Chapter 14 ®)
Digital Random Number Generator e
Hardware Accelerator IP-Core

for Security Applications

Luca Baldanzi, Luca Crocetti, Francesco Falaschi, Jacopo Belli,
Luca Fanucci and Sergio Saponara

Abstract Random numbers are widely employed in cryptography and security
applications, and they represent one of the main aspects to take care of along a
security chain. They are employed for creation of encryption keys, and if genera-
tion process is weak, the whole chain can be compromised: weaknesses could be
exploited to retrieve the key, thus breaking even the strongest cipher. This paper
presents the architecture of a digital Random Number Generator (RNG) IP-core to
be employed as hardware accelerator for cryptographically secure applications. Such
design has been developed starting from specifications based on literature and stan-
dards, and in order to assess the randomness degree of generated output, it has been
successfully validated through the official NIST Statistical Test Suite. Finally the
RNG IP-core has been characterized on Field Programmable Gate Array (FPGA)
and ASIC standard-cell technologies: on Intel Stratix IV FPGA it offers a through-
put of 720 Mbps requiring up to 6000 Adaptive Logic Modules, while on 45 nm it
reaches a throughput of 4 Gbps with a complexity of 119 kGE.

L. Baldanzi - L. Crocetti - F. Falaschi (<) - J. Belli - L. Fanucci - S. Saponara
Department of Information Engineering, University of Pisa, Via G. Caruso, 16, 56122 Pisa, Italy
e-mail: francesco.falaschi @phd.unipi.it

L. Baldanzi
e-mail: luca.baldanzi @ing.unipi.it

L. Crocetti
e-mail: luca.crocetti @phd.unipi.it

J. Belli
e-mail: jacopo.belli23 @gmail.com

L. Fanucci
e-mail: luca.fanucci@unipi.it

S. Saponara
e-mail: sergio.saponara@unipi.it

© Springer Nature Switzerland AG 2020 117
S. Saponara and A. De Gloria (eds.), Applications in Electronics Pervading

Industry, Environment and Society, Lecture Notes in Electrical Engineering 627,
https://doi.org/10.1007/978-3-030-37277-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37277-4_14&domain=pdf
mailto:francesco.falaschi@phd.unipi.it
mailto:luca.baldanzi@ing.unipi.it
mailto:luca.crocetti@phd.unipi.it
mailto:jacopo.belli23@gmail.com
mailto:luca.fanucci@unipi.it
mailto:sergio.saponara@unipi.it
https://doi.org/10.1007/978-3-030-37277-4_14

118 L. Baldanzi et al.

14.1 Introduction

In modern cryptography one of the fundamental primitives to be employed is the Ran-
dom Number Generator (RNG), the component in charge of generation of arbitrary
length random bit sequences. It represents the core part for several security appli-
cations which are required to ensure authentication, confidentiality and message
integrity for a broad range of activities, such as payments, on-line authentication,
instant messaging and operating systems updates [4]. The creation of cryptographic
keys requires a high degree of randomness so that an attacker is unable to derive the
secret key of a cipher thus compromising the whole chain, authentication protocols
nonces represent a valid countermeasure against replay attacks, in digital signature
random numbers prevent attackers to derive private keys [3].

During the last decades, several circuits have been proposed to cope with gener-
ation of RNG sequence, in particular the True Random Number (or Bit) Generators
(TRNGs) which are based on analog noise as physical source to generate random
bits [1-7]. Such devices have a high-quality output, but they are affected by signifi-
cant drawbacks, because they typically offer low throughput or require high power
consumption. Moreover, they can be unreliable for long term use due to unexpected
behaviors caused by changes in the device operating conditions. These are strong
limitations especially considering the target to be employed in high performances
and high complexity digital integrated systems such as hardware accelerators.

