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Abstract. For classification task involving a large number of classes, a
decrease in recognition accuracy is observed for visually similar classes.
We believe that forcing the model to learn appropriate features sepa-
rately for each set of similar classes could improve classification per-
formance. To justify our idea, we tried to improve classification perfor-
mance by employing class hierarchy, which reflects visual similarities in
data. More specifically, we used and compared two kinds of hierarchies to
enhance classification performance of the model: (i) a hierarchy defined
by experts (H-E), and (ii) a hierarchy created from performance results
of a flat classifier and using DBScan clustering method (H-C). Moreover,
we created a classification model that efficiently utilizes these hierar-
chies to learn appropriate features at different levels of the hierarchy.
We evaluated the performance of the model on CIFAR-100 benchmark.
Our results demonstrate that the hierarchical classification under H-C
outperforms both H-E and the flat classifier.

Keywords: Hierarchical classification · Image classification ·
Confusion matrix · Class similarity

1 Introduction

In classification tasks, a trained model is used to predict the class of given data
points, where classes are sometimes referred to as targets, labels, or categories.
Machine learning approaches to solving a classification problem can be split
into two categories. The first one is the classical machine learning approach,
which uses algorithms like Decision Trees, Naive Bayes Classifiers and SVMs [9].
The second approach incorporates Deep Learning (DL) [13]. One of the main
advantages of the DL models is that they require little or no manual feature
engineering, meaning that the DL model is able to learn features itself. This
property has given rise to machine learning models, able to solve tasks involving
unstructured data, like videos, images and voice, which outperform approaches
where features were created manually [12].

Functioning of a DL model can be split into three steps. The first step is
features learning, which is performed by the first layers of the neural network.
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These layers can be fully connected layers for simple networks [15] as well as
more complex convolutional blocks [12] for image-recognition tasks and other
options for different DL problems. The second step is responsible for features
combination. This step is usually implemented as several fully connected layers
which combine all available features and pass them into the third step. The
third step involves prediction, consisting of a layer with activations having the
same number of neurons as the number of classes. The output of the model is a
probability distribution over all classes.

Despite their high-performance, even DL models tend to underperform in
some cases. Misclassifications may occur when samples from different classes are
very similar. For example, in Kinetics dataset [8] for action recognition, the top
3 misclassified class-pairs are: riding a mule and riding or walking with horse,
hockey stop and ice skating, swing dancing and salsa dancing. Obviously, each
of these class pairs shares many visual features.

These features allow a model to recognize mentioned classes among all other
classes in a dataset. However, to distinguish among similar classes, specific fea-
tures, which exists only in classes within a pair, are required. For example, fea-
tures that can distinguish the kind of the animal within the first pair of actions,
or the specific hand movements within the third one. Such examples lead to
a statement that features that are useful for discrimination of similar samples
among all categories are not necessarily discriminative for samples that fall in
one compound category, and vice-versa.

To address this problem, we employ an artificial hierarchy in data in a way
where classes that are hard to distinguish are united in one category. Besides,
we propose a model that utilizes the learned hierarchy and performs classifica-
tion in two steps. During the first step, a compound category is created. During
the second step, the division of classes into categories is performed by an addi-
tional classifier. The proposed type of architecture, which exploits the similarity
relationship between classes is called Hierarchical Classification (HC).

A number of works successfully utilizing HC were published in the last
decade, e.g. [1,2,10,14]. This research effort contributes to the domain by
addressing the question of creating an artificial hierarchy in data. More specif-
ically, in this work we compare two hierarchies, obtained by different means
on the same dataset. One hierarchy is a predefined one, or a human-labelled
hierarchy. The second one is obtained by defining class separability metrics and
utilizing them. We also introduce and compare a number of model architectures
in order to identify the one that produces the highest accuracy on a selected
dataset.

