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Abstract. For cloud storage applications running typical Multi-Paxos protocol,
the processing of a client command normally consists of two steps, i.e., commit
and apply. Commit step is to guarantee a client command achieves identical
sequence number among all storage replicas; apply step is to execute a com-
mitted client commands one by one in sequence and return back the execution
result to client. In practice, committed client commands are not necessarily be
applied after all its previous commands get applied. In view of this observation,
an optimization for Multi-Paxos protocol is proposed to improve system per-
formance for cloud storage applications in this paper. Compared with typical
Multi-Paxos protocol, we allow out-of-order applying of committed client
commands. And a committed client command can be applied as long as it has no
dependency on its previous commands or all dependencies are resolved.
Comparison between two protocols is implemented and analyzed to prove the
feasibility of our proposal.
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1 Introduction

Nowadays, increasing amount of applications are deployed in cloud, due to the con-
venience of “pay as you go” manner of using IT infrastructure. Among those appli-
cations, cloud storage application is one of the most popular one. Cloud storage
applications enable users to store data of their applications on cloud, instead of building
their own storage infrastructures [1, 2]. As a typical distributed computing application,
cloud storage systems take advantage of replica technique to achieve fault tolerance
and high availability, by storing user’s data on multiple disks over the network, so as to
make sure the data won’t be lost as long as majority disks working probably [3].

As a distributed computing application, a cloud storage system can be treated as a
set of distributed servers belonging to one cluster. The servers work as a whole to
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process client commands (i.e., write or read operations to store data and read stored
data) [4]. Each sever can be described as a deterministic state machine that performs
client commands in sequence. The state machine has a current state, and it performs a
step by taking as input a client command and producing an output and a new state. The
core implementation of a cloud storage system is the consensus module to guarantee all
servers execute the same sequence of client commands [5]. As a result, every cloud
storage server can be modeled as a replicated state machine as shown in Fig. 1.

Replicated state machines are typically implemented using a replicated log [4, 5].
Each server stores a log containing a series of client commands, from which its state
machine executes in sequence. Each log contains the same commands in the same
sequence, so each state machine processes the same sequence of commands. Since the
state machines are deterministic, each computes the same state and produces the same
sequence of outputs. Keeping the replicated log consistent is the job of the consensus
algorithm. The consensus module on a server receives commands from clients and adds
them to its log. It communicates with the consensus modules on other servers to ensure
that every log eventually contains the same requests in the same sequence, even if some
servers fail. Once commands are properly replicated, each server’s state machine
processes them in log order, and the outputs are returned to clients. As a result, the
servers appear to form a single, highly reliable state machine.

There have been numerous researches on the consensus algorithm for replicated
state machines. Among which Paxos is the dominated one over last decades: most
implementations of consensus are based on Paxos or influenced by it. Representative
algorithms include Multi-Paxos [4], E-Paxos [6], as well as Raft [5]. The difference
between Paxos and its variants Raft is: Raft is strongly based on leadership mechanism,
all client commands are handled by leader replica and other replicas work as followers;
while for Multi-Paxos, leader is not necessarily required, but it always employs a
distinguished leader to guarantee liveness of the algorithm; Moreover, E-paxos is
totally leaderless to guarantee client latency for handling client commands in wide area
environment. In this paper, we mainly focus on the optimization of Multi-Paxos
regarding its performance optimization.

Fig. 1. Replicated state machine architecture [5].
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For cloud storage applications running typical Multi-Paxos protocol, the processing
of a client command normally consists of two steps, commit and apply. Commit step is
to guarantee a client command achieves identical sequence number among all storage
replicas; apply step is to execute committed client commands one by one and return
back the execution result to client. In practice, client commands could be distributed to
all replica servers concurrently. Therefore, commands could be committed in an out-of-
order manner due to factors such as network delay. In original design, commands
should be applied strictly in sequence after they are committed [1, 7, 8]. That means,
any committed command Ci and Cj, (Seq(Ci) < Seq(Cj), Cj must be applied after Ci is
applied even Cj is committed before Ci. In practice, this is not necessary if Cj has no
dependency on Ci. By allowing out-of-order apply, we can reduce client latency by
improving the system’s I/O throughput of each storage replica node.

