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Abstract. We consider several well-known optimization 2-clustering (2-
partitioning) problems of a finite set of points in Euclidean space. All
clustering problems considered are induced by applied problems in Data
analysis, Data cleaning, and Data mining. In the general case, all these
optimization problems are strongly NP-hard. In the paper, we present a
brief overview of the results on the problems computational complexity
and on their solvability in the one-dimensional case. We present and
propose well-known and new, simple and fast exact algorithms with
O(N logN) and O(N) running times for the one-dimensional case of
these problems.

Keywords: Euclidean space · 2-clustering · 2-partitioning ·
NP-hardness · Polynomial-time solvability in the 1D case · Fast exact
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1 Introduction

The subject of this research is some hard-to-solve discrete optimization problems
that model some simplest applied problems of cluster analysis and data interpre-
tation. Our goal is to analyze and systematize the issues of constructing efficient
algorithms that ensure fast and exact problems-solving in the one-dimensional
case.

It is known that in terms of applied problem-solving the computer process-
ing of large-scaling data [1] the existing exact and approximate polynomial-time
algorithms having theoretical accuracy guarantee but quadratic and higher run-
ning time are often unclaimed in applications [2,3]. In other words, these strongly
justified polynomial-time algorithms are not used or are rarely used in practice
due to the “large” (quadratic and higher) running-time. On the other hand,
many hard-to-solve computer geometric problems arising in the data analysis
and interpretation [4,5] are solvable in polynomial time when the space dimen-
sion is fixed. At the same time, fast polynomial algorithms for solving problems
are efficient tools for finding out the structure (i.e. Data mining) [4] of large
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data by projecting it into spaces of lower dimension (for example, into three-
dimensional space, or a plane, or a number line). These projective mathematical
tools are popular among data analytics [6] since these tools allow one to interpret
the data by the visual representation. In this connection, the construction of fast
algorithms having almost linear or linear running-time to solve special cases (in
which the space dimension is fixed) of the problems are important mathematical
research directions. This paper belongs to these directions.

The paper has the following structure. Section 2 presents the mathematical
formulations of the problems under consideration. Interpretations of problems
are presented in the next section for demonstrating their origins and their con-
nection with the problems of data analysis. Section 4 provides a brief overview
of the results of the computational complexity of problems. In the next section,
we present existing results on the problems polynomial solvability in the case
of fixed space dimension. Finally, in Sect. 6, the existing and new algorithms
are presented, which find the exact solution of the problems in linear or almost
linear time in the one-dimensional case.

2 Problems Formulations

Everywhere below R denotes the set of real numbers, ‖ · ‖ denotes the Euclidean
norm, and 〈·, ·〉 denotes the scalar product.

All the problems considered below are the problems of 2-partitioning of input
points set. In the problems of searching for one subset, the second cluster is
understood as the subset that complements this cluster to the input set. A point
in the d-dimensional space is interpreted as the measuring result of a set of d
characteristics (features) of an object or as the vector (force), i.e. as the segment
directed from the origin to this point in the space.

The problems under consideration have the following formulations.

Problem 1 (Longest Normalized Vector Sum). Given: an N -element set Y of
points in d-dimensional Euclidean space. Find: a nonempty subset C ⊆ Y such
that

F (C) =
1
|C|

∥
∥
∥

∑

y∈C
y
∥
∥
∥

2

→ max .

Problem 2 (1-Mean and Given 1-Center Clustering). Given: an N -element set Y
of points in d-dimensional Euclidean space. Find: a 2-partition of Y into clusters
C and Y \ C such that

S(C) =
∑

y∈C
‖y − y(C)‖2 +

∑

y∈Y\C
‖y‖2 → min, (1)

where y(C) = 1
|C|

∑

y∈C y is the centroid of C.
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Problem 3 (Longest M-Vector Sum). Given: an N -element set Y of points in
d-dimensional Euclidean space and some positive integer M . Find: a nonempty
subset C ⊆ Y of size M such that

H(C) =
∥
∥
∥

∑

y∈C
y
∥
∥
∥ → max . (2)

Problem 4 (Constrained 1-Mean and Given 1-Center Clustering). Given: an N -
element set Y of points in d-dimensional Euclidean space and some positive
integer M . Find: a 2-partition of Y into clusters C and Y \ C minimizing the
value of (1) under constraint |C| = M .