To conclude, this work aims to investigate three problems. The first problem
is that of identification or creation a hierarchy in data. The second addresses
building a hierarchical architecture that efficiently utilizes artificial hierarchy.
The third problem involves the comparison of an expert defined hierarchy (H-E)
with an artificially created hierarchy (H-C) in terms of model performance.
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2 Related Works

The first question to attend to is how to create a hierarchy from the data.
The simplest decision is to label classes manually or use predefined hierarchical
structure [7,17,21], but we state that a hierarchy obtained in this way does not
reflect separation between classes.

Another option to get a hierarchy is to create it. The process of creating an
artificial hierarchy can be divided into three steps: defining a space for measure-
ment of the distance between classes, building a hierarchical dependency tree
of classes based on the defined distance and constructing a hierarchy from the
dependency tree.

To define a space, where the distance between classes could be measured,
two approaches are known in the literature. The first one is premature class
separation, based on existing data. An example is clustering by labels’ semantic
[4]. The second approach is to create a hierarchy on the predictions of a trained
model. This approach utilizes confusion matrix (CM) of a pretrained model as a
distance matrix [6,22]. While the first approach requires additional information
and has limited applicability, the second one is easy to implement and it reflects
similarities of classes.

There are several widely used methods, as described in literature, to build a
hierarchical dependency tree from CM. For example, Yan et al. [22] used spec-
tral clustering method, while Silva-Palacios et al. [20] utilized an agglomerative
clustering to create a dendrogram and a hierarchy from it. Both works treated
CM as an inter-class distance measurement. Another option to perform cluster-
ing is DBScan algorithm [5]. An advantage of this method is its ability to detect
outliers and perform grouping, based on class density.

CM values cannot be treated as distances between classes directly. There are
transformations to CM that should be applied beforehand. An essential property
that CM should hold is symmetry; otherwise, the distance from class A to class
B is not guaranteed to be equal to the distance from class B to class A. An
application of symmetric matrix is shown by Yan et al. [22]. The authors used a
distance matrix, which is a transformed CM, with a symmetry property. Another
valid transformation is called a similarity matrix, described in [20].

The next step after constructing a hierarchy is building a model that efficiently
utilizes it. The task can be approached by: disregarding the hierarchy; connecting
separated models, where each model corresponds to one node in a hierarchy; and
building a single model, that has an internal hierarchical structure.

The first, and the simplest, approach ignores hierarchy and builds a flat
classifier. This approach is shown to be less effective than a hierarchical classifier
[22]. There are several possibilities to arrange models in the second approach.
The literature distinguishes three of them: Local Classifier per Node (LCN),
Local Classifier per Parent Node (LCPN) and Local Classifier per Level (LCL)
[18]. A major drawback of this family of approaches is that they require separate
models. To understand a problem with separate models, consider a Deep Neural
Network (DNN). First layers of the DNN are responsible for learning small, low-
level features like lines and edges (if we deal with pictures) [16]. These features
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are domain-specific, not class-specific. Therefore, learning low-level features for
all classifiers is redundant. Moreover, local classifiers (every classifier that is not
the root one) receives only part of training samples, which makes the model
harder to train.

The third approach embeds a hierarchy directly inside the model. This idea
aims to improve the shortcomings of other approaches. It was utilized by Yan
et al. [22]. The authors build an architecture, called HD-CNN. HD-CNN has
an intrinsic model that predicts coarse labels and a model for each set of fine
labels. Coarse label prediction is responsible for choosing the most relevant sub-
class models and perform weighting on their output. Overall, the architecture is
similar to an ensemble of models, but low-level features are shared.

Later work by Bilal et al. [3] utilizes hierarchy internally. The authors went
further with the process of training a hierarchical model. They made a prelim-
inary analysis of mistakes made by the model in hidden layers during training.
Based on gained insights, the authors added intermediate outputs in the model
architecture to enforce hierarchical structure. The disadvantage of this work
is that building such hierarchy-aware model requires complicated preliminary
analysis.

3 Methodology

3.1 Creation of a Hierarchy

We took a dataset called CIFAR-100 [11]. It consists of tiny 32× 32 color images.
The dataset has 100 classes with 500 train and 100 test images in each. Each
class is also assigned to a superclass. A superclass is a disjoint group of classes.
For CIFAR-100, superclasses were split by a human expert, relying on common
knowledge. A label that identifies an image among 100 classes is called a fine
label, while a label that maps an image to a superclass is called a coarse label.
The list of classes and superclasses is presented in Table 1. Predefined mapping
into fine and coarse categories implies a hierarchical structure of the data. This
hierarchy is used as a baseline.