The limitations of TRNG devices can be worked around by implementing RNGs as
Deterministic Random Bit Generators (DRBGs): in this case the output sequences
are generated by means of deterministic algorithms instead of random processes,
therefore in order to guarantee the expected level of randomness it is required to
periodically give a new seed to such DRBG mechanisms (i.e., reseed operation,
high entropy content is given to the deterministic algorithm to restart the sequence
generation). This allow to pursue the requirement of indistinguishability between the
output bit sequence and truly random sequence.

The reminder of this paper is organized as it follows: Sect. 14.2 presents the trade-
off analysis among the different algorithms suitable for DRBG module, Sect. 14.3
describes the DRBG design architecture, Sect. 14.4 collects the characterization
results, and Sect. 14.5 discusses about conclusions of this work.

14.2 DRBG Algorithms Trade-Off Analysis

As already mentioned, NIST has approved a certain number of DRBG mechanisms
[2]: those mechanisms are based on Hash functions (SHA, Secure Hash Algorithm),
keyed-Hash Message Authentication Code (HMAC), and Counter (CTR) mode of
Advanced Encryption Standard (AES) and Triple Data Encryption Standard (TDES),
and they are briefly presented, focusing on performance evaluation in terms of
security strength and hardware implementation.

14 Digital Random Number Generator Hardware Accelerator ... 119

Hash DRBG family is based on SHA1 and SHA2 functions, but only SHA2
cryptographic primitives are taken into exam since SHA1 offers low security strength
and it is considered outdated. The parameters related to a DRBG mechanism based
on SHA?2 Hash function are reported in Table 14.1.

CTR! DRBG mechanism is based onto a block cipher core used in counter mode.
The parameters of this mechanism are listed in Table 14.2.

Concerning Hash DRBG, the characteristics of available SHA2 IP core are listed
in Table 14.3. SHA-224 and SHA-384 are discarded from the options, since they
offer a shorter output block keeping area and latency equal to respectively SHA-256
and SHA-512. The two remaining functions show some differences:

e SHA-256 has lower latency per block than SHA-512 but the latter offers a higher
throughput since it provides 512 bit every 80 clock cycles;

Table 14.1 Hash DRBG mechanisms parameters (SHA2 only) [2]

SHA algorithm

SHA-224 | SHA-256 | SHA-384 | SHA-512
Highest security strength 192 256 256 256
Output block length (outlen) (bits) 224 256 384 512
Min. entropy for Instance and Reseed (bits) | 192 256 256 256
Seed length (seedlen) bits 440 440 888 888
Max. num. of bit per request 219 219 219 219
Max. num. of requests between Reseeds 248 248 248 248

Table 14.2 CTR DRBG mechanisms parameters

AES Algorithm

3Key TDEA | AES-128 AES-192 AES-256
Highest security strength 112 128 192 256
Input/output block length 64 128 128 128
(blocklen) (bits)
Key length (keylen) 168 128 192 256
Counter field length (ctr_len) 4 < ctr_len < blocklen
Min. entropy for Instance and 112 128 192 256
Reseed (bits)
Seed length (seedlen) (bits) 232 256 320 384
Max. num. of bit per request min(B, 213) | min(B, 2'%) | min(B, 2!°) | min(B, 2'9)
Max. num. of requests between 248 248 248 248
Reseeds

B= (thrljen — 4) blocklen [2]

ICTR is an abbreviation for Counter.

120 L. Baldanzi et al.

Tabl.eﬁl4.'3 SHA2 TP core SHA2 Area (kGE) | Latency per Output block
specifications algorithm block (clock size (bits)
cycles)
SHA-224 15 64 224
SHA-256 15 64 256
SHA-384 30 80 384
SHA-512 30 80 512
Tabl%14..4 AES IP core AES Area (kGE) | Latency per Output block
specifications algorithm block (clock | size (bits)
cycles)
AES-128 11 11 128
AES-256 12.5 15 128

e comparing the areas, SHA-256 results to be more compact and this reflects also on
internal state registers area footprint: as it can be seen in Table 14.1, the variable
seedlen is 440 for SHA-256 and 888 for SHA-512; this implies that the internal
state requires around 900 registers for the former and 1800 for the latter.