In view of this observation, we propose an optimized Multi-Paxos protocol in this
paper, where client commands could be applied in out-of-order manner after they get
committed. The reminder of this paper is organized as follows: Sect. 2 discusses related
work on consensus algorithm for cloud storage applications. Section 3 highlights the
problem of typical Multi-Paxos protocol. The details of the optimization of Multi-
Paxos protocol is presented in Sect. 4. Section 5 evaluates the performance of opti-
mized Multi-Paxos protocol and typical Multi-Paxos protocol in terms of commit
throughput. And Sect. 6 concludes the paper.

2 Related Work

As a distributed computing system, the core component of cloud storage applications is
the consensus module, which is to guarantee each replica server executes client
commands in the same sequence [10–12]. There have been numerous researches on
consensus algorithms of distributed systems over last decades [13, 14], from which
Paxos is the dominated one. Most implementations of consensus are based on Paxos or
influenced by it. Among those consensus algorithms, they can be categorized as fol-
lows: (1) Lamport’s Paxos [4, 8, 9], and its variants such as Multi-Paxos, Elaborations
Paxos (E-Paxos) [6]; (2) Raft protocol [5], which is based on strong leadership
mechanism.

Paxos protocol is a two-phase protocol, which contains prepare phase and accept
phase [15, 16]. For a given command Ci, prepare phase is to make sure majority
replicas agree to append Ci as the i-th command in its local log; and accept phase is to
double confirm Ci has been appended as the i-th command in majority replica servers.
Since majority replicas (more than half members) reach consistency regarding the
sequence of Ci, all replicas will finally learn such information according to pigeonhole
principle. As a result, Paxos protocol could guarantee that each replica sever will reach
consistency regarding the sequence of each client command. A single Paxos instance is
to determine the sequence of a single client command. Multi-Paxos is a variant of
Paxos protocol, which enables handling multiple client commands concurrently with
multiple Paxos instances. Moreover, in Multi-Paxos protocol, a leader could be elected
to nominate sequence for each client command. As a result, the prepare phase could be
omitted to improve system latency, so as to guarantee the liveness of the protocol.
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E-Paxos is also a variant of Paxos protocol, which is to optimize system performance of
client latency in wide-area applications, especially when there are nodes fail during
consensus process. RAFT is a strong leader-based consensus protocol, where all
determinations regarding the sequence of each command is made by the leader, and all
other replica servers works as follower of the leader replica.

The main difference between those consensus algorithms is the leadership mech-
anism: (1) Multi-Paxos does not necessarily requires a leader; and when there’s no
leader in a replica group, Multi-Paxos degrades to the basic two-phase protocol. (2) E-
Paxos is totally leaderless, which is designed to reduce client latency in wide-area
scenario. (3) Moreover, Raft uses a strong leadership mechanism compared with other
two consensus algorithms. Without a leader, the system running Raft protocol will
become unavailable.

In this paper, we focus on optimization for Multi-Paxos protocol. As mentioned in
aforementioned section, a cloud storage application running Multi-Paxos protocol
normally consists of commit phase and apply phase. Commit phase is to guarantee a
client command achieves identical sequence number among all storage replicas; apply
phase is to execute a committed client commands one by one and return back the
execution result to client. In practice, committed client commands are not necessarily
be applied after all its previous commands get applied. In view of this observation, an
optimization for Multi-Paxos protocol to improve system performance of cloud storage
applications is proposed in this paper. By enabling out-of-order apply client commands,
we can improve system’s throughput, so as to reduce client latency to read committed
commands.

