
Chapter 25
A Fast Approximation of the Hyperbolic
Tangent When Using Posit Numbers
and Its Application to Deep Neural
Networks

Marco Cococcioni, Federico Rossi, Emanuele Ruffaldi and Sergio Saponara

Abstract Deep Neural Networks (DNNs) are being used in more and more fields.
Among the others, automotive is a field where deep neural networks are being
exploited the most. An important aspect to be considered is the real-time constraint
that this kind of applications put on neural network architectures. This poses the need
for fast and hardware-friendly information representation. The recently proposed
Posit format has been proved to be extremely efficient as a low-bit replacement of
traditional floats. Its format has already allowed to construct a fast approximation
of the sigmoid function, an activation function frequently used in DNNs. In this
paper we present a fast approximation of another activation function widely used in
DNNs: the hyperbolic tangent. In the experiment, we show how the approximated
hyperbolic function outperforms the approximated sigmoid counterpart. The impli-
cation is clear: the posit format shows itself to be again DNN friendly, with important
outcomes.

Keywords Deep neural networks (DNNs) · Posit · Activation functions

25.1 Introduction

The use of deep neural networks (DNN) as a general tool for signal and data pro-
cessing is increasing both in industry and academia. One of the key challenge is the
cost-effective computation of DNNs in order to ensure that these techniques can be
implemented at low-cost, low-power and in real-time for embedded applications in
IoT devices, robots, autonomous cars and so on. To this aim, an open research field
is devoted to the cost-effective implementation of the main operators used in DNN,
among them the activation function. The basic node of a DNN implements the sum
of products of inputs (X) and their corresponding Weights (W) and then applies an

M. Cococcioni (B) · F. Rossi · S. Saponara
Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
e-mail: marco.cococcioni@unipi.it

E. Ruffaldi
MMI Spa, 56011 Calci, Pisa, Italy

© Springer Nature Switzerland AG 2020
S. Saponara and A. De Gloria (eds.), Applications in Electronics Pervading
Industry, Environment and Society, Lecture Notes in Electrical Engineering 627,
https://doi.org/10.1007/978-3-030-37277-4_25

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37277-4_25&domain=pdf
mailto:marco.cococcioni@unipi.it
https://doi.org/10.1007/978-3-030-37277-4_25

214 M. Cococcioni et al.

activation function f (·) to it to get the output of that layer and feed it as an input
to the next layer. If we do not apply an activation function then the output signal
would simply be a simple linear function, which has a low complexity but is not
power enough to learn complex mappings (typically non-linear) from data. This is
why the most used activation functions like Sigmoid, Tanh (Hyperbolic tangent) and
ReLu (Rectified linear units) introduce non-linear properties toDNN [1, 2]. Choosing
the activation function for a DNN model must take into account various aspects of
both the considered data distribution and the underlying information representation.
Moreover, for decision critical applications like machine perception for robotic and
autonomous cars, also the implementation accuracy is important.

Indeed, one of the main trend in industry to keep low the complexity of DNN
computation is avoiding complex arithmetic like double-precision floating point (64-
bit), but relying onmuchmore compact formats like BFLOAT or Flexpoint [3, 4] (i.e.
a revised version of the 16-bit IEEE-754 floating point format adopted by Google
Tensor Processing Units and Intel AI processors) or transprecision computing [5,
6] (e.g. the last Turing GPU from NVIDIA sustains INT32, INT8, INT4 and fp32
and fp16 computation [5]). To this aim, this paper presents a fast approximation of
the hyperbolic tangent activation function combined with a new hardware-friendly
information representation based on Posit numerical format.

Hereafter, Sect. 25.2 introduces the Posit format and the CppPosit library imple-
mented at University of Pisa for the computation of the new numerical format.
Section 25.3 introduces the hyperbolic tangent and its approximation. Implemen-
tation results when the proposed technique is applied to DNN with known bench-
mark dataset are reported in Sect. 25.4, where also a comparison with other known
activation functions, like sigmoid, is discussed. Conclusions are drawn in Sect. 25.5.