A better approach is to construct a hierarchy that reflects class similarity
from the viewpoint of a classification model. The first step in the creation of
such a hierarchy is getting a measurement of inter-class distance. The distance
is obtained from CM, which in turn is obtained from the classification model. A
well-known architecture for image classification is AlexNet [12]. Its architecture
is shown in Fig. 1. A trained model with this architecture is used to create a CM.

Bare CM cannot be used to perform clustering on classes in order to build
a hierarchy. A suitable matrix that can be obtained through transformation is
symmetrical CM: F . To get an F , the CM (represented as C) is summed up
with its transpose to make matrix symmetric and multiplied by a factor of 0.5
to normalize coefficients (Eq. 1a). Another option is distance matrix D which is
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Table 1. Given hierarchy of classes

Coarse class Fine classes

Aquatic mammals Beaver, dolphin, otter, seal, whale

Fish Aquarium fish, flatfish, ray, shark, trout

Flowers Orchids, poppies, roses, sunflowers, tulips

Food containers Bottles, bowls, cans, cups, plates

Fruit and vegetables Apples, mushrooms, oranges, pears, sweet
peppers

Household electrical devices Clock, computer keyboard, lamp, telephone,
television

Household furniture Bed, chair, couch, table, wardrobe

Insects Bee, beetle, butterfly, caterpillar, cockroach

Large carnivores Bear, leopard, lion, tiger, wolf

Large man-made outdoor
things

Bridge, castle, house, road, skyscraper

Large natural outdoor scenes Cloud, forest, mountain, plain, sea

Large omnivores and
herbivores

Camel, cattle, chimpanzee, elephant,
kangaroo

Medium-sized mammals Fox, porcupine, possum, raccoon, skunk

Non-insect invertebrates Crab, lobster, snail, spider, worm

People Baby, boy, girl, man, woman

Reptiles Crocodile, dinosaur, lizard, snake, turtle

Small mammals Hamster, mouse, rabbit, shrew, squirrel

Trees Maple, oak, palm, pine, willow

Vehicles 1 Bicycle, bus, motorcycle, pickup truck, train

Vehicles 2 Lawn-mower, rocket, streetcar, tank, tractor

Fig. 1. Simplified AlexNet architecture

a modification of F (Eq. 1b).

F = 0.5 ∗ (C + CT ) (1a)

D = 0.5 ∗ (Dtmp + DT
tmp), where Dtmp = 1 − C (1b)
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The last approach is called a similarity matrix, which is described by Silva
et al. [20]. Similarity matrix S is calculated as in Eq. 2.

Normalization : Cij =
Cij∑n
j=1 Cij

Overlap : Oij =
{

Cij+Cij

2 ifi �= j
1 ifi = j

Similaritymatrix : Sij = 1 − Oij

(2)

The next step is building a hierarchy, based on inter-class distances. To pro-
duce a hierarchy, we performed clustering on classes, using transformed CM as
a measure. For the classes that occur in the same cluster, it is true that they
are often confused with each other or they are visually similar. Classes in one
cluster are said to belong to the same superclass. Moreover, for each outlier class,
produced by the clustering method, its own superclass is created. Outliers are
treated this way because not belonging to any cluster means the class is not
often confused and is simple to predict.

3.2 Building a Model

We built two models to investigate and compare performance on classification
task involving class hierarchy. The first model is unaware of hierarchy and is
referred to as the flat model. Architecture is the same as the one in Fig. 1.

The second model that we created is a modification of HD-CNN architecture
[22]. The structure of its architecture is built upon basic blocks, depicted in a
Fig. 2, whereas the complete model architecture is shown in Fig. 3.