Problem 5 (Longest Vector Sum). Given: an N -element set Y of points in d-
dimensional Euclidean space. Find: a subset C ⊆ Y maximizing the value of (2).

Problem 6 (M-Variance). Given: an N -element set Y of points in d-dimensional
Euclidean space and some positive integer M . Find: a subset C ⊆ Y of size M
such that

Q(C) =
∑

y∈C
‖y − y(C)‖2 → min .

Problem 7 (Maximum Size Subset of Points with Constrained Variance). Given:
an N -element set Y of points in d-dimensional Euclidean space and some real
number α ∈ (0, 1). Find: a subset C ⊂ Y of the largest size such that

Q(C) ≤ α
∑

y∈Y
‖y − y(Y)‖2,

where y(Y) = 1
|Y|

∑

y∈Y is the centroid of Y.

Problem 8 (Smallest M-Enclosing Ball). Given: an N -element set Y of points
in d-dimensional Euclidean space and some positive integer number M . Find: a
minimum radius ball covering M points.

3 Interpretations and Origins of the Problems

All of the formulated optimization problems have simple interpretations in the
geometric, statistical, physical, biomedical, geophysical, industrial, economic,
anti-terrorism and social terms. One can find some interpretations in the papers
cited below. An interested reader can easily give his own interpretation. In this
paper, we limit ourselves to a few simple interpretations.

Problems 1–4 arose in connection with the solution of an applied signal
processing problem, namely, the problem of joint detecting a quasiperiodically
repeating pulse of unknown shape and evaluating this shape under Gaussian
noise with zero mean [7–9]. Apparently, the first note on these problems was
made in [7]. In these problems, the cluster center specified at the origin corre-
sponds to the mean equal to zero.
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It should be noted that simpler optimization problems, which are induced by
the applied problems of detecting and discriminating of pulses with given forms
in the noise conditions, are characteristic, in particular, for radar, electronic
reconnaissance, hydroacoustics, geophysics, technical and medical diagnostics,
and Space monitoring (see, for example, [10–12]).

The Problem 1 objective function can be rewritten as

F (C) =
1
|C|

∑

y∈C

∑

x∈C
〈y, x〉 =

1
|C|

∑

y∈C

〈

y,
∑

x∈C
x
〉

=
∑

y∈C
〈y, y(C)〉.

Therefore, maximization Problem 1 can be interpreted as a search for a subset C
of objects (forces) that are most similar to each other in the terms of an average
value of the sum of all scalar products. Another interpretation is the search
for a subset of forces that are most co-aimed with the vector from the origin
to the point y(C), i.e. from the origin to an unknown centroid. Maximization
Problems 1 and 5 have similar interpretations.

Apparently, in [13], Problem 6 was first formulated. This problem models a
simplest data analysis problem, namely finding a subset of M similar objects in
the set of N objects. In this problem, the similarity of objects is interpreted as the
minimum total quadratic scatter of points in a set with respect to some unknown
“average” object (centroid), which may not belong to the input set. Equivalent
treatment of similarity is minimum of the sum of squares of all possible pairwise
distances between objects since for the objective function of the Problem 6, the
following equality holds

Q(C) =
1

2|C|
∑

x∈C

∑

y∈C
‖x − y‖2.

Problem 7 models [14] the search for the largest subset of similar objects
under the upper bound (restriction) on the similarity criterion of Problem 6,
i.e. on the total quadratic scatter of points in the desired cluster. In accordance
with this restriction, Problem 7 can be interpreted as clearing data from so-called
outliers that violate intracluster homogeneity (see, for example, [15–17]). As a
result of solving the problem, all data that have significant quadratic scatter will
belong to the complementary cluster. In this problem, the degree of the desired
cluster homogeneity is governed by the given number α.