25.2 Posit Arithmetic and the CppPosit Library

The Posit format as proposed in [7–9] is a fixed-length representation composed by
at most 4 fields as shown in Fig. 25.1.: 1-bit sign field, variable-length regime field,
variable-length (up to es-bits) exponent field and a variable-length fraction field.
The overall length and the maximum exponent lengths are decided a-priori. Regime
length and bit-content is determined as by the number of consecutive zeroes or ones
terminated, respectively, by a single one (negative regime) or zero (positive regime)
(see Fig. 25.2).

Fig. 25.1 An example of Posit data type

25 A Fast Approximation of the Hyperbolic Tangent … 215

Fig. 25.2 Two examples of 16-bit Posit with 3 bits for exponent (es = 3). In the upper the numer-
ical value is: (221/256 is the value of the fraction, 1 + 221/256 is the
mantissa). The final value is therefore 1.907348 × 10−6 · (1 + 221/256) = 3.55393 × 10−6. In
the lower the numerical value is: (40/512 is the value of the fraction, 1
+ 40/512 is the value of mantissa). The final value is therefore 2048 · (1 + 40/512) = 2208

In this work we are going to use the cppPosit library, a modern C++ 14 imple-
mentation of the original Posit number system. The library identifies four different
operational levels (L1–L4):

– L1 operations are the ones involving bit-manipulation of the posit, without decod-
ing it, considering it as an integer. L1 operations are thus performed on ALU and
are fast.

– L2 operations involve unpacking the Posit into its four different fields, with no
exponent computation.

– L3 operations instead involve full exponent unpacking, but without the need to
perform arithmetic operations on the unpacked fields (examples are converting
to/from float, posit or fixed point).

– L4 operations require the unpacked version to perform software/hardware floating
point computation using unpacked fields.

L1 operations are the most interesting, since they are the most efficient ones. L1
operations include inversion, negation, comparisons and absolute value. Moreover,
when esbits= 0, L1 operations also include doubling/halving, 1’s complement when
the specific Posit representation falls within the range [0, 1] and an approximation
of the sigmoid function, called here fast Sigmoid, and described in [9]. Table 25.1
reports some implemented L1 operations stating whether the formula is exact or an
approximation and the operation requirements in terms of Posit configuration and
value. It is important to underline that every effort put in finding an L1 expression
for some functions or operations has two advantages: a faster execution when using
a software emulated PPU (Posit Processing Units), and a lower area required (i.e.
less transistors) when the PPU is implemented in hardware.

216 M. Cococcioni et al.

Table 25.1 L1 operations
summary

Operation Approximation Requirements

2 · x No Esbits = 0

x/2 No Esbits = 0

1/x No None

1 − x No Esbits = 0, x in
[−1, 1]

FastSigmoid [9] Yes Esbits = 0

FastTanh (see
below)

Yes Esbits = 0

25.3 The Hyperbolic Tangent and Its Approximation
FastTanh

The hyperbolic tangent is a non-linear activation function typically adopted as a
replacement to the sigmoid activation function. The advantage of the hyperbolic
tangent over the sigmoid is the higher enhancement given to the negative values. In
fact, the output of the hyperbolic tangent spans in [−1, 1] while the sigmoid outputs
are only half of the previous, lying in [0, 1]. Furthermore, this difference in output
range heavily impacts performances when using small-sized number representation,
such as Posits with 10 or 8 bits. If we consider the sigmoid function applied to a
Posit with x bits, we are actually using, as output, a Posit with x − 1 bits, since we
are discarding the range [−1, 0], which is significantly dense when using the Posit
format (see Fig. 25.3).

However, as already mentioned before, the sigmoid function

sigmoid(x) = 1/
(
ex − 1

)

has a fast and efficient L1 approximation when using Posits with 0 exponent bits
[9] (FastSigmoid). In order to exploit a similar trick for the hyperbolic tangent, we
first introduced the scaled sigmoid function:

sSigmoidk(x) = k · sigmoid(k · x) − k/2 (25.1)

Particularly interesting is the case k = 2, when the scaled sigmoid coincides with
the hyperbolic tangent:

sSigmoid2(x) = (
e2·x − 1

)
/
(
e2·x + 1

) = tanh(x) (25.2)

Now that we can express the hyperbolic tangent as a linear function of the sig-
moid one, we must rework the expression in order to provide a fast and efficient
approximation to be used with Posits.