There are three out of five possible types of blocks in the Fig. 2. Block Fig. 2a
is responsible for learning low-level features. Block Fig. 2c is responsible for inter-
nal feature combination, which we assume is superclass specific. Finally, block
Fig. 2c outputs probability vector for the sample over target distribution. More-
over, there are two kinds of blocks that are not in the picture. The first one is
a fine category or coarse category prediction (shown in red in Fig. 3). It is just
a convenient depiction of the output vector. The second non-drawn block also
referred to as “Ones vector” block (shown in purple in Fig. 3) just returns a
vector of ones, with the size equal to the input vector.

The architecture in Fig. 3, consists of three main parts: coarse category pre-
diction, fine categories prediction, and weighting block. Convolutional layers are
shared between the coarse category model and fine category models. Shared
features block was used to address the problem of retraining the same low-
level features. Coarse category classifier produces a probability distribution over
coarse classes for an input sample. Fine category classifier outputs a distribu-
tion over fine classes in one superclass if a superclass consists of more than one
class. If a superclass consists of one class, then fine classifier outputs vector with
ones. Finally, inside a weighting block, each vector from fine category classifier is
multiplied by the corresponding probability of a coarse category, obtained from
coarse category classifier.
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(a) Shared features block (b) Compound features
block

(c)

Fig. 2. Architecture building blocks: Numbers before and after 2D Convolutions are
the number of input and output channels correspondingly. If no number specified, then
the number of channels is propagated from previous output.

Fig. 3. Hierarchical model architecture (Color figure online)

There are differences between the proposed model and the existing work.
Firstly, we didn’t select fine classifiers after a prediction of the coarse category;
instead, we passed an input sample to all available fine category classifiers. Sec-
ondly, we allowed the hierarchy to contain categories with one class, which leads
to the presence of fine category classifiers with only one element and constant
output.

4 Implementation

4.1 Hierarchy Creation

To create a hierarchy from data, first, we trained AlexNet (Fig. 1) using imple-
mentation from PyTorch [19] framework. This model also acts as a flat classifier.
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The model achieved 61.04% accuracy on the test set. For this and further models
training results are shown in Table 3.

(a) Symmetric confusion
matrix

(b) Distances matrix (c) Similarity matrix

Fig. 4. 2D scatter plots after PCA decomposition of the three matrices.

Next, the data from the training set were passed through the model again to
obtain a CM of the classes. We applied three different methods to transform the
matrix into distances spaces. Then PCA decomposition was performed on all
transformed matrices: symmetric CM F (Fig. (4a), distances matrix D (Fig. 4b)
and similarity matrix S (Fig. 4c). While decomposed F is similar to decomposed
D and both of plots are diffused, similarity matrix has perceptible clusters.
Therefore, similarity matrix is chosen for further processing.

The next step after choosing distances space is clustering. To perform clus-
tering DBScan algorithm was utilized. We search for optimal epsilon value and
a minimum number of neighbors for DBScan by finding the combination that
returns a minimum number of clusters, while not allowing very small and very
big ones. Epsilon value is a radius of a neighborhood around a point. A minimum
number of neighbors is a restriction of a size for a valid cluster. So, the search
space was bounded by minimum and maximum distances between points and
a minimum number of neighbors. Distribution of the number of clusters over
epsilon with a fixed number of neighbors is shown in Fig. 5a. The highest num-
ber of clusters is 9, according to the plot, but this marginal value is not stable,
therefore, we decided to use 8 clusters. An epsilon, in this case, is equal to 1.374
and distance metric is Euclidean distance. A value for the minimum number of
neighbors is 5.

The resulting clusters are plotted in Fig. 5b. The title of a cluster is the
name of one of the classes, that belongs to it. Moreover, one cluster is marked
as “other”. These are outliers produced by DBScan. In our setup, it means that
classes that occurred in this category are easily distinguishable from each other.
A hierarchy that clustering produces is shown in Table 2.

4.2 Models Training and Testing

We trained two hierarchical models. The first model uses experts hierarchy (H-
E), and the second one uses the created hierarchy (H-C). The training process
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(a) Clusters over epsilon (b) DBScan results

Fig. 5. The distribution of number of clusters over epsilon obtained using DBScan,
and the resulting clusters.

of each hierarchical model was split into three steps: training a coarse classifier,
training full classifier, and fine-tuning fine-label models.