Now, the expected throughput of these two hash functions during generation phase
in a Hash DRBG implementation can be calculated:

TSHA7256 = 256/64 . fclk *Mparallel_core = 4. fclk * Rparallel_core bit/S (1)

TSHA7512 = 512/80 . fclk *Nparallel_core = 6.4 - fclk * Nparallel_core bit/S (2)

CTR DRBG proved to be best in class for both area and throughput. The char-
acteristics of available AES IP core are presented in Table 14.4 for AES-128 and
AES-256.

Since our focus is on highest level security strength implementations, only AES-
256 is to be considered for the trade-off. As shown in the table, area is lower than
SHA-256 and throughput is higher than SHA-512:

TAES—256 = 128/15 . fc[k *Nparallel_core = 8.53 - fclk * Nparallel_core bit/S (3)

Despite all these considerations, CTR DRBG has not been chosen to be imple-
mented. The reason lays in the doubts about the effective capability of this mech-
anism to reach maximum security strength. In [8], the author claims that, while
Hash-based DBRGs satisfy security requirements, block cipher-based ones should
be avoided since the pseudo-random permutation inside each AES round coupled
with the counter mode outputs a sequence which is indeed distinguishable from a ran-
dom source. The choice ultimately fell on Hash DRBG, implemented with SHA-256

14 Digital Random Number Generator Hardware Accelerator ... 121

DRBG Mechanism Cryptographic Core Logic Complexity [kGE]

60 L ® SHA-256 (4 Core) ® CTR_AES-256 (3 Core)
SHA-512 (2 Core)

50T
® SHA-256 (3 Core)
40T ®CTR_AES-256 (2 Core)
30+ ® ®SHA-256 (2 Core)
SHA-512 (1 Core)
27T ® CTR_AES-256 (1 Core)

Throughput [Gbps]

2 SHA-256 (1 Core)

0 5 10 15 20 25 30 35

Fig. 14.1 Comparison between NIST approved DRBG mechanisms based on logic complexity in
kGE and throughput

core. This ensures a compact implementation for the mechanism and the possibil-
ity to extend the design for supporting multiple cores to increase the throughput.
Figure 14.1 reports the characteristics in terms of logic complexity and throughput
of several DRBG implementations, relying on the available IP cores (SHA and AES)
as primitives, their features when synthesizing on 45 nm standard-cell technology
[9] and methods to construct DRBG using such primitives [2].

14.3 Hash DRBG Design Architecture

The design architecture of Hash DRBG with SHA-256 core is shown in Fig. 14.2,
and it makes use of the following blocks:

e state registers for V, C and Reseed counter, with length respectively of 440, 440
and 20 bits, a 128-bit register to store an optional personalization string, for inter-
nal state randomization, and a 512-bit entropy register to store the input entropy
content;

e a SHA-256 core with 512-bit input and 256-bit output, with a latency of 64 clock
cycles;

e a serial adder with 440-bit inputs and modulo 440-bit output, which works in
parallel with the SHA-256 core and stores the result of the addition into one of the
its input registers, as shown in Fig. 14.2, in order to minimize area occupation;

e multiplexer network to address all data in internal state and from the previous
operation to the inputs of the SHA-256 core and adder;

e aFinite State Machine (FSM), which controls the flow of operations, i.e., instance,
reseed and generate;

122 L. Baldanzi et al.

Reseed Pers. String Entropy
Count Content Reg.

Multiplexer Network

Serial Adder I 9 SHA-256 Core

Fig. 14.2 Hash DRBG design architecture developed

e a DRBG self-test module (not present in Fig. 14.2), in order to diagnose possible
failures inside the circuitry.