25 A Fast Approximation of the Hyperbolic Tangent … 217

values used by Tanh
values used by the Sigmoid

Fig. 25.3 The posit circle when the total number of bits is 5. The hyperbolic tangent uses all the
numbers in [−1, 1], while the sigmoid function only the ones in [0, 1]

We know that Posit properties guarantee that, when using 0 exponent bits format,
doubling the Posit value and computing its sigmoid approximation is just a matter of
bit manipulations, so they can be efficiently obtained. The subtraction in Eq. (25.1)
does not come with an efficient bit manipulation implementation as-is. In order to
transform it into an L1 operation we have to rewrite it as:

FastTanh(x) = 2 · FastSigmoid(2 · x) − 1 (25.3)

Then let us focus on negative values for x only. For these values, the expression 2 ·
FastSigmoid(2·x) is inside the unitary region [0, 1]. Therefore, theL11’s complement
can be applied. Finally, the negation is always an L1 operation, thus for all negative
values of x the hyperbolic tangent approximation can be computed as anL1operation.
Moreover, thanks to the anti-symmetry of the hyperbolic tangent, this approach
can also be extended to positive values. The following is a possible pseudo-code
implementation:

FastTanh(x) →y
x_n = x > 0? -x:x

218 M. Cococcioni et al.

s = x > 0
y_n = neg(compl1(twice(FastSigmoid(twice(x_n)))))
y = s > 0? -y_n:y_n

where twice is an L1 operation which computes 2 · x and compl1 is the L1
function that computes the 1’s complement, again as an L1 operation.

Since we are also interested in training neural networks, we also need an efficient
implementation of the hyperbolic tangent derivative:

d(tanh(x))/d(x) = 1 − tanh(x)2

Let y = tanh(x)2, we know that 1 − y is always a L1 operation when esbits = 0,
since tanh(x)2 is always in [0, 1].

25.4 Experimental Results

We compared the approximated hyperbolic tangent to the original version in terms of
execution time and precision. Figure 25.4 shows the precision comparison, reporting
also for Posit8 and Posit16 the mean squared error between the approximated and the
original form (for both types, we used 0 bits of exponent). Figure 25.5 shows execu-
tion time comparison for several repetitions. Each repetition consists in computing
about 60,000 hyperbolic tangents with the approximated formula and the exact one.
As reported, the precision degradation is in the order of 10–3 while the gain in speed
is around a factor 6 (six time faster). In Figs. 25.4 and 25.5 fast appr tanh is the
Posit-based implementation, using L1 operations, of the Tanh function, by using the
FastTanh formula in Eq. 25.3. This corresponds to the column labeled has FastTanh
in Table 25.2.

Then we tested the approximated hyperbolic tangent as activation function for the
LeNet-5 convolutional neural network, replacing the exact hyperbolic tangent used
in the original implementation proposed in [10, 11] and comparing results against
the original activation. The network model has been trained on MNIST [11] and
Fashion-MNIST datasets [12].

Table 25.2 shows performance comparison between the two activation functions
(FastTanh and Tanh) on the two datasets. Moreover, also the results obtained with
Sigmoid and ReLu are reported, since they are widely adopted in literature as activa-
tion functions for DNN. The results in Table 25.2 in terms of accuracy show that the
FastTanh outperforms both the ReLu and the FastSigmoid (a well-known approxi-
mation of the sigmoid function) which are widely used in state-of-art to implement
activation functions in DNN.

25 A Fast Approximation of the Hyperbolic Tangent … 219

Fig. 25.4 Comparison
between exact hyperbolic
tangent (True tanh, in blue)
and FastTanh (fast appr.
tanh, in black), for
Posit<8,0> (top) and
Posit<16,0> (bottom). For
Posit<8,0> the mean squared
error is 2.816 × 10–3, while
for Posit<16,0> it is 2.947 ×
10–3

Fig. 25.5 Comparison of
execution time of multiple
consecutive executions
between exact hyperbolic
tangent (True tanh, in blue)
and FastTanh (fast appr tanh,
in black)

220 M. Cococcioni et al.

Table 25.2 Accuracy (%) and inference time (ms) comparison between different activation
functions and different Posit configurations (MNIST and Fashion-MNIST data set)