3 Preliminary Knowledge

3.1 How Multi-Paxos Protocol Works

A typical Multi-Paxos protocol is similar to two-phase commit protocol (i.e., the two
phases are prepare phase and accept phase, respectively). When a replica Ri within a
replica group receives a client command Ck, the two-phase Multi-Paxos protocol works
as follows:

Prepare Phase: Ri first record Ck as the k-th client command in its local log, then
broadcast prepare_Ck requests with proposal number Ri-k within the replica group. On
receiving the prepare_Ck request for each replica Rj, it will send back prepare_Ck_OK
response to Ri after checking it’s ok to log Ck as the k-th log entry locally. If Ri receives
prepare_Ck_OK response from majority replicas, it will enter Accept phase to make Ck

as the k-th log entry in majority replicas.

Accept Phase: Ri initiates Accept_Ck requests and broadcast it within the replica
group. On receiving Accept_Ck requests for each replica Rj, it will record Ck as the k-th
log entry, and send back Accept_Ck_OK response after it checks there’s no proposal
number larger than Ri-k for the k-th log entry. Similarly, when Ri receives
Accept_Ck_OK responses from majority replicas, it will mark Ck as committed; and
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broadcast Commit_Ck requests. Once Rj receives Commit_Ck request, it will mark Ck as
committed if it has recorded Ck as the k-th log entry as well.

After a command get committed, it can be applied to state machine as long as it has
no dependency on other commands, or all its dependency are resolved probably.
Therefore, a response will be send back to client to indicate the success of executing Ck

by the cloud storage application.
An issue with Multi-Paxos protocol is when there are multiple replicas raising

prepare requests simultaneously, it is with great possibility that none replica’s proposal
will be accepted. For example, when Ri raises (Prepare_Ck, Ri-k), there is another
replica Rj raises (Prepare_Ck’, Rj-k’) with Rj-k’ > Ri-k simultaneously. Rj will win
majority votes in prepare phase since Rj-k’ is the largest proposal number. Before Rj’s
accept requests reaches majority replicas, Ri will initiate a new prepare request with a
new proposal number Ri-m > Rj-k’ to win majority votes in prepare phase. As a result,
Rj’s accept request will be ignored by majority replicas since Ri-m is the largest
proposal. This scenario is called “mutual-tread” and will cause live lock of the protocol
[4]. For the cloud storage applications, the live lock issue means for a same log entry
(e.g., the k-th log entry), more than one replica issues Prepare_Ck requests within the
replica group and none replica wins the right to write to the k-th log entry. To address
this problem, a distinguished replica could be elected as leader to determine the
sequence for each client command. Therefore, the two-phase protocol is reduced to
one-phase protocol by omitting the prepare phase, so as to improve system’s perfor-
mance and avoid the liveness issue. The difference between the two-phase Multi-paxos
protocol and the one-phase Multi-paxos protocol is depicted in Fig. 2.

Let’s take the scenario in Fig. 3 to describe how Multi-Paxos protocol works.
A client sends three commands C1, C2 and C3 at the same time to the leader replica R1,
i.e., {C1: “x = v1”, C2: “y = v2”, C3 = “x* = v3”}. C1 and C3 are updating the same key
x; while C2 is updating key y. Then R1 will log C1, C2, and C3 in sequence at its local
log firstly, then broadcast Accept_Ck messages regarding each command to each fol-
lower in the replica group. On receiving the Accept_C1 request from R1, R2 and R3 will
record the C1 in its local log; then send back Accept_C1_OK message to R1. Once R1

receives Accept OK messages from at least follower replica, it will mark C1 as

R1

(Leader)
Commit Ck

Ck

Accept k=Ck

Accept OK

R1

Prepare k=Ck

Prepare OK

Accept k=Ck

Accept OK

Commit Ck

Ck

Fig. 2. Two-phase Multi-Paxos protocol vs. One-phase Multi-Paxos protocol
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committed, and broadcast Commit_C1 request to all followers. And on receiving a
Commit_C1 message, a follower replica will mark C1 as committed if it has already
record C1 in its local log. Once C1 is committed, it can be applied to the state machine
and sends back to client that C1 has already been recorded correctly. For C2 and C3, the
workflow is similar to C1.