Finally, Problem 8, formulated in [18], as a generalization of the well-known
problem of the Chebyshev center, has a simple geometric formulation that does
not require any explanation. On the other hand, in applications, this problem
arises whenever it is necessary to cover (for example, surround or locate in the
territory) a given number of objects in the conditions of limited resources (for
example, financial or energy).
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4 The Computational Complexity of Problems: Existing
Results

In [19] the authors proved the strong NP-hardness of Problem 1 by polynomial
reducibility of the known NP-hard problem 3-Satisfiability [20] to Problem 1.
This result implies the strong NP-hardness of Problem 3 since the objective
functions of these problems are related by equality

F (C) =
1
|C|H

2(C).

Indeed, it follows from this equality that polynomial solvability of Problem3
would imply polynomial solvability of Problem1 (it would be sufficient to iter-
ate over the finite number of admissible M). Note that chronologically, NP-
hardness of Problem3 was first proved (however, NP-hardness of Problem3 does
not imply NP-hardness of Problem1). Recall that for proving the intractability
of Problem 3, the authors of [8,9,21] constructed polynomial-time reduction of
the known NP-hard Clique problem [20] to Problem3.

By virtue of equality

S(C) =
∑

y∈Y
‖y‖2 − F (C), (3)

the strong NP-hardness of Problem 2 follows from its polynomial equivalence
to Problem 1. From the strong NP-hardness of Problem 2 follows the strong
NP-hardness of Problem 4 for the same reason as the strong NP-hardness of
Problem 3 follows from the strong NP-hardness of Problem 1. Indeed, polynomial
solvability of Problem 4 would imply polynomial solvability of Problem 2.

In [22] the authors proved the strong NP-hardness of Problem 5 by poly-
nomial reducibility of the known NP-hard problem 3-Satisfiability [20] to Prob-
lem 5.

Further, the paper [23] presents the proof of the strong NP-hardness of Prob-
lem 6. In this paper there is a simple proof of polynomial reducibility to Prob-
lem 6 of the well-known [24] NP-hard Clique problem on a homogeneous graph
with non-fixed degree.

The authors of [14] proved the strong NP-hardness of Problem 7 by showing
that decision forms of Problems 6 and 7 are equivalent.

Finally, the paper [18] presents the proof of the strong NP-hardness of Prob-
lem 8. To do this, the authors of the cited paper have shown polynomial reducibil-
ity to Problem 8 of Clique problem.

5 Exact Algorithms for the Problems in the
Multidimensional Case: Existing Results

Exact algorithms of exponential time complexity were constructed for multidi-
mensional case of Problems 1–6 in a number of papers. These algorithms are
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polynomial for the case of fixed space dimension (or for the case of space dimen-
sion bounded from above by some constant).

For Problem 1, an algorithm given in [25] finds the exact solution of the prob-
lem in O(d2N2d) time. The authors of [29] proposed an accelerated algorithm
with O(dNd+1) running time.

Since Problem 2 is polynomially equivalent to Problem 1, the exact solution
of Problem 2 can be found in the same time as the exact solution of Problem 1.

Polynomial solvability of Problem 3 in the case of fixed space dimension
follows from [28]. The authors of [25] and [29] presented exact algorithms for
Problem 3 with running time O(d2N2d) and O(dNd+1), respectively.

Problem 4 is polynomially equivalent to Problem 3. Therefore, the solution
of Problem 4 can be found in the same time as the solution of Problem 3.

Further, polynomial solvability of Problem 5 in the case of fixed space dimen-
sion follows from [27]. The authors of [26] presented an algorithm with O(d2Nd)
running time. An improved algorithm with O(dNd+1) running time is pro-
posed in [29]. In addition, the author of [30] presented a faster algorithm with
O(Nd−1(d + log N)) running time for the case d ≥ 2.

Algorithms proposed in [13,29] find exact solution of Problem 6 in O(dNd+1)
time. The feature of the algorithm proposed in [29] is that it allows one to find
solutions for all admissible values of M at once.

An exact algorithm for Problem 7, obviously, can be obtained from the exact
algorithm proposed in [29] for Problem 6. Running time of this algorithm is
O(dNd+1).

Finally, the issue of polynomial time solvability of Problem 8 for an arbitrary
but fixed dimension d of space is open till now.

It follows from the above results that for d = 1 these algorithms find solutions
in time which quadratically depends on the power N of the input set.