14.4 Results

For the Hash DRBG IP-core characterization, two different technologies have been
identified as representative of potential targets for implementations of such hardware
accelerator for security applications: Intel Stratix IV FPGA and Silvaco PDK 45 nm
Open Cell Library [7] (i.e., ASIC standard-cell technology). In both cases different
implementation effort corners were tested, in order to evaluate the trade-off between
throughput and area. Concerning the Intel Stratix IV FPGA technology, the synthesis
and layout flow performed with high performance constraints gives a maximum
operative frequency of 180 MHz, meaning a throughput of 720 Mbps considering
the single core instance, for an overall occupation of 5949 ALMs (Adaptive Logic
Modules). The implementation on Silvaco ASIC standard-cell is able to reach a
throughput even up to 4 Gbps, since the maximum frequency is equal to 1 GHz
still for single core version of the IP-core, for a logic complexity of 118.98 kGE
corresponding to an area of approximately 0.094 mm?.

14.5 Conclusions

This paper presented the IP-core design related to a digital Random Number Gen-
erator (RNG), one of the most significant part required to implement algorithms for
authentication, confidentiality, message integrity and security applications in general.

14 Digital Random Number Generator Hardware Accelerator ... 123

The proposed architecture is based on one of the Deterministic Random Bit Genera-
tors (DRBGs) approved by NIST according to trade-off analysis between throughput,
area and security strength. Hash DRBG with SHA-256 as cryptographic core proved
to be the most efficient solution in terms of throughput per logic complexity, among
the solutions offering maximum security strength (i.e., 256 bits).

The RNG IP-core obtained has been tested by means of NIST Statistical Test
Suite, thus stating that the sequences of bits generated cannot be distinguished from
atrue random sequence of numbers, and therefore validating its use for cryptographic
applications. It has been also implemented on FPGA and ASIC standard-cell tech-
nologies for characterization. The implementation on Intel Stratix IV FPGA reported
a throughput of 720 Mbps at 180 MHz with a maximum occupation of about 6000
ALMs, while the synthesis on Silvaco 45 nm ASIC standard-cell [7] reported a
throughput of 4 Gbps at 1 GHz with a maximum logic complexity of about 119 kGE.

References

1. Barker E, Kelsey J (2016) Recommendation for Random Bit Generator (RBG) constructions.
Special Publication 800-90C, NIST

2. Barker E, Kelsey J (2015) Recommendation for random number generation using deterministic
random bit generators. Special Publication 800-90A, NIST

3. Lo Bello L, Mariani R, Mubeen S, Saponara S (2019) Recent advances and trends in on-board

embedded and networked automotive systems. IEEE Trans Ind Inf 15:1038-1051

Pelzl J, Paar C (2011) Understanding cryptography. Springer, Berlin

Dang QH (2015) Secure hash standard. Technical report, NIST

6. Dichtl M, Goli¢ JD (2007) High speed true random number generation with logic gates only.
In: Cryptographic hardware and embedded systems—CHES 2007. Lecture Notes in Computer
Science, vol 4727. Springer, Berlin, 45-62

7. Vasyltsov I, Hambardzumyan E, KimBohdan Y-S, Karpinskyy B (2008) Fast digital TRNG based
on metastable ring oscillator. In: Cryptographic hardware and embedded systems—CHES 2008.
Lecture Notes in Computer Science, vol 5154. Springer, Berlin, 164-180

8. Schmid M (2015) ECDSA—Application and implementation failures

9. Silvaco PDK 45nm Open Cell Library. https://www.silvaco.com/products/nangate/FreePDK45_
Open_Cell_Library/index.html

A

https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/index.html

	14 Digital Random Number Generator Hardware Accelerator IP-Core for Security Applications
	14.1 Introduction
	14.2 DRBG Algorithms Trade-Off Analysis
	14.3 Hash DRBG Design Architecture
	14.4 Results
	14.5 Conclusions
	References