The first step is training a coarse classifier. Coarse category classifier part of
the model is isolated to perform training. Labels for training are coarse labels
from the hierarchy. Therefore, the number of classes for H-C is equal to the
number of superclasses added to the number of outliers, or 56 + 7 = 63 and 20
for H-E. H-E achieved 76.1%, while H-C achieved 75.79% accuracy. The second
step is model training on fine classification. Shared features block is frozen to
prevent low-level features from training.

Investigation of trained H-C model showed that it performs better in grouping
classes into supergroups, compared to the flat model. Considering samples that
belong to groups in an artificial hierarchy, 965 samples are confused with a sample
from its group, when passed through the flat model. In the hierarchical model,
there are 1380 confused samples. While a total number of samples, belonging to
groups, is 4400.

Another insight is a prediction of non-grouped classes in the hierarchical
model. Samples that don’t belong to any group have the same labels for both
coarse and fine classification. But the result of fine classification is weighted
and affected by weighting layer. Still, the difference in the number of correctly
classified samples equals 153, which is 0.015 from the original dataset size. It
means that overall accuracy does not suffer from weighting layer.

Therefore, the next step in training models is improving performance of each
group classifier. For this purpose, shared features are directly passed to a group
classifier and backpropagation starts from the output of the group classifier.
Fine tuning for the model improved the performance of both models. H-E scored
59.72% and H-C scored 63.67% accuracy.

We assume that the reason why H-C performed better than H-E is differences
in the hierarchy. Expert defined hierarchy is built upon common knowledge of
grouping. Created hierarchy is based on a model perception of the classes, which
implies classes within a group share more class-specific features. Therefore, fine
labels classifiers are able to concentrate on distinguishing features, thus improv-
ing overall accuracy.
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Table 2. Created hierarchy of classes

Coarse class Fine classes

Outliers Aquarium fish, bed, bee, beetle, bicycle,
bottle, bowl, bridge, butterfly, camel, can,
castle, caterpillar, cattle, chair, clock, cloud,
cockroach, couch, crab, crocodile, cup,
dinosaur, flatfish, hamster, house, keyboard,
lamp, lawn mower, leopard, lizard, lobster,
motorcycle, mountain, mouse, mushroom,
plain, plate, possum, raccoon, road, rocket,
sea, skunk, skyscraper, snail, snake, spider,
sunflower, table, tank, telephone, television,
turtle, wardrobe, worm

0 Baby, boy, girl, man, woman

1 Bear, beaver, chimpanzee, elephant, otter,
porcupine, seal, shrew

2 Bus, pickup truck, streetcar, tractor, train

3 Fox, kangaroo, lion, rabbit, squirrel, tiger,
wolf

4 Forest, maple tree, oak tree, palm tree,
pine tree, willow tree

5 Dolphin, ray, shark, trout, whale

6 Apple, orange, orchid, pear, poppy, rose,
sweet pepper, tulip

Table 3. Results

Model Validation accuracy
for coarse classes

Validation accuracy
for fine classes

Flat model – 0.6259

H-E 0.76101 0.5972

H-C 0.75792 0.6367

5 Conclusion

In this work we performed an experiment, proving that forcing a model to learn
appropriate features separately for each set of similar classes could improve clas-
sification performance. There are several works in the field, that utilize the same
idea [3,20,22]. In comparison with other works, we applied a novel approach
to building a hierarchy using DBScan clustering and allowing the hierarchy to
have single-element groups. Moreover, we changed an existing model architecture
(HD-CNN) to simplify internal fine classifier selection and proposed an approach
for fine-tuning hierarchical models.
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The experiment results demonstrate that hierarchical classification with cre-
ated hierarchy outperforms hierarchical classification with expert-created hierar-
chy, as well as flat classification. It means that introducing an artificial hierarchy
into a classification task could improve the overall accuracy, regardless of the
presence of a given hierarchy.
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