Below we present simple and fast exact algorithms that find solutions of one
dimensional case of the problems in O(N) (for Problems 3, 4, 5) or O(N log N)
(for Problems 2, 7, 8) time. Here, for completeness, we present known algorithms
for Problems 1 and 6, the time complexity of which is O(N log N).

6 Fast and Exact Algorithms for the Problems in the
One-Dimensional Case

Hereafter one-dimensional (d = 1) cases of Problems 1–8 we will denote as
Problem X − 1D, where X is the number of the problem.

Let us formulate algorithms for solving the problems.

Algorithm A1 for Problem 1-1D.
Input: the set Y.
Step 1. Split Y into the two subsets Y+ = {y ∈ Y | y > 0} and Y− = {y ∈

Y | y < 0}. Sort their elements so that Y+ = {y+
1 ≥ y+

2 ≥ . . . ≥ y+
|Y+| > 0} and

Y− = {y−
1 ≤ y−

2 ≤ . . . ≤ y−
|Y−| < 0}.
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Step 2. Calculate F+
i = F ({y+

1 , y+
2 , . . . , y+

i }), i = 1, . . . , |Y+|; put F+ =
max{F+

1 , . . . , F+
|Y+|} and U+ = {{y+

1 , y+
2 , . . . , y+

i }| F+
i = F+}.

Step 3. Calculate F−
i = F ({y−

1 , y−
2 , . . . , y−

i }), i = 1, . . . , |Y−|; put F− =
max{F−

1 , . . . , F−
|Y−|} and U− = {{y−

1 , y−
2 , . . . , y−

i }| F−
i = F−}.

Step 4. Put FA = max{F+, F−}, and also CA = U+ if F+ ≥ F−, and
CA = U− if F+ < F−.

Output: the subset CA, the value FA.

Proposition 1. Algorithm A1 finds an optimal solution of Problem 1-1D in
O(N log N) time.

This algorithm was proposed in [19] for construction of the approximation
scheme which is polynomial in the case of fixed space dimension. The same paper
established the accuracy and running time (determined by the sorting time) of
the algorithm.

Algorithm A2 for Problem 2-1D.
Input: the set Y.
Step 1. Find the solution CA of Problem 1 using Algorithm A1.
Step 2. Calculate SA =

∑

y∈Y y2 − FA(CA).
Output: the subset CA, the value SA.

Proposition 2. Algorithm A2 finds an optimal solution of Problem 2-1D in
O(N log N) time.

The validity of the statement follows from the fact that, in accordance with
(3), in the one-dimensional case the following holds

S(C) =
∑

y∈Y
y2 − F (C).

Algorithm A3 for Problem 3-1D.
Input: the set Y, positive integer M .
Step 1. Form a subset C1 of the M largest elements of Y. Calculate H(C1).
Step 2. Form a subset C2 of the M smallest elements of Y. Calculate H(C2).
Step 3. Put CA = C1 and HA = H(C1) if H(C1) ≤ H(C2). Otherwise put

CA = C2 and HA = H(C2).
Output: the subset CA, the value HA.

Proposition 3. Algorithm A3 finds an optimal solution of Problem 3-1D in
O(N) time.

The accuracy of the algorithm follows from the fact that in the one-
dimensional case for the function (2) the following holds

H(C) =
∣
∣
∣

∑

y∈C
y
∣
∣
∣. (4)
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The time complexity of selecting M largest (or smallest) elements determines the
running time of the algorithm. This selecting can be made in O(N) operations
without sorting (see, for example, [31]).

Algorithm A4 for Problem 4-1D.
Input: the set Y, positive integer M .
Step 1. Find the solution CA of Problem 3 using Algorithm A3.
Step 2. Calculate SA =

∑

y∈Y y2 − FA(CA).
Output: the subset CA, the value SA.

Proposition 4. Algorithm A4 finds an optimal solution of Problem 4-1D in
O(N) time.

The validity of the statement follows from the polynomial equivalence of
Problems 3 and 4.

Algorithm A5 for Problem 5-1D.
Input: the set Y.
Step 1. Form the subset C1 = {y ∈ Y | y ≥ 0}. Calculate H(C1).
Step 2. Form the subset C2 = {y ∈ Y | y ≤ 0}. Calculate H(C2).
Step 3. Put CA = C1 and HA = H(C1) if H(C1) ≤ H(C2). Otherwise put

CA = C2 and HA = H(C2).
Output: the subset CA, the value HA.