3.2 Problem Statement

In the example depicted in Fig. 3, C1, C2 and C3 may get committed in out-of-order
manner, since the network delay may results the “Accept_C2_OK” and “Accept_C3_OK”
messages arrives R1 before “Accept_C1_OK” message. But they must be applied in
sequence due to protocol’s design, since there may be some dependency among those 3
commands. For example, in our case, C3 can only be applied after C1 has been applied.
However, it is not necessary for C2 to get applied after C1 has been applied in our case,
sinceC2 has no dependency onC1. As a result, we can do some optimization to allow out-
of-order apply of committed commands in Multi-Paxos protocol.

In view of those observations, we propose an optimization for Multi-Paxos protocol
by allowing out-of-order applying of committed commands. By doing this, we could
improve system throughput, and reduce client latency on reading the committed
commands as well.

4 Our Solution: An Optimized Multi-paxos Protocol

Motivated by the problem discussed in Sect. 3, the optimized Multi-Paxos protocol is
discussed in details in this section. In our proposal, we introduce a concept named
dependency window for each client command. And a committed command could be
applied as long as it’s dependency window is empty or all the dependent commands are
getting applied.

Definition 1 (dependency window). For a command Ck, its dependency window Depk
is a data structure recording the m former keys close to command Ck in the whole log

C1:update x=v1 C2: update y=v2 C3: update x*=v3

Commit_C2

Accept_C2

Accept_C3

OK_C3

Commit C3 Commit C1

OK_C2

Accept_C1

OK_C1

Fig. 3. A Multi-Paxos workflow example

580 W. Lin et al.



entry, i.e., Depk = {xk−m, xk-(m−1),…. xk−1}. For each xi in Depk, if Ck depends on its
corresponding command Ci, Ck can only be applied after Ci get applied.

Compared with original design of Multi-paxos protocol, dependency window is
added for each client command, to help a replica judge whether a client command can
be applied or not. When a client command Ck arrives the leader replica Ri, an Accept
message for Ck will be broadcast to all followers, with the dependency window
information (i.e., Depk) attached. With Depk, a follower replica Rj can extract the
dependent keys on which Ck relies on. And Rj will intuitively check whether Ck can be
applied once it get committed.

Step 1: Commit client commands
Figure 4 demonstrates the workflow to commit a client command Ck in our proposed
optimized Multi-Paxos protocol. For a given client command Ck sent to Leader Ri, the
commit protocol works as follows: (1) Ri records Ck in its local log as the k-th com-
mand in sequence; (2) Ri broadcasts “Accept_Ck” message to all follower replicas in the
cluster; (3) On receiving a “Accept_Ck” message, a follower replica will first log Ck

locally and sends back Ri the “Accept_Ck_OK” message; (4) Once Ri receives
“Accept_Ck_OK” message from the majority in the cluster, it will identify Ck as
committed; then broadcasts “Commit_Ck_OK” message to all followers in the cluster;
(5) On receiving a “Commit_Ck_OK” message, a follower replica will mark Ck as
committed if it has Ck in local log; otherwise it will mark Ck as committed after
“Accept_Ck_OK” message arrives.

Step 2: Apply committed commands

Definition 7 (Apply index Ri-AppIndex). Ri-AppIndex is the index of a replica Ri

evolves in a Multi-Paxos protocol. It indicates that commands C1, C2, … CRi-AppIndex

are already applied from local log to the state machine.

R1(Leader) 
C1 ... Ci ... Ck-m Ck-m+1 ... Ck ... Cn ...

R2(Follower)
C1 ... Cj .... Ck-m Ck-m+1 ... Ck ... Cn ...