Activation FastTanh (this paper) True Tanh FastSigmoid [9] ReLu

% ms % ms % ms % ms

MNIST

Posit16,0 98.5 3.2 98.8 5.28 97.1 3.31 89.0 2

Posit14,0 98.5 2.9 98.8 4.64 97.1 3.09 89.0 1.9

Posit12,0 98.5 2.9 98.8 4.66 97.1 3.04 89.0 1.9

Posit10,0 98.6 2.9 98.7 4.62 96.9 3.08 89.0 1.9

Posit8,0 98.6 3.01 98.4 4.84 94.2 3.01 88.0 1.9

FASHION-MNIST

Posit16,0 89.6 3.4 90.0 5.5 85.2 3.4 85.0 2.1

Posit14,0 89.6 2.9 90.0 5.0 85.2 3.2 85.0 1.9

Posit12,0 89.7 2.9 90.0 5.1 85.2 3.1 85.0 1.9

Posit10,0 89.7 2.9 89.7 5.1 85.1 3.2 85.0 1.9

Posit8,0 89.6 3.1 89.3 5.2 84.3 3.0 84.0 1.9

25.5 Conclusions

In this work we have introduced FastTanh, a fast approximation of the hyperbolic
tangent for numbers represented in Posit format which uses only L1 operations.
We have used this approximation to speed up the training phase of deep neural
networks. The proposed approximation has been tested on common deep neural
networkbenchmarks. Theuse of this approximation resulted in a slightly less accurate
neural network, with respect to the use of the slower true hyperbolic tangent, but with
better performance in terms of inference time of the network. In our experiment,
the FastTanh also outperforms both the ReLu and the FastSigmoid, which is a well-
known approximation of the sigmoid function, a de facto standard activation function
in neural networks.

Acknowledgements Work partially supported by H2020 European Project EPI (European Proces-
sor Initiative) and by the ItalianMinistry of Education andResearch (MIUR) in the framework of the
CrossLab project (Departments of Excellence program), granted to the Department of Information
Engineering of the University of Pisa.

References

1. Pedamonti D (2018) Comparison of non-linear activation functions for deep neural networks
on MNIST classification task. arXiv:1804.02763

25 A Fast Approximation of the Hyperbolic Tangent … 221

2. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In:
27th International conference on international conference on machine learning (ICML) 2010,
pp 807–814

3. Köster U et al (2017) Flexpoint: an adaptive numerical format for efficient training of deep
neural networks. In: NIPS 2017, pp 1740–1750

4. Popescu V et al (2018) Flexpoint: predictive numerics for deep learning. In: IEEE symposium
on computer arithmetics, 2018

5. “NVIDIA TURING GPU Architecture, graphics reinvented”, White paper n. WP-09183-
001_v01, pp 1–80, 2018

6. Malossi A et al (2018) The transprecision computing paradigm: concept, design, and
applications. In: IEEE DATE 2018, pp 1105–1110

7. Cococcioni M, Rossi F, Ruffaldi E, Saponara S (2019) Novel arithmetics to accelerate machine
learning classifiers in autonomous driving applications. In: IEEE ICECS 2019, Genoa, Italy,
27–29 Nov 2019

8. Cococcioni M, Ruffaldi E, Saponara S (2018) Exploiting posit arithmetic for deep neural
networks in autonomous driving applications. IEEE automotive 2018, pp 1–6

9. Gustafson JL, Yonemoto IT (2017) Beating floating point at its own game: posit arithmetic.
Supercomput Front Innov 4(2):71–86

10. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278–2324

11. LeCun Y, Jackel L, Bottou L, Brunot A, Cortes C, Denker J, Drucker H, Guyon I, Muller U,
Sackinger E, Simard P, Vapnik V (1995) Comparison of learning algorithms for handwritten
digit recognition. In: Fogelman F, Gallinari P (eds) International conference on artificial neural
networks, Paris. EC2 and Cie, pp 53–60.

12. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv:1708.07747

	25 A Fast Approximation of the Hyperbolic Tangent When Using Posit Numbers and Its Application to Deep Neural Networks
	25.1 Introduction
	25.2 Posit Arithmetic and the CppPosit Library
	25.3 The Hyperbolic Tangent and Its Approximation FastTanh
	25.4 Experimental Results
	25.5 Conclusions
	References