Proposition 5. Algorithm A5 finds an optimal solution of Problem 5-1D in
O(N) time.

The accuracy of the algorithm follows from (4). The running time of the
algorithm follows from the fact that constructing subsets C1 and C2 can be done
in time O(N).

Algorithm A6 for Problem 6-1D.
Input : the subset Y, positive integer M .
Step 0. Put m = 1; QA = +∞; CA = ∅.
Step 1. Using sorting form the tuple Y1,N = (y1, . . . , yN ), where y1 < . . . <

yN .
Step 2. Calculate fm,m+M−1 using formula

fi,j =
j

∑

k=i

(yk − y(Yi,j))2 ≡
j

∑

k=i

y2
k − 1

j − i + 1

(
j

∑

k=i

yk

)2

, (5)

where
Yi,j = (yi, . . . , yj),

and

y(Yi,j) =
1

j − i + 1

j
∑

k=i

yk

is the centroid of Yi,j , at i = m and j = m + M − 1.
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Step 3. If fm,m+M−1 ≤ QA then put QA = fm,m+M−1, CA = Ym,m+M−1.
Step 4. If m < N − M + 1 then put m = m + 1 and go to Step 1; otherwise

go to output.
Output : the subset CA, the value QA.

Proposition 6. Algorithm A6 finds an optimal solution of Problem 6-1D in
O(N log N) time.

This statement is based on the fact that each value of
∑j

k=i yk and
∑j

k=i y
2
k

can be found in O(1) time using sliding window sums. This algorithm was
recently justified in [32].

Algorithm A7 for Problem 7-1D.
Input: the set Y, real number α.
Step 0. Put m = 1, M = 0, MA = 0. Calculate B = α

∑

y∈Y ‖y − y(Y)‖2.
Step 1. Using sorting form the tuple Y1,N = (y1, . . . , yN ), where y1 < . . . <

yN .
Step 2. Calculate fm,m+M using formula (5) at i = m and j = m + M . If

fm,m+M ≤ B then go to Step 3. Otherwise go to Step 5.
Step 3. Put M = M +1. If M > MA then put MA = M , CA = Ym,m+M−1.
Step 4. If m + M ≤ N then go to Step 2. Otherwise go to output.
Step 5. If m < N then put m = m + 1, M = M − 1 and go to Step 2.

Otherwise go to output.
Output : the subset CA, the value MA.

Proposition 7. Algorithm A7 finds an optimal solution of Problem 7-1D in
O(N log N) time.

The algorithm accuracy follows from the monotonicity property [14] of the
function Q(C). The sorting determines the algorithm running time since the
calculations in Step 2 can be performed in O(1) time using prefix summation
and this step is performed no more than O(N) times.

Algorithm A8 for Problem 8-1D.
Input : the set Y, positive integer M .
Step 0. Put m = 1; rA = 0; CA = ∅.
Step 1. Using sorting form the tuple Y1,N = (y1, . . . , yN ), where y1 < . . . <

yN .
Step 2. Calculate rm,m+M−1 = (ym+M−1 − ym)/2.
Step 3. If rm,m+M−1 > rA then put rA = rm,m+M−1, CA = Ym,m+M−1.
Step 4. If m < N −M +1 then put m = m+1 and go to Step 1; Otherwise

go to output.
Output : the subset CA, the value rA.

Proposition 8. Algorithm A8 finds an optimal solution of Problem 8-1D in
O(N log N) time.

The algorithm accuracy follows from the fact that in the one-dimensional
case a minimum radius ball enclosing points yi, yi+1, . . . , yj , where yi < yi+1 <
. . . < yj , has a radius of (yj − yi)/2. The algorithm running time is determined
by sorting.
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7 Conclusion

The paper provides a brief overview of the complexity of some recently identified
optimization problems of 2-clustering a finite set of points in Euclidean space. We
present fast and exact algorithms for the one-dimensional case of these problems.
In our opinion, these algorithms will serve as a good tool for solving the problems
of projective analysis and interpretation of big data.
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