Seq: k
Key: xk
Value: valk
Depk: x1, ..., xm

Dependency Window size: m

R2-AppIndex command to be committed 

R1-AppIndex

Accept_Ck

Fig. 4. The workflow of optimized Multi-Paxos protocol to commit a command
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Concretely, for a command Ck to be applied, 2 conditions should be satisfied. (1) Ck

must be committed: for leader, it means it receives “Accept_Ck_OK” message from the
majority of peers in the system. For a follower replica, it must receive both
“Accept_Ck” and “Commit_Ck_OK” from leader; (2) Ck’s key has no dependency on
the command keys between Ri-AppIndex and the command Ck itself.

Taking Fig. 3 for example, the optimized multi-paxos protocol works as follows:

(a) Commit Step

(1) On receiving client request C1, C2, C3, R1 records C1, C2, C3 in sequence to local
log;

(2) R1 broadcast Accept_C1 = {1, x, 3, h}, Accept_C2 = {2, y, 4, h} and
Accept_C3 = {3, x, 5, {x}} messages to R2 and R3;

(3) Since Accept_C2 and Accept_C3 arrives R3 before Accept_C1 message,
Accept_C2_OK and Accept_C3_OK message sends back to R1, C2 and C3 are
logged in R3 in sequence as well;

(4) C2 and C3 are committed by R1 on receiving R3’s response at t1;
(5) R1 sends “Commit_C2_OK” and “Commit_C3_OK” message to R2 and R3;
(6) R3 mark C2 and C3 as committed, since they have already been recorded in local

log;
(7) Similarly, C1 will be committed by R1 after receiving R2’s response time at

t2(t2 > t1) and then committed by R2 as well.

(b) Apply Step

(1) for R1, since C2 and C3 are committed at t1, apply process is triggered;
(2) for C2, since its updated key = y, has no conflict with any command between R1-

AppIndex = 0 and C1, it get applied immediately;
(3) while for C3, since its updated key = x, is interfering with C1 which also updates

key x, so it won’t be applied immediately at t1. And it will only be applied after C1

get applied;
(4) After t2, C1 get committed, and R1-AppIndex is updated to 2 as well;
(5) C3 get applied since it has no dependency on commands between C2 and C3.

5 Evaluation

We evaluated the optimized Multi-Paxos protocol against typical Multi-Paxos protocol,
using three replicas for each replicated state machine. The protocols are implemented
with Golang and running on Mac OS 10.13.16.

According to [3], in practice, dependency among commands is rare cases for cloud
storage applications with statistics around 1%. We did this comparison just to highlight
that dependency among commands does have impact on distributed system’s perfor-
mance. In our scenario, we assume there is 20% probability a command depends on
another command.
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The size of client commands sent by each client is 100, 000; and for each com-
mand, the key is a random integer with 64bits; while the value is a random string with
fixed size (i.e., 4 KB). The size of dependency window for each Accept message is set
to 4. We compare the difference of throughput between the two protocols.

As shown in Fig. 5, with the increase of number of clients, the throughput is
increasing linearly. And the optimized Multi-Paxos protocol increases faster than the
typical one. This is because it’s unnecessary for each replica to wait until all previous
commands get applied before applying a committed command. Moreover, from Fig. 5,
we can find that when the number of clients reaches 6, the throughput does not change
anymore in optimized Multi-Paxos protocol. The reason for this is when client number
reaches 5, the storage I/O is fully utilized to process client commands.

6 Conclusion

In this paper, we proposed an optimization for Multi-Paxos protocol by allowing out-
of-order applying client commands. Compared with original design of typical Multi-
Paxos protocol, a committed client command could be applied to state machine, as long
as it has no dependency on its previous commands or all dependencies are resolved.
By doing this, we could improve the system throughput of cloud storage applications.
Finally, comparison between two protocols is analyzed to prove the feasibility of our
proposal.
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Fig. 5. Throughput performance comparison with no dependency among commands
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