., Yuan, Y., Wijesekera, D., Stavrou, A.: SQLProb: a proxy-based architecture
towards preventing SQL injection attacks. In: Proceedings of the 2009 ACM Symposium on
Applied Computing, pp. 2054–2061. ACM (2009)

12. Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: CANDID: dynamic candidate evalua-
tions for automatic prevention of SQL injection attacks. ACM Trans. Inf. Syst. Secur. 13, 1–
39 (2010)

134 X. Kuang et al.

http://dx.doi.org/10.1007/11506881_8

13. Kar, D., Panigrahi, S., Sundararajan, S.: SQLiGoT: detecting SQL injection attacks using
graph of tokens and SVM. Comput. Secur. 60, 206–225 (2016)

14. Gupta, S., Gupta, B.B.: Cross-site scripting (XSS) attacks and defense mechanisms:
classification and state-of-the-art. Int. J. Syst. Assur. Eng. Manag. 8, 512–530 (2017)

15. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: a robust basis for cross-site
scripting defense. In: Network & Distributed System Security Symposium (2009)

16. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
Proceedings of the 30th International Conference on Software Engineering, pp. 171–180.
ACM (2008)

17. Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R., Song, D.: A systematic
analysis of XSS sanitization in web application frameworks. In: Atluri, V., Diaz, C. (eds.)
ESORICS 2011. LNCS, vol. 6879, pp. 150–171. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-23822-2_9

18. Balduzzi, M., Gimenez, C.T., Balzarotti, D., Kirda, E.: Automated discovery of parameter
pollution vulnerabilities in web applications. In: Proceedings of the 18th Annual Network
and Distributed System Security Symposium, pp. 1–16 (2011)

19. Su, Z., Wassermann, G.: The essence of command injection attacks in web applications. In:
Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 372–382. ACM, Charleston (2006)

20. Tajbakhsh, M.S., Bagherzadeh, J.: A sound framework for dynamic prevention of Local File
Inclusion. In: 2015 7th Conference on Information and Knowledge Technology (IKT),
pp. 1–6 (2015)

21. Han, E.E.: Detection of web application attacks with request length module and regex
pattern analysis. In: Zin, T.T., Lin, J.C.-W., Pan, J.-S., Tin, P., Yokota, M. (eds.) GEC 2015.
AISC, vol. 388, pp. 157–165. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
23207-2_16

22. Saxe, J., Berlin, K.: eXpose: a character-level convolutional neural network with
embeddings for detecting malicious URLs, file paths and registry keys. arXiv:1702.08568
[cs] (2017)

23. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. Presented at the
Proceedings of the 10th ACM Conference on Computer and Communications Security
(2003)

24. Kruegel, C., Vigna, G., Robertson, W.: A multi-model approach to the detection of web-
based attacks. Comput. Netw. 48, 717–738 (2005)

25. Corona, I., Ariu, D., Giacinto, G.: HMM-Web: a framework for the detection of attacks
against web applications. In: 2009 IEEE International Conference on Communications,
pp. 1–6. IEEE (2009)

26. Corona, I., Giacinto, G.: Detection of server-side web attacks. In: Proceedings of the First
Workshop on Applications of Pattern Analysis, pp. 160–166 (2010)

27. Corona, I., Tronci, R., Giacinto, G.: SuStorID: a multiple classifier system for the protection
of web services. In: Proceedings of the 21st International Conference on Pattern Recognition
(ICPR 2012), pp. 2375–2378. IEEE (2012)

28. Zolotukhin, M., Hamalainen, T., Kokkonen, T., Siltanen, J.: Analysis of HTTP requests for
anomaly detection of web attacks. In: 2014 IEEE 12th International Conference on
Dependable, Autonomic and Secure Computing, pp. 406–411. IEEE, Dalian (2014)

29. Choras, M., Kozik, R.: Machine learning techniques applied to detect cyber attacks on web
applications. Log. J. IGPL 23, 45–56 (2015)

DeepWAF: Detecting Web Attacks Based on CNN and LSTM Models 135

http://dx.doi.org/10.1007/978-3-642-23822-2_9
http://dx.doi.org/10.1007/978-3-642-23822-2_9
http://dx.doi.org/10.1007/978-3-319-23207-2_16
http://dx.doi.org/10.1007/978-3-319-23207-2_16
http://arxiv.org/abs/1702.08568

30. Bronte, R., Shahriar, H., Haddad, H.: Information theoretic anomaly detection framework for
web application. In: 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), pp. 394–399. IEEE (2016)

31. Zhang, M., Xu, B., Bai, S., Lu, S., Lin, Z.: A deep learning method to detect web attacks
using a specially designed CNN. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.)
ICONIP 2017. LNCS, vol. 10638, pp. 828–836. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70139-4_84

32. Gimenez, C.T., Villegas, A.P., Maranon, G.A.: HTTP dataset CSIC 2010 (2012). http://
www.isi.csic.es/dataset/

136 X. Kuang et al.

http://dx.doi.org/10.1007/978-3-319-70139-4_84
http://dx.doi.org/10.1007/978-3-319-70139-4_84
http://www.isi.csic.es/dataset/
http://www.isi.csic.es/dataset/

	DeepWAF: Detecting Web Attacks Based on CNN and LSTM Models
	Abstract
	1 Introduction
	2 Related Work
	3 DeepWAF
	3.1 Architecture of DeepWAF
	3.2 Preprocessing the HTTP Request
	3.3 CNN- and LSTM-Based Detection Models

	4 Experiments
	4.1 Data Preparation
	4.2 Parameter Settings and Evaluating Criteria
	4.3 Experimental Results

	5 Conclusion
	References

